Note that if u is u.s.c., it is bounded above on every compact $K \subset \Omega_1$ in fact K is contained in the union of the increasing sequence of open sets $\{z \in \Omega \mid u(z) < v\}$, so in one of them.

Lemma 1. Let u be u.s.c. in Ω and bounded above. Then there is a sequence $\{u_k\}$ of continuous functions on Ω such that $u_k(z)$ decreases to u(z) for all $z \in \Omega$.

 $\frac{\text{Proof.}}{\zeta_{\epsilon}\Omega} \text{ We set } \mathbf{u}_{\mathbf{k}}(z) = \sup_{\zeta_{\epsilon}\Omega} \{\mathbf{u}(\zeta) - \mathbf{k}|\zeta_{-z}|\}, \ \mathbf{M} = \sup_{\zeta_{\epsilon}\Omega} \mathbf{u}(\zeta). \ \text{Clearly}$ $-\infty < \mathbf{u}_{\mathbf{k}}(z) < +\infty \quad \text{for all } z \in \Omega. \ \text{We have } \mathbf{u}_{\mathbf{k}}(z) \geq \mathbf{u}(z) - \mathbf{k}|z_{-z}| = \mathbf{u}(z).$ Further, since the sequence $\{\mathbf{u}(\zeta) - \mathbf{k}|\zeta_{-z}|\}$ decreases as \mathbf{k} increases (for fixed $\zeta_{,z}$), $\mathbf{u}_{\mathbf{k}}(z)$ decreases for every z. Further, if $\mathbf{z}, \mathbf{z}^{\dagger} \in \Omega$,

$$\begin{split} u_k(z) \geq u(\zeta) - k |\zeta - z| \geq u(\zeta) - k |\zeta - z'| &= k |z - z'| \;, \;\; \bigvee \zeta \varepsilon \Omega \;, \\ \text{so that} \;\; u_k(z) \geq u_k(z') - k |z - z'| \;. \;\; \text{Hence} \; |u_k(z) - u_k(z')| \leq k |z - z'| \;, \; \text{so} \\ \text{that} \;\; u_k \;\; \text{is continuous on} \;\; \Omega . \end{split}$$

To prove that $u_k(z) \rightarrow u(z)$ as $k \rightarrow \infty$, suppose first that $u(z) > -\infty$. Let $\cdot \ell > 0$ and $\Omega' = \{z' \in \Omega \mid u(z') < u(z) + \ell \}$; Ω' is an open neighborhood of z, and contains a disc $|z' - z| < \delta$. Let k_0 be such that $M - k_0 \delta < u(z)$. Then $u(z') - k|z' - z| \le u(z') < u(z) + \ell$, for $z' \in \Omega'$, while $u(z') - k|z' - z| < M - k_0 \delta < u(z)$ for $z' \notin \Omega'$, $k \ge k_0$. Hence, for $k \ge k_0$,

$$u(z) \le u_k(z) < u(z) + 6$$
, so that $u_k(z) \rightarrow u(z)$ as $k \rightarrow \infty$.

If $u(z) = -\infty$, and c > 0, then

$$\Omega' = \{ z' \in \Omega | u(z) < -c \}$$

contains a disc $|z'-z| < \delta$, so that

$$u_k(z) \leq max(-c, M-k\delta)$$

as before, and $u_k(z) \rightarrow -\infty$ as $k \rightarrow \infty$.