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1 Smooth bordism

1.1 Transversality

Spheres Sn ∼= Dn/∂Dn ∼= Rn ∪ {∞}. Deform any map f : Sn+k → Sn to be transverse to 0 ∈ Rn ⊂ Sn.
Preimage Mk = f−1(0) closed (always smooth) k-manifold. Given f0, f1 transverse to 0, any homotopy
F : Sn+k×I → Sn from f0 to f1 can be deformed relative to Sn+k×{0, 1} to be transverse to 0. Preimage
W k+1 = F−1(0) is compact (k+1)-manifold with ∂W ∼= M0tM1. Call W a bordism from M0 = f−1

0 (0)
to M1 = f−1

1 (0). Say that M0 and M1 are (co-)bordant. Let Nk = ΩOk be the set of bordism classes
of closed k-manifolds. Get function πn+k(Sn)→ Nk mapping homotopy class [f ] to bordism class [M ].
Suspension Σf : Sn+k+1 → Sn+1 gives same preimage, so πsk = πk(S) = colimn πk+n(Sn)→ Nk.

Compatible with sum and product: f, g : Sn+k → Sn transverse to 0 then f + g = (f ∨ g)∇ : Sn+k →
Sn+k ∨ Sn+k → Sn is transverse to 0, with (f + g)−1(0) ∼= f−1(0) t g−1(0), so sum in πsk corresponds
to sum in Nk induced by disjoint union. If f : Sn+k → Sn and g : Sm+` → Sm are transverse to
0 then f · g = (f ∧ g)χ : Sn+m+k+` ∼= Sn+k ∧ Sm+` → Sn ∧ Sm = Sn+m is transverse to 0 and
(f · g)−1(0) ∼= f−1(0) × g−1(0), so that smash product pairing πsk × π`(S) → πk+`(S) corresponds to
pairing Nk ×N` → Nk+` induced by Cartesian product. Get a homomorphism π∗(S) → N∗ of graded
(commutative) rings.

1.2 Framed bordism

More structure on manifolds: Tangent bundle τ : TM →M embeds in trivial bundle εn+k : M ×Rn+k →
M , with normal complement ν : NM →M . For each x ∈M , NxM ⊂ Rn+k is the orthogonal complement
of TxM ⊂ Rn+k, mapping isomorphically to the quotient Rn+k/TxM . Derivative of f along M induces
bundle isomorphism θ : NM → M × Rn. A trivialization, or framing, of the normal bundle of M . The
normal bundle of M ⊂ Rn+k+1 is ν⊕ ε1 : NM ×R→M . The trivialization θ⊕ ε1 defines the same stable
framing as θ. Let Ωfrk be the set of stably framed bordism classes of stably framed closed k-manifolds.

Get ring homomorphism ιfr : π∗(S)→ Ωfr∗ .
Theorem (Pontryagin–Thom): φfr is an isomorphism.
Inverse construction: Given a closed k-manifold M choose embedding E(ν) = NM → Rn+k. Let the

Thom complex Th(ν) = E(ν)∪{∞} be the one-point compactification, so that Th(ν) ∼= D(ν)/S(ν) where
S(ν) ⊂ D(ν) ⊂ E(ν) are the unit sphere and unit disc subbundles. Define Pontryagin–Thom collapse
map ν∗ : Sn+k → Sn+k/(Sn+k \ E(ν)) ∼= Th(ν). Alternatively, Sn+k → Sn+k/(Sn+k \ intD(ν)) ∼=
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D(ν)/S(ν) ∼= Th(ν). Suppose M is (stably) framed, so that trivialization θ gives map E(ν) → Rn and
θ∗ : Th(ν)→ Sn. The composite θ∗ν

∗ : Sn+k → Th(ν)→ Sn defines a homotopy class in πn+k(Sn)→ πsk.
Homology theories: X any space. Let πsk(X+) = colimn πk+n(X+∧Sn). A map f : Sn+k → X+∧Sn =

X×Sn/X×{∞} can be deformed to be transversal to X×{0} ⊂ X×Rn ⊂ X+∧Sn. (Project to {0} ⊂ Rn

to specify transversality.) Then M = f−1(X × {0}) is a framed closed k-manifold. The restriction of f
specifies a map α : M → X, so M is a k-manifold over X. A homotopy F : Sn+k × I → X+ ∧ Sn from
f0 to f1 can also be taken to be transverse to X × {0}, with preimage W = F−1(X × {0}) a stably
framed bordism from M0 to M1. Restriction of F gives a map β : W → X that restricts to α0 t α1 on
∂W ∼= M0 tM1, so F is a bordism over X. Let Ωfrk (X) be the set of bordism classes of stably framed
closed k-manifolds over X, up to stably framed bordism over X.

Theorem: φfr : πs∗(X+)→ Ωfr∗ (X) is an isomorphism of generalized homology theories in X.

1.3 Unoriented bordism

Homotopical analogue of forgetting framings: Given a closed k-manifold M choose embedding M ⊂
Rk+n ⊂ Sk+n with normal bundle ν : NM → M . May embed NM as a tubular neighborhood NM ⊂
Rk+n. For each x ∈ M the normal space NxM ⊂ Rk+n gives a point g(x) ∈ Grn(Rk+n) in the Grass-
mannian manifold of n-planes in Rk+n. Get a Gauss map g : M → Grn(Rk+n) covered by a bundle map
ν → γn(Rn+k), where γn(Rn+k) is the canonical n-bundle over Grn(Rk+n). Include Rn+k ⊂ R∞ to map
to the infinite Grassmannian Grn(R∞). There is a fiber bundle O(n)→ Vn(R∞)→ Grn(R∞) where the
Stiefel variety Vn(R∞) ' EO(n) of orthonormal n-frames in R∞ is contractible, so Grn(R∞) ' BO(n)
is a classifying space for principal O(n)-bundles, and the canonical n-bundle γn over BO(n) has total
space E(γn) = EO(n)×O(n) Rn. Its Thom complex is Th(γn) = EO(n)×O(n) S

n/EO(n)×O(n) {∞} ∼=
EO(n)+ ∧O(n) S

n = MO(n). Get a Gauss map g : M → BO(n) covered by a bundle map ν → γn, or
NM → E(γn), with induced map of Thom complexes g∗ : Th(ν)→ Th(γn) = MO(n).

Compose with the Pontryagin–Thom collapse map ν∗ : Sn+k → Th(ν) to get a map g∗ν
∗ : Sn+k →

MO(n), with homotopy class in πn+kMO(k). Different choices of embeddings become isotopic, and
induce homotopic maps, after replacing Rk+n with Rk+n+1 sufficiently often. This replaces ν with
ν ⊕ ε1, finitely often, which corresponds to replacing ν∗ : Sn+k → Th(ν) with its suspension Sn+k+1 →
Th(ν)∧S1 ∼= Th(ν⊕ε1), and replacing g∗ with the composite of its suspension Th(ν)∧S1 → Th(γn)∧S1

and a map σ : Th(γn)∧S1 → Th(γn+1). The latter is induced by the bundle map γn⊕ε1 → γn+1 covering
the inclusion BO(n)→ BO(n+ 1). Get homomorphism ψ : Nk → colimn πk+nMO(n) = πk(MO).

Inverse construction: A map f : Sn+k → MO(n) = Th(γn) can be deformed to be transversal to
0-section s0 : BO(n) → E(γn). Then M = f−1(BO(n)) ⊂ Sn+k is a closed k-manifold, with a map
g : M → BO(n) covered by a bundle map g : ν → γn. (Here γn is also the normal bundle of the 0-
section.) Stabilizing f by increasing n does not alter M . Get a homomorphism φ : πk(MO) → Nk,
inverse to φ.

Theorem: φ : π∗(MO)→ N∗ is an isomorphism.
For each space X let MOk(X) = colimn πk+n(MO(n) ∧ X+). Let Nk(X) be the set of bordism

classes of closed k-manifolds (M,α) over X, up to bordism over X. (No framings.)
Theorem: φ : MO∗(X)→ N∗(X) is an isomorphism of generalized homology theories in X.
Steenrod problem: For a k-manifold (M,α) over X, the fundamental class [M ] ∈ Hk(M ; Z/2) maps to

a class α∗[M ] ∈ Hk(X; Z/2). (No framing is needed to have this homology class.) Cobordant manifolds
over X give the same class in Hk(X; Z/2), so Nk(X) → Hk(X; Z/2). What homology classes arise in
this way? Thom: All!

[[Prove that there is a split surjection MO → HZ/2. In fact, MO '
∨

Σ?HZ/2 is a wedge sum of
suspensions of copies ofHZ/2, and N∗ ∼= π∗(MO) ∼= F2[xi | 1 ≤ i 6= 2j−1], with |xi| = i. The equivalence
realizes an isomorphism

⊕
Σ?A ∼= H∗(MO; Z/2) of free A -modules, where A = H∗(HZ/2; Z/2) is the

mod 2 Steenrod algebra. Here H∗(MO; Z/2) ∼= H∗(BO; Z/2) by Thom isomorphisms, H∗(BO; Z/2) ∼=
Z/2[wi | i ≥ 1] with |wi| = i, and A is dual to A∗ = Z/2[ξj | j ≥ 1] with |ξj | = 2j−1. In low dimensions,
N∗ = (F2{1}, 0,F2{x2}, 0,F2{x2

2, x4}, . . . ) with x2 represented by RP 2.]]
[[π∗(MO) → H∗(MO; Z/2) injective, so k-dimensional bordism classes are detected by the Stiefel–

Whitney characteristic numbers 〈w(τM ), [M ]〉 where w = wi11 . . . wikk ranges over a basis for Hk(BO).]]
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1.4 Oriented bordism

Let Ωk = ΩSOk be the group of oriented bordism classes of oriented k-manifolds. Let G̃rn(Rn+k) be the

oriented Grassmannian of oriented n-planes in Rn+k. Then G̃rn(R∞) ' BSO(n), and the Thom complex
of the canonical oriented bundle is Th(γ̃n) ' MSO(n) = ESO(n)+ ∧SO(n) S

n. Get an isomorphism

φ̃ : π∗(MSO) → Ω∗, where πk(MSO) = colimn πk+nMSO(n). More generally, MSO∗(X) ∼= Ω∗(X),
where MSOk(X) = colimn πk+n(MSO(n) ∧ X+). For an oriented k-manifold α : M → X over X, the
integral fundamental class [M ] ∈ Hk(M) maps to a class α∗[M ] ∈ Hk(X) that only depends on the
oriented bordism class of M over X. What homology classes are in the image of this homomorphism
Ω∗(X) → H∗(X)? Thom: Not all! For k = 7, some homology classes are not represented by (smooth)
orientable manifolds. Led to Sullivan–Baas’s bordism with singularities.

S // MSO

��

// MO

��

H HZ/2

represents

Ωfr∗ (X) // Ω∗(X)

��

// N∗(X)

��

H∗(X) H∗(X; Z/2)

2 Topological K-theory

Principal G-bundle P → X, associated fiber bundle E = P ×G F → X. Example: Vector bundle
P ×O(n) Rn → X with structure group O(n). Classification of principal G-bundles over X, or fiber
bundles over X with structure group G, by homotopy classes of maps X → BG, where EG → BG is a
principal G-bundle with EG contractible. Note that G ' Ω(BG).

Real vector bundles over X classified by
∐
n≥0BO(n). Topological K-theory KO(X) = K(V ect(X))

is group completion of [X,
∐
n≥0BO(n)]. Initial homomorphism V ect(X) → KO(X) to a group. Over

compact Hausdorff spaces/finite CW complexes, each bundle admits a stable inverse, so group completion
is the localization inverting ξ 7→ ξ⊕ε1. Represented by group completion Z×BO: KO(X) = [X,Z×BO].

Bott periodicity: Z×BO ' Ω8(Z×BO) and Z×BU ' Ω2(Z×BU). More precisely, the loop spaces
Ωi(Z × BO) for 0 ≤ i ≤ 8 are homotopy equivalent to Z × BO, O, O/U , U/Sp, Z × BSp, Sp, Sp/U ,
U/O and Z × BO. The homotopy groups πi(Z × BO) for i ≥ 0 begin Z, Z/2, Z/2, 0, Z, 0, 0, 0 and
repeat 8-periodically. The loop spaces Ωi(Z×BU) for 0 ≤ i ≤ 2 are homotopy equivalent to Z×BU , U
and Z×BU . The homotopy groups πi(Z×BU) for i ≥ 0 begin Z, 0 and repeat 2-periodically.

Morse theory proof: The space of minimal (shortest) geodesics from I to −I in SU(2n) is Grn(C2n) =
U(2n)/U(n)×U(n), and the inclusion Grn(C2n)→ ΩSU(2n) is (2n+ 1)-connected. Hence BU → ΩSU
is an equivalence.

Atiyah–Hirzebruch: Define K̃O
j
(X) = [X,Ωi(Z × BO)] where i + j ≡ 0 mod 8, 0 ≤ i < 8, and

K̃U
j
(X) = [X,Ωi(Z × BU)] where i + j ≡ 0 mod 2, 0 ≤ i < 2. These give generalized cohomology

theories KO∗(X) and KU∗(X), with coefficients KOj = πi(Z × BO) and KU j = πi(Z × BU), with i

and j as above. Note that K̃O
∗
(X) ∼= K̃O

∗+8
(X) and K̃U

∗
(X) ∼= K̃U

∗+2
(X).

3 The stable homotopy category

3.1 Compactly generated spaces

Steenrod, Moore, McCord: Let U be the category of compactly generated weak Hausdorff spaces. A
space X is compactly generated if the closed subsets A of X are precisely those for which preimage
u−1(A) is closed in K, for any map u : K → X with K compact Hausdorff. The space X is weak
Hausdorff if the image u(K) is closed in X for any map u : K → X with K compact Hausdorff.
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Every metric space, and every locally compact Hausdorff space is compactly generated weak Haus-
dorff.

Let X, Y ∈ U . The traditional product topology on the set X × Y of pairs(x, y) might not be
compactly generated, but by declaring the subsets A ⊂ X × Y for which the preimage u−1(A) is closed
in K, for any map u : K → X × Y with K compact Hausdorff, to be closed, gives a potentially finer
topology that is compactly generated weak Hausdorff. The traditional compact-open topology on the
set Y X = Map(X,Y ) of maps f : X → Y might also not be compactly generated, but can be refined to
a compactly generated weak Hausdorff topology by the same method.

Proposition: U has all (small) limits and colimits, hence is complete and cocomplete.
Theorem: U is Cartesian closed, in the sense that there is a natural homeomorphism

Map(X × Y, Z) ∼= Map(X,Map(Y, Z))

given by sending f : X × Y → Z to g : X →Map(Y,Z) given by g(x)(y) = f(x, y).
Let i : A→ X. The problem of extending a map f : A→ E over i to a map h : X → E with hi = f

A
f
//

i

��

E

X

h

>>

is homotopy invariant, i.e., does only depend on the homotopy class of f , if i has the homotopy extension
property (HEP). If i has the homotopy extension property for all E then i is a (Hurewicz) cofibration.
For a CW pair (X,A), the inclusion A→ X is a cofibration.

Let p : E → B. The problem of lifting a map g : X → B over p to a map h : X → E with ph = g

E

p

��

X

h

>>

g
// B

is homotopy invariant, i.e., does only depend on the homotopy class of g, if p has the homotopy lifting
property (HLP). If p has the homotopy lifting property for all X then p is a (Hurewicz) fibration. For a
fiber bundle p : E → B over a paracompact Hausdorff base space, the projection is a fibration.

Proposition (Strøm): If i : A → X is a cofibration, p : E → B a fibration, and i or p a homotopy
equivalence, then in any commutative square

A
f
//

i

��

E

p

��

X
g
//

h

>>

B

there exists a map h : X → E making both triangles commute.
Earlier, Quillen proved a similar result with retracts of relative CW complexes (in place of Hurewicz

cofibrations), Serre fibrations (in place of Hurewicz fibrations) and weak homotopy equivalences (in place
of homotopy equivalences). Give different models for homotopy theory, i.e., model categories.

Alternative: Use simplicial sets, degreewise monomorphisms, weak homotopy equivalences and Kan
fibrations.

3.2 Based spaces

Let T be the category of based compactly generated weak Hausdorff spaces with a chosen base point,
and basepoint-preserving maps.

Proposition: T has all (small) limits and colimits, hence is complete and cocomplete.
Recall the wedge sum

X ∨ Y = X × {y0} ∪ {x0} × Y
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and the smash product
X ∧ Y = X × Y/X ∨ Y .

Let F (X,Y ) denote the space of basepoint-preserving maps X → Y .
(T ,∧, S0) is monoidal, in the sense that the smash product is a bifunctor ∧ : T ×T → T , mapping

(X,Y ) to X ∧ Y , which is associative up to a natural homeomorphism

α : X ∧ (Y ∧ Z) ∼= (X ∧ Y ) ∧ Z

and unital up to natural homeomorphisms λ : S0 ∧ Y ∼= Y and ρ : Y ∧ S0 ∼= Y , subject to the coherence
conditions that the diagrams

(X ∧ Y ) ∧ (Z ∧W )

α

))

X ∧ (Y ∧ (Z ∧W ))

α

55

1∧α
��

((X ∧ Y ) ∧ Z) ∧W

α∧1

��

X ∧ ((Y ∧ Z) ∧W )
α // (X ∧ (Y ∧ Z)) ∧W

(Mac Lane pentagon)

X ∧ (S0 ∧ Z)
α //

1∧λ
&&

(X ∧ S0) ∧ Z

ρ∧1
xx

X ∧ Z
and

S0 ∧ S0

λ

!!

ρ

}}

S0

commute.
Moreover, (T ,∧, S0, γ) is symmetric monoidal, in the sense that there is a natural homeomorphism

γ : X ∧ Y ∼= Y ∧X

subject to the coherence conditions that the diagrams

(X ∧ Y ) ∧ Z
γ

''

X ∧ (Y ∧ Z)

α

77

1∧γ
��

Z ∧ (X ∧ Y )

α

��

X ∧ (Z ∧ Y )

α

''

(Z ∧X) ∧ Y

(X ∧ Z) ∧ Y

γ∧1
77

(Mac Lane hexagon)

X ∧ Y
γ

!!

Y ∧X

γ

``

6



and

Y ∧ S0 γ
//

ρ
##

S0 ∧ Y

λ
{{

Y

commute. (The last triangle makes ρ, or λ, superfluous.)
Mac Lane proved a coherence theorem saying that all diagrams involving these structures that can

reasonably expected to commute do indeed commute. An diagram than cannot be expected to commute
is that given by the two maps 1, γ : X ∧X → X ∧X.

A monoidal structure allows us to define what we mean by a monoid in T : A space X with a
multiplication µ : X ∧X → X and a unit η : S0 → X such that the diagrams

X ∧ (X ∧X)
α //

1∧µ
��

(X ∧X) ∧X

µ∧1

��

X ∧X
µ

// X X ∧X
µ

oo

and

S0 ∧X
η∧1
//

λ
##

X

µ

��

X ∧ S
1∧η
oo

ρ
||

X

commute. A monoid map from (X,µ, η) to (Y, µ, η) is a map f : X → Y that makes the diagrams

X ∧X
f∧f
//

µ

��

Y ∧ Y
µ

��

X
f

// Y

and
S0

η

~~

η

  

X
f

// Y

commute. The monoids in (T ,∧, S0) thus form a category. In a monoidal category we can also define
what we mean by a module over a monoid. (Details given later, in the context of S-modules.)

A symmetric monoidal structure allows us to specify when a monoid (X,µ, η) is commutative. This
means that that diagram

X ∧X
γ

//

µ
##

X ∧X

µ
{{

X

commutes. The commutative monoids (in a symmetric monoidal category) form a full subcategory of
the monoids (in the underlying monoidal category).

Finally, the mapping space F makes T a closed symmetric monoidal category, in the sense that there
is a natural homeomorphism

θ : F (X ∧ Y, Z) ∼= F (X,F (Y,Z)) .

For each Y , we say that the functors L : X 7→ X ∧ Y and R : Z 7→ F (Y,Z) are adjoint, with L the left
adjoint, and R the right adjoint. The natural homeomorphism

θ : F (L(X), Z) ∼= F (X,R(Z))
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is called an adjunction. In the case Z = L(X), the identity map on the left hand side corresponds to a
natural map

η : X → R(L(X))

called the adjunction unit. In the case X = R(Z), the identity map on the right hand side corresponds
to a natural map

ε : L(R(Z))→ Z

called the adjunction counit.
For example, with Y = S1, X ∧ S1 = ΣX is the suspension and F (S1, Z) = ΩZ is the loop space,

and the adjunction F (ΣX,Z) ∼= F (X,ΩZ) takes a map f : ΣX → Z to the map g : X → ΩZ with
g(x)(s) = f(x, s) with s ∈ S1. The adjunction unit η : X → ΩΣX and counit ε : ΣΩZ → Z are the
natural maps given by η(x)(s) = (x, s) and ε(ω, s) = ω(s), respectively,

More generally, with Y = Sn we call X ∧ Sn = ΣnX the n-fold suspension and ΩnZ = F (Sn, Z)
the n-fold loop space, and F (ΣnX,Z) ∼= F (X,ΩnZ). The adjunction units are η : X → ΩnΣnX and
ε : ΣnΩnZ → Z.

A space (X,x0) is nondegenerately based (= well-based) if the inclusion {x0} → X is a Hurewicz
cofibration, i.e., if (X, {x0}) is an NDR-pair.

3.3 The homotopy category of spaces

Homotopy functors defined on T take homotopy equivalences to isomorphisms. For the purpose of
algebraic topology, we focus on weak homotopy functors such as H∗ and π∗, which take all weak homotopy
equivalences to isomorphisms. Let W ⊂ T be the subcategory of weak homotopy equivalences. The
localization functor

T → Ho(T ) = T [W −1]

is the initial functor from T that takes each weak equivalence f : X 'w Y to an isomorphism. It can be
constructed with the same objects as T , and with morphisms

Ho(T )(X,Y ) = [X,Y ] = {ΓX → Y }/ '

the set of homotopy classes of maps ΓX → Y from a CW approximation ΓX 'w X of X to Y . (Uses that
∅ → ΓX is a cofibration and Y → ∗ is a fibration in Quillen’s model structure.) When X is (homotopy
equivalent to) a CW complex, this is the same as the set of homotopy classes of maps X → Y . Weak
homotopy functors from T thus factor uniquely through Ho(T ).

We review Puppe’s theory of homotopy cofiber and fiber sequences, using May’s notation (Lewis–
May–Steinberger, May–Ponto).

Given f : X → Y in T let the cone of X be CX = I ∧ X with I = [0, 1] based at 1, and let the
mapping cone Cf = Y ∪f CX be the pushout of f and i0 : X → CX. The map f and the inclusion
i : Y → Cf induce an exact sequence

[X,T ] [Y, T ]
f∗
oo [Cf, T ]

i∗oo

for any space T , in the sense that the image of i∗ is equal to the kernel of f∗, i.e., the preimage of the class
0 of the constant map. Any other diagram X ′ → Y ′ → Z ′ that is homotopy equivalent to X → Y → Cf
will also induce such exact sequences, and is called a homotopy cofiber sequence. We often call Cf the
homotopy cofiber of f .

The collapse map Cf → Y/X is a homotopy equivalence if f is a cofibration. In particular, i is a
cofibration, so the collapse map Ci → Cf/Y is a homotopy equivalence. Here Cf/Y ∼= I/∂I ∧ X ∼=
S1 ∧X ∼= ΣX.

X
f
// Y

i // Cf
j
//

π
""

Ci
k //

'
��

Cj

'
��

ΣX
−Σf

// ΣY
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(The square commutes up to homotopy.) Hence Y → Cf → ΣX and Cf → ΣX → ΣY are also
homotopy cofiber sequences. The exact sequence extends without bound to the right:

[X,T ] [Y, T ]
f∗
oo [Cf, T ]

i∗oo [ΣX,T ]
π∗oo [ΣY, T ]

−Σf∗
oo [ΣCf, T ]

−Σi∗
oo [Σ2X,T ]

−Σπ∗
oo . . .

Σ2f∗
oo

Starting at [ΣX,T ] the pinch map S1 → S1 ∨ S1 and the reflection S1 → S1 induce a group structure,
which is abelian from [Σ2X,T ] and onwards.

For example, with T = Z×BO, this gives half of the long exact sequence in topological K-theory:

K̃O
0
(X) K̃O

0
(Y )

f∗
oo K̃O

0
(Cf)

i∗oo K̃O
−1

(X)
π∗oo K̃O

−1
(Y )

−f∗
oo . . .

−i∗
oo

which can be extended to the left by Bott periodicity.
Given f : X → Y let the path space of Y be PY = F (I, Y ) with I = [0, 1] based at 0, and let the

homotopy fiber Ff = X ×Y PY be the pullback of f and p1 : PY → Y . The projection p : Ff → X and
f : X → Y induce an exact sequence

[T, Ff ]
p∗ // [T,X]

f∗ // [T, Y ]

for any space T , in the sense that the image of p∗ is the kernel of f∗. Any other diagram W ′ → X ′ → Y ′

that is homotopy equivalent to Ff → X → Y will also induce such exact sequences, and is called a
homotopy fiber sequence.

The inclusion f−1(y0) → Ff is a homotopy equivalence if f is a fibration. In particular, p is a
fibration, so the inclusion p−1(y0)→ Fp is a homotopy equivalence. Here p−1(y0) ∼= F (I/∂I, Y ) ∼= ΩY .

ΩX
−Ωf

//

'
��

ΩY

ι

!!

'
��

Fq
r
// Fp

q
// Ff

p
// X

f
// Y

(The square commutes up to homotopy.) Hence ΩY → Ff → X and ΩX → ΩY → Ff are also
homotopy fiber sequences. The exact sequence extends without bound to the left:

. . .
Ω2f∗ // [T,Ω2Y ]

−Ω2ι∗ // [T,ΩFf ]
−Ωp∗ // [T,ΩX]

−Ωf∗ // [T,ΩY ]
ι∗ // [T, Ff ]

p∗ // [T,X]
f∗ // [T, Y ]

For example, with T = Sk this gives half of the long exact sequence of (higher) homotopy groups

. . .
−p∗ // πk+1(X)

−f∗ // πk+1(Y )
ι∗ // πk(Ff)

p∗ // πk(X)
f∗ // πk(Y )

These exact sequences are compatible up to one change of sign.
Let η : X → ΩΣX be the suspension-loop adjunction unit, left adjoint to the identity map on ΣX.

Hence η(x)(t) = (x, t) for x ∈ X and t ∈ I. Let ε : ΣΩY → Y be the adjunction counit, right adjoint to
the identity map on ΩY . Hence ε(ω, t) = ω(t).

Let η : Ff → ΩCf and ε : ΣFf → Cf be the adjoint pair of maps given by

η(x, ω)(t) = ε(x, ω, t) =

{
ω(2t) for 0 ≤ t ≤ 1/2

(x, 2t− 1) for 1/2 ≤ t ≤ 1

where x ∈ X, ω ∈ PY and t ∈ I, with f(x) = ω(1).

Lemma 3.1. The diagrams

ΩY
ι //

=

��

Ff
p
//

η

��

X
f

//

η

��

Y

η

��

ΩY
Ωi // ΩCf

Ωπ // ΩΣX
ΩΣf

// ΩΣY
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and

ΣΩX
ΣΩf

//

ε

��

ΣΩY
Σι //

ε

��

ΣFf
Σp
//

ε

��

ΣX

=

��

X
f

// Y
i // Cf

π // ΣX

commute up to homotopy.

3.4 The Spanier–Whitehead category

(Margolis)
Homotopy excision theorem: If X, Y and Cf are c-connected and T is a CW complex of dimension

≤ 2c, then f and i induce an exact sequence

[T,X]
f∗ // [T, Y ]

i∗ // [T,Cf ]

Freudenthal suspension theorem: If X is c-connected, and T is a CW complex of dimension ≤ 2c,
then the suspension homomorphism

Σ: [T,X]→ [ΣT,ΣX]

is an isomorphism.
Notice that if d = dim(T ) + 2, the dimension condition on T can be achieved by replacing all spaces

and maps in sight by their d-fold suspensions.
Spanier and J.H.C. Whitehead define the stable homotopy classes of maps

{X,Y } = colim
n

[X ∧ Sn, Y ∧ Sn] = colim
n

[ΣnX,ΣnY ] ∼= colim
n

[X,ΩnΣnY ] .

This a colimit of groups for n ≥ 1, which are abelian for n ≥ 2, so {X,Y } is naturally an abelian group.
The diagram

{X,T} {Y, T}
f∗
oo {Cf, T}i∗oo

remains exact for any cofiber sequence X → Y → Cf , since this is the sequential colimit over n of the
exact sequences [ΣnX,ΣnT ]← [ΣnY,ΣnT ]← [ΣnCf,ΣnT ]. More interesting is that

{T,X}
f∗ // {T, Y } i∗ // {T,Cf}

is also exact, at least for finite-dimensional T , because this is the sequential colimit over n of the
sequences [ΣnT,ΣnX] → [ΣnT,ΣnY ] → [ΣnT,ΣnCf ], which are exact for dim(T ) + n ≤ 2(n − 1), i.e.,
for n ≥ dim(T ) + 2. (Discuss passage to limit to account for infinite-dimensional T?) Likewise, the
suspension homomorphism

Σ: {T,X} → {ΣT,ΣX}

is also an isomorphism, more-or-less by construction.
Hence the category with objects T and morphisms from X to Y given by the abelian group {X,Y }

is almost a localization of Ho(T ) with respect to Σ, in the sense that Σ becomes an equivalence of
categories. However, Σ is not essentially surjective on objects. To achieve this, one can introduce formal
desuspensions of spaces. The resulting Spanier–Whitehead category S W has objects pairs (X, k) with
X in T (or X a CW complex) and k an integer. We think of (X, k) as a model for ΣkX, also when k is
negative. The morphisms from (X, k) to (Y, `) are

S W ((X, k), (Y, `)) = colim
n

[Σk+nX,Σ`+nY ] .

The functor
Σ∞ : Ho(T )→ S W = Ho(T )[Σ−1]

given by X 7→ (X, 0) takes the suspension functor Σ: Ho(T )→ Ho(T ) to the shift equivalence (X, k) 7→
(X, k + 1), up to a natural isomorphism (ΣX, 0) ∼= (X, 1). (Universal property: See Margolis (1983),
p. 7.)
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Spanier–Whitehead duality: Finite CW complexes (and their desuspensions) are dualizable in S W ,
in the sense that to each such object Y there is a dual object DY and a natural isomorphism

{X ∧ Y,Z} ∼= {X,DY ∧ Z} .

The dual of Sn is S−n, and to each homotopy cofiber sequence Y ′ → Y → Y ′′ there is a dual homotopy
(co-)fiber sequence D(Y ′′) → DY → D(Y ′). For each dualizable Y the functor L(X) = X ∧ Y is left
adjoint to the functor R(Z) = DY ∧Z, with adjunction unit η : S → DY ∧Y and counit ε : DY ∧Y → S.

3.5 Triangulated categories

The Spanier–Whitehead category is an Ab-category, in the sense that each morphism set {X,Y } is an
abelian group and each composition pairing {Y,Z} × {X,Y } → {X,Z} is bilinear. (This is a case of an
enriched category: instead of being formed in the symmetric monoidal category of sets, with pairing the
Cartesian product × and with unit the singleton set ∗, the notion of an Ab-category is formed in the
symmetric monoidal category Ab of abelian groups, with pairing the tensor product ⊗ and unit Z.)

An additive category is an Ab-category with all finite coproducts, i.e., an initial object give by the
empty coproduct, and a binary coproduct. It will then also have all finite products, the initial object is
also terminal, and the canonical map from a binary coproduct to a binary product is an isomorphism.
(A simultaneously initial and terminal object is called a zero object. A simultaneous coproduct and
product is called a biproduct.)

The Spanier–Whitehead category is an additive category, with initial object ∗ and coproduct X ∨ Y .
The canonical map X∨Y → X×Y is an isomorphism in S W . Another example of an additive category
is the category of (right) R-modules for a fixed ring R. Each morphism set HomR(M,N) is naturally an
abelian group, and composition is bilinear. The initial and terminal object is 0, and the canonical map
M ⊕N →M ×N is an isomorphism.

An abelian category is an additive category such that every morphism has a kernel and a cokernel,
every monomorphism is a kernel, and every epimorphism is a cokernel. Such a category is a convenient
setting for homological algebra. The category of R-modules is abelian, but the Spanier–Whitehead
category is not abelian. For instance, a cokernel C of a morphism f ∈ {X,Y } would be a coequalizer of
f and the zero morphism 0 (which is the unique map that factors through the zero object):

X
f
//

0
// Y

i // C

The mapping cone Cf with the canonical inclusion i : Y → Cf fits in such a diagram, with if = i0,
hence is a weak cokernel. However, it does not in general satisfy the uniqueness condition required of a
coequalizer. Given g : Y → T with gf = g0 there exists a map h : Cf → T with hi = g, but h is only
determined up to addition of a class in j∗{ΣX,T}:

{X,T} {Y, T}
f∗
oo

0
oo {Cf, T}i∗oo {ΣX,T}

j∗
oo

Since j∗{ΣX,T} is in general nonzero, Cf is not a cokernel in the sense of abelian categories. Instead,
the Spanier–Whitehead category is a triangulated category, somewhat intermediate between abelian
categories and the long exact sequences arising from homological algebra.

Triangulated categories were defined by Puppe (1962/1967), with an additional axiom added by
Verdier (1966/1971). (Beilinson–Bernstein–Deligne (1982), Margolis (1983), Hovey–Palmieri–Strickland
(1997)). We follow May (2001):

Definition 3.2. A triangulation on an additive category C is an additive self-equivalence Σ: C → C
together with a collection of triangles, i.e., diagrams

X
f
// Y

g
// Z

h // ΣX

in C , called the distinguished triangles, such that the following axioms hold.
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(T1) Let T be any object and f : X → Y be any map in C .

• The triangle T
1 // T // ∗ // ΣT is distinguished.

• The map f is part of a distinguished triangle X
f
// Y

g
// Z

h // ΣX .

• Any triangle isomorphic to a distinguished triangle is distinguished.

(T2) If X
f
// Y

g
// Z

h // ΣX is distinguished, then so is Y
g
// Z

h // ΣX
−Σf

// ΣY .

(T3) Consider the following braid diagram.

X

h

""

f
  

Z

g′

##

h′

��

W

j′′

$$

g′′

""

ΣU

Y

g
??

f ′
��

V

j′
==

h′′

!!

ΣY

Σf ′

<<

U

j
??

f ′′

<<ΣX

Σf

<<

Assume that h = g ◦ f and j′′ = Σf ′ ◦ g′′, and that (f, f ′, f ′′) and (g, g′, g′′) are distinguished.
If h′ and h′′ are such that (h, h′, h′′) is distinguished, then there are maps j and j′ such that the
diagram commutes and (j, j′, j′′) is distinguished.

Axiom (T3) is Verdier’s octahedral axiom. May shows that the axioms (T1), (T2) and (T3) imply
the following lemma, even though Verdier assumes it as another axiom.

Lemma 3.3. If the rows are distinguished and the left hand square commutes in the following diagram,
then there is a map k that makes the remaining squares commute.

X
f
//

i
��

Y
g
//

j

��

Z
h //

k
��

ΣX

Σi
��

X ′
f ′
// Y ′

g′
// Z ′

h′ // ΣX ′

We call k a fill-in map.

Proposition 3.4. For (f, g, h) distinguished and T any object, the sequences

. . . // C (T,X)
f∗ // C (T, Y )

g∗ // C (T,Z)
h∗ // C (T,ΣX) // . . .

and

. . . C (X,T )oo C (Y, T )
f∗
oo C (Z, T )

g∗
oo C (ΣX,T )

h∗oo . . .oo

are exact.

Proof. We show that im(f∗) = ker(g∗). Given i : T → X in C (T,X) we have

T
1 //

i

��

T //

j

��

∗ //

k
��

ΣT

Σi
��

X
f
// Y

g
// Z

h // ΣX

with j = f ◦ i, and there is a fill-in map k. Hence gfi = 0, so im(f∗) ⊂ ker(g∗).
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Conversely, given j : T → Y in C (T, Y ) with g ◦ j = 0 we have

T //

j

��

∗ //

��

ΣT
−Σ1

//

Σi
��

ΣT

Σj

��

Y
g
// Z

h // ΣX
−Σf

// ΣY

and there is a fill-in map Σi. Hence Σj = Σ(f ◦ i), so j = f ◦ i, and ker(g∗) ⊂ im(f∗).

Lemma 3.5 (The 3× 3 lemma). Assume that j ◦ f = f ′ ◦ i and the two top rows and two left columns
are distinguished in the following diagram.

X
f
//

i
��

Y
g
//

j

��

Z
h //

k
��

ΣX

Σi
��

X ′
f ′
//

i′

��

Y ′
g′
//

j′

��

Z ′
h′ //

k′

��

ΣX ′

Σi′

��

X ′′
f ′′
//

i′′

��

Y ′′
g′′
//

j′′

��

Z ′′
h′′ //

k′′

��

ΣX ′′

Σi′′

��

ΣX
Σf
// ΣY

Σg
// ΣZ

Σh // Σ2X

Then there is an object Z ′′ and maps f ′′, g′′, h′′, k, k′ and k′′ such that the diagram is commutative,
except for its bottom right hand square, which commutes up to the sign −1, and all four rows and columns
are distinguished.

3.6 Boardman’s stable homotopy category

The Spanier–Whitehead category is not large enough to represent ordinary cohomology theories, and
does not admit arbitrary coproducts. For example, given spaces Xn and maps σ : ΣXn → Xn+1 for each
n ≥ 0, the sequence

(X0, 0)→ (X1,−1)→ · · · → (Xn,−n)→ . . .

might not have a colimit in S W . Boardman (1965 and later) and Adams (1971 or earlier) construct a
larger category B with better formal properties. It satisfies Margolis’ axioms:

Definition 3.6. A stable homotopy category is a category S with objects called spectra and with
morphisms S (X,Y ) = [X,Y ] which satisfies the following axioms:

Axiom 1: S has arbitrary coproducts
∐
αXα.

There is a suspension functor Σ: S → S and a collection ∆ of distinguished triangles of the form
X → Y → Z → ΣX.

Axiom 2: (S ,Σ,∆) is a triangulated category.
Axiom 3: There is an additive functor ∧ : S ×S → S , called the smash product, satisfying

(a) (S ,∧) is a symmetric monoidal category with unit S;

(b) There is a natural isomorphism Σ(X) ∧W ∼= Σ(X ∧W ) [[ETC]];

(c) For X → Y → Z → ΣX distinguished and any W , the diagram X ∧W → Y ∧W → Z ∧W →
Σ(X ∧W ) is distinguished;

(d) The natural map
∐
α(X ∧ Yα)→ X ∧

∐
α Yα is an isomorphism.

We define πk(X) = [S,X]k, which is [ΣkS,X] for k ≥ 0 and [S,Σ−kX] for k ≤ 0.
Axiom 4: S is a small graded weak generator, i.e., the natural map

⊕
α π∗(Xα)→ π∗(

∐
αXα) is an

isomorphism, and f : X → Y is an isomorphism if (and only if) π∗(f) : π∗(X)→ π∗(Y ) is an isomorphism.
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Let F be the subcategory of finite spectra in S , i.e., the minimal full subcategory containing S and
closed under the formation of fibers and cofibers, in the sense that X is in F if X → Y → Z → Σ(X)
is distinguished and Y and Z are in F .

Axiom 5: The subcategory F of finite spectra in S is equivalent to the Spanier–Whitehead category
of finite CW spectra [ETC].

Margolis (1983) conjectured that these axioms characterize Boardman’s stable homotopy category
B. Schwede (Annals of Math, 2007) proved that: “if C is a stable model category whose homotopy
category is compactly generated, and the full subcategory of compact objects in the homotopy category
of C is equivalent as a triangulated category to the usual homotopy category of finite spectra, then C
is Quillen equivalent as a model category to any of the standard model categories of spectra. That is,
given the primary homotopy theory of finite spectra (cofiber sequences and suspensions), the secondary
homotopy theory of all spectra (such as Toda brackets and function spaces) is determined.” (This is
quoted from Hovey’s Math Review.)

Freyd’s generating hypothesis (1966): If f : X → Y is a map of finite spectra and π∗(f) = 0 then
f = 0. This is an open problem.

3.7 Representation of homology and cohomology theories

Brown representability (1962): Let F be a contravariant homotopy functor from the category of pointed
connected CW complexes to pointed sets, such that (product axiom)

F (
∨
α

Xα) ∼=
∏
α

F (Xα)

for any collection {Xα}α, and (Mayer–Vietoris)

F (X) // F (A)× F (B) // F (A ∩B)

is exact at F (A) × F (B), whenever X = A ∪ B is the union of two subcomplexes. Then there exists
a (pointed connected) CW complex Y and a natural isomorphism [X,Y ] ∼= F (X). The converse is
immediate.

This applies in each degree for a generalized (reduced) cohomology theory X 7→ h∗(X). Let the
space En represent the functor X 7→ hn(X), for each n ≥ 0. Then [X,En] ∼= hn(X) ∼= hn+1(ΣX) ∼=
[ΣX,En+1] ∼= [X,ΩEn+1], so there is a (weak) homotopy equivalence En ' Ω0En+1. (Here Ω0Y denotes
the path component of the base point in ΩY .) Replacing En with ΩEn+1 we have (weak) homotopy
equivalences σ̃ : En ' ΩEn+1. Let σ : ΣEn → En+1 be the left adjoint map. Then

hn(X) =

{
[X,En] for n ≥ 0

[Σ−nX,E0] for n ≤ 0

for all CW complexes X.

For example, with h∗(X) = K̃U
∗
(X) given by reduced complex topological K-theory we representing

spaces KUn ' Z× BU for each even n and KUn ' U for each odd n. The adjoint structure maps are
standard equivalence U ' Ω(Z×BU) for n odd, and the Bott equivalence Z×BU ' ΩU for n even.

Recall also the formula
M̃Ok(X) = colim

n
πk+n(MO(n) ∧X)

for the reduced bordism group of X. Here σ : ΣMO(n)→MO(n+ 1) was defined as the map of Thom
complexes ΣMO(n) = Th(γn ⊕ ε1) → Th(γn+1) = MO(n + 1) induced by the map γn ⊕ ε1 → γn+1

covering the inclusion BO(n)→ BO(n+ 1). Alternatively, it is the map

EO(n+ 1)+ ∧O(n) S
n ∧ S1 −→ EO(n+ 1)+ ∧O(n+1) S

n+1

associated to the inclusion O(n) ∼= O(n)× 1 ⊂ O(n+ 1).
Lima–Whitehead (1959/1962): A (sequential) spectrum E is a sequence of based spaces En and

structure maps ΣEn → En+1, for n ≥ 0. It is an Ω-spectrum if each adjoint structure map σ̃ : En →
ΩEn+1 is a weak homotopy equivalence.

14



The complex K-theory spectrum KU = {n 7→ KUn} is an Ω-spectrum; the bordism spectrum
MO = {n 7→MO(n)} is not.

The homology theory X 7→ E∗(X) associated to E is the covariant functor defined by

Ek(X) = colim
n

πk+n(En ∧X)

where the colimit is formed for k + n ≥ 0 over the composites

πk+n(En ∧X)
Σ // πk+n+1Σ(En ∧X)

∼= // πk+n+1(ΣEn) ∧X σ∗ // πk+n+1(En+1 ∧X) .

If E is an Ω-spectrum, the associated cohomology theory X 7→ E∗(X) is the contravariant functor defined
by

Ek(X) =

{
[X,Ek] for k ≥ 0

[Σ−kX,E0] for k ≤ 0.

If E is not an Ω-spectrum, the cohomology theory is given for X of the homotopy type of a finite CW
complex by the colimit Ek(X) = colimn[ΣnX,Ek+n], where k + n ≥ 0. (Forward reference?)

In the stable homotopy category of spectra, these formulas can be rewritten as natural isomorphisms

Ek(X) ∼= [Sk, E ∧X] and Ek(X) ∼= [X,ΣkE] ,

for all integers k.
We define the stable homotopy groups of E for all integers k by

πk(E) = colim
n

πk+n(En)

where the colimit is formed for k + n ≥ 0 over the composites

πk+n(En)
Σ // πk+n+1(ΣEn)

σ∗ // πk+n+1(En+1) .

A map f : E → E′ of spectra is a sequence of basepoint-preserving maps fn : En → E′n commuting with
the structure maps, in the sense that fn+1 ◦ σ = σ ◦ Σfn : ΣEn → E′n+1, for each n ≥ 0.

ΣEn
σ //

Σfn

��

En+1

fn+1

��

ΣE′n
σ // E′n+1

The map f : E → E′ induces homomorphisms f∗ : πk(E) → πk(E′), and is called a stable equivalence,
or a π∗-isomorphism, if f∗ is an isomorphism for each integer k.

The stable homotopy category can be constructed as the localization Sp[W −1] of this category Sp of
spectra with respect to the class W of stable equivalences, i.e., the category that results by making each
stable equivalence into an isomorphism. It is not evident that such a category exists, nor how one can
calculate its morphism sets. (How can one see that πk(X) ∼= [Sk, X] in Sp[W −1]?)

3.8 The problem of representing products

The smash product in (integral, singular) cohomology

∧ : H̃k(X)⊗ H̃`(Y ) −→ H̃k+`(X ∧ Y )

can be represented by a map of representing spaces

φk,` : Hk ∧H` −→ Hk+` ,

where in this case Hk = K(Z, k) is the Eilenberg–Mac Lane space. If x ∈ H̃k(X) is represented by
f : X → Hk and y ∈ H̃`(Y ) is represented by g : Y → H`, the smash product x∧ y is represented by the
composite

X ∧ Y f∧g−→ Hk ∧H`
φk,`−→ Hk+` .
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Is there a spectrum H ∧H, and natural maps ιk,` : Hk ∧H` → (H ∧H)k+`, so that the maps φk,` arise
from a spectrum map µ : H ∧H → H with components µn : (H ∧H)n → Hn as the composites

Hk ∧H`
ιk,`−→ (H ∧H)k+`

µk+`−→ Hk+` ?

Recall that the cup product in cohomology is graded commutative. The smash product ∧ : H̃k(X) ∧
H̃`(Y ) → H̃k+`(X ∧ Y ) satisfies γ∗(x ∧ y) = (−1)k`y ∧ x, where γ : X ∧ Y → Y ∧ X is the symme-
try homeomorphism. With the convention ΣX = X ∧ S1 we can write the suspension isomorphism
Σ: H̃k(X)→ H̃k+1(ΣX) = H̃k+1(X ∧S1) as Σ(x) = x∧ s, where s ∈ H̃1(S1) is the preferred generator.
Then x ∧ y ∧ s = (−1)`x ∧ s ∧ y, so

Σ(x ∧ y) = x ∧ Σy = (−1)`Σx ∧ y .

Hence, at the level of representing spaces the diagram

Hk ∧H` ∧ S1 1∧σ //

φk,`∧1

��

Hk ∧H`+1

φk,`+1

��

Hk+` ∧ S1 σ // Hk+`+1

will commute up to homotopy, whereas the diagram

Hk ∧H` ∧ S1 1∧γ
∼=
//

φk,`∧1

��

Hk ∧ S1 ∧H`
σ∧1 // Hk+1 ∧H`

φk+1,`

��

Hk+` ∧ S1 σ // Hk+`+1
= // Hk+1+`

will only commute up to the sign (−1)`.
The structure maps ιk,` : Hk ∧H` → (H ∧H)k+` must therefore make

Hk ∧H` ∧ S1 1∧σ //

ιk,`∧1

��

Hk ∧H`+1

ιk,`+1

��

(H ∧H)k+` ∧ S1 σ // (H ∧H)k+`+1

commute up to homotopy, and

Hk ∧H` ∧ S1 1∧γ
∼=
//

ιk,`∧1

��

Hk ∧ S1 ∧H`
σ∧1 // Hk+1 ∧H`

ιk+1,`

��

(H ∧H)k+` ∧ S1 σ // (H ∧H)k+`+1
= // (H ∧H)k+1+`

commute up to the sign (−1)`. More generally, given spectra D, E and F , if a pairing of reduced
cohomology theories Dk(X)⊗ E`(Y ) −→ F k+`(X ∧ Y ) is to be represented by an external pairing

∧ : Dk(X)⊗ E`(Y ) −→ (D ∧ E)k+`(X ∧ Y )

followed the homomorphism µ∗ : (D ∧ E)k+`(X ∧ Y ) −→ F k+`(X ∧ Y ) induced by a map of spectra
µ : D ∧ E → F , then the structure maps σ : Σ(D ∧ E)n → (D ∧ E)n+1 should apparently make

Dk ∧ E` ∧ S1 1∧σ //

ιk,`∧1

��

Dk ∧ E`+1

ιk,`+1

��

(D ∧ E)k+` ∧ S1 σ // (D ∧ E)k+`+1
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commute up to homotopy, and

Dk ∧ E` ∧ S1 1∧γ
∼=
//

ιk,`∧1

��

Dk ∧ S1 ∧ E`
σ∧1 // Dk+1 ∧ E`

ιk+1,`

��

(D ∧ E)k+` ∧ S1 σ // (D ∧ E)k+`+1
= // (D ∧ E)k+1+`

commute up to the sign (−1)`. Adams achieves something like this by letting

(D ∧ E)n = hocolim
k+`≤n

(Dk ∧ E` ∧ Sn−k−`)

be carefully gluing together from the spaces Dk ∧E` with k+ ` = n, together with several other spaces.
(I am not sure if the definition can be formalized as a homotopy colimit, but it is close.)

We might reduce to the case k = ` = n ≥ 0 by representing ∧ : Dk(X)⊗E`(Y )→ (D∧E)k+`(X ∧Y )
as the composite

Dk(X)⊗ E`(Y ) ∼= Dn(Σn−kX)⊗ En(Σn−`Y ) −→ (D ∧ E)2n(Σn−kX ∧ Σn−`Y ) ∼= (D ∧ E)k+`(X ∧ Y ) ,

for n sufficiently large. We could then try define (D∧E)2n = Dn∧En and (D∧E)2n+1 = Dn∧En∧S1,
with structure map

σ : (D ∧ E)2n ∧ S1 ∧ S1 −→ (D ∧ E)2n+2

given by the composite

Dn ∧ En ∧ S1 ∧ S1 1∧γ∧1−→ Dn ∧ S1 ∧ En ∧ S1 σ∧σ−→ Dn+1 ∧ En+1 .

This pairing is not quite associative, since ((D ∧ E) ∧ F )4n = Dn ∧ En ∧ F2n, while (D ∧ (E ∧ F ))4n =
D2n∧En∧Fn. It is also not quite left or right unital, since (S∧E)2n = Sn∧En and (E∧S)2n = En∧Sn,
where S = {n 7→ Sn} is the sphere spectrum. Commutativity also fails, since the sequence of maps
γ2n : (D ∧E)2n → (E ∧D)2n given by γ : Dn ∧En → En ∧Dn only commutes up to the sign (−1) with
the structure maps, hence does not induce a (strict) spectrum map γ : D ∧ E → E ∧D. The diagram

Dn ∧ En ∧ S1 ∧ S1 1∧γ∧1
//

γ∧1∧1

��

Dn ∧ S1 ∧ En ∧ S1 σ∧σ // Dn+1 ∧ En+1

γ

��

En ∧Dn ∧ S1 ∧ S1 1∧γ∧1
// En ∧ S1 ∧Dn ∧ S1 σ∧σ // En+1 ∧Dn+1

only becomes (homotopy) commutative upon replacing the left hand vertical map with γ ∧ γ, where
γ : S1∧S1 → S1∧S1 has degree (−1). Early attempts relaxed the notion of a spectrum map to only ask
for compatibility up to homotopy with the structure maps, and restricting attention to even integers n
in the notation above, since γ : S2 ∧ S2 → S2 ∧ S2 has degree +1, even if the map is not equal to the
identity.

To summarize, it is possible to define a smash product D ∧ E of two sequential spectra, but it does
not make (Sp,∧, S) symmetric monoidal. It only achieves this after passage to the homotopy category,
so that (Sp[W −1],∧, S) is symmetric monoidal.

4 Diagram spaces and diagram spectra

Building on an idea due to Jeff Smith, and realized in the case of symmetric spectra in Hovey–Shipley–
Smith (1999), we follow Mandell–May–Schwede–Shipley (2001) and define an orthogonal spectrum X to
be a sequence of basedO(n)-spacesXn, for each n ≥ 0, equipped with structure maps σ : Xn∧S1 → Xn+1,
such that the `-fold composite

σ` : Xk ∧ S` −→ Xk+`

is O(k)×O(`)-equivariant, for each k, ` ≥ 0. To put this definition in a context, we shall interpret it in
terms of an underlying category of orthogonal sequences.
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((Is it better to say “orthogonal space” than “orthogonal sequence”?))
The category of sequential spectra can be considered as the category of (right) S-modules, for a

monoid S in the category of sequences of based spaces. This is a symmetric monoidal category, but
the monoid S is not commutative, so the monoidal pairing does not induce a pairing of S-modules. By
analogy, a ring R is a monoid in the category of abelian groups, but the tensor product ⊗ of abelian
groups only induces a tensor product ⊗R of right R-modules if R is commutative:

M ⊗R⊗N
σ⊗1
//

1⊗σ′
// M ⊗N

π // M ⊗R N

Here σ : M ⊗ R → M is the right R-module structure map of M , σ′ = σγ : R ⊗ N ∼= N ⊗ R → N is
the right R-action on N turned into a left R-action (which works when R is commutative), and π is the
coequalizer of σ⊗ 1 and 1⊗ σ′. This explains why there is no easy definition of a smash product pairing
of sequential spectra.

The category of orthogonal spectra can be considered as the category of (right) S-modules in a
category of orthogonal sequences, i.e., sequences of based spaces {n 7→ Xn}, where Xn comes equipped
with a continuous, basepoint-preserving O(n)-action, for each n ≥ 0. The latter category has a symmetric
monoidal structure for which the sequence S = {n 7→ Sn} is a commutative monoid. Hence the symmetric
monoidal pairing of orthogonal sequences induces a symmetric monoidal pairing of orthogonal spectra.
This is the smash product pairing of orthogonal spectra.

4.1 Sequences of spaces

Let N = {0, 1, 2, . . . } be the set of non-negative integers, viewed as a category with only identity mor-
phisms. The addition +: N×N→ N sending (k, `) to k+ ` and the zero object 0 ∈ N define a symmetric
monoidal structure on N. The coherent isomorphisms α : k + (` + m) ∼= (k + `) + m, λ : 0 + ` ∼= `,
ρ : `+ 0 ∼= ` and γ : k + ` ∼= `+ k are all identity morphisms.

By an N-space, or a sequence of spaces, we mean a functor X : N→ T . Writing Xn = X(n), this is
just a sequence {n 7→ Xn} of based spaces Xn for n ≥ 0. By a map f : X → Y of N-spaces, we mean a
natural transformation of functors, i.e., a sequence of basepoint-preserving maps fn : Xn → Yn. Let T N

denote the topological category of N-spaces. Each morphism space T N(X,Y ) is based at the constant
map X → Y .

The category of N-spaces has all small colimits and limits, created levelwise: For each small diagram
α 7→ Xα of N-spaces, we have

(colim
α

Xα)n = colim
α

(Xα)n and (lim
α
Xα)n = lim

α
(Xα)n

for each n ≥ 0.
It is tensored and cotensored over T , and these structures are again created levelwise: For each based

space T and N-spaces X and Y the N-spaces X ∧ T and F (T, Y ) are defined by

(X ∧ T ) = Xn ∧ T and F (T, Y )n = F (T, Yn)

for each n ≥ 0. There are natural homeomorphisms

T (T,T N(X,Y )) ∼= T N(X ∧ T, Y ) ∼= T N(X,F (T, Y )) .

The smash product ∧ : T ×T → T and the sum +: N× N→ N give rise to a pairing

⊗ : T N ×T N −→ T N

of N-spaces, mapping X and Y to the N-space X ⊗ Y with

(X ⊗ Y )n =
∨

k+`=n

Xk ∧ Y` .

Maps X⊗Y → Z in T N are in one-to-one correspondence with collections of basepoint-preserving maps

Xk ∧ Y` −→ Zk+` (1)
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for all k, ` ≥ 0. This is an instance of the Day convolution product, created by a left Kan extension
along +: N× N→ N.

Let U be the (unit) sequence with U0 = S0 and Un = ∗ for n > 0. Then there are evident isomor-
phisms α : X ⊗ (Y ⊗ Z) ∼= (X ⊗ Y )⊗ Z, λ : U ⊗ Y ∼= Y , ρ : Y ⊗ U ∼= Y and γ : X ⊗ Y ∼= Y ⊗X. In the
last case,

γn :
∨

k+`=n

Xk ∧ Y` −→
∨

k+`=n

Yk ∧X`

maps (x, y) ∈ Xk ∧ Y` to (y, x) ∈ Y` ∧Xk, which is admissible since ` + k = k + `. These isomorphism
are coherent, so (T N,⊗, U) is a symmetric monoidal category.

The category of N-spaces is also closed. The internal Hom object functor

Hom: (T N)op ×T N −→ T N

takes Y and Z to the N-space Hom(Y,Z) with

Hom(Y, Z)k =
∏

k+`=n

T (Y`, Zn) = T N(Y, shk Z) .

Here shk Z is the (left) k-shifted N-space given by (shk Z)` = Zk+`. The functor Hom(Y,−) is right
adjoint to the functor (−)⊗ Y :

T N(X ⊗ Y,Z) ∼= T N(X,Hom(Y, Z)) ,

with maps X ⊗ Y → Z and X → Hom(Y, Z) corresponding to collections of maps as in (1) above.

4.2 Sequential spectra as right S-modules

Consider the sphere sequence S = {n 7→ Sn}. Here we may assume that Sn = S1 ∧ · · · ∧ S1, with n ≥ 0
copies of S1, so that there are compatible preferred homeomorphisms Sk ∧S` ∼= Sk+`. Let µ : S⊗S → S
be the map of N-spaces given in degree n by the wedge sum

µn :
∨

k+`=n

Sk ∧ S` −→ Sn

of these homeomorphisms. Let η : U → S be the map of N-space given by the identity η0 : S0 → S0

in degree 0, and by the inclusion of the base point ηn : ∗ → Sn for each n > 0. Then (S, µ, η) is an
associative monoid in (T N,⊗, U). However, it is not commutative, since the diagram∨

k+`=n S
k ∧ S`

γn //

µn
&&

∨
k+`=n S

k ∧ S`

µn
xx

Sn

does not commute for n ≥ 2. For instance, when k = ` = 1, a point (s, t) ∈ S1 ∧ S1 is mapped by µ2

to (s, t) ∈ S2, but by µ2γ2 to (t, s) ∈ S2. This is precisely the source of the difficulties discussed for
pairings of spectra.

What is a right S-module in (T N,⊗, U)? It is an N-space X with a map σ : X ⊗S → X of N-spaces,
such that the diagrams

X ⊗ S ⊗ S σ⊗1
//

1⊗µ
��

X ⊗ S

σ

��

X ⊗ S σ // X

(where we have suppressed the isomorphism α) and

X ⊗ S

σ

��

X ⊗ U
1⊗η
oo

ρ
yy

X
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commute. In other words, it is a sequence of spaces {n 7→ Xn} and maps

σn :
∨

k+`=n

Xk ∧ S` −→ Xn

such that the two maps

σn ◦ (1⊗ µ)n , σn ◦ (σ ⊗ 1)n :
∨

k+`+m=n

Xk ∧ S` ∧ Sm −→ Xn

are equal, and the component Xn ∧ S0 → Xn of σn is the standard identification. It follows that the
component Xk ∧ S` → Xn of σn is the composite

Xk ∧ S`
σ∧1−→ Xk+1 ∧ S`−1 σ∧1−→ . . .

σ−→ Xk+` ∧ S0 = Xn

of ` suspended copies of the components σ : Xm∧S1 → Xm+1 of σm, for k ≤ m < n. Hence the sequence
of spaces Xn and the sequence of maps σ : ΣXn = Xn ∧ S1 → Xn+1, for n ≥ 0, define a sequential
spectrum.

Conversely, from a sequential spectrum X with structure maps σ, we can recover the right S-module
action σ : X ⊗ S → X by the same formula. In degree n the component Xk ∧ S` → Xn where k + ` = n
is the `-fold composite

σ` = σ ◦ · · · ◦ Σ`−2(σ) ◦ Σ`−1(σ) : Xk ∧ S` −→ Xn .

A map f : X → Y of right S-modules corresponds precisely to a map f : X → Y of sequential spectra.
Hence the category of right S-modules in T N is equivalent to the category SpN of sequential spectra.

4.3 Orthogonal sequences

Let O be the topological category with objects non-negative integers {0, 1, 2, . . . }, and with morphism
spaces given by O(n, n) = O(n) and O(m,n) = ∅ for m 6= n. Here O(n) denotes the topological group
of orthogonal n × n matrices. The continuous composition in O is given by matrix multiplication:
A ◦ B = AB for A,B ∈ O(n). The identity morphism of n is given by the identity matrix I = In.
We may think of the object n in O as a label for the real inner-product space Rn, with the standard
Euclidean dot product, in which case the morphisms A ∈ O(n, n) = O(n) are thought of as the isometries
A : Rn → Rn, mapping v ∈ Rn to Av ∈ Rn.

The sum +: O × O → O sending the pair of objects (k, `) to the object k + `, and sending a pair of
morphisms (A,B) ∈ O(k)⊗O(`) to the block sum

A⊕B =

(
A 0
0 B

)
∈ O(k + `) ,

is part of a symmetric monoidal structure on O. The zero object is 0. The coherent natural isomorphisms
α : k+(`+m) ∼= (k+`)+m, λ : 0+` ∼= ` and ρ : `+0 ∼= ` are given by the identity matrices in O(k+`+m),
O(`) and O(`), respectively. These correspond to the standard identifications Rk ⊕ (R` ⊕ Rm) ∼= (Rk ⊕
R`)⊕ Rm, R0 ⊕ R` ∼= R` and R` ⊕ R0 ∼= R`.

However, the symmetry isomorphism γ : k+` ∼= `+k is not the identity. It is given by the permutation
matrix

χk,` =

(
0 I`
Ik 0

)
∈ O(k + `) ,

corresponding to the twist isomorphism γ : Rk⊕R` ∼= R`⊕Rk. It is natural as a transformation from the
functor (k, `) 7→ k + ` to the functor (k, `) 7→ `+ k, because of the relation(

0 I`
Ik 0

)(
A 0
0 B

)
=

(
0 B
A 0

)
=

(
B 0
0 A

)(
0 I`
Ik 0

)
.

The inclusion functor N→ O is strong monoidal (to be defined when we need it), but is not symmetric
monoidal, since the symmetry isomorphism in N is not compatible under ι with the symmetry isomor-
phism in O. (This seems to be incorrectly stated near equation (8.1) in Mandell–May–Schwede–Shipley
(2001).)
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By an O-space, or an orthogonal sequence of spaces, we mean a continuous functor X : O → T .
Writing Xn = X(n), this is a sequence {n 7→ Xn} of based spaces Xn, equipped with a continuous,
basepoint-preserving left O(n)-action O(n)+ ∧Xn → Xn, for each n ≥ 0. Writing Ax for the action of
A ∈ O(n) on x ∈ Xn, we require that A(Bx) = (AB)x and Ix = x.

By a map f : X → Y of orthogonal sequences (of spaces), we mean a natural transformation of
continuous functors, i.e., a sequence of basepoint-preserving O(n)-equivariant maps fn : Xn → Yn, for
each n ≥ 0. Hence Afn(x) = fn(Ax) for each x ∈ Xn.

Let T O denote the topological category of orthogonal sequences. Each morphism space T O(X,Y ) is
based at the constant map.

The category of orthogonal sequences has all small colimits and limits, created levelwise: For each
small diagram α 7→ Xα of orthogonal sequences, we have

(colim
α

Xα)n = colim
α

(Xα)n and (lim
α
Xα)n = lim

α
(Xα)n

for each n ≥ 0. The right hand sides are both formed in the category of based O(n)-spaces.
The category T O is tensored and cotensored over T , and these structures are again created levelwise:

For each based space T and orthogonal sequences X and Y the orthogonal sequences X ∧T and F (T, Y )
are defined by

(X ∧ T )n = Xn ∧ T and F (T, Y )n = F (T, Yn)

for each n ≥ 0. The right hand sides are both formed in the category of based O(n)-spaces. For A ∈ O(n),
x ∈ Xn and t ∈ T we set A(x∧ t) = Ax∧ t. For f : T → Yn we set (Af)(t) = A(f(t)). There are natural
homeomorphisms

T (T,T O(X,Y )) ∼= T O(X ∧ T, Y ) ∼= T O(X,F (T, Y )) .

We can also define an orthogonal sequence T ∧ X with (T ∧ X)n = T ∧ Xn, and there is a natural
isomorphism γ : T ∧X → X ∧ T given by γ : T ∧Xn

∼= Xn ∧ T at each level n.

Remark 4.1. Restriction along N → O defines a forgetful functor U : T O → T N from orthogonal
sequences to sequences of spaces. It preserves small colimits and limits, as well as tensors and cotensors
with based spaces. It does not preserve the symmetric monoidal pairing ⊗ and closed structure Hom
that we are about to define.

The smash product ∧ : T ×T → T and the sum +: O× O→ O give rise to a pairing

⊗ : T O ×T O −→ T O

of orthogonal sequences, mapping X and Y to the orthogonal sequence X ⊗ Y with

(X ⊗ Y )n =
∨

k+`=n

O(n)+ ∧
O(k)×O(`)

Xk ∧ Y` .

Here the balanced product over O(k)×O(`) is the orbit space of O(n)+ ∧Xk ∧ Y` where

A

(
B 0
0 C

)
∧ x ∧ y

is identified with
A ∧Bx ∧ Cy

for A ∈ O(n), B ∈ O(k), C ∈ O(`), n = k+ `, x ∈ Xk and y ∈ Y`. The O(n)-action on (X ⊗Y )n is from
the left on the copy of O(n): We set A(B ∧ x∧ y) = AB ∧ x∧ y for A,B ∈ O(n), x ∈ Xk and y ∈ Y`. In
other words,

O(n)+ ∧
O(k)×O(`)

Xk ∧ Y`

is the based O(n)-space obtained by inducing up the based O(k) × O(`)-space structure on Xk ∧ Y` to
an O(n)-space structure along the direct sum embedding O(k)×O(`)→ O(k + `) = O(n).

Maps X⊗Y → Z in T O are in one-to-one correspondence with collections of O(k)×O(`)-equivariant
basepoint-preserving maps

Xk ∧ Y` −→ Zk+` (2)
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for all k, ` ≥ 0. Here Xk ∧ Y` is the O(k) × O(`)-space given as an external product of the O(k)-space
Xk and the O(`)-space Y`, while the O(k + `)-space Zk+` is treated as an O(k) × O(`)-space through
the homomorphism h : O(k) × O(`) → O(k + `). Alternatively we might say that Xk ∧ Y` → Zk+` is
h-equivariant, or O(k)×O(`)→ O(k + `)-equivariant.

The tensor product X ⊗ Y is another instance of Day’s convolution product, and can be viewed as
the left Kan extension of the external product ∧◦ (X ×Y ) : O×O→ T ×T → T along +: O×O→ O:

O× O
X×Y

//

+

��

T ×T

∧
��

O
⊗

// T

This point of view can be expressed by the formula

(X ⊗ Y )n = colim
k,`,k+`→n

Xk ∧ Y`

where (k, `, k + `→ n) ranges over the left fiber category +/n of +: O× O→ O at n in O.
Let U be the (unit) orthogonal sequence with U0 = S0 and Un = ∗ for n > 0. There is only one

choice of O(n)-actions. There is a natural associativity isomorphism α : X ⊗ (Y ⊗ Z) ∼= (X ⊗ Y ) ⊗ Z,
given by the O(n)-equivariant homeomorphism

αn :
∨

k+q=n

O(n)+ ∧
O(k)×O(q)

Xk ∧
( ∨
`+m=q

O(q)+ ∧
O(`)×O(m)

Y` ∧ Zm
)

∼=
∨

k+`+m=n

O(n)+ ∧
O(k)×O(`)×O(m)

Xk ∧ Y` ∧ Zk

∼=
∨

p+m=n

O(n)+ ∧
O(p)×O(m)

( ∨
k+`=p

O(p)+ ∧
O(k)×O(`)

Xk ∧ Y`
)
∧ Zm ,

for each n ≥ 0. There are natural left and right unitality isomorphisms λ : U ⊗Y ∼= Y and ρ : Y ⊗U ∼= Y
given by

λn : O(n)+ ∧
O(0)×O(n)

S0 ∧ Yn ∼= Yn and ρn : O(n)+ ∧
O(n)×O(0)

Yn ∧ S0 ∼= Yn ,

respectively. Here O(0) is the trivial group. Less obviously, there is a natural symmetry isomorphism
γ : X ∧ Y ∼= Y ∧X given by the O(n)-equivariant homeomorphism

γn :
∨

k+`=n

O(n)+ ∧
O(k)×O(`)

Xk ∧ Y`
∼=−→

∨
k+`=n

O(n)+ ∧
O(k)×O(`)

Yk ∧X`

that maps
Aχk,` ∧ x ∧ y ∈ O(n)+ ∧

O(k)×O(`)
Xk ∧ Y`

at the left hand side to
A ∧ y ∧ x ∈ O(n)+ ∧

O(`)×O(k)
Y` ∧Xk

at the right hand side. Recall that χk,` ∈ O(n) is the block permutation matrix that corresponds to
γ : Rk ⊕ R` ∼= R` ⊕ Rk. This gives a well-defined map, because

A

(
C 0
0 B

)
χk,` ∧ x ∧ y = Aχk,`

(
B 0
0 C

)
∧ x ∧ y ≡ Aχk,` ∧Bx ∧ Cy

is mapped to

A

(
C 0
0 B

)
∧ y ∧ x ≡ A ∧ Cy ∧Bx .

Here x ∈ Xk, y ∈ Y`, A ∈ O(n), B ∈ O(k), C ∈ O(`) and k + ` = n. Equivalently, γn maps

A ∧ x ∧ y ∈ O(n)+ ∧
O(k)×O(`)

Xk ∧ Y`
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at the left hand side to
Aχ`,k ∧ y ∧ x ∈ O(n)+ ∧

O(`)×O(k)
Y` ∧Xk

at the right hand side, since χ`,k = χ−1
k,`.

Remark 4.2. Sending A∧x∧ y to A∧ y∧x, without the factor χk,`, would not give a well-defined map
of orthogonal sequences.

These isomorphisms are coherent, so (T O,⊗, U) is a symmetric monoidal category.
The category of orthogonal sequences is also closed. The internal Hom object functor

Hom: (T O)op ×T O −→ T O

takes a pair of orthogonal sequences Y and Z to the orthogonal sequence Hom(Y,Z) with

Hom(Y,Z)k =
∏

k+`=n

T (Y`, Zn)O(`) = T O(Y, shk Z) .

Here T (Y`, Zn)O(`) is the space of O(`)-equivariant maps Y` → Zn, where O(`) acts on Zn through the

(right) inclusion O(`)→ O(n) mapping B ∈ O(`) to

(
Ik 0
0 B

)
∈ O(n), and shk Z is the (left) k-shifted

O-space given by (shk Z)` = Zk+` for each ` ≥ 0, with the O(`)-action just indicated. The group O(k)
acts on each factor T (Y`, Zn)O(`) through its action on Zn, given by the (left) inclusion O(k) → O(n)

mapping A to

(
A 0
0 I`

)
.

The functor Hom(Y,−) is right adjoint to the functor (−)⊗ Y :

T O(X ⊗ Y,Z) ∼= T O(X,Hom(Y,Z)) ,

with maps X ⊗ Y → Z and X → Hom(Y, Z) corresponding to collections of O(k) × O(`)-equivariant
maps as in (2) above. Furthermore, this adjunction lifts to an isomorphism

Hom(X ⊗ Y,Z) ∼= Hom(X,Hom(Y,Z))

of orthogonal sequences. (Give proof?)
Examples: For each n ≥ 0, let Evn : T O → T be the (continuous) evaluation functor taking X to

EvnX = Xn, forgetting the spaces Xm for m 6= n, and forgetting the O(n)-action on Xn. It has a left
adjoint, the free orthogonal sequence functor Gn : T → T O, taking T to GnT with

(GnT )n = O(n)+ ∧ T

with O(n) acting by A(B∧ t) = AB∧ t, and (GnT )m = ∗ for m 6= n. There is a natural homeomorphism

T O(GnT,X) ∼= T (T,EvnX) .

The free functors interact with the closed symmetric monoidal structure as follows: There are natural
isomorphisms

GkT ⊗G`V ∼= Gk+`(T ∧ V ) ∼= (Gk+`T ) ∧ V

and
Hom(G`V,Z) ∼= sh` F (V,Z) ∼= F (V, sh` Z)

for k, ` ≥ 0, T, V ∈ T and Z ∈ T O. As a special case, G0S
0 = U is the unit orthogonal sequence.

4.4 Orthogonal spectra as S-modules

The orthogonal group O(n) acts on the n-sphere Sn by way of its natural action on Rn, where Sn is
viewed as the one-point compactification of Rn. The action is continuous and preserves the base point
at infinity. The sphere orthogonal sequence S is the sequence {n 7→ Sn} of n-spheres with these actions,
for all n ≥ 0.
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The standard identification Rk ⊕ R` ∼= Rk+` extends to a homeomorphism Sk ∧ S` ∼= Sk+`, which is
O(k) × O(`) → O(k + `)-equivariant with respect to the given actions. We write x ∧ y for the image
of x ∈ Sk and y ∈ S` in Sk+`. Let µ : S ⊗ S → S be the map of orthogonal sequences given by these
O(k)×O(`)-equivariant homeomorphisms

Sk ∧ S`
∼=−→ Sk+` ,

or equivalently, by the sequence of O(n)-maps

µn :
∨

k+`=n

O(n)+ ∧
O(k)×O(`)

Sk ∧ S` −→ Sn

that take A∧x∧y to A(x∧y), for A ∈ O(n), x ∈ Sk and y ∈ S`, for n ≥ 0. Let η : U → S be the map of
orthogonal sequences that is the identity on S0 at level n = 0, and the constant map ∗ → Sn for n > 0.

Proposition 4.3. (S, µ, η) is a commutative monoid in the symmetric monoidal category (T O,⊗, U) of
orthogonal sequences.

Proof. It is evident that µ(1∧µ) = µ(µ∧ 1) : S⊗S⊗S → S, and that µ(η ∧ 1) = id = µ(1∧ η) : S → S.
To check that S is commutative, we must verify that the diagram∨

k+`=n

O(n)+ ∧
O(k)×O(`)

Sk ∧ S`
γn //

µn
((

∨
k+`=n

O(n)+ ∧
O(k)×O(`)

Sk ∧ S`

µn
vv

Sn

commutes, for each n ≥ 0. Here γn maps

Aχk,` ∧ x ∧ y ∈ O(n)+ ∧
O(k)×O(`)

Sk ∧ S`

to
A ∧ y ∧ x ∈ O(n)+ ∧

O(`)×O(k)
S` ∧ Sk ,

and µn maps this to
A(y ∧ x) ∈ Sn .

Along the left hand side, µn maps Aχk,` ∧ x ∧ y to Aχk,`(x ∧ y). This is also equal to A(y ∧ x), since
χk,` ∈ O(n) acts on Sn as the twist map γ : Sk ∧ S` → S` ∧ Sk, taking x ∧ y to y ∧ x.

Definition 4.4. An orthogonal spectrum X is a right S-module in orthogonal sequences. In other words,
X is an orthogonal sequence equipped with a map σ : X ⊗ S → X of orthogonal sequences, such that
the diagrams

X ⊗ S ⊗ S σ⊗1
//

1⊗µ
��

X ⊗ S

σ

��

X ⊗ S σ // X

(where we have suppressed the isomorphism α) and

X ⊗ S

σ

��

X ⊗ U
1⊗η
oo

ρ
yy

X

commute. A map f : X → Y of orthogonal spectra is a map of right S-modules, i.e., a map f : X → Y
of orthogonal sequences such that the diagram

X ⊗ S
f⊗1
//

σ

��

Y ⊗ S

σ

��

X
f

// Y

24



commutes. We write SpO for the topological category of orthogonal spectra.

Equivalently, X is equipped with suitable O(n)-equivariant maps

σn :
∨

k+`=n

O(n)+ ∧
O(k)×O(`)

Xk ∧ S` −→ Xn

for all n ≥ 0. This is the same as saying that X is equipped with suitable O(k)×O(`)-equivariant maps

σ` : Xk ∧ S` −→ Xk+`

for all k, ` ≥ 0. The associativity and unitality conditions amount to saying that in each case σ` is the
composite

Xk ∧ S`
σ∧1−→ Xk+1 ∧ S`−1 σ∧1−→ . . . −→ Xk+`−1 ∧ S1 σ−→ Xk+`

of ` suspended copies of structure maps

σ : Xm ∧ S1 −→ Xm+1 ,

for k ≤ m < k + `. (Elaborate on the equivalence of these two points of view?)
Hence we have the alternative definition of an orthogonal spectrum given at the outset of this section:

It is a sequence of basedO(n)-spacesXn for n ≥ 0, and a sequence of structure maps σ : ΣXn = Xn∧S1 →
Xn+1 for n ≥ 0, with the property that the `-fold composite

σ` : Xk ∧ S` −→ Xk+`

is O(k)×O(`)→ O(k + `)-equivariant for k, ` ≥ 0, where O(`) acts in the standard way on S`.
A map f : X → Y of orthogonal spectra is a sequence of basepoint-preserving O(n)-maps fn : Xn →

Yn such that the diagram

Xn ∧ S1 fn∧1
//

σ

��

Yn ∧ S1

σ

��

Xn+1

fn+1
// Yn+1

commutes for each n ≥ 0.

4.5 The closed symmetric monoidal category of orthogonal spectra

The category of orthogonal spectra has all small colimits and limits, created at the level of underlying
orthogonal sequences. For each small diagram α 7→ Xα of orthogonal spectra, the colimit colimαXα of
underlying orthogonal sequences has the right S-module structure given by a composite

(colim
α

Xα)⊗ S
∼=←− colim

α
(Xα ⊗ S)

colimσ−→ colim
α

Xα .

Here − ⊗ S is a left adjoint, hence preserves colimits. The limit limαXα of underlying orthogonal
sequences has the right S-module structure given by a composite

(lim
α
Xα)⊗ S −→ lim

α
(Xα ⊗ S)

limσ−→ lim
α
Xα .

Equivalently, it is given by the composite

lim
α
Xα

lim σ̃−→ lim
α

Hom(S,Xα)
∼=←− Hom(S, lim

α
Xα) .

Here Hom(S,−) is a right adjoint, hence preserves limits. More explicitly, these are given by composites

σ : (colim
α

(Xα)n) ∧ S1 ∼=−→ colim
α

((Xα)n ∧ S1) −→ colim
α

(Xα)n+1

and
σ : (lim

α
(Xα)n) ∧ S1 ν−→ lim

α
((Xα)n ∧ S1) −→ lim

α
(Xα)n+1 .
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(Explain ν?)
The category of orthogonal spectra is tensored and cotensored over based topological spaces, and

these structures are created at the level of orthogonal sequences. For each based space T and orthogonal
spectra X and Y , the orthogonal sequences X ∧T and F (T, Y ) have right S-module structures given by
composites

(X ∧ T )⊗ S
∼=−→ (X ⊗ S) ∧ T σ∧1−→ X ∧ T

and

F (T, Y )⊗ S −→ F (T, Y ⊗ S)
F (1,σ)−→ F (T, Y ) .

More explicitly, these are given by composites

σ : Xn ∧ T ∧ S1 1∧γ−→ Xn ∧ S1 ∧ T σ∧1−→ Xn+1 ∧ T

and

σ : F (T, Yn) ∧ S1 ν−→ F (T, Yn ∧ S1)
F (1,σ)−→ F (T, Yn+1) .

(Explain ν?) There are natural homeomorphisms

T (T, SpO(X,Y )) ∼= SpO(X ∧ T, Y ) ∼= SpO(X,F (T, Y )) .

We write ΣX = X∧S1 and ΩX = F (S1, X) for the sequential (or orthogonal) spectra obtained from the
tensored and cotensored structure, in the case T = S1. The adjunction unit η : X → F (T,X ∧ T ) and
counit ε : F (T,X) ∧ T → X specialize to natural maps η : X → ΩΣX and ε : ΣΩX → X of orthogonal
spectra.

We can also define an orthogonal spectrum T ∧ X as the orthogonal sequence T ∧ X with right
S-module structure given by the composite

(T ∧X)⊗ S ∼= T ∧ (X ⊗ S)
1∧σ−→ T ∧X .

More explicitly, (T ∧X)n = T ∧Xn, and σ : (T ∧X)n∧S1 → (T ∧X)n+1 is 1∧σ : T ∧Xn∧S1 → T ∧Xn+1.
The natural isomorphism γ : T ∧X → X∧T of orthogonal sequences is also an isomorphism of orthogonal
spectra.

Remark 4.5. Restriction along N → O defines a forgetful functor U : SpO → SpN from orthogonal
spectra to sequential spectra. It preserves small colimits and limits, as well as tensors and cotensors with
based spaces. It does not preserve the symmetric monoidal pairing ∧ and closed structure F that we are
about to define.

By analogy with the tensor product M ⊗R N and Hom object HomR(M,N) of R-modules, for a
commutative ring R, we can now define internal smash products and function objects for orthogonal
spectra.

Definition 4.6. The smash product X ∧ Y of two orthogonal spectra X and Y is the coequalizer

X ⊗ S ⊗ Y
σ⊗1
//

1⊗σ′
// X ⊗ Y

π // X ∧ Y

in the category of orthogonal sequences, i.e., the colimit of the two parallel arrows. Here σ′ = σ ◦ γ is
the left S-module action on Y given by the composite

σ′ : S ⊗ Y γ−→ Y ⊗ S σ−→ Y .

Hence, (X ∧ Y )n is the coequalizer

∨
k+`+m=n

O(n)+ ∧
O(k)×O(`)×O(m)

Xk ∧ S` ∧ Ym
(σ⊗1)n

//

(1⊗σ′)n
//

∨
k+`=n

O(n)+ ∧
O(k)×O(`)

Xk ∧ Y`
πn // (X ∧ Y )n

in the category of based O(n)-spaces, for each n ≥ 0. (Discuss right S-module structure inherited from
X or from Y , and why they are the same.)
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The multiplication µ : S ⊗ S → S makes the orthogonal sequence S into a right S-module, i.e., an
orthogonal spectrum.

Proposition 4.7. There are natural isomorphisms α : X ∧ (Y ∧ Z) ∼= (X ∧ Y ) ∧ Z, λ : S ∧ Y ∼= Y ,
ρ : Y ∧ S ∼= Y and γ : X ∧ Y ∼= Y ∧X. These make (SpO,∧, S) a symmetric monoidal category.

Proof. In each case the isomorphism is induced from the corresponding isomorphism of orthogonal se-
quences by passage to a coequalizer. For instance, X ∧ S is defined as the coequalizer

X ⊗ S ⊗ S
σ⊗1
//

1⊗µ
// X ⊗ S

π // X ∧ S

which is isomorphic to the coequalizer

X ⊗ S ⊗ S
σ⊗1
//

1⊗µ
// X ⊗ S

σ // X

split by X ∼= X ⊗ U 1⊗η−→ X ⊗ S and X ⊗ S ∼= X ⊗ S ⊗ U 1⊗1⊗η−→ X ⊗ S ⊗ S. See Mac Lane (1971/1998),
Section VI.6 regarding split coequalizers.

Recall the equalizer diagram

HomR(M,N)
ι // Hom(M,N)

//

// Hom(M ⊗R,N)

for R-modules M and N , where the two parallel arrows take f : M → N to the homomorphisms M⊗R→
N given by m⊗ r 7→ f(mr) and m⊗ r 7→ f(m)r, respectively.

Definition 4.8. The function spectrum F (Y,Z) associated to two orthogonal spectra Y and Z is the
equalizer

F (Y,Z)
ι // Hom(Y,Z)

σ∗ //

σ∨
// Hom(Y ⊗ S,Z)

in the category of orthogonal spectra, i.e., the limit of the two parallel arrows. Here σ∗ = Hom(σ, 1) and
σ∨ is the right adjoint of the composite

Hom(Y,Z)⊗ Y ⊗ S ε⊗1−→ Z ⊗ S σ−→ Z .

Here ε : Hom(Y, Z)⊗ Y → Z is an adjunction counit, left adjoint to the identity on Hom(Y,Z). Hence,
F (Y, Z)k is the equalizer

F (Y,Z)k
ι //

∏
k+`=n

T (Y`, Zn)O(`)
σ∗k //

σ∨k

//

∏
k+`+m=n

T (Y` ∧ Sm, Zn)O(`)×O(m)

in the category of based O(k)-spaces, for each k ≥ 0. (Elaborate on σ∗k, σ∨k and the group actions?)
(Discuss right S-module structure inherited from Y or from Z, and why they are the same.)

Proposition 4.9. There is a natural homeomorphism

SpO(X ∧ Y,Z) ∼= SpO(X,F (Y, Z))

and a natural isomorphism
F (X ∧ Y,Z) ∼= F (X,F (Y, Z))

for all orthogonal spectra X, Y and Z. Hence SpO is a closed category.

Proof. (These are induced from the corresponding homeomorphism and isomorphism of orthogonal se-
quences by passage to an equalizer.)
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Examples: The composite evaluation functor Evk : SpO → T O → T mapping X to EvkX = Xk has
a left adjoint, the free functor Fk : T → SpO given by FkT = GkT ⊗ S. More explicitly,

(FkT )n = O(n)+ ∧
O(`)

(T ∧ S`)

for n = k+ `, with (FkT )n = ∗ for n < k. In particular, F0T = Σ∞T = T ∧S is the suspension spectrum
of T , with

(F0T )n = (Σ∞T )n = T ∧ Sn

for each n ≥ 0, where O(n) acts as usual on Sn.
There is a natural homeomorphism

SpO(FkT,X) ∼= T (T,EvkX)

and natural isomorphisms
FkT ∧ F`V ∼= Fk+`(T ∧ V ) ∼= Fk+`(T ) ∧ V

and
F (F`V,Z) ∼= sh` F (V,Z) ∼= F (V, sh` Z)

for k, ` ≥ 0, T, V ∈ T and Z ∈ SpO. (Proof?)
Note that FkT = T ∧FkS0, and (FkS

0)n = O(n)+∧O(`)S
` = Th(γ⊥) is the Thom complex of the or-

thogonal complement γ⊥ in εn to the canonical k-bundle γ over the Stiefel manifold Vk(Rn) = O(n)/O(`)
of orthonormal k-frames in Rn. This equals the space SpO(FnS

0, FkS
0) of orthogonal spectrum maps

FnS
0 → FkS

0.

5 Homotopy groups of spectra

We turn to §7 of Mandell–May–Schwede–Shipley.

5.1 π∗-isomorphisms

Definition 5.1. The homotopy groups of a sequential spectrum X are defined by

πk(X) = colim
n

πk+n(Xn)

for each integer k. The colimit is formed over the composite homomorphisms

πk+n(Xn)
−∧S1

−→ πk+n+1(Xn ∧ S1)
σ∗−→ πk+n+1(Xn+1) ,

mapping the homotopy class of f : Sk+n → Xn to the homotopy class of σ ◦ (f ∧ S1) : Sk+n+1 ∼=
Sk+n ∧ S1 → Xn ∧ S1 → Xn+1. When k + n ≥ 2 these are homomorphisms of abelian groups, so each
πk(X) is an abelian group. We write π∗(X) for the graded abelian group with πk(X) in degree k.

Equivalently, the colimit is formed over the composite homomorphisms

πk+n(Xn)
σ̃∗−→ πk+n(ΩXn+1) ∼= πk+n+1(Xn+1) ,

where σ̃ : Xn → ΩXn+1 is the right adjoint of the structure map. If X is an Ω-spectrum, then σ̃∗ is an
isomorphism for each k + n ≥ 0. Hence in these cases

πk(X) ∼=

{
πk(X0) for k ≥ 0,

π0(X−k) for k ≤ 0.

Each map f : X → Y of sequential spectra induces a commuting diagram

πk+n(Xn)
−∧S1

//

fn∗

��

πk+n+1(Xn ∧ S1)
σ∗ //

(fn∧1)∗

��

πk+n+1(Xn+1)

fn+1∗

��

πk+n(Yn)
−∧S1

// πk+n+1(Yn ∧ S1)
σ∗ // πk+n+1(Yn+1)

28



hence also a homomorphism

πk(f) = colim
n

πk+n(fn) : πk(X)→ πk(Y )

and a homomorphism of graded abelian groups π∗(f) : π∗(X) → π∗(Y ). We often write f∗ for πk(f)
or π∗(f). It is easy to check that π∗ : SpN → grAb defines a functor from sequential spectra to graded
abelian groups.

Remark 5.2. The homotopy groups of an orthogonal spectrum X are defined as the homotopy groups of
the underlying sequential spectrum UX, where U : SpO → SpN forgets the actions by orthogonal groups.

Definition 5.3. A homotopy of maps X → Y is a map X ∧ I+ → Y , where I = [0, 1]. Homotopic maps
induce the same homomorphism of homotopy groups. A homotopy equivalence is a map f : X → Y that
admits a homotopy inverse, i.e., a map g : Y → X such that g ◦ f ' 1X and f ◦ g ' 1Y .

A map f : X → Y is called a level equivalence if fn : Xn → Yn is a weak equivalence, for each n ≥ 0.
A map f : X → Y is called a π∗-isomorphism if the induced homomorphism f∗ = π∗(f) : π∗(X) →

π∗(Y ) is an isomorphism.

Lemma 5.4. A homotopy equivalence is a level equivalence. A level equivalence is a π∗-isomorphism.
A π∗-isomorphism between Ω-spectra is a level equivalence.

Proof. The first two claims are clear. If f : X → Y is a π∗-isomorphism between Ω-spectra, then for each
n ≥ 0 and each i ≥ 0 the homomorphism πi(fn) : πi(Xn)→ πi(Yn) is identified with πi−n(f) : πi−n(X)→
πi−n(Y ), hence is an isomorphism.

Remark 5.5. The stable homotopy category can be defined as the localization of the category SpN

where the subcategory W of π∗-isomorphisms have been turned into isomorphisms:

Ho(SpN) = SpN[W −1] .

It is equivalent to the localization of the full subcategory category of Ω-spectra where the level equiv-
alences have been turned into isomorphisms, since every spectrum is π∗-isomorphic to an Ω-spectrum.
Replacing SpN with SpO gives equivalent localized categories:

Ho(SpN) ' Ho(SpO) .

Example 5.6. Let Sc be the orthogonal spectrum with Sc0 = ∗ and Scn = Sn for n > 0, with the usual
O(n)-action. The inclusion Sc → S is a π∗-isomorphism. (Sc is a positive cofibrant replacement of S.)

Let Sf be the orthogonal spectrum with Sfn = Q(Sn) = colimk Ωk(Sk ∧ Sn), with the induced
O(n)-action. The inclusion S → Sf is a π∗-isomorphism, and Sf is an Ω-spectrum. (Sf is a fibrant
replacement of S.)

Proposition 5.7. There is a natural isomorphism

S1 ∧ − : πk(X) −→ π1+k(S1 ∧X) .

Proof. For k + n ≥ 0 there is a natural map S1 ∧ − : πk+n(Xn) → π1+k+n(S1 ∧ Xn) that takes the
homotopy class of f : Sk+n → Xn to the homotopy class of S1 ∧ f : S1+k+n ∼= S1 ∧ Sk+n → S1 ∧ Xn.
The diagram

πk+n(Xn)
−∧S1

//

S1∧−
��

πk+n+1(Xn ∧ S1)
σ //

S1∧−
��

πk+n+1(Xn+1)

S1∧−
��

π1+k+n(S1 ∧Xn)
−∧S1

// π1+k+n+1(S1 ∧Xn ∧ S1)
σ // π1+k+n+1(S1 ∧Xn+1)

commutes, and can be repeated indefinitely to the right, so S1 ∧ − induces a homomorphism S1 ∧
− : πk(X)→ π1+k(S1 ∧X) of horizontal colimits.

We claim that ker(−∧S1) = ker(S1∧−) in πk+n(Xn), and im(−∧S1) = im(S1∧−) in π1+k+n+1(S1∧
Xn ∧ S1).
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The first claim implies that S1 ∧− : πk(X)→ π1+k(S1 ∧X) is injective: If f : Sk+n → Xn represents
a class in πk(X) that maps to zero in π1+k(S1 ∧X), then S1 ∧ f maps to zero in π1+k+m(S1 ∧Xm) for
some m ≥ n. The image of f in πk+m(Xm) is then in ker(S1∧−). By the claim, this equals ker(−∧S1),
so the images of f in πk+m+1(Xm ∧ S1) and πk+m+1(Xm+1) are zero. Hence the class of f in πk(X) is
also zero.

The second claim implies that S1 ∧− : πk(X)→ π1+k(S1 ∧X) is surjective: If g : S1+k+n → S1 ∧Xn

represents a given class in π1+k(S1∧X), then the image of g in π1+k+n+1(S1∧Xn∧S1) is in im(−∧S1).
By the claim, this equals im(S1∧−), so there is a map f : Sk+n+1 → Xn∧S1 such that S1∧f is homotopic
to g ∧ S1. The image of f in πk+n+1(Xn+1) then maps to the image of g in π1+k+n+1(S1 ∧Xn+1), so
the image of f in πk(X) maps to the given class in π1+k(S1 ∧X).

Hence the two claims imply that S1 ∧ − is an isomorphism.
To prove the first claim, consider a map f : Sk+n → Xn. There is a commutative diagram

S1 ∧ Sk+n S1∧f
//

γ

��

S1 ∧Xn

γ

��

Sk+n ∧ S1 f∧S1

// Xn ∧ S1

with vertical homeomorphisms, showing that f∧S1 = γ◦(S1∧f)◦γ−1. Hence, if S1∧f is null-homotopic
then f ∧ S1 is null-homotopic. By symmetry, the opposite implication also holds.

To prove the second claim, consider a map g : S1+k+n ∼= S1∧Sk+n → S1∧Xn. There is a commutative
diagram

S1 ∧ Sk+n ∧ S1 S1∧h //

(13)

��

S1 ∧Xn ∧ S1

(13)

��

S1 ∧ Sk+n ∧ S1 g∧S1

// S1 ∧Xn ∧ S1

where (13) denotes the transposition of the first and third smash factors, and h = γ ◦ g ◦ γ−1 : Sk+n ∧

S1 → Xn ∧ S1. A path in O(2) from

(
0 1
1 0

)
to

(
−1 0
0 1

)
induces a homotopy from the transposition

γ : S1 ∧ S1 → S1 ∧ S1 to r ∧ S1 : S1 ∧ S1 → S1 ∧ S1, where r : S1 → S1 reverses the orientation. Hence
the two transpositions (13) are homotopic to r ∧ Sk+n ∧ S1 and r ∧Xn ∧ S1, respectively, and g ∧ S1 is
homotopic to

(r ∧Xn ∧ S1) ◦ (S1 ∧ h) ◦ (r ∧ Sk+n ∧ S1)−1 = rr−1 ∧ h = S1 ∧ h .
Thus the image of −∧S1 in π1+k+n+1(S1 ∧Xn ∧S1) is contained in the image of S1 ∧−. By symmetry,
the opposite inclusion also holds.

Corollary 5.8. A map f : X → Y is a π∗-isomorphism if and only if S1 ∧ f : S1 ∧X → S1 ∧ Y is one.

We write ΣX = X ∧S1 and ΩX = F (S1, X) for the sequential (or orthogonal) spectra obtained from
the tensored and cotensored structure, in the case T = S1.

Proposition 5.9. The adjunction unit η : X → ΩΣX and counit ε : ΣΩX → X are π∗-isomorphisms.

Proof. There are commutative diagrams

πk+n(Xn)
ηn∗ //

S1∧−
��

πk+n(ΩΣXn)

∼=
��

π1+k+n(S1 ∧Xn)
∼= // πk+n(Ω(S1 ∧Xn))

and

πk+n(ΩXn)

S1∧−
��

∼= // π1+k+n(Xn)

π1+k+n(S1 ∧ ΩXn)
∼= // π1+k+n(ΣΩXn)

εn∗

OO

30



for all k + n ≥ 0. These are compatible for varying n, and induce commutative diagrams

πk(X)
η∗ //

S1∧−
��

πk(ΩΣX)

∼=
��

π1+k(S1 ∧X)
∼= // πk(Ω(S1 ∧X))

and

πk(ΩX)

S1∧−
��

∼= // π1+k(X)

π1+k(S1 ∧ ΩX)
∼= // π1+k(ΣΩX)

ε∗

OO

for all integers k. Since S1 ∧ − is an isomorphism, so are η∗ and ε∗.

Corollary 5.10. A map f : X → Y is a π∗-isomorphism if and only if Ωf : ΩX → ΩY is one.

Theorem 5.11. The functors

Σ: SpN −→ SpN and Ω: SpN −→ SpN

preserve π∗-isomorphisms. The induced functors

Σ: Ho(SpN) −→ Ho(SpN) and Ω: Ho(SpN) −→ Ho(SpN)

are mutually inverse equivalencs of categories. The same results apply with SpO in place of SpN.

Proof. The first two claims are contained in Corollaries 5.8 and 5.10. Hence Σ and Ω induce endofunctors
of the stable homotopy category Ho(SpN) = SpN[W −1] where the π∗-isomorphisms have been inverted
(assuming that this localization exists). The unit η : 1 → ΩΣ and counit ε : ΣΩ → 1 induce natural
isomorphisms, by Proposition 5.9, which means that the endofunctors Σ and Ω of Ho(SpN) are mutually
inverse equivalences.

5.2 Long exact sequences

For a map f : X → Y of sequential or orthogonal spectra we define Cf as the pushout

X
i0 //

f

��

CX

��

Y
i // Cf

where CX = I ∧X with I = [0, 1] based at 1, and Ff as the pullback

Ff
p
//

��

X

f

��

PY
p1 // Y

where PY = F (I, Y ) with I based at 0. These constructions are compatible under the forgetful functor
U : SpO → SpN, since they only involve colimits, limits, tensors and cotensors. As in the category of
spaces, we have (iterated) homotopy cofiber and fiber sequences

X
f−→ Y

i−→ Cf
π−→ S1 ∧X −S1∧f−→ S1 ∧ Y −→ . . .

and

. . . −→ ΩX
−Ωf−→ ΩY

ι−→ Ff
p−→ X

f−→ Y .

(This uses that the collapse map Cf → Y/X = Y ∪X ∗ is a homotopy equivalence when f : X → Y is a
Hurewicz cofibration, and that i : Y → Cf is a Hurewicz cofibration, so that Ci→ Cf/Y ∼= S1 ∧X is a
homotopy equivalence, and the dual facts about the inclusion X ×Y ∗ = f−1(∗)→ Ff and p : Ff → X.)
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Proposition 5.12. For any map f : X → Y there are natural long exact sequences

· · · → π1+k(Y )
ι∗−→ πk(Ff)

p∗−→ πk(X)
f∗−→ πk(Y )→ π−1+k(Ff)→ . . .

and

· · · → π1+k(Cf) −→ πk(X)
f∗−→ πk(Y )

i∗−→ πk(Cf)
π∗−→ π−1+k(X)→ . . . .

The natural maps η : Ff → ΩCf and ε : ΣFf → Cf are π∗-isomorphisms.

Proof. For k + n ≥ 0 we have long exact sequences

· · · → π1+k+n(Xn)
−fn∗−→ π1+k+n(Yn)

ιn∗−→ πk+n(Ffn)
pn∗−→ πk+n(Xn)

fn∗−→ πk+n(Yn)

that are compatible for varying n. Here we have identified πk+n(ΩYn) with π1+k+n(Yn), etc. Passing to
sequential colimits preserves exactness, so we also get a long exact sequence

· · · → π1+k(X)
−f∗−→ π1+k(Y )

ι∗−→ πk(Ff)
p∗−→ πk(X)

f∗−→ πk(Y )

for each integer k. Letting k vary these extend indefinitely to the right, as claimed.
Next, we prove exactness of

πk(X)
f∗−→ πk(Y )

i∗−→ πk(Cf)

at πk(Y ). The composite i ◦ f is null-homotopic, so i∗ ◦ f∗ = 0. Let g : Sk+n → Yn represent a class in
ker(i∗). By increasing n we may assume that in ◦ g : Sk+n → Cfn is null-homotopic, hence extends over
a map h : CSk+n → Cfn.

Sk+n 1 // Sk+n in //

g

��

CSk+n πn //

h

��

S1 ∧ Sk+n −1
//

j

��

S1 ∧ Sk+n

S1∧g
��

Xn
fn // Yn

in // Cfn
πn // S1 ∧Xn

−(S1∧fn)
// S1 ∧ Yn

Let j : S1 ∧ Sk+n → S1 ∧Xn be the induced maps of quotients. Then (S1 ∧ g) ◦ (−1) ' −(S1 ∧ fn) ◦ j,
so the class of S1 ∧ g in π1+k(S1 ∧ Y ) is in the image of (S1 ∧ f)∗. (Elaborate on the role of signs?) The
natural isomorphism S1 ∧ − now tells us that the class of g in πk(Y ) is in the image of f∗, as claimed.

πk(X)
S1∧−
∼=
//

f∗

��

π1+k(S1 ∧X)

(S1∧f)∗

��

πk(Y )
S1∧−
∼=
// π1+k(S1 ∧ Y )

By iteration, this implies exactness of

πk(X)
f∗−→ πk(Y )

i∗−→ πk(Cf)
π∗−→ πk(S1 ∧X)

−(S1∧f)∗−→ πk(S1 ∧ Y )→ . . .

hence also of

πk(X)
f∗−→ πk(Y )

i∗−→ πk(Cf)
π∗−→ π−1+k(X)

−f∗−→ π−1+k(Y )→ . . .

for all integers k. (This uses the isomorphism S1 ∧ −.) Letting k vary these extend without bound to
the left, as claimed.

The homotopy-commutative diagram

ΩX
−Ωf

//

=

��

ΩY
ι //

=

��

Ff
p
//

η

��

X
f

//

η

��

Y

η

��

ΩX
−Ωf

// ΩY
Ωi // ΩCf

Ωπ // ΩΣX
ΩΣf

// ΩΣY
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induces a vertical map of five-term exact sequences

π1+k(X)
−Ωf∗ //

=

��

π1+k(Y )
ι∗ //

=

��

πk(Ff)
p∗ //

η∗

��

πk(X)
f∗ //

η∗

��

πk(Y )

η∗

��

π1+k(X)
−Ωf∗ // π1+k(Y )

Ωi∗ // πk(ΩCf)
Ωπ∗ // πk(ΩΣX)

ΩΣf∗ // πk(ΩΣY ) .

The five-lemma implies that the middle vertical homomorphism η∗ is an isomorphism.

It follows that ε : ΣFf → Cf is a π∗-isomorphism, since it factors as ΣFf
Ση−→ ΣΩCf

ε−→ Cf . Alter-
natively one can start from the homotopy-commutative diagram relating ε : ΣFf → Cf to ε : ΣΩX → X
and ε : ΣΩY → Y .

For any small diagram α 7→ Xα of sequential spectra, there are canonical homomorphisms

colim
α

π∗(Xα) −→ π∗(colim
α

Xα)

and
π∗(lim

α
Xα) −→ lim

α
π∗(Xα) .

Lemma 5.13. For any finite collection (Xα)α of spectra the canonical homomorphisms⊕
α

π∗(Xα)
∼=−→ π∗(

∨
α

Xα)

and
π∗(
∏
α

Xα)
∼=−→
∏
α

π∗(Xα)

are isomorphisms. Hence
∨
αXα →

∏
αXα is a π∗-isomorphism.

Proof. By induction, it suffices to prove this in the case of two spectra X and Y .
The mapping cone Cf of the inclusion f : X → X ∨Y is homotopy equivalent to Y , so there is a long

exact sequence

· · · → π1+k(Y )→ πk(X)
f∗−→ πk(X ∨ Y )

i∗−→ πk(Y )
π∗−→ . . . .

The inclusion g : Y → X∨Y defines a right inverse to i : X∨Y → Cf ' Y , so i∗ is split surjective. Hence
the long exact sequence breaks up into short exact sequences, and f∗+ g∗ : πk(X)⊕πk(Y )→ πk(X ∨Y )
is an isomorphism in each degree k.

The homotopy fiber Ff of the projection f : X × Y → Y is homotopy equivalent to X, so there is a
long exact sequence

· · · → π1+k(Y )
ι∗−→ πk(X)

p∗−→ πk(X × Y )
f∗−→ πk(Y )→ . . . .

The projection g : X×Y → X defines a left inverse to p : X ' Ff → X×Y , so p∗ is split injective. Hence
he long exact sequence breaks up into short exact sequences, and (f∗, g∗) : πk(X × Y )→ πk(X)× πk(Y )
is an isomorphism in each degree k.

The canonical homomorphism π∗(X)⊕ π∗(Y )→ π∗(X)× π∗(Y ) is an isomorphism, hence X ∨ Y →
X × Y is a π∗-isomorphism.

Lemma 5.14. For any collection (Xα)α of spectra, finite or infinite, the canonical homomorphism⊕
α

π∗(Xα)
∼=−→ π∗(

∨
α

Xα)

is an isomorphism.
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Proof. At each level n the wedge sum
∨
α(Xα)n is the colimit over the finite subsets F ⊂ {α} of the

subspaces
∨
α∈F (Xα)n. This colimit is strongly filtered (see Strickland, Lemma 3.6), so that each map

K →
∨
α(Xα)n from a compact space K factors through

∨
α∈F (Xα)n for some finite F . Applying this

with K = Sk+n (for surjectivity) and with K = Sk+n ∧ I+ (for injectivity) it follows that

colim
F

πn+k(
∨
α∈F

(Xα)n)
∼=−→ πn+k(

∨
α∈F

(Xα)n)

is an isomorphism. Passing to colimits over n, and noting that independent colimits commute, we get
the isomorphism

colim
F

πk(
∨
α∈F

Xα)
∼=−→ πk(

∨
α∈F

Xα) .

When combined with the previous lemma, this yields the conclusion.

Corollary 5.15. A finite product of π∗-isomorphisms is a π∗-isomorphism. An arbitrary wedge sum of
π∗-isomorphisms is a π∗-isomorphism.

5.3 Hurewicz cofibrations

A map f : X → Y of (orthogonal or sequential) spectra is a Hurewicz cofibration (= h-cofibration in
[MMSS]) if it has the homotopy extension property (HEP) with respect to every spectrum Z: Given
any map g : Y → Z and any homotopy h : X ∧ I+ → Z with g ◦ f = h ◦ i0, there exists a homotopy
k : Y ∧ I+ → Z with k ◦ (f ∧ 1) = h and k ◦ i0 = g.

X
i0 //

f

��

X ∧ I+

f∧1

�� h

��

Y
i0 //

g //

Y ∧ I+
k

##
Z

The universal case of this property is given by the mapping cylinder Mf = Z = Y ∪X (X ∧ I+), in which
case k provides a retraction to the canonical map Y ∪X (X ∧ I+) → Y ∧ I+. Hence f is a Hurewicz
cofibration if and only if Y ∪X (X ∧ I+)→ Y ∧ I+ admits a left inverse.

A retraction in the category of orthogonal spectra gives a retraction in the category of sequential
spectra, so for each Hurewicz cofibration of orthogonal spectra the underlying map of sequential spectra
is (also) a Hurewicz cofibration.

A retraction of sequential spectra gives a retraction at each level, so for each Hurewicz cofibration
f : X → Y of spectra the map fn : Xn → Yn is a Hurewicz cofibration of based spaces, for each n ≥ 0.
In particular, each fn is a closed embedding (= closed inclusion in [MMSS]), meaning that fn maps Xn

homeomorphically to its image, which is a closed subset of Yn. (Reference?)

Proposition 5.16 (Cobase change). Consider a pushout square

X

f

��

g
// Z

f̄

��

Y
ḡ
// Y ∪X Z

of spectra, where f : X → Y is a Hurewicz cofibration. If f (resp. g) is a π∗-isomorphism then f̄ (resp. ḡ)
is a π∗-isomorphism.

Proof. It is formal that the pushout f̄ of f along g is also a Hurewicz cofibration. Hence we have a
commutative square

Cf //

'
��

Cf̄

'
��

Y/X
∼= // (Y ∪X Z)/Z
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with vertical homotopy equivalences and one horizontal homeomorphism. It follows that Cf → Cf̄ is a
homotopy equivalence. We get a map of long exact sequences

. . . // πk(X)
f∗ //

g∗

��

πk(Y ) //

ḡ∗

��

πk(Cf) //

∼=
��

. . .

. . . // πk(Z)
f̄∗ // πk(Y ∪X Z) // πk(Cf̄) // . . .

On one hand, if f∗ is an isomorphism then π∗(Cf) = 0, so π∗(Cf̄) = 0 and f̄∗ is an isomorphism. On
the other hand, if g∗ is an isomorphism then by the five-lemma ḡ∗ is also an isomorphism.

Proposition 5.17 (Gluing lemma). Consider a commutative diagram

Y

��

X
f

oo //

��

Z

��

Y ′ X ′
f ′
oo // Z ′

of spectra, where f and f ′ are Hurewicz cofibrations. If X → X ′, Y → Y ′ and Z → Z ′ are π∗-
isomorphisms, then so is the induced map Y ∪X Z → Y ′ ∪X′ Z ′.

Proof. We have maps of long exact sequences

. . . // πk(X)
f∗ //

��

πk(Y ) //

��

πk(Y/X) //

��

. . .

. . . // πk(X ′)
f ′∗ // πk(Y ′) // πk(Y ′/X ′) // . . .

and

. . . // πk(Z)
f̄∗ //

��

πk(Y ∪X Z) //

��

πk(Y ∪X Z/Z) //

��

. . .

. . . // πk(Z ′)
f̄ ′∗ // πk(Y ′ ∪X′ Z ′) // πk(Y ′ ∪X′ Z ′/Z ′) // . . . .

By assumption π∗(X)→ π∗(X
′) and π∗(Y )→ π∗(Y

′) are isomorphisms, so by the five-lemma π∗(Y/X)→
π∗(Y

′/X ′) is an isomorphism. Hence π∗(Y ∪X Z/Z) → π∗(Y
′ ∪X′ Z ′/Z ′) is an isomorphism. By as-

sumption π∗(Z) → π∗(Z
′) is an isomorphism, so by the five-lemma π∗(Y ∪X Z) → π∗(Y

′ ∪X′ Z ′) is an
isomorphism.

Proposition 5.18. If Y is the colimit of a sequence

X0 → X1 → · · · → Xα → Xα+1 → . . .

of Hurewicz cofibrations, then

colim
α

π∗(Xα)
∼=−→ π∗(Y )

is an isomorphism.

Proof. At each level n, the space Yn is the colimit of the sequence

(X0)n → (X1)n → · · · → (Xα)n → (Xα+1)n → . . .

of closed embeddings. Such a colimit is strongly filtered (e.g. by Strickland, Lemma 3.6), so each map
K → Yn from a compact space K factors through (Xα)n for some finite α. Applying this with K = Sk+n

and K = Sk+n ∧ I+ shows that

colim
α

πk+n(Xα)n
∼=−→ πk+n(Yn)

is an isomorphism. Passing to colimits over n gives the stated conclusion.
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Corollary 5.19. If each map Xα → Xα+1 is a π∗-isomorphism, then so is the canonical map X0 →
colimαXα.

The following result shows that the tensor A ∧ X ∼= X ∧ A is homotopically meaningful when A
is a CW complex, and that the cotensor F (B,X) is homotopically meaningful when B is a finite CW
complex.

Theorem 5.20. Let f : X → Y be a π∗-isomorphism of spectra. If A is a based CW complex, then
A∧f : A∧X → A∧Y is a π∗-isomorphism. If B is a finite based CW complex then F (B, f) : F (B,X)→
F (B, Y ) is a π∗-isomorphism.

Proof. We have seen that S1 ∧ f : S1 ∧ X → S1 ∧ Y and F (S1, f) : F (S1, X) → F (S1, Y ) are π∗-
isomorphisms. By induction it follows that Sm ∧ f and F (Sm, f) are π∗-isomorphisms for all m ≥ 0.
Hence ∨

α

(Sm ∧ f) ∼= (
∨
α

Sm) ∧ f

is a π∗-isomorphism for arbitrary indexing sets {α}, and

F (
∨
α

Sm, f) ∼=
∏
α

F (Sm, f)

is a π∗-isomorphism for finite indexing sets {α}.
Let A be an (m + 1)-dimensional (based) CW complex, with m-skeleton A′ and attaching map

φ :
∨
α S

m → A′, so that Cφ ∼= A. Consider the commutative diagram

∨
α S

m ∧X
φ∧X

//

1∧f
��

A′ ∧X

A′∧f
��

i∧X // A ∧X

A∧f

��∨
α S

m ∧ Y
φ∧Y

// A′ ∧ Y i∧Y // A ∧ Y

of horizontal homotopy cofiber sequences. By induction on m we may assume that A′∧f : A′∧X → A′∧Y
is a π∗-isomorphism. We have just shown that 1∧f :

∨
α S

m∧X →
∨
α S

m∧Y is a π∗-isomorphism. By
the five-lemma applied to the associated map of long exact sequences of homotopy groups, we deduce
that A ∧ f : A ∧X → A ∧ Y is a π∗-isomorphism.

Let B be a finite (m+ 1)-dimensional (based) CW complex, with finite m-skeleton B′ and attaching
map φ :

∨
α S

m → B′, so that Cφ ∼= B. Consider the commutative diagram

F (B,X)
F (p,X)

//

F (B,f)

��

F (B′, X)
F (φ,X)

//

F (B′,f)

��

F (
∨
α S

m, X)

F (1,f)

��

F (B, Y )
F (p,Y )

// F (B′, Y )
F (φ,Y )

// F (
∨
α S

m, Y )

of horizontal homotopy fiber sequences. By induction on m we may assume that F (B′, f) : F (B′, X)→
F (B′, Y ) is a π∗-isomorphism. We have shown that F (1, f) : F (

∨
α S

m, X) → F (
∨
α S

m, Y ) is a π∗-
isomorphism. By the five-lemma applied to the associated map of long exact sequences of homotopy
groups, we deduce that F (B, f) : F (B,X)→ F (B, Y ) is a π∗-isomorphism.

Finally, let A be an arbitrary based CW complex, with m-skeleton A(m). We have proved that
A(m) ∧ f is a π∗-isomorphism for each m. Since

· · · → A(m) ∧X → A(m+1) ∧X → . . .

is a sequence of Hurewicz cofibrations with colimit A∧X, and likewise with Y in place of X, we deduce
that (A∧ f)∗ maps π∗(A∧X) ∼= colimm π∗(A

(m) ∧X) isomorphically to π∗(A∧ Y ) ∼= colimm π∗(A
(m) ∧

Y ).

(Discuss F (B, f) for level equivalences f : X → Y and (infinite) based CW complexes B.)
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Remark 5.21. Let E be a spectrum, and f : X → Y a map of spaces, with mapping cone Cf = Y ∪fCX.
Let f# = E∧f : E∧X → E∧Y and f# = F (f,E) : F (Y,E)→ F (X,E) be the induced maps of spectra.
There are natural isomorphisms

C(f#) ∼= E ∧ Cf and F (f#) ∼= F (Cf,E)

and associated long exact sequences

· · · → πk(E ∧X)
f#∗−→ πk(E ∧ Y )

i∗−→ πk(E ∧ Cf)
π∗−→ π−1+k(E ∧X)→ . . .

and

· · · → π1+kF (X,E)
ι∗−→ πkF (Cf,E)

p∗−→ πkF (Y,E)
f#
∗−→ πkF (X,E)→ . . . .

When X is a CW complex we let Ek(X) = πk(E ∧X), so that the first sequence becomes the long exact
sequence

· · · → Ek(X)
f∗−→ Ek(Y ) −→ Ek(Cf)

∂−→ Ek−1(X)→ . . .

in reduced E-homology (for f cellular). When X is a finite CW complex, or E is an Ω-spectrum, we let
E`(X) = π−`F (X,E), so that the second sequence becomes the long exact sequence

· · · → E`−1(X)
δ−→ E`(Cf) −→ E`(Y )

f∗−→ E`(X)→ . . .

in reduced E-cohomology (for f cellular). When f is the inclusion of X as a subcomplex of Y we can
replace Cf by Y/X, in view of the homotopy equivalence Cf → Y/X that we have in this case. By
the theorem above, any π∗-isomorphism D → E induces natural isomorphisms D∗(X) ∼= E∗(X) for CW
complexes X, and D∗(X) ∼= E∗(X) for finite CW complexes X, so in this restricted sense E-homology
and E-cohomology only depend on the π∗-isomorphism class of E.

6 Products

6.1 Pairings of spectra

Let X, Y and Z be orthogonal spectra. A pairing of X and Y with values in Z is a map

µ : X ∧ Y −→ Z

of orthogonal spectra, i.e., a map of right S-modules X ∧ Y → Z in orthogonal sequences. Recall that
X ∧ Y is the coequalizer of σ ⊗ 1 and 1 ⊗ σ′ = 1 ⊗ σγ : X ⊗ S ⊗ Y → X ⊗ Y . The right S-actions on
X and Y induce right S-actions (σ ⊗ 1)(1⊗ γ) and 1⊗ σ, respectively, on X ⊗ Y , and these induce the
same right S-action on X ∧ Y .

X ⊗ S ⊗ Y
σ⊗1
//

1⊗σ′
// X ⊗ Y

π //

φ
%%

X ∧ Y
µ

��

Z

By the universal property of the coequalizer, µ corresponds to a unique map

φ = µπ : X ⊗ Y −→ Z

of orthogonal sequences, whose composites with σ ⊗ 1 and 1 ⊗ σ′ are equal and which takes either one
of the right S-actions on X ⊗ Y to the right S-action on Z.

X ⊗ S ⊗ Y oo
1⊗γ

//

1⊗σ′

&&

σ⊗1

��

X ⊗ Y ⊗ S
1⊗σ

xx

φ⊗1

��

X ⊗ Y

φ
&&

X ⊗ Y

φ

��

Z ⊗ S

σ
xx

Z
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Here σ′ = σγ : S ⊗ Y → Y is the map of orthogonal sequences given in degree n by the composite
O(n)-map

σ′n = σn ◦ γn :
∨

k+`=n

O(n)+ ∧
O(k)×O(`)

Sk ∧ Y` −→ Yn

taking Aχk,` ∧ s ∧ y via A ∧ y ∧ s to A(σn(y ∧ s)), for A ∈ O(n), s ∈ Sk and y ∈ Y`. In particular, it
takes In ∧ s ∧ y to χ`,k(σn(y ∧ s)), where χ`,k = χ−1

k,`. In other words, σ′n corresponds to the collection
of O(k)×O(`)-maps, for k + ` = n, given by the composites

Sk ∧ Y`
γ−→ Y` ∧ Sk

σk−→ Y`+k
χ`,k−→ Yk+` .

Hence φ : X ⊗ Y → Z corresponds to a collection of O(k)×O(`)-equivariant maps

φk,` : Xk ∧ Y` −→ Zk+` ,

for k, ` ≥ 0, such that the diagrams

Xk ∧ S1 ∧ Y`
1∧γ
//

σ∧1

��

Xk ∧ Y` ∧ S1 1∧σ // Xk ∧ Y`+1

1∧χ`,1
// Xk ∧ Y1+`

φk,1+`

��

Xk+1 ∧ Y`
φk+1,`

// Zk+1+`

and

Xk ∧ Y` ∧ S1 1∧σ //

φk,`∧1

��

Xk ∧ Y`+1

φk,`+1

��

Zk+` ∧ S1 σ // Zk+`+1

commute.

Proposition 6.1. Pairings µ : X∧Y → Z are in bijective correspondence with collections of O(k)×O(`)-
equivariant maps

φk,` : Xk ∧ Y` −→ Zk+`

that make the bilinearity diagram

Xk ∧ S1 ∧ Y`

σ∧1

��

Xk ∧ Y` ∧ S11∧γ
oo

φk,`∧1

��

1∧σ

''

Xk+1 ∧ Y`

φk+1,`

��

Zk+` ∧ S1

σ

��

Xk ∧ Y`+1

φk,`+1
ww

Zk+1+`

Ik⊕χ1,`
// Zk+`+1

commute, for each k, ` ≥ 0.

Proof. Using the equivariance relation (Ik ⊕ χ`,1)φk,`+1 = φk,1+`(1 ∧ χ`,1) the two diagrams preceding
the proposition can be rewritten and combined into this one diagram, as asserted.

Remark 6.2. The identity map X ∧Y → X ∧Y corresponds to the canonical map π : X ⊗Y → X ∧Y .
Its components

ιk,` : Xk ∧ Y` ⊂ (X ⊗ Y )k+` −→ (X ∧ Y )k+`
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are O(k)×O(`)-equivariant and make the bilinearity diagram

Xk ∧ S1 ∧ Y`

σ∧1

��

Xk ∧ Y` ∧ S11∧γ
oo

ιk,`∧1

��

1∧σ

((

Xk+1 ∧ Y`
ιk+1,`

��

(X ∧ Y )k+` ∧ S1

σ

��

Xk ∧ Y`+1

ιk,`+1
vv

(X ∧ Y )k+1+`

Ik⊕χ1,`
// (X ∧ Y )k+`+1

commute, for each k, ` ≥ 0. This reflects the identification made in the passage from X ⊗ Y to X ∧ Y .

Lemma 6.3. If the pairing µ : X ∧ Y → Z corresponds to the collection of maps φk,` : Xk ∧ Y` → Zk+`,
then the “opposite” pairing µγ : Y ∧X → X corresponds to the collection of maps

χk,` ◦ φk,` ◦ γ : Y` ∧Xk −→ Z`+k .

Proof. The diagram

Y` ∧Xk

ι`,k

��

γ
// Xk ∧ Y`

ιk,`

��

(Y ∧X)`+k
γ`+k

//

(µγ)`+k ''

(X ∧ Y )`+k
χ`,k
//

µ`+k

��

(X ∧ Y )k+`

µk+`

��

Z`+k
χ`,k

// Zk+`

commutes.

6.2 Pairings of homotopy groups

We will define a natural pairing

πi(X)× πj(Y )
·−→ πi+j(X ∧ Y )

for orthogonal spectra X and Y , mapping the class in πi(X) of [f ] ∈ πi+k(Xk) and the class in πj(Y ) of
[g] ∈ πj+`(Y`) to the class of an element [f ] · [g] ∈ πi+j+k+`((X ∧ Y )k+`). It will be bilinear, and hence
induce a linear pairing

πi(X)⊗ πj(Y )
·−→ πi+j(X ∧ Y )

for all i and j. Any pairing µ : X ∧ Y → Z will thus induce a pairing

µ∗ : πi(X)⊗ πj(Y ) −→ πi+j(Z) .

Definition 6.4. Let (C ,∧, S) and (D ,⊗, U) be monoidal categories, with coherent isomorphisms α, λ
and ρ. A lax monoidal functor F from (C ,∧, S) to (D ,⊗, Z) is a functor F : C → D , a natural morphism

F (X)⊗ F (Y ) −→ F (X ∧ Y )

for X,Y ∈ C and a morphism
U −→ F (S)

such that the diagrams

F (X)⊗ (F (Y )⊗ F (Z))
α //

��

(F (X)⊗ F (Y ))⊗ F (Z)

��

F (X)⊗ F (Y ∧ Z)

��

F (X ∧ Y )⊗ F (Z)

��

F (X ∧ (Y ∧ Z))
F (α)

// F ((X ∧ Y ) ∧ Z)
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and

U ⊗ F (Y )
λ //

��

F (Y )

F (S)⊗ F (Y ) // F (S ∧ Y )

F (λ)

OO
F (Y )⊗ U

ρ
//

��

F (Y )

F (Y )⊗ F (S) // F (Y ∧ S)

F (ρ)

OO

commute.
A strong monoidal functor F is a monoidal functor F , as above, such that each morphism F (X) ⊗

F (Y )→ F (X ∧ Y ) and U → F (S) is an isomorphism.
A strict monoidal functor F is a monoidal functor F such that each morphism F (X) ⊗ F (Y ) →

F (X ∧ Y ) and U → F (S) is an identity.

Remark 6.5. A lax monoidal functor maps monoids to monoids. An object X in C with multiplication
µ : X ∧X → X and unit η : S → X maps to a monoid F (X) in D with multiplication

F (X)⊗ F (X) −→ F (X ∧X)
F (µ)−→ F (X)

and unit

U −→ F (S)
F (η)−→ F (X) .

A map f : X → Y of monoids in (C ,∧, S) induces a map F (f) : F (X)→ F (Y ) of monoids in (D ,⊗, U).

Definition 6.6. Let (C ,∧, S) and (D ,⊗, U) be symmetric monoidal categories, with coherent isomor-
phisms α, λ, ρ and γ. A lax symmetric monoidal functor F from C to D is a lax monoidal functor such
that the diagram

F (X)⊗ F (Y )
γ
//

��

F (Y )⊗ F (X)

��

F (X ∧ Y )
F (γ)

// F (Y ∧X)

commutes.

Remark 6.7. A lax monoidal functor maps monoids to monoids. An object X in C with multiplication
µ : X ∧X → X and unit η : S → X maps to a monoid F (X) in D with multiplication

F (X)⊗ F (X) −→ F (X ∧X)
F (µ)−→ F (X)

and unit

U −→ F (S)
F (η)−→ F (X) .

A lax symmetric monoidal functor also maps commutative monoids to commutative monoids, since the
diagram

F (X)⊗ F (X)
γ

//

��

F (X)⊗ F (X)

��

F (X ∧X)
F (γ)

//

F (µ)
&&

F (X ∧X)

F (µ)
xx

F (X)

commutes. A map f : X → Y of commutative monoids in (C ,∧, S, γ) induces a map F (f) : F (X)→ F (Y )
of commutative monoids in (D ,⊗, U, γ).

As usual in algebraic topology, we give the category grAb of graded abelian groups the symmetric
monoidal structure where

(A∗ ⊗B∗)n =
⊕
i+j=n

Ai ⊗Bj

and
γ : A∗ ⊗B∗ → B∗ ⊗A∗

maps a⊗ b to (−1)ijb⊗ a, for a ∈ Ai and b ∈ Bj .
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Theorem 6.8. There is a natural pairing

· : π∗(X)⊗ π∗(Y ) −→ π∗(X ∧ Y )

and a homomorphism
Z −→ π∗(S)

that make make π∗ a lax symmetric monoidal functor from (SpO,∧, S) to (grAb,⊗,Z).

Given maps f : Si+k → Xk and g : Sj+` → Y`, we can form the composite

f ∗ g = ιk,`(f ∧ g) : Si+k ∧ Sj+` f∧g−→ Xk ∧ Y`
ιk,`−→ (X ∧ Y )k+` .

The homotopy class [f ∗ g] ∈ πi+k+j+`((X ∧ Y )k+`) only depends on the homotopy classes [f ] and [g],
so we can let [f ∗ g] = [f ] ∗ [g]. We must address how to make the pairings ∗ : πi+k(Xk) × πj+`(Y`) →
πi+k+j+`((X∧Y )k+`) induce a pairing · : πi(X)×πj(Y )→ πi+j(X∧Y ), where πi(X) = colimk πi+k(Xk)
and πj(Y ) = colim` πj+`(Y`). The class in πi(X) of [f ] ∈ πi+k(Xk) is the same as the class of its image
[σ(f ∧ 1)] ∈ πi+k+1(Xk+1). Let use write

f ′ = σ(f ∧ 1) : Si+k ∧ S1 f∧1−→ Xk ∧ S1 σ−→ Xk+1

for this composite. By bilinearity, the diagrams

Si+k ∧ S1 ∧ Sj+`

f∧1∧g
��

Si+k ∧ Sj+` ∧ S11∧γ
oo

f∧g∧1

��

Xk ∧ S1 ∧ Y`

σ∧1

��

Xk ∧ Y` ∧ S11∧γ
oo

ιk,`∧1

��

Xk+1 ∧ Y`
ιk+1,`

��

(X ∧ Y )k+` ∧ S1

σ

��

(X ∧ Y )k+1+`
Ik⊕χ1,`

// (X ∧ Y )k+`+1

and
Si+k ∧ Sj+` ∧ S1

f∧g∧1

��

Xk ∧ Y` ∧ S1

ιk,`∧1

��

1∧σ

((

(X ∧ Y )k+` ∧ S1

σ

��

Xk ∧ Y`+1

ιk,`+1
vv

(X ∧ Y )k+`+1

commute, hence so do the diagrams

Si+k ∧ S1 ∧ Sj+`

f ′∗g
��

Si+k ∧ Sj+` ∧ S11∧γ
oo

(f∗g)′

��

(X ∧ Y )k+1+`
Ik⊕χ1,`

// (X ∧ Y )k+`+1
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and
Si+k ∧ Sj+` ∧ S1

(f∗g)′

  

f∗g′

~~

(X ∧ Y )k+`+1 .

In formulas,
(Ik ⊕ χ1,`)(f

′ ∗ g)(1 ∧ γ) = (f ∗ g)′ = f ∗ g′

as maps Si+k ∧ Sj+` ∧ S1 → (X ∧ Y )k+`+1 Here composition with Ik ⊕ χ1,` and 1 ∧ γ are compatible
with multiplication by (−1)` and (−1)j+`, respectively, on πi+j(X ∧ Y ).

Proposition 6.9. For each A ∈ O(n), inducing a map A : Xn → Xn, the diagram

πk+n(Xn) //

A∗

��

πk(X)

det(A)

��

πk+n(Xn) // πk(X)

commutes, where the horizontal arrows are the canonical morphisms.

Proof. The matrices A+(1) and In+(det(A)) lie in the same path component of O(n+1), hence induce
homotopic maps Xn+1 → Xn+1. It therefore suffices to note that the diagram

πk+n+1(Xn ∧ S1) //

(1∧det(A))∗

��

πk(X)

det(A)

��

πk+n+1(Xn ∧ S1) // πk(X)

commutes.

In other words, the class of [f ∗g] and [f ∗g′] in πi+j(X∧Y ) is equal to (−1)j times the class of [f ′∗g].
To compensate for the sign change by (−1)j when f : Si+k → Xk is replaced by f ′ : Si+k+1 → Xk+1,
i.e., when k increases by one, we can multiply [f ∗ g] by (−1)jk.

Definition 6.10. For f : Si+k → Xk and g : Sj+` → Y`, with [f ] ∈ πi+k(Xk) and [g] ∈ πj+`(Y`)
representing classes in πi(X) and πj(Y ), respectively, let

[f ] · [g] = (−1)jk[f ∗ g]

in πi+j(X ∧ Y ) be (−1)jk times the class of f ∗ g = ιk,`(f ∧ g) : Si+k ∧ Sj+` → Xk ∧ Y` → (X ∧ Y )k+`.

By the discussion above this is well-defined, since [f ′] · [g] = [f ] · [g] = [f ] · [g′].

Remark 6.11. The sign (−1)jk can be viewed as arising from the identification of [f ∗g] ∈ πi+k+j+`((X∧
Y )k+`) with a class in πi+j+k+`((X ∧Y )k+`), which stabilizes to πi+j(X ∧Y ). Note the interchange of j
and k from i+ k+ j+ ` to i+ j+ k+ `. When i, j ≥ 0 this interchange can be realized by the symmetry
γ : Sk ∧ Sj → Sj ∧ Sk, so that [f ] · [g] is the class of [f · g], where

f · g = ιk,`(f ∧ g)(1 ∧ γ ∧ 1)

is defined to be the composite

Si ∧ Sj ∧ Sk ∧ S` 1∧γ∧1−→ Si ∧ Sk ∧ Sj ∧ S` f∧g−→ Xk ∧ Y`
ιk,`−→ (X ∧ Y )k+` .

However, when i < 0 or j < 0 this does not make sense at the space level, since Si or Sj does not exist.
The use of the algebraic sign (−1)jk works also for negative j. Of course, if πi(X) = 0 for i < 0 and
πj(Y ) = 0 for j < 0, in which case we say that X and Y are connective, then the space level definition
[f ] · [g] = [f · g] will be satisfactory.
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The unit homomorphism Z→ π∗(S) takes d ∈ Z to the class in π0(S) of the degree d map S1 → S1

in π1(S1).
(Check bilinearity of ∗ or ·.)
(Check associativity and unitality diagrams.)
It remains to show that π∗ is lax symmetric monoidal. Recall that the isomorphism γ : π∗(X) ⊗

π∗(Y ) → π∗(Y ) ⊗ π∗(X) involves the usual sign (−1)ij that is introduced when two classes of degree i
and j are interchanged.

Proposition 6.12. The diagram

π∗(X)⊗ π∗(Y )
γ
//

·
��

π∗(Y )⊗ π∗(X)

·
��

π∗(X ∧ Y )
γ∗ // π∗(Y ∧X)

commutes. In symbols,
γ∗(a · b) = (−1)ijb · a

for a ∈ πi(X) and b ∈ πj(Y ).

Proof. The twist isomorphism γ : X ∧Y → Y ∧X is induced by γ : X⊗Y → Y ⊗X, so that the diagram

Xk ∧ Y` //

ιk,`
))

O(k + `)+ ∧
O(k)×O(`)

Xk ∧ Y`
γ
//

��

O(`+ k)+ ∧
O(`)×O(k)

Y` ∧Xk

��

Y` ∧Xk
oo

ι`,k
uu

(X ∧ Y )k+`
γ

// (Y ∧X)`+k

commutes. Here the upper central arrow γ maps A ∧ x ∧ y to Aχ`,k ∧ y ∧ x. Given maps f : Si+k → Xk

and g : Sj+` → Y`, the composite

Si+k ∧ Sj+` f∧g−→ Xk ∧ Y`
ιk,`−→ (X ∧ Y )k+`

γ−→ (Y ∧X)`+k

is equal to the composite

Si+k ∧ Sj+` γ−→ Sj+` ∧ Si+k g∧f−→ Y` ∧Xk
ι`,k−→ (Y ∧X)`+k

χ`,k−→ (Y ∧X)k+` ,

so that
γ(f ∗ g) = χ`,k(g ∗ f)γ .

Here the right hand map γ has degree (−1)(i+k)(j+`), and χ`,k induced multiplication by (−1)k` after
stabilization. Recall that [f ] · [g] = (−1)jk[f ∗ g], so that [g] · [f ] = (−1)i`[g ∗ f ]. Hence

γ∗([f ] · [g]) = (−1)jk[γ(f ∗ g)] = (−1)jk(−1)k`(−1)(i+k)(j+`)(−1)i`[g] · [f ] = (−1)ij [g] · [f ]

in πi+j(Y ∧X).

There is also good compatibility with the closed structure. For graded abelian groups B∗ and C∗ we
let Hom(B∗, C∗) be the graded abelian group with

Hom(B∗, C∗)i =
∏

i+j=n

Hom(Bj , Cn) ,

so that there is an adjunction isomorphism

grAb(A∗ ⊗B∗, C∗) ∼= grAb(A∗,Hom(B∗, C∗))

that can be enriched to a natural isomorphism

Hom(A∗ ⊗B∗, C∗) ∼= Hom(A∗,Hom(B∗, C∗)) .
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Theorem 6.13. There is a natural homomorphism

π∗F (Y, Z) −→ Hom(π∗(Y ), π∗(Z))

that makes π∗ a closed functor: If µ : X ∧ Y → Z in SpO is left adjoint to µ̃ : X → F (Y,Z), then the
composite

π∗(X)⊗ π∗(Y )
·−→ π∗(X ∧ Y )

µ∗−→ π∗(Z)

in grAb is left adjoint to the composite

π∗(X)
µ̃∗−→ π∗F (Y, Z) −→ Hom(π∗(Y ), π∗(Z)) .

Proof. The homomorphism is determined by the case µ̃ = 1, with X = F (Y,Z), which is right adjoint
to the counit µ = ε : F (Y,Z) ∧ Y → Z, so

π∗F (Y,Z) −→ Hom(π∗(Y ), π∗(Z))

is right adjoint to the composite

π∗F (Y, Z)⊗ π∗(Y )
·−→ π∗(F (Y,X) ∧ Y )

ε∗−→ π∗(Z) .

To make this more explicit, consider maps f : Si+k → F (Y,Z)k and g : Sj+` → Y`, with homotopy
classes [f ] ∈ πi+kF (Y,Z)k and [g] ∈ πj+`(Y`) representing elements in πiF (Y, Z) and πj(Y ). The class of
[f ] then maps to the homomorphism π∗(Y )→ π∗(Z) of degree i that maps πj(Y ) to πi+j(Z) by sending
the class of [g] to the class of

ε∗([f ] · [g]) = (−1)jk[ε(f ∗ g)] = (−1)jk[ειk,`(f ∧ g)] .

Here ειk,` is given by

F (Y,Z)k ∧ Y`
ι`∧1−→ T (Y`, Zk+`)

O(`) ∧ Y`
ε−→ Zk+` ,

where ι` is the `-th component of the canonical map ι in the equalizer diagram that characterizes
F (Y, Z)k. Hence ειk,`(f ∧ g) is the composite map

Si+k ∧ Sj+` f∧g−→ F (Y, Z)k ∧ Y`
ι`−→ T (Y`, Zk+`)

O(`) ∧ Y`
ε−→ Zk+` .

taking s ∈ Si+k and t ∈ Sj+` to (ι`f(s))(g(t)), where ι`f(s) : Y` → Zk+` and g(t) ∈ Y`.

6.3 Ring, module and algebra spectra

An orthogonal ring spectrum is an orthogonal spectrum R with a multiplication µ : R∧R→ R and unit
η : S → R such that the associativity and unitality diagrams commute. In other words, (R,µ, η) is a
monoid in (SpO,∧, S). A map f : Q → R of orthogonal ring spectra is a map of monoids, i.e., a map
f : Q→ R of orthogonal spectra that commute with the multiplication and unit maps.

The homotopy groups π∗(R) form a graded ring, with multiplication µ∗ : π∗(R) ⊗ π∗(R) → π∗(R)
and unit η∗ : Z → π∗(R). A map f : Q → R of orthogonal ring spectra induces a homomorphism
f∗ : π∗(Q)→ π∗(R) of graded rings.

A commutative orthogonal ring spectrum is an orthogonal ring spectrum R such that the commuta-
tivity diagram

R ∧R
γ

//

µ
""

R ∧R

µ
||

R

commutes. The homotopy groups π∗(R) of a commutative orthogonal ring spectrum form a graded
commutative ring, so that ab = (−1)ijba for a ∈ πi(R) and b ∈ πj(R). In particular, 2a2 = 0 for a in
odd degrees.

The sphere spectrum S is the initial orthogonal ring spectrum, and also the initial commutative
orthogonal ring spectrum.
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Remark 6.14. The term “ring spectrum” usually refers to a monoid in the stable homotopy category,
i.e., a spectrum R with morphisms µ : R ∧ R → R and η : S → R such that the associativity and
unitality diagrams commute, in the stable homotopy category. An orthogonal ring spectrum determines
a ring spectrum in this sense, but the converse does not generally hold: Having commuting diagrams
in the stable homotopy category is not generally enough to find representing maps µ and η that make
the associativity and unitality diagrams commute in the category of orthogonal spectra. Similarly the
term “commutative ring spectrum” traditionally refers to a commutative monoid in the stable homotopy
category, and these may or may not come from commutative orthogonal ring spectra.

Let R be an orthogonal ring spectrum. A left R-module is an orthogonal spectrum M with a pairing
λ : R ∧M →M such that the diagrams

R ∧R ∧M 1∧λ //

µ∧1

��

R ∧M

λ

��

R ∧M λ // M

and

S ∧M
η∧1
//

∼=
%%

R ∧M

λ

��

M

commute. A right R-module is an orthogonal spectrum M with a pairing ρ : M ∧R→M such that the
diagrams

M ∧R ∧R
ρ∧1
//

1∧µ
��

M ∧R
ρ

��

M ∧R
ρ

// M

and

M ∧R
ρ

��

M ∧ S
1∧η
oo

∼=
yy

M

commute. If R is commutative, then left R-modules correspond to right R-modules via ρ = λγ and vice
versa.

The homotopy groups π∗(M) of a left R-module M form a left π∗(R)-module, with left action

π∗(R)⊗ π∗(M)
·−→ π∗(R ∧M)

λ∗−→ π∗(M) ,

and similarly for right R-modules and right π∗(R)-modules.
Given a right R-module M and a left R-module N , the smash product M ∧R N is the orthogonal

spectrum defined as the coequalizer

M ∧R ∧N
ρ∧1
//

1∧λ
// M ∧N

π // M ∧R N .

The induced diagram

π∗(M)⊗ π∗(R)⊗ π∗(N)
ρ∗⊗1

//

1⊗λ∗
// π∗(M)⊗ π∗(N)

π∗ // π∗(M ∧R N)

commutes, so there is an induced homomorphism

π∗(M)⊗π∗(R) π∗(N)
·−→ π∗(M ∧R N) .
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If R is commutative, then M ∧R N is naturally a left (and right) R-module, and the homomorphism
above is one of left (and right) π∗(R)-modules.

In particular, for R = S the canonical map M ∧ N → M ∧S N is an isomorphism, and the natural
pairing

π∗(M)⊗ π∗(N)
·−→ π∗(M ∧N)

of graded abelian groups descends to a natural pairing

π∗(M)⊗π∗(S) π∗(N)
·−→ π∗(M ∧N)

of π∗(S)-modules.
Given two left R-modules M and N , the R-linear function spectrum FR(M,N) is the orthogonal

spectrum defined as the equalizer

FR(M,N)
ι // F (M,N)

λ∗ //

λ∨
// F (R ∧M,N)

where λ∗ = F (λ, 1) and λ∨ is adjoint to the composite

F (M,N) ∧R ∧M γ∧1−→ R ∧ F (M,N) ∧M 1∧ε−→ R ∧N λ−→ N .

The induced diagram

π∗FR(M,N)
ι∗ // Hom(π∗(M), π∗(N))

(λ∗)
∗
//

(λ∗)
∨
// Hom(π∗(R)⊗ π∗(M), π∗(N))

commutes, so there is an induced homomorphism

π∗FR(M,N) −→ Homπ∗(R)(π∗(M), π∗(N))

to the graded abelian group of left π∗(R)-module homomorphisms. If R is commutative then FR(M,N)
is naturally a left (and right) R-module, and the homomorphism above is one of left (and right) π∗(R)-
modules.

In the case R = S, the canonical map FS(M,N) → F (M,N) is an isomorphism, so the natural
homomorphism

π∗F (M,N) −→ Hom(π∗(M), π∗(N))

of graded abelian groups factors through a natural homomorphism

π∗F (M,N) −→ Homπ∗(S)(π∗(M), π∗(N))

of π∗(S)-modules.
Let R be a commutative orthogonal ring spectrum. The smash product over R, taking M and N to

M ∧R N , defines a symmetric monoidal structure on the category of left (and right) R-modules, with
unit object R.

An R-algebra A is a monoid in this category of R-modules, i.e., an R-module A with a multiplication
µ : A ∧R A→ A and a unit η : R→ A, such that that associativity and unitality diagrams

A ∧R A ∧R A
µ∧1
//

1∧µ
��

A ∧R A

µ

��

A ∧R A
µ

// A

and

R ∧R A
η∧1
//

∼=
%%

A ∧R A
µ

��

A ∧R R
1∧η
oo

∼=
yy

A
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commute, in the category of R-modules. A map A→ B of R-algebras is a monoid map in R-modules.
In view of the definition of A ∧R A as a coequalizer, an equivalent definition of an R-algebra A is an

orthogonal spectrum A with maps φ : A ∧A→ A and η : R→ A such that the composite

S ∧A // R ∧A
η∧1
// A ∧A

φ
// A

is equal to the canonical isomorphism S ∧ A ∼= A, and the associativity, multiplicativity and centrality
diagrams

A ∧A ∧A
φ∧1
//

1∧φ
��

A ∧A
φ

��

A ∧A
φ

// A

R ∧R
η∧η
//

��

A ∧A
φ

��

R
η

// A

and

R ∧A
η∧1

��

A ∧R
γ
oo

1∧η
��

A ∧A

φ
%%

A ∧A
φ

��

A

commute, in the category of orthogonal spectra. The left R-module structure on A is then given by the
composite λ = φ ◦ (η ∧ 1) : R ∧A→ A ∧A→ A.

A commutative R-algebra A is a commutative monoid in R-modules, i.e., an R-algebra such that the
commutativity diagram

A ∧R A
γ

//

µ
##

A ∧R A

µ
{{

A

commutes. A map A→ B of commutative R-algebras is a commutative monoid map in R-modules.
Equivalently, a commutative R-algebra is an orthogonal spectrum A with maps φ : A ∧ A → A and

η : R→ A, satisfying the conditions for an R-algebra, together with the condition that the commutativity
diagram

A ∧A
γ

//

φ
""

A ∧A

φ
||

A

commutes, in orthogonal spectra. Note that in this case the centrality diagram is superfluous.
In the category of commutative R-algebras, the coproduct of A and B is given by the smash product

A ∧R B, with the multiplication

(A ∧R B) ∧R (A ∧R B)
1∧γ∧1−→ A ∧R A ∧R B ∧R B

φ∧φ−→ A ∧R B

and the unit
R ∼= R ∧R R

η∧η−→ A ∧R B .

In the special case R = S, an S-algebra (in orthogonal spectra) is the same as an orthogonal ring
spectrum, and a commutative S-algebra is the same as a commutative orthogonal ring spectrum. The
coproduct of two commutative S-algebras, A and B, is the smash product A ∧B.
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The homotopy groups π∗(A) of an R-algebra A form a graded π∗(R)-algebra, with multiplication

π∗(A)⊗π∗(R) π∗(A)
·−→ π∗(A ∧R A)

µ∗−→ π∗(A)

and unit
π∗(R)

η∗−→ π∗(A) ,

which is graded commutative if A is a commutative R-algebra.

Remark 6.15. For orthogonal spectra D and E, and based CW complexes X and Y , the pairing

∧ : Dk(X)⊗ E`(Y ) = πk(D ∧X)⊗ π`(E ∧ Y )
·−→ πk+`(D ∧X ∧ E ∧ Y )

1∧γ∧1−→ πk+`(D ∧ E ∧X ∧ Y ) = (D ∧ E)k+`(X ∧ Y )

defines an external smash product in homology. If E is an orthogonal ring spectrum, the composite

· : Ek(X)⊗ E`(Y )
∧−→ (E ∧ E)k+`(X ∧ Y )

µ∗−→ Ek+`(X ∧ Y )

defines an internal smash product. (Get Pontryagin product in the case X = Y = M+ with M an
H-space.)

For finite based CW complexes X and Y , the pairing

∧ : Dk(X)⊗ E`(Y ) = π−kF (X,D)⊗ π−`(Y,E)
·−→ π−k−`(F (X,D) ∧ F (Y,E))
∧−→ π−k−`(F (X ∧ Y,D ∧ E) = (D ∧ E)k+`(X ∧ Y )

defines an external smash product in cohomology. If E is an orthogonal ring spectrum, the composite

Ek(X)⊗ E`(Y )
∧−→ (E ∧ E)k+`(X ∧ Y )

µ∗−→ Ek+`(X ∧ Y )

defines an internal smash product. In the case X = Y , the diagonal ∆: X → X ∧X induces an internal
cup product

∪ : Ek(X)⊗ E`(X) −→ Ek+`(X ∧X)
∆∗−→ Ek+`(X) .

(Get graded ring in the case X = T+, with T a finite CW complex.)

7 Examples

7.1 Suspension spectra

For any based space T ∈ T , the suspension spectrum

Σ∞T = T ∧ S

is given by (Σ∞T )n = ΣnT = T ∧ Sn, with the standard O(n)-action on Sn. The homotopy groups

πk(Σ∞T ) = colim
n

πk+n(T ∧ Sn)

are the stable homotopy groups of T , often denoted πsk(T ). For instance,

πsk(S0) = πk(S) = colim
n

πk+n(Sn)

is the k-th stable stem. By the Pontryagin–Thom construction and transversality, it is isomorphic to
the bordism group of framed k-dimensional (smooth) manifolds. These groups are trivial for k < 0,
π0(S) ∼= Z, and Serre showed that πk(S) is finite for each k > 0.

If U ∈ U is an unbased space, let U+ ∈ T denote the based space given by adding a disjoint base
point to U . Let

S[U ] = Σ∞(U+) = U+ ∧ S

be the “unreduced” suspension spectrum on U .
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k πsk gen.

0 Z ι

1 Z/2 η

2 Z/2 η2

3 Z/24 ν

4 0

5 0

6 Z/2 ν2

7 Z/240 σ

8 Z/2⊕ Z/2 ν̄, ε

9 Z/2⊕ Z/2⊕ Z/2 ν3, ηε, µ

10 Z/2⊕ Z/3 ηµ, β1

11 Z/504 ζ

12 0

13 Z/3 α1β1

14 Z/2⊕ Z/2 σ2, κ

15 Z/480⊕ Z/2 ρ, ηκ

16 Z/2⊕ Z/2 η∗, ηρ

17 Z/2⊕ Z/2⊕ Z/2⊕ Z/2 ηη∗, νκ, η2ρ, µ̄

18 Z/8⊕ Z/2 ν∗, ηµ̄

19 Z/2⊕ Z/264 σ̄, ζ̄

20 Z/8⊕ Z/3 κ̄, β2
1

21 Z/2⊕ Z/2 νν∗, ηκ̄

22 Z/2⊕ Z/2 νσ̄, η2κ̄
...

...
...

Figure 1: The first twenty-odd stable stems

49



If M is a topological monoid, with unit element e, the multiplication M ×M →M induces a pairing

µ : S[M ] ∧ S[M ] ∼= S[M ×M ] −→ S[M ]

and the inclusion {e} →M induces a unit

η : S ∼= S[{e}] −→ S[M ]

making S[M ] an orthogonal ring spectrum, called the spherical monoid ring of M . Its homotopy groups

π∗S[M ] = πs∗(M+)

form a graded algebra over π∗(S). If M is commutative then S[M ] is a commutative orthogonal ring
spectrum, and π∗S[M ] is a graded commutative π∗(S)-algebra. If G is a topological group, we might call
S[G] the spherical group ring of G. The group inverse χ : g 7→ g−1 then induces anti-homomorphisms
χ : S[G]→ S[G] and χ : π∗S[G]→ π∗S[G].

(The diagonal ∆: M →M×M induces a cocommutative copairing ψ : S[M ]→ S[M ]∧S[M ]. Discuss
when there is an induced graded cocommutative coproduct ψ : π∗S[M ]→ π∗S[M ]⊗π∗(S)π∗S[M ], making
π∗S[M ] a graded cocommutative bialgebra over π∗(S). Similarly for when π∗S[G] becomes a graded
cocommutative Hopf algebra over π∗(S).)

7.2 Eilenberg–Mac Lane spectra

For each abelian group G and non-negative integer n we can construct a CW-complex K(G,n) with

πiK(G,n) =

{
G if i = n,

0 otherwise,

e.g., by first building a Moore space M(G,n) with n- and (n+ 1)-cells given by generators and relations
in a presentation for G, and then attaching m-cells for m ≥ n + 2 to kill πi for i > n. There is then a
homotopy equivalence

σ̃ : K(G,n)
'−→ ΩK(G,n+ 1)

for each n ≥ 0, with left adjoint σ : ΣK(G,n)→ K(G,n+ 1). The sequence of based spaces

HG = {n 7→ K(G,n)}

with these structure maps defines a sequential spectrum, called the Eilenberg–Mac Lane spectrum of G.
It is an Ω-spectrum, since the adjoint structure maps are (weak) homotopy equivalences. It represents
ordinary homology and cohomology with coefficients in G, in the sense that there are natural isomor-
phisms

HGk(X) = πk(HG ∧X) ∼= H̃k(X;G) and HGk(X) = π−kF (X,HG) ∼= H̃k(X;G)

for all based CW complexes X and integers k.
(The second claim is the natural isomorphism π0F (X,K(G, k)) = [X,K(G, k)] ∼= H̃k(X;G) for k ≥ 0,

and the observation that K(G, 0) ' G is discrete, so that π`F (X,K(G, 0)) = 0 for ` > 0. The first claim
follows by Spanier–Whitehead duality and passage to colimits, or perhaps by a more direct argument.)

At the level of homotopy groups

πk(HG) =

{
G for k = 0,

0 otherwise,

so π∗(HG) = G concentrated in degree 0.
To promote HG to an orthogonal spectrum, we need O(n)-actions on the spaces HGn ' K(G,n)

that are compatible with the structure maps. This is not generally possible with the construction above.
There is a simplicial construction due to Milgram (and Steenrod?), called the bar construction, that to
each topological group G produces a topological space BG, with G ' ΩBG. (This assumes that G is
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well-based, i.e., that the inclusion {e} → G is a cofibration.) When G is abelian, BG is again an abelian
topological group. Here

BG = B(∗, G, ∗) =
∐
q≥0

Gq ×∆q/∼

where ∆q ⊂ Rq+1 is the standard q-simplex, and ∼ is generated by the relations

(di(x), ξ) ∼ (x, δi(ξ))

for x = [g1| . . . |gq] ∈ Gq, ξ = (t0, . . . , tq−1) ∈ ∆q−1, 0 ≤ i ≤ q,

di(x) =


[g2| . . . |gq] for i = 0,

[g1| . . . |gi · gi+1| . . . |gq] for 0 < i < q,

[g1| . . . |gq−1] for i = q

and
δi(ξ) = (t0, . . . , ti−1, 0, ti, . . . , tq−1) ,

and the relations
(sj(x), ξ) ∼ (x, σj(ξ))

for x = [g1| . . . |gq] ∈ Gq, ξ = (t0, . . . , tq+1) ∈ ∆q+1, 0 ≤ j ≤ q,

sj(x) = [g1| . . . |gj |e|gj+1| . . . |gq]

and
σj(ξ) = (t0, . . . , tj + tj+1, . . . , tq+1) .

Note that the subspace of BG generated by Gq ×∆q for 0 ≤ q ≤ 1 is G ∧∆1/∂∆1 ∼= ΣG, so there is a
natural inclusion ΣG→ BG, with adjoint the natural (weak?) equivalence G→ ΩBG.

Starting with a discrete abelian group G and iterating this construction n times, we obtain a space
BnG = B · · ·BG ' K(G,n). Permuting the order in which the n bar constructions are performed
defines an action by the symmetric group Σn on BnG, and this recipe defines HG = {n 7→ BnG} as a
symmetric spectrum. However, this action by Σn does not naturally extend to an action by O(n).

A construction by McCord generalizes the bar construction B and the infinite symmetric product of
Dold and Thom, and can be used to construct HG as an orthogonal spectrum.

Definition 7.1. For each abelian topological monoid (G,+, 0) and each based space (X,x0) let B(G,X)
be the space of finite sums

u =
∑
i

gixi

with gi ∈ G, xi ∈ X for all i, subject to the relations gx+ g′x = (g+ g′)x and gx0 = 0, for g, g′ ∈ G and
x ∈ X. Equivalently, u is a function u : X → G such that u(x) 6= 0 for only finitely many x ∈ X, and
u(x0) = 0.

For each n ≥ 0 let Bn(G,X) be the image of the map (G×X)n → G(X) sending (g1, x1, . . . , gn, xn) to
g1x1 + · · ·+ gnxn. We give Bn(G,X) the quotient topology from (G×X)n. Each inclusion Bn(G,X)→
Bn+1(G,X) is a closed embedding, and we give B(G,X) =

⋃
nBn(G,X) the colimit topology. Hence

U ⊂ B(G,X) is open if and only if its preimage in (G×X)n is open, for each n ≥ 0.

McCord (1969, Theorem 8.8) shows that if G is a discrete abelian group, the map CSn → CSn/Sn ∼=
Sn+1 induces a numerable principal B(G,Sn)-bundle

B(G,CSn)→ B(G,Sn+1)

with B(G,CSn) contractible. Hence B(G,Sn) ' ΩB(G,Sn+1) is an Eilenberg–Mac Lane space of
type K(G,n).
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Definition 7.2. We define the orthogonal Eilenberg–Mac Lane spectrum HG by

HGn = B(G,Sn)

with the O(n)-action induced by the O(n)-action on Sn, i.e., A ∈ O(n) maps
∑
i gixi to

∑
i giAxi, for

gi ∈ G and xi ∈ Sn. The structure map σ : HGn ∧ S1 → HGn+1 is given by the map

B(G,Sn) ∧ S1 −→ B(G,Sn ∧ S1)

that takes (
∑
i gixi) ∧ s to

∑
i gi(xi ∧ s). The iterated structure map

σ` : B(G,Sk) ∧ S` −→ B(G,Sk+`)

is then evidently O(k) ∧O(`)-equivariant, so HG is an orthogonal Ω-spectrum.

Proposition 7.3. The Eilenberg–Mac Lane functor H from abelian groups to orthogonal spectra is lax
symmetric monoidal: There is a natural transformation

HG ∧HG′ −→ H(G⊗G′)

and a map
S −→ HZ

making the required diagrams commute.

Proof. The pairing
B(G,Sk) ∧B(G′, S`)

·−→ B(G⊗G′, Sk ∧ S`)
takes (

∑
i gixi,

∑
j g
′
jyj) to ∑

i,j

(gi ⊗ g′j)(xi ∧ yj) .

It is O(k)×O(`)-equivariant, and makes the bilinearity diagram

B(G,Sk) ∧ S1 ∧B(G′, S`)

σ∧1

��

B(G,Sk) ∧B(G′, S`) ∧ S11∧γ
oo

φk,`∧1

��

1∧σ

**

B(G,Sk+1) ∧B(G′, S`)

φk+1,`

��

B(G⊗G′, Sk+`) ∧ S1

σ

��

B(G,Sk) ∧B(G′, S`+1)

φk,`+1tt

B(G⊗G′, Sk+1+`)
Ik⊕χ1,`

// B(G⊗G′, Sk+`+1)

commute.
The spectrum level Hurewicz map h : S → HZ is given at level n by the embedding hn : Sn →

B(Z, Sn) sending x ∈ Sn to 1 · x ∈ B(Z, Sn). It is O(n)-equivariant and compatible with the structure
maps.

The compatibility diagrams for α, λ and ρ commute. The compatibility diagram

HG ∧HG′
γ
//

��

HG′ ∧HG

��

H(G⊗G′)
H(γ)

// H(G′ ⊗G) .

commutes, because each diagram

B(G,Sk) ∧B(G′, S`)
γ
//

·

��

B(G′, S`) ∧B(G,Sk)

·
��

B(G′ ⊗G,S` ∧ Sk)

χ`,k

��

B(G⊗G′, Sk ∧ S`)
B(γ,1)

// B(G′ ⊗G,Sk ∧ S`)

commutes.
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For each ring R the Eilenberg–Mac Lane spectrum HR is an orthogonal ring spectrum, with multipli-
cation µ : HR∧HR→ H(R⊗R)→ HR and unit η : S → HZ→ HR. If R is commutative then HR is a
commutative orthogonal ring spectrum. The induced product on π∗(HR) ∼= R is the ring multiplication
in R.

For each left R-module M the Eilenberg–Mac Lane spectrum HM is a left HR-module, with respect
to the pairing λ : HR∧HM → H(R⊗M)→ HM , and similarly for right modules. The induced pairing
π∗(HR)⊗ π∗(HM)→ π∗(HM) ∼= M is the left R-module action on M .

The functors H : (Ab,⊗,Z) → (SpO,∧, S) and π0 : (SpO,∧, S) → (Ab,⊗,Z) are thus both lax sym-
metric monoidal, and the composite π0 ◦ H is naturally isomorphic to the identity. In this way, the
algebra of abelian groups is faithfully embedded in that of orthogonal spectra. (Elaborate?)

The Hurewicz map h : S → HZ induces the stable Hurewicz homomorphism πsk(T ) = πk(S ∧ T ) →
πk(HZ ∧ T ) = H̃k(T ; Z) for any based space T .

7.3 Bordism spectra

The bar construction BO(n) and the infinite Grassmannian Grn(R∞) are homotopy equivalent. There
are principal O(n)-bundles

O(n) −→ EO(n) −→ BO(n)

and
O(n) −→ Vn(R∞)→ Grn(R∞)

with contractible total spaces (that admit CW structures), so any O(n)-equivariant equivalence EO(n) '
Vn(R∞) induces an equivalence BO(n) ' Grn(R∞) of O(n)-orbit spaces. Here EO(n) is the case G =
O(n) of the construction

EG = B(∗, G,G) =
∐
q≥0

(Gq ×G)×∆q/∼

where ∼ is generated by the relations (di(x), ξ) ' (x, δi(ξ)) and (sj(x), ξ) ' (x, σj(ξ)), for x =
[g1| . . . |gq]gq+1 ∈ Gq ×G, with

di(x) =


[g2| . . . |gq]gq+1 for i = 0,

[g1| . . . |gigi+1| . . . |gq]gq+1 for 0 < i < q,

[g1| . . . |gq−1]gqgq+1 for i = q

and
sj(x) = [g1| . . . |gj−1|e|gj | . . . |gq]gq+1 .

The group G acts freely from the right on EG, with EG/G ∼= BG. (Give contraction of EG?) On the
other hand, Vn(R∞) is the Stiefel “variety” of orthonormal n-tuples (v1, . . . , vn) in R∞. It is the colimit
over k of the homogeneous spaces Vn(Rn+k) = O(n+k)/(1×O(k)). Since each map O(k)→ O(1+k)→
· · · → O(n+ k) is (k− 1)-connected, the space Vn(R∞) is contractible. There is a principal O(n)-bundle
Vn(R∞)→ Grn(R∞) mapping (v1, . . . , vn) to the subspace of R∞ spanned by those n vectors.

The Rn-bundle
Rn −→ EO(n)×O(n) Rn −→ BO(n)

and the canonical bundle
Rn −→ E(γn) −→ Grn(R∞)

correspond under these equivalences, so there is an equivalence

MO(n) = EO(n)+ ∧O(n) S
n ' Th(γn)

of Thom complexes. The inclusion O(n) ∼= O(n)× 1 ⊂ O(n+ 1) induces a map i : BO(n)→ BO(n+ 1),
and the pullback of the Rn+1-bundle

EO(n+ 1)×O(n+1) Rn+1 → BO(n+ 1)

along i is the product
EO(n)×O(n) Rn × R→ BO(n)
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of the Rn-bundle over BO(n) with a copy of R. In other words, this is the Whitney sum of the Rn-bundle
and the trivial line bundle ε1. Hence its Thom complex

EO(n)+ ∧O(n) S
n+1 ∼= EO(n)+ ∧O(n) S

n ∧ S1 = MO(n) ∧ S1

maps naturally to the Thom complex

MO(n+ 1) = EO(n+ 1)+ ∧O(n+1) S
n+1 .

The sequence of spaces {n 7→MO(n)} with the structure maps σ = Th(i) : MO(n) ∧ S1 →MO(n+ 1)
defines the Thom spectrum MO as a sequential spectrum, with MOn = MO(n).

There is also an inclusion i : Grn(R∞)→ Grn+1(R∞), mapping V ⊂ R∞ to V ⊕ R ⊂ R∞ ⊕ R ∼= R∞,
and the pullback of γn+1 along i is isomorphic to γn ⊕ ε1, so that i induces a map

σ = Th(i) : Th(γn) ∧ S1 ∼= Th(γn ⊕ ε1) −→ Th(γn+1) .

The resulting spectrum {n 7→ Th(γn)} is level equivalent to MO, as defined above. (Clarify role of
isomorphism R∞ ⊕ R ∼= R∞?)

By the Pontryagin–Thom construction and transversality,

πk(MO) = colim
n

πk+nMOn ∼= Nk

is the bordism group of closed (smooth, unoriented) k-manifolds. More generally,

MOk(X) = colim
n

πk+n(MOn ∧X+) ∼= Nk(X)

is the bordism group of closed k-manifolds over X.
We can promote MO to an orthogonal spectrum, cf. May (1977), p. 75. The group O(n) acts on

itself by conjugation, so that A ∈ O(n) induces the homomorphism O(n)→ O(n) given by g 7→ AgA−1.
When combined with the standard action on Sn = Rn ∪ {∞}, taking s to As, this induces an action on

MO(n) = EO(n)+ ∧O(n) S
n

taking ([g1| . . . |gq]gq+1, ξ, s) to ([Ag1A
−1| . . . |AgqA−1]Agq+1A

−1, ξ, As). The iterated structure map

σ` : MO(k) ∧ S` = EO(k)+ ∧O(k) S
k ∧ S` −→ EO(k + `)+ ∧O(k+`) S

k+`

is O(k)×O(`)-equivariant: (A,B) ∈ O(k)×O(`) acts on ([g1| . . . |gq]gq+1, ξ, s, t) to give

([Ag1A
−1| . . . |AgqA−1]Agq+1A

−1, ξ, As,Bt) ,

which maps to
([Ag1A

−1 ⊕ I`| . . . |AgqA−1 ⊕ I`]Agq+1A
−1 ⊕ I`, ξ, As,Bt) .

This is equal to the action of A⊕B ∈ O(k + `) on the image

([g1 ⊕ I`| . . . |gq ⊕ I`]gq+1 ⊕ I`, ξ, s, t) ,

since (A⊕B)(g⊕ I`)(A⊕B)−1 = AgA−1⊕ I`, for each g ∈ O(k). Hence MO is an orthogonal spectrum.
In fact, MO is a commutative orthogonal ring spectrum, i.e., a commutative S-algebra. The multi-

plication µ : MO ∧MO →MO is induced by the O(k)×O(`)-equivariant map

φk,` : MO(k) ∧MO(`) −→MO(k + `)

given by the composite

EO(k)+ ∧O(k) S
k ∧ EO(`)+ ∧O(`) S

` ∼=−→ E(O(k)×O(`))+ ∧O(k)×O(`) S
k ∧ S`

−→ EO(k + `)+ ∧O(k+`) S
k+` ,
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for each k, ` ≥ 0. The first map uses the natural (G×H)-equivariant homeomorphism EG×EH ∼= E(G×
H), in the case G = O(k) and H = O(`). (This relies on Milnor’s homeomorphism |X × Y | ∼= |X| × |Y |
for (nice) simplicial spaces X and Y .) The resulting map φ : MO⊗MO →MO of orthogonal sequences
descends to define a map µ of orthogonal spectra, because the bilinearity diagram

MO(k) ∧ S1 ∧MO(`)

σ∧1

��

MO(k) ∧MO(`) ∧ S11∧γ
oo

ιk,`∧1

��

1∧σ

**

MO(k + 1) ∧MO(`)

ιk+1,`

��

MO(k + `) ∧ S1

σ

��

MO(k) ∧MO(`+ 1)

ιk,`+1
tt

MO(k + 1 + `)
Ik⊕χ1,`

// MO(k + `+ 1)

commutes. (Spell out in terms of EO(k)+ ∧O(k) S
k, etc.?) It gives a commutative product, because the

square

MO(k) ∧MO(`)
γ
//

φk,`

��

MO(`) ∧MO(k)

φ`,k

��

MO(k + `)
χk,`

// MO(`+ k)

commutes, so that µγ = µ. More explicitly, this is the diagram

EO(k)+ ∧O(k) S
k ∧ EO(`)+ ∧O(`) S

` γ
//

φk,`

��

EO(`)+ ∧O(`) S
` ∧ EO(k)+ ∧O(k) S

k

φ`,k

��

EO(k + `)+ ∧O(k+`) S
k+`

χk,`
// EO(`+ k)+ ∧O(`+k) S

`+k .

The unit η : S →MO is given by the inclusion Sn → EO(n)+ ∧O(n) S
n = MO(n) taking s to ([]e, s) (in

the case q = 0). It is O(n)-equivariant.
Under the equivalences MO(n) ' Th(γn), the map φk,` corresponds to the map

Th(γk) ∧ Th(γ`) ∼= Th(γk × γ`) −→ Th(γk+`)

of Thom complexes induced by the bundle map

E(γk)× E(γ`) −→ E(γk+`)

covering the map
Grk(R∞)×Gr`(R∞) −→ Grk+`(R

∞)

that sends V ⊂ R∞ and W ⊂ R∞ to the direct sum V ⊕W ⊂ R∞ ⊕ R∞ ∼= R∞.
The induced graded commutative ring structure on π∗(MO) corresponds under the isomorphism

π∗(MO) ∼= N∗

to the graded commutative ring structure on the bordism groups, given by taking the classes of M and
N to the class of M ×N .

The unit map S → MO induces a homomorphism π∗(S) → π∗(MO) that corresponds to the ring

homomorphism Ωfr∗ → N∗ taking a framed bordism class to the underlying unoriented bordism class. It
is not a very interesting homomorphism: The underlying unoriented manifold of any framed k-manifold
bounds an unoriented (k + 1)-manifold, for k > 0, so πk(S) → πk(MO) is zero except for k = 0. This
is a consequence of Thom’s theorem that unoriented bordism classes are detected by Stiefel–Whitney
numbers, and these vanish for framed manifolds (whose tangent bundles are stably trivial).
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Theorem 7.4 (Thom). The mod 2 Hurewicz homomorphism

πk(MO) = colim
n

πk+nMO(n) −→ colim
n

H̃k+n(MO(n); Z/2) ∼= Hk(BO; Z/2)

is injective for each integer k, and identifies

π∗(MO) ∼= Z/2[x2, x4, x5, x6, x8, . . . ] ,

with one generator xi in each positive degree i not of the form 2j − 1, for j ≥ 1, as a polynomial
subalgebra of H∗(BO; Z/2) ∼= Z/2[a1, a2, . . . ] with one generator ak in each positive degree k. There is a
π∗-isomorphism of spectra

MO '
∨
X

Σ|X|HZ/2

where X = xe22 x
e4
4 x

e5
5 · . . . ranges over a monomial basis for Z/2[x2, x4, x5, . . . ], and |X| = 2e2 + 4e4 +

5e5 + . . . is the degree of the monomial X.

Remark 7.5. The class ak ∈ Hk(BO; Z/2) is the image of the generator αk ∈ Hk(BO(1); Z/2),
where BO(1) ' RP∞. As a bicommutative Hopf algebra, H∗(BO; Z/2) is dual to the Hopf algebra
H∗(BO; Z/2) = Z/2[w1, w2, . . . ] generated by the Stiefel–Whitney classes wi ∈ Hi(BO; Z/2).)

Let SO(n) ⊂ O(n) be the special orthogonal group. The principal SO(n)-bundles

SO(n) −→ ESO(n) −→ BSO(n)

and
SO(n) −→ Vn(R∞) −→ G̃rn(R∞)

are both universal, hence equivalent, where G̃rn(R∞) is the infinite Grassmannian of oriented n-dimensional
subspaces of R∞. The oriented Rn-bundles

Rn −→ ESO(n)×SO(n) Rn −→ BSO(n)

and
Rn −→ E(γ̃n) −→ G̃rn(R∞)

are equivalent, where γ̃n denotes the canonical Rn-bundle over G̃rn(R∞), so there is an equivalence

MSO(n) = ESO(n)+ ∧SO(n) S
n ' Th(γ̃n)

of Thom complexes. Replacing O(n) with SO(n) in the role of G in the constructions above, we obtain
a commutative orthogonal ring spectrum MSO, with n-th space MSO(n), structure maps

σ : MSO(n) ∧ S1 = ESO(n)+ ∧SO(n) S
n ∧ S1 −→ ESO(n+ 1)+ ∧SO(n+1) S

n+1 = MSO(n+ 1) ,

O(n)-action on MSO(n) given by conjugation, since AgA−1 ∈ SO(n) for A ∈ O(n) and g ∈ SO(n),
product µ : MSO ∧MSO →MSO induced by maps

φk,` : MSO(k) ∧MSO(`) −→MSO(k + `)

and unit η : S →MSO induced by the inclusions ηn : Sn → ESO(n)+ ∧SO(n) S
n = MSO(n).

Let Spin(n) be the spin group, realizing a double cover of SO(n) for each n ≥ 0. The Thom complex
of the spin Rn-bundle

Rn −→ ESpin(n)×Spin(n) Rn −→ BSpin(n)

is
MSpin(n) = ESpin(n)+ ∧Spin(n) S

n

Replacing O(n) with Spin(n) in the role of G in the constructions above, we obtain a commutative
orthogonal ring spectrum MSpin, with n-th space MSpin(n), structure maps

σ : MSpin(n)∧S1 = ESpin(n)+ ∧Spin(n) S
n ∧S1 −→ ESpin(n+ 1)+ ∧Spin(n+1) S

n+1 = MSpin(n+ 1) ,
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O(n)-action on MSpin(n) given by the unique lift Spin(n)→ Spin(n) of the conjugation homomorphism
g 7→ AgA−1 : SO(n)→ SO(n), product µ : MSpin ∧MSpin→MSpin induced by maps

φk,` : MSpin(k) ∧MSpin(`) −→MSpin(k + `)

derived from the homomorphism Spin(k)×Spin(`)→ Spin(k+`) lifting the block sum SO(k)×SO(`)→
SO(k + `), and unit η : S → MSpin induced by the inclusions ηn : Sn → ESpin(n)+ ∧Spin(n) S

n =
MSpin(n).

We obtain maps
S −→MSpin −→MSO −→MO

of orthogonal ring spectra inducing graded ring homomorphisms

π∗(S) −→ π∗(MSpin) −→ π∗(MSO) −→ π∗(MO)

that are isomorphic to the graded homomorphisms

Ωfr∗ −→ ΩSpin∗ −→ Ω∗ = ΩSO∗ −→ N∗ = ΩO∗

of framed, spin, oriented and unoriented bordism rings, respectively.

Theorem 7.6 (Thom). The rational Hurewicz homomorphism

πk(MSO)⊗ Q = colim
n

πk+nMSO(n)⊗ Q −→ colim
n

H̃k+n(MSO(n); Q) ∼= Hk(BSO; Q)

is an isomorphism for each integer k, and identifies

π∗(MSO)⊗ Q ∼= Q[x4, x8, x12, . . . ]

with the polynomial ring on one generator in each positive degree of the form 4i.

(Discuss generators of H∗(BSO; Q) and duality with H∗(BSO; Q) = Q[p1, p2, . . . ], where pi ∈
H4i(BSO; Q) is the i-th Pontryagin class. Decide about Z-, Z[1/2]- or Q-coefficients.)

Wall (1960) determined the structure of π∗(MSO) ∼= Ω∗ completely. Oriented bordism classes are
detected by Pontryagin- and Stiefel–Whitney numbers, and all torsion is of exponent 2.

(Splitting of MSO when localized at p = 2.)
(String bordism?)

7.4 Complex bordism and formal group laws

Let U(n) denote the unitary group, acting linearly on complex n-space, Cn. There is a universal principal
U(n)-bundle

U(n) −→ EU(n) −→ BU(n)

with associated Cn-bundle
Cn −→ EU(n)×U(n) Cn −→ BU(n)

and Thom complex
MU(n) = EU(n)+ ∧U(n) S

2n ,

where S2n = Cn∪{∞}. The inclusion U(n) ∼= U(n)×1 ⊂ U(n+1) induces a map i : BU(n)→ BU(n+1),
covered by a Cn+1-bundle map

EU(n)×U(n) Cn × C −→ EU(n+ 1)×U(n+1) Cn+1

that induces a map
Th(i) : MU(n) ∧ S2 −→MU(n+ 1)

of Thom complexes. Here S2 arises as the one-point compactification of C ∼= R{1}⊕R{i}, with i =
√
−1,

hence can be decomposed as SR∧SiR ∼= S1∧S1, i.e., the smash product of one ‘real’ and one ‘imaginary’
circle.
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We obtain a sequential spectrum, here denoted M ′U , with 2n-th space MU(n), 2n + 1-th space
ΣMU(n), and structure maps that alternate between the identity

1 : MU(n) ∧ S1 −→ ΣMU(n)

and the map
Th(i) : ΣMU(n) ∧ S1 −→MU(n+ 1) .

The homotopy groups
πk(M ′U) = colimπk+2nMU(n)

are the complex bordism groups Uk = ΩUk , i.e., the bordism groups of closed (smooth) k-manifolds whose
(stable) normal bundle comes equipped with a complex structure.

Theorem 7.7 (Milnor, Novikov). The integral Hurewicz homomorphism

πk(M ′U) = colim
n

πk+2nMU(n) −→ colim
n

H̃k+2n(MU(n)) ∼= Hk(BU)

is injective for each integer k, and identifies

π∗(M
′U) ∼= Z[x1, x2, x3, . . . ] ,

with one generator xi in each positive even degree 2i, as a polynomial subring of H∗(BU) = Z[b1, b2, . . . ],
with one generator bi in each positive even degree 2i.

Remark 7.8. The class bi ∈ H2i(BU) is the image of a generator βi ∈ H2i(BU(1)), where BU(1) '
CP∞. As a bicommutative Hopf algebra, H∗(BU) is dual to the Hopf algebra H∗(BU) = Z[c1, c2, . . . ]
generated by the Chern classes ci ∈ H2i(BU).

With the definition above, there is no evident O(2n)-action on the 2n-th space MU(n) in the se-
quential spectrum M ′U , so with this definition M ′U does not arise as an orthogonal spectrum. There
is, however, a natural U(n)-action on MU(n), similar to the natural O(n)-action on MO(n). This U(n)-
action restricts to an O(n)-action on MU(n) via the complexification homomorphism c : O(n)→ U(n).

Following Schwede, we define MU as the orthogonal spectrum given at level n by MUn = ΩnMU(n).
More explicitly, we keep the real and imaginary summands of Cn ∼= Rn ⊕ iRn separate, and set

MUn = F (SiR
n

,MU(n))

and write Th(i) as
MU(n) ∧ SR ∧ SiR −→MU(n+ 1)

with right adjoint
MU(n) ∧ SR −→ F (SiR,MU(n+ 1)) .

The structure map σ is then the composite

ΣMUn = MU(n) ∧ SR = F (SiR
n

,MU(n)) ∧ SR ν−→ F (SiR
n

,MU(n) ∧ SR)

−→ F (SiR
n

, F (SiR,MU(n+ 1))) ∼= F (SiR
n+1

,MU(n+ 1)) = MUn+1 .

The group O(n) acts on MUn by conjugation, with A ∈ O(n) taking the map f : SiR
n →MU(n) to the

map Af : SiR
n →MU(n) given by (Af)(s) = A(f(A−1s)). The O(k)×O(`)-equivariant maps

φk,` : MUk ∧MU` = ΩkMU(k) ∧ Ω`MU(`)
∧−→ Ωk+`(MU(k) ∧MU(`)) −→ Ωk+`MU(k + `)

define a multiplication µ : MU ∧MU →MU , and the O(n)-equivariant maps

ηn : Sn −→ ΩnMU(n) ,

adjoint to the inclusion S2n →MU(n), define a unit η : S →MU , making MU a commutative orthogonal
ring spectrum.
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There are isomorphisms

πk(MU) = colim
n

πk+n(MUn) = colim
n

πk+n(ΩnMU(n)) ∼= colim
n

πk+2n(MU(n)) = πk(M ′U)

and more generally isomorphisms

MUk(X) = colim
n

πk+n(MUn ∧X) = colim
n

πk+n(ΩnMU(n) ∧X)

ν−→ colim
n

πk+n(Ωn(MU(n) ∧X)) ∼= colim
n

πk+2n(MU(n) ∧X) = M ′Uk(X)

for based CW complexes X. Presumably M ′U and MU are π∗-isomorphic as sequential spectra, defining
the same homology and cohomology theory (= complex bordism).

Lemma 7.9. The zero section in the Hopf C-bundle

η : C −→ EU(1)×U(1) C −→ BU(1)

induces a homotopy equivalence

BU(1)
'−→MU(1) .

Proof. The unit circle bundle

S(C) −→ EU(1)×U(1) S(C) −→ BU(1)

has total space S(η) ∼= EU(1) which is contractible, so the quotient map

D(η)
'−→ D(η)/S(η)

is a homotopy equivalence. The zero section in η induces a homotopy equivalence BU(1) → D(η), and
there is a standard homotopy equivalence MU(1) = Th(η) → D(η)/S(η). Hence BU(1) → MU(1) is a
homotopy equivalence.

Definition 7.10. Let t ∈MU2(BU(1)) be the image under

πk+2F (BU(1),MU(1)) −→ colimπk+2nF (BU(1),MU(n)) = MU−k(BU(1))

of the homotopy class of the map BU(1)→MU(1), for k = −2.

Proposition 7.11. 1. MU∗(BU(1)) ∼= MU∗[[t]].

2. MU∗(BU(1)×BU(1)) ∼= MU∗[[t1, t2]], where t1 = pr∗1(t) and t2 = pr∗2(t).

3. The multiplication
m : BU(1)×BU(1) −→ BU(1)

maps t ∈MU2(BU(1)) to a class m∗(t) ∈MU2(BU(1)×BU(1)) that corresponds to a formal sum

FMU (t1, t2) =
∑
i,j≥0

ai,jt
i
1t
j
2 ∈MU∗[[t1, t2]]

with ai,j ∈MU2(i+j−1) for each i, j ≥ 0.

4. FMU (0, t2) = t2 = FMU (t2, 0), FMU (t1, FMU (t2, t3)) = FMU (FMU (t1, t2), t3) and FMU (t1, t2) =
FMU (t2, t1).

These results show that FMU is a formal group law over MU∗, homogeneous of degree (−2).

Definition 7.12. Let R be a commutative ring. A (1-dimensional, commutative) formal group law over
R is a power series

F (t1, t2) ∈ R[[t1, t2]]

such that F (0, t2) = t2 = F (t2, 0), F (t1, F (t2, t3)) = F (F (t1, t2), t3) and F (t1, t2) = F (t2, t1).
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A formal group law on R specifies a formal group structure on the formal affine line Â1
R = Spf R[[t]]

over SpecR, containing the thickenings SpecR[t]/(tn) for all n ≥ 0. It also specifies a functor from
commutative R-algebras A to abelian groups, taking A to the set N(A) of nilpotent elements in A, with
the group operation +F given by

n1 +F n2 =
∑
i,j≥0

ai,jn
i
1n
j
2 = n1 + n2 +

∑
i,j≥1

ai,jn
i
1n
j
2

for n1, n2 ∈ N(A). (The sum is finite because n1 and n2 are nilpotent in A.)
The additive formal group, Ĝa, has formal group law given by

Fa(t1, t2) = t1 + t2 .

It represents the additive group structure on N(A).
The multiplicative formal group, Ĝm, has formal group law given by

Fm(t1, t2) = t1 + t2 + t1t2 .

It represents the group structure on N(A) that corresponds to the multiplicative group structure on
1 +N(A) ⊂ A×. More generally, for any unit u ∈ R× there is a variant multiplicative formal group law
given by

Fu(t1, t2) = t1 + t2 − ut1t2 ,

with the property that 1− uFu(t1, t2) = (1− ut1)(1− ut2).
To each 1-dimensional commutative group scheme G there is an associated formal group Ĝ. A choice

of local parameter near the unit element specifies a formal group law. In the case of elliptic curves, these
are called elliptic formal group laws.

There is a universal formal group law

FL(t1, t2) =
∑
i,j≥0

ai,jt
i
1t
j
2

defined over the commutative ring
L = Z[ai,j | i, j ≥ 0]/∼

where ∼ denotes the relations among the ai,j that are required for FL to be a formal group law.

Lemma 7.13. The rule that to a ring homomorphism φ : L→ R associates the formal group law φ∗FL
over R, with

(φ∗FL)(t1, t2) =
∑
i,j≥0

φ(ai,j)t
i
1t
j
2 ,

induces a natural bijection
Hom(L,R) ∼= FGL(R)

where FGL(R) denotes the set of formal group laws over R.

Theorem 7.14 (Lazard).
L ∼= Z[x1, x2, . . . ]

is a polynomial ring on countably many generators, with x1 = a1,1, x2 = a1,2, x3 = a2,2 − a1,3, etc.

Theorem 7.15 (Quillen). The formal group law FMU over MU∗ is isomorphic to Lazard’s universal
formal group law FL over L: The ring homomorphism

φ : L
∼=−→MU∗

such that φ∗FL = FMU is an isomorphism.

In particular, the Lazard ring L = Z[x1, x2, . . . ] is isomorphic to the complex bordism ringMU∗ = ΩU∗ .
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Remark 7.16. It is an interesting question which (1-dimensional, commutative) formal group laws F
over a graded ring R, with F (t1, t2) in homogeneous degree (−2), can be realized as

m∗(t) ∈ E2(BU(1)×BU(1))

for a ring spectrum E with π∗(E) = R, E∗(BU(1)) ∼= R[[t]] and E∗(BU(1)×BU(1)) ∼= R[[t1, t2]].
This is the case for F = Fa over R = Z with E = HZ and t = c1(η) ∈ H2(BU(1); Z) is the first

Chern class of the Hopf C-bundle η.
It is also the case for F = Fu over R = Z[u, u−1] with E = KU and t = u−1(1− [η]) ∈ KU2(BU(1)),

where [η] ∈ KU0(BU(1)) is the topological K-theory class of η.
(Elliptic cohomology.)

(Conner–Floyd theorem µ : MU → KU inducing isomorphisms π∗(KU)⊗π∗(MU)MU∗(X) ∼= KU∗(X),
where π2n(MU) = ΩU2n → π2n(KU) ∼= Z{un} sends an almost complex manifold M to (−1)n times its
Todd class Td(M).)

(Landweber exactness.)

7.5 Topological K-theory spectra

(Real and complex topological K-theory.)
(Adams operations. The image of J .)
(Algebraic K-theory spectra?)

7.6 Topological Hochschild homology

For any orthogonal spectrum X the n-fold smash power

X∧n = X ∧ · · · ∧X

is an orthogonal spectrum, where we take n copies of X. We let X∧0 = S, so that X∧k ∧X∧` ∼= X∧n

for k + ` = n. Another common notation for the n-fold smash power is X(n).
(Beware that X∧n is only homotopically meaningful under suitable cofibrancy conditions on X, e.g.,

if X is flat or projectively cofibrant as an orthogonal spectrum.)
Let R be an orthogonal ring spectrum, with unit η : S → R and product φ : R ∧ R → R. We can

view R as a simultaneous left and right R-module, i.e., an R-R-bimodule, via the action

φ(φ ∧ 1) = φ(1 ∧ φ) : R ∧R ∧R −→ R .

There is a simplicial resolution C• of R in R-R-bimodules, of the form

. . .

//

//

//

//

R ∧R ∧R ∧R
//

//

//oo

oo

oo

R ∧R ∧Roo

oo //

// R ∧R
ε //oo R .

Here
Cq = R ∧R∧q ∧R

for each q ≥ 0. For each 0 ≤ i ≤ q there is a face operator

di = R∧i ∧ φ ∧R∧q−i : Cq −→ Cq−1

and for each 0 ≤ j ≤ q there is a degeneracy operator

sj = R∧1+j ∧ η ∧Rq+1−j : Cq −→ Cq+1

that make [q] 7→ Cq into a simplicial object in SpO. The map ε = φ : C0 → R defines an augmentation
C• → R, which can be viewed as a simplicial map from C• to R viewed as a constant simplicial object.
The augmentation induces a homotopy equivalence from the geometric realization

|C•| =
∨
Cq ∧∆q

+/∼
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to R. (Explain using a simplicial contraction?) For each R-R-bimodule spectrum M , with commuting
left action λ : R ∧M →M and right action ρ : M ∧R→M , we can form the smash product

THHq(R,M) = M ∧
R−R

Cq = M ∧R∧q

and obtain a simplicial orthogonal spectrum THH•(R,M). The face operators

di : M ∧R∧q −→M ∧R∧q−1

are given by

d0 = ρ ∧R∧q−1

di = M ∧R∧i−1 ∧ φ ∧R∧q−1−i

dq = (λ ∧R∧q−1)γ

(where 0 < i < q, and γ transposes M ∧R∧q−1 and R), and the degeneracy operators

sj : M ∧R∧q −→M ∧R∧q+1

are given by
sj = M ∧R∧j ∧ η ∧Rq−j .

We write
THH•(R) = THH•(R,R)

in the special case M = R (with the bimodule structure mentioned above). Hence

THHq(R) = R ∧R∧q

for each q ≥ 0, with face operators symbolically given by

d0(r0 ∧ r1 ∧ · · · ∧ rq) = r0r1 ∧ r2 ∧ · · · ∧ rq ,

di(r0 ∧ r1 ∧ · · · ∧ rq) = r0 ∧ · · · ∧ riri+1 ∧ · · · ∧ rq
for 0 < i < q and

dq(r0 ∧ r1 ∧ · · · ∧ rq) = rqr0 ∧ r1 ∧ · · · ∧ rq−1 .

The degeneracy operators are symbolically given by

sj(r0 ∧ r1 ∧ · · · ∧ rq) = r0 ∧ · · · ∧ rj ∧ 1 ∧ rj+1 ∧ · · · ∧ rq .

We let
THH(R,M) = |THH•(R,M)| =

∨
q≥0

THHq(R,M) ∧∆q
+/∼

and
THH(R) = |THH•(R)| =

∨
q≥0

THHq(R) ∧∆q
+/∼

be the orthogonal spectra given by the geometric realization of these simplicial objects.
(Beware that THH(R) is only homotopically meaningful under suitable cofibrancy conditions on R,

e.g., if R is flat or projectively cofibrant as an orthogonal spectrum under S.)
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8 Equivariant spaces and spectra

8.1 G-spaces

Let G be a compact Lie group, with unit element e. We do not assume that G is connected, so the case
where G is a finite (discrete) group in included. We only consider closed subgroups of G, so when we
say that H is a subgroup of G it is implicitly assumed that H is closed.

A (left) based G-space X is a based space with a continuous map

λ : G+ ∧X −→ X ,

satisfying associativity and unitality. Writing gx for λ(g ∧ x) this means that g1(g2x) = (g1g2)x and
ex = x for all g1, g2 ∈ G and x ∈ X. A based G-map f : X → Y is a based map such that the diagram

G+ ∧X
1∧f
//

λ

��

G+ ∧ Y

λ

��

X
f

// Y

commutes, i.e., gf(x) = f(gx) for all g ∈ G and x ∈ X. Such a map is also said to be G-equivariant.
We write GT for the topological category of based G-spaces and based G-maps. ((It is a subcategory
of the G-topological category TG of based G-spaces and based maps.))

Example 8.1. A homomorphism ρ : G→ O(n) defines an unbased action ofG on Rn, by (g, v) 7→ ρ(g)(v),
which induces a based action of G on the one-point compactification Sn = Rn ∪ {∞}, based at ∞. We
write V and SV for Rn and Sn with these implicit G-actions. Such a vector space V is called an
orthogonal G-representation, and SV is called a G-representation sphere. If φ : V → W is injective,
hence proper, we write Sφ : SV → SW for its based extension.

Hereafter we omit to say ‘based’.
Let θ : G1 → G2 be a group homomorphism. We get a continuous functor

θ∗ : G2T −→ G1T

mapping each G2-space X to the same topological space, with the G1-action given by composition with
θ, taking g ∈ G1 and x ∈ X to θ(g)x in X.

Any homomorphism θ : G1 → G2 factors as the composite of a surjection of the form π : G→ G/N ,
with N normal in G, an isomorphism of groups, and an inclusion of the form ι : H ⊂ G. The functor
π∗ : (G/N)T → GT views a G/N -space as a G-space with trivial N -action. The functor ι∗ : GT → HT
restricts the G-action to an H-action. In particular we have the functors T → GT that gives a non-
equivariant space the trivial G-action, and GT → T that takes a G-space to the underlying non-
equivariant space.

These functors admit left and right adjoints.
For π : G→ G/N the left adjoint of π∗ is the N -orbit space functor

X 7−→ X/N

where X/N = X/∼ is the quotient space of X given by x ∼ nx for each x ∈ X and n ∈ N . The natural
homeomorphism

(G/N)T (X/N, Y ) ∼= GT (X,π∗Y )

has unit the surjective G-map η : X → π∗(X/N) and counit the G/N -homeomorphism ε : (π∗Y )/N → Y .
(Notation for image of x ∈ X in X/N?)

The right adjoint of π∗ is the N -fixed point functor

Z 7−→ ZN

where ZN = {z ∈ Z | nz = z for each n ∈ N} is a subspace of Z. The natural homeomorphism

GT (π∗Y,Z) ∼= (G/N)T (Y,ZN )
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has unit the G/N -homeomorphism η : Y → (π∗Y )N and counit the injective G-map ε : π∗(ZN )→ Z.

GT

(−)/N
//

(−)N
//
(G/N)Tπ∗oo

For ι : H ⊂ G the left adjoint of ι∗ is the induction functor

X 7−→ G+ ∧H X

where G+ ∧H X is the quotient space of G+ ∧ X by γh ∧ x ∼ γ ∧ hx, where γ ∈ G, h ∈ H and
x ∈ X. (Notation for image of γ ∧ x ∈ G+ ∧X in G+ ∧H X?) The G-action on G+ ∧H X is given by
g(γ ∧ x) = gγ ∧ x for g ∈ G. (Note that this is not the diagonal action.) The natural homeomorphism

GT (G+ ∧H X,Y ) ∼= HT (X, ι∗Y )

has unit the injective H-map η : X → ι∗(G+ ∧H X) sending x ∈ X to the class of e ∧ x, and counit the
surjective G-map G+ ∧H ι∗Y → Y sending the class of γ ∧ y to γy.

The right adjoint of ι∗ is the coinduction functor

Z 7−→ FH(G+, Z)

where FH(G+, Z) is the subspace of F (G+, Z) consisting of maps f : G+ → Z such that hf(γ) = f(hγ),
for all h ∈ H and γ ∈ G. The G-action on FH(G+, Z) is given by sending f to gf : G+ → Z with
(gf)(γ) = f(γg). (Note that this is not the conjugation action.) The natural homeomorphism

HT (ι∗Y, Z) ∼= GT (Y, FH(G+, Z))

has unit the injective G-map η : Y → FH(G+, ι
∗Y ) taking y ∈ Y to the map f : G+ → Y given by

f(γ) = γy for all γ ∈ G, and counit the surjective H-map ε : i∗FH(G+, Z) → Z taking f : G+ → Z to
f(e) ∈ Z.

HT

G+∧H(−)
//

FH(G+,−)
//
GTι∗oo

When φ : G1 → G2 is an isomorphism, with inverse ψ, the functor φ∗ : G2T → G1T is an iso-
morphism of categories, with left and right adjoint given by ψ∗. Combining these constructions, for a
general homomorphism θ : G1 → G2 with kernel N ⊂ G1, image H ⊂ G2, isomorphism φ : G1/N ∼= H
and inverse isomorphism ψ : H ∼= G1/N , the functor θ∗ has left adjoint X 7→ G2+∧H ψ∗(X/N) and right
adjoint Z 7→ FH(G2+, ψ

∗(ZN )).
So far we have only discussed the H-orbits and H-fixed points of a G-space when H is normal in G.

The definition X/H = X/∼ with x ∼ hx for x ∈ X, h ∈ H works for all H ⊂ G, and likewise for
ZH = {z ∈ Z | hz = z for all h ∈ H}. The H-orbit functor and H-fixed point functors can be viewed as
the composites

GT
ι∗1−→ NGHT

(−)/H−→ WGHT
ι∗2−→ T

and

GT
ι∗1−→ NGHT

(−)H−→ WGHT
ι∗2−→ T

where NGH = {n ∈ G | nH = Hn} is the normalizer of H in G, so that H is normal in NGH, with
quotient the Weyl group WGH = NGH/H. The left hand functors are restriction along ι1 : NGH ⊂ G,
the right hand functors are restriction along ι2 : {e} ⊂WGH.

(Identify G+ ∧H Z with the H-orbit space of G+ ∧Z with the diagonal action, where h ∈ H acts on
G+ through right multiplication by h−1. Identify FH(G+, Z) with the space of left H-maps G+ → Z,
and with the H-fixed points of F (G+, Z) with the conjugation action.)
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8.2 G-homotopies

Given two G-spaces X and Y we give X ∧ Y the diagonal G-action, so that g(x ∧ y) = gx ∧ gy. We
give the space F (X,Y ) of maps f : X → Y the conjugate G-action, so that gf : X → Y is given by
(gf)(x) = g(f(g−1x)). This defines a closed symmetric monoidal structure on GT , so that there are
coherent G-equivariant homeomorphisms X∧(Y ∧Z) ∼= (X∧Y )∧Z, S0∧Y ∼= Y ∼= Y ∧S0, X∧Y ∼= Y ∧X
and

F (X ∧ Y,Z) ∼= F (X,F (Y,Z)) .

For any finite-dimensional orthogonal G-representation V and G-spaces X and Z we let

ΣVX = X ∧ SV and ΩV Z = F (SV , Z) .

There is a natural homeomorphism

F (ΣVX,Z) ∼= F (X,ΩV Z)

with adjunction unit and counit

η : X −→ ΩV ΣVX and ε : ΣV ΩV Z −→ Z .

Furthermore, GT is tensored over T , with natural homeomorphisms

T (T,GT (X,Z)) ∼= GT (X ∧ T,Z) ∼= GT (X,F (T,Z))

for all G-spaces X and Z and spaces T . Taking T = I+ with I = [0, 1] this lets us define G-homotopy
of G-maps. A G-map f : X → Y is a G-homotopy equivalence if there exists a G-map f ′ : Y → X and
G-homotopies f ′f ' 1X and ff ′ ' 1Y . This implies that fH : XH → Y H is a homotopy equivalence for
each H ⊂ G.

A G-map f : X → Y is a G-Hurewicz cofibration if for every commutative square

X //

f

��

F (I+, Z)

p0

��

Y //

::

Z

in GT there is a dashed arrow making both triangles commute. Equivalently,

i0 ∪ (f × 1) : Y ∪X X ∧ I+ → Y ∧ I+

admits a left inverse in GT . This implies that fH : XH → Y H is a Hurewicz cofibration for each H ⊂ G.
(Also G-HLP and G-Hurewicz fibration.)

Definition 8.2. Let X ∈ GT be a G-space. For each closed subgroup H ⊂ G and each integer k ≥ 0
we let

πHk (X) = πk(XH)

denote the set of homotopy classes of maps Sk → XH . This is a group for k = 1 and an abelian group
for k ≥ 2. Each G-map f : X → Y induces a function f∗ = πHk (f) : πHk (X) → πHk (Y ) for each H ⊂ G
and k ≥ 0, which is a group homomorphism for k ≥ 1. G-homotopic maps f and f ′ induce the same
functions f∗ = f ′∗.

We say that f : X → Y is a weak G-homotopy equivalence if for each H ⊂ G the restricted map
fH : XH → Y H is a weak homotopy equivalence. In this case, πHk (f) : πHk (X) → πHk (Y ) is a bijection
for each H ⊂ G and k ≥ 0, and an isomorphism for each k ≥ 1. A G-homotopy equivalence is a weak
G-homotopy equivalence.

For G-spaces X and Y note that F (X,Y )H is the space of H-maps f : X → Y . Let

πH(X → Y ) = πH0 F (X,Y ) = π0F (X,Y )H

be the set of H-homotopy classes of H-maps X → Y . Thus πHk (X) = πH(Sk → X) for each k ≥ 0,
where Sk has the trivial G-action.
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A G-CW complex is built by attaching G-n-cells of the form (G/H ×Dn)+ along their boundaries
(G/H × ∂Dn)+.

Definition 8.3. A G-CW complex (with base point) X is a G-space with a filtration

∗ = X(−1) ⊂ X(0) ⊂ · · · ⊂ X(n−1) ⊂ X(n) ⊂ · · · ⊂ X

by G-subspaces, such that there is a pushout square∨
α(G/Hα × ∂Dn)+

//

φ

��

∨
α(G/Hα ×Dn)+

Φ
��

X(n−1) // X(n)

for each integer n ≥ 0, and X = colimnX
(n). We call X(n) the G-n-skeleton of X. A G-map f : X → Y

of G-CW complexes is G-cellular if f(X(n)) ⊂ Y (n) for each n ≥ 0.

Proposition 8.4. If X is a G-CW complex and f : Y → Z a weak G-homotopy equivalence, then

f∗ : πG(X → Y ) −→ πG(X → Z)

is a bijection. Hence, if Y and Z are G-CW complexes then f is a G-homotopy equivalence.

(The following argument is imprecise in low degrees.)

Proof. Each inclusion (G/Hα × ∂Dn)+ → (G/Hα ×Dn)+ is a G-Hurewicz cofibration, hence so is each
pushout X(n−1) → X(n). The G-homotopy cofiber sequence

X(n−1) −→ X(n) −→
∨
α

(G/Hα)+ ∧Dn/∂Dn

and the map f induce a map of long exact sequences

πG(ΣX(n−1) → Y ) //

f∗

��

∏
α π

Hα
n (Y ) //

f∗

��

πG(X(n) → Y ) //

f∗

��

πG(X(n−1) → Y ) //

f∗

��

∏
α π

Hα
n−1(Y )

f∗

��

πG(ΣX(n−1) → Z) //
∏
α π

Hα
n (Z) // πG(X(n) → Z) // πG(X(n−1) → Z) //

∏
α π

Hα
n−1(Z)

so by the five-lemma and induction on n it follows that

f∗ : πG(X(n) → Y ) −→ πG(X(n) → Z)

is a bijection for each n ≥ 0. The claim for X then follows by passage to limits (using Milnor’s lim-lim1-
sequence). The final conclusion then follows by the Yoneda lemma.

Definition 8.5. For G-spaces X and Y let

[X,Y ]G = πG(ΓX → Y )

where ΓX → X is a weak G-homotopy equivalence from a G-CW complex.

8.3 Orthogonal G-spectra

Let G be a compact Lie group. Following Schwede we work with a model for G-equivariant spectra where
the objects are simply spectra with a G-action.
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Definition 8.6. An orthogonal G-spectrum is an orthogonal spectrum X with a continuous G-action

λ : G+ ∧X −→ X

through orthogonal spectrum maps, i.e., for each g ∈ G the composite

g· : X ∼= {g}+ ∧X
λ−→ X

is map of orthogonal spectra. (Being an action, λ satisfies associativity and unitality.) A G-map f : X →
Y of orthogonal G-spectra is a map f : X → Y of orthogonal spectra that commutes with the G-actions,
so that λ(1∧f) = fλ : G+∧X → Y . Let GSpO denote the topological category of orthogonal G-spectra
and G-maps.

In more detail, X is a sequence of based G× O(n)-spaces Xn for n ≥ 0 and a sequence of structure
G-maps σ : Xn ∧ S1 → Xn+1, where G acts trivially on S1, such that each `-fold composite

σ` : Xk ∧ S` −→ Xk+`

is O(k) × O(`)-equivariant. A G-map f : X → Y is a sequence of G × O(n)-maps fn : Xn → Yn that
commute with the structure G-maps.

From another point of view, λ is adjoint to a map

λ̃ : G −→ SpO(X,X) ⊂
∏
n

T (Xn, Xn)O(n)

of topological monoids, where the monoid structure in the target is given by composition of maps.

Definition 8.7. An orthogonal ring G-spectrum is an orthogonal ring spectrum R with a continuous
G-action

λ : G+ ∧R −→ R

through orthogonal ring spectrum maps, i.e., for each g ∈ G the composite

g· : R ∼= {g}+ ∧R
λ−→ R

is map of orthogonal ring spectra. (By assumption, g1(g2x) = (g1g2)x and ex = x for x ∈ Rn at each
level n ≥ 0.) A G-map f : Q → R of orthogonal ring G-spectra is a map f : Q → R of orthogonal ring
spectra that commutes with the G-actions, so that λ(1 ∧ f) = fλ : G+ ∧Q→ R.

In G-equivariant homotopy theory, we will wish to be able to embed G-spaces like G/H equiv-
ariantly in inner product spaces like Rn. We must then permit non-trivial G-actions on these vector
spaces, and therefore consider G-embeddings in orthogonal G-representations W , extending to based
maps (G/H)+ → SW . In the stable theory we wish to make the operation of smashing with SW

into an equivalence, which we can achieve by stabilizing with respect to structure G-maps of the form
σ : X(U)∧SW → X(V ), for G-representations U ⊂ V , where W = V −U is the orthogonal complement
of U in V . Here X(V ) will be equal to Xn in the case when V = Rn with the trivial G-action, but in
general the G-action on V should be reflected in the G-action on X(V ).

Definition 8.8. An inner product space is a finite-dimensional real vector space V equipped with an
Euclidean inner product 〈−,−〉 : V × V → R. Let I(V,W ) be the space of linear isometries φ : V →W .

An orthogonal G-representation is an action through linear isometries of G on an inner product
space V . Let G act by conjugation on I(V,W ), sending φ to gφ given by (gφ)(v) = g(φ(g−1(v))) for
v ∈ V .

Example 8.9. Let V = Rn with the usual dot product. The orthogonal group O(n) is equal to the
group of linear isometries Rn → Rn. An orthogonal G-representation on Rn is equivalent to a group
homomorphism ρ : G→ O(n), with g · v = ρ(g)(v) for each g ∈ G and v ∈ V = Rn.

Hereafter we simply refer to an orthogonal G-representation V as a G-representation. The following
important construction defines a prolongation of orthogonal G-sequences X : O → GT from the trivial
G-representations Rn to general G-representations V .
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Definition 8.10. Let Xn be a G×O(n)-space, and let V be an n-dimensional G-representation. Let

X(V ) = I(Rn, V )+ ∧
O(n)

Xn

be the balanced product, where O(n) acts on the right on I(Rn, V ) by (φ,A) 7→ φ ◦A: Rn → Rn → V .
Let G act diagonally on the balanced product, by g(φ ∧ x) = gφ ∧ gx. Here (gφ)(v) = g(φ(v)) for

v ∈ Rn, since G acts trivially on Rn.

Any choice of linear isometry φ : Rn → V determines a homeomorphism X(φ) : Xn
∼= X(Rn)→ X(V ),

sending x ∈ Xn to the class of φ∧x. The G-action on X(V ) depends on the G-actions on both Xn and V .
The following construction defines the prolongation of an orthogonal G-spectrum to a “coordinate free”
G-spectrum, indexed on general G-representations.

Definition 8.11. Let X be an orthogonal G-spectrum, and U ⊂ V be k- and (k + `)-dimensional G-
representations, and let W = V − U be the `-dimensional orthogonal complement of U in V . Choose
linear isometries φ : Rk → U and ψ : R` → W , with sum a linear isometry φ ⊕ ψ : Rk+` → U + W = V .
Let the generalized structure map

σ : X(U) ∧ SV−U −→ X(V )

for U ⊂ V be characterized by the commutative diagram

Xk ∧ S`
σ` //

X(φ)∧Sψ ∼=
��

Xk+`

X(φ⊕ψ)∼=
��

X(U) ∧ SV−U σ // X(V ) .

In other words, σ maps (φ ∧ x) ∧ ψ(s) for x ∈ Xk and s ∈ S` to φ⊕ ψ ∧ σ`(x ∧ s).

Lemma 8.12. σ is a well-defined G-map.

Proof. Any other choices of linear isometries φ′ : Rk → U and ψ′ : R` → W have the form φ′ = φA and
ψ′ = ψB for some A ∈ O(k) and B ∈ O(`). In view of the commutative diagram

Xk ∧ S`
σ` //

X(φ)∧Sψ

''

Xk+`

X(φ⊕ψ)

{{

X(U) ∧ SV−U σ // X(V )

Xk ∧ S`
σ` //

X(φ′)∧Sψ
′

77
A∧B

OO

Xk+`

X(φ′⊕ψ′)

cc
A⊕B

OO

where the outer rectangle commutes by the O(k)×O(`)-equivariance of σ`, the two maps X(U)∧SV−U →
X(V ) corresponding to σ` under X(φ)∧Sψ and X(φ⊕ψ), and to σ` under X(φ′)∧Sψ′ and X(φ′⊕ψ′),
are the same.

The groupG acts diagonally onX(U) and SV−U , with g ∈ Gmapping (φ∧x)∧ψ(s) to (gφ∧gx)∧gψ(s).
Here φ′ = gφ : Rk → U and ψ′ = gψ : R` → W are linear isometries, so σ takes (gφ ∧ gx) ∧ gψ(s) =
(φ′ ∧ gx) ∧ ψ′(s) to

(φ′ ⊕ ψ′) ∧ σ`(gx ∧ s) .

On the other hand, σ maps (φ ∧ x) ∧ ψ(s) to φ⊕ ψ ∧ σ`(x ∧ s), which g takes to

g(φ⊕ ψ) ∧ gσ`(x ∧ s) .

These expressions are equal, since φ′⊕ψ′ = g(φ⊕ψ) and σ` : Xk∧S` → Xk+` is assumed to be a G-map
with respect to the trivial G-action on S`, so that σ`(gx ∧ s) = gσ`(x ∧ s).
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We think of X(V ) as the G-space at level V of the orthogonal G-spectrum X.

Lemma 8.13. σ : X(V ) ∧ S0 → X(V ) for V = V is the canonical isomorphism, and the diagram

X(U) ∧ SV−U ∧ SW−V σ∧1 //

∼=
��

X(V ) ∧ SW−V

σ

��

X(U) ∧ SW−U σ // X(W )

commutes for U ⊂ V ⊂W .

The prolongation V 7→ X(V ) of an orthogonal spectrum n 7→ Xn can be viewed as a left Kan
extension, i.e., a left adjoint to a restriction functor.

Recall that O is the topological category with objects n ≥ 0 and morphisms O(n, n) = O(n) and
O(m,n) = ∅ for m 6= n. Let I be the topological category of (real, finite-dimensional) inner product
spaces (V, 〈−,−〉), usually denoted V , and isometric isomorphisms φ : V → W . The functor i : O → I
mapping n to (Rn, ·) and A ∈ O(n) to the linear isometry A : Rn → Rn is an equivalence of topological
categories.

To each continuous functor Y : I → T we can associate its restriction i∗Y : O → T . The resulting
functor i∗ : T I → T O has left and right adjoints, called the left and right Kan extensions.

O

i

��

X // T

I
i∗X

88

For an orthogonal sequence X : O → T the left Kan extension i∗X : I → T is given by the topological
colimit

(i∗X)(V ) = colim
n,φ : Rn→V

Xn
∼= I(Rn, V )+ ∧

O(n)
Xn

over the left fiber category i/V , with objects pairs (n, φ) with n an object in O and φ : i(n) = Rn → V a
morphism in I. There is a morphism A : (n, φA)→ (n, φ) for each A ∈ O(n).

The adjunction isomorphism
T I(i∗X,Y ) ∼= T O(X, i∗Y )

has unit η : X → i∗(i∗X), which at level n is the isomorphism Xn
∼= X(Rn), and counit ε : i∗(i

∗Y )→ Y ,
which at level V is the isomorphism I(Rn, V )+ ∧

O(n)
Y (Rn) ∼= Y (V ). Hence i∗ and i∗ are inverse equivalences

of topological categories T O ' T I.
The right Kan extension i? : T O → T I is given by the topological limit

(i?X)(V ) = lim
n,ψ : V→Rn

Xn
∼= F (I(V,Rn)+, Xn)O(n)

over the right fiber category V/i. This is the space of O(n)-maps I(V,Rn)+ → Xn, where O(n) acts
from the left on I(V,Rn) by composition. In this case the left and right Kan extensions are isomorphic,
i∗ ∼= i?, so i∗ is both a right and a left adjoint, and preserves all small limits and colimits.

To account for the diagonal G-action on X(V ), we use categories enriched in GT , i.e., topological
G-categories and continuous G-functors.

Let IG be the topological G-category of (orthogonal) G-representations V , and isometric isomorphisms
φ : V →W , not necessarily commuting with the G-actions. The morphism G-space IG(V,W ) = I(V,W )
has the G-action given by conjugation: (gφ)(v) = g(φ(g−1(v))). The forgetful functor IG → I is an
equivalence of topological categories. (The category GI of G-representations and G-linear isometric
isomorphisms arises as the G-fixed points (IG)G of this G-category, with morphism spaces GI(V,W ) =
I(V,W )G.)

Let TG be the topological G-category of (based) G-spaces X and (based) maps f : X → Y , not
necessarily commuting with the G-actions. The morphism G-space TG(X,Y ) = F (X,Y ) has the G-
action given by conjugation: (gf)(x) = g(f(g−1(x))). The forgetful functor TG → T is an equivalence
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of topological categories. (The category GT of G-spaces and G-maps arises as the G-fixed points (TG)G

of this G-category, with morphism spaces GT (X,Y ) = F (X,Y )G.)
An orthogonal sequence X : O→ T equipped with a G-action is equivalent to an orthogonal sequence

of G-spaces, i.e., a continuous functor X : O→ GT ⊂ TG. The functor i : O→ I factors through GI ⊂ IG.

O

i

��

X // TG

IG

i∗X

88

The left Kan extension of the continuous G-functor X : O→ TG along the continuous G-functor i : O→
IG is the continuous G-functor i∗X : IG → TG given at level V by the same topological colimit

(i∗X)(V ) = colim
n,φ : Rn→V

Xn
∼= I(Rn, V )+ ∧

O(n)
Xn

as before, but now with the diagonal G-action arising from the G-actions on i/V and on Xn. Simplifying
the notation from (i∗X)(V ) to X(V ) we recover the definition given above.

((Discuss how right S-module action prolongs to the generalized structure maps.))

8.4 Examples of orthogonal G-spectra

Example 8.14. The sphere orthogonal G-spectrum S is the sphere spectrum equipped with the trivial
G-actions. In other words, Sn = Sn for each integer n ≥ 0, with trivial G-action and the usual O(n)-
action, and σ : Sn ∧ S1 → Sn+1 is the identification Sn ∧ S1 ∼= Sn+1, which is clearly G-equivariant.

For each G-representation V there is a G-homeomorphism

S(V ) = I(Rn, V )+ ∧
O(n)

Sn
∼=−→ SV

that sends φ ∧ s to Sφ(s), for φ : Rn → V and s ∈ Sn. In particular, G does not act trivially on SV ,
unless it acts trivially on V . The generalized structure map σ : S(U) ∧ SV−U → S(V ) corresponds to
the G-homeomorphism

SU ∧ SV−U
∼=−→ SV

obtained by one-point compactification from the G-linear isomorphism U ⊕ (V − U) ∼= V .

Example 8.15. For a finite group G, a Z[G]-module M is an abelian group with an additive G-action.
For each n ≥ 0 the space HMn = B(M,Sn) of finite sums

u =
∑
i

mixi

with mi ∈M and xi ∈ Sn admits a natural G-action, with g ∈ G taking u to

gu =
∑
i

(gmi)xi .

It commutes with the O(n)-action arising from the standard action on Sn, and the structure maps
B(M,Sn) ∧ S1 → B(M,Sn+1) are G-linear. We call HM the Eilenberg–Mac Lane G-spectrum of M .
The prolonged functor has

HM(V ) = B(M,SV )

with g ∈ G taking u =
∑
imixi to gu =

∑
i(gmi)(gxi), where mi ∈ M and xi ∈ SV . The generalized

structure maps are of the form

σ : B(M,SU ) ∧ SV−U −→ B(M,SV )

taking (
∑
imixi) ∧ y to

∑
imi(xi ∧ y) for mi ∈M , xi ∈ SU and y ∈ SV−U .

70



The category GSpO of orthogonal G-spectra has all small colimits and limits, and is tensored and
cotensored over the category GT of G-spaces and G-maps. These colimits, limits, tensors and cotensors
are all created levelwise:

(colim
α

Xα)n = colim
α

(Xα)n

(lim
α
Xα)n = lim

α
(Xα)n

(X ∧ T )n = Xn ∧ T
F (T,X)n = F (T,Xn) .

The G-actions on colimα(Xα)n and limα(Xα)n are determined by the termwise coactions on
∨
α(Xα)n

and
∏
α(Xα)n. The G-action on Xn ∧ T is the diagonal action

g(x ∧ t) = gx ∧ gt

and the G-action on F (T,Xn) is the conjugation action

(gf)(t) = g(f(g−1(t)) ,

for g ∈ G, x ∈ Xn, t ∈ T and f : T → Xn.

Example 8.16. For any G-space T ∈ GT the suspension spectrum T ∧ S = Σ∞T is given by

(Σ∞T )n = T ∧ Sn

with G acting only on T and O(n) acting only on Sn. The structure maps are the identifications
T ∧ Sn ∧ S1 ∼= T ∧ Sn+1, which are clearly G-equivariant. The prolonged functor is given by

(Σ∞T )(V ) = T ∧ SV

with the diagonal G-action, and the generalized structure map for U ⊂ V is the G-homeomorphism

T ∧ SU ∧ SV−U ∼= T ∧ SV .

Given a group homomorphism θ : G1 → G2, any orthogonal G2-spectrum Y gives rise to an orthogonal
G1-spectrum X = θ∗Y , having the same underlying orthogonal spectrum, and the G1-action given by
composition with θ. We get a functor θ∗ : G2 SpO → G1 SpO.

Example 8.17. Any orthogonal spectrum X can be viewed as an orthogonal G-spectrum by giving each
space Xn the trivial G-action. When V = Rn with G-action given by a homomorphism ρ : G → O(n),
the G-action on X(V ) = Xn is the restriction of the O(n)-action on Xn along ρ.

The functor θ∗ admits left and right adjoints. As in the case of G-spaces, it is easiest to discuss the
cases π : G→ G/N and ι : H → G separately.

Definition 8.18. For N a normal subgroup of G, the functor

π∗ : (G/N) SpO −→ GSpO

has the left adjoint
(−)/N : GSpO −→ (G/N) SpO

mapping an orthogonal G-spectrum X to the N -orbit orthogonal G/N -spectrum X/N with n-th G/N -
space (X/N)n = Xn/N , and n-th structure G/N -map

Xn/N ∧ S1 ∼= (Xn ∧ S1)/N
σ/N−→ Xn+1/N .

The unit η : X → π∗(X/N) is the canonical surjection Xn → Xn/N at each level, and the counit
ε : (π∗Y )/N → Y is an isomorphism.
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Definition 8.19. The functor π∗ also has the right adjoint

(−)N : GSpO −→ (G/N) SpO

mapping an orthogonal G-spectrum Z to the N -fixed orthogonal G/N -spectrum ZN with n-th G/N -
space (ZN )n = (Zn)N , and n-th structure G/N -map

ZNn ∧ S1 ∼= (Zn ∧ S1)N
σN−→ ZNn+1 .

The unit η : Y → (π∗Y )N is an isomorphism, and the counit ε : π∗(ZN ) → Z is the canonical inclusion
ZNn → Zn at each level.

Definition 8.20. For H and subgroup of G, the functor

ι∗ : GSpO −→ H SpO

has the left adjoint
GnH (−) : H SpO −→ GSpO

mapping an orthogonal H-spectrum X to the induced orthogonal G-spectrum GnHX with n-th G-space
(GnH X)n = G+ ∧H Xn, and n-th structure G-map

(G+ ∧H Xn) ∧ S1 ∼= G+ ∧H (Xn ∧ S1)
1∧σ−→ G+ ∧H Xn+1 .

The unit η : X → ι∗(G nH X) is the inclusion Xn
∼= H+ ∧H Xn ⊂ G+ ∧H Xn at each level, and the

counit GnH (ι∗Y )→ Y is given by the G-action G+ ∧H Yn → Yn at each level.

Definition 8.21. The functor ι∗ also has the right adjoint

FH [G,−) : H SpO −→ GSpO

mapping an orthogonal H-spectrum Z to the coinduced orthogonal G-spectrum FH [G,Z) with n-th
G-space FH(G,Z)n = FH(G+, Zn), and n-th structure G-map

FH(G+, Zn) ∧ S1 −→ FH(G+, Zn ∧ S1)
F (1,σ)−→ FH(G+, Zn+1) .

The unit η : Y → FH [G, ι∗Y ) is given by the adjoint G-action Yn → FH(G+, Yn) at each level, and the
counit ε : ι∗FH [G,Z)→ Z is the projection FH(G+, Zn)→ FH(H+, Zn) ∼= Zn at each level.

Remark 8.22. Following Lewis-May-Steinberger, we write G nH X in place of G+ ∧H X, in part to
remember that the generalized structure maps σ : (G nH X)(U) ∧ SV−U → (G nH X)(V ) involves an
untwisting isomorphism and is more complicated than the notation G+ ∧H X might suggest. Sim-
ilarly we write FH [G,Z) in place of FH(G+, Z) to emphasize that the adjoint generalized structure
map σ̃ : FH [G,Z)(U) → ΩV−UFH [G,Z)(V ) also involves an untwisting isomorphism that might not be
expected from the notation FH(G+, Z).

Remark 8.23. For each orthogonal G-spectrum X and subgroup H ⊂ G the H-fixed orthogonal
spectrum XH is defined by the same formulas as in the case when H = N is normal in G, with
(XH)n = (Xn)H . The functor (−)H can be viewed as the composite

GSpO ι∗−→ (NGH) SpO (−)H−→ (WGH) SpO ι∗−→ SpO

as in the case of G-spaces. Similar remarks apply to X/H.

Remark 8.24. The H-orbit and H-fixed functors will not preserve π∗-isomorphisms when applied to
general orthogonal G-spectra, hence are only homotopically meaningful in restricted settings. On the
other hand, induction and coinduction along H ⊂ G will have good homotopical properties, since G
admits the structure of a finite H-CW complex.
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8.5 Closed symmetric monoidal structure

The smash product X∧Y of an orthogonal G1-spectrum X and an orthogonal G2-spectrum Y is naturally
an orthogonal (G1 ×G2)-spectrum, with (g1, g2) acting as the smash product

g1 ∧ g2 : X ∧ Y −→ X ∧ Y

of g1 : X → X and g2 : Y → Y . When G1 = G2 = G, we can restrict the (G×G)-action over the diagonal
∆: G → G × G, to view the smash product X ∧ Y of two G-spectra X and Y as a G-spectrum. Here
g ∈ G acts as the smash product

g ∧ g : X ∧ Y −→ X ∧ Y .

The function spectrum F (X,Y ) from an orthogonal G1-spectrum X to an orthogonal G2-spectrum
Y is naturally an orthogonal (Gop1 ×G2)-spectrum, where Gop1 denotes the opposite group of G1, i.e., the
group with the same underlying set as G1, in which the product gg′ of two elements g, g′ ∈ G1 is defined
to be the product g′g as formed in G1. An element (g1, g2) ∈ Gop1 ×G2 acts on F (X,Y ) by

F (g1, g2) : F (X,Y ) −→ F (X,Y ) .

When G1 = G2 = G we can restrict the (Gop × G)-action over the anti-diagonal ∆̃ = (χ × 1)∆: G →
Gop ×G, given by ∆̃(g) = (g−1, g), to view the function spectrum F (X,Y ) of two orthogonal G-spectra
X and Y as a G-spectrum. Here g ∈ G acts on F (X,Y ) by

F (g−1, g) : F (X,Y ) −→ F (X,Y ) .

We get a closed symmetric monoidal structure on each category GSpO.

Example 8.25. An orthogonal ring G-spectrum R is a monoid in the category GSpO, with unit G-map
η : S → R and multiplication G-map µ : R∧R→ R, satisfying unitality and associativity. An orthogonal
commutative ring G-spectrum is a commutative monoid in the same category.

Example 8.26. For Z[G]-modules M and N , the tensor product M ⊗ N has a diagonal Z[G]-module
structure with g(m⊗ n) = gm⊗ gn, and the natural map

HM ∧HN −→ H(M ⊗N)

is a G-map of orthogonal G-spectra. Similarly, Hom(M,N) has a conjugation Z[G]-module structure,
and the natural map

H(Hom(M,N)) −→ F (HM,HN)

is a G-map of orthogonal G-spectra.

Example 8.27. For any orthogonal G-spectrum X, the n-fold smash power

X∧n = X ∧ · · · ∧X

is an orthogonal Σn oG-spectrum, where the wreath product

Σn oG = Σn nGn

is the semidirect product for the permutation action of the symmetric group Σn on the n-th power
Gn = G × · · · × G. Here (g1, . . . , gn) ∈ Gn acts on X∧n with gi acting on the i-th smash factor, and
the transposition (i, i+ 1) ∈ Σn acts on X∧n by the twist map X∧(i−1) ∧ γ ∧X∧(n−i−1), for 1 ≤ i < n.
These transpositions generate Σn, subject to the Coxeter group relations (i, i+ 1)2 = e and

(i− 1, i)(i, i+ 1)(i− 1, i) = (i, i+ 1)(i− 1, i)(i, i+ 1) ,

together with the condition that (i, i+ 1) and (j, j+ 1) commute for |i− j| ≥ 2. The analogous relations
γ2 = 1: X ∧X → X ∧X and

(γ ∧ 1)(1 ∧ γ)(γ ∧ 1) = (1 ∧ γ)(γ ∧ 1)(1 ∧ γ) : X∧3 → X∧3
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are satisfied in any symmetric monoidal category (when we suppress the associativity isomorphisms α).
In particular, for any orthogonal spectrum X, the smash power X∧n is naturally an orthogonal

Σn-spectrum. By restriction to cyclic permutations, X∧n is also naturally an orthogonal Cn-spectrum.
When R is an orthogonal commutative ring G-spectrum the n-fold multiplication µ(n) : R∧n → R factors
through the Σn-orbit spectrum to give a G-map R∧n/Σn → R for each n ≥ 0. This orbit construction
is not generally homotopically meaningful, but the corresponding “extended power” construction

Dn(R) = EΣn+ ∧Σn R
∧n

and the resulting maps

R∧n //

µ(n)

''

EΣn+ ∧Σn R
∧n //

��

R∧n/Σn

ww
R

play an important role in multiplicative stable homotopy theory.

(Multiplicative norms.)
(Topological Hochschild homology.)

9 Stable equivariant homotopy theory

9.1 Homotopy groups

The homotopy groups of an orthogonal G-spectrum are defined as filtered colimits over suitable G-
representations. To specify the (small) category over which this colimit is formed, we can use the notion
of a G-universe (Lewis-May-Steinberger, p. 11).

Definition 9.1. Given a collection of irreducible (real, finite-dimensional, orthogonal) G-representations,
including the trivial representation R, the associatedG-universe U is the direct sum of a countably infinite
number of copies of each of these irreducible G-representations. It is itself a real inner product space of
countably infinite dimension, G acts on U by isometries, and the fixed subspace U G is identified with
a countably infinite direct sum of copies of R.

If U ∼= R∞ only contains the trivial G-representation, we call it the trivial G-universe. If U contains
every irreducible G-representation, we call it a complete G-universe.

Example 9.2. If G is a finite group, the complex regular representation C[G] contains one or more
copies of each irreducible G-representation, and C[G] ∼= R[G]⊕ R[G]. Hence the direct sum

U =

∞⊕
i=1

R[G]

is a complete G-universe, with U G ∼=
⊕∞

i=1 R = R∞. In this case the n-fold direct sums

nρG =

n⊕
i=1

R[G]

of the real regular representation ρG = R[G] form a cofinal sequence

0 ⊂ ρG ⊂ 2ρG ⊂ · · · ⊂ nρG ⊂ . . .

of finite-dimensional subrepresentations of U =∞ρG. In other words, for any finite-dimensional repre-
sentation V ⊂ U there exists an n such that V ⊂ nρG.

Example 9.3. If G is a positive-dimensional compact Lie group, it has a countable number of isomor-
phism classes of irreducible representations. For instance, the irreducible complex representations of the
circle group T = U(1) are the integral tensor powers C(n) = C(1)⊗n of the standard representation.
Here z ∈ T acts on C(n) by multiplication by zn. Viewed as real representations these are irreducible for
n 6= 0, while C(0) = R⊕ R is the sum of two copies of the trivial real representation.
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Let X ∈ GSpO be an orthogonal G-spectrum, with generalized structure maps σ : X(U) ∧ SV−U →
X(V ). The following definition depends on an chosen G-universe U , or more specifically on the collection
of irreducible G-representations contained in U .

Definition 9.4. For each closed subgroup H ⊂ G and each non-negative integer k ≥ 0 we let

πHk (X) = colim
V⊂U

πHk (ΩVX(V )) .

Here V ranges over the partially ordered set of G-representations V ⊂ U ,

πHk (ΩVX(V )) = πH(Sk ∧ SV → X(V ))

is the set of homotopy classes of H-maps Sk ∧SV → X(V ), and the colimit is formed over the functions
πHk (ΩUX(U)) −→ πHk (ΩVX(V )) for U ⊂ V ⊂ U , induced on πHk by the G-map ΩUX(U) → ΩVX(V )
that takes f : SU → X(U) to the composite

SV ∼= SU ∧ SV−U f∧1−→ X(U) ∧ SV−U σ−→ X(V ) .

For negative k = −` < 0, we let

πHk (X) = colim
R`⊂V⊂U

πH0 (ΩV−R`X(V )) .

Here V ranges over the partially ordered set of G-representations V ⊂ U that contain the standard copy
of R` ⊂ U ,

πH0 (ΩV−R`X(V )) = πH(SV−R` → X(V ))

is the set of homotopy classes of H-maps SV−R` → X(V ), where V −R` denotes the orthogonal comple-

ment of R` in V , and the colimit is formed over the functions πH0 (ΩU−R`X(U)) −→ πH0 (ΩV−R`X(V )) for

R` ⊂ U ⊂ V ⊂ U , induced on πH0 by the G-map ΩU−R`X(U) → ΩV−R`X(V ) that takes f : SU−R` →
X(U) to the composite

SV−R` ∼= SU−R` ∧ SV−U f∧1−→ X(U) ∧ SV−U σ−→ X(V ) .

Remark 9.5. For k ≥ 0 there are evident isomorphisms πHk (ΩX) ∼= πHk+1(X). For k = −` < 0 and

R`−1 ⊂ R` ⊂ V we can identify (V − R`)⊕ R with V − R`−1, and make compatible identifications

ΩV−R`ΩX(V ) ∼= ΩV−R`−1

X(V )

that induce isomorphisms πHk (ΩX) ∼= πHk+1(X), also in these cases. (Can we make preferred identifica-
tions? Do they matter for product pairings?)

Example 9.6. When G is finite and U = ∞ρG, these colimits can be calculated using the cofinal
sequence of G-representations nρG:

πHk (X) = colim
n

πHk (ΩnρGX(nρG))

for k ≥ 0 and
πHk (X) = colim

n
πH0 (ΩnρG−R`X(nρG))

for k = −` < 0. Here R` ∼= (`ρG)G ⊂ nρG for each n ≥ `.

Whenever V is sufficiently large the sets πHk ΩVX(V ) and πH0 (ΩV−R`X(V )) are naturally abelian
groups, so in each case the colimit πHk (X) is also naturally an abelian group. We write πH∗ (X) for the
resulting graded abelian group, and obtain a functor

πH∗ : GSpO −→ grAb

for each H ⊂ G, taking a G-map f : X → Y to the homomorphisms f∗ = πH∗ (f) : πH∗ (X)→ πH∗ (Y ).

Definition 9.7. The collection of abelian groups πk(X) = {H 7→ πHk (X)} is part of a structure called
a Mackey functor. (The additional structure is given by restriction maps πLk (X)→ πHk (X) and transfer
maps πHk (X) → πLk (X) for G-maps G/H → G/L, which we do not specify here.) We write π∗(X) =
{H 7→ πH∗ (X)} for the resulting graded Mackey functor.
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9.2 Level equivalences and π∗-isomorphisms

The following definitions depend on an chosen G-universe U . Compare Mandell-May, §III.3.

Definition 9.8. A G-map f : X → Y of orthogonal G-spectra is a level G-equivalence (= level equiva-
lence in Mandell-May) if f(V ) : X(V )→ Y (V ) is a weakG-homotopy equivalence, for eachG-representation
V ⊂ U .

A G-map f : X → Y is a π∗-isomorphism (= π∗-isomorphism in Mandell-May) if πHk (X) → πHk (Y )
is an isomorphism for each subgroup H ⊂ G and each integer k.

Lemma 9.9. Each level G-equivalence f : X → Y is a π∗-isomorphism.

Proof. By assumption, each G-map X(V ) → Y (V ) is a weak G-homotopy equivalence. Since SV and

SV−R` are finite G-CW spaces it follows that ΩVX(V ) → ΩV Y (V ) and ΩV−R`X(V ) → ΩV−R`Y (V )

are weak G-homotopy equivalences. Hence πHk (ΩVX(V )) → πHk (ΩV Y (V )) and πH0 (ΩV−R`X(V )) →
πH0 (ΩV−R`Y (V )) are isomorphisms for all H ⊂ G, k ≥ 0 and ` > 0. Passing to colimits, πHk (X)→ πHk (Y )
is an isomorphism for each H ⊂ G and each integer k.

The following definition also depends on the choice of G-universe U .

Definition 9.10. An orthogonal G-spectrum X is a G-Ω-spectrum if for each pair of G-representations
U ⊂ V ⊂ U the adjoint generalized structure G-map

σ̃ : X(U) −→ ΩV−UX(V )

is a weak G-homotopy equivalence.

Definition 9.11. The G-equivariant stable homotopy category (associated to the G-universe U ) is the
localization of the category GSpO of orthogonal G-spectra obtained by inverting the subcategory W of
π∗-isomorphisms:

Ho(GSpO) = GSpO[W −1]

It is equivalent to the localization of the full subcategory of Ω-G-spectra where the level G-equivalences
have been inverted, because every orthogonal G-spectrum is π∗-isomorphic to an Ω-G-spectrum.

Remark 9.12. The converse to Lemma 9.9 for maps betweenG-Ω-spectra will be proved as Theorem 9.29
below. The non-equivariant case was trivial, but the equivariant case requires some work.

Proposition 9.13 (Mandell-May, III.3.8). Let X be any orthogonal G-spectrum, and W any G-repre-
sentation. The adjunction unit η : X → ΩWΣWX is a π∗-isomorphism.

Proof. Write U as an orthogonal sum U ′ ⊕∞W , such that each irreducible G-representation in U can
either be embedded in U ′ or in W , but not both.

For k ≥ 0
πHk (X) = colim

V ′⊂U ′,n
πHk (ΩV

′⊕nWX(V ′ ⊕ nW ))

maps by η∗ to
πHk (ΩWΣWX) = colim

V ′⊂U ′,n
πHk (ΩV

′⊕nWΩWΣWX(V ′ ⊕ nW )) .

The generalized structure G-maps

σ : ΣWX(V ′ ⊕ nW ) −→ X(V ′ ⊕ (n+ 1)W )

induce a map from the second colimit to the first. These are inverse isomorphisms (check!).
For k = −` < 0

πHk (X) = colim
V ′⊂U ′,n

πH0 (ΩV
′⊕nW−R`X(V ′ ⊕ nW ))

where V ′ and n are such that R` ⊂ V ′ or R` ⊂ nW , and maps by η∗ to

πHk (ΩWΣWX) = colim
V ′⊂U ′,n

πH0 (ΩV
′⊕nW−R`ΩWΣWX(V ′ ⊕ nW )) .

The generalized structure G-maps σ again induce a map from the second colimit to the first, and these
are inverse isomorphisms (check!).
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Corollary 9.14. Let X be any orthogonal G-spectrum.

S1 ∧ − : πHk (X) −→ πH1+k(S1 ∧X)

is an isomorphism for each H ⊂ G and each k ∈ Z.

((The case of ε : ΣWΩWX → X seems to require more effort, either by model category theory, or by
using RO(G)-graded homotopy groups. Or does the following direct argument work?))

Proposition 9.15. Let X be any G-spectrum and W any G-representation. The adjunction counit
ε : ΣWΩWX → X is a π∗-isomorphism.

Proof. For k ≥ 0,
πHk (ΣWΩWX) = colim

V
πHk (ΩV ΣWΩWX(V ))

maps by ε∗ to
πHk (X) = colim

V
πHk (ΩVX(V )) ∼= colim

W⊂V
πHk (ΩV−WΩWX(V )) .

The adjunction unit η : 1→ ΩWΣW induces a homomorphism η# from the second colimit to

colim
W⊂V

πHk (ΩV−WΩWΣWΩWX(V )) ∼= πHk (ΣWΩWX) .

This makes sense because of the following commutative diagram, for W ⊂ U ⊂ V .

ΩUX(U)
ΩU−W η

//

ΩU σ̃

��

ΩUΣWΩWX(U)
ΩU ε //

ΩU σ̃

��

ΩUX(U)

ΩU σ̃

��

ΩVX(V )
ΩV−W η

// ΩV ΣWΩWX(V )
ΩV ε // ΩVX(V )

Here σ̃ : X(U) → ΩV−UX(V ) and σ̃ : ΣWΩWX(U) → ΩV−UΣWΩWX(V ) are the generalized adjoint
structure maps of X and ΣWΩWX, respectively.

The composite ΩU ε ◦ ΩU−W η is the identity of ΩUX(U), for each W ⊂ U , so ε∗ ◦ η# is the identity.

Let shWX denote the W -shift of X, i.e., the orthogonal G-spectrum with (shWX)(V ) = X(W ⊕ V ).
Hence (shWX)(U −W ) = X(U) for W ⊂ U . The horizontal maps above correspond to G-maps

ΩW shWX
η−→ ΩWΣWΩW shWX

ΩW ε−→ ΩW shWX .

The homomorphism η# for X is the homomorphism η∗ for ΩW shWX, hence is an isomorphism by
Proposition 9.13. Thus ε∗ for X is also an isomorphism.

((Handle k = −` < 0.))

9.3 Puppe sequences and gluing lemmas

The homotopy cofiber Cf and homotopy fiber Ff of a G-map f : X → Y of orthogonal G-spectra are
again orthogonal G-spectra. Compare Mandell-May, Theorem III.3.5.

Proposition 9.16. For any G-map f : X → Y there are natural long exact sequences

· · · → πH1+k(Y )
ι∗−→ πHk (Ff)

p∗−→ πHk (X)
f∗−→ πk(Y )→ πH−1+k(Ff)→ . . .

and

· · · → πH1+k(Cf) −→ πHk (X)
f∗−→ πHk (Y )

i∗−→ πHk (Cf)
π∗−→ π−1+k(X)→ . . .

for all subgroups H ⊂ G. The natural map η : Ff → ΩCf is a π∗-isomorphism.

Proof. (Same as in the non-equivariant case.)
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Lemma 9.17. For any finite collection (Xα)α of orthogonal G-spectra the canonical homomorphisms⊕
α

πHk (Xα)
∼=−→ πHk (

∨
α

Xα)

and
πHk (

∏
α

Xα)
∼=−→
∏
α

πHk (Xα)

are isomorphisms, for all H ⊂ G and k ∈ Z. Hence
∨
αXα →

∏
αXα is a π∗-isomorphism.

Proof. (Same as in the non-equivariant case.)

Lemma 9.18. For any collection (Xα)α of orthogonal G-spectra the canonical homomorphism⊕
α

πHk (Xα)
∼=−→ πHk (

∨
α

Xα)

are isomorphism, for all H ⊂ G and k ∈ Z.

Proof. (Same as in the non-equivariant case.)

Proposition 9.19 (Cobase change). Consider a pushout square

X

f

��

g
// Z

f̄

��

Y
ḡ
// Y ∪X Z

of orthogonal G-spectra, where f : X → Y is a G-Hurewicz cofibration. If f (resp. g) is a π∗-isomorphism
then f̄ (resp. ḡ) is a π∗-isomorphism.

Proof. (Same as in the non-equivariant case.)

Proposition 9.20 (Gluing lemma). Consider a commutative diagram

Y

��

X
f

oo //

��

Z

��

Y ′ X ′
f ′
oo // Z ′

of orthogonal G-spectra, where f and f ′ are G-Hurewicz cofibrations. If X → X ′, Y → Y ′ and Z → Z ′

are π∗-isomorphisms, then so is the induced map Y ∪X Z → Y ′ ∪X′ Z ′.

Proof. (Same as in the non-equivariant case.)

Proposition 9.21. If Y is the colimit of a sequence

X0 → X1 → · · · → Xα → Xα+1 → . . .

of G-Hurewicz cofibrations, then

colim
α

πHk (Xα)
∼=−→ πHk (Y )

is an isomorphism, for each H ⊂ G and k ∈ Z.

Proof. (Same as in the non-equivariant case.)

((Discuss pairings πHk (X)⊗ πH` (Y )→ πHk+`(X ∧ Y ), especially when k and ` have opposite signs.))
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9.4 Untwisting isomorphisms

Lewis-May-Steinberger, §II.4, show how the induction and coinduction functors interact with the closed
symmetric monoidal structures, first at the space level and then at the spectrum level.

Let ι : H ⊂ G, let X and Z be H-spaces and let Y be a G-space.

Lemma 9.22. (i) The left adjoint

ζ : G+ ∧H (X ∧ ι∗Y )
∼=−→ (G+ ∧H X) ∧ Y

γ ∧ (x ∧ y) 7−→ (γ ∧ x) ∧ γy

to the H-map η ∧ Y : X ∧ Y → (G+ ∧H X) ∧ Y is a G-homeomorphism, with inverse

ζ−1 : (γ ∧ x) ∧ y 7−→ γ ∧ (x ∧ γ−1y) .

(ii) The right adjoint

φ : F (Y, FH(G+, Z))
∼=−→ FH(G+, F (ι∗Y, Z))

f 7−→ (γ 7→ (y 7→ f(γ−1y)(γ)))

to the H-map F (Y, ε) : F (Y, FH(G+, Z))→ F (Y,Z) is a G-homeomorphism, with inverse

φ−1 : f ′ 7−→ (y 7→ (γ 7→ f ′(γ)(γy))) .

Equivalently,
φ(f)(γ)(y) = f(γ−1y)(γ) and φ−1(f ′)(y)(γ) = f ′(γ)(γy) .

(iii) The right adjoint

κ : F (G+ ∧H X,Y )
∼=−→ FH(G+, F (X, ι∗Y ))

f 7−→ (γ 7→ (x 7→ γ · f(γ−1 ∧ x)))

to the H-map F (η, Y ) : F (G+ ∧H X,Y )→ F (X,Y ) is a G-homeomorphism, with inverse

κ−1 : f ′ 7−→ (γ ∧ x 7→ γ · f ′(γ−1)(x)) .

Equivalently,

κ(f)(γ)(x) = γ · f(γ−1 ∧ x) and κ−1(f ′)(γ ∧ x) = γ · f ′(γ−1)(x) .

Example 9.23. For G-spaces Y , there are natural G-homeomorphisms

ζ : G+ ∧H (ι∗Y ) ∼= (G/H)+ ∧ Y

and
κ : F (G/H+, Y ) ∼= FH(G+, ι

∗Y ) .

Example 9.24. For orthogonal H-spectra X and Z, the induced orthogonal G-spectrum GnH X has
generalized structure G-maps

σ : (G+ ∧H X(U)) ∧ SW ζ−1

−→ G+ ∧H (X(U) ∧ ι∗SW )
1∧σ−→ G+ ∧H X(V ) ,

and the coinduced orthogonal G-spectrum FH [G,Z) has adjoint generalized structure G-maps

σ̃ : FH(G+, Z(U))
F (1,σ̃)−→ FH(G+, F (ι∗SW , Z(V ))

φ−1

−→ F (SW , FH(G+, Z(V ))) ,

for G-representations U ⊂ V with W = V − U .
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Proposition 9.25. Let ι : H ⊂ G, let X and Z be orthogonal H-spectra and let Y be an orthogonal
G-spectrum. (i) The left adjoint

ζ : GnH (X ∧ ι∗Y )
∼=−→ (GnH X) ∧ Y

to the H-map η ∧ 1: X ∧ Y → (GnH X) ∧ Y is a G-isomorphism. In particular,

ζ : GnH ι∗Y
∼=−→ (G/H)+ ∧ Y .

(ii) The right adjoint

φ : F (Y, FH [G,Z))
∼=−→ FH [G,F (ι∗Y,Z))

to the H-map F (1, ε) : F (Y, FH [G,Z))→ F (Y,Z) is a G-isomorphism.
(iii) The right adjoint

κ : F (GnH X,Y )
∼=−→ FH [G,F (X, ι∗Y ))

to the H-map F (η, 1) : F (GnH X,Y )→ F (X,Y ) is a G-isomorphism. In particular,

κ : F (G/H+, Y ) ∼= FH [G, ι∗Y ) .

Proposition 9.26. If f : X → Y is a π∗-isomorphism of orthogonal G-spectra, and B is a finite G-CW
complex, then

F (1, f) : F (B,X) −→ F (B, Y )

is a π∗-isomorphism.

Proof. There is a natural isomorphism

πHk (F (B,X)) ∼= πGk (F (G+ ∧H B,X))

and G+ ∧H B ∼= (G/H)+ ∧ B is a finite G-CW complex, so it suffices to prove that F (1, f) induces
an isomorphism on πGk for each k ∈ Z. By induction over the G-cells of B, it suffices to prove this for
B = (G/K)+ ∧ Sn, for each K ⊂ G and n ≥ 0. The natural isomorphisms

πGk (F ((G/K)+ ∧ Sn, X)) ∼= πKk (ΩnX) ∼= πKk+n(X)

then reduce this to the assumption that f induces an isomorphism on πKk+n.

Corollary 9.27. If ΣW f : ΣWX → ΣWY is a π∗-isomorphism, then f : X → Y is a π∗-isomorphism.

Proof. By the case B = SW of the proposition, ΩWΣW f is a π∗-isomorphism. This uses that SW admits
the structure of a finite G-CW complex. By naturality of the π∗-isomorphism η, it follows that f is a
π∗-isomorphism.

X
η
//

f

��

ΩWΣWX

ΩWΣW f

��

Y
η
// ΩWΣWY

Remark 9.28. The generalized converse assertion, that π∗-isomorphisms are preserved by A ∧ − for
G-CW complexes A, is harder to prove. This can be obtained model-categorically, as in Mandell-May.
For finite or abelian groups G it can be deduced from the Wirthmüller equivalence, as in Schwede’s notes.
See Proposition 10.27.

Here is the promised partial converse to Lemma 9.9. See Lewis-May-Steinberger (I.7.12) or Mandell-
May (III.3.4 and §III.9), who refer to Henning Hauschild (a student of Tammo tom Dieck) for the idea
of the argument.

Theorem 9.29. Each π∗-isomorphism f : X → Y between G-Ω-spectra X and Y is a level G-equiva-
lence.
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Proof. Let Ff be the homotopy fiber of f : X → Y , which is an Ω-G-spectrum if X and Y have this
property. In view of the homotopy fiber sequence

Ff(V )→ X(V )
f(V )−→ Y (V )→ Ff(V ⊕ R)

and the long exact sequences

· · · → πH1+k(X)
f∗−→ πH1+k(Y )→ πHk (Ff)→ πHk (X)

f∗−→ πHk (Y )→ . . .

it suffices to prove the following lemma (with Ff renamed as X).

Lemma 9.30. If X is an Ω-G-spectrum such that πHk (X) = 0 for all H ⊂ G and k ∈ Z, then
πHi (X(V )) = 0 for all H ⊂ G, V ⊂ U and i ≥ 0.

Proof. For each H ⊂ G the case of πH∗ with V = V H follows from the case V = Rn, with n ≥ 0. Here

πHi (Xn) = πHi−n(ΩnXn) ∼= πHi−n(X) = 0

for each i ≥ n. Furthermore,

πHi (Xn) = πH0 (ΩiXn) = πH0 (ΩRn−Rn−iXn) ∼= πH−(n−i)(X) = 0

for each 0 ≤ i < n.
The compact Lie group G does not contain any infinite descending chain of (closed) subgroups, so

by induction we may assume for a given H ⊂ G that πK∗ (X(V )) = 0 for all proper subgroups K of H
and all finite G-representations V ⊂ U . We must prove that πH∗ (X(V )) for all these V . The inductive
beginning, for H = {e}, was established in the previous paragraph.

Let W = V − V G and Z = W −WH , so that we have direct sum decompositions

V = V G ⊕W and W = Z ⊕WH

of G and H ⊂ NGH-representations, respectively. Let d = dim(WH).
Claim: πHi (X(V )) = 0 for i > d.
Let S(Z) ⊂ D(Z) be the unit sphere and unit disc of the H-representation Z. We have an H-

homotopy cofiber sequence

S(Z)+ −→ D(Z)+ −→ D(Z)/S(Z) ∼= SZ

that induces a homotopy fiber sequence

F (SZ ,ΩW
H

X(V ))H −→ F (D(Z)+,Ω
WH

X(V ))H −→ F (S(Z)+,Ω
WH

X(V ))H .

Here
F (SZ ,ΩW

H

X(V ))H ∼= (ΩWX(V ))H

since Z ⊕WH = W , and

F (D(Z)+,Ω
WH

X(V ))H ' ΩW
H

X(V )H

since D(Z) is H-equivariantly contractible. By the assumption that X is an Ω-G-spectrum, for the case
of V G ⊂ V with orthogonal complement W , the map

(σ̃)H : X(V G)H
'−→ (ΩWX(V ))H

is a weak equivalence. Hence we have a homotopy fiber sequence

X(V G)H −→ ΩW
H

X(V )H −→ F (S(Z)+,Ω
WH

X(V ))H .

We have shown that π∗(X(V G)H) = πH∗ (X(V G)) = 0, since V G is a trivial H-representation. Likewise,
WH ∼= Rd is a trivial H-representation, so to show the claim that

πHi (X(V )) = πi−d(Ω
WH

X(V )H) = 0
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for i > d it suffices to show that

πHj (F (S(Z)+,Ω
WH

X(V ))) = 0

for j > 0. We may triangulate S(Z) as a finite H-CW complex, with cells of the type H/K × Dn for
K ⊂ H. By definition ZH = {0}, so S(Z)H = ∅, hence only cells with K a proper subgroup of H will
occur in this cell structure. By the inductive hypothesis on H,

πHj (F ((H/K)+ ∧ Sn,ΩW
H

X(V ))) ∼= πKj (ΩnΩW
H

X(V )) ∼= πKj+n+d(X(V )) = 0

for all j ≥ 0 and n ≥ 0, so by induction over the H-cells of S(V ) we deduce that

πHj (F (S(Z)+,Ω
WH

X(V ))) = 0

for j > 0, as required to finish the proof of the claim.
It remains to prove that πHi (X(V )) = 0 for 0 ≤ i ≤ d. Choose a trivial G-representation U ∼= Rd+1

that is orthogonal to V , and apply the argument above to U⊕V in place of V . Then (U⊕V )G = U⊕V G,
so W = (U⊕V )−(U⊕V )G and Z = W−WH are unchanged. In particular, d = dim(WH) is unchanged,
so πHj (X(U ⊕ V )) = 0 for j > d. In view of the isomorphism

σ̃∗ : πHi (X(V ))
∼=−→ πHi (ΩUX(U ⊕ V )) = πHi+d+1(X(U ⊕ V ))

we conclude that πHi (X(V )) = 0 for all i ≥ 0.

10 The Wirthmüller equivalence

Let G be a compact Lie group, H ⊂ G a closed subgroup, and L = TeH(G/H) the tangent space H-
representation. Suppose that U is a G-universe such that G/H embeds in U . The following theorem
was proved by Wirthmüller for suspension spectra of H-spaces, and extended to general H-spaces by
Lewis-May-Steinberger.

Theorem 10.1. Let X be an orthogonal H-spectrum. There is a natural π∗-isomorphism

GnH X
'−→ FH [G,ΣLX)

of orthogonal G-spectra.

Example 10.2. For each orthogonal spectrum X there is a natural π∗-isomorphism

T nX ' F [T,ΣX)

of orthogonal T-spectra, so that πHk (T nX) ∼= πHk (F [T,ΣX)) for all H ⊂ T and k ∈ Z. Here Σ ∼= ΣL,
where L = T1T = iR.

10.1 Algebraic prototype

Let G be a finite group, H ⊂ G a subgroup, and M a Z[H]-module. The induced and coinduced
Z[G]-modules

ψ : Z[G]⊗Z[H] M
∼=←→ HomZ[H](Z[G],M) : ω

are naturally isomorphic, by a pair of mutually inverse homomorphisms ψ and ω that we now make
explicit.

Definition 10.3. Let
N =

∑
kH∈G/H

kH ∈ Z[G/H]
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be the norm element, and let t : Z → Z[G/H] be the Z[G]-module homomorphism given by t(1) = N .
(Note that gN = N for each g ∈ G, since kH 7→ gkH permutes the left cosets of H in G.) Consider the
Z[G]-module homomorphism

t⊗ 1: HomZ[H](Z[G],M) ∼= Z⊗HomZ[H](Z[G],M)
t⊗1−→ Z[G/H]⊗HomZ[H](Z[G],M)

mapping f : Z[G]→M to N ⊗ f . Consider also the Z[G]-linear untwisting isomorphism

ζ : Z[G]⊗Z[H] (ι∗HomZ[H](Z[G],M))
∼=−→ Z[G/H]⊗HomZ[H](Z[G],M)

γ ⊗ f 7−→ γ ⊗ γf

and the Z[G]-linear homomorphism

1⊗ ε : Z[G]⊗Z[H] (ι∗HomZ[H](Z[G],M)) −→ Z[G]⊗Z[H] M ,

where ε : HomZ[H](Z[G],M)→M is the counit mapping f : Z[G]→M to f(e) ∈M . Let

ω = (1⊗ ε)ζ−1(t⊗ 1) : HomZ[H](Z[G],M) −→ Z[G]⊗Z[H] M

be the composite Z[G]-linear homomorphism. More explicitly, a Z[H]-linear homomorphism f : Z[G]→
M maps under (t⊗ 1) to

∑
kH∈G/H kH ⊗ f , which is the image under ζ of

∑
kH∈G/H k ⊗ k−1f , which

maps under 1⊗ ε to ∑
kH∈G/H

k ⊗ f(k−1) .

(Note that ε(k−1f) = (k−1f)(e) = f(ek−1) = f(k−1).)

Definition 10.4. Let u : Z[G]→ Z[H] be the Z[H]-Z[H]-bimodule homomorphism given by

u(g) =

{
g for g ∈ H,

0 otherwise,

let u⊗ 1: Z[G]⊗Z[H] M −→ Z[H]⊗Z[H] M ∼= M be the Z[H]-module homomorphism given by

(u⊗ 1)(g ⊗m) =

{
gm for g ∈ H,

0 otherwise,

and let
ψ : Z[G]⊗Z[H] M −→ HomZ[H](Z[G],M)

be the Z[G]-module homomorphism that is right adjoint to u⊗ 1. Hence ψ(g⊗m) ∈ HomZ[H](Z[G],M)
is given by

ψ(g ⊗m) : γ 7→

{
γgm if γg ∈ H,

0 otherwise.

Proposition 10.5. The natural Z[G]-module homomorphisms ψ and ω are mutually inverse isomor-
phisms.

Proof. ωψ maps g ⊗m to

ω(f) =
∑

kH∈G/H

k ⊗ f(k−1) ,

where f(k−1) = k−1gm if k−1g ∈ H and f(k−1) = 0 otherwise. Hence

k ⊗ f(k−1) = k ⊗ k−1gm = kk−1g ⊗m = g ⊗m

if kH = gH, and k ⊗ f(k−1) = 0 otherwise. Thus ωψ(g ⊗m) = g ⊗m.
Conversely, ψω maps f to ∑

kH∈G/H

ψ(k ⊗ f(k−1)) ,

which takes γ to γkf(k−1) where kH ∈ G/H is such that γk ∈ H, i.e. kH = γ−1H. By assumption f
is Z[H]-linear, so ψω(f) takes γ to

γkf(k−1) = f(γkk−1) = f(γ) ,

i.e., is equal to f again.

83



10.2 Space level constructions

(See Lewis-May-Steinberger, §II.5.)
Let G be a compact Lie group and let H ⊂ G be a closed subgroup.

Definition 10.6. Let L = TeH(G/H) be the tangent space of G/H at the point eH. The left H-action
on G/H induces a left H-action on L, making L an H-representation. We may equip L with an inner
product so that H acts through isometries; hence L is a finite-dimensional orthogonal L-representation.

The following G-map t will be used in the construction of the Wirthmüller equivalence ψ.

Definition 10.7. Let j : G/H →W be a G-equivariant smooth embedding of G/H in a G-representation
W contained in the G-universe U . The induced map TeH(G/H)→ Tj(eH)(W ) is an H-linear embedding
L→W , with orthogonal complement W − L. The normal bundle of j is G×H (W − L)→ G/H, so we
can extend j to an embedding

̃ : G×H (W − L) −→W

of a tubular neighborhood. By the Pontryagin-Thom construction, collapsing the complement of that
neighborhood to a point, we get a G-map

t : SW −→ G+ ∧H SW−L .

(The case G finite?)

Example 10.8. For G = T and H = 1, we can take j : G → W to be the standard embedding T ⊂ C,
so that L = Te(T) = iR is the imaginary axis, with orthogonal complement W − T = R, the real axis.
A tubular neighborhood of T is ̃ : T × R ∼= C \ {0}, and the Pontryagin-Thom construction gives the
T-equivariant map

t : SC −→ SC/S0 ∼= T+ ∧ SR

that collapses S0 = {0,∞} ⊂ SC to the base point. With the choice ̃(eiθ,m) = em+iθ, we get t(reiθ) =
eiθ ∧ log(r).

The following H-H-map u will be used in the construction of the inverse Wirthmüller equivalence ω.

Definition 10.9. The normal bundle of eH ∈ G/H is L. Let the H-map

k : L −→ G/H

be the embedding of a tubular neighborhood. We can lift k to an H-H-map

k̃ : L×H −→ G .

The Pontryagin-Thom construction, collapsing the complement of the image of k̃ to the base point, gives
an H-H-map

u : G+ −→ SL ∧H+ .

Here h1 ∈ H and h2 ∈ H act from the left and from the right, respectively, on G by h1 · g · h2 = h1gh2,
and on SL ∧H+ by h1 · (`, h) · h2 = (h1`, h1hh2).

(The case G finite?)

Example 10.10. For G = T and H = 1, we can take k : L → G to be the inverse iR → T of the
stereographic projection from −1 to the tangent line 1 + iR. The image of k̃ is T \ {−1}, and the
Pontryagin-Thom construction gives the map

u : T+ −→ T+/{−1}+ ∼= SiR

given by

u(eiθ) = i · 2 tan
θ

2
.

84



Lemma 10.11. The composite

SW
t−→ G+ ∧H SW−L

u∧1−→ (SL ∧H+) ∧H SW−L ∼= SL ∧ SW−L ∼= SW

is H-equivariantly homotopic to the identity.

Example 10.12. For G = T and H = 1, the composite map SC → SC takes reiθ to log(r)+i ·2 tan(θ/2).
This map sends the ray (−∞, 0] ⊂ C to the base point, and is homotopic to the identity.

Definition 10.13. For each H-space Z, let

ωZ = (1 ∧ ε)ζ−1(t ∧ 1) : SW ∧ FH(G+, Z) −→ G+ ∧H (SW−L ∧ Z)

be the composite

SW ∧ FH(G+, Z)
t∧1−→ (G+ ∧H SW−L) ∧ FH(G+, Z)

ζ−1

−→ G+ ∧H (SW−L ∧ ι∗FH(G+, Z))

1∧ε−→ G+ ∧H (SW−L ∧ Z) .

Here t : SW → G+ ∧H SW−L is the G-map defined earlier, ζ is the untwisting isomorphism, and the
H-map ε : ι∗FH(G+, Z)→ Z is the adjunction counit.

Example 10.14. For G = T and H = 1, the map

ωZ : SC ∧ F1(T+, Z) −→ T+ ∧1 (SR ∧ Z)

is given by
ωZ(reiθ ∧ f) = eiθ ∧ log(r) ∧ f(e−iθ) .

Definition 10.15. For each H-space X, form the (left) H-map

u ∧ 1: G+ ∧H X −→ (SL ∧H+) ∧H X ∼= SL ∧X

and let
ψX : G+ ∧H X −→ FH(G+, S

L ∧X)

given by
ψX(g ∧ x) : γ 7−→ (u ∧ 1)(γg ∧ x)

be the G-map that is right adjoint to u ∧ 1. Hence ε ◦ ψX = u ∧ 1.

Example 10.16. For G = T and H = 1, the map

ψX : T+ ∧1 X −→ F1(T+, S
iR ∧X)

is given by

ψX(eiα ∧ x) : eiβ 7−→ i · 2 tan
α+ β

2
∧ x .

Definition 10.17. Let

ν : Y ∧ FH(G+, Z) −→ FH(G+, ι
∗Y ∧ Z)

y ∧ f 7−→ (γ 7→ γy ∧ f(γ))

be the G-map right adjoint to the H-map Y ∧ ε : Y ∧ FH(G+, Z)→ Y ∧ Z.

Proposition 10.18. The following triangle commutes up to G-homotopy.

SW ∧ FH(G+, Z)

ωZ

��

ν

++

G+ ∧H (SW−L ∧ Z)
ψSW−L∧Z

// FH(G+, ι
∗SW ∧ Z)

Here ν(w ∧ f) : γ 7→ γw ∧ f(γ), and we used the identification SL ∧ SW−L ∼= ι∗SW .
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Proof. To prove that ν and ψSW−L∧Z ◦ ωZ are G-homotopic is equivalent to proving that ε ◦ ν = 1 ∧ ε
and ε ◦ ψSW−L∧Z ◦ ωZ = (u ∧ 1) ◦ ωZ are H-homotopic.

SW ∧ FH(G+, Z)

ωZ

��

ν

((

1∧ε

))

t∧1 // (G+ ∧H SW−L) ∧ FH(G+, Z)

ζ−1∼=
��

G+ ∧H (SW−L ∧ Z)

ψSW−L∧Z
��

u∧1

vv

G+ ∧H (SW−L ∧ FH(G+, Z))
1∧εoo

u∧1

��

FH(G+, S
W ∧ Z)

ε

��

SW ∧ Z SW ∧ FH(G+, Z)
1∧εoo

Here
(u ∧ 1) ◦ ωZ = (1 ∧ ε) ◦ (u ∧ 1)ζ−1(t ∧ 1) ,

so it suffices to prove that (u ∧ 1)ζ−1(t ∧ 1) is H-homotopic to the identity of SW ∧ FH(G+, Z). This is
the content of Lemma 10.19 below.

Lemma 10.19. For each G-space Y , the composite

SW ∧ Y t∧1−→ (G+ ∧H SW−L) ∧ Y ζ−1

−→ G+ ∧H (SW−L ∧ Y )
u∧1−→ SL ∧ SW−L ∧ Y ∼= SW ∧ Y

is H-homotopic to the identity.

Example 10.20. For G = T and H = 1, the maps

SC ∧ Y t∧1−→ (T+ ∧1 S
R) ∧ Y ζ−1

−→ T+ ∧1 (SR ∧ Y )
u∧1−→ SiR ∧ SR ∧ Y ∼= SC ∧ Y

take reiθ ∧ y by t ∧ 1 to eiθ ∧ log(r) ∧ y, by ζ−1 to eiθ ∧ log(r) ∧ e−iθy, and by u ∧ 1 to

(log(r) + i · 2 tan
θ

2
) ∧ e−iθy .

The composite map is homotopic to the identity.

Proposition 10.21. The following diagram commutes up to G-homotopy.

SW ∧ (G+ ∧H X)
1∧ψX //

ζ−1 ∼=
��

SW ∧ FH(G+, S
L ∧X)

ωSL∧X

��

G+ ∧H (ι∗SW ∧X)
1∧σ∧1
∼=

// G+ ∧H (ι∗SW ∧X)

Here ζ−1 : w∧(γ∧x) 7→ γ∧(γ−1w∧x), we use the identification SW−L∧SL ∼= ι∗SW , and σ : SW → SW

is the identity on SW−L and reverses sign on SL.

Proof. It suffices to prove that ωSL∧X ◦ (1 ∧ ψX) ◦ ζ is G-homotopic to 1 ∧ σ ∧ 1.

G+ ∧H (SW ∧X)

ζ∼=
��

1∧σ∧1

((

G+ ∧H (SW−L ∧ (G+ ∧H X))

1∧ψX

uu

SW ∧ (G+ ∧H X)

1∧ψX
��

t∧1 // (G+ ∧H SW−L) ∧ (G+ ∧H X)

1∧ψX
��

ζ−1∼=

OO

SW ∧ FH(G+, S
L ∧X)

ωSL∧X

��

t∧1 // (G+ ∧H SW−L) ∧ FH(G+, S
L ∧X)

ζ−1∼=
��

G+ ∧H (SW ∧X) G+ ∧H (SW−L ∧ FH(G+, S
L ∧X))

1∧εoo
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Chasing the diagram above, using that (1 ∧ ε) ◦ (1 ∧ ψX) = 1 ∧ u ∧ 1, we see that this reduces to
Lemma 10.22 below.

Lemma 10.22. For each H-space X, the diagram

G+ ∧H (SW ∧X)
ζ

∼=
//

1∧σ∧1

��

SW ∧ (G+ ∧H X)
t∧1 // (G+ ∧H SW−L) ∧ (G+ ∧H X)

ζ−1∼=
��

G+ ∧H SW G+ ∧H (SW−L ∧ SL ∧X)
∼=oo G+ ∧H (SW−L ∧ (G+ ∧H X))

1∧u∧1oo

is G-homotopy commutative, where σ : SW → SW is the identity on SW−L and reverses sign on SL.

Example 10.23. For G = T and H = 1, the diagram appears as follows.

T+ ∧1 (SC ∧X)
ζ

∼=
//

1∧σ∧1

��

SC ∧ (T+ ∧1 X)
t∧1 // (T+ ∧1 S

R) ∧ (T+ ∧1 X)

ζ−1∼=
��

T+ ∧1 (SC ∧X) T+ ∧1 (SR ∧ SL ∧X)
∼=oo T+ ∧1 (SR ∧ (T+ ∧1 X))

1∧u∧1oo

The clockwise route maps eiα ∧ reiθ ∧ x by ζ to rei(α+θ) ∧ eiα ∧ x, by t ∧ 1 to ei(α+θ) ∧ log(r) ∧ eiα ∧ x,
by ζ−1 to ei(α+θ) ∧ log(r) ∧ e−iθ ∧ x, and by 1 ∧ u ∧ 1 to

ei(α+θ) ∧ (log(r)− i · 2 tan
θ

2
) ∧ x .

At the left hand side, 1 ∧ σ ∧ 1 takes eiα ∧ reiθ ∧ x to

eiα ∧ re−iθ ∧ x .

These maps are T-homotopic, since their restrictions to α = 0 are (non-equivariantly) homotopic.

10.3 Spectrum level maps

Definition 10.24. For each orthogonal H-spectrum Z, let the G-map of orthogonal G-spectra

ω : SW ∧ FH [G,Z) −→ GnH (SW−L ∧ Z)

be given at level n ≥ 0 by

ωZn : SW ∧ FH(G+, Zn) −→ G+ ∧H (SW−L ∧ Zn) .

(Discuss compatibility with structure maps.)

Definition 10.25. For each orthogonal H-spectrum X, let the G-map of orthogonal G-spectra

ψ : GnH X −→ FH [G,SL ∧X)

be given at level n ≥ 0 by
ψXn : G+ ∧H Xn −→ FH(G+, S

L ∧Xn) .

(Discuss compatibility with structure maps.)

Theorem 10.26 (Wirthmüller, Lewis-May-Steinberger). Let H be a closed subgroup of a compact Lie
group G, let L = TeH(G/H) be the H-representation given by the tangent space of G/H at eH, and let
X be any orthogonal H-spectrum. The natural G-map

ψ : GnH X
∼−→ FH [G,SL ∧X)

is a π∗-isomorphism of orthogonal G-spectra.
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Proof. (Compare Schwede’s Theorem 4.9) We prove that

ψ∗ : πKn (GnH X) −→ πKn (FH [G,SL ∧X))

is an isomorphism for each K ⊂ G and n ∈ Z. First consider the case n ≥ 0, when

πKn (GnH X) = colim
U

πKn (ΩU (G+ ∧H X(U)))

and
πKn (FH [G,SL ∧X)) = colim

V
πKn (ΩV FH(G+, S

L ∧X(V ))) .

To prove that ψ∗ is injective, we consider a class [f ] in the source of ψ∗. It is represented at level U ,
for some G-representation U , by a K-map

f : Sn ∧ SU −→ G+ ∧H X(U) .

The image ψ∗[f ] is represented by the composite K-map

Sn ∧ SU f−→ G+ ∧H X(U)
ψX(U)−→ FH(G+, S

L ∧X(U)) .

This image is zero, so that [f ] is in the kernel of ψ∗, precisely if

σ ◦ (ψX(U)f ∧ 1) : Sn ∧ SV −→ FH(G+, S
L ∧X(V ))

is K-equivariantly null-homotopic, for some G-representation V that contains U . Replacing U and f by
V and the stabilized K-map

σ ◦ (f ∧ 1) : Sn ∧ SV −→ G+ ∧H X(V ) ,

respectively, we may assume that U = V , and that ψX(U)f is K-equivariantly null-homotopic. By
Proposition 10.21 the following diagram is G-homotopy commutative.

SW ∧ Sn ∧ SU 1∧ψX(U)f

��

1∧f
��

SW ∧ (G+ ∧H X(U))
1∧ψX(U)

//

ζ−1 ∼=
��

SW ∧ FH(G+, S
L ∧X(U))

ωSL∧X(U)

��

G+ ∧H (ι∗SW ∧X(U))
1∧σ∧1
∼=
// G+ ∧H (ι∗SW ∧X(U))

Hence 1 ∧ f : SW ∧ Sn ∧ SU → SW ∧ (G+ ∧H X(U)) is K-equivariantly null-homotopic. It follows that
the stabilization

σ(f ∧ 1) : Sn ∧ SU⊕W −→ G+ ∧H X(U ⊕W ) ,

of f at level U ⊕ W of the colimit system defining πKn (G nH X), is K-equivariantly null-homotopic.
Hence [f ] = 0 and ψ∗ is injective.

To prove that ψ∗ is surjective, we consider a class [g] in its target. It is represented at level U , for
some G-representation U , by a K-map

g : Sn ∧ SU −→ FH(G+, S
L ∧X(U)) .

The composite K-map f = (1 ∧ σ)ωSL∧X(U)(1 ∧ g):

SW ∧ Sn ∧ SU 1∧g−→ SW ∧ FH(G+, S
L ∧X(U))

ωSL∧X(U)−→ G+ ∧H (SW ∧X(U))
1∧σ−→ G+ ∧H X(W ⊕ U)
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corresponds to an element [f ] ∈ πKn (GnH X). The image ψ∗[f ] is represented by the composite K-map

SW ∧ Sn ∧ SU f−→ G+ ∧H X(W ⊕ U)
ψX(W⊕U)−→ FH(G+, S

L ∧X(W ⊕ U)) .

By the naturality of ψX in X, and Proposition 10.18, the following diagram is G-homotopy commutative.

SW ∧ Sn ∧ SU

1∧g
��

f

""

SW ∧ FH(G+, S
L ∧X(U))

ωSL∧X(U)
//

ν
++

G+ ∧H (SW ∧X(U))
1∧σ //

ψSW∧X(U)

��

G+ ∧H X(W ⊕ U)

ψX(W⊕U)

��

FH(G+, S
L ∧ SW ∧X(U))

F (1,σ)
// FH(G+, S

L ∧X(W ⊕ U))

Up to transpositions, the composite F (1, σ)ν(1 ∧ g) corresponds to the stabilization

σ(g ∧ 1) : Sn ∧ SU ∧ SW −→ FH(G+, S
L ∧X(U)) ∧ SW −→ FH(G+, S

L ∧X(U ⊕W ))

of g at level U ⊕W in the colimit system defining πKn (FH [G,SL ∧X)). Hence ψ∗[f ] equals [g] (up to a
sign?) and ψ∗ is surjective.

If G is finite, or abelian, then L = TeH(G/H) is a trivial H-representation for each subgroup H ⊂
G. In particular, L extends to a (trivial) G-representation. In these cases we can give the promised
generalized converse to Proposition 9.26.

Proposition 10.27. (Suppose that L = TeH(G/H) is trivial for each H ⊂ G.) If f : X → Y is a
π∗-isomorphism of orthogonal G-spectra, and A is a G-CW complex, then

1 ∧ f : A ∧X −→ A ∧ Y

is a π∗-isomorphism.

Proof. By induction over the skeleta of A, and a passage to colimits, it suffices to prove this for A =
(G/H)+ ∧ Sn. The π∗-isomorphisms

(G/H)+ ∧ Sn ∧X ∼= Sn ∧ (GnH X)
1∧ψ−→ Sn ∧ FH [G,SL ∧X) ∼= F (G/H+, S

n ∧ SL ∧X)

are natural in X. The π∗-isomorphism f : X → Y induces a π∗-isomorphism 1 ∧ f : Sn ∧ SL ∧ X →
Sn∧SL∧Y . By Proposition 9.26, the map F (1, 1∧f) : F (G/H+, S

n∧SL∧X)→ F (G/H+, S
n∧SL∧Y )

is a π∗-isomorphism, and by the Wirthmüller equivalences and untwisting isomorphisms displayed above,
it follows that 1 ∧ f : (G/H)+ ∧ Sn ∧X → (G/H)+ ∧ Sn ∧ Y is a π∗-isomorphism.

Corollary 10.28. (Suppose that L = TeH(G/H) is trivial for each H ⊂ G.) A G-map f : X → Y is a
π∗-isomorphism if and only if ΣW f : ΣWX → ΣWY is a π∗-isomorphism.

Theorem 10.29. (Suppose that L = TeH(G/H) is trivial for each H ⊂ G.) For each G-representation W ,
the functors

ΣW : GSpO −→ GSpO and ΩW : GSpO −→ GSpO

preserve π∗-isomorphisms. The induced functors

ΣW : Ho(GSpO) −→ Ho(GSpO) and ΩW : Ho(GSpO) −→ Ho(GSpO)

are mutually inverse equivalences of categories.

Proof. The first assertions follow from the cases A = SW and B = SW of Propositions 10.27 and 9.26,
respectively. The unit

η : X −→ ΩWΣWX

and counit
ε : ΣWΩWY −→ Y

are π∗-isomorphisms by Propositions 9.13 and 9.15.
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11 Spanier–Whitehead duality

Definition 11.1. For each H-representation V , define

S−V = ΩV S = F (SV , S)

as an orthogonal H-spectrum.

Proposition 11.2. There are stable G-equivalences

F (G/H+, S) ' GnH S−L

and
(G/H)+ ' FH [G,SL) .

Proof. The counit ε : ΣLΩLS → S is a stable H-equivalence, and induces a stable G-equivalence

FH [G,ΣLΩLS) −→ FH [G,S) .

Using the Wirthmüller equivalence FH [G,ΣLΩLS) ' G nH ΩLS = G nH S−L and the untwisting
isomorphism FH [G,S) ∼= F (G/H+, S) gives the first equivalence.

The Wirthmüller equivalence G nH S ' FH [G,SL) and the untwisting isomorphism G nH S ∼=
(G/H)+ ∧ S gives the second equivalence.

Example 11.3. For G = T, H = 1 we have a stable T-equivalence F (T+, S) ' Σ−1T+.

For an orthogonal G-spectrum X we call DX = F (X,S) the functional dual of X. The result above
calculates DX for X = (G/H)+. More generally, the functional dual of X has duality properties similar
to those of finite-dimensional vector spaces or finitely generated projective modules, when X is a finite
G-CW spectrum. These duality properties are called Spanier–Whitehead duality. Following Dold–Puppe
and §III.1 and §III.2 of Lewis–May-Steinberger we will first discuss Spanier–Whitehead duality in general
closed symmetric monoidal categories, and then specialize to the stable G-equivariant homotopy category.

11.1 Categorical duality theory

(See Lewis–May-Steinberger, §III.1.)
Let C be a closed symmetric monoidal category, with unit object S, product ∧ : C × C → C and

internal hom functor F : C op×C → C , with coherently compatible unit isomorphisms S∧Y ∼= Y ∼= Y ∧S,
associativity isomorphisms (X ∧ Y ) ∧ Z ∼= X ∧ (Y ∧ Z), commutativity isomorphism

γ : X ∧ Y
∼=−→ Y ∧X

and adjunction isomorphism
C (X ∧ Y,Z) ∼= C (X,F (Y,Z)) .

As reflected by the notation, the main example we have in mind is the stable G-equivariant homotopy
category C = Ho(GSpO). Other examples would be the categories of graded modules or chain complexes
over a commutative ring, or over a Hopf algebra.

Let DX = F (X,S) be the functional dual of X, and let

η : X −→ F (Y,X ∧ Y ) and ε : F (Y, Z) ∧ Y −→ Z

be the adjunction unit and counit, respectively.
The maps

η : X
∼=−→ F (S,X ∧ S) ∼= F (S,X) and ε : F (S,Z) ∼= F (S,Z) ∧ S

∼=−→ Z

are inverse isomorphisms (for X = Z). Applying adjunction twice to the “evaluation” map ε : F (X ∧
Y,Z) ∧X ∧ Y → Z defines an isomorphism

F (X ∧ Y,Z)
∼=−→ F (X,F (Y,Z)) .
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A pairing
∧ : F (X,Y ) ∧ F (X ′, Y ′) −→ F (X ∧X ′, Y ∧ Y ′)

is defined as the right adjoint of the composite

F (X,Y ) ∧ F (X ′, Y ′) ∧X ∧X ′ 1∧γ∧1−→ F (X,Y ) ∧X ∧ F (X ′, Y ′) ∧X ′ ε∧ε−→ Y ∧ Y ′ .

As a special case, we have the natural map

ν : F (X,Y ) ∧ Z −→ F (X,Y ∧ Z)

which is right adjoint to the composite

F (X,Y ) ∧ Z ∧X 1∧γ−→ F (X,Y ) ∧X ∧ Z ε∧1−→ Y ∧ Z .

There is also a natural map
ρ : X −→ DDX

that is right adjoint to the composite

X ∧DX γ−→ DX ∧X ε−→ S .

Under suitable hypotheses, the pairing ∧ and the maps ν and ρ become isomorphisms. Dold–Puppe use
the term “strongly dualizable”, and Lewis–May–Steinberger write “finite”, for what we will simply call
“dualizable” objects. (Hovey–Strickland use the same terminology.)

Definition 11.4. An object Y of C is dualizable if there is a “coevaluation” map

η : S −→ Y ∧DY

such that the diagram

S
η

//

η

��

Y ∧DY
γ∼=
��

F (Y, Y ) DY ∧ Yνoo

commutes.

Proposition 11.5. Let Y be a dualizable object, with coevaluation map η : S → Y ∧DY .
(i) The functional dual DY is a dualizable object, with coevaluation map η : S → DY ∧ DDY the

composite

S
η−→ Y ∧DY γ−→ DY ∧ Y 1∧ρ−→ DY ∧DDY .

(ii) The composites

Y ∼= S ∧ Y η∧1−→ Y ∧DY ∧ Y 1∧ε−→ Y ∧ S ∼= Y

and
DY ∼= DY ∧ S 1∧η−→ DY ∧ Y ∧DY ε∧1−→ S ∧DY ∼= DY

are the identity maps.
(iii) There is a natural bijection

η# : C (X ∧ Y,Z)
∼=−→ C (X,Z ∧DY )

with inverse
ε# : C (X,Z ∧DY )

∼=−→ C (X ∧ Y,Z) ,

where η#(f) is the composite

X ∼= X ∧ S 1∧η−→ X ∧ Y ∧DY f∧1−→ Z ∧DY

and ε#(g) is the composite

X ∧ Y g∧1−→ Z ∧DY ∧ Y 1∧ε−→ Z ∧ S ∼= Z .

(iv) The functor −∧DY is right adjoint to the functor −∧Y , and is therefore isomorphic to F (Y,−).
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Proposition 11.6. (i) If Y is dualizable then

ρ : Y −→ DDY

is an isomorphism.
(ii) If X or Z is dualizable then

ν : F (X,Y ) ∧ Z −→ F (X,Y ∧ Z)

is an isomorphism.
(iii) If X and X ′ are dualizable, or if X is dualizable and Y = S, then

∧ : F (X,Y ) ∧ F (X ′, Y ′) −→ F (X ∧X ′, Y ∧ Y ′)

is an isomorphism.

Proof. (i) The composite

S ∧DDY η∧1−→ Y ∧DY ∧DDY 1∧γ−→ Y ∧DDY ∧DY 1∧ε−→ Y ∧ S

gives the inverse of ρ.
(ii) When X is dualizable, the composite

F (X,Y ∧ Z) ∧ S 1∧η−→ F (X,Y ∧ Z) ∧X ∧DX ε∧1−→ Y ∧ Z ∧DX γ−→ DX ∧ Y ∧ Z ν∧1−→ F (X,Y ) ∧ Z

gives the inverse of ν.
(iii) (ETC).
(ii) When Z is dualizable (ETC).

Corollary 11.7. An object Y is dualizable if and only if

ν : DY ∧ Y −→ F (Y, Y )

is an isomorphism. In this case the coevaluation map η : S → Y ∧DY is the composite

S
η−→ F (Y, Y )

ν−1

−→ DY ∧ Y γ−→ Y ∧DY .

Definition 11.8. The composite

χ(Y ) : S
η−→ Y ∧DY γ−→ DY ∧ Y ε−→ S

is the Euler characteristic of Y , viewed as an element of C (S, S).

11.2 Duality for G-spectra

(See Lewis–May-Steinberger, §III.2.)
We now consider the case C = Ho(GSpO), the stable G-equivariant homotopy category, where the

stable G-equivalences (= π∗-isomorphisms) have been inverted.

Lemma 11.9. For a map f : X → Y of orthogonal G-spectra, and any orthogonal G-spectrum Z, the
sequence

F (ΣX,Z)
π∗−→ F (Cf,Z)

i∗−→ F (Y,Z)
f∗−→ F (X,Z)

is stably G-equivalent to the sequence

ΩF (X,Z)
ι−→ F (f∗)

p−→ F (Y, Z)
f∗−→ F (X,Z) .

Proposition 11.10. The functional dual of a finite G-CW spectrum is stably G-equivalent to a finite
G-CW spectrum.
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Proof. By Propostion 11.2, the dual of G/H+ is stably G-equivalent to GnH S−L. ((Why is this a finite
G-CW spectrum?)) General finite G-CW spectra are built from suspensions of G/H+ using cofiber
sequences, so their functional duals are built from desuspensions of D(G/H+) using fiber sequences. By
the lemma above, these are again finite G-CW compelexes. ((Elaborate?))

Theorem 11.11. Any finite G-CW spectrum is dualizable.

Proof. We first consider the case of a single G-cell G/H+. For any orthogonal G-spectrum Z the following
diagram commutes.

D(G/H+) ∧ Z
∼= //

ν

��

FH [G,S) ∧ Z ω∧1 // (GnH S−L) ∧ Z

ζ−1∼=
��

F (G/H+, Z)
∼= // FH [G,S ∧ Z)

ω // GnH (S−L ∧ Z)

(Check?) The Wirthmüller equivalences ω are stable G-equivalences, hence ν is a stable G-equivalence.
For any map f : X → Y the following diagram commutes

D(ΣX) ∧ Z //

ν

��

D(Cf) ∧ Z //

ν

��

DY ∧ Z //

ν

��

DX ∧ Z

ν

��

F (ΣX,Z) // F (Cf,Z) // F (Y,Z) // F (X,Z)

If X is dualizable, and Y is built from X by attaching a single G-cell, so that Cf ' G/H+ ∧ Sn for
some integer n, then ν is a stable G-equivalence for X and for Cf , so by the five-lemma it is a stable
G-equivalence for Y .

By induction over the number of G-cells, it follows that ν : DY ∧ Z → F (Y,Z) is a stable G-
equivalence for each finite G-CW spectrum Y . The special case Y = Z then tells us that Y is dualizable,
by Corollary 11.7.

Proposition 11.12. (i) If Y is a finite G-CW spectrum then

ρ : Y −→ DDY

is a stable G-equivalence.
(ii) If X or Z is a finite G-CW spectrum then

ν : F (X,Y ) ∧ Z −→ F (X,Y ∧ Z)

is a stable G-equivalence.
(iii) If X and X ′ are finite G-CW spectra, or if X is a finite G-CW spectrum and Y = S, then

∧ : F (X,Y ) ∧ F (X ′, Y ′) −→ F (X ∧X ′, Y ∧ Y ′)

is a stable G-equivalence.

Example 11.13. If A is a finite G-CW complex, and B is any G-CW complex, then

ν : A ∧ F (B,X) −→ F (B,A ∧X)

is a stable G-equivalence (= π∗-isomorphism).

Corollary 11.14 (Spanier–Whitehead duality). For any finite G-CW spectrum X and G-spectrum E,
the canonical map

EHk (DX) = πHk (DX ∧ E)
ν∗−→ πHk F (X,E) = E−kH (X)

is an isomorphism, for each H ⊂ G and k ∈ Z.

Remark 11.15. Conversely, each dualizable G-spectrum is a retract (in the stable G-equivariant homo-
topy category) of a finite G-CW spectrum. For a proof, see May et al (Alaska notes), §XVI, Theorem 7.4.

Example 11.16. The G-equivariant Euler characteristic of a finite G-CW spectrum Y is χ(Y ) ∈
C (S, S) = πG0 (S), where πG0 (S) ∼= A(G) is the Burnside ring of G. ((Give calculation of A(G) and
explain how G-cells of the type G/H+ ∧ (Dn, ∂Dn) are counted?))
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