CHAPTER 2

Differential Forms

In this chapter, we shall define the leading character of this book,
the differential forms on differentiable manifolds.

Differential forms have two main roles. One is that they describe
various system of partial differential equations on manifolds, and, ever
since the pioneering work by Pfaff in the 18th and 19th centuries,
they have played an important role in analysis. The other is that
they are used to express various geometric structures on manifolds.
By applying appropriate operations on those differential forms, vari-
ous kind of differential forms are induced, and by integrating them on
manifolds, certain geometric “invariants” are obtained. These invari-
ants are quantities that reflect the global structure of manifolds, and
are very important— in fact, indispensable - in the study of manifolds.

The above two roles of differential forms are deeply related to
each other, rather than independent. However, in this book, keeping
mainly the second role in mind, we shall introduce differential forms.
That is, we consider differential forms to be something “which should
be integrated on manifolds”.

2.1. Definition of differential forms

(a) Differential forms on R".

We start with differential forms on R™, for the sake of simplicity.

Recall that if an associative product is defined on a vector space
A over the real number field R so that a ring structure is given and
for arbitrary a € R and A, u € A the condition

a(Au) = (ed)p = Aap)

is satisfied, then A is called an algebra over R (Definition 1.23). An
algebra generated by dz;,- - - ,dz, over R with unity 1, that satisfies
the equation

(21) dz, A d:c,- = —de Adz;
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58 2. DIFFERENTIAL FORMS

for arbitrary 4, j, is denoted by A}. Here A is a symbol that stands
for the product of this algebra. We call A}, the exterior algebra
generated by dzy, - ,dz,. By (2.1), we see that dz; A dz; = 0 for
arbitrary i. By taking the degree of dz; to be 1, for each monomial of
A} the degree is defined. For example, the degree of dr; Adza Adzj is
3. If we denote by A the set of all linear combinations of monomials
of degree k, the direct sum decomposition

A, =EPAk=AeoAr e -0A]
k=0
holds. It is easy to see that as a basis of AX we can take
(2.2) da:,-l/\---/\dx,-,‘, 1€ <-+- <4 <,
and hence dim A = (7). Alsoif k > n, then AX = 0 and dim A}, = 2~
A linear combination
W= Z fil...ik(a:l,'-~ ,1:,,)(1.’13,'1 /\"'/\dl’,;k
1< <y

of each element of (2.2) with C* functions on R™ as coefficients is
called a degree k differential form on R", or simply a k-form. The
above description is sometimes simply denoted by

Z}"I(:c)dz,-l Ao Adxy, .
I
We usually express differential froms by Greek letters. We denote the
set of all k-forms on R™ by A¥(R™). More precisely,
A¥(R™) = {w: R™ — AX; C®map}

or

A(R™) = C=(R™) ® A
Collecting differential forms of each degree, we can consider the alge-
bra of all differential forms on R",

A*(R™) = P A*(R™).
k=0
In particular, A°(R") = C*®(R"). That is, differential forms of degree
0 are simply C* functions. The product wAn € A**(R™) of a k-form
w € A*(R") and an I-form n € A'(R") is defined by

u.v/\n:Z:ﬂngz,-l/\---/\d:r:,-,‘/\d:z:jl A ANdzy,
1J
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if they are expressed as
w=Y_ fi(z)dzy, A---Adzi,, 1= gs(z)dz;, A--- Adzj,.
1 J

We call this the exterior product of w and 7.
In the above description, if we replace R™ by an open set U in
R", we can consider the algebra A*(U) of all differential forms on U.

EXAMPLE 2.1. Put U = R? — {0}. Then,

dr +
z? +y? z? + 4?2

dy

is a 1-form on U: However it is not a 1-form on R?, because it is not
defined at the origin.

The exterior differentiation, which is an important operation
applied to differential forms, is a linear map

d: A*(R™) — AR,
defined as follows. That is, for w = f(x1,--- ,za) dzy, A---Adzy,, let

(2.3) dw = Zax, ) dz; Adzi, A--- Ay,

For a function f € .AO(R") on R", its exterior differentiation df €
AN (R™M) is df = Z da: and is equal to so-called total differential.

For practice, let w be the 1-form in Example 2.1; if we calculate its
exterior differentiation dw by definition, we have
2 y? — 22
dw= ————-=dyAdz + ———=
@+ (@ + )
LEMMA 2.2. If we repeatedly operate the exterior differentiation
twice, it is identically 0. That is, dod = 0.

2 _
y — = dz ANdy =0.

PROOF. If we operate d again on dw in (2.3), we have

n n 2

o°f
00 = 13 5ty g e

Then the facts that the order 2 partial differentiation with respect to
z; and x; does not depend on the order and dz; A dz; = —dr; A dx;
immediately imply d(dw) = 0. |
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A differential form w such that dw = 0 is called a closed form,
and a differential form 7 that can be written 1 = dw for some w
is called an exact form. The above Lemma 2.2 claims that exact
forms are always closed forms. Conversely, there arises a natural
question whether closed forms of degree k are always exact, and we
will find later that in the case of R™, this is true for k > 0 (§3.3,
Poincaré lemma (Corollary 3.14)). However, in the case of general
C* manifolds, a closed form is not always exact, and the “gap” will
reflect the global structure of manifolds. This is the content of the
theory of de Rham cohomology, which is the theme of Chapter 3.

Since the proof of the following proposition is easy, we leave it to
the reader (Exercise 2.1).

PROPOSITION 2.3. For w € A¥(R") and n € A (R™), we have
(i) nAw=(~-)MwAn,
(ii) dwAn) =dwAn+ (~1)*w A dn.

Now let U,U’ be two open sets in R™ and ¢ : U — U’ a diffeo-
morphism. Then a homomorphism
@ AN(U') — A*(V)

from the algebra A*(U’) of all differential forms on U’ to the algebra
A*(U) of all differential forms on U is defined as follows. For an
arbitrary function f € A%(U’), let p*(f) = fop € A°(U) and let
¢*(dz;) = d(p*(z:)). We extend this to differential forms of general
degree in such a way that

P (wAn) =9 (W) Ap™(n)

for an exterior product w A7 of two differential forms. Practically, we

proceed as follows. Let the coordinates of U’ be z1,--- ,z, and the
coordinates of U be y1,- -+ ,yn (to distinguish these from the coordi-
nates of U’). Then each z; is written as a function z; = z;(y1, - ,yn)
Oz
of y1, -+ ,yn. Then we have ©*(dz;) = %’- dy;, and from this we
; J
j
see that
(2.4)
D(.’L‘;‘ y T axik)
P (dzyy A Ndxy,) = s dys A Ady,
1 ik Z D(y;, Joe ,y“) N Ik

J1<<Jx
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D(z;,, -,z
Here __(x_,,_,_____x&) denotes the Jacobian of z;,, -+ ,z;, with re-
D(yj\a"' 1yjk)
spect to y;,, - ,¥;,. Then we see (verification is Exercise 2.2) that
doy® = ¢’ od,

and by the consideration of =1, we can verify that ¢* is in fact an
isomorphism.
Henceforth, ¢*(w) will sometimes be denoted simply by ¢*w.

(b) Differential forms on a general manifold.

Let M be an n-dimensional C* manifold and {(Ua,, ¢.)} an atlas
of it. In brief, a degree k differential form on M is a family {wq}
of k-forms w, on each coordinate neighborhood U, (which can be
considered as an open set of R™) such that for arbitrary «,# with
U, NUpg # @, w, and wg are transformed to each other in the sense
of (2.4) by the coordinate change. We denote the set of all k-forms
on M by A¥(M), and we put

A'(M) = éa.A"(M).
k=0

As we saw in the previous subsection (a), the homomorphism ¢* :
A*(U") — A*(U) between algebras of all differential forms induced
by a coordinate change preserves the exterior products and commutes
with the operation of exterior differentiation. From this, we see that
the exterior products and the exterior differentiation d : A¥(M) —
A*+1(M) are defined also on A*(M), and d o d = 0. Furthermore,
Proposition 2.3 holds for differential forms on M.

Although this definition is right, the formula (2.4) is fairly com-
plicated, and from the standpoint of studying the whole M it may
not give a good insight. Therefore, we shall define these differential
forms independently of the local coordinates. We need to prepare
some abstract facts for it. It is not appropriate to ask which of these
two definitions is better, and the important thing is that we learn
from them what differential forms are after all.

(c) The exterior algebra.

We shall start by giving the relationship between the exterior
algebra A} generated by dzy,--- ,dz, and the tangent space ToR™ of
R™ at the origin. ToR" is an n-dimensional vector space with a basis

=—,..., =—. On the other hand, each dz; can be considered as an
621 6xn
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element of the dual space
ToR™ = {a : THR"® — R ; « a linear map}

of ToR™. This is because z; can be considered as a C*™ function
z; : R® — R and the differential dz; : ToR® — ToR = R of this
function at the origin is linear. Then obviously

(2.5) dxi(a—Z;) = 6,;.

. . . o . . :
From another point of view, since . is a unit tangent vector in the
.
3

direction of x5, we can consider that (2.5) reflects the fact that if we
integrate the constant function 1 with respect to z; from 0 to 1 along
the z;-axis, the value is §;;. Thus A} is identified with TgR™:

AL =Ty R™.

In general, an arbitrary element in A is described as a linear
combination of the elements of the form w = a3 A+ - Aak (o € AL),
while such an w defines a map
(26) w:T()RnX"'XToRZ—*]R

v

k
as follows. That is, for X; € ToR™ (i = 1,--- , k), we put

(2.7) WXy, Xx) = % det(ai(Xj)).

Here, (a,-(X ,-)) denotes a matrix whose (%, j)-entry is a;(X;). Using
the properties of determinant, it is easy to see that the above value
is uniquely determined, independently of the expression of w. For
example, if we write w = —ag Aay Aaz A--- A oy, the value is the
same. The geometric meaning of this value is roughly as follows. For
example, dz; A dz2(X), X32) is the (signed) area of the orthogonal
projection of the triangle spanned by two tangent vectors X;, X, in
ToR™ onto the (x;,z2)-direction, and in general, (2.7) is considered to
present “the (signed) volume in the direction of (a;,--- ,ax)” of the
k-dimensional simplex (a generalization of triangle, see §3.1) spanned
by X1,--+, Xk. If we recall these facts when we define the integration
of differential forms on manifolds later in Chapter 3, it may help our
understanding. For a general element w € AX, the map (2.6) is also
defined by extending the above definition linearly.



2.1. DEFINITION OF DIFFERENTIAL FORMS 63

We see that the map w of (2.6) has the following two proper-
ties. Since the proof can be given easily by using the properties of
determinant, we leave it to the reader.

(i) w is multilinear. That is, for an arbitrary X;, it satisfies the

linearity condition

(U(Xl,"' )Xi—l’aXi'*'bX{,Xl'-{'])"' ’Xk)
=W(X1,"' ;Xt'"" ,Xk)+b(d(X1,"' ’Xl_”... .Xk).

(ii) w is alternating. That is, for arbitrary 7 < j, if we inter-
change X; and X, its sign changes. Therefore for an arbitrary
permutation o € &, of n letters,

w(Xv(l), T aXcr(n)) = sgnaw(Xl, T :Xn)'
Here sgn o denotes the sign of o.

We call the map ToR"™ x --- x THR™ (n-fold direct product) — R
satisfying the above two conditions an alternating form of degree
k on ToR™. As a result, by the correspondence (2.6), a map

(2.8) A¥ = all alternating forms of degree k on ToR"

is defined, and this turns out to be a one to one correspondence. Here,
the right-hand side of (2.8) does not contain the coordinates z; of R™
and is presented purely in terms of linear algebra. With this in mind
as a clue to go on, we shall give a definition of differential forms on
general manifolds which is independent of the coordinates. We
shall describe it without worrying about some repetition.

Let V be a vector space over R. Since we need only the case of
tangent space ToM at a point p on a C* manifold M, it may be read
as V = T,M. The dual space V* of V is a vector space defined as

V*={a: V- R; a alinear map }.
DEFINITION 2.4. Let V be a vector space over R. An algebra

with unit 1 generated by the elements of V over R satisfying the
relation

(2.9) XAY =-YAX

for arbitrary X,Y € V is denoted by A*V and called an exterior
algebra of V or a Grassmann algebra. Here A stands for the
product of this algebra.

By condition (2.9), X A X = 0 for an arbitrary X € V. Con-
versely, it is easy to see that (2.9) follows from this condition. The
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previous A} is nothing but A*T;R™. In the same way as in the case
of A}, if dimV = n, we have a direct sum decomposition

AV = éAkv.
k=0

Here A*V is the subspace of A*V consisting of all elements of degree

k. Let e;,--- ,e, be a basis of V. Then we can take
(2.10) e, N Ne,, 1< <<, <n
as a basis of A*V, and therefore dim A*V = (7). Also, A°V =R

and A'V can be naturally identified with V. While we defined the
exterior algebra of V, the exterior algebra A*V* of V* is also defined
similarly. It is this case that we use later.

Next we shall define alternating forms on V.

DEFINITION 2.5. Let V be a vector space over R. A multilinear
map
w:Vx-- - xV-—5R
N e’
k
from k-fold direct product of V to R that is alternating, namely

W(Xo(l) s X,,(k)) = sgn aw(Xl, o ,Xk) (Xi € V)

for an arbitrary permutation o of k letters, is called an alternating
form of degree k on V.

The set of all alternating forms of degree k on V is denoted by
AR(V). A¥(V) is a vector space with respect to the natural sum and
the multiplication of alternating forms by real numbers. We shall
consider all alternating forms

£(V) = @ 45V)
k=0

with different degrees on V. Here we define A°(V) = R, and it is easy
to see that A*(V) = 0 for k > dim V, by the alternating condition.
A degree preserving linear map

ATV — AN(V)
from the exterior algebra A*V* of the dual space V* of V to the vector

space A*(V) of all alternating forms on V is defined as follows. It is
enough to define

e ARV — AM(V)
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for each k. For an element of the form w = ay A---Aax € A*V* (o €
V*), we set

w@)(X2, - Xe) = = det(a(X;))

and extend it linearly for general elements. It is easy to see that
1 is well defined independently of the expression of w, by using the
properties of determinant in the same way as before.

PROPOSITION 2.6. The map ¢ : A*V* — A*(V) is an isomor-
phism. That is, the exterior algebra A*V* of V" and the vector space
A* (V) of dall alternating forms on V can be identified by ¢. Using
this, a product is defined on A*(V) which is described as follows. If
for w € AV* n € A'V*, we consider their exterior product w A1 as
an element of A*+tY (V) by the identification ¢, we have
(2.11)

W/\"7 (Xh'" an+l)

1
=T ngn o w(Xo)s s Xo)) M Xok+1) "+ » Xotka1))
[

(X: e V).

Here o runs over the set Gryy of all permutations of k + | letters
1,2,.-- ,k+1.

ProOOF. First, we show that ¢ is an isomorphism. Let e;,--- , e,
be a basis of V and oy, - ,a, its dual basis of V*. They satisfy
ai(e;) = 6;;. Then by (2.10) we can take

i, A Aoy, 1<i<---<ixg<n

as a basis of A¥V'*. We can check that the images of elements of this
basis by ¢ are linearly independent as elements of A*(V') by applying
them to

(g 1e) €V X XV, 1 <o <
Next, let w € A*¥(V) be an arbitrary element. Then if we set
w(ei,, - ,ei) = @, ..q, and, using these constants, define

G=k! D @i g06 A Aoy, € ARV,

ty---1g

we see that (x(w) = w. Therefore, 1 is a surjection and hence an
isomorphism.
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Next, we prove the latter half of the claim. It is enough to prove
it for the elements w, n of the form
w=0a;, N Nay,, =0 N --Naj

by the linearity of ¢;. Furthermore, we may assume that 1,,--- , %,
j1,- -, are all distinct, because otherwise we have w An = 0. Then
we rearrange these numbers in order of size so that m; < --- < mg4y.
If we let the permutation of rearrangement be 7, we have

WA =8gNn TQm N ANQm,,,-

Therefore,
1
Lk-H(w A TI)(em, T emk+l) = WSgn T
On the other hand, if we calculate
ngn o Lk(w)(em,(,,, T ,em,(k)) Ll(n)(ema(k+l)’ t ’ema(ux))'
(-4

we see that it is sgn 7. In this way, we see that the claim is true
for (e€m,, - ,€my,, ).« But since for every other element of the form
(enys** " 1 €nyy,) the value is 0, the proof finishes. ]

The above isomorphism ¢ : A*V* 2 A4*(V) is not the unique nat-
ural one. Actually, if we let ¢ = k!tx, we obtain another isomorphism
¢/ 1 A*V* = A*(V), and this defines another product on A*(V) (how-
ever, the difference between the two products is only up to scalars
and is not essential). This is equivalent to considering the volume
of the parallelotope spanned by each vector instead of the volume of
the k-dimensional simplex defined by the origin and the end point of
each vector in the description following (2.7). While these two meth-
ods have their own merits, we use ¢ in this book because there are
some inconveniences with ¢/ when we describe the general theory of
characteristic classes in Chapter 6. However, since ¢’ is defined over
Z, it has the advantage of eliminating fractional constants in various

formulae. For example, the coefficient

1
1 in the formula of exterior
differentiation (Theorem 2.9) is not necessary if we use ¢'.

(d) Various definitions of differential forms.

While we have already defined differential forms on general C*
manifolds in subsection (b), in this subsection we shall give a more
intrinsic definition without using local coordinates.
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The dual space T; M of the tangent space 7, M at a point p on
M is called the cotangent space at p. By the description in the
previous subsection, we can consider its exterior algebra A*T; M.

DEFINITION 2.7. Let M be a C™ manifold. We say that w is a
k-form on M if it assigns w, € A"T; M to each point p € M and wy
is of class C™ with respect to p.

Let U be an arbitrary coordinate neighborhood, and z;,--- ,z,
coordinate functions defined on U. Then, for any point p € U,

8 8
(=), (5=,

become a basis of the tangent space 7, M. We shall find the dual basis
for the dual space T; M. Each z, can be regarded as a C* function
z; : U — R. Consider the differential (dz;), : T,M — T ()R of this
map at p. Since Ty ()R can be naturally identified with R, we can
consider (dz;), as an element in 7; M. Then obviously,

() =

9z,

(see (2.5)). Therefore,

(dzl)py R (dxn)p
become the dual basis of Ty M. It follows from this fact that w, in

14
the above Definition 2.7 is presented as
(2.12) wp= Y fii(p)dzi, Ao Adry,.
1< <k

w, is said to be of class C if each coefficient f;,...;, (p) is of class C>
as a function of p. The expression (2.12) is called the local expression
of the k-form w on M. Thus, Definition 2.7 and the definition in
subsection (b) are related.

If we use the terminology of vector bundles which will appear in
Chapter 5, we can interpret the above as follows. If we set

T"M=] ;M
P
it is easy to see that this is a vector bundle over M. We call this the
cotangent bundle of M. Similarly, if we set

kepe x g ke
AT*M = ATy M,
P
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this is also a vector bundle over M. Note that A!7T*M = T*M. In
these terms, k-forms on M are nothing but sections of A¥T*M of
class C*°. That is,

Ak (M) = all sections of AXT™* M of class C*®.

Finally, we mention another view of differential forms. Let w be
a k-form on M. Then the value w, of w at each point p determines
an alternating form T,M x --- x T,M — R of degree k. Putting all
p together, w induces a multi-linear and alternating map

(2.13) w:E(M) x -+ x Z(M) — C=(M).

Here X(M) denotes the set of all vector fields on M and C*(M)
denotes the algebra of all C* functions on M. It is important here
that X(M) is not only a vector space over R but also a module over
C®(M). That is, for f € C®(M) and X € X(M), fX is also a
vector field on M. Then the meaning of (2.13) being multilinear is
that it is also linear with respect to the multiplication of vector fields
by functions. More precisely,

w(Xl)"' ’in+gX;{’°" :Xk)
=fw(Xla ,.Xi,"‘ ,Xk)+g‘U(X1,"' ’Xgl: vXk)

for arbitrary X; € (M) and f,g € C°°(M). Conversely, we see that
any map (2.13) with these two properties (that is, multilinear as a
C*®(M) module and alternating) defines a differential form. Namely,
the following theorem holds.

THEOREM 2.8. Let M be a C*™ manifold. Then the set A¥(M) of
all k-forms on M can be naturally identified with that of all multilinear

and alternating maps, as C° (M) modules, from k-fold direct product
of (M) to C°(M).

PROOF. Suppose that a map w: X(M) x --- x (M) - C®(M)
with the above conditions is given. First of all, we shall see that
for arbitrary vector fields X; € X, the value w(X,,- -, Xk)(p) at a
point p is determined depending only on the values X;(p) of each
vector field X; at p. For that, by linearity, it is enough to show that
if Xi(p) = O for some i, then the above value is 0. For the sake
of simplicity, assume that ¢ = 1, and let (U;z,, - - ,z,) be a local

. . 0
coordinate system around p. Then we can write X; = Z fi P on

_U: with f;(p) = 0. We choose an open neighborhood V ofl p such that
V c U, and a C™ function h € C°°(M) such that it is identically 1
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on V and 0 outside of U(see Lemma 1.28). Let Y; = h % Then we
i

have Y; € X(M), and if we set f; = h f;, then we have f; € C®(M).
Now it is easy to see that

X, =Y fiYi+(1-r)X,

Therefore, we have

a;()(1’ o an)(p)
= Zﬁ(p) (Yi, Xa, -+, Xi)(p) + (1 — R(P))B(X1, -, Xk)(p) = 0,

and the claim is proved.

Now we define a k-form w as follows. At each point p € M,
if tangent vectors X, ---,Xx € T,M are given, we choose vector
fields X; over M such that )?i(p) = X;. If welet wy(Xy, -, Xk) =
&3()? TR X «)(p), then, as we saw above, this is determined indepen-
dently of the choice of X;. Since it is easy to see that w, is of class
C* with respect to p, w is the required differential form. ]

2.2. Various operations on differential forms

Let M be an n-dimensional C* manifold. We denote all k-forms
on M by A¥(M) and consider their direct sum

() = @) A+
k=0

with respect to k, that is, the set of all differential forms on M. In
this section, we shall define various operations on A*(M).

(a) Exterior product.

The exterior product wAn € A+ (M) of a k-form w € A*(M)
and an l-form n € A'(M) on M is defined as follows. Since at each
point p € M we have w, € A¥T3M, n, € A'Ty M, their product
wp Ay € Ak+’T;M is defined. Then, we put

(WAN)p =wp Anp.

By definition, the exterior product is obviously associative. That
is, if 7 € A™M(M), we have (WA Q) AT = w A (nAT). Therefore
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we do not need the parentheses. If they are locally expressed as
w= fdr; A Adz;, ,n=gdz; A--- Adzj,, we have
wAn=fgdr; A--- Ndz;, Adzj, A--- Adz;j,.
The exterior product induces a Bilinea.r map
A¥(M) x AAM) 3 (w,n) = wAn e A (M)
and it has the following properties.

() nAw= (-1 wAn.
(ii) For arbitrary vector fields X,,--- , X4t € X(M),

(2.14)
wAD(Xy, - Xieat)
1
=T Y senow(Xoay s Xogy) M Xokan)s » Xo(kn))-

c€EG, 4t

Property (i) is obvious from the description above, and (ii) follows
from (2.11).

(b) Exterior differentiation.
For a k-form w € A*¥(M) on M, its exterior differentiation
dw € AF*t1(M) is the operation defined by

of
d£d=; Ec—;dxj/\d:r,-l/\-n/\dx,-k;

here w is locally expressed as w = f dz;, A--- Adz;,. In view of the
fact that for the isomorphism ¢* : A*(U’') —» A*(U) induced by an
arbitrary diffeomorphism ¢ : U — U’ between two open sets U, U’ of
R™, the equation d o 9" = * o d holds (see the description following
(2.4)), we see that the above d does not depend on the local expres-
sion. Therefore, the operation of taking the exterior differentiation
defines a degree 1 (that is, increasing the degree by 1) linear map

d: AS(M) — A*+1(M),
and from Lemma 2.2 and Proposition 2.3, we see that it has the
following properties.
(i) dod=0.
(ii) For w € A¥(M), d(wAn) =dwAn+ (-1)* wAdn.

Next, we shall characterize the exterior differentiation without
using the local expression. Namely, we have the following theorem.
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THEOREM 2.9. Let M be a C* manifold and w € A¥(M) an
arbitrary k-form on M. Then for arbitrary vector fields X1, -+ , Xk+1
€ X(M), we have

dw (X1, Xks1)
k+1

1 , ~
(—1)1“ Xi(w(Xy, -, X, y Xk+1))

k+1

i=1
+E (_1)1+] w([xi’Xj])Xla"' 121':"' ’XJ')"' ’Xk+l>}‘
1<)

Here the symbol )?,- means X; is omitlted. In particular, the often-used
case of k=1 is

do(X,Y) = %{Xw(Y) — Yu(X) - w(X,Y])} (e A'(M)).

PROOF. If we consider the right-hand side of the formula to be
proved, as a map from the (k + 1)-fold direct product of X(M) to
C>=(M), we see that it satisfies the conditions of degree k + 1 alter-
nating form as a map between modules over C®°(M). Since it is easy
to verify this fact by using Proposition 1.40 (iv), we leave it to the
reader. Therefore, by Theorem 2.8, we see that the right-hand side is
a (k+1)-form on M.

If two differential forms coincide in some neighborhood of an ar-
bitrary point, they coincide on the whole. Then, consider a local
coordinate system (U; z,,--- .z,) around an arbitrary point p € M.
Let the local expression of w with respect to this local coordinate
system be w = Z fiyi dziy A-+- Adz;,. Then, we have

<<t

(2.15) dw = Z dfi,..s, dzi, A~ Adz

"
1 <<

From the linearity of differential forms with respect to the functions

onaM , it is enough to consider only vector fields X; such that X; =

Er (¢ =1,---,k+1) in a neighborhood of p. Then [X;,X;] =0
Ja

near p. Moreover, by the alternating property of differential forms,

we may assume that j; < --- < jgs1. Then, if we apply (2.15) to
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(X1, , Xk41), we have

= -1 .
dw(Xy, - ,Xk+1)—m{2(—1)s E?j_fj ...j,...jk“}
s=1 N
On the other hand, when we calculate the right hand side of the
formula using [X;, X;] = 0, we obtain the same value. This finishes
the proof. n

We can consider Theorem 2.9 as a definition of the exterior dif-
ferentiation that is independent of the local coordinates.

(c) Pullback by a map.

We shall study the relationship between differential forms and
C* maps. Let

fM—N

be a C* map from a C*™ manifold M to N. Consider the differential
fo i ToM — Tyy)N of f at each point p € M. f. induces its dual
map f* : Tj N — T, M, that is, the map defined by f*(a)(X) =
a(f.(X)) for a € Tj N, X € T,M. Furthermore, f* defines a linear
map f* : Aka‘(p)N — AkTp‘M for an arbitrary k, and they induce
an algebra homomorphism

frAN(N) — AT (M).
For a differential form w € A*¥(N) on N, f*w € A¥(M) is called the
pullback by f. Explicitly, for X, -, Xk € T, M,
f‘w(xla"' )Xk) = w(f'Xl" o ’f‘Xk)'

PRrOPOSITION 2.10. Let M, N be C* manifolds. Let f: M — N
be a C*™ map and f* : A*(N) — A*(M) the map induced by f. Then
f* is linear and has the following properties.

(i) f*lwAn) =fwnfn (weAX(N), ne A(N)).

(i) d(f'w) = f*(dw) (w € AX(M)).

Since the proof can be given easily by using the previous results,
we leave it to the reader.

(d) Interior product and Lie derivative.
Let M be a C*™ manifold and X € ¥(M) a vector field on M.
Then a linear map

i(X): AF(M) — AR Y (M)



