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Abstract

In this note we prove the equivalence between the axiom of choice, the
well ordering principle and Zorn’s lemma, and discuss to some extent how
large fragment of ZF we need in order to prove the individual implications.

1 Introduction

This note is a suplementary text to the curriculum of MAT4640 Axiomatic Set
Theory. The main textbook is Kunen [1]. We assume that the reader is familiar
with the basic results on well orderings from Kunen. Nevertheless, the note
should be readable for anyone familiar with some naive set theory, as we will
state all properties of well orderings that we will use.

We will discuss which axioms from Zermelo-Fraenkel Set Theory, ZF, we
need for the proofs we give. Readers only interested in the equivalence results
may ignore this.

We use one joint enumeration of lemmas, theorems, definitions and exercises,
and another enumeration of the claims. Claims cannot be read out of the
context, as they will be integrated parts of proofs of lemmas or theorems.

2 Preliminaries

We will use the concepts partial ordering and total ordering in the meaning of
less than, i.e. they are irreflexive. Following Kunen [1], we let a partial or total
ordering be a pair consisting of a set and a binary relation, but the domain of
this relation does not need to be a subset of the set. The advantage is that
we can talk about initial segments without changing the relation, only the set.
In one proof this convention will be a disadvantage. This is reflected in our
definition of an f -string. All our relations will be binary, i.e. sets of ordered
pairs.
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Definition 1 Let A be a set and R a relation.

a) R is a partial ordering on A if

- ∀a ∈ A¬(aRa)
- ∀a, b, c ∈ A(aRb ∧ bRc⇒ aRc).

b) A partial ordering R on A is total if we in addition have

∀a, b ∈ A(aRb ∨ a = b ∨ bRa).

c) If we replace ∀a ∈ A¬(aRa) with

∀a, b ∈ A(aRb ∧ bRa⇔ a = b)

we say that R is a reflexive ordering on A.

d) If R is a partial ordering on a set A, B ⊂ A and a ∈ A we say that a is
an upper bound for B if ∀b ∈ B(bRa ∨ b = a).

Definition 2 Let R be a total ordering on a set A.
We say that R is a well ordering of A if every nonempty subset X ⊆ A has an
R-least element.

We will prove the equivalence, modulo ZF of the following three statements:

AC The Axiom of Choice
Let F be a function defined on a set I such that F (i) is a nonempty set
for all i ∈ I.
Then there is a choice function f defined on I such that f(i) ∈ F (i) for
all i ∈ I.

WO The Well Ordering Principle
Let A be a set.
Then there is a wellordering R of A.

ZORN Zorn’s Lemma
Let A be a set and R a partial ordering on A.
Assume that whenever B ⊆ A is totally ordered by R, then B has an
upper bound in A.
Then there is an R-maximal element in A.

Remark 3 Kunen [1] call the wellordering principle for the axiom of choice.
This is convenient, since it s often easier to prove the well ordering principle
than the axiom of choice for models of set theory as constructed in his book.
When we have established the equivalence, we may prove the version we prefer,
depending on what is easiest to establish.

Quite often AC is formulated as the exisence of choice functions for indexed
families {Ai}i∈I of nonempty sets. This is a matter of notation only, as the
statements mathematically mean the same.
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3 Zorn’s lemma implies the axiom of choice

Let F be a function mapping each I in a set I to a nonempty set F (i). We will
use Zorn’s lemma, and prove that there is a choice function f for F defined on
I.
We will let X be the set of partly successful attempts to construct a choice
function. More precisely, a pair 〈J, g〉 ∈ X if j ⊆ I, g is a function with domain
J and g(j) ∈ F (j) for all j ∈ J .
We let v be the reflexive ordering on X defined by

〈J1, g1〉 v 〈J2, g2〉

when J1 ⊆ J2 and g2 is an extension of g1.
We let @ be the corresponding irreflexive ordering.

Claim 1 The assumption of Zorn’s lemma will hold for 〈X, @〉.

Proof
Let {〈Jy, gy〉 | y ∈ Y } be a totally ordered subset of X and let

J =
⋃
{Jy | y ∈ Y }.

For j ∈ J , let g(j) = gy(j) whenever j ∈ Jy. The choice of y does not matter,
this is where we use that the set is totally ordered.
Clearly, 〈J, g〉 is an upper bound for {〈Jy, gy〉} | y ∈ Y }, and this is exactly
what we need in order to verify that the claim holds.
End of proof of Claim

Using Zorn’s lemma, we let 〈J, g〉 be a maximal element in 〈X, @〉.

Claim 2 J = I and g is a choice function for F .

Proof
Since g is a choice function for F on its domain, it suffices to show that J = I.
Assume that this is not the case, and that i ∈ I \ J . Let a ∈ F (i) and let f
defined on J ∪ {i} extend g by letting f(i) = a.
Then 〈J ∪ {i}, f〉 properly extends 〈J, g〉, contradicting the maximality of the
latter. Thus the claim follows by contradiction.
End of proof of claim

As a consequence of the two claims we obtain

Theorem 4 Zorn’s lemma implies the axiom of choice.

In this argument, we have used the power set axiom, the replacement axiom and
the comprenension axiom. We used the power set axiom and the comprehension
axiom in singling out those J ⊂ I with a choice function. We then used the
power set axiom to select all choice functions for each J and the replacement
axiom again to form the set X.
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4 The well ordering principle implies Zorn’s lemma

In this proof we will use transfinite recursion, a method of construction dis-
cussed intimately in MAT4640, and we assume that the reader is familiar with
this kind of construction.
We need the axiom of replacement to justify transfinite recursion. The princi-
ple idea is that we may define a function by transfinite induction over a well
ordering, because if the recursion does not make sense, it will be a least element
where the function we aim to construct is undefined, or multiply defined, and
this will contradict the uniqenes of recursion.

Let A with the partial ordering R satisfy the assumption in Zorn’s lemma,
and let ≺ be a well ordering of A. The intuition is that we use transfinite
recursion over the well ordering ≺ to construct a totally ordered subset B ⊆ A
securing that no a ∈ A can be a strict upper bound of B. Then any upper
bound for B will be maximal. The precise argument is given below.

Claim 3 There is a unique subset B ⊆ A satisfying

a ∈ B ⇔ ∀b ∈ A(b ∈ B ∧ b ≺ a⇒ bRa)

for all a ∈ A.

Proof
Uniqueness follows from the fact that ≺ is a well ordering, there is no minimal
element where we may choose if a ∈ B or not. For the existence, we need the
replacement axiom, showing by transfinite induction that for each c ∈ A, there
is a Bc satisfying the definition of B up to {a ∈ A | a ≺ c}.
End of proof of claim.

The set B constructed in the above Claim will be totally ordered by R, since
for a and b in B, we will have that

a ≺ b⇔ aRb.

By the assumption in Zorn’s lemma, there will be an upper bound b for B.
If b is not maximal, there is an a strictly R-above b. By the construction of B,
we will have that a ∈ B since in particular, a is an upper bound for

{c ∈ B | b ≺ a}.

This contradicts that a is a strict upper bound for B, something derived from the
assumption that b is not R-maximal. Thus b is R-maximal, and the conclusion
of Zorn’s lemma is proved.
We then have

Theorem 5 The well ordering principle implies Zorn’s lemma.

There is no significant use of the power set axiom in this argument, and indeed,
this theorem can be proved without the use of the power set axiom.
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5 The axiom of choice implies the well ordering
principle

In this section we will make use of the following facts about well orderings:

Lemma 6 a) Let 〈A, R〉 and 〈B, S〉 be isomorphic well orderings.
Then the isomorphism is unique.

b) Let 〈A, R〉 and 〈B, S〉 be two well orderings. Then exactly one of the three
statements below will hold:

1. 〈A, R〉 and 〈B, S〉 are isomorphic.

2. 〈A, R〉 is isomorphic to a proper initial segment of 〈B, S〉.
3. 〈B, S〉 is isomorphic to a proper initial segment of 〈A, R〉.

In all cases, the isomorphism (and initial segment) is unique.

This Lemma is proved in Kunen [1]. a) is trivial, and b) is fairly easy.

Now, let X be an arbitrary set. We want to use the axiom of choice to show
that there must be a well ordering of X.
If you have a bucket full of blueberries, and have the patience to pick one blue-
berry at random out of the bucket as long as there are blueberries left, you may
pick out all the blueberries and lay them in a total ordered row.
Our intuition behind the proof is that if we replace the bucket with X, the blue-
berries with the elements of X and the random picking with a choice function
on the set of nonempty subsets of X, the result of a transfinite picking should
be a well ordering of X. We of course have to support this intuition with a
mathematically sound argument.

By the axiom of choice, let f be a function such that f(Y ) ∈ X \ Y whenever
Y ⊂ X has a non empty complement.
The rest of our construction and proof will be given relative to this chosen f .

Definition 7 An f -string is a pair 〈A, R〉 where A ⊆ X and R is a well ordering
of A such that

∀a ∈ A(a = f({b ∈ A | bRa}))

and R consists only of ordered pairs from A2.

Remark 8 If 〈A, R〉 is a nonempty f -string and a0 is the R-least element of A,
then

a0 = f({b ∈ A | bRa0})) = f(∅).

Thus the least element will be common for all nonempty f -strings. For all f -
strings with more elements, the next object will also be common. In fact, we
will see that it is only the length of f -strings that may distinguish them, not
the order in which the elements come.

Lemma 9 An initial segment of an f -string is an f -string.
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Proof
If 〈B, S〉 is an initial segment of an f -string 〈A, R〉, and a ∈ B, we have that

a = f({b ∈ A | bRa})) = f({b ∈ B | bSa})).

The claim follows.

Claim 4 Let 〈A, R〉 and 〈B, S〉 be two f–strings, and let g be an isomorphism
between initial segments (not necessarily proper) of the strings.
Then g(a) = a for all a in the domain of g.

Proof
Assume not. Let a be the R-least element in A such that g(a) 6= a and let
b = g(a). Then g(c) = c whenever c ∈ A and cRa.
Since g is an isomorphism, we must have that

{d ∈ B | dSb} = {g(c) | cRa} = {c ∈ A | cRa}.

Since both 〈A, R〉 and 〈B, S〉 are f–strings, it follows that

a = f({c ∈ A | cRa}) = f({d ∈ B | dSb}) = b.

This is in conflict with the assumption.
End of proof of Claim

Claim 5 Let 〈A, R〉 and 〈B, S〉 be two f -strings. Then they are either equal,
or one is a proper initial segment of the other.

Proof
By Lemma 6b), they are either isomorphic or one is isomorphic to a proper
initial segment of the other. By claims 3 and 4, the isomorphism will in all
cases be an identity function, and the claim follows.
End of proof of Claim

As a consequence of Claim 5 we see that if we order the f -strings by the initial
segment ordering, this ordering is total.
Let A be the union of all B such that 〈B, S〉 is an f -string, and let R be the
union of all S such that 〈B, S〉 is an f -string.

Claim 6 〈A, R〉 is an f -string.

Proof
We must use that S ⊂ B2 in order to prove that 〈A, R〉 is a total ordering. This
is left for the reader.
We then see that 〈A, R〉 is a well ordering: Let C ⊆ A be nonempty.
Then there is an f -string 〈B, S〉 with B ∩ C 6= ∅.
Let a be the S-least element of C ∩B.
Since, by construction, 〈B, S〉 is an initial segment of 〈A, R〉, we have that A
must be the R-least element of C.
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This argument also shows that each proper initial segment of 〈A, R〉 is an f -
string, and it follows that 〈A, R〉 itself must be an f -string.
End of proof of Claim

Clearly the f -string 〈A, R〉 is the largest f -string

Claim 7 The set A constructed above will be equal to X, and thus R is a well
ordering of X.

Proof
Assume that A is a proper subset of X, and let b = f(A). Let B = A∪ {b} and
let S = R ∪ {〈a, b〉 | a ∈ A}.
Then 〈B, S〉 is also an f -string, so b ∈ A by construction of A.
This is clearly a contradiction.
End of proof of Claim

We have now given all steps in the proof of

Theorem 10 The axiom of choice implies the well ordering principle.

Remark 11 In this proof we have used the power set axiom and the replace-
ment axiom, and the reader will also see a direct application of the union axiom.
The union axiom is also used to justify transfinite recursion, and of course there
are hidden uses of the union axiom and the comprehension axiom in our proofs.
We may view the final f -string as the least fixed point of an inductive definition.

6 Final comments

We have proved that, relative to ZF the three statements AC, WO and ZORN
are equivalent. We have proved three of the implications between them, and of
course, by transitivity of implication, the three other equivalences will hold.
The proof of ZORN from WO did not use the power set axiom.

Exercise 12 Give a proof of AC from WO where you do not use the power
set axiom.

In the literature you may find proofs of ZORN directly from AC. Often, a
careful reading reveals that the proof of WO from AC is implicit in the argu-
ment. You may also observe, reading mathematics in general, that applications
of ZORN normally may be replaced by a combined use of WO and transfinite
recursion. Examples are the existence of ultrafilters extending a filter, every
vector space has a base, and less transparently, Tychonov’s theorem and Hahn-
Banach.
This discussion is of course not proper mathematics, but as a future scholar in
set theory, you may wonder why mathematicians avoid the idea of transfinite
recursion.
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