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Abstract

In this note we will introduce some standard notation for the definability-
complexity of classes, and we will prove Shoenfield’s absoluteness theorem.

This note is a suplementary text to the curriculum of MAT4640 Axiomatic
Set Theory. The main textbook is Kunen [1]. We will assume that the reader
is familiar with relevant chapters from Kunen [1].

The main result in this note is the so called Shoenfield absoluteness theorem
stating that all Σ1

2-statements are absolute for Gödel’s L. We assume that the
reader knows about L, but the meaning of Σ1

2 will be explained.
It is sometimes useful to classify classes and sets by the form of the simplest
definitions, and there is a standard notation for families of classes or sets. One
aim in this note is to introduce the reader to this notation and to the basic
properties of definability classes of sets or classes.

We will use separate enumerations for lemmas, theorems, definitions and
exercises in this note.

1 The class hierarchy

1.1 Syntax classes

First we will consider the class ∆0 known from Kunen [1]. We will take the
liberty, though, to extend the set of ∆0-formulas. We will use the language of
ZF extended with the connective ∨, the quantifier ∀ and the bounded quantifiers
∀x ∈ y and ∃xiny. We do this for the sake of convenience, and we know that
all statements in this extended language can be rephrased in the genuine mini-
malistic language of ZF. The use of these extra quantifiers makes our definition
of syntax classes simpler.
We will not include → and ↔ in our language, though, but use the symbols for
expressing abbreviations as before.
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Definition 1 A ∆0-formula is a formula in this extended language where we
do not use the unbounded quantifiers ∃x and ∀x.
A ∆0-class is a class definable by a ∆0-formula.

Exercise 1 Show that every ∆0-frmula will contain at least one free variable.

Remark 1 Recall that a class strictly spoken is a defining formula, where we
may use parameters. Since we consider two classes to be equal if the defining
formulas are equivalent, we may think of a class as the collection objects making
the defining formula true. In this note we will only claim that two classes are
equal if they are provably equivalent, either by first order logic alone, or by he
axioms of ZF. In the latter case, it may be of interest to find out how much of
ZF we need in order to prove the equivalence.

We will allow multi-dimentional classes. This is of course nothing else than
classes where all elements are ordered sequences, in the sense of set theory, of a
fixed length. It simplifies the exposition, tough, to consider classes defined by
formulas with more than one free variable.

Definition 2 We define the hierarchy of formulas as follows:

1. A formula Φ is Π0 or Σ0 if it is ∆0.

2. Φ is a Σn+1-formula if it is of the form ∃xiΨ where Ψ is a Πn-formula.

3. Φ is a Πn+1-formula if it is of the form ∀xiΨ where Ψ is a Σn-formula.

Definition 3 A class is Πn if the defining formula is equivalent to a Πn-formula.
A class is Σn if the defining formula is equivalent to a Σn-formula.
A class is ∆n if it is both Πn and Σn.

Remark 2 Unless we have a very Platonic view on the universe of sets, we
must be careful here. In order to see that a class is Πn, Σn or ∆n we normally
have to prove the equivalence from a fragment of ZF or from some extra axioms.
In these notes we will consider equivalences provable in ZF or in ZF + V = L.

In the sequel, we will mainly be interested in these families when n = 0 or n = 1,
but we take the opportunity to prove some basic, and useful, properties of these
families of classes in general.

1.2 Closure properties

It is well known from first order logic that any formula can be rewritten to an
equivalent formula on prenex normal form, i. e. a formula where all quantifiers
appears in front in a prefix and the propositional part appears to the right in a
matrix. Since our underlying logic is first order logic, we may assume without
loss of generality that all our defining formulas are on prenex normal form.
This does not mean that they are Πn or Σn for some n, since this requires that
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all unbounded quantifiers appear to the left of all bounded quantifiers, and that
the unbounded quantifiers alternate in form. Consider the class

X = {x | ∃y∃z(y ∈ x ∧ x ∈ z}

The defining formula is not in our hierarchy of syntactical forms, but the class
is indeed ∆0, provably in a very small fragment of ZF. We will now prove a
lemma that gives us a way to transcribe any formula to either a Πn formula or
to a Σn formula for some n. This gives us an easy way to place any class in
one of our syntax classes. Of course, we may sometimes use our mathematical
ability to improve the results obtained by this simple strategy.

Lemma 1 The following transitions lead to provably equivalent formulas:

1. Replace ∃x∃y with ∃z∃x ∈ z∃y ∈ z.

2. Replace ∀x ∈ z∃y with ∃u∀x ∈ y∃y ∈ u.

3. Replace ∀x∀y with ∀z∀x ∈ z∀y ∈ z.

4. Replace ∃x ∈ z∀y with ∀u∃x ∈ z∀y ∈ u.

Proof
3. follows from 1. and 4. follows from 2. by propositional calculus.
1. is a consequence of the pairing axiom.
2. follows from the replacement axiom and the WF-axiom. We need the WF-
axiom to rephrase the replacement axiom scheme to the scheme

∀x ∈ u∃yΦ(x, y)→ ∃v∀x ∈ u∃y ∈ vΦ(x, y).

We leave the proof of the correctness of the rephrasing as an exercise for the
reader. With this rephrased version, 2. is trivial.

We do of course have similar transition rules for combined quantifiers of the
form ∃y ∈ z∃x and ∀y ∈ z∀z, leaving the precise formulation as an exercise for
the reader.
This gives us all we need in orderto prove the following

Theorem 1 If n > 0, the family of Σn classes of a fixed arity will be closed
under

- finite intersections

- finite unions

- bounded quantifiers

- unbounded existential quantifiers.

For the family of Πn-classes we replace the last item with “unbounded universal
quantifiers”.
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Definition 4 A class function F is a class F (~x) = y that satisfies

∀~x∃!y(F (~x) = y).

We say that F is Σ1,Π1, . . . etc. if the class F (~x) = y is Σ1,Π1, . . . resp.

Lemma 2 1. If F is a Σn class function then F is a ∆n class function.

2. Composition of ∆1-functions uields a ∆1-function.

3. If F is ∆1 and G is defined from F by transfinite recursion, then G is ∆1.

Proof

1. This is trivial if n = 0, so let n > 0 and let F (~x) = y when ∃zΦ(~x, y, z)
where Φ is in Πn−1. Since F is a class function we will have

F (~x) = y ⇔ ∀z∀u(Φ(x, u, z)⇒ u = y).

Using prenex operations and the transitions from Lemma 1 we get an
equivalent formula on Πn-form.

2. Since composition of Σ1-relations will be Σ1, we may use 1. of this lemma.

3. When we showed that G is a class function when defined by transfinite
recursion from a class function F we used one unbounded existential quan-
tifier, demanding that there is a partial g, satisfying the recursion on its
domain, such that g(~x) = y.
When F is ∆1, the statement that g is a partial solution is also ∆1, so G
is Σ1. By 1. of this lemma, G is ∆1.

One important special case of this is that we may use constants with a ∆1

definition in a formula without ruining that the defined class is ∆1.

Exercise 2 Let
OP (x, y){{x, y}, {x}}.

Let R ⊆ V × V be a class. Let

S = {OP (x, y) | (x, y) ∈ R}.

Let n > 0 and show that R is Σn if and only if S is Σn.
Prove the same statement for Πn with n > 0.
Do we need that n > 0 in any of these directions?

A closer inspection of the construction of L will tell us that we have proved what
we need for the following

Corollary 1 The function α 7→ L(α) is ∆1 and L is Σ1.

Proof
L(α), viewed as a function, is constructed by iterated use of transfinite recursion,
the constant ω, the pairing function and other similarily simple operators. This
gives us that the function is ∆1. The class ON is also ∆1 and

x ∈ L⇔ ∃y∃z(y ∈ ON ∧ x ∈ z ∧ z = L(y)).

Thus L is Σ1.
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1.3 Universal classes

We have seen that it is hard to get out of ∆1, and one might suspect that with
some cleverness we might prove that all classes are ∆1. We will now show that
this is not the case, that on the contrary, there will be new classes at any level
of our hierarchy.

Exercise 3 Show that all Σn classes and all Πn-classes are ∆n+1-classes.
Show that the complement of a Σn-class is a Πn-class and vice versa.

We will now show that if n > 0 then neither of the families Σn nor Πn are closed
under complement. We will do so by constructing so called universal classes in
each family, and then, by a diagonal argument, find an element not in the family
where the complement is in the family.
We need a Gödel enumeration of the ∆0-formulas as a tool. This definition
cannot be formalized in ZF since we make direct reference to the syntax of
ZF. The purpose will be to use the arithmetisation to formally define a truth
predicate for ∆0-formulas.

Definition 5 For each n, k ∈ N with k ≥ 1 we define a ∆0-formula
φn,k(x1, . . . , xk) as follows:

1. If n = 203i5j and 1 ≤ i, j ≤ k, let φn,k be xi = xj .

2. If n = 213i5j and 1 ≤ i, j ≤ k, let φn,k be xi ∈ xj .

3. If n = 223i5j , let φn,k be φi,k ∨ φj,k.

4. If n = 233i5j , let φn,k be φi,k ∧ φj,k.

5. If n = 243i, let φn,k be ¬φi,k.

6. If n = 253l5j and i ≤ k, let φn,k be (∃xk+1 ∈ xi)φj,k+1.

7. If n = 263i5j and i ≤ k, let φn,k be (∀xk+1 ∈ xi)φj,k+1.

8. Otherwise, let φn,k be x1 = x1.

If a1, . . . , ak are sets, we let 〈a1, . . . , ak〉 be a standard coding of the ordered
sequence (a1, . . . , ak) as a set. It does not matter if we use iteration of the
ordered pair construction or functions f : k → V, only the fact that the class of
coded ordered sequences is ∆1 and that the functions giving the length of the
sequence and the individual ai are ∆1.

Definition 6 Let Pred(n, k, 〈a1, . . . , ak〉) if and only if φn,k(a1, . . . , ak).

Lemma 3 Pred is ∆1-definable in ZF.

Proof
Pred is definable by recursion over ω using a ∆1 function.

We then obtain
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Theorem 2 Let k ≥ 0.
Then there is a Σ1-class Φk of arity k+ 1 such that for all Σ1-classes Ψ of arity
k there is an n ∈ ω such that for all sequences ~x of length k

Ψ(~x)⇔ Φk(n, ~x).

Proof
Let

Φk(x, ~x)⇔ (x ∈ ω ∧ ∃yPred(x, k + 1, 〈y.~x〉)).

This clearly does the job

We say that Φk is universal for the family of Σ1-classes of arity k. The negation
rewritten to a prenex normal form will then be universal for all Πn-classes.

Corollary 2 Let Γ be the family Πn or Σn for some n ≥ 1.
Then, for each k ≥ 0 there is an element Φk in Γ of arity k+ 1 that is universal
for all Ψ ∈ Γ of arity k.

Proof
Let ~Q~y be the common quantifier prefix used for all classes in Γ. Let

Φk(x, ~x) = (x ∈ ω ∧ ~Q~yPred(x, 〈~x, ~y〉))

where we use the Σ1-form or Π1-form of Pred that corresponds to the final
quantifier in ~Q.
This does the trick.

Corollary 3 For each n there is a Σn-class that is not Πn.

Proof
Let Φ(x, y) be universal for all Σ1-classes of arity 1. Let Ψ(x) ⇔ x ∈ ω ∧
¬Φ(x, x).
Then Ψ is Πn, but distinct from all Σn classes.

Note that Ψ actually defines a set, a subset of ω. It is possible to find a Πn-class
that is not Σn definable from any set. We will not need this in this note, and
leave the verification as a challenging exercise for the reader.

1.4 Absoluteness over HC

Recall that HC, the hereditarily countable sets, is the set of sets where the
transitive closure is countable. Recall the definition of absolute formulas from
Kunen [1].

Theorem 3 All Σ1-formulas and Π1-formulas are absolute for HC.

Proof
It suffices to prove this for Σ1, since being absolute is closed under negation.
Let Φ(~x) = ∃xΨ(x, ~x) where Ψ is ∆0.
Let ~a be elements in HC. Since all ∆0-formulas are absolute for all transitive
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sets, Φ(~a) will hold in V if Φ(~a) holds in HC.
Assume that Φ(~a) holds in V , and let b be a set such that Ψ(b,~a).
Let M be a transitive set such that b ∈M and 〈~a〉 ∈M .
By Löwenheim-Skolem there is a countable M0 ⊆M that is elementary equiva-
lent to M such that the transitive closure of each ai from ~a are subsets of M0.
Let m : M0 → HC be the Mostowski collapse of M0.
Then Ψ(m(b),~a) will hold, and consequently, Ψ(~a) will hold in HC.

Recall that the power set axiom is the only ZF-axiom that fails for HC. We did
not use the power set axiom in proving the closure properties of the classes Σn
and Πn. Thus all these results hold when relativized to HC. This is only of
importance to us for n = 1.

2 The analytical hierarchy

In this section, we will discuss definability over the two sorted structure con-
sisting of N and NN. We will not spend space and time being overprecise about
the language we use, as we in any case will assume that all our definitions are
formalized in the language of ZF. Nevertheless, we will assume that we can
express standard arithmetical functions and relations, that we have quantifiers
over N and over NN and that we can express function application f(x) when f
varies over NN and x varies over N.

Definition 7 1. A ∆1
0-formula is a formula where all quantifiers are over N.

2. We identify Π1
0, Σ1

0 and ∆1
0, and call these formulas arithmetical.

3. A Σ1
k+1-formula is a formula of the form ∃f ∈ NNΦ where Φ is Π1

k.

4. A Π1
k+1-formla is ma formula of the form ∀f ∈ NNΦ where Φ is Σ1

k.

5. A subset of NN is called Σ1
k resp. Π1

k if it is definable by a Σ1
k- resp, a

Π1
k-formula.

6. A subset A ⊆ NN is ∆1
k if A is both Σ1

k and Π1
k.

Remark 3 All these classes have a relativized variant, where we allow param-
eters from NN in the definitions.
A classical theorem due to Souslin (191) is that the relativized ∆1

1-sets are ex-
actly the Borel subsets of NN. This is the starting point of desceiptive set theory,
an interesting path that we will not follow.

We will now discuss the closure properties of the classes Π1
k and Σ1

k seen as
classes of sets. We will systematically use n, m, etc. for elements of N = ω and
we will use f , g, etc. for elements of NN.

Definition 8 1. Let 〈n,m〉 = 1
2 ((n + m)2 + 3n + m). If k = 〈n,m〉 we let

π0(k) = n and π1(k) = m.
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2. Let 〈f, g〉(n) = 〈f(n), g(n)〉. If h = 〈f, g〉, we let π0(h) = f and π1(h) = g.

3. If {fi}i∈N is a sequence of functions, let 〈fi〉i∈N(〈j,m〉) = fj(m). If f =
〈fi〉i∈N we let (f)n = fn. Note that (f)n is always defined.

4. If n ∈ N and f ∈ NN we let 〈n, f〉(0) = n and 〈n, f〉(m + 1) = f(m), We
use π0 and π1 here as well, assuming that no confusion arises.

These operators will be definable bijections between

- N2 and N.

- (NN)2 and NN.

- (NN)N and NN.

- N× NN and NN.

We leave the verification of this for the reader. Indeed, any finite product of
N, NN and (NN)N will be definably equivalent to NN as long as the cardinality
is uncountable. Observe that all versions of the projections π0 and π1 will be
total.

Theorem 4 The class of Σ1
k sets for k > 0 will be closed under finite intersec-

tions finite unions, quantification over N and existential quantification over NN.
The class of Π1

k-sets is closed under finite intersections and unions, quantifica-
tion over N and universal quantification over NN.

Proof
We leave the details of the proof for the reader. The crucial steps are the
transcriptions where

- ∃f∃g · · · f · · · g · · · is replaced by ∃h · · ·πo(h) · · ·π1(h) · · ·

- ∀f∀g · · · f · · · g · · · is replaced by ∀h · · ·πo(h) · · ·π1(h) · · ·

- ∀n∃f · · ·n · · · f · · · is replaced by ∃f∀n · · ·n · · · (f)n · · ·

- ∃n∀f · · ·n · · · f · · · is replaced by ∀f∃n · · ·n · · · (f)n · · ·

By definition, a Π1
k-set or a Σ1

k set can be defined by a formula on prenex normal
form, where all function quantifiers will appear before all number quantifiers. In
the sequel, we will make use of the fact that we will never need more than one
number quantifier, and that one will be of the opposite kind as the innermost
function quantifier. This claim is justified by the following

Lemma 4 The formulas ∀n∃mΦ(n,m) and ∃g∀nΦ(n, g(n)) are equivalent for
all Φ.

The proof is easy, and is left for the reader.

As a consequence, we get the normal form theorem for Π1
1 sets:
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Theorem 5 All Π1
1-sets are definable by a formula of the form

Φ(~x) = ∀f∃nR(f, n, ~x)

where R is definable from computable functions using bounded quantifiers ∃i < k
and ∀i < k only together with propositional connectives.

We will give an application in Section 4

3 HC versus NN

3.1 Coding of HC

In this section we will consider the complexity of HC and the complexity of
subsets of NN definable over HC. First we need a mechanism for coding elements
of HC as elements in NN.

Definition 9 We let C be the least subset of NN that satisfies

1. If f(0) = 0 then f ∈ C.

2. If f = 〈k + 1, 〈fi〉i∈N〉 and each fi ∈ C then f ∈ C.

C is defined by a positive induction, and we use the elements of C as codes for
elements in HC using the decoding function ρC :

Definition 10 1. If f(0) = 0, let ρC(f) = ∅.

2. If f = 〈k + 1, 〈fi〉i∈N〉, let

ρC(f) = {ρC(fi) | i ∈ N}.

ρC is well defined on C, but our definition makes no sense outside of C. In a
model for set theory where we may have non well founded sets, it is possible to
consider ρC to be total.
ρC is also onto:

Lemma 5 For each x ∈ HC there is an f ∈ C such that x = ρC(f).

The proof is trivial by induction on the rank of x. Note that we actually need
the countable axiom of choice in the proof.

Now, let ~s = (s1, . . . , sk) be a finite sequence from ω, where we let e denote the
empty sequence, corresponding to k = 0.
Let f ∈ NN. By recursion on the length of the sequence ~s, we may define the
predecessor f~s of f with index ~s as follows:

- fe = f .

- f~ss(n) = f~s(1 + 〈s, n〉).
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Lemma 6 Let f ∈ NN.The following are equivalent:

1. f ∈ C.

2. ∀g∃n(f(g(0)···g(n−1))(0) = 0).

Proof
Since C is inductively defined, we can prove 1.⇒ 2. by induction on the forma-
tion of elements in C.
In order to prove the lemma in the other direction, we let Tf be the tree of
seqences ~s such that we for no proper subsequence ~t have that f~t(0) = 0. A
reformulation of 2. is that Tf is well founded, i.e. has no infinite branches. Then
we may use induction on the ordinal rank of Tf and prove that when Tf is well
founded, then f ∈ C.

Corollary 4 C is a Π1
1-set.

Our next task is to translate ∆0 statements over HC to statements over C.
The main obstacle will be to describe when two elements of C codes the same
element in HC, and when this obstacle is taken care of, the rest is easy.

Lemma 7 There is one Π1
1-statement Π= and one Σ1

1-statement Σ= such that
whenever f and g are in C then

ρC(f) = ρC(g)⇔ Σ=(f, g)↔ Π=(f, g).

Proof
Let V be a binary predicate on the set of finite sequences from N. Given f and g
we say that V is an identity predicate for f and g, I(V, f, g), if for all sequences
~s and ~t we have that

~sV ~t if and only if either f~s(0) = g~t(0) = 0 or if

- f~s(0) > 0

- g~t(0) > 0

- ∀s∃t(~ssV ~tt)
- ∀t∃s(~ssV ~tt)

If f ∈ C and g ∈ C, there will be exactly one identity predicate V for f and g,
and then ρC(f) = ρC(g) if and only if eV e (where e still is the empty sequence).
Let

Σ=(f, g)⇔ ∃V ((I(V, f, g) ∧ eV e)

and

Π=(f, g)⇔ ∀V (I(V, f, g)→ eV e).

This ends our proof, as we leave the rest of the details for the reader.

Exercise 4 Use Lemma 6 and the proof of Lemma 6 and prove
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Let Φ(x1, . . . , xn) be ∆0. Then there is a Σ1
1 formula ΣΦ and a Π1

1-formula
ΠΦ such that whenever f1, . . . , fn are in C we have

Φ(ρC(f1), . . . , ρC(fn))⇔ ΣΦ(f1, . . . , fn)⇔ ΠΦ(f1, . . . , fn).

Hint: Use the proof of Lemma 6 when Φ is xi ∈ xj and combine Lemma 6 with
induction on the complexity of Φ otherwise.

We will use this machinery to show that all Σ1 definable subsets of NN actually
are Σ1

2.

Lemma 8 There is a ∆1
1-definable map f 7→ cf such that whenever f ∈ NN

then cf ∈ C and ρC(cf ) = f .

Proof
Since f set-theoretically is a subset of ω × ω we first construct a code gn,m for
〈n,m〉 for each such pair, and then let

cf = 〈1, 〈gn,f(n)〉n∈N〉.

The construction of gn,m is left for the reader.
The whole construction is computable and thus arithmetical and ∆1

1.

Corollary 5 If A ⊂ NN is Σ1, then A is Σ1
2.

Proof
By Theorem 3 we may assume that

f ∈ A⇔ ∃x ∈ HCΦ(x, f)

where Φ is ∆0.
Then

f ∈ A⇔ ∃g(g ∈ C ∧ΠΦ(g, cf ))

and this is Σ1
2.

The converse will actually also hold, all Σ1
2-sets are Σ1-definable. This will be

proved in Section 4, see 7.

3.2 V = L and the well ordering of NN

We have shown (see Kunen [1]) that if V = L, then the axion of choice will hold.
We have also shown that the continuum hypothesis holds under the assumption
of V = L. A consequence of these two results is

Lemma 9 If V = L then HC = L(ℵ1).

We constructed the well ordering of L using iterated transfinite recursion, some
∆1-definable constants and some ∆1-definable functions. In the same way as
we prove that L(α), seen as a function, is ∆1, we get that the function giving
us the well ordering of L(α) also is ∆1.
We then get
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Lemma 10 If V = L there is a ∆1 well ordering of V.

Corollary 6 If V = L there is a ∆1
2-well ordering of NN.

The significance is that whenever we can use a well ordering of NN, or of the
reals, to construct a nasty set like a non measurable one, it is consistent with
ZF that there are ∆1

2-sets being nasty in the chosen way.

4 The Shoenfield absoluteness theorem

Π1
1-sets and Σ1

1-sets are defined with the use of function quantifiers, and a priori
there is no reason to believe that such definitions are absolute with respect to
sets or classes with few function quantifiers.
In this section we will show that all Π1

1-sets are absolute for transitive models
of a fairly weak fragment of set theory, and that all Σ1

2-sets are absolute for all
models of set theory containing all the ordinals. In particular, all Σ1

2-definitions
will be absolute for L.

Lemma 11 If A ⊆ NN is Π1
1, then A is Σ1-definable.

Proof
Recall the normal form theorem for Π1

1-sets, see Theorem 5, and let

g ∈ A↔ ∀f∃nR(g, f, n)

where we only use bounded quantifiers and symbols for computable functions
and relations in defining R.
As a consequence, it is possible to determine if R(g, f, n) from a finite amount
of information about f and g. Indeed, there is a computable binary relation R∗

on the set of sequence numbers (for finite sequences from N) such that for each
f, g, n the following will hold

1. R(g, f, n)⇒ ∃m ≥ nR∗(ḡ(m)f̄(m))

2. R∗(ḡ(n), f̄(n))⇒ ∃m ≤ mR(g, f.m)

3. R∗(ḡ(n), f̄(n))⇒ ∀m ≥ nR∗(ḡ(m)f̄(m))

Here f̄(n) denotes the sequence number of the sequence (f(0), . . . , f(n − 1)),
and when τ is a sequence of numberss, we will let #τ denote the corresponding
sequence number. Now, let g ∈ NN and let τ be a sequence of numbers of length
n.
We let

τ ∈ Tg ⇔ ¬R∗(ḡ(n),#τ).

Tg will be a tree of finite sequences from N, and T will have no infinite branches
if and only if g ∈ A. The map g 7→ Tg is computable, and in particular ∆1.
In other words, g ∈ A if and only if Tg is well founded and if and only if there
is an order preserving function from Tg with the reversed sub sequence ordering
to ON. The latter gives us the Σ1–form.
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Corollary 7 All Σ1
2-subsets of NN are Σ1-definable.

Proof
NN is itself ∆1-definable (try to decide if it is actually ∆0-definable), so an extra
existential quantifier over NN cannot break a class out of Σ1.

If M is a transitive model for a fragment of ZF strong enough to prove that
well founded relations over N have rank functions, then all Π1

1-definitions will
be absolute for M . Such models are often called β-models. We will now extend
this absoluteness observation to the Shoenfield absoluteness theorem.

Definition 11 Let A be Π1
1, and for g ∈ NN, let Tg be the tree we defined in

the proof of Lemma 11.
For each ordinal α and for each function g ∈ NN, we let Dα,g be a tree of finite
sequences (α0, . . . , αk−1) of ordinals < α as follows:
(α0, . . . , αk−1) ∈ Dα,g if for all i, j < k, if i = #σ and j = #τ for some σ and τ
in Tg where σ is a proper extension of τ , then αi < αj .

The point is that Dα,g will contain finite sequences that locally looks like rank
functions for Tg. Indeed, Dα,g will have an infinite branch if and only if Tg is
well founded and has an ordinal rank ≤ α. This gives us

Lemma 12 g 6∈ A↔ Dα,g is well founded for all ordinals α.

.

Lemma 13 For all g ∈ L and ordinals α, the tree Dα,g ∈ L.

Proof
The definition of Dα,g depends only on α and Tg, and the construction is abso-
lute with respect to L.

Now, let B ⊆ NN be Π1
2. We will see that membership in B also can be

rephrased to the well foundedness of all trees in a class absolute for L. Ob-
serve that in order to decide if (α0, . . . , αk−1) is in Dα,g, we only need a fi-
nite approximation to g, we just need to be able to decide if σ ∈ Tg when-
ever #σ < k, and then (g(0), . . . , g(k − 1)) will suffice. We then say that
(α0, . . . , αk−1) ∈ Dα,(g(0),...,g(k−1))

Definition 12 Let f ∈ B ↔ ∀h(〈f, h〉 6∈ A) where A is Π1
1 as above.

For f ∈ NN and α ∈ ON, let
Eα,f =
{((a0, . . . , ak−1), (α0, . . . , αk−1)) | (α0, . . . , αk−1) ∈ Dα,(〈f(0),a0〉,...,〈f(k−1),ak−1〉)}.

The elements in Eα,f are pairs of sequences, and we order Eα,f using reversed
pairwise sequence extension. An infinite branch in Eα,f will give a function h
and an infinite branch in Dα,〈f,h〉, and conversely, each h and inn´finite branch
in Dα,〈f,h〉 will give an infinite branch in Eα,f . Thus we have
f ∈ B ⇔ ∀h(〈f, h〉 6∈ A) ⇔ ∀h∀αDα,〈f,h〉 is well founded ⇔ ∀α(Eα,f is well

13



founded).
Further, we see that if f ∈ L, then the definition of Eα,f is absolute, so Eα,f ∈ L.
This gives us

Theorem 6 All Π1
2–statements are absolute for L.

Proof
Since being well founded is absolute, the statement

(∀α ∈ ON)Eα,f is well founded

be absolute for L. As we have seen, membership in a Π1
2-set can be expressed

this way.

Corollary 8 (The Shoenfield Absoluteness Theorem) All Σ1
2-definitions

are absolute for all transitive models M of ZF such that ON ⊂M .

References

[1] K. Kunen, Set Theory An introduction to Independence Proofs, Elsevier
1980.

14


