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1 Smooth bordism

1.1 Transversality

Spheres S™ 22 D" /D™ = R™ U {co}. Deform any map f: S"** — S™ to be transverse to 0 € R® C S".
Preimage M* = f=1(0) closed (always smooth) k-manifold. Given fy, f; transverse to 0, any homotopy
F: 8"tk x T — S™ from fy to f1 can be deformed relative to S"* x {0, 1} to be transverse to 0. Preimage
Wk = F~1(0) is compact (k + 1)-manifold with W = MyUM;. Call W a bordism from My = f;*(0)
to My = f;'(0). Say that My and M, are (co-)bordant. Let A4; = QO be the set of bordism classes
of closed k-manifolds. Get function 7,1x(S™) — A% mapping homotopy class [f] to bordism class [M].
Suspension X f: §"TEF1 — Gt gives same preimage, so 5 = mx(S) = colimy, Tty (S™) — .

Compatible with sum and product: f,g: S?™* — S™ transverse to 0 then f +g = (fVg)V: S"tF —
Sntk oy gntk G s transverse to 0, with (f +¢)~(0) = £71(0) U g~*(0), so sum in 7} corresponds
to sum in .4 induced by disjoint union. If f: S"** — S™ and g: S™t — S™ are transverse to
0 then f-g = (f A g)x: SnTmtktt = gntk p gm+t . gn A gm — Gntm g transverse to 0 and
(f - g)710) = f~10) x g7'(0), so that smash product pairing mj x m,(S) — 74¢(S) corresponds to
pairing A% X Ay — Ag4e induced by Cartesian product. Get a homomorphism 7, (S) — A4 of graded
(commutative) rings.

1.2 Framed bordism

More structure on manifolds: Tangent bundle 7: TM — M embeds in trivial bundle e"**: M x Rtk —
M , with normal complement v: NM — M. For each x € M, N,M C R*"¥ is the orthogonal complement
of T,M C R""* mapping isomorphically to the quotient R"** /T, M. Derivative of f along M induces
bundle isomorphism 6: NM — M x R™. A trivialization, or framing, of the normal bundle of M. The
normal bundle of M C R****+1is y@el: NM xR — M. The trivialization § @ ¢! defines the same stable
framing as 0. Let QiT be the set of stably framed bordism classes of stably framed closed k-manifolds.
Get ring homomorphism ¢/": 7,(S) — QI

Theorem (Pontryagin-Thom): ¢/" is an isomorphism.

Inverse construction: Given a closed k-manifold M choose embedding F(v) = NM — R*"*. Let the
Thom complex Th(v) = E(v)U{co} be the one-point compactification, so that Th(v) = D(v)/S(v) where
S(v) C D(v) C E(v) are the unit sphere and unit disc subbundles. Define Pontryagin—Thom collapse
map v*: S"TF — Stk /(GntR N\ E(v)) = Th(v). Alternatively, S"tk — Sntk/(§ntk \ intD(v)) =



D(v)/S(v) = Th(v). Suppose M is (stably) framed, so that trivialization 6 gives map E(rv) — R™ and
0.: Th(v) — S™. The composite 0,v*: S"T* — Th(v) — S™ defines a homotopy class in 7, 1 (S™) — 7.

Homology theories: X any space. Let 75 (X ) = colim,, Tgn (X4 AS™). Amap f: S"TF — X, AS" =
X x8™/X x{oo} can be deformed to be transversal to X x {0} C X xR™ C X, AS™. (Project to {0} C R
to specify transversality.) Then M = f~1(X x {0}) is a framed closed k-manifold. The restriction of f
specifies a map a: M — X, so M is a k-manifold over X. A homotopy F: S"t* x I — X A S™ from
fo to fi can also be taken to be transverse to X x {0}, with preimage W = F~1(X x {0}) a stably
framed bordism from M, to M;. Restriction of F' gives a map §: W — X that restricts to ag U a1 on
OW = My U M, so F is a bordism over X. Let QiT(X) be the set of bordism classes of stably framed
closed k-manifolds over X, up to stably framed bordism over X.

Theorem: ¢f7: 73(X ) — ol (X) is an isomorphism of generalized homology theories in X.

1.3 Unoriented bordism

Homotopical analogue of forgetting framings: Given a closed k-manifold M choose embedding M C
Rk C §F+" with normal bundle v: NM — M. May embed NM as a tubular neighborhood NM C
R¥+", For each z € M the normal space N,M C R*¥*" gives a point g(z) € Gr,,(R¥*") in the Grass-
mannian manifold of n-planes in R¥*". Get a Gauss map g: M — Gr,(R¥*") covered by a bundle map
v — 4" (R"*F), where 4™ (R"*) is the canonical n-bundle over G, (R¥*"). Include R"** € R™ to map
to the infinite Grassmannian Gr,,(R>°). There is a fiber bundle O(n) — V,,(R>®) — Gr,(R°) where the
Stiefel variety V;,(R>) ~ EO(n) of orthonormal n-frames in R* is contractible, so Gr,(R*) ~ BO(n)
is a classifying space for principal O(n)-bundles, and the canonical n-bundle 4™ over BO(n) has total
space E(y") = EO(n) xon) R". Its Thom complex is Th(y") = EO(n) Xom) S"/EO(n) Xom) {00} =
EO(n)y Nom) S™ = MO(n). Get a Gauss map g: M — BO(n) covered by a bundle map v — 7™, or
NM — E(y™), with induced map of Thom complexes g.: Th(v) — Th(v") = MO(n).

Compose with the Pontryagin-Thom collapse map v*: S"T* — Th(v) to get a map g,.v*: ST+ —
MO(n), with homotopy class in m,+MO(k). Different choices of embeddings become isotopic, and
induce homotopic maps, after replacing R**" with R¥+*"*1 gsufficiently often. This replaces v with
v @ €', finitely often, which corresponds to replacing v*: S"** — Th(v) with its suspension S"+F+1 —
Th(v)AS! = Th(v®e'), and replacing g, with the composite of its suspension Th(v) AST — Th(y™)AS?
and amap o: Th(y")ASt — Th(y"*1!). The latter is induced by the bundle map 7" @e! — 4"+ covering
the inclusion BO(n) — BO(n + 1). Get homomorphism ¢ : A}, — colim,, 74+, MO(n) = m,(MO).

Inverse construction: A map f: S"** — MO(n) = Th(y") can be deformed to be transversal to
0-section so: BO(n) — E(y™). Then M = f~1(BO(n)) C S"** is a closed k-manifold, with a map
g: M — BO(n) covered by a bundle map g: v — ™. (Here " is also the normal bundle of the 0-
section.) Stabilizing f by increasing n does not alter M. Get a homomorphism ¢: m(MO) — A4,
inverse to ¢.

Theorem: ¢: m,(MO) — A, is an isomorphism.

For each space X let MOy(X) = colim, mi4n(MO(n) A X4). Let A%(X) be the set of bordism
classes of closed k-manifolds (M, «) over X, up to bordism over X. (No framings.)

Theorem: ¢: MO, (X) — A4(X) is an isomorphism of generalized homology theories in X.

Steenrod problem: For a k-manifold (M, ) over X, the fundamental class [M] € Hy(M;Z/2) maps to
a class a,[M] € Hi(X;Z/2). (No framing is needed to have this homology class.) Cobordant manifolds
over X give the same class in Hy(X;Z/2), so A%(X) — Hy(X;Z/2). What homology classes arise in
this way? Thom: All!

[[Prove that there is a split surjection MO — HZ/2. In fact, MO ~ \/ X*HZ/2 is a wedge sum of
suspensions of copies of HZ/2, and A, = m,(MO) = Fylx; | 1 < i # 29—1], with |z;| = i. The equivalence
realizes an isomorphism @@ X’/ = H*(MO;Z/2) of free «/-modules, where o/ = H*(HZ/2;Z/2) is the
mod 2 Steenrod algebra. Here H*(MO;Z/2) =2 H*(BO;Z/2) by Thom isomorphisms, H*(BO;Z/2) =
Z/2w; | i > 1] with |w;| = i, and & is dual to &, = Z/2[§; | j > 1] with |£;| = 27 — 1. In low dimensions,
Ne = (F2{1},0,Fa{xa},0,Fo{23,24},...) with x5 represented by RP2.]]

([ (MO) — H,(MO;Z/2) injective, so k-dimensional bordism classes are detected by the Stiefel-
Whitney characteristic numbers (w(7ys), [M]) where w = wi' ... w}* ranges over a basis for H*(BO).]]



1.4 Oriented bordism

Let € = Q50 be the group of oriented bordism classes of oriented k-manifolds. Let Gr,, (R"**) be the
oriented Grassmannian of oriented n-planes in R***. Then E}vrn(R“’) ~ BSO(n), and the Thom complex
of the canonical oriented bundle is Th(3") ~ MSO(n) = ESO(n); Aso(m) S™. Get an isomorphism
¢: m(MSO) — Q,, where m,(MSO) = colim,, T+, MSO(n). More generally, MSO,(X) = Q,(X),
where M SOy(X) = colim,, 4o (MSO(n) A X4). For an oriented k-manifold oc: M — X over X, the
integral fundamental class [M] € H(M) maps to a class a.[M] € Hy(X) that only depends on the
oriented bordism class of M over X. What homology classes are in the image of this homomorphism
Q. (X) — H.(X)? Thom: Not alll For k = 7, some homology classes are not represented by (smooth)
orientable manifolds. Led to Sullivan-Baas’s bordism with singularities.

S MSO MO
H HZ/2

represents
Q" (X) —— Q. (X)) —— A (X)

2 Topological K-theory

Principal G-bundle P — X, associated fiber bundle £ = P xg F — X. Example: Vector bundle
P Xom) R" — X with structure group O(n). Classification of principal G-bundles over X, or fiber
bundles over X with structure group G, by homotopy classes of maps X — BG, where EG — BG is a
principal G-bundle with EG contractible. Note that G ~ Q(BG).

Real vector bundles over X classified by [],,~, BO(n). Topological K-theory KO(X) = K (Vect(X))
is group completion of [X,]], <, BO(n)]. Initial homomorphism Vect(X) — KO(X) to a group. Over
compact Hausdorff spaces/finite CW complexes, each bundle admits a stable inverse, so group completion
is the localization inverting £ — £@®e!. Represented by group completion Zx BO: KO(X) = [X,Zx BO].

Bott periodicity: Z x BO ~ Q8(Z x BO) and Z x BU ~ Q?(Z x BU). More precisely, the loop spaces
0(Z x BO) for 0 < i < 8 are homotopy equivalent to Z x BO, O, O/U, U/Sp, Z x BSp, Sp, Sp/U,
U/O and Z x BO. The homotopy groups m;(Z x BO) for ¢ > 0 begin Z, Z/2, Z/2, 0, Z, 0, 0, 0 and
repeat 8-periodically. The loop spaces Q(Z x BU) for 0 < i < 2 are homotopy equivalent to Z x BU, U
and Z x BU. The homotopy groups 7;(Z x BU) for ¢ > 0 begin Z, 0 and repeat 2-periodically.

Morse theory proof: The space of minimal (shortest) geodesics from I to —I in SU(2n) is Gr,,(C?") =
U(2n)/U(n) x U(n), and the inclusion Gr,,(C*") — QSU(2n) is (2n + 1)-connected. Hence BU — QSU
is an equivalence.

Atiyah-Hirzebruch: Define KO’ (X) = [X,94Z x BO)] where i +j =0 mod 8, 0 < i < 8, and

KU’ (X) = [X,Q4(Z x BU)] where i +j =0 mod 2, 0 < i < 2. These give generalized cohomology
theories KO*(X) and KU*(X), with coefficients KO’ = 7;(Z x BO) and KU’ = m;(Z x BU), with i

— % —— %48 —— % —— %42
and j as above. Note that KO (X) = KO (X) and KU (X) = KU (X).

3 The stable homotopy category

3.1 Compactly generated spaces

Steenrod, Moore, McCord: Let % be the category of compactly generated weak Hausdorff spaces. A
space X is compactly generated if the closed subsets A of X are precisely those for which preimage
u~1(A) is closed in K, for any map u: K — X with K compact Hausdorff. The space X is weak
Hausdorff if the image u(K) is closed in X for any map u: K — X with K compact Hausdorff.



Every metric space, and every locally compact Hausdorff space is compactly generated weak Haus-
dorff.

Let X, Y € %. The traditional product topology on the set X x Y of pairs(z,y) might not be
compactly generated, but by declaring the subsets A C X x Y for which the preimage u~1(A) is closed
in K, for any map u: K — X x Y with K compact Hausdorff, to be closed, gives a potentially finer
topology that is compactly generated weak Hausdorff. The traditional compact-open topology on the
set YX = Map(X,Y) of maps f: X — Y might also not be compactly generated, but can be refined to
a compactly generated weak Hausdorff topology by the same method.

Proposition: % has all (small) limits and colimits, hence is complete and cocomplete.

Theorem: % is Cartesian closed, in the sense that there is a natural homeomorphism

Map(X x Y, Z) = Map(X, Map(Y, 7))

given by sending f: X XY — Z to g: X — Map(Y, Z) given by g(x)(y) = f(z,y).
Let i: A — X. The problem of extending a map f: A — E over i to a map h: X — E with hi = f

A——F

is homotopy invariant, i.e., does only depend on the homotopy class of f, if ¢ has the homotopy extension
property (HEP). If ¢ has the homotopy extension property for all E then i is a (Hurewicz) cofibration.
For a CW pair (X, A), the inclusion A — X is a cofibration.

Let p: E — B. The problem of lifting a map g: X — B over p to amap h: X — E with ph =g

5 A
v/
/

XT>B

is homotopy invariant, i.e., does only depend on the homotopy class of g, if p has the homotopy lifting
property (HLP). If p has the homotopy lifting property for all X then p is a (Hurewicz) fibration. For a
fiber bundle p: E — B over a paracompact Hausdorff base space, the projection is a fibration.

Proposition (Strgm): If i: A — X is a cofibration, p: E — B a fibration, and i or p a homotopy
equivalence, then in any commutative square

f
—

A E
A

zl s lp

X

—— B
there exists a map h: X — E making both triangles commute.

Earlier, Quillen proved a similar result with retracts of relative CW complexes (in place of Hurewicz
cofibrations), Serre fibrations (in place of Hurewicz fibrations) and weak homotopy equivalences (in place
of homotopy equivalences). Give different models for homotopy theory, i.e., model categories.

Alternative: Use simplicial sets, degreewise monomorphisms, weak homotopy equivalences and Kan
fibrations.

3.2 Based spaces

Let 7 be the category of based compactly generated weak Hausdorff spaces with a chosen base point,
and basepoint-preserving maps.
Proposition: 7 has all (small) limits and colimits, hence is complete and cocomplete.
Recall the wedge sum
X\/Y:XX{yo}U{.CL‘Q}XY



and the smash product
XANY=XxY/XVY.

Let F(X,Y) denote the space of basepoint-preserving maps X — Y.
(7, A, S%) is monoidal, in the sense that the smash product is a bifunctor A: .7 x .7 — .7, mapping
(X,Y) to X AY, which is associative up to a natural homeomorphism

a: XANYANZD)(XANY)NZ

and unital up to natural homeomorphisms A: S°AY 2 Y and p: Y A S° 2 Y, subject to the coherence

conditions that the diagrams
(XAY)AN(ZAW)

XANY AN (ZAW)) (XAYYANZ)ANW
lAal la/\l
XA((YANZ)AW) = (XA(YANZ)AW
(Mac Lane pentagon)
A(SOA2Z) = (XASHAZ
IAN pAL
XNZ
and
SO A 80
) < >p
SO
commute.

Moreover, (.7, A, S%,v) is symmetric monoidal, in the sense that there is a natural homeomorphism
Y XANYZ2YANX

subject to the coherence conditions that the diagrams

(X AY)
XA(YAZ) AXAY)
l/\’yl Ja
XN(ZAY) (ZAX)NY

(Mac Lane hexagon)
XAY
s
YANX

A



and
YASS — T s SO0y

R

commute. (The last triangle makes p, or A, superfluous.)

Mac Lane proved a coherence theorem saying that all diagrams involving these structures that can
reasonably expected to commute do indeed commute. An diagram than cannot be expected to commute
is that given by the two maps 1,7: X A X — X A X.

A monoidal structure allows us to define what we mean by a monoid in Z: A space X with a
multiplication p: X A X — X and a unit 7: S° — X such that the diagrams

[0

XAXAX)—2 S (XAX)AX

1/\;LJ J{u/\l

XAXx —"* o x XAX

and
oAx - x M oxAs

Sobs

commute. A monoid map from (X, u,n) to (Y, u,n) is a map f: X — Y that makes the diagrams

INf

XANX—YAY
Hl J{H
x—1 Ly
and
SO

»/ \&J
X % Y
commute. The monoids in (.7, A, S°) thus form a category. In a monoidal category we can also define
what we mean by a module over a monoid. (Details given later, in the context of S-modules.)

A symmetric monoidal structure allows us to specify when a monoid (X, u,7n) is commutative. This
means that that diagram

XAX—2 X AX

R

commutes. The commutative monoids (in a symmetric monoidal category) form a full subcategory of
the monoids (in the underlying monoidal category).

Finally, the mapping space F' makes .7 a closed symmetric monoidal category, in the sense that there
is a natural homeomorphism

0: F(XAY,Z) = F(X,F(Y,Z)).

For each Y, we say that the functors L: X — X AY and R: Z — F(Y, Z) are adjoint, with L the left
adjoint, and R the right adjoint. The natural homeomorphism

0: F(L(X),Z) = F(X,R(Z))



is called an adjunction. In the case Z = L(X), the identity map on the left hand side corresponds to a
natural map

n: X = R(L(X))

called the adjunction unit. In the case X = R(Z), the identity map on the right hand side corresponds
to a natural map
e: L(R(Z)) = Z

called the adjunction counit.

For example, with Y = S, X A S! = ¥X is the suspension and F (S, Z) = QZ is the loop space,
and the adjunction F(XX,Z) & F(X,QZ) takes a map f: XX — Z to the map ¢g: X — QZ with
g(z)(s) = f(z,s) with s € S'. The adjunction unit 7: X — QXX and counit €: ¥QZ — Z are the
natural maps given by n(x)(s) = (z, s) and €(w, s) = w(s), respectively,

More generally, with Y = S™ we call X A S™ = ¥"X the n-fold suspension and Q"Z = F(S", Z)
the n-fold loop space, and F(X"X,Z7) = F(X,Q"Z). The adjunction units are n: X — Q"¥"X and
€ X" 7 — Z.

A space (X, xz¢) is nondegenerately based (= well-based) if the inclusion {9} — X is a Hurewicz
cofibration, i.e., if (X,{zo}) is an NDR-pair.

3.3 The homotopy category of spaces

Homotopy functors defined on .7 take homotopy equivalences to isomorphisms. For the purpose of
algebraic topology, we focus on weak homotopy functors such as H, and m,, which take all weak homotopy
equivalences to isomorphisms. Let # C 7 be the subcategory of weak homotopy equivalences. The
localization functor

T > Ho(T)=TW

is the initial functor from .7 that takes each weak equivalence f: X ~,, Y to an isomorphism. It can be
constructed with the same objects as .7, and with morphisms

Ho(7)(X,Y) = [X,Y] ={T'X - Y}/ ~

the set of homotopy classes of maps I'X — Y from a CW approximation I'’X ~,, X of X to Y. (Uses that
() = T'X is a cofibration and Y — x is a fibration in Quillen’s model structure.) When X is (homotopy
equivalent to) a CW complex, this is the same as the set of homotopy classes of maps X — Y. Weak
homotopy functors from .7 thus factor uniquely through Ho(.7).

We review Puppe’s theory of homotopy cofiber and fiber sequences, using May’s notation (Lewis—
May—Steinberger, May—Ponto).

Given f: X — Y in 7 let the cone of X be CX = I A X with I = [0,1] based at 1, and let the
mapping cone C'f =Y Uy CX be the pushout of f and ip: X — CX. The map f and the inclusion
i: Y — Cf induce an exact sequence

Iz

X, T «— [V, T] +— [C£.,T]
for any space T, in the sense that the image of i* is equal to the kernel of f*, i.e., the preimage of the class
0 of the constant map. Any other diagram X’ — Y’ — Z’ that is homotopy equivalent to X — Y — C'f
will also induce such exact sequences, and is called a homotopy cofiber sequence. We often call Cf the
homotopy cofiber of f.

The collapse map C'f — Y/X is a homotopy equivalence if f is a cofibration. In particular, 7 is a
cofibration, so the collapse map Ci — Cf/Y is a homotopy equivalence. Here Cf/Y = [/l AN X =
SIAX =2¥X.

xt oy

cf— s ci—t 0



(The square commutes up to homotopy.) Hence ¥ — Cf — XX and Cf — ¥X — XY are also
homotopy cofiber sequences. The exact sequence extends without bound to the right:

X, T] < [v, 7| < [Cf, T] &— [£X,T) < =

Y, T) <2 20 f,T) & 22X, T) &

Starting at [LX,T] the pinch map S — S! Vv S and the reflection S* — S! induce a group structure,
which is abelian from [©2X, 7] and onwards.
For example, with T'= Z x BO, this gives half of the long exact sequence in topological K-theory:
—0 =0 i ——0 o 1 =1 i
KO (X)«—KO (Y)+—KO (Cf)+—KO (X)«+—KO ({Y)+——...
which can be extended to the left by Bott periodicity.
Given f: X — Y let the path space of Y be PY = F(I,Y) with I = [0, 1] based at 0, and let the

homotopy fiber F'f = X xy PY be the pullback of f and p;: PY — Y. The projection p: F'f — X and
f: X — Y induce an exact sequence

T, Ff] —— [T, X] —— [T, Y]

for any space T, in the sense that the image of p, is the kernel of f,.. Any other diagram W' — X' — Y’
that is homotopy equivalent to F'f — X — Y will also induce such exact sequences, and is called a
homotopy fiber sequence.

The inclusion f~!(yo) — Ff is a homotopy equivalence if f is a fibration. In particular, p is a
fibration, so the inclusion p~!(yo) — F'p is a homotopy equivalence. Here p~t(yo) = F(I/0I,Y) = QY.

ax 2 qy
[N
Fq——Fp Ff X Y

q

(The square commutes up to homotopy.) Hence QY — Ff — X and QX — QY — Ff are also
homotopy fiber sequences. The exact sequence extends without bound to the left:

e 02y] 28 o £ 22 11, 0x] =25 11, 0Y] S [T, Ff] - [T, X] — s [, Y]

For example, with 7' = S* this gives half of the long exact sequence of (higher) homotopy groups

D I

—Px 7f* Lx
s e (X) /5 g1 (V) — mh(F f)

7 (X) e (Y)

These exact sequences are compatible up to one change of sign.

Let n: X — QXX be the suspension-loop adjunction unit, left adjoint to the identity map on X X.
Hence n(x)(t) = (x,t) for z € X and t € I. Let e: XQY — Y be the adjunction counit, right adjoint to
the identity map on QY. Hence €(w,t) = w(t).

Let n: Ff - QCf and e: XFf — Cf be the adjoint pair of maps given by

B ~Jw(2t) for 0 <t<1/2
n(z,w)(t) = e(z,w,t) = {(m,?t —1) for1/2<t<1

where z € X, w € PY and t € I, with f(z) = w(1).

Lemma 3.1. The diagrams

Oy — 5 Fyf X Y
[T N A
oy —2, 00f -2 anx 2 oxy



and
sox = voy 2 wEr v

N

X Yy —L 5 C0f—T %X

commute up to homotopy.

3.4 The Spanier—Whitehead category

(Margolis)
Homotopy excision theorem: If X, Y and C'f are c-connected and T is a CW complex of dimension

< 2¢, then f and 7 induce an exact sequence

T

T, X]

[T,Y] [T.Cf]
Freudenthal suspension theorem: If X is c-connected, and T is a CW complex of dimension < 2¢,
then the suspension homomorphism
[T, X] — 2T, 2X]

is an isomorphism.

Notice that if d = dim(7T) 4 2, the dimension condition on T' can be achieved by replacing all spaces
and maps in sight by their d-fold suspensions.

Spanier and J.H.C. Whitehead define the stable homotopy classes of maps

{X,Y} =colim[X AS™,Y A S"] = colim [E" X, ¥"Y] 2 colim [ X, Q"X"Y].
n n n

This a colimit of groups for n > 1, which are abelian for n > 2, so {X,Y} is naturally an abelian group.
The diagram

(X, Ty v,y (Ot T)

remains exact for any cofiber sequence X — Y — C'f, since this is the sequential colimit over n of the
exact sequences [E"X,X"T] + [E"Y,X"T] + [E"Cf,X"T]. More interesting is that

(. x)y L yy s of

is also exact, at least for finite-dimensional T', because this is the sequential colimit over n of the
sequences [X"T, X" X]| — [E"T,X"Y] — [E"T, X" C f], which are exact for dim(T") +n < 2(n — 1), i.e.,
for n > dim(7T) + 2. (Discuss passage to limit to account for infinite-dimensional T'?) Likewise, the
suspension homomorphism

ST, X} — {37, 9X}

is also an isomorphism, more-or-less by construction.

Hence the category with objects .7 and morphisms from X to Y given by the abelian group {X,Y}
is almost a localization of Ho(7) with respect to X, in the sense that 3 becomes an equivalence of
categories. However, X is not essentially surjective on objects. To achieve this, one can introduce formal
desuspensions of spaces. The resulting Spanier—Whitehead category .## has objects pairs (X, k) with
X in 7 (or X a CW complex) and k an integer. We think of (X, k) as a model for X* X, also when k is
negative. The morphisms from (X, k) to (Y, £) are

yw((Xy k)7 (Y, 6)) = colim [Ek+nX, E[+ny] '
The functor
¥®: Ho(7) — W =Ho(7)[S7]

given by X — (X, 0) takes the suspension functor ¥: Ho(.7) — Ho(.7) to the shift equivalence (X, k) —
(X,k+ 1), up to a natural isomorphism (XX,0) = (X,1). (Universal property: See Margolis (1983),
p.7.)
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Spanier—-Whitehead duality: Finite CW complexes (and their desuspensions) are dualizable in Z %,
in the sense that to each such object Y there is a dual object DY and a natural isomorphism

(X NY,Z} = {X,DY N Z}.

The dual of S™ is S™", and to each homotopy cofiber sequence Y/ — Y — Y there is a dual homotopy
(co-)fiber sequence D(Y") — DY — D(Y"). For each dualizable Y the functor L(X) = X AY is left
adjoint to the functor R(Z) = DY A Z, with adjunction unit n: S — DY AY and counit e: DY AY — S.

3.5 Triangulated categories

The Spanier—Whitehead category is an Ab-category, in the sense that each morphism set {X,Y} is an
abelian group and each composition pairing {Y, Z} x {X,Y} — {X, Z} is bilinear. (This is a case of an
enriched category: instead of being formed in the symmetric monoidal category of sets, with pairing the
Cartesian product x and with unit the singleton set %, the notion of an Ab-category is formed in the
symmetric monoidal category Ab of abelian groups, with pairing the tensor product ® and unit Z.)

An additive category is an Ab-category with all finite coproducts, i.e., an initial object give by the
empty coproduct, and a binary coproduct. It will then also have all finite products, the initial object is
also terminal, and the canonical map from a binary coproduct to a binary product is an isomorphism.
(A simultaneously initial and terminal object is called a zero object. A simultaneous coproduct and
product is called a biproduct.)

The Spanier—Whitehead category is an additive category, with initial object * and coproduct X VY.
The canonical map X VY — X xY is an isomorphism in . . Another example of an additive category
is the category of (right) R-modules for a fixed ring R. Each morphism set Homg(M, N) is naturally an
abelian group, and composition is bilinear. The initial and terminal object is 0, and the canonical map
M &N — M x N is an isomorphism.

An abelian category is an additive category such that every morphism has a kernel and a cokernel,
every monomorphism is a kernel, and every epimorphism is a cokernel. Such a category is a convenient
setting for homological algebra. The category of R-modules is abelian, but the Spanier—Whitehead
category is not abelian. For instance, a cokernel C' of a morphism f € {X,Y} would be a coequalizer of
f and the zero morphism 0 (which is the unique map that factors through the zero object):

f

X vy, C
0

The mapping cone Cf with the canonical inclusion i: Y — C'f fits in such a diagram, with if = 0,
hence is a weak cokernel. However, it does not in general satisfy the uniqueness condition required of a
coequalizer. Given g: Y — T with gf = g0 there exists a map h: Cf — T with hi = g, but h is only
determined up to addition of a class in j*{XX,T}:

f . .
(X, T} T {V, T}« {Cf, T} «— {£X, T}
0

Since j*{3XX, T} is in general nonzero, C'f is not a cokernel in the sense of abelian categories. Instead,
the Spanier—Whitehead category is a triangulated category, somewhat intermediate between abelian
categories and the long exact sequences arising from homological algebra.

Triangulated categories were defined by Puppe (1962/1967), with an additional axiom added by
Verdier (1966/1971). (Beilinson-Bernstein—Deligne (1982), Margolis (1983), Hovey—Palmieri—Strickland
(1997)). We follow May (2001):

Definition 3.2. A triangulation on an additive category % is an additive self-equivalence ¥: ¢ — ¥
together with a collection of triangles, i.e., diagrams

f g

X Y h

A ¥X

in €, called the distinguished triangles, such that the following axioms hold.
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(T1) Let T be any object and f: X — Y be any map in %.

1

e The triangle T T * YT is distinguished.
e The map f is part of a distinguished triangle X ! y 2z lyvx.
e Any triangle isomorphic to a distinguished triangle is distinguished.
(T2) If X L5y 247 ", 5X is distinguished, then sois ¥ —2 7 s yxx L5y .
(T3) Consider the following braid diagram.
h g/ j”
X A w XU
AN , A 7"
\ / N n i g
f VA =/
Y v Y
AN,
J s N
N4
U X
f//

Assume that h = go f and j” = ¥f" o ¢”, and that (f, f’, f”) and (g,¢’,¢") are distinguished.
If " and h" are such that (h,h’, h”") is distinguished, then there are maps j and j' such that the
diagram commutes and (7, ', 7”) is distinguished.

Axiom (T3) is Verdier’s octahedral axiom. May shows that the axioms (T1), (T2) and (T3) imply
the following lemma, even though Verdier assumes it as another axiom.

Lemma 3.3. If the rows are distinguished and the left hand square commutes in the following diagram,
then there is a map k that makes the remaining squares commute.

x—t v 9,7 h.vx
|
zl lj I k lm
’ ’ + ’
x Ly g M s

We call k a fill-in map.

Proposition 3.4. For (f,g,h) distinguished and T any object, the sequences

T X)L (1Y) LT, Z) (T 5X) ——
and
e X, T) Y, T) (2, T) (=X, T) —— ...
are exact.

Proof. We show that im(f,) = ker(g.). Given i: T'— X in € (T, X) we have

T—1,T % ST
|

{ lj Ik lm
<

x oy 2.7 Moy

with j = f o ¢, and there is a fill-in map k. Hence ¢gfi = 0, so im(f.) C ker(gx).

12



Conversely, given j: T — Y in €(T,Y) with go j = 0 we have

—X1

T * T T
|
LT
g h Y., -nf
Y— 7 »X XY
and there is a fill-in map 3i. Hence ¥j = X(f o), so j = f o4, and ker(g.) C im(f). O

Lemma 3.5 (The 3 x 3 lemma). Assume that jo f = f' oi and the two top rows and two left columns
are distinguished in the following diagram.

X Y 7z X
z ; ! o
vy g Wy
i’ 3’ : K’ =4’

. .11 .
7’// j | k// EZN

4
sx vy 2 vy Zhosey

Then there is an object Z" and maps f", g", b, k, k' and k" such that the diagram is commutative,
except for its bottom right hand square, which commutes up to the sign —1, and all four rows and columns
are distinguished.

3.6 Boardman’s stable homotopy category

The Spanier-Whitehead category is not large enough to represent ordinary cohomology theories, and
does not admit arbitrary coproducts. For example, given spaces X,, and maps o: XX,, — X, 41 for each
n > 0, the sequence

(X0,0) = (X1,-1) =» -+ = (X, —n) — ...
might not have a colimit in .%#". Boardman (1965 and later) and Adams (1971 or earlier) construct a
larger category 4 with better formal properties. It satisfies Margolis’ axioms:

Definition 3.6. A stable homotopy category is a category . with objects called spectra and with
morphisms . (X,Y) = [X, Y] which satisfies the following axioms:

Axiom 1: . has arbitrary coproducts [], Xa.

There is a suspension functor ¥: . — .¢ and a collection A of distinguished triangles of the form
X-=>Y 7YX

Axiom 2: (&, %, A) is a triangulated category.

Axiom 3: There is an additive functor A: . x ¥ — ., called the smash product, satisfying

(a) (<, A) is a symmetric monoidal category with unit S;
(b) There is a natural isomorphism 3(X) AW = X(X A W) [[ETC]];

(¢) For X - Y — Z — XX distinguished and any W, the diagram X A\W - Y AW — ZAW —
Y(X AW) is distinguished;

(d) The natural map []_ (X AY,) = X A[], Ya is an isomorphism.

We define 74 (X) = [S, X, which is [©*S, X] for k£ > 0 and [S, 2% X] for k < 0.
Axiom 4: S is a small graded weak generator, i.e., the natural map @, 7(Xa) = m (][, Xa) is an
isomorphism, and f: X — Y is an isomorphism if (and only if) 7. (f): m«(X) — m(Y) is an isomorphism.
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Let .# be the subcategory of finite spectra in ., i.e., the minimal full subcategory containing S and
closed under the formation of fibers and cofibers, in the sense that X isin ZF if X - Y — Z — X(X)
is distinguished and Y and Z are in .%.

Axiom 5: The subcategory % of finite spectra in . is equivalent to the Spanier—Whitehead category
of finite CW spectra [ETC].

Margolis (1983) conjectured that these axioms characterize Boardman’s stable homotopy category
2. Schwede (Annals of Math, 2007) proved that: “if € is a stable model category whose homotopy
category is compactly generated, and the full subcategory of compact objects in the homotopy category
of ¥ is equivalent as a triangulated category to the usual homotopy category of finite spectra, then ¢
is Quillen equivalent as a model category to any of the standard model categories of spectra. That is,
given the primary homotopy theory of finite spectra (cofiber sequences and suspensions), the secondary
homotopy theory of all spectra (such as Toda brackets and function spaces) is determined.” (This is
quoted from Hovey’s Math Review.)

Freyd’s generating hypothesis (1966): If f: X — Y is a map of finite spectra and m.(f) = 0 then
f =0. This is an open problem.

3.7 Representation of homology and cohomology theories

Brown representability (1962): Let F' be a contravariant homotopy functor from the category of pointed
connected CW complexes to pointed sets, such that (product axiom)

F(\/ Xo) 2 [[F(Xa)

for any collection {X, }a, and (Mayer—Vietoris)
F(X)——=F(A) x F(B)—— F(AN B)

is exact at F'(A) x F(B), whenever X = AU B is the union of two subcomplexes. Then there exists
a (pointed connected) CW complex Y and a natural isomorphism [X,Y] = F(X). The converse is
immediate.

This applies in each degree for a generalized (reduced) cohomology theory X — h*(X). Let the
space E,, represent the functor X — h"(X), for each n > 0. Then [X, E,] & h"(X) = h"TH(LX) =
XX, Ent1] 2 [X, QF,11], so there is a (weak) homotopy equivalence E,, ~ QuE,,+1. (Here QoY denotes
the path component of the base point in QY.) Replacing F,, with QFE,; we have (weak) homotopy
equivalences 6: F, ~ QF, 1. Let 0: ¥FE, — E, 11 be the left adjoint map. Then

) L, orn >
B (X) = (X, E,) f 0
| [Z"X, Ey] forn <0

for all CW complexes X.

For example, with h*(X) = KU (X) given by reduced complex topological K-theory we representing
spaces KU, ~ Z x BU for each even n and KU, ~ U for each odd n. The adjoint structure maps are
standard equivalence U ~ Q(Z x BU) for n odd, and the Bott equivalence Z x BU ~ QU for n even.

Recall also the formula -
MOR(X) = colim gy, (MO(n) A X)

for the reduced bordism group of X. Here o: ¥MO(n) - MO(n + 1) was defined as the map of Thom
complexes YMO(n) = Th(y™ @ €') — Th(y"™!) = MO(n + 1) induced by the map " @ e} — "*!
covering the inclusion BO(n) — BO(n + 1). Alternatively, it is the map

EO(n+1)4 Aom) S™ AS' — EO(n+1)4 Aogmyn) S™

associated to the inclusion O(n) 2 O(n) x 1 C O(n +1).

Lima-Whitehead (1959/1962): A (sequential) spectrum E is a sequence of based spaces E, and
structure maps X F,, — F,y1, for n > 0. It is an Q-spectrum if each adjoint structure map &: F,, —
QF, 11 is a weak homotopy equivalence.
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The complex K-theory spectrum KU = {n — KU,} is an Q-spectrum; the bordism spectrum
MO = {n+— MO(n)} is not.
The homology theory X — E,(X) associated to E is the covariant functor defined by

Ey(X) = colim i (Fp A X)
where the colimit is formed for k£ + n > 0 over the composites
Trtn(Bn A X) == T 15(En A X) —— Tt (SE) A X —Z Thpng1 (Bng1 A X).
If E is an -spectrum, the associated cohomology theory X — E*(X) is the contravariant functor defined

by

FHX) = X, Ey] for k > 0
[X=FX, Ey] for k <0.

If F is not an Q-spectrum, the cohomology theory is given for X of the homotopy type of a finite CW
complex by the colimit E*(X) = colim,[~" X, Ey,], where k +n > 0. (Forward reference?)
In the stable homotopy category of spectra, these formulas can be rewritten as natural isomorphisms

Ey(X)=[S*,EAX] and E"X)[X,2FE],

for all integers k.
We define the stable homotopy groups of E for all integers k by

7k (E) = colim 740, (Ey,)
n
where the colimit is formed for £ + n > 0 over the composites

> O«
Thtn(En) — Trint1(BEn) —— Trynt1(Bnt1) -

A map f: E — E’ of spectra is a sequence of basepoint-preserving maps f,,: E, — E/, commuting with
the structure maps, in the sense that f,, 100 =00Xf,: ¥E, — E;L_H, for each n > 0.

YE, —7— En1

anl lfn-%—l

SE;, —— B4y

The map f: E — E’ induces homomorphisms f,: mx(E) — m,(E’), and is called a stable equivalence,
or a my-isomorphism, if f, is an isomorphism for each integer k.

The stable homotopy category can be constructed as the localization Sp[# ~1] of this category Sp of
spectra with respect to the class # of stable equivalences, i.e., the category that results by making each
stable equivalence into an isomorphism. It is not evident that such a category exists, nor how one can
calculate its morphism sets. (How can one see that m,(X) = [S*, X] in Sp[# ~1]?)

3.8 The problem of representing products
The smash product in (integral, singular) cohomology
A HY(X) @ HY(Y) — H*(X AY)
can be represented by a map of representing spaces
Gre: Hy N Hy — Hpypp,

where in this case Hy = K(Z,k) is the Eilenberg-Mac Lane space. If z € H*(X) is represented by
f: X — Hj and y € HY(Y) is represented by g: Y — Hy, the smash product z Ay is represented by the
composite

XAY 2 5 A=, S H,
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Is there a spectrum H A H, and natural maps vy ¢: Hy A Hp — (H A H)gye, so that the maps ¢ ¢ arise
from a spectrum map p: H A H — H with components p,: (H A H),, — H,, as the composites

Hy N Hy =5 (H A H)jye ™55 Hypo?
Recall that the cup product in cohomology is graded commutative. The smash product A: H* (X) A
HYY) — HFYY(X AY) satisfies 7. (z A y) = (=1)*y A 2, where v: X AY — Y A X is the symme-
try homeomorphism. With the convention XX = X A S! we can write the suspension isomorphism
Y: H¥(X) = HFY(ZX) = HFY (X ASY) as B(z) = # A s, where s € H(S1) is the preferred generator.
Then z Ay As=(—1)zAsAy,so
Y(rAy)=zAly=(-1)TzAy.
Hence, at the level of representing spaces the diagram

Hi AHy A ST 2% Hy A Hyiq

¢M/\1J( lm,m

Hypp g NSY—2 s Hypn

will commute up to homotopy, whereas the diagram

1IN
Hy A Hy ASY—15 H ASY A Hy 2% Hy oy A Hy

¢>k,z/\1l Jmﬂ,z

o =
Hy o N st—2 Hyypr1 ———— Hpq140

will only commute up to the sign (—1)°.
The structure maps i ¢: Hy A Hp — (H A H)j1¢ must therefore make

Hk/\Hg/\‘Sd%Hk/\Hm_l

Lk,e/\ll JLkl{»l

(HAH)pyo ANSY—2—= (HANH)pyo11

commute up to homotopy, and

1A
Hk/\Hg/\SlTA/)HkAsl/\HgU;M)Hk_H/\Hg

Lk,e/\ll J/Lm—l,e

(HANH)pyo NS —Z= (HAH)pyop1 — (HANH)pg14e

commute up to the sign (—1)*. More generally, given spectra D, E and F, if a pairing of reduced
cohomology theories D¥(X) ® Ef(Y) — F¥*4(X AY) is to be represented by an external pairing

A: DF(X)® EY(Y) — (D A E)*Y(X AY)

followed the homomorphism p.: (D A E)**4(X AY) — FFY(X AY) induced by a map of spectra
w: DA\ E — F, then the structure maps o: (D A E),, = (D A E),+1 should apparently make

Dk/\Eg/\Sl%Dk/\Eg_H

Lkl/\ll J{Lk,éﬁ»l

(DAE)gte A St 7 (DA E)gtes1
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commute up to homotopy, and

1IN
Dk/\Ee/\Sl%}Dk/\sl/\EgU—/\l>Dk+1/\E¢

L;M/\ll lbkﬁ—l,l

(D A\ E)kJrg AST 2 (D A\ E)k+g+1 — (D AN E)k+1+£

commute up to the sign (—1)¢. Adams achieves something like this by letting

(D A E),, = hocolim (Dy, A Eg A S"*7)
k+4<n

be carefully gluing together from the spaces Dy A Ep with k + £ = n, together with several other spaces.
(I am not sure if the definition can be formalized as a homotopy colimit, but it is close.)

We might reduce to the case k = £ = n > 0 by representing A: D*(X)® E4(Y) — (DAE)*H(X AY)
as the composite

DHX)® EY(Y) 2 D"(X"*X) @ E"(X"'Y) — (DA B (Z" FX AS" YY) = (DA EMYX AY),

for n sufficiently large. We could then try define (D A E)a, = D, AE, and (DA E)2,11 = D, AE, A S,
with structure map
0: (DANE)y, NSYASY — (DA E)apyo

given by the composite

Dy ANE,AS'AST Y DA SYAE, ASY 22 Dyt A By

This pairing is not quite associative, since ((D A E) A F)ap = Dy A Ep A Fay,, while (DA (EAF))4pn =
Do NE, A Fy,. Tt is also not quite left or right unital, since (SAE)a, = S"AE,, and (EAS)s, = E,AS™,
where S = {n — S™} is the sphere spectrum. Commutativity also fails, since the sequence of maps
Yon: (DA E)ap — (E A D)y, given by v: Dy, A E,, — E, A D,, only commutes up to the sign (—1) with
the structure maps, hence does not induce a (strict) spectrum map v: D A E — E A D. The diagram

1IAYAL
Do AE, ANSYASY 25 Dy ASYAE, ASY 2% Dyt A By

'y/\l/\ll J/'y

1IAYAL
Ey ADy ASYASY 25 B ASYA D, ASY 2% Byt A Dy

only becomes (homotopy) commutative upon replacing the left hand vertical map with v A v, where
v: STAST — S1AS! has degree (—1). Early attempts relaxed the notion of a spectrum map to only ask
for compatibility up to homotopy with the structure maps, and restricting attention to even integers n
in the notation above, since 7: S? A S2 — 52 A S? has degree +1, even if the map is not equal to the
identity.

To summarize, it is possible to define a smash product D A E of two sequential spectra, but it does
not make (Sp, A,S) symmetric monoidal. It only achieves this after passage to the homotopy category,
so that (Sp[# ], A, S) is symmetric monoidal.

4 Diagram spaces and diagram spectra

Building on an idea due to Jeff Smith, and realized in the case of symmetric spectra in Hovey—Shipley—
Smith (1999), we follow Mandell-May—Schwede—Shipley (2001) and define an orthogonal spectrum X to
be a sequence of based O(n)-spaces X,,, for each n > 0, equipped with structure maps o: X,AS? — X, 11,
such that the ¢-fold composite

ot X A St —s Xite

is O(k) x O(£)-equivariant, for each k,¢ > 0. To put this definition in a context, we shall interpret it in
terms of an underlying category of orthogonal sequences.
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((Ts it better to say “orthogonal space” than “orthogonal sequence”?))

The category of sequential spectra can be considered as the category of (right) S-modules, for a
monoid S in the category of sequences of based spaces. This is a symmetric monoidal category, but
the monoid S is not commutative, so the monoidal pairing does not induce a pairing of S-modules. By
analogy, a ring R is a monoid in the category of abelian groups, but the tensor product ® of abelian
groups only induces a tensor product ®p of right R-modules if R is commutative:

o®1
M®@RRN~ 'MON-—"3sM®rN
1®0/

Here 0: M ® R — M is the right R-module structure map of M, ¢’ = ocy: RN X N® R — N is
the right R-action on N turned into a left R-action (which works when R is commutative), and 7 is the
coequalizer of 0 ® 1 and 1 ® o’. This explains why there is no easy definition of a smash product pairing
of sequential spectra.

The category of orthogonal spectra can be considered as the category of (right) S-modules in a
category of orthogonal sequences, i.e., sequences of based spaces {n — X, }, where X,, comes equipped
with a continuous, basepoint-preserving O(n)-action, for each n > 0. The latter category has a symmetric
monoidal structure for which the sequence S = {n +— S™} is a commutative monoid. Hence the symmetric
monoidal pairing of orthogonal sequences induces a symmetric monoidal pairing of orthogonal spectra.
This is the smash product pairing of orthogonal spectra.

4.1 Sequences of spaces

Let N = {0,1,2,...} be the set of non-negative integers, viewed as a category with only identity mor-
phisms. The addition +: N x N — N sending (k, ¢) to k+ ¢ and the zero object 0 € N define a symmetric
monoidal structure on N. The coherent isomorphisms a: k+ ({ +m) = (k+4)+m, \: 0+ ¢ = {,
p:l+0=2Land v: k+ ¢ =+ k are all identity morphisms.

By an N-space, or a sequence of spaces, we mean a functor X : N — 7. Writing X,, = X(n), this is
just a sequence {n — X} of based spaces X,, for n > 0. By a map f: X — Y of N-spaces, we mean a
natural transformation of functors, i.e., a sequence of basepoint-preserving maps f,,: X,, — Y. Let N
denote the topological category of N-spaces. Each morphism space 7N(X,Y) is based at the constant
map X — Y.

The category of N-spaces has all small colimits and limits, created levelwise: For each small diagram
a — X, of N-spaces, we have

(colim Xy ), = colim (X,), and (lim X,), = lim (X4 )n
(e « [0

«

for each n > 0.
It is tensored and cotensored over .7, and these structures are again created levelwise: For each based
space T and N-spaces X and Y the N-spaces X AT and F(T,Y) are defined by

(XANT)=X, AT and F(T,Y),=F(T,Y,)
for each n > 0. There are natural homeomorphisms
T(T,TNX, V)2 ITNX AT, Y)= TNX, F(T,Y)).
The smash product A: 7 x J — 7 and the sum +: N x N — N give rise to a pairing
®: INx gN — FN
of N-spaces, mapping X and Y to the N-space X ® Y with

(X®Y), = \/ X, AYy.
k+4=n

Maps X ®Y — Z in N are in one-to-one correspondence with collections of basepoint-preserving maps

X NYy — Ziie (1)
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for all k,¢ > 0. This is an instance of the Day convolution product, created by a left Kan extension
along +: N x N — N.

Let U be the (unit) sequence with Uy = SY and U,, = * for n > 0. Then there are evident isomor-
phisms a: X @ (Y @2) 2 (X @Y)Z, A:UQY 2Y,p: YU =Y andv: X®Y 2Y ® X. In the
last case,

\V XunYe— /) YA X,
k+t=n k+t=n
maps (z,y) € X AYy to (y,2) € Yy A X, which is admissible since £ + k = k 4 £. These isomorphism
are coherent, so (N, ®,U) is a symmetric monoidal category.
The category of N-spaces is also closed. The internal Hom object functor

Hom: (7N)P x 7N — N
takes Y and Z to the N-space Hom(Y, Z) with

Hom(Y,Z)y = [[ Z(Ve.Zn) = TN(Y,sh* Z).
k+l=n

Here sh® Z is the (left) k-shifted N-space given by (sh* Z), = Z.,. The functor Hom(Y, —) is right
adjoint to the functor (—) ® Y-

INX @Y, Z)= 7N(X,Hom(Y, Z)),

with maps X @ Y — Z and X — Hom(Y, Z) corresponding to collections of maps as in (1) above.

4.2 Sequential spectra as right S-modules

Consider the sphere sequence S = {n — S™}. Here we may assume that S" = S1A--- A St withn >0
copies of S, so that there are compatible preferred homeomorphisms S* A S¢ 22 S*+¢ Let yu: S®S — S
be the map of N-spaces given in degree n by the wedge sum

\/ SFAst— s
k+é=n
of these homeomorphisms. Let : U — S be the map of N-space given by the identity ny: S° — S°

in degree 0, and by the inclusion of the base point 7,: * — S™ for each n > 0. Then (S, u,n) is an
associative monoid in (N, ®,U). However, it is not commutative, since the diagram

Vigo— Sk /\SZ—>\/k+é Sk A S

T

does not commute for n > 2. For instance, when k = ¢ = 1, a point (s,t) € S* A S' is mapped by us
to (s,t) € S?, but by paye to (t,s) € S?. This is precisely the source of the difficulties discussed for
pairings of spectra.

What is a right S-module in (7N, ®,U)? It is an N-space X with a map o: X ® S — X of N-spaces,

such that the diagrams

Xos50s- 2L xes

1% J

Xes—2 X

(where we have suppressed the isomorphism «) and

X052 XoU

i

X
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commute. In other words, it is a sequence of spaces {n — X,,} and maps

On \/ Xk/\Se—>Xn
k+l=n

such that the two maps

0no (1@ )y, opo(c®1),: \/ Xe ASEAS™ — X,
k+l+m=n

are equal, and the component X, A S° — X,, of o, is the standard identification. It follows that the
component X A S* — X,, of ,, is the composite

Xk/\SZU—A%X]hLl/\Se_lJ—M>...L)Xk+g/\SO=Xn

of ¢ suspended copies of the components : X,,, AS' — X,,41 of 0,,, for k < m < n. Hence the sequence
of spaces X,, and the sequence of maps o: XX, = X, A S' = X, 41, for n > 0, define a sequential
spectrum.

Conversely, from a sequential spectrum X with structure maps o, we can recover the right S-module
action 0: X ® S — X by the same formula. In degree n the component Xj A S* — X,, where k +¢=n
is the ¢-fold composite

Uz:00~~~02572(0)OE£71(0):Xk/\Se — X,

A map f: X — Y of right S-modules corresponds precisely to a map f: X — Y of sequential spectra.
Hence the category of right S-modules in .ZN is equivalent to the category SpN of sequential spectra.

4.3 Orthogonal sequences

Let O be the topological category with objects non-negative integers {0,1,2,...}, and with morphism
spaces given by O(n,n) = O(n) and O(m,n) = (§ for m # n. Here O(n) denotes the topological group
of orthogonal n x n matrices. The continuous composition in O is given by matrix multiplication:
Ao B = AB for A;B € O(n). The identity morphism of n is given by the identity matrix I = I,.
We may think of the object n in O as a label for the real inner-product space R™, with the standard
Euclidean dot product, in which case the morphisms A € O(n,n) = O(n) are thought of as the isometries
A: R®™ - R™, mapping v € R to Av € R™.

The sum +: O x O — O sending the pair of objects (k,¢) to the object k + ¢, and sending a pair of
morphisms (4, B) € O(k) ® O(¢) to the block sum

A 0

weno (2]

) cOk+1),
is part of a symmetric monoidal structure on O. The zero object is 0. The coherent natural isomorphisms
a: k+(l4+m) = (k+£0)+m, \: 0+£ = £ and p: £4+0 = £ are given by the identity matrices in O(k+£+m),
O(f) and O(¥), respectively. These correspond to the standard identifications R* @ (R @ R™) = (R* @
R @R™ RO@R! =R and R* ® R* = R’.

However, the symmetry isomorphism ~y: k+/¢ = {+k is not the identity. It is given by the permutation
matrix

(0 I
Xk’z<l;€ 0) 60(/64-[),

corresponding to the twist isomorphism ~v: R @ R® = R @ R*. Tt is natural as a transformation from the
functor (k,¢) — k + ¢ to the functor (k,¥¢) — ¢ + k, because of the relation

G H-GN-CIG 1

The inclusion functor N — O is strong monoidal (to be defined when we need it), but is not symmetric
monoidal, since the symmetry isomorphism in N is not compatible under ¢ with the symmetry isomor-
phism in O. (This seems to be incorrectly stated near equation (8.1) in Mandell-May—Schwede—Shipley
(2001).)

20



By an O-space, or an orthogonal sequence of spaces, we mean a continuous functor X: O — 7.
Writing X,, = X (n), this is a sequence {n — X, } of based spaces X,,, equipped with a continuous,
basepoint-preserving left O(n)-action O(n)y A X,, = X,,, for each n > 0. Writing Az for the action of
A€ O(n)on z € X,, we require that A(Bz) = (AB)z and Iz = x.

By a map f: X — Y of orthogonal sequences (of spaces), we mean a natural transformation of
continuous functors, i.e., a sequence of basepoint-preserving O(n)-equivariant maps f,: X,, — Y, for
each n > 0. Hence Af,(x) = f,(Az) for each z € X,.

Let .7° denote the topological category of orthogonal sequences. Each morphism space .7°(X,Y) is
based at the constant map.

The category of orthogonal sequences has all small colimits and limits, created levelwise: For each
small diagram a — X, of orthogonal sequences, we have

(colim Xy )p = colim (X4), and (lim X,), = lim (X4 )n

for each n > 0. The right hand sides are both formed in the category of based O(n)-spaces.

The category .7° is tensored and cotensored over .7, and these structures are again created levelwise:
For each based space T and orthogonal sequences X and Y the orthogonal sequences X AT and F(T,Y)
are defined by

(XAT), =X, AT and F(T,Y),=F(T,Y,)

for each n > 0. The right hand sides are both formed in the category of based O(n)-spaces. For A € O(n),
x€X,andt €T weset A(x At) = Az At. For f: T — Y, weset (Af)(t) = A(f(t)). There are natural
homeomorphisms

T(T,T°X,Y)) = TOX AT, Y) = T°X,F(T,Y)).

We can also define an orthogonal sequence T'A X with (T'A X),, = T A X,,, and there is a natural
isomorphism v: TA X — X AT given by v: T A X,, = X,, AT at each level n.

Remark 4.1. Restriction along N — O defines a forgetful functor U: .7° — ZN from orthogonal
sequences to sequences of spaces. It preserves small colimits and limits, as well as tensors and cotensors
with based spaces. It does not preserve the symmetric monoidal pairing ® and closed structure Hom
that we are about to define.

The smash product A: T x 7 — 7 and the sum +: O X O — O give rise to a pairing
®: T°%x 7° — 7°
of orthogonal sequences, mapping X and Y to the orthogonal sequence X ® Y with

(XeY),= \/ O

k+é=n

+ A\ X NY,.
O(k)x O(£)

Here the balanced product over O(k) x O(¢) is the orbit space of O(n) A X AY; where
B 0
A ( 0 C) ANx ANy

ANBzxzACy

for Ae O(n), BeO(k),CeO),n=k+{, € X} and y € Y;. The O(n)-action on (X ®Y),, is from
the left on the copy of O(n): We set A(BAxzAy)=ABAzAyfor A,BeO(n),z € X andy €Y, In
other words,

is identified with

On)+ O(k)/x\ow) Xk A Yy
is the based O(n)-space obtained by inducing up the based O(k) x O(¢)-space structure on X A Yy to
an O(n)-space structure along the direct sum embedding O(k) x O(f) — O(k + £) = O(n).
Maps X ®Y — Z in 7© are in one-to-one correspondence with collections of O(k) x O(f)-equivariant
basepoint-preserving maps
X NYy — Ziqe (2)
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for all k,¢ > 0. Here X A Yy is the O(k) x O(f)-space given as an external product of the O(k)-space
X} and the O(¢)-space Yy, while the O(k + {)-space Zj4 is treated as an O(k) x O({)-space through
the homomorphism h: O(k) x O(¢) — O(k + £). Alternatively we might say that X; A Y, — Zpiy is
h-equivariant, or O(k) x O(¢) — O(k + ¢)-equivariant.

The tensor product X ® Y is another instance of Day’s convolution product, and can be viewed as
the left Kan extension of the external product Ao (X xY): Ox0 — J xJ — Z along +: O0x0 — O:

Oxoﬂx?xﬁ
{ i
OT)Q

This point of view can be expressed by the formula

X®Y),= colim X,AY,
(X OV = el Xu Ve
where (k, ¢, k + ¢ — n) ranges over the left fiber category +/n of +: 0 x O — O at n in O.
Let U be the (unit) orthogonal sequence with Uy = S° and U,, = * for n > 0. There is only one
choice of O(n)-actions. There is a natural associativity isomorphism a: X @ (Y ® Z2) = (X ®Y)® Z,
given by the O(n)-equivariant homeomorphism

Qo : \/ O(n)+o(k)/\ Xk/\( \/ O(Q)+oe A - Yg/\Zm)

. x0(a) e (©)x0(m)
= 0] A Xe NYeNZ
\/ (’I’L)+ O(k)xO(£)xO(m) k ¢ k
k+0+m=n

= O A O N X ANY ) NZ
\/_ (n)+ 0 Lo ( \/ O+ omhow X e) m
p+m=n k+{4=p

for each n > 0. There are natural left and right unitality isomorphisms A: U®Y 2 Y and p: Y QU 2XY
given by

An: O A SOAY, Y, d p,:0 A Y, A8 2y,
(n)+ 0(0)xO(n) i (n)+ O(n)x0(0)

respectively. Here O(0) is the trivial group. Less obviously, there is a natural symmetry isomorphism
v: X ANY 2Y A X given by the O(n)-equivariant homeomorphism

: 0] A XpAY, = 0] A YiAX
" W\/:n )+ oRom "—>W\/:n )+ o Yo Xe

that maps
AXk,e/\x/\yEO(")JrO( Do XN Ye

k)xO(£)

at the left hand side to
ANyANxz €O A Y NX
yae (n)+ owxow) " 4§

at the right hand side. Recall that x, ¢ € O(n) is the block permutation matrix that corresponds to
v: RF @ R =2 R* @ R*. This gives a well-defined map, because

C 0 B 0
A(O B>Xk,f/\x/\y:AXk,f<0 C)/\x/\yEAXH/\Bx/\Cy

is mapped to

c 0 _
A(O B)/\y/\x:A/\Cy/\Bx.

Here z € X, y € Yy, A€ O(n), Be O(k), C € O() and k + ¢ = n. Equivalently, v, maps

A/\a:/\yGO(n)+O( A , X ANYy

k)xO(£)
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at the left hand side to
A ANyANx e O A\ Y ANX
Xek NYNT (n)+ oxowm) 1 k
at the right hand side, since x,x = X;%-

Remark 4.2. Sending ANz Ay to AAy Az, without the factor x ¢, would not give a well-defined map
of orthogonal sequences.

These isomorphisms are coherent, so (.7°, ®,U) is a symmetric monoidal category.
The category of orthogonal sequences is also closed. The internal Hom object functor

Hom: (7°)? x 7° — 7°
takes a pair of orthogonal sequences Y and Z to the orthogonal sequence Hom(Y, Z) with

Hom(Y, Z)x = [[ 7(Ve, 2,)°" = 7°(v,sh* Z).
k+é=n
Here .7 (Y2, Z,)°® is the space of O(f)-equivariant maps Y; — Z,,, where O(¢) acts on Z,, through the
(right) inclusion O(¢) — O(n) mapping B € O({) to (Iéc g) € O(n), and sh” Z is the (left) k-shifted

O-space given by (sh® Z), = Zj., for each ¢ > 0, with the O(¢)-action just indicated. The group O(k)
acts on each factor .7 (Yz, Z,)°¥) through its action on Z,, given by the (left) inclusion O(k) — O(n)

mapping A to <61 1%)
The functor Hom(Y, —) is right adjoint to the functor (—) ® Y:

TOX®Y,Z) = .7°X,Hom(Y, Z)),

with maps X ® Y — Z and X — Hom(Y, Z) corresponding to collections of O(k) x O(¥)-equivariant
maps as in (2) above. Furthermore, this adjunction lifts to an isomorphism

Hom(X ® Y, Z) = Hom(X, Hom(Y, Z))

of orthogonal sequences. (Give proof?)

Examples: For each n > 0, let Ev,,: .7° — .7 be the (continuous) evaluation functor taking X to
Ev, X = X, forgetting the spaces X, for m # n, and forgetting the O(n)-action on X,. It has a left
adjoint, the free orthogonal sequence functor Gy,: .7 — 79, taking T to G, T with

(GyT)p =0(n)y AT
with O(n) acting by A(BAt) = ABAt, and (G, T),, = * for m # n. There is a natural homeomorphism
T9(G,.T,X) = 7(T,Ev, X).

The free functors interact with the closed symmetric monoidal structure as follows: There are natural

isomorphisms
G T @ G,V = Gk+g(T N V) = (Gk+gT) ANV

and
Hom(G,V, Z) = sh’ F(V, Z) = F(V,sh" Z)

for k,£>0,T,V € 7 and Z € .7°. As a special case, GpS° = U is the unit orthogonal sequence.

4.4 Orthogonal spectra as S-modules

The orthogonal group O(n) acts on the n-sphere S™ by way of its natural action on R", where S™ is
viewed as the one-point compactification of R™. The action is continuous and preserves the base point
at infinity. The sphere orthogonal sequence S is the sequence {n — S™} of n-spheres with these actions,
for all n > 0.
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The standard identification R¥ @ R? = R*¥*¢ extends to a homeomorphism S* A S¢ = S¥+¢ which is
O(k) x O(¢) — O(k + ¢)-equivariant with respect to the given actions. We write x A y for the image
of x € S* and y € S* in S**¢. Let pu: S ® S — S be the map of orthogonal sequences given by these
O(k) x O(¢)-equivariant homeomorphisms

Sk A SZ i} SkJrZ
or equivalently, by the sequence of O(n)-maps

e O(n A SFASE— g7
H k+\e/:n (n)+ O(k)xO(£)

that take ANz Ay to A(zAy), for A€ O(n), x € S¥ and y € S, for n > 0. Let n: U — S be the map of
orthogonal sequences that is the identity on S at level n = 0, and the constant map * — S™ for n > 0.

Proposition 4.3. (S, 1,7) is a commutative monoid in the symmetric monoidal category (7°,®,U) of
orthogonal sequences.

Proof. Tt is evident that u(1Ap) = u(pAl): S®S®S — S, and that u(nAl) =id =pu(lAn): S —S.

To check that S is commutative, we must verify that the diagram

O(n Skagt — ™ O(n A SEAS
kﬁén()+owwom kﬁén()+owvom

S’ﬂ

commutes, for each n > 0. Here ~,, maps

Axge Nz Ay€Om)y A SFAS

O(k)x O (k)
to
AnyAnz €O A SYASE,
YL (n)+ 0(£)xO(k)
and p, maps this to
Alynz) e S™.

Along the left hand side, p, maps Axr¢ Az Ay to Axge(z Ay). This is also equal to A(y A x), since
Xk.e € O(n) acts on S™ as the twist map v: S* A S¢ — S A SF | taking x Ay to y A . O

Definition 4.4. An orthogonal spectrum X is a right S-module in orthogonal sequences. In other words,
X is an orthogonal sequence equipped with a map o: X ® S — X of orthogonal sequences, such that
the diagrams

XSS 2L xes
1®ul lo

Xes—2 X

(where we have suppressed the isomorphism «) and

Xos5<2 XoU
Ul/
X

commute. A map f: X — Y of orthogonal spectra is a map of right S-modules, i.e., a map f: X = Y
of orthogonal sequences such that the diagram

x5 % ves

[

X———Y
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commutes. We write SpO for the topological category of orthogonal spectra.

Equivalently, X is equipped with suitable O(n)-equivariant maps

On: O(n A Xp ASH—s X,
k~>l/:n ( )+ O(k)xO(®) k

for all n > 0. This is the same as saying that X is equipped with suitable O(k) x O({)-equivariant maps
ot X A Sé — Xkt
for all k,¢ > 0. The associativity and unitality conditions amount to saying that in each case ¢ is the

composite

X'k/\Se—>X';€ 1/\SE_1J—M>...—)Xk+g_1/\sli>xk+g

of ¢ suspended copies of structure maps
o: X ANSY — Xpi,

for k <m < k + ¢. (Elaborate on the equivalence of these two points of view?)

Hence we have the alternative definition of an orthogonal spectrum given at the outset of this section:
It is a sequence of based O(n)-spaces X, for n > 0, and a sequence of structure maps o: £X,, = X,AS! —
X1 for n > 0, with the property that the ¢-fold composite

ot X ASE— Xite

is O(k) x O(¢) = O(k + {)-equivariant for k,¢ > 0, where O(f) acts in the standard way on S*.
A map f: X = Y of orthogonal spectra is a sequence of basepoint-preserving O(n)-maps f,: X, —
Y,, such that the diagram

X, NSt fnh Y A St

{ Ja
frt1

Xn+1 — 5/71-{-1

commutes for each n > 0.

4.5 The closed symmetric monoidal category of orthogonal spectra

The category of orthogonal spectra has all small colimits and limits, created at the level of underlying
orthogonal sequences. For each small diagram o — X, of orthogonal spectra, the colimit colim, X, of
underlying orthogonal sequences has the right S-module structure given by a composite

(colim X,) ® S = colim (X, ® S) — M olim X, .

Here — ® S is a left adjoint, hence preserves colimits. The limit lim, X, of underlying orthogonal
sequences has the right S-module structure given by a composite

(lim Xo) @ § — lim (X, @ S) tmg lim X
Equivalently, it is given by the composite
lim X, img lim Hom(S, Xo) «— Hom(S,lim X,,)
Here Hom(S, —) is a right adjoint, hence preserves limits. More explicitly, these are given by composites
o (colim (Xa),) A S = colim ((Xa)n A §") — colim (Xa)n+1

and
o: (lim (X4)n) A ST 5 lim ((Xo)n A S — lim (X0)ng1 -

[e3%
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(Explain v7)

The category of orthogonal spectra is tensored and cotensored over based topological spaces, and
these structures are created at the level of orthogonal sequences. For each based space T and orthogonal
spectra X and Y, the orthogonal sequences X AT and F(T,Y) have right S-module structures given by

composites
oAl

(XAT)®S = (X@S)AT X AT

and
FIT,Y)® S — F(T,Y 2 S) "9 F(T,Y).

More explicitly, these are given by composites
o Xy ATASY LY X ASYAT 2 X AT

and
o: F(T,Y,) A ST 2 F(T,Y, ASY) "5 (T, Y1)

(Explain v?) There are natural homeomorphisms
T (T,Sp°(X,Y)) = Sp?(X AT,Y) = Sp°(X, F(T,Y)).

We write XX = X ASt and QX = F(S!, X) for the sequential (or orthogonal) spectra obtained from the
tensored and cotensored structure, in the case T' = S!. The adjunction unit n: X — F(T,X AT) and
counit e: F(T,X) AT — X specialize to natural maps n: X — QXX and e: ¥QX — X of orthogonal
spectra.

We can also define an orthogonal spectrum 7' A X as the orthogonal sequence T' A X with right
S-module structure given by the composite

(TAX)®S2TAX®S) L3TAX.
More explicitly, (TAX), = TAX,,and o: (TAX),ASY = (TAX)pi1is 1Ac: TAX,ASY — TAX 11
The natural isomorphism v: TAX — X AT of orthogonal sequences is also an isomorphism of orthogonal
spectra.

Remark 4.5. Restriction along N — O defines a forgetful functor U: Spo — SpN from orthogonal
spectra to sequential spectra. It preserves small colimits and limits, as well as tensors and cotensors with
based spaces. It does not preserve the symmetric monoidal pairing A and closed structure F' that we are
about to define.

By analogy with the tensor product M ®pg N and Hom object Hompg(M, N) of R-modules, for a
commutative ring R, we can now define internal smash products and function objects for orthogonal
spectra.

Definition 4.6. The smash product X AY of two orthogonal spectra X and Y is the coequalizer
o®1
X®S®Y XY —XAY

1®0’

in the category of orthogonal sequences, i.e., the colimit of the two parallel arrows. Here ¢/ = g o~ is
the left S-module action on Y given by the composite

7 SY LYesS-L Y.

Hence, (X AY),, is the coequalizer

(0'®1)n
O(n A X, ASEAY,, n A XeAYr—5 (X AY),
k+€J\r/m:n )+ O(k)xO(£)xO(m) (1®f)nk+\g/:n )+ O(k)xO(£) ( )

in the category of based O(n)-spaces, for each n > 0. (Discuss right S-module structure inherited from
X or from Y, and why they are the same.)
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The multiplication u: S ® S — S makes the orthogonal sequence S into a right S-module, i.e., an
orthogonal spectrum.

Proposition 4.7. There are natural isomorphisms a: X N(Y NZ) 2 (X AY)ANZ, \: SAY 27,
P YANSZY andyv: X ANY ZY A X. These make (Spo7 A, S) a symmetric monoidal category.

Proof. In each case the isomorphism is induced from the corresponding isomorphism of orthogonal se-
quences by passage to a coequalizer. For instance, X A S is defined as the coequalizer

o®1
— T
X®S®s X@S——XAS
1®n
which is isomorphic to the coequalizer
o®1
X®S®S W; X®S— X

splitby X 2 X @U X X@Sand X®S=2XeSoU 25" X ©5® S. See Mac Lane (1971/1998),
Section VI.6 regarding split coequalizers. O

Recall the equalizer diagram

Hompg(M, N) —~— Hom(M, N) Hom(M ® R, N)

for R-modules M and N, where the two parallel arrows take f: M — N to the homomorphisms M @ R —
N given by m @ r — f(mr) and m ® r — f(m)r, respectively.

Definition 4.8. The function spectrum F(Y, Z) associated to two orthogonal spectra ¥ and Z is the
equalizer

F(Y,Z) —“—Hom(Y,Z) —_ Hom(Y ® S, Z)

O_V

in the category of orthogonal spectra, i.e., the limit of the two parallel arrows. Here 0* = Hom(o, 1) and

oV is the right adjoint of the composite

Hom(Y,Z)@Y@SﬂZ@SLZ.

Here ¢: Hom(Y,Z) ® Y — Z is an adjunction counit, left adjoint to the identity on Hom(Y, Z). Hence,
F(Y,Z) is the equalizer

oy
FY,2), —— I 7Y, 7%,)°® —_— [ JAS™, 2,)00x0m)
ktt=n o) " k+ltm=n

in the category of based O(k)-spaces, for each k > 0. (Elaborate on o}, o) and the group actions?)
(Discuss right S-module structure inherited from Y or from Z, and why they are the same.)

Proposition 4.9. There is a natural homeomorphism
SPO(X A Y, Z) = $p°(X, F(Y, 2)

and a natural isomorphism
F(XAY,Z)2 F(X,F(Y,Z))

for all orthogonal spectra X, Y and Z. Hence Sp° is a closed category.

Proof. (These are induced from the corresponding homeomorphism and isomorphism of orthogonal se-
quences by passage to an equalizer.) O
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Examples: The composite evaluation functor Evy : Spo — 79 — .7 mapping X to Ev; X = X}, has
a left adjoint, the free functor Fj: I — Sp° given by F,T = G;T ® S. More explicitly,

F.T), =0 A (TAS
(RT), = Oln)s f, (1S
for n = k+¢, with (FT),, = * for n < k. In particular, FyT = X°T = T A S is the suspension spectrum

of T, with
(FoT)p = (°T), =T N S"

for each n > 0, where O(n) acts as usual on S™.
There is a natural homeomorphism

Sp° (P T, X) = (T, Evy, X)

and natural isomorphisms
F,TANFYV 2 F (TAV)E Fo(T)ANV

and
F(F,V,Z)~sh" F(V,Z) = F(V,sh" Z)

for k,¢ >0, T,V € 7 and Z € Sp°. (Proof?)

Note that F,T = T A Fj,S°, and (F},5°),, = O(n)4 Aoy S = Th(y*) is the Thom complex of the or-
thogonal complement = in € to the canonical k-bundle y over the Stiefel manifold V4 (R") = O(n)/O(¥)
of orthonormal k-frames in R™. This equals the space SpO(FnSO, F.S%) of orthogonal spectrum maps
FnSO — FkSO.

5 Homotopy groups of spectra

We turn to §7 of Mandell-May—Schwede—Shipley.

5.1 m,-isomorphisms
Definition 5.1. The homotopy groups of a sequential spectrum X are defined by
k(X)) = colim 7y, (X))
n

for each integer k. The colimit is formed over the composite homomorphisms

_AS? .
7Tk+n(Xn) L> 7Tk+n+l(Xn A Sl) U—> Tk+n+1 (Xn+1) )

mapping the homotopy class of f: S¥*" — X, to the homotopy class of o o (f A S!): Sktntl =~

Sktn A 81— X, A ST = X, 1. When k +n > 2 these are homomorphisms of abelian groups, so each

7 (X) is an abelian group. We write 7, (X) for the graded abelian group with 7;(X) in degree k.
Equivalently, the colimit is formed over the composite homomorphisms

Thtn (Xn) = Thgn (X 41) = Tpgn1(Xns1)

where 6: X,, — QX,, 11 is the right adjoint of the structure map. If X is an {)-spectrum, then &, is an
isomorphism for each k + n > 0. Hence in these cases

(X) = e (Xo)  for k>0,
s =
g mo(X_y) for k < 0.

Each map f: X — Y of sequential spectra induces a commuting diagram

—AS? .
Thtn(Xn) — Thrn1(Xn A Sl) e Thrn+1(Xnt1)

fn*l (fn/\l)*l lf’rr{»l*

—AS O
Tk4+n (Yn) E— 7Tk+n+1(yn N Sl) g 7rk+n+1(Yn+1)
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hence also a homomorphism
mi(f) = colimm g (fa): m4(X) = 74 (Y)

and a homomorphism of graded abelian groups m.(f): m«(X) — m.(Y). We often write f, for m(f)
or m.(f). It is easy to check that m,: SpN — grAb defines a functor from sequential spectra to graded
abelian groups.

Remark 5.2. The homotopy groups of an orthogonal spectrum X are defined as the homotopy groups of
the underlying sequential spectrum UX, where U: Sp° — SpN forgets the actions by orthogonal groups.

Definition 5.3. A homotopy of maps X — Y is amap X AI; — Y, where I = [0, 1]. Homotopic maps
induce the same homomorphism of homotopy groups. A homotopy equivalence is a map f: X — Y that
admits a homotopy inverse, i.e., a map g: ¥ — X such that go f ~1x and fog~1y.
A map f: X = Y is called a level equivalence if f,,: X,, = Y, is a weak equivalence, for each n > 0.
A map f: X — Y is called a m.-isomorphism if the induced homomorphism f, = m.(f): m.(X) —
(Y is an isomorphism.

Lemma 5.4. A homotopy equivalence is a level equivalence. A level equivalence is a my-isomorphism.
A 7-isomorphism between Q-spectra is a level equivalence.

Proof. The first two claims are clear. If f: X — Y is a m,-isomorphism between Q-spectra, then for each
n > 0 and each i > 0 the homomorphism 7;(f,,): m;(X,,) = m;(Yy) is identified with m;_,, (f): mi_n(X) —
mi—n(Y), hence is an isomorphism. O

Remark 5.5. The stable homotopy category can be defined as the localization of the category Sp™
where the subcategory # of m,-isomorphisms have been turned into isomorphisms:

Ho(SpN) = SpN[#—1].

It is equivalent to the localization of the full subcategory category of Q-spectra where the level equiv-
alences have been turned into isomorphisms, since every spectrum is m,-isomorphic to an -spectrum.
Replacing SpN with Spo gives equivalent localized categories:

Ho(SpN) ~ Ho(Sp°).

Example 5.6. Let S¢ be the orthogonal spectrum with S§ = * and S¢ = S™ for n > 0, with the usual
O(n)-action. The inclusion S¢ — S is a m.-isomorphism. (S€ is a positive cofibrant replacement of S.)

Let S/ be the orthogonal spectrum with S} = Q(S™) = colimy, Q*(S* A S™), with the induced
O(n)-action. The inclusion S — S7 is a m,-isomorphism, and S/ is an Q-spectrum. (S/ is a fibrant
replacement of S.)

Proposition 5.7. There is a natural isomorphism
SEA —: (X)) — mn(STAX).

Proof. For k +n > 0 there is a natural map S* A —: Tp1n(Xn) — T1okan(ST A X,) that takes the
homotopy class of f: S¥*™ — X,, to the homotopy class of ST A f: StHhtn =~ Gl A Ghtn _ GL A X |
The diagram

—/\S1 o
7rkr+n(Xn) E—— 7Tk+n+1(Xn N Sl) E—— 7Tk+n+1(Xn+1)

SlA—l SIA—J Sl/\—J/
1

—AS
7Tl+k+n(51 N Xn) EE— 7T1+k+n+1(Sl A Xn A Sl) L} 7T1+]€+n+1(51 A Xn+1)

commutes, and can be repeated indefinitely to the right, so S' A — induces a homomorphism S* A
—: me(X) = m14£(ST A X) of horizontal colimits.

We claim that ker(—AS1) = ker(S'A—) in 74, (X,), and im(—AS?) = im(STA—) in 714 1ns1(STA
X, AShH.
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The first claim implies that S' A —: 74 (X) — m14%(S' A X) is injective: If f: S¥*" — X represents
a class in 7 (X) that maps to zero in m144(S* A X), then S A f maps to zero in m14x1m (ST A X,,,) for
some m > n. The image of f in 7y, (X,,) is then in ker(S* A —). By the claim, this equals ker(— A St),
so the images of f in Tpimi1 (X ASY) and T my1(Xmy1) are zero. Hence the class of f in m,(X) is
also zero.

The second claim implies that S* A —: 7 (X) — m14%(S* A X) is surjective: If g: S1HF+" — ST A X,
represents a given class in 7144 (S A X), then the image of g in 714 g 1nt1(STA X, AST) is in im(— A ST).
By the claim, this equals im(S'A—), so there is a map f: S¥+"*T1 — X, AS? such that S A f is homotopic
to g A S*. The image of f in mgint+1(X,1+1) then maps to the image of g in T4k ynt1(S* A Xyi1), s0
the image of f in 7x(X) maps to the given class in m14(S* A X).

Hence the two claims imply that S' A — is an isomorphism.

To prove the first claim, consider a map f: S¥*" — X,,. There is a commutative diagram

Sl
St A gktn SN o1 x

S
ghtn g g1 5w A gt

with vertical homeomorphisms, showing that fAS! = yo(S'Af)oy~!. Hence, if S*A f is null-homotopic
then f A S! is null-homotopic. By symmetry, the opposite implication also holds.

To prove the second claim, consider a map g: ST+ = GIAGk+n _ GLA X, There is a commutative
diagram

S1A Gk A LS 61 ) x A gl

(13)J J/(lii)
gnS?t

SEA Sk A ST 2 ST A X, A ST
where (13) denotes the transposition of the first and third smash factors, and h = yo goy~1: Sk+n A

St — X, A St A path in O(2) from (1) é
v STASL 5 STAST tor AST: ST A ST — S ASY, where r: ST — S! reverses the orientation. Hence
the two transpositions (13) are homotopic to r A S¥+™ A St and r A X,, A S!, respectively, and g A St is

homotopic to

) to <_01 (1)> induces a homotopy from the transposition

(rAXn ASHo(S*AR)o(rASHTASH T ==t AR =S"Ah.

Thus the image of — A S* in 71444 ni1(STA X, AS?) is contained in the image of S A —. By symmetry,
the opposite inclusion also holds. O

Corollary 5.8. A map f: X =Y is a m.-isomorphism if and only if S' A f: S'AX — SYAY is one.

We write 3X = X AST and QX = F(S, X) for the sequential (or orthogonal) spectra obtained from
the tensored and cotensored structure, in the case T = S'.

Proposition 5.9. The adjunction unit n: X — QXX and counit e: XQX — X are m.-isomorphisms.

Proof. There are commutative diagrams

T (Xn) — s 11 (A8 X))

slAl f

Tttt (ST A Xn) —— T (S A X))

and
7rk+n(QXn) — T1+k+n (Xn)

Sl/\—l Ten*

771+k+n(51 A QXn) ;> 7r1+k+n(ZQXn)
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for all kK +n > 0. These are compatible for varying n, and induce commutative diagrams

e (X) S SN T (QXX)

sm{ k

Trak(STA X) —— me(Q(S A X))

and
Te(QX) ————— 114 (X)
sl/\—l }*
T1r(STAQX) —— 11 (20X)
for all integers k. Since S! A — is an isomorphism, so are 7, and e,. O

Corollary 5.10. A map f: X — Y is a w.-isomorphism if and only if Qf: QX — QY is one.
Theorem 5.11. The functors
»: SpN — spN and Q: spN — spN
preserve Ty-isomorphisms. The induced functors
>: Ho(SpN) — Ho(Sp") and Q: Ho(Sp") — Ho(SpM)
are mutually inverse equivalencs of categories. The same results apply with SpO in place of SpN.

Proof. The first two claims are contained in Corollaries 5.8 and 5.10. Hence ¥ and €2 induce endofunctors
of the stable homotopy category Ho(Sp") = SpN[# ~!] where the ,-isomorphisms have been inverted
(assuming that this localization exists). The unit n: 1 — QY and counit e: ¥Q — 1 induce natural
isomorphisms, by Proposition 5.9, which means that the endofunctors ¥ and € of Ho(SpN) are mutually
inverse equivalences. O

5.2 Long exact sequences

For a map f: X — Y of sequential or orthogonal spectra we define C'f as the pushout
X, 0x
1]
Y s 0Of

where CX = I A X with I = [0,1] based at 1, and F'f as the pullback

Ff—2sXx

| ]
Py 2y
where PY = F(I,Y) with I based at 0. These constructions are compatible under the forgetful functor

U: Sp° — SpN, since they only involve colimits, limits, tensors and cotensors. As in the category of
spaces, we have (iterated) homotopy cofiber and fiber sequences

f i T ool -S'Af @1
X—=Y —=>Cf —=S5SANX — SSAY — ...

and
o ax Hay S rr P x Ly,

(This uses that the collapse map C'f — Y/X =Y Ux * is a homotopy equivalence when f: X - Y isa
Hurewicz cofibration, and that i: Y — C'f is a Hurewicz cofibration, so that Ci — Cf/Y = S1 A X is a
homotopy equivalence, and the dual facts about the inclusion X xy * = f~1(x) — Ff and p: Ff — X.)
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Proposition 5.12. For any map f: X — Y there are natural long exact sequences
oo (V) 25 m(FF) £ (X)L m(Y) 5 mon(FF) >

and
oo ik (CF) — (X)) L5 (V) 25 1 (CF) =5 7oy w(X) = -
The natural maps n: Ff — QCf and e: XFf — Cf are my-isomorphisms.

Proof. For k+n > 0 we have long exact sequences

o Tk (Xn) 5 T (V) 25 T (Ff) 255w (Xn) 225 140 (V)

that are compatible for varying n. Here we have identified mg4, (QY;,) with 711 44,(Y},), etc. Passing to
sequential colimits preserves exactness, so we also get a long exact sequence

o ek (X)) T (V) 5w (FF) 25 mu(X) L5 (V)

for each integer k. Letting k vary these extend indefinitely to the right, as claimed.
Next, we prove exactness of

f -
Wk(X) — Wk(Y) z—) Wk(Cf)
at m,(Y). The composite i o f is null-homotopic, so i, o f, = 0. Let g: S¥*™ — Y, represent a class in
ker(i,). By increasing n we may assume that i, o g: S¥*" — C'f,, is null-homotopic, hence extends over
amap h: CS*" = Cf,.

s

Sk+n 1 Sk-{-n in Osk+n n Sl A5k+n -1 N Sl A Sk+n

gl hJ jl Sl/\gl
3 _(Sl/\fn)

T SIAX, — S SAY,

X, —I sy, — " 0,

Let j: S' A SF+m — ST A X, be the induced maps of quotients. Then (S' A g)o (1) ~ —(S* A f,,) o 7,
so the class of S A gin w4 £(S' AY) is in the image of (S' A f).. (Elaborate on the role of signs?) The
natural isomorphism S A — now tells us that the class of g in 7(Y) is in the image of f., as claimed.

S'A— 1
7 (X) ?771%(5 A X)

f*l J(SlAf)*
StA—

(V) —— mx(STAY)

o~

By iteration, this implies exactness of

~(8"Af)-

e (X) L5 1 (V) 25 mu(CF) =2 me(ST A X) m(STAY) = ...

hence also of

(X)) L5 1Y) 25 1 (CF) =5 moyan(X) =5 10 (Y) > .

for all integers k. (This uses the isomorphism S' A —.) Letting k vary these extend without bound to
the left, as claimed.
The homotopy-commutative diagram

ox Yoy pp—? ox_ 1 Ly
T A N |
ox — oy 200 27 onx 2L oy



induces a vertical map of five-term exact sequences

Ti4k(X) —= T (Y) — e (Ff)

T

Qf i Qm. Qs f.
7Tl+k(X) e 7T1+k(Y) —_— Fk(QCf) —_— Fk(QEX> e Wk(QZY) .
The five-lemma implies that the middle vertical homomorphism 7, is an isomorphism.

It follows that e: XF f — C'f is a m.-isomorphism, since it factors as X F'f 2, YQCf - Cf. Alter-
natively one can start from the homotopy-commutative diagram relating e: XF f — Cf toe: ¥QX — X
and €: XQY —» Y. O

For any small diagram « +— X, of sequential spectra, there are canonical homomorphisms

colim 7, (Xy) — mi(colim X,,)
« @

and
e (lim X)) — lim . (X)) -

Lemma 5.13. For any finite collection (Xa)a of spectra the canonical homomorphisms
@TF*(XQ) = m(\/Xa)

and

7'f'*(l_[ Xa) = HW*(Xa)

e

are isomorphisms. Hence \/, Xo — [[, Xa is a m.-isomorphism.

Proof. By induction, it suffices to prove this in the case of two spectra X and Y.
The mapping cone C'f of the inclusion f: X — X VY is homotopy equivalent to Y, so there is a long
exact sequence

S (V) = (X)) LS m(X VYY) S (V) T
The inclusion g: ¥ — X VY defines a right inverse to¢: XVY — Cf ~ Y, so i, is split surjective. Hence
the long exact sequence breaks up into short exact sequences, and fi + g.: (X)) @1 (Y) = (X VY)
is an isomorphism in each degree k.
The homotopy fiber F'f of the projection f: X xY — Y is homotopy equivalent to X, so there is a
long exact sequence

o (V) 2 (X)) 25 (X < V) LS (YY) =

The projection g: X xY — X defines a left inverse to p: X ~ F'f — X XY, so p, is split injective. Hence
he long exact sequence breaks up into short exact sequences, and (fs, g«): (X X Y) = 7 (X) x 71 (Y)
is an isomorphism in each degree k.

The canonical homomorphism 7, (X) & 7, (V) = 7. (X) X m.(Y") is an isomorphism, hence X VY —
X XY is a m,-isomorphism. O

Lemma 5.14. For any collection (Xo)a of spectra, finite or infinite, the canonical homomorphism
D (Xa) = (V) Xo)
« «@

is an tsomorphism.



Proof. At each level n the wedge sum \/_(X,), is the colimit over the finite subsets F© C {a} of the
subspaces \/ ¢ p(Xa)n. This colimit is strongly filtered (see Strickland, Lemma 3.6), so that each map
K — \/,(Xa)n from a compact space K factors through \/ . (Xa), for some finite F. Applying this
with K = S**7 (for surjectivity) and with K = S¥*" A I, (for injectivity) it follows that

co}:imﬁn%( \/ (Xa)n) — ot \/ (Xa)n)
a€F a€F

is an isomorphism. Passing to colimits over n, and noting that independent colimits commute, we get
the isomorphism
co}%mﬂk( \/ Xo) — g \/ Xa)-
acF acF
When combined with the previous lemma, this yields the conclusion. O

Corollary 5.15. A finite product of w,.-isomorphisms is a w.-isomorphism. An arbitrary wedge sum of
Ty-isomorphisms is a m.-isomorphism.
5.3 Hurewicz cofibrations

A map f: X — Y of (orthogonal or sequential) spectra is a Hurewicz cofibration (= h-cofibration in
[MMSS]) if it has the homotopy extension property (HEP) with respect to every spectrum Z: Given
any map ¢g: Y — Z and any homotopy h: X A Iy — Z with go f = h o1ig, there exists a homotopy
k:YANIL - Z withko(fAl)=hand koig=g.

XX AL

RN

Y "V AL

The universal case of this property is given by the mapping cylinder M f = Z =Y Ux (X AI,), in which
case k provides a retraction to the canonical map ¥ Ux (X AI;) — Y A I;. Hence f is a Hurewicz
cofibration if and only if Y Ux (X ATy) — Y A I admits a left inverse.

A retraction in the category of orthogonal spectra gives a retraction in the category of sequential
spectra, so for each Hurewicz cofibration of orthogonal spectra the underlying map of sequential spectra
is (also) a Hurewicz cofibration.

A retraction of sequential spectra gives a retraction at each level, so for each Hurewicz cofibration
f: X =Y of spectra the map f,,: X,, — Y, is a Hurewicz cofibration of based spaces, for each n > 0.
In particular, each f,, is a closed embedding (= closed inclusion in [MMSS]), meaning that f,, maps X,,
homeomorphically to its image, which is a closed subset of Y,,. (Reference?)

Proposition 5.16 (Cobase change). Consider a pushout square

x4 .7

/| |
Yy L syuyz
of spectra, where f: X —Y is a Hurewicz cofibration. If f (resp. g) is a m.-isomorphism then f (resp. g)

1S @ Ty-isomorphism.

Proof. Tt is formal that the pushout f of f along ¢ is also a Hurewicz cofibration. Hence we have a
commutative square

Cf———Cf

El Jg

Y/X —— (Y Ux 2)/2
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with vertical homotopy equivalences and one horizontal homeomorphism. It follows that Cf — Cf is a
homotopy equivalence. We get a map of long exact sequences

fs

*>7Tk(X) Wk(Y) Wk(Cf)4>

l 7 l k

...*HT;C(Z)LHT;S(YUXZ)*Mrk(Cf)*)...

On one hand, if f. is an isomorphism then ,(Cf) = 0, so 7,(Cf) = 0 and f, is an isomorphism. On
the other hand, if g, is an isomorphism then by the five-lemma g, is also an isomorphism. O

Proposition 5.17 (Gluing lemma). Consider a commutative diagram

vl x_— 7

L,

vl x gz

of spectra, where f and f' are Hurewicz cofibrations. If X — X', Y — Y’ and Z — Z' are m,-
1somorphisms, then so is the induced map Y Ux Z — Y ' Ux' Z'.

Proof. We have maps of long exact sequences

fs

. *>7Tk(X) Wk(Y) Wk(Y/X)%

bt
oo — (X)) —— (V) —— (Y /X) —— ..

and

I+

Wk(Z) Wk(YUX Z>—>7Tk(YUX Z/Z)‘)

L, ] J

Tk Z’) i Wk(Y/UX/ Z’)‘)T{'k(Y/UX/ Z//Z/)4>... .

By assumption m, (X ) — 7. (X’) and 7, (Y) — 7.(Y”) are isomorphisms, so by the five-lemma 7, (Y/X) —
m(Y'/X') is an isomorphism. Hence 7.(Y Ux Z/Z) — m.(Y' Ux: Z'/Z") is an isomorphism. By as-
sumption 7,(Z) — m.(Z’) is an isomorphism, so by the five-lemma 7,.(Y Ux Z) = m.(Y' Uxs Z’) is an
isomorphism. O

Proposition 5.18. IfY is the colimit of a sequence
Xo—=>X1 ==Xy = Xop1— ...

of Hurewicz cofibrations, then
colim . (Xq) — 7. (Y)

is an isomorphism.
Proof. At each level n, the space Y,, is the colimit of the sequence
(Xo)n = X)n == (Xa)n = Xag1)n — -

of closed embeddings. Such a colimit is strongly filtered (e.g. by Strickland, Lemma 3.6), so each map
K —Y,, from a compact space K factors through (X, ), for some finite a. Applying this with K = Sk+n
and K = S**t" A I, shows that

colim 747 (Xa)n = Thtn(Yn)

is an isomorphism. Passing to colimits over n gives the stated conclusion. O
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Corollary 5.19. If each map X, — Xqoy1 5 a me-isomorphism, then so is the canonical map Xy —
colim, X,.

The following result shows that the tensor A A X = X A A is homotopically meaningful when A
is a CW complex, and that the cotensor F(B,X) is homotopically meaningful when B is a finite CW
complex.

Theorem 5.20. Let f: X — Y be a w.-isomorphism of spectra. If A is a based CW complex, then
ANf: ANX — ANY is a m.-isomorphism. If B is a finite based CW complex then F (B, f): F(B,X) —
F(B,Y) is a m.-isomorphism.

Proof. We have seen that ST A f: SLA X — SUAY and F(SY, f): F(S, X) — F(SLY) are .-
isomorphisms. By induction it follows that S™ A f and F(S™, f) are m.-isomorphisms for all m > 0.

Hence
VESman=N\s™nf

[e3%

is a m.-isomorphism for arbitrary indexing sets {a}, and
FO\/ s =]IFE™ 1

is a m,-isomorphism for finite indexing sets {a}.
Let A be an (m + 1)-dimensional (based) CW complex, with m-skeleton A’ and attaching map
¢: V,S™ — A, so that C¢p = A. Consider the commutative diagram

V, S AX 5 A x X An X

1/\fl A’/\j’J{ A/\fJ

VoS AY P Ay Y ANy

of horizontal homotopy cofiber sequences. By induction on m we may assume that A’Af: A/AX — A'AY
is a m,-isomorphism. We have just shown that 1A f: \/ S™AX — \/_,S™AY is a m,-isomorphism. By
the five-lemma applied to the associated map of long exact sequences of homotopy groups, we deduce
that AN f: ANX — AAY is a m,-isomorphism.

Let B be a finite (m + 1)-dimensional (based) CW complex, with finite m-skeleton B" and attaching
map ¢: \/,S™ — B’, so that C¢ = B. Consider the commutative diagram

FB,x) "N r x) TN By smX)

F(B,f)l F(B’,f)l F(l,f)l
F

FB,Y) 2 rp vy T poy smy)

of horizontal homotopy fiber sequences. By induction on m we may assume that F(B’, f): F(B', X) —
F(B')Y) is a m,-isomorphism. We have shown that F(1, f): F(\/,S™, X) = F(\/,S5™Y) is a m,-
isomorphism. By the five-lemma applied to the associated map of long exact sequences of homotopy
groups, we deduce that F(B, f): F(B,X) — F(B,Y) is a m,-isomorphism.

Finally, let A be an arbitrary based CW complex, with m-skeleton A(™). We have proved that
AU™) A f is a m,-isomorphism for each m. Since

e A AX 5 ATD A X

is a sequence of Hurewicz cofibrations with colimit A A X, and likewise with Y in place of X, we deduce
that (A A f). maps 7.(AA X) 2 colim,, m, (A" A X) isomorphically to 7,(AAY) = colim,, m. (A™ A
Y). O

(Discuss F(B, f) for level equivalences f: X — Y and (infinite) based CW complexes B.)
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Remark 5.21. Let E be a spectrum, and f: X — Y a map of spaces, with mapping cone Cf = YU;CX.
Let fy = EAf: EAX — EAY and f# = F(f,E): F(Y,E) — F(X, E) be the induced maps of spectra.
There are natural isomorphisms

C(f4g) 2EANCf and  F(f*)=F(Cf,E)

and associated long exact sequences

S (EAX) B m(BEAY) 2 i EACS) T m i (EAX) —
and .
ek (X, E) 5 mF(Cf, E) 25 mF(Y, E) 25 myF(X,E) —

When X is a CW complex we let E(X) = 7 (E A X), so that the first sequence becomes the long exact
sequence

. d
S By(X) I By(Y) — Bu(Cf) L B (X) > .
in reduced E-homology (for f cellular). When X is a finite CW complex, or E' is an {2-spectrum, we let
EY(X) =m_,F(X,E), so that the second sequence becomes the long exact sequence

o BCYX) - BY(CF) — BYY) LS BYX) -

in reduced E-cohomology (for f cellular). When f is the inclusion of X as a subcomplex of Y we can
replace Cf by Y/X | in view of the homotopy equivalence C'f — Y/X that we have in this case. By
the theorem above, any m,-isomorphism D — E induces natural isomorphisms D, (X) = E,(X) for CW
complexes X, and D*(X) = E*(X) for finite CW complexes X, so in this restricted sense E-homology
and E-cohomology only depend on the 7,-isomorphism class of E.

6 Products

6.1 Pairings of spectra
Let X, Y and Z be orthogonal spectra. A pairing of X and Y with values in Z is a map
wXANY —Z

of orthogonal spectra, i.e., a map of right S-modules X A Y — Z in orthogonal sequences. Recall that
X AY is the coequalizer of c® 1l and 1® 0’ =1®0y: X ®S®Y — X ®Y. The right S-actions on
X and Y induce right S-actions (¢ ® 1)(1 ® v) and 1 ® o, respectively, on X ® Y, and these induce the
same right S-action on X AY.

o®1
_— T
X®S®Y XY —XANY

1®0’ l
o
@

Z
By the universal property of the coequalizer, p corresponds to a unique map
p=pur: XQY — 7

of orthogonal sequences, whose composites with ¢ ® 1 and 1 ® ¢’ are equal and which takes either one
of the right S-actions on X ® Y to the right S-action on Z.

XRSeY XY ®Ss
J \ / Lﬁ@l
XY Z®S
¢ o
Z
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Here ¢/ = 0v: S®Y — Y is the map of orthogonal sequences given in degree n by the composite
O(n)-map
SEAY, — Y,

Ol =04 0Yn: \/ O(n)

+
. O(k)xO(£)

taking Axre AsAy via ANy Asto Alo,(y As)), for A € O(n), s € S*¥ and y € Yy. In particular, it

takes I, A s Ay to xer(on(y As)), where xop = X;Zé- In other words, o], corresponds to the collection
of O(k) x O(¢)-maps, for k + £ = n, given by the composites

SEAY, 5 Vi ASE T Vi X5 Vi
Hence ¢: X ® Y — Z corresponds to a collection of O(k) x O(f)-equivariant maps
Pre: X NYe —> Ziye,
for k,¢ > 0, such that the diagrams

1A 1Axe,
Xp ASTAYe —25 Xp AYe A ST 2% X0 A Yirt — X A Yie

U/\ll ld’k,u—e

Pry1,e
X1 AN Y, Zk+14¢
and
X AYe ASY 2% XA Y
¢k,€/\1J( J{¢k,£+1
Zia NSY —T— Zpiia
commute.

Proposition 6.1. Pairings u: XA\Y — Z are in bijective correspondence with collections of O(k)x O({)-
equivariant maps
Ok X NYy — Zpyp

that make the bilinearity diagram

1
Xp ASUAY, <20 X, AV A S

cr/\ll m,m{ N

X1 NY, Zyre NS X ANYep1
T ®x1,e
Zypg14t ———— Zpyiq1
commute, for each k,¢ > 0.

Proof. Using the equivariance relation (I @ x¢,1)¢k,e+1 = Pk.1+¢(1 A xe,1) the two diagrams preceding
the proposition can be rewritten and combined into this one diagram, as asserted. O

Remark 6.2. The identity map X AY — X AY corresponds to the canonical map 7: X ®Y — X AY.
Its components
et Xe AYe C(X @Y )kye — (X AY ks
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are O(k) x O({)-equivariant and make the bilinearity diagram

1
X ASTAY 20 X, AYy A S!

UAIJ Lk,é/\ll N}

X1 ANYy (X/\Y)k+e/\sl X ANYo
Lk+1,£J( UJ( /
Tk 041
In®x1,e
(X AY isree —— (X AY )iyt

commute, for each k,¢ > 0. This reflects the identification made in the passage from X ® Y to X A Y.

Lemma 6.3. If the pairing u: X NY — Z corresponds to the collection of maps ¢ ¢: Xt ANYe = Zpte,
then the “opposite” pairing uy: Y AN X — X corresponds to the collection of maps

Xkt © PreoY: Yo NXy — Zypyy .

Proof. The diagram

Y AN Xy XL NY,

Ll,kJ( lbk,f

Ye+k

Xe,
(Y A X)g+k E—— (X A Y)g+k L> (X AN Y)]H_g

He+k K+t
(HY) e+

X2,k
Zé-i—k —— Zk-i—é

commutes. O

6.2 Pairings of homotopy groups
We will define a natural pairing
Ti(X) % w3 (Y) — migg (X AY)

for orthogonal spectra X and Y, mapping the class in m;(X) of [f] € m4x (X)) and the class in 7;(Y") of
lg] € mj+0(Yy) to the class of an element [f] - [g] € Mt jrr+e((X AY)gte). It will be bilinear, and hence
induce a linear pairing

7T,L(X) & 7Tj(Y) —) ’/TiJrj(X A Y)

for all 7 and j. Any pairing p: X AY — Z will thus induce a pairing
s WZ(X) ® Wj(Y) — 7Ti+j(Z) .

Definition 6.4. Let (¢,A,S) and (2, ®,U) be monoidal categories, with coherent isomorphisms «, A
and p. A lax monoidal functor F' from (€, A, S) to (2,®, Z) is a functor F': € — 2, a natural morphism

F(X)® F(Y) — F(X AY)

for X, Y € ¥ and a morphism
U— F(5)

such that the diagrams

FX)®(FY)®F(Z2) 2= (F(X)® F(Y))® F(Z)

J |

F(X)® F(Y A Z) F(XAY)® F(Z)
FIXAY AZ)— (X AY)AZ)
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and
U F(Y)—2— F(Y) FY)®U —2— F(Y)

e T

F(S)® F(Y) —— F(SAY)  F(Y)® F(S)— F(Y A S)

commute.

A strong monoidal functor F' is a monoidal functor F', as above, such that each morphism F'(X) ®
F{Y)—= F(XAY)and U — F(S) is an isomorphism.

A strict monoidal functor F' is a monoidal functor F' such that each morphism F(X) ® F(Y) —
F(XAY) and U — F(S) is an identity.
Remark 6.5. A lax monoidal functor maps monoids to monoids. An object X in € with multiplication

u: X AN X — X and unit 7: S — X maps to a monoid F(X) in & with multiplication

)

F(X)® F(X) — F(X AX) 2% p(x)

and unit

U—s F(5) ™ pix).

A map f: X =Y of monoids in (¢, A, S) induces a map F(f): F(X) — F(Y) of monoids in (Z,®,U).
Definition 6.6. Let (%,A,S) and (2,®,U) be symmetric monoidal categories, with coherent isomor-

phisms a, A, p and . A lax symmetric monoidal functor F' from % to Z is a lax monoidal functor such
that the diagram

F(X)® F(Y)—5 F(Y)® F(X)

N

FIXANY)——FY ANX)
commutes.
Remark 6.7. A lax monoidal functor maps monoids to monoids. An object X in € with multiplication
w: X AN X — X and unit 7: S — X maps to a monoid F(X) in 2 with multiplication
F(X)® F(X) — F(X AX) 2 p(x)
and unit
U — F(S) ™™ p(x).
A lax symmetric monoidal functor also maps commutative monoids to commutative monoids, since the

diagram
~

F(X)® F(X) F(X)® F(X)
l F(v) l
F(X AX) FXAX)
F(X)

commutes. A map f: X — Y of commutative monoids in (¢, A, S, 7) induces amap F(f): F(X) = F(Y)
of commutative monoids in (2, ®,U, 7).

As usual in algebraic topology, we give the category grAb of graded abelian groups the symmetric
monoidal structure where
(A.®@B.)n= @ Ai®B;
i+j=n
and
v: A, ® B, > B, ® A,

maps a ® b to (—1)Yb® a, for a € A; and b € B;.
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Theorem 6.8. There is a natural pairing
(X))@ (Y) — m (X AY)

and a homomorphism
Z — 7 (S)

that make make m, a laxz symmetric monoidal functor from (Spo, A, S) to (grAb, ®,Z).

Given maps f: S*t* — X and g: ST — Y}, we can form the composite
fxg= Lk)g(f/\g): Sitk A gItHe MX;.C/\Y} ﬂ> (XAY)gre.

The homotopy class [f * g] € Titr1j+e((X AY)pye) only depends on the homotopy classes [f] and [g],
so we can let [f * g] = [f] * [g]. We must address how to make the pairings *: 11 (Xx) X 7j10(Ye) —
Titk+j+0((X AY)g4e) induce a pairing -: m;(X) x 7;(Y) = w4, (X AY), where m;(X) = colimy, m;44(Xx)
and 7;(Y") = colimy m;4¢(Yz). The class in m;(X) of [f] € m1x(X}) is the same as the class of its image
[o(f AD)] € Tigpy1(Xpt1). Let use write

Fr=o(fA1): SR AST I XA ST T X
for this composite. By bilinearity, the diagrams
Stk A GLp SitE 20 gitk A G A G
fALINg fAgAl

Xk/\Sl/\Yg*Xk/\Yg/\Sl

oAl Lk o N1
Xi1 N Yy (XAY)kye NSt
Lk+1,¢ o

-

(XAY ) k146 7 (X AY )rgea
kDX1,0

and
Sitk A §itt A G1

fAgnl
X AY, A ST
Lk,z/\l
(XAY)ge A ST X A Yo

g
Lk, 041

(X AY)ktes

commute, hence so do the diagrams

Sitk A 51 A Gitt (AT gitk A gitt A g1

f’*yl l(f*g)/

(XAY ) k146 7 (X AY )rqoa
EDX1,0
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and
Si+k A5j+€ /\Sl

(f*g) < >f*g
(XAY)ktes1 -

In formulas,
(Le ® x1,)(f *g)AAY) = (f*g) =f*g

as maps S“HF A SIHEA ST (X NY)kto41 Here composition with Iy, @ x1¢ and 1 Ay are compatible
with multiplication by (—1)¢ and (—1)77*, respectively, on m;4;(X AY).

Proposition 6.9. For each A € O(n), inducing a map A: X,, — X,,, the diagram

7Tk+n(Xn) e Wk(X)

A*J( ldet(fl)

7Tk+n(Xn) *)’Nk(X)

commutes, where the horizontal arrows are the canonical morphisms.

Proof. The matrices A+ (1) and I, + (det(A)) lie in the same path component of O(n+ 1), hence induce
homotopic maps X, +1 — Xp41. It therefore suffices to note that the diagram

7Tk+n+1(Xn A Sl) —_— Wk(X)

(Mdct(A)){ J{det(A)

7T]€+,,L+1(Xn AN 51) —_— ’/Tk(X)

commutes. O

In other words, the class of [fxg] and [f*g'] in m;1;(X AY) is equal to (—1)7 times the class of [f"*g].
To compensate for the sign change by (—1)7 when f: Si*+F — X, is replaced by f: SR+l s Xy,
i.e., when k increases by one, we can multiply [f * g] by (—1)7*.

Definition 6.10. For f: S"* — X, and g: S — Y, with [f] € mi(Xk) and [g] € m40(Y2)
representing classes in 7;(X) and 7;(Y"), respectively, let

[£1-[g) = (=1)7*[f * g]
in m; (X AY) be (—1)7% times the class of f* g = txo(f Ag): STEASTH 5 X3 AYy = (X AY )jt
By the discussion above this is well-defined, since [f’] - [g] = [f] - [9] = [f] - [¢']-

Remark 6.11. The sign (—1)7* can be viewed as arising from the identification of [f*g] € 74kt j1+0((XA
Y )kte) with a class in 74 j4x+0((X AY ) k1), which stabilizes to mi4;(X AY'). Note the interchange of j
and k from i+ k+j+£€toi+j+k+ ¢ When ¢,j > 0 this interchange can be realized by the symmetry
v: Sk A ST — ST A Sk so that [f] - [g] is the class of [f - g], where

frg=ue(fAGANYAL
is defined to be the composite
SiASTASEASEIA G SR A ST A SN X AT S (XA e

However, when i < 0 or j < 0 this does not make sense at the space level, since S? or S’ does not exist.
The use of the algebraic sign (—1)’* works also for negative j. Of course, if 7;(X) = 0 for i < 0 and
7j(Y) = 0 for j < 0, in which case we say that X and Y are connective, then the space level definition
[f] - lg] = [f - g] will be satisfactory.
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The unit homomorphism Z — .. (S) takes d € Z to the class in my(5) of the degree d map S* — S*
in 7 (S1).

(Check bilinearity of x or -.)

(Check associativity and unitality diagrams.)

It remains to show that =, is lax symmetric monoidal. Recall that the isomorphism v: 7, (X) ®
7.(Y) = 7. (Y) @ m,(X) involves the usual sign (—1)¥ that is introduced when two classes of degree i
and j are interchanged.

Proposition 6.12. The diagram

7o (X) T (V) —— 7, (Y) T T (X)
(X ANY) —— (Y AX)

commutes. In symbols, -
1(a-b) = (~1)9b-a
fora € m(X) and b € m;(Y).

Proof. The twist isomorphism v: X AY — Y A X isinduced by v: X®Y — Y ® X, so that the diagram

Xk NYy—— Ok +0)+ /\ XkAYg—>O(£+k /\ Yg/\XM—YgAXk

X/\Y]H_g Y/\X€+I~c

commutes. Here the upper central arrow v maps AAz Ay to Axer Ay Ax. Given maps f: Stk 5 X,
and g: S7t¢ — Y}, the composite

Stk A Gite JX}C/\}/( (X/\Y)]H_g AN (Y/\X)g+k

is equal to the composite

Sith g Gitl Ty gitt A gitk SNy xR Y A X e X (YA X e

so that
Y(f*9) = Xer(g* f)v.

Here the right hand map 7 has degree (—1)0T#)U+0 " and y,; induced multiplication by (—1)*¢ after
stabilization. Recall that [f] - [g] = (=1)7%[f * g], so that [g] - [f] = (—1)¥[g * f]. Hence

Yl [91) = (1 (f * g)] = (=17 (=) (=) PO (1) ¥[g] - [f] = (~1)7[g] - [/]
in 7Ti+j(Y/\X). O

There is also good compatibility with the closed structure. For graded abelian groups B, and C, we
let Hom(B,, C,) be the graded abelian group with

Hom(B., C); H Hom(B,,C,),

i+j=n

so that there is an adjunction isomorphism
grAb(A, ® B, C,) = grAb(A,, Hom(B,, C.))
that can be enriched to a natural isomorphism

Hom(A, ® B, C,) = Hom(A,, Hom(B,, C,)).
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Theorem 6.13. There is a natural homomorphism
1 F (Y, Z) — Hom(m,(Y), 7. (2))

that makes m, a closed functor: If uy: X NY — Z in Sp© is left adjoint to fi: X — F(Y,Z), then the
composite
T (X)) @m (V) = m (X AY) 25 7,(2)

in grAb is left adjoint to the composite
T (X) L5 1 F(Y, Z) — Hom(m, (Y), 7.(Z)) .

Proof. The homomorphism is determined by the case i = 1, with X = F (Y, Z), which is right adjoint
to the counit u =¢e: F(Y,Z)\NY — Z, so

1 F (Y, Z) — Hom(m,(Y), 7. (2))
is right adjoint to the composite
T F(Y,2)@m.(Y) = 7. (F(Y,X)NY) =5 7.(2).

To make this more explicit, consider maps f: S*** — F(Y, Z); and g: S7+¢ — Y,, with homotopy
classes [f] € Ttk F (Y, Z)y, and [g] € m;40(Ye) representing elements in m; F(Y, Z) and 7;(Y"). The class of
[f] then maps to the homomorphism 7, (Y) — m.(Z) of degree i that maps 7;(Y) to m;4,(Z) by sending
the class of [g] to the class of

ex([f] - [g) = (=1)"[e(f * 9)) = (=1)"[etr,e(f A g)].-

Here €ty ¢ is given by

F(Y,Z)i NYe "™ T (Yo, Ziet) OO NYe = Zie,
where 1y is the /-th component of the canonical map ¢ in the equalizer diagram that characterizes
F(Y,Z)y. Hence e o(f A g) is the composite map

Sith A S I Py 2) NYy S T (Ye, Zerd) OO A Yy~ Ziye .

taking s € S"T* and t € ST to (1,f(s))(g(t)), where 1o f(s): Yy — Zi, o and g(t) € ;. O

6.3 Ring, module and algebra spectra

An orthogonal ring spectrum is an orthogonal spectrum R with a multiplication g: RA R — R and unit
7: S — R such that the associativity and unitality diagrams commute. In other words, (R, u,n) is a
monoid in (Spo, A,S). A map f: @ — R of orthogonal ring spectra is a map of monoids, i.e., a map
f: @ — R of orthogonal spectra that commute with the multiplication and unit maps.

The homotopy groups m.(R) form a graded ring, with multiplication p.: m«(R) ® m.(R) — 7. (R)
and unit 7,: Z — m(R). A map f: Q — R of orthogonal ring spectra induces a homomorphism
fu: (@) = 7 (R) of graded rings.

A commutative orthogonal ring spectrum is an orthogonal ring spectrum R such that the commuta-
tivity diagram

RAR——"  “RAR

N4

R

commutes. The homotopy groups m.(R) of a commutative orthogonal ring spectrum form a graded
commutative ring, so that ab = (—1)Yba for a € m;(R) and b € 7;(R). In particular, 2a® = 0 for a in
odd degrees.

The sphere spectrum S is the initial orthogonal ring spectrum, and also the initial commutative
orthogonal ring spectrum.
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Remark 6.14. The term “ring spectrum” usually refers to a monoid in the stable homotopy category,
i.e., a spectrum R with morphisms y: RA R — R and n: S — R such that the associativity and
unitality diagrams commute, in the stable homotopy category. An orthogonal ring spectrum determines
a ring spectrum in this sense, but the converse does not generally hold: Having commuting diagrams
in the stable homotopy category is not generally enough to find representing maps g and 7 that make
the associativity and unitality diagrams commute in the category of orthogonal spectra. Similarly the
term “commutative ring spectrum” traditionally refers to a commutative monoid in the stable homotopy
category, and these may or may not come from commutative orthogonal ring spectra.

Let R be an orthogonal ring spectrum. A left R-module is an orthogonal spectrum M with a pairing
A: RAM — M such that the diagrams

RARAM 22X RAM

and

commute. A right R-module is an orthogonal spectrum M with a pairing p: M A R — M such that the
diagrams

MARARL S M AR

and

X
—
IR

M

commute. If R is commutative, then left R-modules correspond to right R-modules via p = Ay and vice
versa.
The homotopy groups m.(M) of a left R-module M form a left 7, (R)-module, with left action

T (R) @ mo (M) = m (R A M) 25 7 (M),

and similarly for right R-modules and right 7. (R)-modules.
Given a right R-module M and a left R-module N, the smash product M Agr N is the orthogonal
spectrum defined as the coequalizer

pAL
MARAN 1M>M/\NL>M/\RN.

The induced diagram

P« ®1

7o (M) @ . (R) @ 7. (N) M) ® 7, (N) —— 7.(M Ag N)

—im(
1R

commutes, so there is an induced homomorphism

(M) ®@r,(r) T+(N) — 7 (M Ag N).
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If R is commutative, then M Agr N is naturally a left (and right) R-module, and the homomorphism
above is one of left (and right) . (R)-modules.
In particular, for R = S the canonical map M AN — M Ag N is an isomorphism, and the natural
pairing
(M) @ m(N) — m(M A N)

of graded abelian groups descends to a natural pairing
72 (M) ©r 5) T(N) = (M A N)

of m,(S)-modules.
Given two left R-modules M and N, the R-linear function spectrum Fr(M, N) is the orthogonal
spectrum defined as the equalizer

\-
Fr(M,N) —— F(M,N) —__ F(RAM,N)
)\v

where \* = F((A\,1) and \Y is adjoint to the composite

~YAL 1Ne

F(M,NYARAM X3 RAF(M,N)AM 225 RAN 25 N
The induced diagram

(A.)”
w*FRuw;N)Ailﬁ}kmﬁwgﬂ4%w4Am)%:gj}kmmw*uacaw4A4%w*uv»
)Y

commutes, so there is an induced homomorphism
T Fr(M, N) — Hom, (g (m.(M), 7. (N))

to the graded abelian group of left 7, (R)-module homomorphisms. If R is commutative then Fr(M, N)
is naturally a left (and right) R-module, and the homomorphism above is one of left (and right) m.(R)-
modules.
In the case R = S, the canonical map Fs(M,N) — F(M,N) is an isomorphism, so the natural
homomorphism
T F (M, N) — Hom(m,. (M), 7. (N))

of graded abelian groups factors through a natural homomorphism
T (M, N) — Homg_(g)(m«(M), 7(N))

of 7,(S)-modules.

Let R be a commutative orthogonal ring spectrum. The smash product over R, taking M and N to
M Agr N, defines a symmetric monoidal structure on the category of left (and right) R-modules, with
unit object R.

An R-algebra A is a monoid in this category of R-modules, i.e., an R-module A with a multiplication
w: AANgR A — Aand aunit n: R — A, such that that associativity and unitality diagrams

AN AN AL Ang A

1AHJ lu

ANgA—1 A

and
RARA-"Y Anp A ANRR

|

A

IR
1R
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commute, in the category of R-modules. A map A — B of R-algebras is a monoid map in R-modules.
In view of the definition of A A A as a coequalizer, an equivalent definition of an R-algebra A is an
orthogonal spectrum A with maps ¢: AA A — A and nn: R — A such that the composite

SAA— s RAA S Ana—254

is equal to the canonical isomorphism S A A & A, and the associativity, multiplicativity and centrality
diagrams

ANANA- AN A

o ¢ |+

ANA———A

RAR-M, AN A

and

ANA ANA
P

\ﬁ?\\
A

commute, in the category of orthogonal spectra. The left R-module structure on A is then given by the
composite A=¢o(nAl): RANA—ANA— A

A commutative R-algebra A is a commutative monoid in R-modules, i.e., an R-algebra such that the
commutativity diagram

ANgA—— S AARA

RN

commutes. A map A — B of commutative R-algebras is a commutative monoid map in R-modules.

Equivalently, a commutative R-algebra is an orthogonal spectrum A with maps ¢: AN A — A and
n: R — A, satisfying the conditions for an R-algebra, together with the condition that the commutativity
diagram

AnA——T L ANA

RN

commutes, in orthogonal spectra. Note that in this case the centrality diagram is superfluous.
In the category of commutative R-algebras, the coproduct of A and B is given by the smash product
A Ar B, with the multiplication

1A7A1

(A/\RB)/\R(A/\RB) A/\RA/\RB/\RBHA/\RB

and the unit N
R2RARR™L ANRB.

In the special case R = S, an S-algebra (in orthogonal spectra) is the same as an orthogonal ring
spectrum, and a commutative S-algebra is the same as a commutative orthogonal ring spectrum. The
coproduct of two commutative S-algebras, A and B, is the smash product A A B.
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The homotopy groups m,(A) of an R-algebra A form a graded m,(R)-algebra, with multiplication
T2 (A) @n(r) T (A) == T (AAR A) 15 1, (A)

and unit
T (R) 5 m,.(A),

which is graded commutative if A is a commutative R-algebra.

Remark 6.15. For orthogonal spectra D and E, and based CW complexes X and Y, the pairing

N Dp(X)RE(Y)=m(DANX)Q@m(EANY) — mpo(DANX ANEAY)

A e t(DAEAXAY) = (DA E)pse( X AY)
defines an external smash product in homology. If E is an orthogonal ring spectrum, the composite

CE(X) @ ElY) D (EAE) (X AY) 25 By (X AY)

defines an internal smash product. (Get Pontryagin product in the case X =Y = M, with M an
H-space.)
For finite based CW complexes X and Y, the pairing

A:DF(X)R BYY) =71_1F(X,D)@71_4(Y,E) = m_r_o(F(X,D) AN F(Y, E))
L v o(F(XAY,DANE) = (DAEMYXAY)
defines an external smash product in cohomology. If F is an orthogonal ring spectrum, the composite
EFX) @ EYY) 2 (EAEHYX AY) L5 EFMYX AY)

defines an internal smash product. In the case X =Y, the diagonal A: X — X A X induces an internal
cup product

U: B*(X) @ EY(X) — E*HY(X A X) 25 BM(X).
(Get graded ring in the case X = T, with T a finite CW complex.)

7 Examples
7.1 Suspension spectra
For any based space T' € .7, the suspension spectrum
YT =TAS
is given by (X°°T),, = X"T =T A S™, with the standard O(n)-action on S™. The homotopy groups

T (X°°T) = colim mpypn (T A S™)

are the stable homotopy groups of T', often denoted 7 (T"). For instance,
73 (S°) = mp(S) = co}bimﬂ'kJrn(S")

is the k-th stable stem. By the Pontryagin—Thom construction and transversality, it is isomorphic to
the bordism group of framed k-dimensional (smooth) manifolds. These groups are trivial for k < 0,
mo(S) = Z, and Serre showed that 74 (5) is finite for each & > 0.
If U € % is an unbased space, let U, € .7 denote the based space given by adding a disjoint base
point to U. Let
SU=2%Uys)=Us A S

be the “unreduced” suspension spectrum on U.
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S

k T gen.

0 Z L

1 Z/2 n

2 Z)/2 n?

3 Z/24 v

4 0

5 0

6 Z)/2 v?

7 Z,/240 o

8 Z/282/2 7,

9 Z/29Z/20Z/2 V3. me, 1
10 Z/2®Z/3 N, B
11 Z/504 ¢
12 0

13 Z/3 aif
14 Z/29Z)2 0%k
15 Z/480 ¢ Z/2 Py MK
16 Z/292Z)2 n*,np
17| Z)20Z/202Z/202Z/2 | m*, vk, n°p, i
18 Z/8®dZ)/2 v mi
19 Z/2®2Z/264 7,¢
20 Z/8dZ/3 K, B3
21 Z/262Z)/2 v mk
22 Vo, kR

Z/202/2

Figure 1: The first twenty-odd stable stems
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If M is a topological monoid, with unit element e, the multiplication M x M — M induces a pairing
w: SIM] A S[M] = S[M x M| — S[M]
and the inclusion {e} — M induces a unit
n: 82 S[{e}] — SM]
making S[M] an orthogonal ring spectrum, called the spherical monoid ring of M. Its homotopy groups
meS[M] = 7 (M)

form a graded algebra over m,(S). If M is commutative then S[M] is a commutative orthogonal ring
spectrum, and 7, S[M] is a graded commutative 7, (S)-algebra. If G is a topological group, we might call
S[G] the spherical group ring of G. The group inverse x: g — g~ ' then induces anti-homomorphisms
x: S[G] — S[G] and x: m.S[G] — 7. S|G].

(The diagonal A: M — M x M induces a cocommutative copairing ¢: S[M] — S[M]AS[M]. Discuss
when there is an induced graded cocommutative coproduct 9 : 7, S[M] = 7. S[M|® ()T S[M], making
7w S[M] a graded cocommutative bialgebra over m,(S). Similarly for when 7,.S[G] becomes a graded
cocommutative Hopf algebra over . (S5).)

7.2 Eilenberg—Mac Lane spectra

For each abelian group G and non-negative integer n we can construct a CW-complex K(G,n) with

wiK (Gm) = {G S
0 otherwise,
e.g., by first building a Moore space M (G, n) with n- and (n + 1)-cells given by generators and relations
in a presentation for GG, and then attaching m-cells for m > n + 2 to kill m; for ¢ > n. There is then a
homotopy equivalence
5: K(G,n) = QK(G,n+1)

for each n > 0, with left adjoint o: XK (G,n) — K(G,n + 1). The sequence of based spaces
HG ={n— K(G,n)}

with these structure maps defines a sequential spectrum, called the Eilenberg—Mac Lane spectrum of G.
It is an Q-spectrum, since the adjoint structure maps are (weak) homotopy equivalences. It represents
ordinary homology and cohomology with coefficients in G, in the sense that there are natural isomor-
phisms

HG(X) =m(HGAX) = Hy(X;G) and  HGH(X)=n_,F(X,HG) = H*(X;G)

for all based CW complexes X and integers k.

(The second claim is the natural isomorphism o F(X, K (G, k)) = [X, K(G, k)] = H*(X;G) for k > 0,
and the observation that K(G,0) ~ G is discrete, so that m,F'(X, K(G,0)) =0 for £ > 0. The first claim
follows by Spanier—Whitehead duality and passage to colimits, or perhaps by a more direct argument.)

At the level of homotopy groups

G for k=0,

me(HG) = {0 otherwise,
so m.(HG) = G concentrated in degree 0.

To promote HG to an orthogonal spectrum, we need O(n)-actions on the spaces HG,, ~ K(G,n)
that are compatible with the structure maps. This is not generally possible with the construction above.
There is a simplicial construction due to Milgram (and Steenrod?), called the bar construction, that to
each topological group G produces a topological space BG, with G ~ QBG. (This assumes that G is
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well-based, i.e., that the inclusion {e} — G is a cofibration.) When G is abelian, BG is again an abelian
topological group. Here
BG = B(x,G, %) = HG‘I x A/~

q>0

where AY C Rt is the standard g-simplex, and ~ is generated by the relations

(di(),8) ~ (x,0:(£))

for x = [g1]...|g4] € GY, € = (to,...,tg—1) € AT 0<i<gq,

[g2]--- 194 for 1 =0,
dz(x): [91||gzgz+l||gq] for 0 < i < q,
(91] .- 1gq—1] fori=gq

and
5:i(&) = (toy -, tiz1,0,t4, ..., tg—1),
and the relations
(s5(x), &) ~ (z,05(£))
for x = [g1]...|g4) € G9, € = (to,.. ., tgr1) € AT 0 < j <gq,

Sj(z) =[q]... |gj|6|9j+1| cee \Qq]

and
U](g) = (t07"~7tj +tj+17.-.,tq+1) .

Note that the subspace of BG generated by G4 x A4 for 0 < ¢ < 1is G A Al/JOA! = G, so there is a
natural inclusion ¥G — BG, with adjoint the natural (weak?) equivalence G — QBG.

Starting with a discrete abelian group G and iterating this construction n times, we obtain a space
B"G = B---BG ~ K(G,n). Permuting the order in which the n bar constructions are performed
defines an action by the symmetric group X, on B"G, and this recipe defines HG = {n — B"G} as a
symmetric spectrum. However, this action by ¥,, does not naturally extend to an action by O(n).

A construction by McCord generalizes the bar construction B and the infinite symmetric product of
Dold and Thom, and can be used to construct HG as an orthogonal spectrum.

Definition 7.1. For each abelian topological monoid (G, +,0) and each based space (X, z¢) let B(G, X)
be the space of finite sums
u = Z 9iTi

with g; € G, z; € X for all 4, subject to the relations gz + ¢’z = (9 + ¢’)x and gy = 0, for g,¢’ € G and
x € X. Equivalently, u is a function u: X — G such that u(x) # 0 for only finitely many = € X, and
u(xg) = 0.

For each n > 0 let B, (G, X) be the image of the map (Gx X)" — G(X) sending (g1, 21, .-, gn,Tn) to
9121+ + gnyn. We give B, (G, X) the quotient topology from (G x X)™. Each inclusion B, (G, X) —
B 11(G, X) is a closed embedding, and we give B(G, X) = J,, Bn(G, X) the colimit topology. Hence
U C B(G, X) is open if and only if its preimage in (G x X)" is open, for each n > 0.

McCord (1969, Theorem 8.8) shows that if G is a discrete abelian group, the map CS™ — CS™/S™ =
S™*1 induces a numerable principal B(G, S™)-bundle

B(G,CS™) — B(G,S™)

with B(G,CS™) contractible. Hence B(G,S") ~ QB(G,S™t!) is an Eilenberg—Mac Lane space of
type K(G,n).
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Definition 7.2. We define the orthogonal Eilenberg—Mac Lane spectrum HG by
HG, = B(G,S™)

with the O(n)-action induced by the O(n)-action on S™, i.e., A € O(n) maps >, g;z; to Y, g;Az;, for
g; € G and x; € S™. The structure map o: HG,, A S* — HG,, 1 is given by the map

B(G,S™) A S' — B(G,S™ A SY)
that takes (D, gizi) A s to ), gi(x; A s). The iterated structure map
o' B(G,S*) A S* — B(G,S*t)
is then evidently O(k) A O(¢)-equivariant, so HG is an orthogonal (2-spectrum.

Proposition 7.3. The FEilenberg-Mac Lane functor H from abelian groups to orthogonal spectra is lax
symmetric monoidal: There is a natural transformation

HGANHG — H(G® G

and a map
S — HZ

making the required diagrams commute.

Proof. The pairing
B(G,S*)AB(G',8Y) — B(G® G, S* A SY)

takes (3, g:iwi, >, 9595) to
(01 @ )i Ay).

2%}
It is O(k) x O(¢)-equivariant, and makes the bilinearity diagram

B(G, %) A ST A B(G, S <27 B(G, SF) A B(GY, 8% A St

a/\ll ¢k,e/\ll K

B(G, Sk+1) A B(G", 8" B(G& G, S A S B(G, S*) A B(G', S1)

B(G®G/,Sk+1+é> I, ®x1,e B(G@G/,Sk+é+1)

commute.

The spectrum level Hurewicz map h: S — HZ is given at level n by the embedding h,: S™ —
B(Z,8™) sending x € S™ to 1 -2z € B(Z,5™). It is O(n)-equivariant and compatible with the structure
maps.

The compatibility diagrams for o, A and p commute. The compatibility diagram

HGANHG' — 5 HG' ANHG

Lo ]

HG®G)—>H(G ®G).
commutes, because each diagram
B(G, S*) A B(G', ') —— B(G', 8%) A B(G, S*)
B(G'® G, 5" A SF)
Xe,k

B(Gad, s as) 20 @ a, Sk A S

commutes. O
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For each ring R the Eilenberg—Mac Lane spectrum H R is an orthogonal ring spectrum, with multipli-
cation p: HRAHR — H(R® R) — HR and unit n: S — HZ — HR. If R is commutative then HR is a
commutative orthogonal ring spectrum. The induced product on 7,(HR) & R is the ring multiplication
in R.

For each left R-module M the Eilenberg—Mac Lane spectrum H M is a left H R-module, with respect
to the pairing \: HRAHM — H(R® M) — HM, and similarly for right modules. The induced pairing
m(HR) @ mi(HM) — m (HM) = M is the left R-module action on M.

The functors H: (Ab,®,Z) — (Sp°, A, S) and 7g: (Sp°, A, S) — (Ab,®,Z) are thus both lax sym-
metric monoidal, and the composite my o H is naturally isomorphic to the identity. In this way, the
algebra of abelian groups is faithfully embedded in that of orthogonal spectra. (Elaborate?)

The Hurewicz map h: S — HZ induces the stable Hurewicz homomorphism 7} (T) = mx (S AT) —
m(HZ AT) = Hy(T; Z) for any based space T

7.3 Bordism spectra

The bar construction BO(n) and the infinite Grassmannian Gr,(R*) are homotopy equivalent. There
are principal O(n)-bundles
O(n) — EO(n) — BO(n)

and
O(n) — V,(R*) = Gr,(R*>)

with contractible total spaces (that admit CW structures), so any O(n)-equivariant equivalence EO(n) ~
V.. (R*°) induces an equivalence BO(n) ~ Gr,(R*) of O(n)-orbit spaces. Here FO(n) is the case G =
O(n) of the construction
EG = B(x,G,G) = [[(G* x G) x AY/~
920
where ~ is generated by the relations (d;(z),§) ~ (z,8;(§)) and (s;(x),§) ~ (x,0;(f)), for z =
[91] .- |94lgg+1 € G7 x G, with

[92] - - -94]9g+1 for i =0,
di(z) = S g1l 19igit1l - 194lgg+1 for 0 <i <g,
[91] - - - [9g-1]9994+1 fori=gq

and

sj(@) = [l lgj-1lelg;] - - -19q]gq+1 -
The group G acts freely from the right on EG, with EG/G = BG. (Give contraction of EG?) On the
other hand, V,,(R*) is the Stiefel “variety” of orthonormal n-tuples (vq,...,v,) in R®. Tt is the colimit
over k of the homogeneous spaces V,,(R"**) = O(n+k)/(1 x O(k)). Since each map O(k) — O(1+k) —
-+ —= O(n+k) is (k— 1)-connected, the space V,,(R>) is contractible. There is a principal O(n)-bundle
Vi (R*) = Gr,(R*°) mapping (v1,...,v,) to the subspace of R* spanned by those n vectors.

The R™-bundle
R" — EO(n) X0O(n) R" — BO(TL)

and the canonical bundle
R" — E(y") — Gr,(R™)

correspond under these equivalences, so there is an equivalence
MO(n) = EO(n)y Aom) S™ ~Th(y")

of Thom complexes. The inclusion O(n) = O(n) x 1 C O(n+ 1) induces a map i: BO(n) — BO(n + 1),
and the pullback of the R**!-bundle

EO(’FL + 1) XO0(n+1) R+ BO(TL + 1)
along ¢ is the product

EO(n) X0(n) R" xR — BO(n)
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of the R"-bundle over BO(n) with a copy of R. In other words, this is the Whitney sum of the R™-bundle
and the trivial line bundle €'. Hence its Thom complex

EO(n)+ Aoy S™ 2 EO(n)4 Aoy S" A ST = MO(n) A S*
maps naturally to the Thom complex
MO(n+1) = EO(n+1)4 Aoy 5"

The sequence of spaces {n — MO(n)} with the structure maps o = Th(i): MO(n) A St — MO(n + 1)
defines the Thom spectrum MO as a sequential spectrum, with MO,, = MO(n).

There is also an inclusion i: Gr,(R>®) — Gr,+1(R*®), mapping V C R® to V®R C R® ®R 2 R>,
and the pullback of y**! along i is isomorphic to " @ €', so that i induces a map

o =Th(i): Th(y") A S* 2 Th(y" @ €') — Th(y" ™).
The resulting spectrum {n — Th(y™)} is level equivalent to MO, as defined above. (Clarify role of
isomorphism R>® @ R = R>7?)

By the Pontryagin-Thom construction and transversality,

7, (MO) = colim 4., MO,, = N},

is the bordism group of closed (smooth, unoriented) k-manifolds. More generally,

MO(X) = colim T4 n(MOy A X4) = Ho(X)

is the bordism group of closed k-manifolds over X.

We can promote MO to an orthogonal spectrum, cf. May (1977), p. 75. The group O(n) acts on
itself by conjugation, so that A € O(n) induces the homomorphism O(n) — O(n) given by g — AgA~1.
When combined with the standard action on S™ = R™ U {co}, taking s to As, this induces an action on

MO(n) = EO(n)+ Ao S"
taking ([g1]. .- 194]9q+1,&,8) to ([AgrA™Y. .. |Ag,A7 | Agar1 A7, €, As). The iterated structure map
o't MO(k) A S* = EO(k)4 Moy S® A S — EO(k + €)1 Aowiey SET°
is O(k) x O({)-equivariant: (A4, B) € O(k) x O(¢) acts on ([g1]...]94]9q+1,&, s, t) to give
([Ag1 A7 .. [AggA™ ) Agg1A™1, €, As, Bt)

which maps to
([Agi A @ 1| ... |Ag, A @ I)Agy 1 AP @ Iy, €, As, Bt) .

This is equal to the action of A@® B € O(k + £) on the image
([gl 53 IZ| cee ‘gq 53] IZ]gq+1 5> Ifagy Svt) )

since (A®B) (9@ I;)(A® B)~! = AgA~t & I,, for each g € O(k). Hence MO is an orthogonal spectrum.
In fact, MO is a commutative orthogonal ring spectrum, i.e., a commutative S-algebra. The multi-
plication p: MO A MO — MO is induced by the O(k) x O(f)-equivariant map

Gre: MO(k) NMO(l) — MOk +¢)
given by the composite

EO(k)+ Moy S* AEO(0)4 Moy 8 — E(O(k) x O(6))+ oo S* A S*
— EO(k+40)+ NO(k+0) Gk+t ,
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for each k, ¢ > 0. The first map uses the natural (G x H)-equivariant homeomorphism FGx EH = E(G x
H), in the case G = O(k) and H = O(¢). (This relies on Milnor’s homeomorphism | X x Y| 2 | X| x |Y|
for (nice) simplicial spaces X and Y.) The resulting map ¢: MO ® MO — MO of orthogonal sequences
descends to define a map p of orthogonal spectra, because the bilinearity diagram

1INy

MO(k) AS*AMO(f) «—— MO(k) A MO(¢) A St

1A
0/\1J{ Lk’[/\ll \

MO(k + 1) A MO(0) MO(k + €) A St MO(k) A MO+ 1)
Lk+1,él UJ /
Uk, 041
Ix®x1,e
MO®k+1+0) — 22 s MOk + €+ 1)

commutes. (Spell out in terms of EO(k)y Ao Sk etc.?) Tt gives a commutative product, because the
square

MO(k) A MO(f) —— MO(€) A MO(E)

¢k,zl lm,k

MO(k+0) — 5 MO0 + k)

commutes, so that uy = u. More explicitly, this is the diagram

EO(k)+ Aoy S* AEO(0) 4 Aoy 8° —— EO(6)+ Aoy S* A EO(K)+ Aoy S*

¢k,ll lm,k

Xk,
EO(k+10)4 NO(k+10) L EO(l+ k)4 NO(£+k) Stk

The unit 7: S — MO is given by the inclusion S™ — EO(n); Aoy S™ = MO(n) taking s to ([Je, s) (in
the case ¢ = 0). It is O(n)-equivariant.
Under the equivalences M O(n) ~ Th(~™), the map ¢ ¢ corresponds to the map

Th(y*) NTh(y") 2 Th(y* x 7*) — Th(y**")
of Thom complexes induced by the bundle map
E(Y*) x BE(Y") — E(y**)
covering the map
Gri(R*™) x Gry(R™®) — Grie(R™)

that sends V' C R*® and W C R* to the direct sum V & W C R*® ¢ R*® = R*>.
The induced graded commutative ring structure on 7, (MO) corresponds under the isomorphism

T (MO) = .,

to the graded commutative ring structure on the bordism groups, given by taking the classes of M and
N to the class of M x N.

The unit map S — MO induces a homomorphism m,(S) — m.(MO) that corresponds to the ring
homomorphism Q= taking a framed bordism class to the underlying unoriented bordism class. It
is not a very interesting homomorphism: The underlying unoriented manifold of any framed k-manifold
bounds an unoriented (k + 1)-manifold, for & > 0, so m(S) — 7, (MO) is zero except for k = 0. This
is a consequence of Thom’s theorem that unoriented bordism classes are detected by Stiefel-Whitney
numbers, and these vanish for framed manifolds (whose tangent bundles are stably trivial).
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Theorem 7.4 (Thom). The mod 2 Hurewicz homomorphism
m(MO) = colimmy 1, MO(n) — colim Hyyn(MO(n);Z/2) = H,(BO;Z/2)
is injective for each integer k, and identifies
T« (MO) 2 Z/2[x9, x4, T5, X6, Ts, - . . |

with one generator x; in each positive degree i not of the form 29 — 1, for j > 1, as a polynomial
subalgebra of H,(BO;Z/2) =2 Z/2[ay,as,...| with one generator ay, in each positive degree k. There is a
Ty -isomorphism of spectra
MO ~\/sXHZ/2
X

where X = x?xg*xe® - ... ranges over a monomial basis for Z/2[xa, x4, x5, ... ], and | X| = 2eq + dey +

5es + ... is the degree of the monomial X .

Remark 7.5. The class ar € Hp(BO;Z/2) is the image of the generator oy, € Hy(BO(1);Z2/2),
where BO(1) ~ RP*°. As a bicommutative Hopf algebra, H,(BO;Z/2) is dual to the Hopf algebra
H*(BO;Z/2) = Z/2[w1,ws, . ..] generated by the Stiefel-Whitney classes w; € H'(BO;Z/2).)

Let SO(n) C O(n) be the special orthogonal group. The principal SO(n)-bundles
SO(n) — ESO(n) — BSO(n)

and
SO(n) —s V,(R®) —s Gry,(R™)

are both universal, hence equivalent, where é‘?n (R*°) is the infinite Grassmannian of oriented n-dimensional
subspaces of R>. The oriented R™-bundles

R" — ESO(TL) X50(n) R" — BSO(TZ)

and .
R" — E(3") — Grp(R™)

are equivalent, where 4™ denotes the canonical R™-bundle over évrn(R‘X)), so there is an equivalence
MSO(TL) = ESO(TL)J,_ /\50(”) S" ~ Th(:}/n)

of Thom complexes. Replacing O(n) with SO(n) in the role of G in the constructions above, we obtain
a commutative orthogonal ring spectrum M SO, with n-th space M SO(n), structure maps

o MSO(n) AS* = ESO(n)4 Asom) S™ AS" — ESO(n+ 1)1 Asomsr) " = MSO(n+1),

O(n)-action on MSO(n) given by conjugation, since AgA~! € SO(n) for A € O(n) and g € SO(n),
product p: MSO A MSO — MSO induced by maps

Gro: MSO(k) AN MSO(l) —s MSO(k + £)

and unit 7: § — M SO induced by the inclusions 7,,: S™ = ESO(n)4 Asom) S™ = MSO(n).

Let Spin(n) be the spin group, realizing a double cover of SO(n) for each n > 0. The Thom complex
of the spin R”-bundle

R™ — ESpin(n) X gpinn) R" — BSpin(n)
is
MSpin(n) = ESpin(n) 1 Aspinmn) S"

Replacing O(n) with Spin(n) in the role of G in the constructions above, we obtain a commutative
orthogonal ring spectrum M Spin, with n-th space M Spin(n), structure maps

o: MSpin(n) AS' = ESpin(n) 4 Aspinn) S" AS" — ESpin(n+ 1)1 Aspinnt1) S™ T = MSpin(n+1),
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O(n)-action on M Spin(n) given by the unique lift Spin(n) — Spin(n) of the conjugation homomorphism
g+ AgA=1: SO(n) — SO(n), product pu: M Spin A M Spin — M Spin induced by maps

G0 MSpin(k) AN MSpin(€) — M Spin(k + £)

derived from the homomorphism Spin(k) x Spin(¢) — Spin(k+£) lifting the block sum SO(k) x SO(¢) —
SO(k + ¢), and unit n: S — MSpin induced by the inclusions n,: S™ — ESpin(n)y Agpinn) S" =
M Spin(n).
We obtain maps
S — M Spin — MSO — MO

of orthogonal ring spectra inducing graded ring homomorphisms
7« (S) — m (M Spin) — 7. (MSO) — 7. (MO)
that are isomorphic to the graded homomorphisms
Q" —arn 0, =059 — 4 =09
of framed, spin, oriented and unoriented bordism rings, respectively.

Theorem 7.6 (Thom). The rational Hurewicz homomorphism

m(MSO) ® Q = colim 7y, MSO(n) ® Q — colim Hy,,(MSO(n); Q) = Hy(BSO;Q)

is an isomorphism for each integer k, and identifies
W*(MSO) ®RQ Q[.’L‘47LL‘8,,’B12, .. ]
with the polynomial ring on one generator in each positive degree of the form 4i.

(Discuss generators of H.(BSO;Q) and duality with H*(BSO;Q) = Q[p1,p2,...], where p; €
H*(BSO0;Q) is the i-th Pontryagin class. Decide about Z-, Z[1/2]- or Q-coefficients.)

Wall (1960) determined the structure of 7, (MSO) = €, completely. Oriented bordism classes are
detected by Pontryagin- and Stiefel-Whitney numbers, and all torsion is of exponent 2.

(Splitting of M SO when localized at p = 2.)

(String bordism?)

7.4 Complex bordism and formal group laws

Let U(n) denote the unitary group, acting linearly on complex n-space, C™. There is a universal principal
U (n)-bundle
U(n) — EU(n) — BU(n)

with associated C™-bundle
C" — EU(n) Xy C" — BU(n)

and Thom complex
MU(n) = EU(n)1 Au(n) S*"

where 5" = C"U{oc}. The inclusion U(n) = U(n)x1 C U(n+1) induces amap i: BU(n) — BU(n+1),
covered by a C*t'-bundle map
EU(TL) XU(n) C"xC— EU(TL + 1) XU(n+1) cntt
that induces a map
Th(i): MU(n) A S* — MU(n +1)

of Thom complexes. Here S? arises as the one-point compactification of C 2 R{1} ®R{i}, with i = /—1,
hence can be decomposed as SR A SR 22 §1 A ST ie., the smash product of one ‘real’ and one ‘imaginary’
circle.
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We obtain a sequential spectrum, here denoted M'U, with 2n-th space MU(n), 2n + 1-th space
YMU(n), and structure maps that alternate between the identity

1: MU(n) A S* — SMU(n)

and the map
Th(i): SMU(n) A S* — MU(n+1).

The homotopy groups
7 (M'U) = colim 7y 40, MU (n)

are the complex bordism groups Uy, = QkU, i.e., the bordism groups of closed (smooth) k-manifolds whose
(stable) normal bundle comes equipped with a complex structure.

Theorem 7.7 (Milnor, Novikov). The integral Hurewicz homomorphism
T (M'U) = colim ThaonMU(n) — colim Hpyon(MU(n)) = Hy(BU)
is injective for each integer k, and identifies
T (M'U) = Z[z1, 29,73, ...],

with one generator x; in each positive even degree 2i, as a polynomial subring of H.(BU) = Z[by,ba,...],
with one generator b; in each positive even degree 2i.

Remark 7.8. The class b; € Ho;(BU) is the image of a generator §; € Hy;(BU(1)), where BU(1) ~
CP*>. As a bicommutative Hopf algebra, H,(BU) is dual to the Hopf algebra H*(BU) = Z|c1, ¢a, . . . ]
generated by the Chern classes ¢; € H*(BU).

With the definition above, there is no evident O(2n)-action on the 2n-th space MU(n) in the se-
quential spectrum M'U, so with this definition M’U does not arise as an orthogonal spectrum. There
is, however, a natural U(n)-action on MU (n), similar to the natural O(n)-action on M O(n). This U(n)-
action restricts to an O(n)-action on MU (n) via the complexification homomorphism c¢: O(n) — U(n).

Following Schwede, we define MU as the orthogonal spectrum given at level n by MU,, = Q"MU (n).
More explicitly, we keep the real and imaginary summands of C™ = R™ & {R™ separate, and set

MU, = F(S®R" MU (n))

and write Th(i) as 4
MU(n) ASRASR — MU(n +1)

with right adjoint '
MU(n) A SR — F(SR, MU(n+1)).

The structure map o is then the composite
SMU, = MU(n) A SR = F(S®", MU(n)) A SR 5 F(SR", MU(n) A S®)
— F(S®R" F(SR,MU(n+1))) 2 F(S®" MU +1)) = MU, 11 .

The group O(n) acts on MU, by conjugation, with A € O(n) taking the map f: SR — MU(n) to the
map Af: SR" — MU(n) given by (Af)(s) = A(f(A~'s)). The O(k) x O({)-equivariant maps

Gre: MUx A MU, = Q°MU (k) A QMU (6) 25 QMU (k) A MU(£)) — Q¥ MU (k + 0)
define a multiplication p: MU A MU — MU, and the O(n)-equivariant maps
N ST — Q"MU(n),

adjoint to the inclusion S?" — MU (n), define a unit n: S — MU, making MU a commutative orthogonal
ring spectrum.
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There are isomorphisms

7 (MU) = colim g1, (MU,,) = colim g1, (Q"MU (n)) = colim Tg 42, (MU (n)) = mp (M'U)

and more generally isomorphisms
MUL(X) = collim T (MUp AN X) = co}lim Thn (Q" MU (n) A X)
s colim 4 (2" (MU (n) A X)) = colim w2, (MU(n) A X) = M'Ui(X)
for based CW complexes X. Presumably M’'U and MU are m,-isomorphic as sequential spectra, defining
the same homology and cohomology theory (= complex bordism).
Lemma 7.9. The zero section in the Hopf C-bundle
n: C— EU(1) xyn) C — BU(1)

induces a homotopy equivalence
BU(1) = MU(1).

Proof. The unit circle bundle
S(C) — EU(1) xy1) S(C) — BU(1)

has total space S(n) = EU(1) which is contractible, so the quotient map

D(n) = D(n)/S(n)

is a homotopy equivalence. The zero section in 1 induces a homotopy equivalence BU(1) — D(n), and
there is a standard homotopy equivalence MU (1) = Th(n) — D(n)/S(n). Hence BU(1) = MU(1) is a
homotopy equivalence. O

Definition 7.10. Let t € MU?(BU(1)) be the image under
ThsoF(BU(1), MU(1)) — colim g0, F(BU (1), MU (n)) = MU~*(BU(1))
of the homotopy class of the map BU(1) — MU(1), for k = —2.
Proposition 7.11. 1. MU*(BU(1)) & MU.[[t]].
2. MU*(BU(1) x BU(1)) & MU.[[t1,t2]], where t; = pri(t) and to = prj(t).

3. The multiplication
m: BU(1) x BU(1) — BU(1)

mapst € MU?(BU(1)) to a class m*(t) € MU?(BU(1) x BU(1)) that corresponds to a formal sum
FMU(tl,tg) = Z ai’jtit;' S MU*Htl,tg]]
,5>0
with a; j € MUy(iyj_1y for each i,j > 0.

4. Fyuu(0,t2) = to = Famu(t2,0), Fayo(t, Fvo(te,t3)) = Fuu(Fuu(ti, ta), t3) and Fao(t, te) =
Fryu(t,t1).

These results show that Fjp is a formal group law over MU, homogeneous of degree (—2).

Definition 7.12. Let R be a commutative ring. A (1-dimensional, commutative) formal group law over
R is a power series
F(t1,t2) € R[[t1,t2]]

such that F(O,tg) = tg = F(ﬁQ,O), F(tl,F(t27t3)) = F(F(tl,tg),tg) and F(tl,tg) = F(tg,tl).
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A formal group law on R specifies a formal group structure on the formal affine line A}? = Spf R[[t]]
over Spec R, containing the thickenings Spec R[t]/(t") for all n > 0. It also specifies a functor from
commutative R-algebras A to abelian groups, taking A to the set N(A) of nilpotent elements in A, with
the group operation +p given by

ny +rng = Z amning =n; +n2+ Z ai,jnﬁng
4,520 i,j2>1
for n1,n2 € N(A). (The sum is finite because n; and ns are nilpotent in A.)
The additive formal group, G,, has formal group law given by

Fu(tito) =t +to.

It represents the additive group structure on N (A).
The multiplicative formal group, G,,, has formal group law given by

FnL(tlyt2) - tl + t2 + t1t2 .

It represents the group structure on N(A) that corresponds to the multiplicative group structure on
14+ N(A) C A*. More generally, for any unit « € R* there is a variant multiplicative formal group law
given by

Fu(tl, tz) = tl + t2 — Utth ,

with the property that 1 — uF,(t1,t2) = (1 — ut1)(1 — uta).

To each 1-dimensional commutative group scheme G there is an associated formal group G. A choice
of local parameter near the unit element specifies a formal group law. In the case of elliptic curves, these
are called elliptic formal group laws.

There is a universal formal group law

Fi(ti,to) = Y aijtith
i,5>0

defined over the commutative ring

where ~ denotes the relations among the a; ; that are required for F, to be a formal group law.

Lemma 7.13. The rule that to a ring homomorphism ¢: L — R associates the formal group law ¢, Fy,
over R, with

(G FL) (b1, t2) = D lai ) tith,

1,j>0
induces a natural bijection
Hom(L, R) 2 FGL(R)

where FGL(R) denotes the set of formal group laws over R.

Theorem 7.14 (Lazard).
L= Z[.I‘l,llg,...]

s a polynomial ring on countably many generators, with x1 = a1,1, T2 = a1,2, T3 = az2 — a1 3, etc.

Theorem 7.15 (Quillen). The formal group law Fyy over MU, is isomorphic to Lazard’s universal
formal group law Fp, over L: The ring homomorphism

¢: L =5 MU,

such that ¢ Fr, = Fyy s an isomorphism.

In particular, the Lazard ring L = Z[x1, T2, . . . ] is isomorphic to the complex bordism ring MU, = QY.
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Remark 7.16. It is an interesting question which (1-dimensional, commutative) formal group laws F
over a graded ring R, with F(¢1,t2) in homogeneous degree (—2), can be realized as

m*(t) € E*(BU(1) x BU(1))

for a ring spectrum F with 7.(F) = R, E*(BU(1)) = R][t]] and E*(BU(1) x BU(1)) & R|[t1, t2]].

This is the case for F = F, over R = Z with E = HZ and t = ¢;(n) € H*(BU(1);Z) is the first
Chern class of the Hopf C-bundle 7.

It is also the case for F = F, over R = Z[u,u™!] with E = KU and t = u~'(1 —[n]) € KU%*(BU(1)),
where [n] € KU®(BU(1)) is the topological K-theory class of 7.

(Elliptic cohomology.)

(Conner-Floyd theorem p: MU — KU inducing isomorphisms 7. (KU)®x, vy MU (X) = KU, (X),
where 7o, (MU) = QY — 72, (KU) = Z{u"} sends an almost complex manifold M to (—1)" times its
Todd class T'd(M).)

(Landweber exactness.)

7.5 Topological K-theory spectra

(Real and complex topological K-theory.)
(Adams operations. The image of J.)
(Algebraic K-theory spectra?)

7.6 Topological Hochschild homology
For any orthogonal spectrum X the n-fold smash power
XM =XAN--ANX

is an orthogonal spectrum, where we take n copies of X. We let X0 = S, so that X"\* A X/ = X/\»
for k + ¢ = n. Another common notation for the n-fold smash power is X (™),

(Beware that X" is only homotopically meaningful under suitable cofibrancy conditions on X, e.g.,
if X is flat or projectively cofibrant as an orthogonal spectrum.)

Let R be an orthogonal ring spectrum, with unit n: S — R and product ¢: RA R — R. We can
view R as a simultaneous left and right R-module, i.e., an R-R-bimodule, via the action

PoN1)=¢d(1Nd): RARANR — R.

There is a simplicial resolution C, of R in R-R-bimodules, of the form

—
— —
— — — c
...+—RARARANR—RANRANR+—RANR——R.
R — — —

Here
C,=RARMAR

for each ¢ > 0. For each 0 < i < ¢ there is a face operator
di=RMNNGANRN: Cy — Cyn
and for each 0 < j < ¢ there is a degeneracy operator
sj =R AnARTY I O — Oy

that make [¢] — C, into a simplicial object in Sp®. The map € = ¢: Cy — R defines an augmentation
Ce — R, which can be viewed as a simplicial map from C, to R viewed as a constant simplicial object.
The augmentation induces a homotopy equivalence from the geometric realization

Cal =\ €y n A%/~
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to R. (Explain using a simplicial contraction?) For each R-R-bimodule spectrum M, with commuting
left action A: RA M — M and right action p: M A R — M, we can form the smash product

THH,(R,M)=M A Cy=M AR

and obtain a simplicial orthogonal spectrum T'HH4(R, M). The face operators
dit M AR — M ARMT!
are given by
do =p A RAq71
di =M ANRMNTIAHARNTITE
dy = (A A RNV )y
(where 0 < i < g, and v transposes M A R"~! and R), and the degeneracy operators
sj: M ARM — M A RMT!

are given by ‘ ‘
si=MANRM AnARI .

We write
THH.(R)=THH,(R,R)

in the special case M = R (with the bimodule structure mentioned above). Hence
THH,(R) = RA R
for each ¢ > 0, with face operators symbolically given by
do(ro AT1 A~ ATg) =1or1 ATa A -+~ ATq,

di(ro AT AN ATq) =T0 A= ATiTig1 A== Ay
for 0 < i < q and
dg(ro ATI A~ ATg) =Tgro AT1T A~ ATgo1 .

The degeneracy operators are symbolically given by
Si(ro ATI A~ ATg) =To A AT; ALATj 41 Ao ATy

We let
THH(R,M)=|THH,(R,M)| = \/ THH,(R,M) /\Aﬂ/w

q>0

and
THH(R) = [THH.(R)| = \/ THH,(R) A A% /~
920
be the orthogonal spectra given by the geometric realization of these simplicial objects.
(Beware that THH(R) is only homotopically meaningful under suitable cofibrancy conditions on R,
e.g., if R is flat or projectively cofibrant as an orthogonal spectrum under S.)
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8 Equivariant spaces and spectra

8.1 (G-spaces

Let G be a compact Lie group, with unit element e. We do not assume that G is connected, so the case
where G is a finite (discrete) group in included. We only consider closed subgroups of G, so when we
say that H is a subgroup of G it is implicitly assumed that H is closed.

A (left) based G-space X is a based space with a continuous map

)\IG+/\X—>X,

satisfying associativity and unitality. Writing gz for A(g A x) this means that g1(gex) = (g9192)z and
ex = x for all g1,90 € G and z € X. A based G-map f: X — Y is a based map such that the diagram

G AX LGy

[

X——Y

commutes, i.e., gf(x) = f(gz) for all g € G and x € X. Such a map is also said to be G-equivariant.
We write G for the topological category of based G-spaces and based G-maps. ((It is a subcategory
of the G-topological category J¢ of based G-spaces and based maps.))

Example 8.1. A homomorphism p: G — O(n) defines an unbased action of G on R™, by (g,v) — p(g)(v),
which induces a based action of G on the one-point compactification S™ = R™ U {oc}, based at co. We
write V and SV for R and S™ with these implicit G-actions. Such a vector space V is called an
orthogonal G-representation, and SV is called a G-representation sphere. If ¢: V — W is injective,
hence proper, we write S?: SV — SW for its based extension.

Hereafter we omit to say ‘based’.
Let : G1 — G2 be a group homomorphism. We get a continuous functor

0" : Ggg — Gly

mapping each Gs-space X to the same topological space, with the Gi-action given by composition with
0, taking g € G and x € X to §(g)x in X.

Any homomorphism 6: G; — G4 factors as the composite of a surjection of the form 7: G — G/N,
with N normal in GG, an isomorphism of groups, and an inclusion of the form ¢: H C G. The functor
7*: (G/N)T — GT views a G/N-space as a G-space with trivial N-action. The functor .*: G — HT
restricts the G-action to an H-action. In particular we have the functors 7 — G that gives a non-
equivariant space the trivial G-action, and G — Z that takes a G-space to the underlying non-
equivariant space.

These functors admit left and right adjoints.

For m: G — G/N the left adjoint of 7* is the N-orbit space functor

X+— X/N

where X/N = X/~ is the quotient space of X given by x ~ nz for each x € X and n € N. The natural
homeomorphism

(G/N)T(X/N,Y) = GT(X,r*Y)

has unit the surjective G-map n: X — 7*(X/N) and counit the G/N-homeomorphism e: (7*Y)/N — Y.
(Notation for image of z € X in X/N7?)
The right adjoint of 7* is the N-fixed point functor

Z—zN
where ZV = {z € Z | nz = z for each n € N} is a subspace of Z. The natural homeomorphism

GI(wY,Z) = (G/N)T (Y, ZN)
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has unit the G/N-homeomorphism 7: Y — (7*Y )" and counit the injective G-map e: 7*(ZV) — Z.

(=)/N

GT —n*
CON

(G/N)T

For v: H C G the left adjoint of +* is the induction functor
X +— G+ ANg X

where G4 Ag X is the quotient space of Gy A X by yh Az ~ v A hz, where v € G, h € H and
z € X. (Notation for image of YAz € G4 A X in G4 Ay X?) The G-action on G4 Ay X is given by
g(yANz) =gy Az for g € G. (Note that this is not the diagonal action.) The natural homeomorphism

GT(Gy Ay X,Y)=2 HT(X,'Y)

has unit the injective H-map n: X — t*(G4 Ag X) sending « € X to the class of e A z, and counit the
surjective G-map G4 Ag Y — Y sending the class of v Ay to vy.
The right adjoint of ¢* is the coinduction functor

A — FH(G+,Z)

where Fiy (G4, Z) is the subspace of F(G4, Z) consisting of maps f: G4 — Z such that hf(y) = f(hy),
for all h € H and v € G. The G-action on Fy (G4, Z) is given by sending f to gf: G4 — Z with
(9/)(v) = f(vg). (Note that this is not the conjugation action.) The natural homeomorphism

HI ('Y, 2) = GT (Y, Fu (G4, Z))

has unit the injective G-map 7n: Y — Fy(G4,t*Y) taking y € Y to the map f: G4 — Y given by
f(v) = vy for all v € G, and counit the surjective H-map €: i*Fy (G4, Z) — Z taking f: G4 — Z to
fle) e Z.

Ginu(=)
HT +— GT
Fu(Gy,—)

When ¢: Gy — G4 is an isomorphism, with inverse v, the functor ¢*: Go.7 — G1. is an iso-
morphism of categories, with left and right adjoint given by ¥*. Combining these constructions, for a
general homomorphism 6: G; — G5 with kernel N C Gy, image H C Ga, isomorphism ¢: G1/N = H
and inverse isomorphism ¢: H = G1 /N, the functor 6* has left adjoint X — Gaoy Ag ¥*(X/N) and right
adjoint Z — Fg(Gay,v*(ZN)).

So far we have only discussed the H-orbits and H-fixed points of a G-space when H is normal in G.
The definition X/H = X/~ with ¢ ~ ha for ¢ € X, h € H works for all H C G, and likewise for
ZH ={z € Z|hz =z for all h € H}. The H-orbit functor and H-fixed point functors can be viewed as
the composites

¢7 L NeHT L wong 25 7
and .
GT L NeHT 'L WeHT 25 7
where NoH = {n € G | nH = Hn} is the normalizer of H in G, so that H is normal in NgH, with
quotient the Weyl group WgH = NgH/H. The left hand functors are restriction along ¢1: NoH C G,
the right hand functors are restriction along t5: {e} C WgH.
(Identify G4 Ag Z with the H-orbit space of G A Z with the diagonal action, where h € H acts on

G through right multiplication by h~!. Identify Fy (G, Z) with the space of left H-maps G, — Z,
and with the H-fixed points of F(G4, Z) with the conjugation action.)
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8.2 (G-homotopies

Given two G-spaces X and Y we give X A'Y the diagonal G-action, so that g(x A y) = gz A gy. We
give the space F(X,Y) of maps f: X — Y the conjugate G-action, so that gf: X — Y is given by
(9f)(z) = g(f(g~'z)). This defines a closed symmetric monoidal structure on G.7, so that there are
coherent G-equivariant homeomorphisms X A (YAZ) 2 (XAY)AZ, SOAY 2V 2V AS?, XAY 2V AX

and
F(XANY,Z)2 F(X,F(Y,Z2)).

For any finite-dimensional orthogonal G-representation V' and G-spaces X and Z we let
YWX=XxAS8Y and QYZ=F(Y,2).
There is a natural homeomorphism
FEVX,2) = F(X,QV2)
with adjunction unit and counit
X —QVy2YX  and e XYOVZ — Z.
Furthermore, G is tensored over .7, with natural homeomorphisms
IT,GT (X, Z)=2GT(XNT,Z2)=2GI(X,F(T,Z2))

for all G-spaces X and Z and spaces T. Taking T' = I, with I = [0, 1] this lets us define G-homotopy
of G-maps. A G-map f: X — Y is a G-homotopy equivalence if there exists a G-map f’: Y — X and
G-homotopies f'f ~ 1x and ff’ ~ 1y. This implies that f: X — Y ¥ is a homotopy equivalence for
each H C G.

A G-map f: X — Y is a G-Hurewicz cofibration if for every commutative square

X ——F(4,2)

b
f Ve i lpo
e
e

Y ——7
in G there is a dashed arrow making both triangles commute. Equivalently,
WwU(fx1):YUx XAIL =Y AL

admits a left inverse in G.7. This implies that f#: X# — Y is a Hurewicz cofibration for each H C G.
(Also G-HLP and G-Hurewicz fibration.)

Definition 8.2. Let X € G be a G-space. For each closed subgroup H C G and each integer k > 0
we let
i (X) = me(XH)

denote the set of homotopy classes of maps S¥ — X . This is a group for k¥ = 1 and an abelian group
for k > 2. Each G-map f: X — Y induces a function f. = 7 (f): 7(X) — 7f/(Y) for each H C G
and k > 0, which is a group homomorphism for ¥ > 1. G-homotopic maps f and f’ induce the same
functions f, = f..

We say that f: X — Y is a weak G-homotopy equivalence if for each H C G the restricted map
2 X" — YH is a weak homotopy equivalence. In this case, 7 (f): 7 (X) — 7 (Y) is a bijection
for each H C G and k > 0, and an isomorphism for each k£ > 1. A G-homotopy equivalence is a weak
G-homotopy equivalence.

For G-spaces X and Y note that F(X,Y)H is the space of H-maps f: X — Y. Let

(X -Y)=7nllF(X,Y)=nF(X,Y)"
be the set of H-homotopy classes of H-maps X — Y. Thus 7 (X) = 7#(S* — X) for each k > 0,

where S* has the trivial G-action.
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A G-CW complex is built by attaching G-n-cells of the form (G/H x D™); along their boundaries
(G/H x 0D™) ..

Definition 8.3. A G-CW complex (with base point) X is a G-space with a filtration
x= XD cxO ... c xtn-) - x(n) - ... X
by G-subspaces, such that there is a pushout square

Va(G/Ha x D" ——\/o(G/Ho x D),

‘| E

X (n=1) x(n)

for each integer n > 0, and X = colim,, X (™. We call X(") the G-n-skeleton of X. A G-map f: X - Y
of G-CW complexes is G-cellular if f(X™) c Y™ for each n > 0.

Proposition 8.4. If X is a G-CW complex and f: Y — Z a weak G-homotopy equivalence, then
fo:m8(X =Y) — %X = 2)
is a bijection. Hence, if Y and Z are G-CW complexes then [ is a G-homotopy equivalence.

(The following argument is imprecise in low degrees.)

Proof. Each inclusion (G/H, x 0D™)y — (G/H, x D™)4 is a G-Hurewicz cofibration, hence so is each
pushout X (=1 — X () The G-homotopy cofiber sequence

X0 — X — \/(G/Hqa)4 A D" /0D"

and the map f induce a map of long exact sequences

rGEXCD 5 Y) — [, 7He (V) —— 79X 5 V) —— 7G(XOD 5 V) —— [, 72 (V)

n—1
f*l f*J( f*l f*J( f*l
G(EXCD & 7) —— ], 7He (Z) —— 79X — Z) —— 7G(XY 5 Z2) —— ], 7 (2)
so by the five-lemma and induction on n it follows that
fo: 79X YY) — 29 (XM 5 7)

is a bijection for each n > 0. The claim for X then follows by passage to limits (using Milnor’s lim-lim*-
sequence). The final conclusion then follows by the Yoneda lemma. O

Definition 8.5. For G-spaces X and Y let
[(X,Y]¢ =79(TX = Y)
where I'’X — X is a weak G-homotopy equivalence from a G-CW complex.

8.3 Orthogonal G-spectra

Let G be a compact Lie group. Following Schwede we work with a model for G-equivariant spectra where
the objects are simply spectra with a G-action.

66



Definition 8.6. An orthogonal G-spectrum is an orthogonal spectrum X with a continuous G-action
AMGINANX — X

through orthogonal spectrum maps, i.e., for each g € G the composite
g X2 {gl A X 5 X

is map of orthogonal spectra. (Being an action, A satisfies associativity and unitality.) A G-map f: X —
Y of orthogonal G-spectra is a map f: X — Y of orthogonal spectra that commutes with the G-actions,
sothat A(LAf) = fA: G AX =Y. Let G Sp° denote the topological category of orthogonal G-spectra
and G-maps.

In more detail, X is a sequence of based G x O(n)-spaces X,, for n > 0 and a sequence of structure
G-maps 0: X, A S' = X,,11, where G acts trivially on S', such that each ¢-fold composite

ot X /\SZ — Xk+g

is O(k) x O(f)-equivariant. A G-map f: X — Y is a sequence of G x O(n)-maps f,: X,, — Y, that
commute with the structure G-maps.

From another point of view, A is adjoint to a map

A G — $p0(X, X) € [[ 7(Xo, X,) O

n
of topological monoids, where the monoid structure in the target is given by composition of maps.

Definition 8.7. An orthogonal ring G-spectrum is an orthogonal ring spectrum R with a continuous
G-action
At G+ ANR— R

through orthogonal ring spectrum maps, i.e., for each g € G the composite
g:R={g}. AR5 R

is map of orthogonal ring spectra. (By assumption, ¢;(ge22) = (g192)x and ex = x for z € R,, at each
level n > 0.) A G-map f: Q — R of orthogonal ring G-spectra is a map f: @ — R of orthogonal ring
spectra that commutes with the G-actions, so that A(1 A f) = fA: G AQ — R.

In G-equivariant homotopy theory, we will wish to be able to embed G-spaces like G/H equiv-
ariantly in inner product spaces like R™. We must then permit non-trivial G-actions on these vector
spaces, and therefore consider G-embeddings in orthogonal G-representations W, extending to based
maps (G/H); — SW. In the stable theory we wish to make the operation of smashing with SV
into an equivalence, which we can achieve by stabilizing with respect to structure G-maps of the form
o: X(U)ASW — X(V), for G-representations U C V, where W =V — U is the orthogonal complement
of U in V. Here X (V) will be equal to X,, in the case when V = R™ with the trivial G-action, but in
general the G-action on V' should be reflected in the G-action on X (V).

Definition 8.8. An inner product space is a finite-dimensional real vector space V equipped with an
Euclidean inner product (—,—): V x V — R. Let I(V, W) be the space of linear isometries ¢: V' — W.

An orthogonal G-representation is an action through linear isometries of G on an inner product
space V. Let G act by conjugation on 1(V, W), sending ¢ to g¢ given by (9¢)(v) = g(¢(g~*(v))) for
veV.

Example 8.9. Let V' = R” with the usual dot product. The orthogonal group O(n) is equal to the
group of linear isometries R™ — R™. An orthogonal G-representation on R™ is equivalent to a group
homomorphism p: G — O(n), with g -v = p(g)(v) for each g € G and v € V = R".

Hereafter we simply refer to an orthogonal G-representation V' as a G-representation. The following
important construction defines a prolongation of orthogonal G-sequences X : O — G.7 from the trivial
G-representations R™ to general G-representations V.
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Definition 8.10. Let X,, be a G x O(n)-space, and let V' be an n-dimensional G-representation. Let

X(V)=IR" V)y A X

be the balanced product, where O(n) acts on the right on I(R™, V) by (¢, A) — ¢o A: R - R* = V.
Let G act diagonally on the balanced product, by g(¢ A ) = g¢ A gz. Here (g¢)(v) = g(¢(v)) for
v € R", since G acts trivially on R™.

Any choice of linear isometry ¢: R — V determines a homeomorphism X (¢): X,, 2 X(R") — X (V),
sending x € X,, to the class of pAx. The G-action on X (V') depends on the G-actions on both X,, and V.
The following construction defines the prolongation of an orthogonal G-spectrum to a “coordinate free”
G-spectrum, indexed on general G-representations.

Definition 8.11. Let X be an orthogonal G-spectrum, and U C V be k- and (k + ¢)-dimensional G-
representations, and let W = V — U be the ¢-dimensional orthogonal complement of U in V. Choose
linear isometries ¢: R*¥ — U and ¥: R® — W, with sum a linear isometry ¢ @ ¢: R* - U + W = V.
Let the generalized structure map

o: X(UYASVY — X(V)

for U C V be characterized by the commutative diagram

4
Xi A gt — 2 Xite
X(QB)/\ST’&JN mlxw@w
X(U)ASV-Y T X(V).
In other words, o maps (¢ A x) A(s) for € X, and s € S* to ¢ @ A ot(z A s).

Lemma 8.12. o is a well-defined G-map.

Proof. Any other choices of linear isometries ¢': R¥ — U and ¢': R® — W have the form ¢ = ¢A and
' =B for some A € O(k) and B € O(¢). In view of the commutative diagram

2

X A St Z KXkte
W‘w X(W

ANB X(U)ASYV 25 X(V) A®B
%w/ . X(#%

Xp NSt = KXite

where the outer rectangle commutes by the O(k) x O(¢)-equivariance of o*, the two maps X (U)ASY YV —
X (V) corresponding to o under X (¢) A S¥ and X (¢ @), and to o under X (¢/) A SY" and X (¢ ® 1),
are the same.

The group G acts diagonally on X (U) and SV =Y with g € G mapping (¢Az)AY(s) to (gpAgz)Ag(s).
Here ¢/ = g¢: RF — U and ¢/ = g2p: R® — W are linear isometries, so o takes (g¢ A gz) A gip(s) =
(&' A gz) A (s) to

(& ©0) Ao'(gu A s).

On the other hand, o maps (¢ A x) A¥(s) to ¢ @ ¥ A o’(z A s), which g takes to

g(p@p) Agat(zAs).

These expressions are equal, since ¢’ ®1)’ = g(¢ D) and o°: X ASY — X}, is assumed to be a G-map
with respect to the trivial G-action on S, so that of(gx A s) = got(x A s). O
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We think of X (V') as the G-space at level V of the orthogonal G-spectrum X.

Lemma 8.13. o: X(V) A S® — X (V) for V. =V is the canonical isomorphism, and the diagram

X(WU)ASV-UASV-YV AL X (V) A sW-Y

% J

X(UYASY-U T X(W)

commutes forU CV C W.

The prolongation V +— X(V) of an orthogonal spectrum n +— X, can be viewed as a left Kan
extension, i.e., a left adjoint to a restriction functor.

Recall that O is the topological category with objects n > 0 and morphisms O(n,n) = O(n) and
O(m,n) = @ for m # n. Let | be the topological category of (real, finite-dimensional) inner product
spaces (V, (—,—)), usually denoted V, and isometric isomorphisms ¢: V' — W. The functor i: O — |
mapping n to (R™,:) and A € O(n) to the linear isometry A: R™ — R™ is an equivalence of topological
categories.

To each continuous functor Y: | — .7 we can associate its restriction i*Y: O — 7. The resulting
functor i*: 7' — 7° has left and right adjoints, called the left and right Kan extensions.

o—> 7

For an orthogonal sequence X : O — .7 the left Kan extension i, X : | — 7 is given by the topological
colimit
(1. X)(V) = n7q$9é17{ri>v X, ZI(R™, V)4 O/(\n) Xn
over the left fiber category i/V, with objects pairs (n, ¢) with n an object in O and ¢: i(n) =R™ -V a
morphism in I. There is a morphism A: (n,pA) — (n, ¢) for each A € O(n).
The adjunction isomorphism
TV, X,Y) = 7°(X,i*Y)

has unit n: X — ¢*(i,X), which at level n is the isomorphism X,, = X (R"), and counit €: i, (i*Y) = Y,
which at level V' is the isomorphism I(R™, V)+O/(\ )Y(R") =~ Y (V). Hence i, and i* are inverse equivalences

of topological categories .7° ~ 7.
The right Kan extension i,: .7° — 7! is given by the topological limit

(i, X)(V)= lim X, =F(I(V,R"),X,)°™
n,p: V—R"

over the right fiber category V/i. This is the space of O(n)-maps I(V,R"). — X,,, where O(n) acts
from the left on I(V,R™) by composition. In this case the left and right Kan extensions are isomorphic,
i = iy, so ¢* is both a right and a left adjoint, and preserves all small limits and colimits.

To account for the diagonal G-action on X (V'), we use categories enriched in G.7, i.e., topological
G-categories and continuous G-functors.

Let | be the topological G-category of (orthogonal) G-representations V', and isometric isomorphisms
¢: V — W, not necessarily commuting with the G-actions. The morphism G-space lg(V,W) = I(V, W)
has the G-action given by conjugation: (g¢)(v) = g(é(g~*(v))). The forgetful functor lg — | is an
equivalence of topological categories. (The category Gl of G-representations and G-linear isometric
isomorphisms arises as the G-fixed points (Ig)“ of this G-category, with morphism spaces GI(V, W) =
(v, W)<.)

Let g be the topological G-category of (based) G-spaces X and (based) maps f: X — Y, not
necessarily commuting with the G-actions. The morphism G-space J5(X,Y) = F(X,Y) has the G-
action given by conjugation: (gf)(z) = g(f(g~*())). The forgetful functor J5 — 7 is an equivalence
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of topological categories. (The category G.7 of G-spaces and G-maps arises as the G-fixed points (75)%
of this G-category, with morphism spaces G.7(X,Y) = F(X,Y)%))

An orthogonal sequence X : O — .7 equipped with a G-action is equivalent to an orthogonal sequence
of G-spaces, i.e., a continuous functor X: O — G7 C J5. The functor i: O — | factors through GI C lg.

o— > 7
{ X
lg

The left Kan extension of the continuous G-functor X : O — 9 along the continuous G-functor i: O —
I is the continuous G-functor i, X : lg — J¢ given at level V by the same topological colimit

. X)(V) = colim X, =I(R", X,
(.X)(V) = colim | X =IR'.V): A

n,p: R*—

as before, but now with the diagonal G-action arising from the G-actions on i/V and on X,,. Simplifying
the notation from (i,X)(V) to X (V') we recover the definition given above.
((Discuss how right S-module action prolongs to the generalized structure maps.))

8.4 Examples of orthogonal G-spectra

Example 8.14. The sphere orthogonal G-spectrum S is the sphere spectrum equipped with the trivial

G-actions. In other words, S, = S™ for each integer n > 0, with trivial G-action and the usual O(n)-

action, and o: S, A S' — S,,11 is the identification S™ A S! =2 S"*+1 which is clearly G-equivariant.
For each G-representation V there is a G-homeomorphism

S(V)=I(R", V)4 o, Sn =8V

that sends ¢ A s to S?(s), for ¢: R* — V and s € S". In particular, G does not act trivially on SV
unless it acts trivially on V. The generalized structure map o: S(U) A SY~Y — S(V) corresponds to
the G-homeomorphism

SUASVU =58V
obtained by one-point compactification from the G-linear isomorphism U @ (V —U) 2 V.

Example 8.15. For a finite group G, a Z[G]-module M is an abelian group with an additive G-action.
For each n > 0 the space HM,, = B(M, S™) of finite sums

u = Z m;x;
i
with m; € M and z; € S™ admits a natural G-action, with g € G taking u to

gu="y (gmi)z;.

i

It commutes with the O(n)-action arising from the standard action on S™, and the structure maps
B(M,S™) A SY — B(M,S™*!) are G-linear. We call HM the Eilenberg-Mac Lane G-spectrum of M.
The prolonged functor has

HM(V) = B(M,S")

with g € G taking u = Y, mz; to gu = Y, (gm;)(gx;), where m; € M and z; € SV. The generalized
structure maps are of the form

o: B(M,SY)YASV=Y — B(M,SV)

taking (3", miz;) Ay to >, mi(z; Ay) for m; € M, z; € SY and y € SVY.
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The category G Sp° of orthogonal G-spectra has all small colimits and limits, and is tensored and
cotensored over the category G.7 of G-spaces and G-maps. These colimits, limits, tensors and cotensors
are all created levelwise:

(colim X4 ), = colim(Xy,)rn
(lim X))y, = im(X4)n
(XANT), =X, AT
F(T’X)n = F(TvXn)

The G-actions on colimq (X4 ), and lim, (X, ), are determined by the termwise coactions on \/  (Xa)n
and [],(Xa)n. The G-action on X, AT is the diagonal action

gz Nt) =gz Agt
and the G-action on F(T, X,,) is the conjugation action

(9/)®) = g(flg (1),
forgeG,ze X, teT and f: T — X,,.
Example 8.16. For any G-space T' € G.7 the suspension spectrum T'A S = X°°T is given by
(T, =T AS"

with G acting only on T and O(n) acting only on S™. The structure maps are the identifications
T AS™ASY 2T A S which are clearly G-equivariant. The prolonged functor is given by

(Z°T) (V) =T ASY
with the diagonal G-action, and the generalized structure map for U C V is the G-homeomorphism
TASYANSY V=T ASY.

Given a group homomorphism 6: G; — G4, any orthogonal Ga-spectrum Y gives rise to an orthogonal
G1-spectrum X = 0*Y, having the same underlying orthogonal spectrum, and the G;-action given by
composition with 8. We get a functor 6*: G5 Sp° — G4 Sp°.

Example 8.17. Any orthogonal spectrum X can be viewed as an orthogonal G-spectrum by giving each
space X, the trivial G-action. When V = R™ with G-action given by a homomorphism p: G — O(n),
the G-action on X (V') = X, is the restriction of the O(n)-action on X,, along p.

The functor #* admits left and right adjoints. As in the case of G-spaces, it is easiest to discuss the
cases m: G — G/N and : H — G separately.

Definition 8.18. For N a normal subgroup of G, the functor
7 (G/N)Sp°® — G Sp°

has the left adjoint
(=)/N:GSp°® — (G/N)Sp°

mapping an orthogonal G-spectrum X to the N-orbit orthogonal G/N-spectrum X/N with n-th G/N-
space (X/N), = X,,/N, and n-th structure G/N-map

Xo/NAS (X, ASY/N TN X, /N

The unit n: X — 7*(X/N) is the canonical surjection X,, — X,,/N at each level, and the counit
e: (m*Y)/N — Y is an isomorphism.
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Definition 8.19. The functor 7#* also has the right adjoint
(—)V: GSp® — (G/N) Sp°
mapping an orthogonal G-spectrum Z to the N-fixed orthogonal G//N-spectrum Z~ with n-th G/N-
space (ZN),, = (Z,)", and n-th structure G/N-map
N
ZN NSt = (Z, ASHN T ZN

The unit : ¥ — (7*Y)¥ is an isomorphism, and the counit e: 7*(Z") — Z is the canonical inclusion
ZN — Z, at each level.

Definition 8.20. For H and subgroup of G, the functor
51 GSp° — H Sp°
has the left adjoint
G Xy (=): HSp® — GSp°

mapping an orthogonal H-spectrum X to the induced orthogonal G-spectrum G x g X with n-th G-space
(G xpg X)n =Gy Ag X, and n-th structure G-map

(Gy A X)) ASY 2 Gy A (X ASY) 2% Gy Ay X -
The unit 7: X — *(G xg X) is the inclusion X,, 2 H, Ay X, C G4 Ag X, at each level, and the
counit G Xz (.*Y) — Y is given by the G-action G4 Ay Y, — Y, at each level.

Definition 8.21. The functor ¢* also has the right adjoint
Fy[G,—): HSp® — G Sp°

mapping an orthogonal H-spectrum Z to the coinduced orthogonal G-spectrum Fy[G, Z) with n-th
G-space Fr (G, Z), = Fu(G4, Z,), and n-th structure G-map

Fiu(Ge, Z) A SY — Fu (G, Zn ASY "D Fr(Gys Zogn) -

The unit n: Y — Fy[G,*Y) is given by the adjoint G-action Y;, — Fy(G4,Y,,) at each level, and the
counit e: *Fy[G, Z) — Z is the projection Fy (G4, Z,) — Fy(Hy, Z,) = Z, at each level.

Remark 8.22. Following Lewis-May-Steinberger, we write G Xy X in place of G4 Ag X, in part to
remember that the generalized structure maps o: (G xg X)(U) A SV=Y — (G xy X)(V) involves an
untwisting isomorphism and is more complicated than the notation G4 Ay X might suggest. Sim-
ilarly we write Fg[G,Z) in place of F(G4,Z) to emphasize that the adjoint generalized structure
map &: Fy[G,Z)(U) — QV-UFy[G,Z)(V) also involves an untwisting isomorphism that might not be
expected from the notation Fy (G4, Z).

Remark 8.23. For each orthogonal G-spectrum X and subgroup H C G the H-fixed orthogonal
spectrum X is defined by the same formulas as in the case when H = N is normal in G, with
(XH), = (X,). The functor (—)* can be viewed as the composite

« _N\H K
GSp° s (NgH) Sp° 5 (W H) Sp° 5 Sp°
as in the case of G-spaces. Similar remarks apply to X/H.

Remark 8.24. The H-orbit and H-fixed functors will not preserve m -isomorphisms when applied to
general orthogonal G-spectra, hence are only homotopically meaningful in restricted settings. On the
other hand, induction and coinduction along H C G will have good homotopical properties, since G
admits the structure of a finite H-CW complex.
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8.5 Closed symmetric monoidal structure

The smash product X AY of an orthogonal G;-spectrum X and an orthogonal Ga-spectrum Y is naturally
an orthogonal (G x Gz)-spectrum, with (g1, g2) acting as the smash product

giANge: XANY — XAY

ofg: X - Xand g2: Y — Y. When G; = Gy = G, we can restrict the (G x G)-action over the diagonal
A: G — G x G, to view the smash product X AY of two G-spectra X and Y as a G-spectrum. Here
g € G acts as the smash product

gAg: X NY — X AY.

The function spectrum F'(X,Y) from an orthogonal G1-spectrum X to an orthogonal Ga-spectrum
Y is naturally an orthogonal (G7” x G3)-spectrum, where G7¥ denotes the opposite group of Gy, i.e., the
group with the same underlying set as G, in which the product gg’ of two elements g, g’ € G is defined
to be the product ¢’g as formed in G;. An element (g1,g2) € G¥ x G acts on F(X,Y) by

F(g1,92): F(X,Y) — F(X,Y).

When G = G2 = G we can restrict the (G? x G)-action over the anti-diagonal A= (xx1A:G—
G°P x G, given by A(g) = (971, g), to view the function spectrum F(X,Y) of two orthogonal G-spectra
X and Y as a G-spectrum. Here g € G acts on F(X,Y) by

F(g~',9): F(X,Y) — F(X,Y).
We get a closed symmetric monoidal structure on each category G Sp°.

Example 8.25. An orthogonal ring G-spectrum R is a monoid in the category G Sp°, with unit G-map
7n: S — R and multiplication G-map pu: RA R — R, satisfying unitality and associativity. An orthogonal
commutative ring G-spectrum is a commutative monoid in the same category.

Example 8.26. For Z[G]-modules M and N, the tensor product M ® N has a diagonal Z|G]-module
structure with g(m ® n) = gm ® gn, and the natural map

HM AHN — H(M ® N)

is a G-map of orthogonal G-spectra. Similarly, Hom(M, N) has a conjugation Z[G]-module structure,
and the natural map
H(Hom(M, N)) —s F(HM, HN)

is a G-map of orthogonal G-spectra.

Example 8.27. For any orthogonal G-spectrum X, the n-fold smash power
XM =XN-NX

is an orthogonal ¥, ! G-spectrum, where the wreath product
YRlG=%, xG"

is the semidirect product for the permutation action of the symmetric group ¥, on the n-th power
G" =G x --- x G. Here (g1,...,9,) € G™ acts on X" with g; acting on the i-th smash factor, and
the transposition (i,i + 1) € ¥,, acts on X" by the twist map X 0=D Ay A XAP=I=1) for 1 <4 < n.
These transpositions generate 3,,, subject to the Coxeter group relations (i,i + 1)? = e and

(i —1,0)(iyi+ 1) — 1,4) = (i i+ 1)(i — 1,4) (4, + 1),

together with the condition that (i,i+ 1) and (4, j 4+ 1) commute for |¢ — j| > 2. The analogous relations
¥?=1: XANX - XAX and

(YADAAYN (AL =LANOADAAY): X = XM
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are satisfied in any symmetric monoidal category (when we suppress the associativity isomorphisms «).

In particular, for any orthogonal spectrum X, the smash power X" is naturally an orthogonal
Y,-spectrum. By restriction to cyclic permutations, X" is also naturally an orthogonal C,,-spectrum.
When R is an orthogonal commutative ring G-spectrum the n-fold multiplication p(™ : R*" — R factors
through the X,-orbit spectrum to give a G-map R""/¥,, — R for each n > 0. This orbit construction
is not generally homotopically meaningful, but the corresponding “extended power” construction

Dy(R) = ESyy Ay, R™

and the resulting maps
R —— EX, Ay, RN —— RN/,

play an important role in multiplicative stable homotopy theory.

(Multiplicative norms.)
(Topological Hochschild homology.)

9 Stable equivariant homotopy theory

9.1 Homotopy groups

The homotopy groups of an orthogonal G-spectrum are defined as filtered colimits over suitable G-
representations. To specify the (small) category over which this colimit is formed, we can use the notion
of a G-universe (Lewis-May-Steinberger, p. 11).

Definition 9.1. Given a collection of irreducible (real, finite-dimensional, orthogonal) G-representations,
including the trivial representation R, the associated G-universe 7 is the direct sum of a countably infinite
number of copies of each of these irreducible G-representations. It is itself a real inner product space of
countably infinite dimension, G acts on % by isometries, and the fixed subspace % € is identified with
a countably infinite direct sum of copies of R.

If 7 = R*° only contains the trivial G-representation, we call it the trivial G-universe. If % contains
every irreducible G-representation, we call it a complete G-universe.

Example 9.2. If G is a finite group, the complex regular representation C[G] contains one or more
copies of each irreducible G-representation, and C[G] = R[G] & R|[G]. Hence the direct sum

U = éR[G]

is a complete G-universe, with % ¢ = ;= , R =R. In this case the n-fold direct sums

npg = @ R|G]

of the real regular representation pg = R[G] form a cofinal sequence
0CpegC2gC---CnpgC...

of finite-dimensional subrepresentations of % = ocopg. In other words, for any finite-dimensional repre-
sentation V' C % there exists an n such that V C npg.

Example 9.3. If G is a positive-dimensional compact Lie group, it has a countable number of isomor-
phism classes of irreducible representations. For instance, the irreducible complex representations of the
circle group T = U(1) are the integral tensor powers C(n) = C(1)®™ of the standard representation.
Here z € T acts on C(n) by multiplication by z™. Viewed as real representations these are irreducible for
n # 0, while C(0) = R@® R is the sum of two copies of the trivial real representation.
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Let X € G'Sp° be an orthogonal G-spectrum, with generalized structure maps o X(U)ASYV-U —
X (V). The following definition depends on an chosen G-universe % , or more specifically on the collection
of irreducible G-representations contained in % .

Definition 9.4. For each closed subgroup H C G and each non-negative integer k > 0 we let
ml(X) = colim T (QVX(V)).
Here V ranges over the partially ordered set of G-representations V C %,
QY X (V) =7 (SF A SY — X(V))

is the set of homotopy classes of H-maps S¥ A SV — X (V), and the colimit is formed over the functions
rH(QUX(U)) — 7 (QVX(V)) for U C V C %, induced on 7l by the G-map QUX (U) — QV X (V)
that takes f: SY — X (U) to the composite

SV 2 SUASY-U LM x(yA SV 2 X (V).
For negative k = —¢ < 0, we let
H ; H/V-R*
X) = 1 Q X(V)).
m (X) = _colim g ( (V)
Here V' ranges over the partially ordered set of G-representations V' C % that contain the standard copy
of R C %,
QR x (V) = 27 (5V R = X(V))

is the set of homotopy classes of H-maps S V-R'  x (V), where V — R denotes the orthogonal comple-
ment of R® in V, and the colimit is formed over the functions w(’)q(QU’R[X(U)) — it (QV*REX(V)) for

RECU CV C %, induced on 7/l by the G-map QU_RZX(U) — QV_RZX(V) that takes f: SU-R" —
X (U) to the composite

SV—R" = QU-R" A gV=U I, iy A §V-U 74 x (V).

Remark 9.5. For k > 0 there are evident isomorphisms 7/ (Q2X) =/l | (X). For k = —¢ < 0 and
R~! C R C V we can identify (V — R?) @R with V — R, and make compatible identifications

Q" Rax(v) =" R X (V)

that induce isomorphisms 74 (QX) = /! | (X), also in these cases. (Can we make preferred identifica-

tions? Do they matter for product pairings?)

Example 9.6. When G is finite and = oopg, these colimits can be calculated using the cofinal
sequence of G-representations npg:

(X)) = co}Lim T (Q"C X (npg))

for k > 0 and ,
mH(X) = colim 7l (Q"°¢~R X (npg))

n

for k = —¢ < 0. Here R = ({pg)Y C npg for each n > /.

Whenever V is sufficiently large the sets 77QV X (V) and WE(QV_RZX(V)) are naturally abelian
groups, so in each case the colimit 77(X) is also naturally an abelian group. We write 7 (X) for the
resulting graded abelian group, and obtain a functor

. GSp® — grAb
for each H C G, taking a G-map f: X — Y to the homomorphisms f, = 7 (f): 7 (X) - 72 (Y).

*

Definition 9.7. The collection of abelian groups m,(X) = {H + 7 (X)} is part of a structure called
a Mackey functor. (The additional structure is given by restriction maps 7% (X) — mf (X) and transfer
maps 7 (X) — 7L (X) for G-maps G/H — G/L, which we do not specify here.) We write 7, (X) =
{H — 7H(X)} for the resulting graded Mackey functor.
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9.2 Level equivalences and 7,-isomorphisms
The following definitions depend on an chosen G-universe % . Compare Mandell-May, §I11.3.

Definition 9.8. A G-map f: X — Y of orthogonal G-spectra is a level G-equivalence (= level equiva-
lence in Mandell-May) if f(V): X(V) — Y (V) is a weak G-homotopy equivalence, for each G-representation
Vcu.

A G-map f: X — Y is a m,-isomorphism (= m,-isomorphism in Mandell-May) if 7 (X) — 7 (V)
is an isomorphism for each subgroup H C G and each integer k.

Lemma 9.9. Fach level G-equivalence f: X — Y is a w,-isomorphism.

Proof. By assumption, each G-map X (V) — Y (V) is a weak G-homotopy equivalence. Since SV and
SV—R" are finite G-CW spaces it follows that QVX(V) - QVY (V) and QV_RZX(V) — QV_RZY(V)
are weak G-homotopy equivalences. Hence 72 (QVX (V) — aZ(QVY(V)) and n (QV R X(V)) —
7 (QV-RY (V) are isomorphisms for all H C G, k > 0 and £ > 0. Passing to colimits, 72 (X) — 72 (Y)
is an isomorphism for each H C G and each integer k. O

The following definition also depends on the choice of G-universe % .

Definition 9.10. An orthogonal G-spectrum X is a G-{2-spectrum if for each pair of G-representations
U CV C % the adjoint generalized structure G-map

G: X(U) — QY UX(V)
is a weak G-homotopy equivalence.

Definition 9.11. The G-equivariant stable homotopy category (associated to the G-universe %) is the
localization of the category G Sp° of orthogonal G-spectra obtained by inverting the subcategory # of
T .-isomorphisms:

Ho(G'Sp°) = G'Sp°[# 1]

It is equivalent to the localization of the full subcategory of (2-G-spectra where the level G-equivalences
have been inverted, because every orthogonal G-spectrum is 7 -isomorphic to an Q-G-spectrum.

Remark 9.12. The converse to Lemma 9.9 for maps between G-{2-spectra will be proved as Theorem 9.29
below. The non-equivariant case was trivial, but the equivariant case requires some work.

Proposition 9.13 (Mandell-May, II1.3.8). Let X be any orthogonal G-spectrum, and W any G-repre-
sentation. The adjunction unit n: X — QVEW X is a 7 -isomorphism.

Proof. Write %/ as an orthogonal sum %’ @ coW, such that each irreducible G-representation in % can
either be embedded in %’ or in W, but not both.
For k>0
H _ . H/ OV '&nW /
X)= col Q XV W
of!(X) = colim fl( (V' & niv))
maps by 7. to )
HQVEWX) = golim T (QV WOV SV X (V! @ nW)).
/Cd /7TL

The generalized structure G-maps
o SVX(V W) — X(V' & (n+1)W)

induce a map from the second colimit to the first. These are inverse isomorphisms (check!).
For k=-(<0

nf (X) = colim m! (@7 VR X (V! @ W)

where V'’ and n are such that R® € V/ or R® € nW, and maps by 7, to

AOQVSYX) = colim 7 (QVEWRQVEV X (V! @ nW)).
k V'Ccu'n 0

The generalized structure G-maps ¢ again induce a map from the second colimit to the first, and these
are inverse isomorphisms (check!). O
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Corollary 9.14. Let X be any orthogonal G-spectrum.
S'A = (X) — il (ST A X)
is an isomorphism for each H C G and each k € Z.

((The case of e: YW QW X — X seems to require more effort, either by model category theory, or by
using RO(G)-graded homotopy groups. Or does the following direct argument work?))

Proposition 9.15. Let X be any G-spectrum and W any G-representation. The adjunction counit
e: YWY X — X is a m, -isomorphism.
Proof. For k > 0,
ad (S aAVX) = colim QYo x(v))
maps by €, to
(X)) = co%/im QY X(V)) = (Iz/glcu‘r} @V -"avx(v)).

The adjunction unit : 1 — Q"W induces a homomorphism 7y from the second colimit to

colim ad (QVWaVsWaV x (v)) 2 #H (2o X).
C

This makes sense because of the following commutative diagram, for W C U C V.

Qvl="y QYe
QUX(U) —>QUZWQWX(U) —>QUX(U)
QU&J/ JQ% JQ%
QV?WW Ve

QX(V)—— L aVsWavx (V) — < L VX (V)

Here 6: X(U) — QV-UX (V) and 5: SVOVX(U) — QV-YSWAQW X (V) are the generalized adjoint
structure maps of X and SV QW X respectively.
The composite QY€ 0 QU=Wy is the identity of QU X (U), for each W C U, so €, o ny is the identity.
Let sh" X denote the W-shift of X, i.e., the orthogonal G-spectrum with (sh" X)(V) = X(W @ V).
Hence (sh" X)(U — W) = X (U) for W € U. The horizontal maps above correspond to G-maps
Q% b X L QW aW sh' x L5 W sh x

The homomorphism 74 for X is the homomorphism 7, for QW sh" X, hence is an isomorphism by
Proposition 9.13. Thus ¢, for X is also an isomorphism.
((Handle k = —¢ < 0.)) O

9.3 Puppe sequences and gluing lemmas

The homotopy cofiber C'f and homotopy fiber F'f of a G-map f: X — Y of orthogonal G-spectra are
again orthogonal G-spectra. Compare Mandell-May, Theorem II1.3.5.

Proposition 9.16. For any G-map f: X — Y there are natural long exact sequences
. B fx
sl (V) L (R 2w (X) DS (V) = m L (FF) —

and
ol (CF) — (X)L (V) L m(CF) T k(X)) >

for all subgroups H C G. The natural map n: Ff — QCf is a m,-isomorphism.

Proof. (Same as in the non-equivariant case.) O
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Lemma 9.17. For any finite collection (X4)a of orthogonal G-spectra the canonical homomorphisms
Dl (Xa) = il (V X)

and

ol ([[ %) = [~ (x

« «

are isomorphisms, for all H C G and k € Z. Hence \/ , Xo — [[, Xa is a w,-isomorphism.
Proof. (Same as in the non-equivariant case.) O

Lemma 9.18. For any collection (X4)a of orthogonal G-spectra the canonical homomorphism
Dl (Xa) = mil(V Xo)
(e}

are isomorphism, for oll H C G and k € Z.
Proof. (Same as in the non-equivariant case.) O

Proposition 9.19 (Cobase change). Consider a pushout square

x—2 47

|, b
Y%YU Z

of orthogonal G-spectra, where f: X —'Y is a G-Hurewicz cofibration. If f (resp. g) is a m,-isomorphism
then f (resp. §) is a m -isomorphism.

Proof. (Same as in the non-equivariant case.) O

Proposition 9.20 (Gluing lemma). Consider a commutative diagram

vl x_— 7

L, L

vl x g

of orthogonal G-spectra, where f and f' are G-Hurewicz cofibrations. If X — X' Y —-Y' and Z — 7’
are T, -isomorphisms, then so is the induced map Y Ux Z —Y' Ux, Z'.

Proof. (Same as in the non-equivariant case.) O
Proposition 9.21. IfY is the colimit of a sequence
Xo—=>X1 ==Xy = Xor1— ...

of G-Hurewicz cofibrations, then
colimmf (X,) — 7l (V)

is an isomorphism, for each H C G and k € Z.
Proof. (Same as in the non-equivariant case.) O

((Discuss pairings 7 (X) @ 7//(Y) — fl_,(X AY), especially when k and ¢ have opposite signs.))
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9.4 Untwisting isomorphisms

Lewis-May-Steinberger, §11.4, show how the induction and coinduction functors interact with the closed
symmetric monoidal structures, first at the space level and then at the spectrum level.
Let ¢.: H C G, let X and Z be H-spaces and let Y be a G-space.

Lemma 9.22. (i) The left adjoint

C: G Mg (XALY) = (Go Ag X)AY
YA (@ Ay) — (Y Az) Ay

to the H-map n ANY : X ANY — (G4 Ag X) AY is a G-homeomorphism, with inverse
(YA Ay =y Az Ay Thy).
(ii) The right adjoint
¢: F(Y, Fy(Gy,Z)) — Fu(Gy, F('Y, Z))
fre(re e fO M)
to the H-map F(Y,e): F(Y,Fy(G4+,2)) — F(Y,Z) is a G-homeomorphism, with inverse
o [y (v (D) -

Equivalently,
(NN =00 and T )Y() = F (1)) -

(iii) The right adjoint
ki F(Gy A X,Y) — Fy(Gy, F(X,'Y))
fraym @@=y f(7 Ag))
to the H-map F(n,Y): F(G4+ Ag X,Y) = F(X,Y) is a G-homeomorphism, with inverse
e (Y Az ey [ (@)
Equivalently,
K@) =v-f(0 Az)  and &)y Ax) = (7).
Example 9.23. For G-spaces Y, there are natural G-homeomorphisms
C: Gy A (Y)=(G/H) 4+ NY

and
k: F(G/HL,Y) = Fg(Gy,'Y).

Example 9.24. For orthogonal H-spectra X and Z, the induced orthogonal G-spectrum G x g X has
generalized structure G-maps

1N

o (Gy A XN ASY 5 G A (X)) ASW) 23 Gy ag X(V)

and the coinduced orthogonal G-spectrum Fy[G, Z) has adjoint generalized structure G-maps

& Fu(Ge, 2(U) ") By (G, FOAS™, 2(V)) 25 F(SY, Fu(Gy, 2(V))),

for G-representations U C V with W =V —U.
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Proposition 9.25. Let : H C G, let X and Z be orthogonal H-spectra and let Y be an orthogonal
G-spectrum. (i) The left adjoint

GOy (XACY) =5 (Gxg X)NY

to the H-map n AN1: X NY = (G xg X)AY is a G-isomorphism. In particular,

o

C(:Gxyl'Y — (G/H); NY .

(ii) The right adjoint

o: F(Y, FulG, 2)) = FulG,F("Y, 2))

to the H-map F(l,e): F(Y,Fy[G,Z)) — F(Y, Z) is a G-isomorphism.
(iii) The right adjoint
ki F(Gxy X,Y) — Fy[G, F(X,/*Y))

to the H-map F(n,1): F(Gxy X,Y) = F(X,Y) is a G-isomorphism. In particular,
k: F(G/HL,Y) = Fy|G,/'Y).

Proposition 9.26. If f: X — Y is a &, -isomorphism of orthogonal G-spectra, and B is a finite G-CW
complex, then
F(1,f): F(B,X) — F(B,Y)

is a m,-isomorphism.
Proof. There is a natural isomorphism
o (F(B, X)) =l (F(G+ An B, X))

and G4 Ay B = (G/H)4+ A B is a finite G-CW complex, so it suffices to prove that F(1, f) induces
an isomorphism on 71',? for each k € Z. By induction over the G-cells of B, it suffices to prove this for
B = (G/K)+ A S", for each K C G and n > 0. The natural isomorphisms

T (F((G/K)+ A S™, X)) 2w (9" X) 2 mil, (X)
then reduce this to the assumption that f induces an isomorphism on 7T]€(_,’_n. O
Corollary 9.27. If W f: WX — YWY is a m -isomorphism, then f: X —Y is a m,-isomorphism.

Proof. By the case B = SV of the proposition, QW XW f is a 7 -isomorphism. This uses that S" admits
the structure of a finite G-CW complex. By naturality of the m -isomorphism 7, it follows that f is a
T ~-isomorphism.

X T oWsWx

fl J{QWZWf

y Lo WsWy
O

Remark 9.28. The generalized converse assertion, that m -isomorphisms are preserved by A A — for
G-CW complexes A, is harder to prove. This can be obtained model-categorically, as in Mandell-May.
For finite or abelian groups G it can be deduced from the Wirthmiiller equivalence, as in Schwede’s notes.
See Proposition 10.27.

Here is the promised partial converse to Lemma 9.9. See Lewis-May-Steinberger (1.7.12) or Mandell-
May (I11.3.4 and §I11.9), who refer to Henning Hauschild (a student of Tammo tom Dieck) for the idea
of the argument.

Theorem 9.29. Fach m, -isomorphism f: X — Y between G-Q-spectra X and Y is a level G-equiva-
lence.
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Proof. Let Ff be the homotopy fiber of f: X — Y, which is an Q-G-spectrum if X and Y have this
property. In view of the homotopy fiber sequence

Frv) = xvV) ™ yw) = Frover)

and the long exact sequences

fx fa
—>7rfik(X) —>7rfik(Y) —>7r,?(Ff) —>7r£I(X) —>7r,?(Y) B

it suffices to prove the following lemma (with F'f renamed as X). O

Lemma 9.30. If X is an Q-G-spectrum such that 7f(X) = 0 for all H C G and k € Z, then
B (X(V)) =0 forall HC G,V C% and i > 0.

(3

Proof. For each H C G the case of 71 with V = VH follows from the case V = R", with n > 0. Here

o (X,) = 7l (X)) =l (X) =0

K2 K3 11—

for each ¢ > n. Furthermore,

il (Xn) =m0 (V' X,) = ng (R X)) =l (X)) =0

2

for each 0 <17 < n.

The compact Lie group G does not contain any infinite descending chain of (closed) subgroups, so
by induction we may assume for a given H C G that 75X (X (V)) = 0 for all proper subgroups K of H
and all finite G-representations V' C %. We must prove that 72 (X (V)) for all these V. The inductive
beginning, for H = {e}, was established in the previous paragraph.

Let W=V —V%and Z=W — W¥_ so that we have direct sum decompositions

V=VSaeW and W=ZaWH

of G and H C NgH-representations, respectively. Let d = dim(W ).
Claim: 7(X(V)) =0 for i > d.

Let S(Z) € D(Z) be the unit sphere and unit disc of the H-representation Z. We have an H-
homotopy cofiber sequence
S(Z)y — D(Z)y — D(2)/5(Z) = 57
that induces a homotopy fiber sequence

F(SZ,a"" x (V)2 — F(D(Z)+, Q""" X(V)HE — F(S(Z)., Q""" X (V).

Here
F(SZ, oV x(v)H = @V x(v)H

since Z® W =W, and
F(D(Z)., Q" x (V)7 ~ V" x(V)H

since D(Z) is H-equivariantly contractible. By the assumption that X is an Q-G-spectrum, for the case
of V& C V with orthogonal complement W, the map

@) X(vOHT = @Vx (V)
is a weak equivalence. Hence we have a homotopy fiber sequence
X(VOHE — Q""" x (V)T — F(S(Z), 07" x(V)H.

We have shown that 7, (X (V) H) = nZ(X(V¥)) = 0, since V¢ is a trivial H-representation. Likewise,
WH =~ R? is a trivial H-representation, so to show the claim that

T (X(V)) = ma( @ X(V)H) = 0

K2
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for i > d it suffices to show that

T (F(S(2) 4, 2" X(V))) =0

for j > 0. We may triangulate S(Z) as a finite H-CW complex, with cells of the type H/K x D™ for
K C H. By definition Z# = {0}, so S(Z)" = (), hence only cells with K a proper subgroup of H will
occur in this cell structure. By the inductive hypothesis on H,

l (F((H/K)4 A S QY X (V) 2 af (oW X (V) 2 7l g(X(V) =0

for all > 0 and n > 0, so by induction over the H-cells of S(V) we deduce that

T (F(S(Z)+, Q" X (V) =0

for 7 > 0, as required to finish the proof of the claim.

It remains to prove that 7/7(X(V)) = 0 for 0 < i < d. Choose a trivial G-representation U =2 R4+!
that is orthogonal to V', and apply the argument above to U@V in place of V. Then (U V)¢ = Ua VY,
soW = (UaV)—(UaV)¥ and Z = W—WH are unchanged. In particular, d = dim(W#) is unchanged,
SO ﬂf(X(U @®V)) =0 for j > d. In view of the isomorphism

G mfl(X(V) = af (XU e V) = nfln (XU e V)

we conclude that 77 (X (V)) = 0 for all i > 0. O

10 The Wirthmiiller equivalence

Let G be a compact Lie group, H C G a closed subgroup, and L = T,y (G/H) the tangent space H-
representation. Suppose that % is a G-universe such that G/H embeds in %. The following theorem
was proved by Wirthmiiller for suspension spectra of H-spaces, and extended to general H-spaces by
Lewis-May-Steinberger.

Theorem 10.1. Let X be an orthogonal H-spectrum. There is a natural &, -isomorphism
Gxy X = FylG,2EX)
of orthogonal G-spectra.

Example 10.2. For each orthogonal spectrum X there is a natural 7,-isomorphism
Tx X ~F[T,XX)

of orthogonal T-spectra, so that 7 (T x X) = nf(F[T,XX)) for all H C T and k € Z. Here & = XL,
where L =TT =iR.

10.1 Algebraic prototype

Let G be a finite group, H C G a subgroup, and M a Z[H]-module. The induced and coinduced
Z|G]-modules

V: Z[G] @z M +— Homg ) (Z[G], M) : w
are naturally isomorphic, by a pair of mutually inverse homomorphisms ¢ and w that we now make
explicit.

Definition 10.3. Let
N= Y kHeZ|G/H
kHeG/H
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be the norm element, and let t: Z — Z[G/H| be the Z[G]-module homomorphism given by ¢(1) = N.
(Note that gN = N for each g € G, since kH — gkH permutes the left cosets of H in G.) Consider the
Z[G]-module homomorphism

t® 1: Homgzg)(Z[G], M) = Z @ Homzx(Z[G], M) L Z|G/H] ® Homgz g (Z][G], M)
mapping f: Z|G] = M to N ® f. Consider also the Z[G]-linear untwisting isomorphism

¢: Z[G)] @1 (" Homg ) (Z[G], M)) —» Z[G/H] @ Homz1)(Z[G], M)
1@ fr=yenf
and the Z[G]-linear homomorphism
1 ®e: Z[G] @z(m) (" Homz)(Z[G], M) — Z[G] @z[m M,
where e: Homgz ) (Z[G], M) — M is the counit mapping f: Z[G] — M to f(e) € M. Let
w=(1®e¢  (t®1): Homgy)(Z[G], M) — Z|G] @zig) M

be the composite Z[G]-linear homomorphism. More explicitly, a Z[H]-linear homomorphism f: Z[G] —
M maps under (t ®1) to 32; ycg/ i kH ® f, which is the image under ¢ of 37, e/ k ® k7' f, which

maps under 1 ® € to
> ke fkTh).
kHEG/H
(Note that e(k="f) = (k= 1)(¢) = f(ek~) = F(k~1).)
Definition 10.4. Let u: Z[|G] — Z[H] be the Z[|H]-Z[H]-bimodule homomorphism given by

() g forge H,
u =
g 0 otherwise,

let u®1: Z[G] @z;g) M — Z[H] @z M = M be the Z[H]-module homomorphism given by

gm for ge H,

(U®1)(g®m)={

0 otherwise,
and let
V1 Z[G] @z M — Homgz g (Z[G], M)

be the Z[G]-module homomorphism that is right adjoint to u ® 1. Hence 9(g ® m) € Homzr)(Z[G], M)
is given by

ygm if yg € H,

0 otherwise.

-

Proposition 10.5. The natural Z|G]-module homomorphisms ¥ and w are mutually inverse isomor-
phisms.

Proof. wi maps g ® m to

wif)= Y kofE",

kHEG/H
where f(k™!) = k= tgm if k=lg € H and f(k~!) = 0 otherwise. Hence
ko fk Y =kok'gm=kk lgam=gam

if kH = gH, and k ® f(k~!) = 0 otherwise. Thus wi)(g ® m) = g ® m.
Conversely, ¥w maps f to

S ke f(ETY),

kHeG/H

which takes v to vkf(k~!) where kH € G/H is such that vk € H, i.e. kH = vy 'H. By assumption f
is Z[H]-linear, so Yw(f) takes v to

Yef(k™Y) = f(vkk™) = f(7),

i.e., is equal to f again. O
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10.2 Space level constructions

(See Lewis-May-Steinberger, §I1.5.)
Let G be a compact Lie group and let H C G be a closed subgroup.

Definition 10.6. Let L = T,y (G/H) be the tangent space of G/H at the point eH. The left H-action
on G/H induces a left H-action on L, making L an H-representation. We may equip L with an inner
product so that H acts through isometries; hence L is a finite-dimensional orthogonal L-representation.

The following G-map t will be used in the construction of the Wirthmiiller equivalence 1.

Definition 10.7. Let j: G/H — W be a G-equivariant smooth embedding of G/H in a G-representation
W contained in the G-universe % . The induced map Tep (G/H) — Tjemy(W) is an H-linear embedding
L — W, with orthogonal complement W — L. The normal bundle of j is G xg (W — L) — G/H, so we
can extend j to an embedding

5 Gxy (W—L) — W

of a tubular neighborhood. By the Pontryagin-Thom construction, collapsing the complement of that
neighborhood to a point, we get a G-map

t: SV — GAg SV
(The case G finite?)

Example 10.8. For G =T and H = 1, we can take j: G — W to be the standard embedding T C C,
so that L = T.(T) = iR is the imaginary axis, with orthogonal complement W — T = R, the real axis.
A tubular neighborhood of T is 7: T x R = C\ {0}, and the Pontryagin-Thom construction gives the
T-equivariant map

t: 8¢ — §€/80 =T, ASR

that collapses S° = {0,00} C S€ to the base point. With the choice 7(e¥,m) = e™*+% we get t(re'?) =
i0
e Alog(r).

The following H-H-map u will be used in the construction of the inverse Wirthmiiller equivalence w.

Definition 10.9. The normal bundle of eH € G/H is L. Let the H-map
k:L — G/H

be the embedding of a tubular neighborhood. We can lift k£ to an H-H-map

k:LxH—G.

The Pontryagin-Thom construction, collapsing the complement of the image of k to the base point, gives
an H-H-map
u: Gy — SEANH, .

Here hy € H and hy € H act from the left and from the right, respectively, on G by hy - g - ho = higho,
and on SE A H, by hy - (ﬁ, h) -hy = (hlg,hlhhz).

(The case G finite?)

Example 10.10. For G = T and H = 1, we can take k: L — G to be the inverse iR — T of the
stereographic projection from —1 to the tangent line 1 4+ ¢R. The image of k is T\ {—1}, and the
Pontryagin-Thom construction gives the map

u: Ty — Ty /{-1}, = SR

given by
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Lemma 10.11. The composite
SW L GyAy SVTE MM (SEAH ) Ay SV L = gL A gW L 2 gW
is H-equivariantly homotopic to the identity.

Example 10.12. For G = T and H = 1, the composite map S¢ — S takes re? to log(r) +i-2tan(6/2).
This map sends the ray (—oo,0] C C to the base point, and is homotopic to the identity.

Definition 10.13. For each H-space Z, let
wz =1AN)CHtNLD): SV AFy(Gy,Z) — Gy A (SWL A 2Z)

be the composite

SV A Fu(Gy, Z) L5 (Gy Ay SYTEYAFu(Gy, Z)

Gy Ay (SYE A F (G, 7))
S Gy ng (WL AZ).

Here t: S — G4 Ag SW—1 is the G-map defined earlier, ¢ is the untwisting isomorphism, and the
H-map €: 1*Fy (G4, Z) — Z is the adjunction counit.

Example 10.14. For G =T and H = 1, the map
wz: SSAF(TL,Z) — Ty AL (SRAZ)

is given by _ ' _
wz(re® A f) = e Alog(r) A fle ).

Definition 10.15. For each H-space X, form the (left) H-map
uNl:GyAg X — (SEAH ) Ag X =2SEAX

and let
VYx: Gy Ag X — Fr(Gy, St A X)

given by
Ux(gAnz):y— (uA1)(vg Ax)
be the G-map that is right adjoint to u A 1. Hence eo ¢y = u A 1.

Example 10.16. For G =T and H = 1, the map
Ux: Ty M X — (T, SRAX)

is given by

Yx (e Ax): emr—>i~2tanagﬂ/\x
Definition 10.17. Let
vV:YANFy(Gy,Z) — Fu(Gy, Y NZ)
yAf— (= A f()
be the G-map right adjoint to the H-map Y Ae: Y A Fy(G4+,Z) =Y AN Z.

Proposition 10.18. The following triangle commutes up to G-homotopy.
SWANFy(Gy,Z)

w{ \

GiAg (SWENZ) ——————— Fr(Gy, SV A Z)

SW—Laz

Here v(w A f): v+ yw A f(7y), and we used the identification S N SW—L = *SW.
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Proof. To prove that v and Ygw-r,z o wz are G-homotopic is equivalent to proving that eov =1A¢
and €oYgw-r,z owz = (uA 1) owy are H-homotopic.

SY A Fy(Gy, Z) —2 s (G Ay SYLY A Fy(Gy, 2)
wz = e

v Gy Ag (SYEAZ) L G A (SW LA FR(Gy, 2))

1Ne YsW—Laz
FH(G+,SW/\Z) uAl uAl
SYAZ 1A SY A Fy(Gy, Z)

Here
(uA)owz=(1Ae)o(unl)CHtATL),

so it suffices to prove that (u A 1){~1(t A 1) is H-homotopic to the identity of SW A Fy (G, Z). This is
the content of Lemma 10.19 below. O

Lemma 10.19. For each G-space Y, the composite
-1
SWAY D5 (G Ag SYTEYAY S5 Gy A (SWTEAY) ML SEASWEAY = SV AY
is H-homotopic to the identity.
Example 10.20. For G =T and H = 1, the maps
1 .
SCAY LY (TL ALSRYAY S5 Ty AL (SRAY) Y28 SR ASRAY = SCAY
take e’ Ay by t A1 to e Alog(r) Ay, by (71 to e Alog(r) Ae "y, and by u A1 to
: 0 —i6
(log(r) + - 2tan 5) Ne "y
The composite map is homotopic to the identity.

Proposition 10.21. The following diagram commutes up to G-homotopy.

INYx

SY A (G4 Ag X) SV A Fu(Gy, St A X)

CIJ/% leLAX

Gy Ag (S AX) —M G Ay (°SW A X)

o

Here (T1: wA (yAx) = YA (y LwAx), we use the identification SW =L ASL = *SW and o: SW — SW
is the identity on SV~ and reverses sign on S”.

Proof. Tt suffices to prove that wgrax o (1 Ax) o ¢ is G-homotopic to 1 Ao A 1.
Gy Ag (SV AX) Gy Ag (SW=L A (G4 Ag X))

~|¢ =

SW NG Ag X) —L 5 (Gy A SYTEY A (G Ay X)
1AcAL 1INy x 1Ny x INYx

SW A Fy(Gy, S5 AX) L5 (Gy Ay SV L) A Fr(Go, ST A X)

IR

471

WsLax

Gy N (SWAX) 2 Gy Ay (SWL A Fp(Gy, SE A X))
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Chasing the diagram above, using that (1 Ae€)o (1 AYx) = 1 Au A1, we see that this reduces to
Lemma 10.22 below. O

Lemma 10.22. For each H-space X, the diagram

~

GiAg (SYAX)— =5 SW A (G4 Ay X) —L 5 (G A SWLYA (G4 A X)

ll/\a/\l lgl

Gy Ng SW e Gy Ay (SWLASEAX) L G Ay (SY=E A (G Ay X))

IR

R

SW_L

is G-homotopy commutative, where o: SW — SW is the identity on and reverses sign on S*.

Example 10.23. For G =T and H = 1, the diagram appears as follows.

T AL (SCAX) — 5 SCA (T AL X) —L s (T4 ALSRY A (T4 AL X)

o

Jl/\o/\l :lgl

T AL (SCAX) —— Ty Ap (SRASEAX) LT AL (SRA (T Ay X))

The clockwise route maps €' A re’® Az by ¢ to re' (@t A et Az, by t A1 to €@t Alog(r) A €' Az,
by ¢! to €@t Alog(r) Ae™ Az, and by 1AuA 1 to

. 0
@0 A (log(r) — i - 2tan 5) ANx.

At the left hand side, 1 A o A 1 takes e’ A re’® Az to
e Are P Az,

These maps are T-homotopic, since their restrictions to « = 0 are (non-equivariantly) homotopic.

10.3 Spectrum level maps
Definition 10.24. For each orthogonal H-spectrum Z, let the G-map of orthogonal G-spectra
w: SYANFy[G, Z) — Gxy (SYLAZ)
be given at level n > 0 by
wz,: SV ANFu(Gy,Z,) — G Ay (SWLAZ).
(Discuss compatibility with structure maps.)
Definition 10.25. For each orthogonal H-spectrum X, let the G-map of orthogonal G-spectra
Y: Gxyg X — FylG,SY A X)

be given at level n > 0 by
Ux,: Gy Ag X — Fu(Gy, ST A X,).

(Discuss compatibility with structure maps.)

Theorem 10.26 (Wirthmiiller, Lewis-May-Steinberger). Let H be a closed subgroup of a compact Lie
group G, let L = Ty (G/H) be the H-representation given by the tangent space of G/H at eH, and let
X be any orthogonal H-spectrum. The natural G-map

V: Gxy X = Fy[G, 8" A X)

is a w,-isomorphism of orthogonal G-spectra.
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Proof. (Compare Schwede’s Theorem 4.9) We prove that
Uy w8 (G xg X) — 7B (Fy|G, SE A X))
is an isomorphism for each K C G and n € Z. First consider the case n > 0, when

5(G xy X) = colim T QY(Gy Ag X(U)))

and
K (Fy[G, 8" A X)) = colim QY Fy (G, S* A X (V).

To prove that 1, is injective, we consider a class [f] in the source of 1,. It is represented at level U,
for some G-representation U, by a K-map

f:8"ASY — GyAg X(U).

The image 1. [f] is represented by the composite K-map

S ASU LGy ny X(U) Y Fu(Gy, ST A X(U)).
This image is zero, so that [f] is in the kernel of 1, precisely if
oo (WxanfAL):S"ASY — Fu(Gy,S* AX(V))

is K-equivariantly null-homotopic, for some G-representation V' that contains U. Replacing U and f by
V and the stabilized K-map

oo (fAL):S"ASY — Gy Ag X(V),

respectively, we may assume that U = V, and that x ) f is K-equivariantly null-homotopic. By
Proposition 10.21 the following diagram is G-homotopy commutative.

SW A S™ A SU

INYx ) f
Mfl \,

INYx
SWA(Gy A X(U)) 25D W A Py (G, SE A X(U))

gllz leLAX(U)

Gy Ay (PSW AX(U) =225 Gy Ay (1S A X(U))

Hence 1A f: SV ASPASY — SW A (G4 Ay X(U)) is K-equivariantly null-homotopic. It follows that
the stabilization
o(fAL): S"ASYRW s G Ay X(UDW),

of f at level U @ W of the colimit system defining 7/ (G x gz X), is K-equivariantly null-homotopic.
Hence [f] = 0 and . is injective.

To prove that 1, is surjective, we consider a class [g] in its target. It is represented at level U, for
some G-representation U, by a K-map

g: S"ASY — Fy(Gy,S* AX(U)).
The composite K-map f = (1A o)wgeax@w)(1Ag):
SWASTASY LW A P (G, SEAX(U))

1Nag

T G A (S AX(U)) HE Gy Ay X(W @ U)
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corresponds to an element [f] € 75 (G x g X). The image v, [f] is represented by the composite K-map

S ASTASY Ly Gyag XOW o U) XSV Fy(Gl, SEAX(W e U)).

By the naturality of ¢ x in X, and Proposition 10.18, the following diagram is G-homotopy commutative.

SW A S A SU ;
Mgl \‘

SW A Fy (G, ST A X(U)) 25U G ng (SW A X(U) — 27 Gy A X(W @ U)

\ J]wSWAX(U) wa(we;u)
F(1,0)

Fu(Gy,SEANSYAX(U)) ——= Fu(G4+,SEAX(W e U))
Up to transpositions, the composite F(1,0)v(1 A g) corresponds to the stabilization
o(gn1): S"ASYANSY — Fu(GL,SEAX(U)ASY — Fu(Gy,SEAX(U W)
of g at level U @ W in the colimit system defining 7% (Fg[G, S* A X)). Hence . [f] equals [g] (up to a
sign?) and v, is surjective. O

If G is finite, or abelian, then L = T,y (G/H) is a trivial H-representation for each subgroup H C
G. In particular, L extends to a (trivial) G-representation. In these cases we can give the promised
generalized converse to Proposition 9.26.

Proposition 10.27. (Suppose that L = T.y(G/H) is trivial for each H C G.) If f: X — Y is a
T, -isomorphism of orthogonal G-spectra, and A is a G-CW complez, then

INfFiANX — ANY
is a T, -isomorphism.
Proof. By induction over the skeleta of A, and a passage to colimits, it suffices to prove this for A =
(G/H)4 A S™. The r,-isomorphisms
(G/H)L A S™AX 28" A (G wy X) L8 S" A FyG, S* A X) = F(G/H., S™ A SE A X)

are natural in X. The 7, -isomorphism f: X — Y induces a 7 -isomorphism 1 A f: S" A ST A X —
S ASLAY. By Proposition 9.26, the map F(1,1Af): F(G/Hy,S"ASYAX) — F(G/Hy,S"ASEAY)
is a 7,-isomorphism, and by the Wirthmiiller equivalences and untwisting isomorphisms displayed above,
it follows that 1A f: (G/H)+ AS"AX — (G/H)4+ AS™ AY is a 7, -isomorphism. O

Corollary 10.28. (Suppose that L = T, (G/H) is trivial for each H C G.) A G-map f: X =Y is a
7, -isomorphism if and only if ¥V f: ¥V X — YWY is a 7, -isomorphism.

Theorem 10.29. (Suppose that L = Ty (G/H) is trivial for each H C G.) For each G-representation W,
the functors
W @Sp° — G Sp° and  QY:GSp° — G Sp°

preserve T, -isomorphisms. The induced functors
»W': Ho(G'Sp®) — Ho(G Sp°) and Q"' Ho(G'Sp°®) — Ho(G Sp°)
are mutually inverse equivalences of categories.

Proof. The first assertions follow from the cases A = SV and B = SV of Propositions 10.27 and 9.26,
respectively. The unit
n: X —QVsWx

and counit
e:XVaVy v

are ,-isomorphisms by Propositions 9.13 and 9.15. O]
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11 Spanier—Whitehead duality

Definition 11.1. For each H-representation V', define

SV =QVs=F(SY,S)
as an orthogonal H-spectrum.
Proposition 11.2. There are stable G-equivalences

F(G/H.,S)~Gwxy ST
and

(G/H)4 ~ Fy[G, S*).
Proof. The counit e: X208 — S is a stable H-equivalence, and induces a stable G-equivalence
FylG,2QrS) — FylG,S).

Using the Wirthmiiller equivalence Fy[G,XI0ES) ~ G xy QFS = G xyg S~F and the untwisting
isomorphism Fy[G,S) = F(G/H,,S) gives the first equivalence.

The Wirthmiiller equivalence G x g S ~ Fy[G,ST) and the untwisting isomorphism G xp S =
(G/H)4+ A S gives the second equivalence. O

Example 11.3. For G =T, H = 1 we have a stable T-equivalence F(T,,S) ~X71T,.

For an orthogonal G-spectrum X we call DX = F (X, S) the functional dual of X. The result above
calculates DX for X = (G/H),. More generally, the functional dual of X has duality properties similar
to those of finite-dimensional vector spaces or finitely generated projective modules, when X is a finite
G-CW spectrum. These duality properties are called Spanier—Whitehead duality. Following Dold—Puppe
and §ITI.1 and §II1.2 of Lewis—May-Steinberger we will first discuss Spanier—Whitehead duality in general
closed symmetric monoidal categories, and then specialize to the stable G-equivariant homotopy category.

11.1 Categorical duality theory

(See Lewis—May-Steinberger, §111.1.)

Let & be a closed symmetric monoidal category, with unit object S, product A: € x € — ¥ and
internal hom functor F': €°P x € — €, with coherently compatible unit isomorphisms SAY 2 Y X Y AS,
associativity isomorphisms (X AY)AZ =2 X A (Y A Z), commutativity isomorphism

VIXAY SYAX

and adjunction isomorphism
CXNY,Z)2C(X,F(Y,Z)).

As reflected by the notation, the main example we have in mind is the stable G-equivariant homotopy
category ¥ = Ho(G Spo). Other examples would be the categories of graded modules or chain complexes
over a commutative ring, or over a Hopf algebra.

Let DX = F(X,S) be the functional dual of X, and let

X — FY,XAY) and e F(Y,Z)AY — Z

be the adjunction unit and counit, respectively.
The maps

n: X = F(S,XAS)~F(S,X) and € F(S,Z)2F(S,Z2)AS — Z

are inverse isomorphisms (for X = Z). Applying adjunction twice to the “evaluation” map e: F(X A
Y,Z)ANX ANY — Z defines an isomorphism

F(X\Y,Z) = F(X,F(Y, Z)).
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A pairing
AN FX,2Y)ANF(X')Y') — F(XAX' Y AY)

is defined as the right adjoint of the composite
FIX,Y)AFX', YYAXAX A P Y)AX AFX L Y)AX LS Y AYY.
As a special case, we have the natural map
v: FIX,)YY)NZ — F(X,Y A2Z)
which is right adjoint to the composite

FX.Y)NZAX DY FXY)ANXAZ DAy Az,
There is also a natural map
p: X — DDX
that is right adjoint to the composite

XADX L DXAX -5 8.

Under suitable hypotheses, the pairing A and the maps v and p become isomorphisms. Dold—Puppe use
the term “strongly dualizable”, and Lewis—May—Steinberger write “finite”, for what we will simply call
“dualizable” objects. (Hovey—Strickland use the same terminology.)

Definition 11.4. An object Y of € is dualizable if there is a “coevaluation” map
n:S—YADY

such that the diagram
S—L Y ADY
J :Jw
F(Y,Y)+ZX—DY AY
commutes.
Proposition 11.5. Let Y be a dualizable object, with coevaluation map n: S — Y A DY.

(i) The functional dual DY is a dualizable object, with coevaluation map n: S — DY A DDY the

composite
1NAp

S YADY L DY AY 28 DY ADDY .
(ii) The composites
1Ne

Y2 SAY ™y ADY AY WSy asey

and

DY DY AS U DY AY ADY 5 S A DY = DY

are the identity maps.
(i4i) There is a natural bijection
nu: C(X NY,Z) — €(X,Z A DY)
with inverse N
s C(X,ZNDY) =5 C(X NY, Z),
where Ny (f) is the composite

X2XASY x Ay aDY I 24 DY

and ex(g) is the composite

XAY S Z2ADY AY VS z2a52> 7.

(iv) The functor — ADY is right adjoint to the functor — Y, and is therefore isomorphic to F(Y, —).
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Proposition 11.6. (i) If Y is dualizable then

p:Y — DDY

is an isomorphism.
(ii) If X or Z is dualizable then

v: F(X,Y)AZ — F(X,Y A Z)

is an isomorphism.
(i1i) If X and X' are dualizable, or if X is dualizable and Y = S, then

AN FX,2Y)ANFX')Y') — F(XAX' Y AY')
is an isomorphism.
Proof. (i) The composite

1Ne

SADDY Yy ADY ADDY 23 Y ADDY ADY 25y A S

gives the inverse of p.
(ii) When X is dualizable, the composite

FX,YAZ)ANS Y FIX,YANZ)ANXADX LYY ANZADX 5 DXAY AZ S FX,Y)AZ

gives the inverse of v.
(iii) (ETC).
(ii) When Z is dualizable (ETC). O
Corollary 11.7. An object Y is dualizable if and only if
v: DY ANY — F(Y,Y)

is an isomorphism. In this case the coevaluation map n: S — Y A DY is the composite

S E(Y,Y) Y5 DY AY 25 Y ADY.
Definition 11.8. The composite
xY): S L YADY 5 DY AY -5 8

is the Euler characteristic of Y, viewed as an element of €(S, S).

11.2 Duality for G-spectra

(See Lewis—May-Steinberger, §I11.2.)
We now counsider the case ¥ = Ho(G Spo)7 the stable G-equivariant homotopy category, where the
stable G-equivalences (= m,-isomorphisms) have been inverted.

Lemma 11.9. For a map f: X — Y of orthogonal G-spectra, and any orthogonal G-spectrum Z, the
sequence

F(SX,2Z) ™ F(Cf, Z2) -5 F(Y, 2) L5 F(X, 2)
is stably G-equivalent to the sequence

OF(X,Z) -5 F(fY) 2 F(Y, 2) L5 F(X, 7).

Proposition 11.10. The functional dual of a finite G-CW spectrum is stably G-equivalent to a finite
G-CW spectrum.
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Proof. By Propostion 11.2, the dual of G/H is stably G-equivalent to G x 7 S~%. ((Why is this a finite
G-CW spectrum?)) General finite G-CW spectra are built from suspensions of G/Hy using cofiber
sequences, so their functional duals are built from desuspensions of D(G/H ) using fiber sequences. By
the lemma above, these are again finite G-CW compelexes. ((Elaborate?)) O

Theorem 11.11. Any finite G-CW spectrum is dualizable.
Proof. We first consider the case of a single G-cell G/H .. For any orthogonal G-spectrum Z the following

diagram commutes.

D(G/H)ANZ — FylG,S) N Z 2% (G xy STEYA Z

Vl ﬁj/gl
F(G/Hy, Z) —— Fy|G,S AN Z) —— G xy (S"E A Z)

(Check?) The Wirthmiiller equivalences w are stable G-equivalences, hence v is a stable G-equivalence.
For any map f: X — Y the following diagram commutes

DEX)NZ ——D(C/INZ——DYNZ——DXNZ
F(XX,Z)—— F(Cf,Z2) —— F(Y,Z) —— F(X,2)
If X is dualizable, and Y is built from X by attaching a single G-cell, so that C'f ~ G/H; A S™ for
some integer n, then v is a stable G-equivalence for X and for Cf, so by the five-lemma it is a stable
G-equivalence for Y.
By induction over the number of G-cells, it follows that v: DY A Z — F(Y,Z) is a stable G-

equivalence for each finite G-CW spectrum Y. The special case Y = Z then tells us that Y is dualizable,
by Corollary 11.7. O

Proposition 11.12. (i) If Y is a finite G-CW spectrum then
p:Y — DDY

is a stable G-equivalence.
(i) If X or Z is a finite G-CW spectrum then

v F(X,Y)NZ — F(X,Y A Z)

is a stable G-equivalence.
(i11) If X and X' are finite G-CW spectra, or if X is a finite G-CW spectrum and Y = S, then

AN FX,)Y)ANF(XL)Y) — F(XAXY AY)
is a stable G-equivalence.
Example 11.13. If A is a finite G-CW complex, and B is any G-CW complex, then
vi:ANF(B,X)— F(B,ANX)
is a stable G-equivalence (= x,-isomorphism).

Corollary 11.14 (Spanier—Whitehead duality). For any finite G-CW spectrum X and G-spectrum E,
the canonical map
EA(DX) = (DX ANE) 25 7 F(X,E) = E5"(X)

is an isomorphism, for each H C G and k € Z.

Remark 11.15. Conversely, each dualizable G-spectrum is a retract (in the stable G-equivariant homo-
topy category) of a finite G-CW spectrum. For a proof, see May et al (Alaska notes), §XVI, Theorem 7.4.

Example 11.16. The G-equivariant Euler characteristic of a finite G-CW spectrum Y is x(Y) €
€(S,9) = 75(9), where 7§(S) = A(G) is the Burnside ring of G. ((Give calculation of A(G) and
explain how G-cells of the type G/H A (D™, 0D™) are counted?))
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