Exercise sheet 1

MAT4760, Spring 2016

Lectures 1, 2 and 3

Exercise 1

Compute the mean and variance of a Poisson process

Exercise 2

Compute the mean and variance of a compound Poisson process, where you state conditions for the existence of these two.

Exercise 3

A probability distribution F on the real line is said to be *infinitely divisible* if for every natural number $n \ge 1$ there exists n IID random variables $\{X_{ni}\}_{i=1}^{n}$ such that their sum $X_{n1} + \ldots + X_{nn}$ has distribution F.

- a) Show that the standard normal distirbution is infinitely divisible
- b) Show that the distribution of L(t), where L is a Levy process, must be infinitely divisible for any t > 0.

Exercise 4

Develop an algorithm that simulates paths of a compound Poisson process.

Exercise 5

Compute the cumulant of a compound Poisson process with exponentially distributed jumps.

Exercise 6

Let L be a pure jump Levy process with jumps smaller than or equal to $\epsilon < 1.$ Compute its variance.

Exercise 7

Subordination of Brownian motion: Let B(t) be a Brownian motion and U(t) a so-called subordinator, meaning a Levy process with increasing paths. Show that L(t) = B(U(t)) is a Levy process, and compute its cumulant function. Show that if U(1) is inverse Gaussian distributed, then L becomes a normal inverse Gaussian Levy process.