SOME DIFFERENTIALS IN THE ADAMS SPECTRAL SEQUENCE

Mark Mahowald and Martin Tangora \dagger
(Received 22 March 1966)

§1. INTRODUCTION

1.1. Let A_{p} be the Steenrod algebra for the prime p. Adams in [2] introduced a spectral sequence which has as its E_{2} term $\operatorname{Ext}_{A_{p}}\left(H^{*}(X), Z_{p}\right)$ and which converges to a graded algebra associated to $\pi_{*}(X, p)$, i.e. the p-primary stable homotopy groups of X. In this paper we will study this sequence for $X=S^{n}, p=2$. In particular we will evaluate enough differentials to obtain the following 2 -primary stable homotopy groups.

Theorem 1.1.1. The table lists $\pi_{k}\left(S^{0}\right)$ for $29 \leqq k \leqq 45$.
Table 1.1.2

k	$\pi_{k}\left(S^{\mathrm{o}}\right)$	k	$\pi_{k}\left(S^{\mathrm{o}}\right)$
29	0	38	$4+(2 ? 2)$
30	2	39	$16+(2)^{5}$
31	$64+2+2$	40	$8+(2)^{3}+(2 ? 2 ? 2)$
32	$(2)^{4}$	41	$(2)^{3}+(8 ? 2)$
33	$4+(2)^{4}$	42	$8+2+2$
34	$8+(2)^{3}$	43	8
35	$8+2+2$	44	8
36	$2+2+2$	45	$2+(8 ? 2 ? 4)$
37	$2+2+2$		

The notation is read as follows, for example: π_{41} equals either Z_{16} plus three direct summands of Z_{2}, or possibly Z_{8} plus four direct summands of Z_{2}; etc.

Table 1.1.7 shows E_{∞} of the Adams spectral sequence for $t-s \leqq 45$. Generators for the homotopy groups can be read off this from table. The groups extensions in 1.1.2 which we have not settled are those involving $e_{1}, h_{1} u, z$, and w in dimensions $38,40,41$, and 45 respectively.

We will be concerned throughout only with stable groups and with the prime 2 ; therefore our notation takes this for granted. Thus we write $\pi_{k}\left(S^{\circ}\right)$ for the 2-primary component of $\pi_{n+k}\left(S^{n}\right)$ (n large), we write A for A_{2}, and so forth.

[^0]The first problem in any use of the Adams spectral sequence is to obtain

$$
E_{2}=\operatorname{Ext}_{A}^{s, t}\left(Z_{2}, Z_{2}\right) \cdot \dagger
$$

We do this by the technique of May [5]. May constructs another spectral sequence which has as its E_{∞} term an algebra we call E^{0} Ext, which is a tri-graded algebra associated to $E_{2}=$ Ext. We have extended (and corrected) May's computations to obtain complete information on E^{0} Ext to dimension 70. The range which will be needed for this paper is given in Table 1.1.3. In addition some remarks on the product structure are given in 1.2 below.

Using Table 1.1.3 as a reference we can state our main result.
Theorem 1.1.4. In the Adams spectral sequence,
(i) $\delta_{r} t=0$ for all r;
(ii) $\delta_{3} d_{0} e_{0}=h_{0}^{4} ; \delta_{4}\left(d_{0} e_{0}+h_{0}^{7} h_{5}\right)=P^{2} d_{0} ; \delta_{4} P^{i} e_{0} g=P^{i+2} g ;$ if $P^{i} d_{0} e_{0}$ is in E_{4}, then $\delta_{4} P^{i} d_{0} e_{0}=P^{i+2} d_{0}$;
(iii) $\delta_{3} r=h_{0}^{2} k$;
(iv) $\delta_{2} y=h_{0}^{3} x$;
(v) $\delta_{4} d_{0} v=P^{2} u ; \delta_{3} P^{i} g k=h_{1} P^{i+1} u, i=0,1 ; \delta_{2} P^{i} v=h_{1}^{2} P^{i} u, i=0,1,2 ;$
(vi) $\delta_{4} h_{3} h_{5}=h_{0} x$.

May and Maunder have previously determined some differentials in the range $29 \leqq$ $t-s \leqq 46$ which we collect for reference in the next theorem.

Theorem 1.1.5. (May [5] and Maunder [4]). $\delta_{2} P^{i} k=P^{i+1} h_{0} g ; \delta_{2} h_{5}=h_{0} h_{4}^{2}$; $\delta_{3} h_{0}^{3} h_{5}=s ; \delta_{4} h_{0}^{8} h_{5}=P^{2} h_{0} d_{0} ; \delta_{2} P^{i} l=P^{i} h_{0} d_{0} e_{0} ; \delta_{2} P^{i} m=h_{0} e_{0}^{2} ; \delta_{2} P^{i} e_{0}=P^{i} h_{1}^{2} d_{0} ; \delta_{2} P^{i} j=$ $P^{i+1} h_{2} d_{0} ; \delta_{2} P^{2 i} i=P^{2 i+1} h_{0} d_{0}$.

To complete the proof of 1.1.1 it remains to prove the following result.
Theorem 1.1.6. All differentials in the range $29 \leqq t-s \leqq 45$ not implied by the above are zero.

Table 1.1.7 shows $E_{5}=E_{\infty}$ for $t-s \leqq 45$.
The above theorems give much information beyond dimension 45 . We stop at this point because the homotopy problem is not going to be solved one stem at a time but rather by some general device. We have shown a number of techniques which suggest that the Adams spectral sequence is a good device for computing $\pi_{*}\left(S^{0}\right)$.

For completeness we include a table of $\pi_{k}\left(S^{\circ}\right)$ for $k \leqq 28$. These results are due to Toda [10] ($k \leqq 20$), Mimura [7] ($k=21,22$), and May [5] ($21 \leqq k \leqq 28$).
Note that the result for π_{23} differs from that given by May [5] which was $2+4+2+16$. We establish this group extension in 2.1. All other group extensions in the known range are given by multiplication by h_{0} except possibly those left open in 1.1.2. This can be

[^1]

Abstract

\geq

寽 \because

$\stackrel{\infty}{\infty}$
Table 1.1.7. E_{∞} for $29 \leqq t-s \leqq 4 s$
-
n
9
$\%$

$\rangle_{\stackrel{\circ}{3}}$
3
m

$=\int_{\text {m }}$

TAble 1.1.8

k	0	1	2	3	4,5	6	7	8	9	10	11	12,13	14	15
$\pi_{k}\left(S^{\circ}\right)$	∞	2	2	8	0	2	16	2^{2}	2^{3}	2	8	0	2^{2}	$2+32$
k	16	17	18	19	20	21	22	23	24	25	26	27	28	
$\pi_{k}\left(S^{\circ}\right)$	2^{2}	2^{4}	$8+2$	$2+8$	8	2^{2}	2^{2}	$2+8+16$	2^{2}	2^{2}	2^{2}	8	2	

established without much difficulty, using $2 \eta=0$, various bracket representations, etc. We omit the details.
1.2. In the table of Ext, Table 1.1.3, relations involving h_{0} and h_{1} are indicated by vertical and diagonal lines respectively. Many other relations hold in this range which cannot be listed for reasons of space. Those most important for our calculations are listed below.

Since we have computed Ext by May's techniques, the products which we naturally obtain are actually the products according to the algebra structure of E^{n} Ext. The product in Ext of two elements always contains as a summand their product in E^{0} Ext but may possibly contain also other terms of the same bi-grading (s, t) but of lower weight in the sense of May [5]. Some examples are proved in $\S 5(5.1 .3,5.2 .1,5.2 .4)$. It can be shown that $h_{0} r=s$ in Ext; hence $h_{0} r=0$ in E^{0} Ext, but s has lower weight than $h_{0} r$ so that the product in Ext is not obvious. Except as noted in 7.4 and 8.6 below, our results are independent of such questions.

The following relations are derived in E^{0} Ext by the May spectral sequence, and must hold in Ext for dimensional reasons. This list is by no means complete.

Lemma 1.2.1. Among the products in Ext are the following:
(i) $h_{2} d_{0}=h_{0} e_{0}, h_{2} e_{0}=h_{0} g$;
(ii) $P^{i+1} h_{1} h_{3}=P^{i} h_{1}^{2} d_{0}, i \geqq 0$;
(iii) $P^{1} h_{4}=h_{2} g$;
(iv) $d_{0}^{2}=P^{1} g, d_{0} g=e_{0}^{2}$;
(v) $h_{3} s=h_{0}^{3} x$
(vi) $h_{2} d_{1}=h_{4} g$;
(vii) $h_{0}^{2} y=f_{0} g=h_{2} m$;
(viii) $h_{1} t=h_{2}^{2} n$;
(ix) $h_{1} e_{1}=h_{3} d_{1}$;
(x) $P^{1} m=d_{0} k$;
(xi) $h_{o}^{3} x^{\prime}=P^{2} x$;
(xii) $P^{1} B_{1}=h_{1} x^{\prime}$.

These relations will often be used without specific reference to this lemma.
Many other relations are implicit in the notation of Table 1.1.3, such as $h_{0} f_{0}=h_{1} e_{0}$, $P^{1} h_{1} g=h_{0}^{2} k, h_{1}^{2} u=h_{0} z$, etc.

Recall also the Adams relations $h_{i} h_{i+1}=0, h_{i} h_{i+2}^{2}=0, h_{i}^{3}=h_{i-1}^{2} h_{i+1}$.
1.3. This paper is organized as follows. In $\S 2$ we settle π_{23} and π_{23}. Some preliminary computations are contained in $\S 3$, and some techniques are introduced. In $\S 4$ we prove 1.1.4 (i)-(iii). Proofs of 1.1.4 (iv), (v), and (vi) are contained in $\S \S 5,6$ and 7 , respectively. Theorem 1.1.6 is proved in $\S 8$.

§2. DETERMINATION OF π_{23} AND π_{29}

2.1. May has shown that π_{23} is a group extension of Z_{2}, Z_{2}, Z_{4}, and Z_{16}.

Theorem 2.1.1. $\pi_{23}=Z_{2}+Z_{8}+Z_{16}$ with generators $\langle\sigma \sigma, 2 l, \varepsilon\rangle, \nu \bar{\kappa}$ and ρ_{3} where ρ_{3} generates the image of J in dimension 23.

Proof. The only doubtful point is the group extension of Z_{4} and Z_{2} from $\left\{h_{2} g\right\}=v \bar{\kappa}$ and $\left\{P^{1} h_{1} d_{0}\right\}$. Mimura [7] has shown that π_{22} is generated by $v \bar{\sigma}$ and $\varepsilon \kappa$. Clearly then $\varepsilon \kappa=\left\{P^{1} d_{0}\right\}$. According to Barratt [3], $\eta \bar{\kappa}=\langle\kappa, 2 v, v\rangle$, so we have $\eta^{2} \bar{\kappa}=\kappa\langle 2 v, v, \eta\rangle=$ $\kappa \varepsilon=\left\{P^{1} d_{0}\right\}$. Then $4 \nu \bar{\kappa}=\eta^{3} \bar{\kappa}=\eta\left\{P^{1} d_{0}\right\}=\left\{P^{1} h_{1} d_{0}\right\}$. Thus $v \bar{\kappa}=\left\{h_{2} g\right\}$ is of order 8 , which proves the theorem.
2.2. May has shown that π_{29} is either Z_{2} or zero, depending on whether $h_{0}^{2} k$ survives the Adams spectral sequence.

Theorem 2.2.1. $\pi_{29}=0$.
Proof. \dagger Since $h_{0}^{2} k=P^{1} h_{1} g=h_{1} d_{0}^{2}$ the homotopy element in question is $\eta \kappa^{2}$. But $\eta \kappa^{2}=\langle 2 l, \kappa, 2 \imath\rangle \kappa$ by (3.10) of Toda's book ([10], p. 33); thus $\eta \kappa^{2}=2\langle\kappa, 2 l, \kappa\rangle$, but since $2 \pi_{29}=0$, we have $\eta \kappa^{2}=0$, which proves the theorem.

In the light of 1.1.5, there are two possibilities: either $\delta_{3}(r)$ or $\delta_{7}\left(h_{4}^{2}\right)$ must hit $h_{0}^{2} k$.
Theorem 2.2.2. $\quad h_{0}^{2} k=\delta_{3}(r)$.
We will prove this in $\S 8$ using methods which are independent of the rest of this paper. There we show (8.1.1) that h_{4}^{2} is a permanent cycle, \ddagger and 2.2.2 follows. A direct proof of 2.2.2 is indicated in 4.4 below.

§3. SOME LEMMAS

3.1. Consider the stable complex $X_{\eta}=S^{0} \cup_{\eta} e^{2}$, where by such a symbol we always understand $\Sigma^{k} X_{\eta}$ where k is large enough so that the complex is defined and stable. Let $M_{\eta}=H^{*}\left(X_{\eta}\right) ; M_{\eta}$ is an A-module. The co-fibration

3.1.1

$S^{0} \xrightarrow{i} X_{\eta} \xrightarrow{p} S^{2}$
yields a long exact sequence in Ext:
3.1.2 $\quad \ldots \xrightarrow{\delta} \operatorname{Ext}_{A}^{s, t}\left(H^{*}\left(S^{0}\right), Z_{2}\right) \xrightarrow{i_{\#}} \operatorname{Ext}_{A}^{s_{A}^{, t}}\left(M_{\eta}, Z_{2}\right) \xrightarrow{p_{\#}} \operatorname{Ext}_{A}^{s_{A}^{s}(}\left(H^{*}\left(S^{2}\right), Z_{2}\right) \xrightarrow{\delta} \ldots$

[^2]where the connecting homomorphism δ is just multiplication by h_{1} [1, Lemma 2.6.1]. This enables us to write down Ext for X_{η}, using 1.1.3.
Lemma 3.1.3. The table gives $\operatorname{Ext}_{A}^{s, t}\left(M_{\eta}, Z_{2}\right)$ for $t-s=16,17$.

16	h_{3}^{2}	$\overline{h_{0} h_{3}^{2}}$		$\overline{h_{0} d_{0}}$	$\overline{h_{0}^{2} d_{0}}$	$P^{1} c_{0}$		
17	$\overline{h_{0} h_{4}}$	$\overline{h_{0}^{2} h_{4}}$	$\overline{h_{0}^{3} h_{4}}$	$\overline{h_{0}^{4} h_{4}}$ $h_{0} e_{0}$	$\overline{h_{5}^{5} h_{4}}$ $h_{0}^{2} e_{0}$	$\overline{h_{0}^{5} h_{4}}$	$\overline{h_{0}^{2} h_{4}}$	$P^{2} h_{1}$
2	3	4	5	6	7	8	9	

In the tables we write α for $i_{\#}(\alpha)$ and $\bar{\beta}$ for an element such that $p_{\#}(\bar{\beta})=\beta$. The rows and columns are fixed values of $(t-s)$ and s respectively.

Lemm 3.1.4. In the range of 3.1.3 the Adams differentials for X_{η} are (i) $\delta_{2} f_{0}=h_{0}^{2} e_{0}$; (ii) $\delta_{3} \overline{h_{0}^{i} h_{4}}=\overline{h_{0}^{i} d_{0}}, i=1,2$; (iii) $\delta_{3} \overline{h_{0}^{3} h_{4}}=P^{1} c_{0}$.

Proof. The Adams differentials are natural, which proves (i) and (ii), since these are carried forward by $i_{\#}$ and pulled back by $p_{\#}$, respectively. Then (iii) follows from (ii) by observing that $h_{0} \cdot \overline{h_{0}^{2} d_{0}}=h_{0}\left\langle 1, h_{1}, h_{0}^{2} d_{0}\right\rangle=\left\langle h_{1}, h_{0}^{2} d_{0}, h_{0}\right\rangle=\left\langle h_{1}, P^{1} h_{2}^{2}, h_{0}\right\rangle=P^{1} c_{0}$.

Hence we easily obtain E_{∞} for X_{η}.
Lemma 3.1.5. The table gives E_{∞} for X_{η} in dimensions 16 and 17.

16	$\overline{h_{3}^{2}}$	$\overline{h_{0} h_{3}^{2}}$					
17		e_{0}	$\overline{h_{0}^{4} h_{4}}$ $h_{0} e_{0}$	$\overline{h_{0}^{5} h_{4}}$	$\overline{h_{0}^{6} h_{4}}$	$\overline{h_{0}^{7} h_{4}}$	$P^{2} h_{1}$
	2	3	4	5	6	7	8
9							

The homotopy exact sequence of 3.1.1, in which the connecting homomorphism is multiplication by η, gives $\pi_{16}\left(X_{\eta}\right)=Z_{2}$? Z_{2} and $\pi_{17}\left(X_{\eta}\right)=\left(Z_{2}+Z_{2}\right) ?\left(Z_{16}+Z_{2}\right)$ where ? denotes an undetermined group extension. Comparing this calculation with 3.1.5, and observing that $h_{0} \cdot \overline{h_{0}^{7} h_{4}}=h_{0}\left\langle 1, h_{1}, h_{0}^{7} h_{4}\right\rangle=\left\langle h_{1}, h_{0}^{7} h_{4}, h_{0}\right\rangle=P^{2} h_{1}$, we can settle these homotopy groups.

Lemma 3.1.6. $\quad \pi_{16}\left(X_{\eta}\right)=Z_{4} ; \pi_{17}\left(X_{\eta}\right)=Z_{4}+Z_{32}$ with generators $\left\{i_{\# \#}\left(e_{0}\right)\right\}$ and $\langle l, \eta, 2 \rho\rangle$ respectively.

Note that $i_{\#}\left(e_{0}\right)$ is a survivor whereas e_{0} does not survive in S^{a}. By 3.1.6 and inspection of the homotopy exact sequence we have

$$
p_{*}\left\{i_{\#}\left(e_{0}\right)\right\}=\eta \kappa .
$$

3.2. Consider next the stable complex $X_{\sigma}=S^{\sigma} \cup_{\sigma} e^{8}$ and let $M_{\sigma}=H^{*}\left(X_{\sigma}\right)$. As with X_{η} the co-fibration

3.2.1

$$
S^{0} \xrightarrow{i} X_{\sigma} \xrightarrow{p} S^{8}
$$

gives a long exact sequence in Ext, where the connecting homomorphism is multiplication by h_{3} (or σ in the homotopy sequence).

Lemma 3.2.2. In $\operatorname{Ext}_{A}^{4,12}\left(M_{\sigma}, Z_{2}\right)$ there is a class $\overline{h_{0}^{4}}$ which survives the Adams spectral sequence, and projects to h_{0}^{4} under $p_{\#}$. If $\alpha \in \mathrm{Ext}_{A}^{s, t}\left(Z_{2}, Z_{2}\right)$ then $\overline{h_{0}^{4}} \alpha=i_{\#} P^{1} \alpha$.

Proof. A portion of Ext for X_{σ} is given below.

7				
8	c_{0}	$\overline{h_{0}^{4}}$	$\overline{h_{0}^{5}}$	$\overline{h_{0}^{6}} \ldots$
9			$h_{1} c_{0}$	$P^{1} h_{1}$
	1	2	4	5

The lemma follows easily from this and from the observation that $\overline{h_{0}^{4}}=\left\langle i \neq 1, h_{3}, h_{0}^{4}\right\rangle$.
Lemma 3.2.3. The table gives $\operatorname{Ext}_{A}^{s, t}\left(M_{\sigma}, Z_{2}\right)$ for $14 \leqq t-s \leqq 17$.

14		$\overline{h_{2}^{2}}$		d_{0}	$h_{0} d_{0}$	$h_{0}^{2} d_{0}$			
15	h_{4}	*	$\overline{h_{0}^{2} h_{3}}$	$\overline{h_{0}^{3} h_{3}}$	$h_{1} d_{0}$	*	*	*	
16		$\begin{aligned} & \overline{h_{1} h_{3}} \\ & h_{1} h_{4} \end{aligned}$	c_{0}				$P^{1} c_{0}$		
17			$\begin{aligned} & \overline{h_{1}^{2} h_{3}} \\ & h_{4}^{2} h_{4} \end{aligned}$	$\begin{gathered} \substack{h_{1} c_{0} \\ e_{0}} \end{gathered}$	$h_{0} e_{0}$	$h_{0}^{2} e_{0}$		$P^{1} h_{1} c_{0}$	$P^{2} h_{1}$
	1	2	3	4	5	6	7	8	9

Here the asterisks (${ }_{*}$) denote $h_{0}^{i} h_{4}, 1 \leqq i \leqq 7$.
Proof. This is a straightforward computation using the relation $h_{3} P^{1} h_{1}=h_{1}^{2} d_{0}$ and other relations which are well known.

Lemma 3.2.4. In the range of 3.2 .3 the non-zero differentials are (i) $\delta_{2} \overline{h_{0}^{i} h_{3}}=h_{0}^{i-1} d_{0}$, $i=2,3$; (ii) $\delta_{3} e_{0}=P^{1} c_{0}$.

Proof. Since $\kappa \notin \sigma \pi_{7}, i_{*} \kappa \neq 0$ where $\kappa=\left\{d_{0}\right\} \in \pi_{14}$ as computed by Toda. Thus the homotopy exact sequence of 3.2 .1 implies that $\pi_{14}\left(X_{\sigma}\right)=Z_{2}+Z_{2}$ and so d_{0} must survive. If $\delta_{2} \overline{h_{0}^{2} h_{3}}$ were zero, then we would have $\delta_{3} h_{0} h_{4}=h_{0} d_{0}$ by naturality; but this could only happen if $\delta_{3} h_{4}=d_{0}$, which is impossible. This contradiction proves (i). Similarly, since $\left\{P^{1} c_{0}\right\}=\eta \rho=\sigma \mu \in \sigma \pi_{9}$ we must have $P^{1} c_{0}=\delta_{3} e_{0}$.
3.3. It is not hard to verify that the class $\left\{h_{4}\right\}$ in X_{σ} projects to $\langle r, \sigma, 2 \sigma\rangle$. Let $Y=X_{\sigma} \cup_{\left\{h_{4}\right\}}{ }^{16}$ and let $M_{Y}=H^{*}(Y)$. We have a diagram
3.3.1

 computations of this kind later. For the present we record one important fact.

Lemma 3.3.2. In Ext ${ }_{A}^{s, t}\left(M_{Y}, Z_{2}\right)$ there is a surviving cycle $\bar{P}^{2}=\overline{\overline{h_{0}^{8}}}$ such that $q_{\#} \bar{P}^{2}=h_{0}^{8}$ and such that, if $\alpha \in \operatorname{Ext}_{A}^{s, t}\left(Z_{2}, Z_{2}\right)$, then $\bar{P}^{2} \alpha=(i i)_{\#} P^{2} \alpha$.

The proof is straightforward; compare 3.2.2.
3.4. We note the following general lemma for reference.

Lemma 3.4.1. Suppose the maps $i, p: S^{0} \xrightarrow{i} X \xrightarrow{p} X^{\prime}$ are such that the composition $p_{*} i_{*}$ is zero in homotopy. Suppose α is an element in Ext for S^{0} such that $i_{\#} \alpha$ is a surviving cycle, and such that $p_{*} \bar{\alpha}$ is essential for every $\bar{\alpha} \in\left\{i_{\#} \alpha\right\}$. Then α is not a permanent cycle.

Proof. We first show that α is not a surviving cycle. For suppose $f: S^{i} \rightarrow S^{0}$ represented $\{\alpha\}$; then the composition $i \cdot f$ would be in $\left\{i_{\#} \alpha\right\}$, and therefore $p_{*}(i \cdot f)$ would be essential, which is a contradiction.

It remains to show that α cannot be the image of a differential. Suppose that $\alpha=\delta_{r} \beta$; then $i_{\#} \alpha=\delta_{r}\left(i_{\#} \beta\right)$ by naturality, but this is impossible, since $i_{\#} \alpha$ is a surviving cycle.

§4. $\delta_{4}\left(e_{0} g\right)$ AND RELATED DIFFERENTIALS

4.1. We begin by showing that t survives to π_{36}.

Theorem 4.1.1. The element $t=\left\langle h_{3}, h_{1} h_{3}, g\right\rangle \in \operatorname{Ext}_{A}^{6,42}\left(Z_{2}, Z_{2}\right)$ is a permanent cycle.
Proof. We use the complex X_{σ} of 3.2. By 3.2.3 and 3.2.4, Ext ${ }_{A}^{2.18}\left(M_{\sigma}, Z_{2}\right)$ contains a class $\overline{h_{1} h_{3}}=\left\langle 1, h_{3}, h_{1} h_{3}\right\rangle$ which is a permanent cycle. Multiplying by the permanent cycle $g \in \operatorname{Ext}_{A}^{4,24}\left(Z_{2}, Z_{2}\right)$ we obtain $\left\langle h_{3}, h_{1} h_{3}, g\right\rangle=i_{\nexists t} t$ which must also be a permanent cycle. But it follows by naturality that t itself is a permanent cycle, since $i_{\#}$ is monomorphic in dimension 35.

Corollary 4.1.2. t is a surviving cycle.
Proof. The only other possibility is $t=\delta_{3} h_{2}^{2} h_{5}$; but $h_{2} h_{4}^{2}=0$ and $h_{2}\left(h_{1} d_{1}\right)=0$ so clearly $\delta_{3} h_{2}^{2} h_{5}=0$.
4.2. We now prove the main result of this section.

Theorem 4.2.1. $\quad \delta_{4} e_{0} g=P^{2} g$.
Proof. We use X_{η} and the results of 3.1. We have shown that $i_{\# \#} e_{0}$ is a survivor and that $p_{*}\left\{i_{\# \#} e_{0}\right\}=\eta \kappa$ (3.1.7). It follows that $p_{*}\left\{i_{\nexists} e_{0} g\right\}=\eta \kappa \bar{\kappa}$ where $\bar{\kappa}=\{g\}$. Now $\eta \kappa \bar{\kappa}=$ $\left\{h_{1} d_{0} g\right\}$, but $h_{1} d_{0} g=h_{1} e_{0}^{2}=h_{0}^{2} m$. Since t is a permanent cycle, this element survives to π_{35}. Then 3.4.1 implies that $e_{0} g$ is not a permanent cycle. The only possibility is that of the theorem. ($P^{2} h_{0} g=\delta_{2} P^{1} k$ by 1.1.5.)

This settles $\pi_{36}=Z_{2}$.
Corollary 4.2.2. $\quad \delta_{4} h_{0}^{3} y=P^{2} h_{1} g=P^{1} h_{0}^{2} k$.
This follows from the relation $h_{0}^{3} y=h_{1} e_{0} g$ [9].
Theorem 4.2.3. $\quad \delta_{4} P^{1} e_{0} g=P^{3} g$.
Proof. The idea is that 4.2 .3 would be immediate from 4.2 .1 if P^{1} were an actual class, but the complex X_{σ} contains a class $\overrightarrow{h_{0}^{4}}$ which behaves like P^{1} by 3.2 .2 . The table gives a portion of Ext for X_{σ}.

43					
44	$\overline{h_{0} P^{1} m}$	$\overline{h_{0}^{2} P^{1} m}$			
45	$\overline{P^{2} g}$	$\overline{P^{2} h_{0} g}$	$\overline{P^{2} h_{0}^{2} g}$		$P^{3} g$
	$\overline{P_{0} P^{1} k}$	$\overline{h_{0}^{2} P^{1} k}$		$P^{2} k$	$h_{0} P^{2} k$
	12	13	14	15	16

By naturality we have $\delta_{2} P^{2} k=P^{3} h_{0} g$ and $\delta_{2} \overline{P^{1} k}=\overline{P^{2} h_{0} g}$. Since $\overline{h_{1}} \overline{P^{2} g}=\overline{h_{0}^{2} P^{1} k}$, and $\delta_{3} \overline{P^{2} g}=0, \delta_{3} \overline{h_{0}^{2} P^{1} k}=0$. Thus $P^{3} g$ (i.e. $i_{\#} P^{3} g$) projects to E_{4}. Similarly $P^{1} e_{0} g$ projects to E_{4}. But

$$
\begin{aligned}
\delta_{4} i_{\#} P^{1} e_{0} g & =\delta_{4} \overline{h_{0}^{4}} e_{0} g \\
& =\overline{h_{0}^{4}} \delta_{4} e_{0} g \\
& =\overline{h_{0}^{4}} P^{2} g \\
& =i_{\# \#} P^{1} P^{2} g \\
& =i_{\# \#} P^{3} g .
\end{aligned}
$$

Since $i_{\#}$ is monomorphic for the range in question, the theorem follows.
4.3. We now draw several consequences from 4.2.3.

Proposition 4.3.1. $\delta_{3} d_{0} e_{0}=h_{0}^{4}$.
Proof. Since $P^{1} g=d_{0}^{2}, 4.3 .2$ asserts that $\delta_{4} d_{0}^{2} e_{0}=P^{2} d_{0}^{2}$. Thus if $d_{0} e_{0}$ projects to E_{4} we must have $\delta_{4} d_{0} e_{0}=P^{2} d_{0}$. But this is impossible since $P^{2} h_{0} d_{0} \neq 0$ in E_{4} while $h_{0} d_{0} e_{0}=0$ since it equals $\delta_{2} l$, by 1.1.5. Thus $d_{0} e_{0}$ does not project to E_{4}. We have $\delta_{2} d_{0} e_{0}=$ $d_{0} \cdot \delta_{2} c_{0}=h_{1}^{2} d_{0}^{2}=0$. Thus $\delta_{3} d_{0} e_{0}$ must be non-zero and we are finished.

Now $\delta_{3} h_{0}^{7} h_{5}=h_{0}^{4} s$ also, by 1.1.5. Thus $\alpha=d_{0} e_{0}+h_{0}^{7} h_{5}$ is a cycle in E_{3} and hence projects to E_{4}.

Corollary 4.3.2. $\quad \delta_{4} \alpha=P^{2} d_{0}$.
Proof: $\quad \delta_{4} h_{0} \alpha=\delta_{4} h_{0}^{8} h_{5}=P^{2} h_{0} d_{0}$.
Using 1.1.5 and 2.2.2, this settles $\pi_{30}=Z_{2}$.
Corollary 4.3.3. $\delta_{4} P^{i} e_{0} g=P^{i+2} g$.
Proof. For $i \geqq 2$ we use 4.3.2 (which uses 4.2.3). Writing α as above, we have $\left(P^{i-1} d_{0}\right) \alpha=\left(P^{i-1} d_{0}\right) d_{0} e_{0}=P^{i} e_{0} g$. Then $\delta_{4} P^{i} e_{0} g=P^{i-1} d_{0} . \delta_{4} \alpha=P^{i+1} d_{0}^{2}=P^{i+2} g$.

Corollary 4.3.4. If $P^{i} d_{0} e_{0}$ projects to E_{4} then $\delta_{4} P^{i} d_{0} e_{0}=P^{i+2} d_{0}$.
Proof. $\delta_{4} d_{0} P^{i} d_{0} e_{0}=\delta_{4} P^{i+1} e_{0} g=P^{i+3} g=d_{0} P^{i+2} d_{0}$ and the result follows, since $P^{i} d_{0}$ is the only element in Ext ${ }^{s, t}$ for the appropriate s and t.

Corollary 4.3.5. If $P^{i} h_{1} d_{0} e_{0} \in E_{4}$ then $\delta_{4} P^{i} h_{1} d_{0} e_{0}=P^{i+2} h_{1} d_{0}$.
Corollary 4.3.6. $\quad \delta_{4} h_{1} e_{0} g=P^{2} h_{1} g=P^{2} h_{0}^{2} k$.
These are immediate from 4.3 .3 and 4.3 .4 respectively.
4.4. We now deduce a further consequence of 4.2.3.

Proposition 4.4.1. $\quad \delta_{3} P^{2} r=P^{2} h_{0}^{2} k$.
Proof. The following is a portion of Ext for the complex Y of 3.3:

45		$P^{2} k$	$P^{2} h_{0} k$	$P^{2} h_{0}^{2} k$
46	$\overline{\bar{P}^{2} \overline{\gamma_{0}^{2}} d_{0}}$	P^{2}	$\bar{P}^{3} \overline{d_{0}}$	$\overline{P^{3} h_{0} d_{0}}$
	14	15	16	17

Here we have written $P^{2} k$ for $(j i)_{\#} P^{2} k$, etc.; elements originating from the 8 -cell and the 16 -cell have single and double bars respectively. By $3.3 .2(j i)_{\#} P^{2} s=\bar{P}^{2} s$. This is a permanent cycle, since s and \bar{P}^{2} are permanent cycles in Ext for S^{0} and Y respectively. Since $(j i)_{\#}$ is monomorphic in the required dimension, $P^{2} s$ is a permanent cycle. Thus $P^{2} h_{0}^{2} k$ is non-zero in E_{3} for S^{0}. But it must be zero in E_{4} since $P^{2} h_{0}^{2} k=P^{3} h_{1} g=h_{1} \cdot \delta_{4} P^{1} e_{0} g$ whereas $h_{1} P^{1} e_{0} g=0$. The only possibility is $P^{2} h_{0}^{2} k=\delta_{3} P^{2} r$.

We can now prove 2.2 .2 by observing that $\bar{P}^{2} \delta_{3} r \neq 0$ since, using 3.3.2, $\bar{P}^{2} \delta_{3} r=$ $\delta_{3}(j i)_{\#} P^{2} r=(j i)_{\# \#} P^{2} h_{0}^{2} k \neq 0$.

Corollary 4.4.2. $\quad \delta_{3} d_{0} r=P^{1} h_{0}^{2} m$.
This is immediate from 2.2.2 and the relation $P^{1} h_{0}^{2} m=h_{0}^{2} d_{0} k$.

§5. THE y FAMILY

5.1. We obtain $\delta_{2} y$ and make a related observation on the algebra structure of Ext.

Lemma 5.1.1. $\quad \delta_{3} h_{0}^{3} h_{3} h_{5}=h_{0}^{3} x$.
Proof. Since $h_{0}^{3} x=h_{3} s$, this follows immediately from 1.1.5.
This would appear to imply that $\delta_{3} h_{3} h_{5}=x$ but we shall show in a moment that $h_{0}^{3} x=0$ in E_{3} so that this inference is not valid. In fact $\delta_{3} h_{3} h_{5}=0$ as will be shown in Section 7.

Lemma 5.1.2. $\quad \delta_{2} h_{0} y=h_{0}^{4} x$.
Proof. Since $h_{0}^{4} h_{3} h_{5}=0$, 5.1.1 implies that $h_{0}^{4} x=0$ in E_{3}. The only possibility is $h_{0}^{4} x=\delta_{2} h_{0} y$.

Proposition 5.1.3. In Ext, $h_{2} e_{0}^{2}=h_{0} e_{0} g=h_{0}^{4} x$.
Proof. By [9], $h_{2} m=h_{0}^{2} y$. Therefore $h_{0} h_{2} e_{0}^{2}=\delta_{2} h_{2} m=\delta_{2} h_{0}^{2} y=h_{0}^{5} x$. This implies the proposition.

This product in Ext cannot be obtained from May's spectral sequence, i.e. from E^{0} Ext, since in $E^{0} \mathrm{Ext}, h_{2} e_{0}^{2}=h_{0} e_{0} g=0$ (the element $h_{0}^{4} x \neq 0$ has different May filtration degree). Since 5.1 .3 is the first recorded difference between the algebra structures of Ext and $E^{0} E x t$, we give a second proof. May [6] has shown that $s=\left\langle h_{4}, d_{0}, h_{0}^{3}\right\rangle$ and $x=\left\langle h_{3}, h_{4}, d_{0}\right\rangle$. (The relation $h_{3} s=h_{0}^{3} x$ follows easily from this.) Then $h_{0}^{4} x=h_{0}^{4}\left\langle h_{3}, h_{4}, d_{0}\right\rangle=$ $\left\langle h_{0}^{4}, h_{3}, h_{4}\right\rangle d_{0}=\left(P^{1} h_{4}\right) d_{0}=h_{2} d_{0} g=h_{2} e_{0}^{2}$.

Theorem 5.1.4. $\delta_{2} y=h_{0}^{3} x$.
Proof. This is now immediate from 5.1.2 and 5.1.3.
5.2. We now derive some differentials which lie beyond the range $t-s \leqq 45$ but which will be needed later.

Lemma 5.2.1. In Ext, $h_{1} P^{2} e_{0} g=h_{0}^{6} S_{1}$.
Proof. This product, which does not hold in E^{0} Ext, is a necessary consequence of 4.3.3. We have $h_{1} \delta_{4} P^{2} e_{0} g=P^{4} h_{1} g$ which is non-zero in E_{4}. Thus $h_{1} P^{2} e_{0} y \neq 0$ but Ext ${ }^{17,71}$ is generated by $h_{0}^{6} S_{1}$.

Corollary 5.2.2. $\quad \delta_{4} h_{0}^{6} S_{1}=P^{4} h_{1} g=P^{3} h_{0}^{2} k$.
Proposition 5.2.3. $\delta_{2} h_{0} S_{1}=h_{0}^{4} x^{\prime}$.
Proof. Since $\delta_{2} P^{3} k=P^{4} h_{0} g, \delta_{r} h_{0}^{5} S_{1}=0$ for $r=3,4$. Thus if $\delta_{2} h_{0}^{5} S_{1}$ were zero $h_{0}^{5} S_{1}$ would be a permanent cycle, contradicting 5.2.2. Therefore $\delta_{2} h_{0}^{5} S_{1}=h_{0}^{8} x^{\prime}$ and the proposition follows.

This argument does not settle $\delta_{2} S_{1}$ since $h_{0} P_{1} w=0$.
Remark 5.2.4. We have $h_{0}^{6} S_{1}=P^{2} h_{0}^{3} y$ from 5.2.1 and the relation $h_{1} e_{0} g=h_{0} h_{2} m=$ $h_{0}^{3} y$. Thus $P^{2} y=h_{0}^{3} S_{1}$ which again is a relation in Ext which does not hold in E^{0} Ext for reasons of filtration.

§6. THE u FAMILY

6.1. We will use the complex X_{η} of 3.1. In $\operatorname{Ext}_{A}^{5,30}\left(M_{\eta}, Z_{2}\right)$ there is a permanent cycle $\left\langle 1, h_{1}, P^{1} h_{4}\right\rangle$ which maps to $P^{1} h_{4}\left(=h_{2} g\right)$ under $p_{\#}$. Notice that if $\alpha \in$ Ext for S^{0} is such that $P^{1} h_{4} \alpha=0$ then $\left\langle 1, h_{1}, P^{1} h_{4}\right\rangle \alpha=i_{\#}\left\langle h_{1}, P^{1} h_{4}, \alpha\right\rangle$.

Proposition 6.1.1. $\quad \delta_{4} d_{0} v=P^{2} u$.
Proof. May proves $u=\left\langle h_{1}, P^{1} h_{4}, d_{0}\right\rangle$ and $v=\left\langle h_{1}, P^{1} h_{4}, e_{0}\right\rangle$ [5]. Hence in Ext for $X_{\eta}, \delta_{4} i_{\#} d_{0} v=\delta_{4}\left\langle 1, h_{1}, P^{1} h_{4}\right\rangle d_{0} e_{0}=\left\langle 1, h_{1}, P^{1} h_{4}\right\rangle P^{2} d_{0}=i_{\#} P^{2} u$. Thus it is enough to show that $i_{\#} P^{2} u$ is non-zero in E_{4}. The table gives a portion of Ext for X_{η}.

55	$\overline{P^{2} h_{0}^{2} x}$	$\overline{P^{2} h_{0}^{2} x}$	$\overline{P^{2} h_{0}^{3} x}$	$\overline{P^{2} h_{0}^{4} x}$
	$\overline{P^{1} e_{0} r}$			$P^{2} u$
56	$\overline{h_{0}^{3} S_{1}}$	$\overline{h_{0}^{4} S_{1}}$	$\overline{h_{0}^{5} S_{1}}$	$\overline{h_{0}^{6} S_{1}}$
		14	15	16

Since $\delta_{2} j=P^{1} h_{0} e_{0}$, and $P^{1} g=d_{0}^{2}$ is a permanent cycle, $\delta_{2} P^{1} g j=P^{2} h_{0} e_{0} g$, which equals $P^{2} h_{0}^{4} x\left(=h_{0}^{7} x^{\prime}\right)$ by 5.1.2 and 5.2.4. Thus $\delta_{2} \overline{P^{1} g j}=\overline{P^{2} h_{0}^{4} x} \neq i_{\#} P^{2} u$. By 5.2.3 $\delta_{2} \overline{h_{0} S_{1}}=\overline{P^{2} h_{0} x}$ and so $i_{\#} P^{2} u$ survives to E_{4} and we are through.

Corollary 6.1.2. $\quad \delta_{3} P^{1} g k=P^{2} h_{1} u$ and $\delta_{2} P^{2} v=P^{2} h_{1}^{2} u$.
Proof. Since $h_{1} d_{0} v=0, P^{2} h_{1} u$ must be zero in E_{4} by 6.1.1. This proves the first statement. The second statement is proved similarly.

Proposition 6.1.3. $\quad \delta_{3} g k=P^{1} h_{1} u$.
Proof. The idea is to work in X_{σ} where we can "divide by $P^{1 "}$ " in the sense of 3.2.2. It follows from 6.1.2 that $\delta_{3} \overline{h_{0}^{4}} g k=\delta_{3} i_{\#} P^{1} g k=i_{\#} P^{2} h_{1} u=\overline{h_{0}^{4}} P^{1} h_{1} u$. Thus it is enough to show that $\overline{h_{0}^{4}} P^{1} h_{1} u$ is non-zero in E_{3}. A portion of Ext for X_{σ} is given in the table.

56	$\overline{P^{2} h_{0}} l$ $P^{2} g^{2}$	$\overline{P^{2} h_{0}^{2} l}$	$P^{2} h_{1} l l$ $P^{2} t$
			17

From this it is obvious that $\overline{h_{0}^{4}} P^{1} h_{1} u=i_{\# \#} P^{2} h_{1} u$ survives to E_{3} and this completes the proof.
Corollary 6.1.4. $\quad \delta_{2} P^{1} v=P^{1} h_{1}^{2} u\left(=P^{1} h_{0} z\right)$.
This follows immediately from 6.1.3.
Proposition 6.1.5. $\quad \delta_{2} v=h_{1}^{2} u\left(=h_{0} z\right)$.
The proof is similar to that of 6.1.3.

§7. $\delta_{4} h_{3} h_{5}$

7.0. We will show that $\delta_{4} h_{3} h_{5}=h_{0} x$. The outline of the argument is as follows. In Ext for the complex Y of 3.3 there is a certain permanent cycle α (7.1). By some manipulations with this cycle we can show that $\delta_{3}\left\langle 1, h_{3} h_{4}^{2}\right\rangle=x$ in the Adams sequence for Y (7.2). The same differential holds in X_{σ}; but this enables us to compute $\pi_{37}\left(X_{\sigma}\right)$, from which we can obtain π_{37} by a counting argument (7.3). The desired result follows.
7.1. We begin with the three-cell complex Y.

Lemma 7.1.1. The table gives a portion of $\operatorname{Ext}_{A}^{\text {s.t. }}\left(M_{Y}, Z_{2}\right)$.

Here the asterisks are abbreviations for products with h_{0} of the elements to the left; single and double bars indicate cell of origin as in 4.4.

By naturality we have in the above table the differentials $\delta_{2} \overline{h_{4}}=\overline{h_{0} h_{3}^{2}}$ and $\delta_{3} \overline{h_{0} h_{4}}=\overline{h_{0} d_{0}}$.
We introduce the notation

$$
\alpha=\overline{h_{4}}+\overline{\overline{h_{3}}}=\left\langle 1, h_{3}, h_{4}\right\rangle+\left\langle 1, h_{4}, h_{3}\right\rangle
$$

and we wish to show that α is a permanent cycle. If we pinch the 0 -cell of Y to a point we
obtain the two-cell complex $S^{8} \cup_{2 \sigma} e^{16}$ which we will call Y^{\prime}. The crucial step in the calculation of $\delta_{4} h_{3} h_{5}$ is the following.

Lemma 7.1.2. The element $\overline{h_{4}}+\overline{\overline{h_{3}}} \in \operatorname{Ext}^{1,24}\left(M_{Y^{\prime}}, Z_{2}\right)$ is a surviving cycle, giving a homotopy element $\left\{\alpha^{\prime}\right\} \in \pi_{23}\left(Y^{\prime}\right)$.

Proof. Consider the following diagram:

The lower row is equivalent to the co-fibration 3.2.1 of X_{σ}. Clearly then the connecting homomorphism in the Ext sequence takes 1 to $\overline{\overline{h_{3}}}$. Thus, by naturality, the connecting homomorphism in the Ext sequence for the co-fibration of the upper row must hit either $\overline{\overline{h_{3}}}$ or $\overline{h_{4}}+\overline{\overline{h_{3}}}$. But it follows from the work of Adams on the decomposability of $h_{4}\left(S q^{16}\right)$ [1] that the image $\delta_{\# \#} 1$ must contain $\overline{h_{4}}$. This proves that $\delta_{\# 1} 1=\overline{h_{4}}+\overline{\overline{h_{3}}}$ in the Ext sequence of the upper row. But $\{1\}$ is of course a homotopy element, the generator of $\pi_{24}\left(S^{24}\right)$, and therefore $\overline{h_{4}}+\overline{\overline{h_{3}}}$ is a permanent cycle, and hence a surviving cycle, in Y^{\prime}; and the lemma follows.

Lemma 7.1.3. In Y, α is a surviving cycle.
Proof. This is now almost immediate from 7.1.2 and the homotopy exact sequence of the co-fibration $S^{0} \rightarrow Y \rightarrow Y^{\prime}$.
7.2. We now use the above results to show that x does not survive in the Adams sequence for Y.

Lemma 7.2.1. In Ext for Y we have the following products:
(i) $\left\langle 1, h_{3}, h_{4}\right\rangle h_{4}=\left\langle 1, h_{3}, h_{4}^{2}\right\rangle$;
(ii) $\left\langle 1, h_{4}, h_{3}\right\rangle h_{4}=0$;
(iii) $\left\langle 1, h_{3}, h_{4}\right\rangle d_{0}=j_{\# \#} x$;
(iv) $\left\langle 1, h_{4}, h_{3}\right\rangle d_{0}=0$.

Here j denotes the composite $j i: S^{0} \rightarrow Y$ of 3.3.
Proof. The product (i) is clear; (ii) follows from the well-known relation $\left\langle h_{4}, h_{3}, h_{4}\right\rangle=$ $h_{3} h_{5}$, since $j_{\#} h_{3} h_{5}=0$; and (iii) follows from $x=\left\langle h_{3}, h_{4}, d_{0}\right\rangle$. To prove (iv), observe that

$$
\begin{aligned}
h_{0}^{4}\left\langle h_{4}, d_{0}, h_{3}\right\rangle=h_{4}\left\langle d_{0}, h_{3}, h_{0}^{4}\right\rangle & =h_{4} P^{1} d_{0} \\
& =d_{0} P^{1} h_{4} \\
& =d_{0}\left\langle h_{0}^{4}, h_{3}, h_{4}\right\rangle \\
& =h_{0}^{4}\left\langle h_{3}, h_{4}, d_{0}\right\rangle \\
& =h_{0}^{4} x(\neq 0)
\end{aligned}
$$

from which it follows that $\left\langle h_{4}, d_{0}, h_{3}\right\rangle=x$. Now from the Jacobi identity

$$
\left\langle h_{3}, h_{4}, d_{0}\right\rangle+\left\langle h_{4}, d_{0}, h_{3}\right\rangle+\left\langle d_{0}, h_{3}, h_{4}\right\rangle=0,
$$

since the first two terms are each x and the indeterminacy is zero, it follows that $\left\langle d_{0}, h_{3}, h_{3}\right\rangle=0$ which implies (iv).

Corollary 7.2.2. $\quad h_{4} \alpha=\left\langle 1, h_{3}, h_{4}^{2}\right\rangle$ and $d_{0} \alpha=j_{\#} x$.
Lemma 7.3.2. In $Y, \delta_{3}\left\langle 1, h_{3}, h_{4}^{2}\right\rangle \geqq j_{\#} x$.
Proof. The table shows a portion of Ext for Y.

By 7.2.2, 7.1.3, and 1.1.5,

$$
\begin{aligned}
\delta_{3} h_{0}\left\langle 1, h_{3}, h_{4}^{2}\right\rangle & =\delta_{3} h_{0} h_{4} \alpha \\
& =\alpha \delta_{3} h_{0} h_{4} \\
& =\alpha h_{0} d_{0} \\
& =h_{0} j_{\#} x .
\end{aligned}
$$

But $\delta_{2}\left\langle 1, h_{3}, h_{4}^{2}\right\rangle$ is clearly zero, and the lemma follows.
7.3. We now consider the complex X_{σ}.

Lemma 7.3.1. The differential $\delta_{3}\left\langle 1, h_{3} h_{4}^{2}\right\rangle=i_{\#} x$ holds in X_{σ}.
Proof. For $s \leqq 5$, Ext for X_{σ} agrees with the table of 7.2.3 after deletion of the elements with double bars. Thus 7.3.1 is immediate from 7.2.3 by naturality.

Corollary 7.3.2. $\sigma\left\{h_{4}^{2}\right\}$ is non-zero.
Proof. By 2.2.2 $\left\{h_{4}^{2}\right\}$ is the generator of $\pi_{30}=Z_{2}$. In the homotopy exact sequence 3.2.1 of $X_{\sigma},\left\{h_{4}^{2}\right\} \in \pi_{38}\left(S^{8}\right)$ does not come from $\pi_{38}\left(X_{\sigma}\right)$ since 7.3.1 implies that there is no element in $\pi_{38}\left(X_{\sigma}\right)$ of filtration less than or equal to 2 . This gives the corollary.

Lemma 7.3.3. The table gives a portion of Ext for X_{σ}.

36					t		$\overline{P^{1} g}$	$*$	$*$		$P^{2} g$	$*$	$*$
37		$h_{2}^{2} h_{5}$		x	$*$	$*$	$e_{0} g$	$*$		$P^{1} k$	$*$	$*$	
38	$\overline{h_{4}^{2}}$	$*$	$*$	$*$	y	$*$	$*$	$*$	$\overline{h_{0}^{3} s}$	$*$	$\bar{P}^{2} d_{0}$	$*$	$*$
	2	3	4	5	6	7	8	9	10	11	12	13	14

This is calculated in the usual way. We have made use of the relation $h_{3} r=h_{0}^{2} x+h_{1} t$; see 7.4 below. Also, we do not know whether $h_{2}^{2} d_{1}=h_{3} n$, but this is irrelevant to our argument, so we omit $h_{2}^{2} d_{1}$ from the above table for simplicity.

Lemma 7.3.4. The following are the only differentials in the Adams sequence for X_{σ} which involve dimension 37: (i) $\delta_{2} k=h_{0} \overline{P^{1}} g$; (ii) $\delta_{2} P^{1} k=h_{0} P^{2} g$; (iii) $\delta_{4} e_{0} g=P^{2} g$; (iv) $\delta_{3} \overline{h_{0}^{3} s}=h_{0}^{2} P^{1} k$; (v) $\delta_{3} \overline{h_{4}^{2}}=x$.

Proof. The differentials (i) and (ii) are obvious by naturality, and we also obtain (iii) by naturality, observing that $\delta_{3} \overline{h_{0}^{2}} k=0$ since $h_{0}^{2} k=h_{1} P^{1} g$. We have proved (v) in 7.3.1. Finally, (iv) follows from (iii) and the fact that $h_{1} e_{0} g=h_{0}^{3} y$ is obviously a permanent cycle here.

We should also observe that $h_{0}^{3} \overline{h_{4}^{2}}$ is a permanent cycle, since it can be written $\left(h_{0}^{3} h_{4}\right) \overline{h_{4}}$ (see 3.2.4), and that e_{1} is a permanent cycle in X_{σ}, by an argument given later (8.6)

Proposition 7.3.5. π_{37} has exactly three generators.
Proof. It is clear from 7.3.4 that $\pi_{37}\left(X_{\sigma}\right)$ is generated by the images of $h_{2}^{2} h_{5}$ and $\overline{h_{0}^{2} k}$ Using 7.3.1 and the fact that $\pi_{37}\left(S^{8}\right) \approx \pi_{29}=0$, we have a short exact sequence

$$
0 \rightarrow \pi_{38}\left(S^{8}\right) \rightarrow \pi_{37} \rightarrow \pi_{37}\left(X_{\sigma}\right) \rightarrow 0
$$

and the result follows. (The map $\pi_{38}\left(S^{8}\right) \rightarrow \pi_{37}$ is monomorphic by 7.3.2.)
Corollary 7.3.6. $\quad \delta_{3} h_{3} h_{5}=0$.
Otherwise π_{37} would have at most two generators, since 1.1.5, 4.2, and 5.1.4 have eliminated all possible survivors except $h_{2}^{2} h_{5}, x, h_{0} x, h_{0}^{2} x$, and $h_{1} t\left(=h_{2}^{2} n\right)$.

Theorem 7.3.7. $\delta_{4} h_{3} h_{5}=h_{0} x$.
Proof. By 7.3.6, $\delta_{4} h_{3} h_{5}$ is defined. If it were zero, both $\delta_{5} h_{3} h_{5}$ and $\delta_{3} e_{1}$ would have to be non-zero, in order to agree with 7.3.5. But $\delta_{3} e_{1}=0$ is proved in $\S 8.6$ below. Thus 7.3.7 follows from 7.3.5 and 7.3.6.
7.4. In the proof of $7.3 .3-7.3 .7$ we used the relation $h_{3} r=h_{0}^{2} x+h_{1} t$. In $E^{0} E x t$, $h_{3} r=0$, but in Ext, $h_{3} r$ might conceivably be any linear combination of $h_{0}^{2} x$ and $h_{1} t$, since both elements have lower weight in the sense of May (see Section 1.2 above).

The fact that $h_{3} r$ is as claimed has been proved by showing that \bar{r} and $h_{0}^{2} x+h_{1} t$ do not survive in the May spectral sequence for X_{σ} (unpublished). This product is closely related to the product $h_{0} r=s$ (because of Lemma 1.2.1, part (v)), which has been proved by similar calculations (in the complex $S^{0} \cup_{2 i} e^{1}$). This latter product can also be proved by the techniques and results in The metastable homotopy of S^{n}, by M. Mahowald (Mem. Am. math. Soc. No. 72, 1967).

§8. PROOF OF THEOREM 1.1.6

8.0. Now we will prove that all remaining differentials are zero. Using known facts about the image of the J homomorphism, and using the fact that each δ_{r} is a derivation with respect to the product structure of E_{r}, it is clear from what has already been proved that the following elements are permanent cycles: $n, d_{1}, q, p, h_{5} c_{0}, g_{2}$, and $h_{3}^{2} h_{5}$. It remains to show that the following are permanent cycles: $h_{1} h_{5}, h_{2} h_{5}, P^{1} h_{1} h_{5}, P^{1} h_{2} h_{5}, e_{1}, f_{1}, c_{2}$, and w.
8.1. We begin by giving the promised proof that h_{4}^{2} is a permanent cycle, which implies 2.2.2. The fact that h_{4}^{2} is a permanent cycle is a corollary to the tolnowing theorem.

Theorem 8.1.1. The four-fold bracket $\langle\sigma, 2 \sigma, \sigma, 2 \sigma\rangle$ exists, and $\left\{h_{4}^{2}\right\}=\langle\sigma, 2 \sigma, \sigma, 2 \sigma\rangle$.
Proof. According to Oguchi [8], to show that the bracket exists it is sufficient to prove that $\langle\sigma, 2 \sigma, \sigma\rangle=\langle 2 \sigma, \sigma, 2 \sigma\rangle=0$ with zero indeterminacy. It follows from Toda's formula ((3.10) of [10]) that $\langle\sigma, 2 \sigma, \sigma\rangle=\langle 2 \sigma, \sigma, 2 \sigma\rangle$. But clearly $\langle 2 \sigma, \sigma, 2 \sigma\rangle=2\langle\sigma, 2 \sigma, \sigma\rangle$, and since $2 \pi_{22}=0$, both three-fold brackets are zero. The following lemma shows that the indeterminacy is zero.

Lemma 8.1.2. $\quad \sigma \pi_{15}=0$.
Proof. π_{15} is generated by ρ and $\eta \kappa$. Now $\eta \kappa=\langle\nu, 2 v, \varepsilon\rangle$ and therefore $\sigma \eta \kappa=$ $\langle\sigma, v, 2 v\rangle \varepsilon=\sigma \sigma \varepsilon=0$. On the other hand $S^{22} \rightarrow S^{15} \rightarrow S O(n) \rightarrow \Omega^{n} S^{n}$ where ω is a generator and $n>22$ shows that $\sigma \rho=\sigma(\omega J)=0$.

This proves the existence of the four-fold bracket. To show that it contains $\left\{h_{4}^{2}\right\}$ we represent the bracket by the complex

$$
S^{n} \overleftarrow{\overleftarrow{\sigma}} S^{n+7} \cup_{2 \sigma} e^{n+15} \cup_{\sigma} e^{n+23} \underset{2 \tilde{\sigma}}{ } S^{n+30}
$$

Then $X=S^{n} \cup_{\bar{\sigma} 2 \tilde{\sigma}} e^{n+31}$ can be realized by taking the mapping cylinder $M_{\bar{\sigma}}$ of $\bar{\sigma}$ and adjoining e^{n+31} by the map

$$
S^{n+30} \longrightarrow 2 \vec{\sigma}, S^{n+7} \cup_{2 \sigma} e^{n+15} \cup_{\sigma} e^{n+23} \subset M_{\bar{\sigma}}
$$

Let Y be the subcomplex

$$
S^{n+7} \cup_{2 \sigma} e^{n+15} \cup_{\sigma} e^{n+23} \cup_{2 \sigma} e^{n+31} \subset X
$$

The cohomology of the pair (X, Y) is given by the following table.

$$
\begin{array}{llll}
& H^{*}(X, Y) \xrightarrow{i^{*}} H^{*}(X) \xrightarrow{i *} H^{*}(Y) \\
n & x_{n} & j^{*} x_{n} & \\
n+7 & & & y_{n+7} \\
n+8 & \delta^{*} y_{n+7} & & y_{n+15} \\
n+15 & & & \\
n+16 & \delta^{*} y_{n+15} & & y_{n+23} \\
n+23 & & & i^{*} y_{n+23} \\
n+24 & x_{n+31} & & \\
n+31 & & x_{n+31}
\end{array}
$$

Adams has shown [1] that $S q^{16}=\Sigma_{i, j} a_{i, j, 3} \phi_{i, j}$ where $a_{0,3,3}$ contains the term $S q^{8}$. Hence $\delta^{*} y_{n+15}=S q^{16} x_{n}=\chi\left(S q^{8} \phi_{0,3}\right)$ where χ is the canonical anti-automorphism of A. The Peterson-Stein formula now completes the proof.

The following consequence will be used in 8.3.
Corollary 8.1.3. $v\left\{h_{4}^{2}\right\}=0$.
Proof. $v\langle\sigma, 2 \sigma, \sigma, 2 \sigma\rangle \sim\langle 0,2 \sigma, \sigma, 2 \sigma\rangle$ but the indeterminacy of the last bracket is $2 \sigma \pi_{26}=0$.
8.2. An elementary argument shows that $\left\langle\eta, 2 l,\left\{h_{4}^{2}\right\}\right\rangle=\alpha$ has the property that $\phi_{1,5}$ is non-zero in $S^{0} \cup_{\alpha} e^{33}$. This implies that $h_{1} h_{5}$ is a permanent cycle.

This settles π_{31} and π_{32}.
8.3. Using the same technique we can show that $\left\langle v,\left\{h_{4}^{2}\right\}, 2 l\right\rangle=\alpha_{1}$ has the property that $\phi_{2,5}$ is non-zero in $S^{0} \cup_{\alpha_{1}} e^{35}$ and hence that $h_{2} h_{5}$ is a permanent cycle. This uses 8.1.3.

We have now settled π_{k} for all $k \leqq 36$. It is not hard to verify that all group extensions in the range 31-35 are trivial other than those given by h_{0}.
8.4. It follows from 8.2 that $P^{1} h_{1}^{2} h_{5}=\left(P^{1} h_{1}\right)\left(h_{1} h_{5}\right)$ is a permanent cycle. Therefore $\delta_{3} P^{1} h_{1} h_{5}=0$ and $P^{1} h_{1} h_{5}$ is itself a permanent cycle.
8.5. $P^{1} h_{2} h_{5}$ obviously gives a permanent cycle in Ext for X_{σ}, by 3.2.2, and since z is not a multiple of h_{3} it follows that $P^{1} h_{2} h_{5}$ is a permanent cycle. This settles π_{42}.
8.6. If we can show $\delta_{3} e_{1}=0$ then e_{1} is a permanent cyclc. There are two possible images: $h_{1} t$ and $h_{0}^{2} x$. May has shown that $e_{1}=\left\langle h_{3}, c_{1}, h_{3}, h_{2}\right\rangle$ [6]. We therefore consider the complex $X=S^{0} \cup_{\sigma} e^{8} \cup_{c_{1}} e^{28}$ and show that the image of e_{1} is a permanent cycle there. Let $M=H^{*}(X)$.

Lemma 8.6.1. The table gives a portion of $\operatorname{Ext}_{A}^{s, t}\left(M, Z_{2}\right)$.

The proof follows directly from Adams' lemma [1; 2.6.1].
Lemma 8.6.2. $\overline{\overline{h_{3}}}$ is a permanent cycle and in E_{4} can be represented as $\left\langle 1, h_{3}, c_{1}, h_{3}\right\rangle$.
Proof. We first show that $\left\langle i, \sigma, c_{1}, \sigma\right\rangle$ exists as a four-fold Toda bracket. Clearly $\left\langle\imath, \sigma, c_{1}\right\rangle=0$. To see that $\left\langle\sigma c_{1}, \sigma\right\rangle=0$ we use the Jacobi identity

$$
\langle\sigma,\langle\eta \sigma, \sigma, v\rangle, \sigma\rangle+\langle\langle\sigma, \eta \sigma, \sigma\rangle, v, \sigma\rangle+\langle\sigma, \eta \sigma,\langle\sigma, v, \sigma\rangle\rangle=0
$$

since $\left\{c_{1}\right\}=\langle\eta \sigma, \sigma, \nu\rangle$. The second bracket is zero since $\langle\sigma, \eta \sigma, \sigma\rangle=0$. To prove the third bracket zero, note that $(\eta \sigma)\langle\sigma, v, \sigma\rangle=0$ on S^{7}. Hence we form

$$
S^{34} \rightarrow e^{16} \cup S^{7} \rightarrow S O(n) \rightarrow \Omega^{n} S^{n} \quad(n>35)
$$

which represents the third bracket. Then the third bracket is zero since $\pi_{34}(S O)=0$. Thus the first bracket is zero also, and the four-fold bracket may be formed. Clearly $p_{*}\left\langle l, \sigma, c_{1}, \sigma\right\rangle=\sigma$ where $p: X \rightarrow S^{28}$. This implies that $8\left\langle l, \sigma, c_{1}, \sigma\right\rangle \neq 0$. Now if $\delta_{\mathrm{r}} \overline{\overline{h_{3}}} \neq 0$ for any r then there will not be enough classes in $E_{\infty}^{s, s+35}$ to produce $\pi_{35}(X)$. The lemma follows.

Lemma 8.6.3. $\quad i_{\#} e_{1}$ is a permanent cycle, where $i: S^{0} \rightarrow X$.

Proof. We have $i_{\nexists f} e_{1}=i_{\#}\left\langle h_{3}, c_{1}, h_{3}, h_{2}\right\rangle=h_{2} \overline{\overline{h_{3}}}$ and thus the result is immediate from 8.6.2.

Corollary 8.6.4. Either e_{1} is a permanent cycle, or else $\delta_{3} e_{1}=h_{3} r$.
Proof. From 8.6.3 it follows that e_{1} gives a permanent cycle in the Adams sequence for X_{σ}. Thus e_{1} is a permanent cycle in the Adams sequence for S^{0} unless its differential is a multiple of h_{3}; and $h_{3} r$ is the only possibility.

Proposition 8.6.5. Either e_{1} is a permanent cycle, or else $\delta_{3} e_{1}=h_{2}^{2} n$.
We omit the proof, which follows the same lines as 8.6.1-8.6.4, using the complex $X_{\nu}=S^{0} \cup_{\nu} e^{4}$ in place of X_{σ}.

Theorem 8.6.6. e_{1} is a permanent cycle.
Proof. By Lemma 1.2.1, $h_{2}^{2} n=h_{1} t ;$ by 7.4, $h_{3} r=h_{1} t+h_{0}^{2} x$. Since $h_{0}^{2} x$ is non-zero in E_{3}, the result follows by comparison of 8.6.4 and 8.6.5.
8.7. According to May [6], $f_{1}=\left\langle h_{1}^{2}, h_{4}^{4}, h_{3}\right\rangle$. Thus in Ext for $X, i_{\#} f_{1}=h_{3}\left\langle 1, h_{1}, h_{1} h_{4}^{2}\right\rangle$ is a permanent cycle. This shows f_{1} to be a permanent cycle, unless $c_{1} g=h_{1} y$ (another ambiguity in the product structure of Ext). However, we can settle $\delta_{3} f_{1}=0$ by considering the complex $S^{0} \cup_{2 \sigma} e^{8} \cup_{\sigma} e^{16}$ in which h_{4} is non-zero (cf. 7.1) and in which f_{1} may be written $h_{3}\left\langle 1, h_{4}, h_{1}^{2} h_{4}\right\rangle$. We omit the details.
8.8. We can show that $c_{2}=\left\langle h_{3}, h_{2}, h_{4}^{2}\right\rangle$ is a permanent cycle by using the complex $X_{v}=S^{0} \cup_{v} e^{4}$ in much the same manner.
8.9. Finally we must show that the permanent cycle w in Ext ${ }^{9,54}$ is not $\delta_{2} B_{1}$. But $P^{1} B_{1}=h_{1} x^{\prime}$, a permanent cycle; $P^{1} w \neq 0$, and the result is an easy consequence of 3.2.2.

REFERENCES

1. J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. Math. 72 (1960), 20-104.
2. J. F. Adams, On the structure and applications of the Steenrod algebra, Comment. math. helvet. 32 (1958), 180-214.
3. M. G. Barratt, Seattle Conference notes, 1963.
4. C. R. Maunder, Some differentials in the Adams spectral sequence. Proc. Camb. phil. Soc. math. phys. Sci. 60 (1964), 409-420.
5. J. P. May, Ph.D. Thesis, Princeton University 1964, and Bull. Am. math. Soc. 71 (1965), 372-380. The cohomology of restricted Lie algebras.
6. J. P. May, private communication.
7. M. Mimura, On the generalized Hopf homomorphism and higher compositions, Part II $\pi_{m+i}\left(S^{m}\right)$ for $i=21$ and 22. Mem. Coll. Sci. Kyoto Univ. Ser. A 4 (1965) 302-326.
8. K. Oguchi, A generalization of secondary composition and its application, J. Fac. Sci. Tokyo Univ. 10 (1963), 29-79.
9. M. C. Tangora, On the cohomology of the Steenrod algebra, dissertation, Northwestern University, 1966.
10. H. Toda, Composition Methods in Homotopy Groups of Spheres, Princeton University Press, 1962.

Northwestern University
Evanston, Ill.

[^0]: \dagger This work was supported in part by the U.S. Army Research Office (Durham). The first-named author is an Alfred P. Sloan Fellow.

[^1]: \dagger In what follows we often will speak colloquially and treat $\operatorname{Ext}_{A}\left(H^{*}(X), Z_{2}\right)$ as a functor on a space X or as a functor on the module $H^{*}(X)$. When no space or module is mentioned we mean $\operatorname{Ext}_{A}\left(Z_{2}, Z_{2}\right)$.

[^2]: \dagger This proof was suggested to us by M. G. Barratt.
 \ddagger We say that α is a permanent cycle if $\delta_{r} \alpha=0$ for all r; and if moreover α projects to a non-zero element in E_{∞} wc say that α is a surviving cycle or survivor.

