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The h o m o t o p y  c a t e g o r y  is a h o m o t o p y  

By 

A~NE S~o~  

c a t e g o r y  

In [4] Quillen defines the concept of a category o/models /or a homotopy theory 
(a model category for short). A model category is a category K together with three 
distingxtished classes of morphisms in K: F ("fibrations"), C ("cofibrations"), and 
W ("weak equivalences"). These classes are required to satisfy axioms M0--M5 of [4]. 
A closed model category is a model category satisfying the extra axiom M6 (see [4] 
for the statement of the axioms M0--M6).  

To each model category K one can associate a category Ho K called the homotopy 
category of K. Essentially, H o K  is obtained by turning the morphisms in W into 
isomorphisms. 

I t  is shown in [4] that  the category of topological spaces is a closed model category 
ff one puts F---- (Serre fibrations) and IV = (weak homotopy equivalences}, and 
takes C to be the class of all maps having a certain lifting property. 

From an aesthetical point of view, however, it would be nicer to work with ordinary 
(Hurewicz) fibrations, cofibrations and homotopy equivalences. The corresponding 
homotopy category would then be the ordinary homotopy category of topological 
spaces, i.e. the objects would be all topological spaces and the morphisms would be 
all homotopy classes of continuous maps. 

In the first section of this paper we prove that  this is indeed feasible, and in the 
last section we consider the case of spaces with base points. 

1. The model category structure of Top. Let  Top be the category of topolo~cal spaces 
and continuous maps. By  fibrations (eofibrations) we shall mean maps having the 
homotopy lifting (extension) property with respect to all spaces. 

Let F = (fibrations), C = (closed cofibrations), and IV----(homotopy equiva- 
lences). 

I f  i: A --> X and p: E --> B are morphisms in Top, we shall say that  i has the 
le/t lilting property (LLP) with respect to p, and that  p has the right lilting property 
(RLP) with respect to i, i f  every commutative square of the form 

A ~ E  

X ) B  

in Top admits a diagonal X--> E. 

28* 
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Proposition 1. The [ollowing relations hold between F, C and IV. 

(a) p ~ F ~*~ p has the t~LP  with respect to all i ~ C f~ IV. 

(b) i ~ C ~ i has the L L P  with respect to all p ~ F • IV. 

(c) p ~ F n IV ~,- p has the R L P  with respect to all i ~ C.  

(d) i ~ C n I V . ~  i has the L L P  with respect to all p ~ F .  

P r o o f .  (a) follows from [6], Theorem 8, and the definition of  fibrations. 
in (b) follows from [6], Theorem 9. To prove ~ we first note tha t  ff i has the 

L L P  with respect to all P ~ F f~ IV, then  i is a cofibration. I t  remains to show tha t  
i is closed. We m a y  assume tha t  i is an  inclusion, i : A  c X .  Let  

E = A  • I u X •  (0,1] c X  • I ,  

and define p :  E -+ X by  p (x, t) ---- x. p is a homotopy  equivalence, and  it is also a 
fibration, for given g: Y - ~  E and G: Y • I - ~  X with Go = pg,  we can construct  
a suitable lifting G: Y • I - ~  E by  lett ing 

G(y,  t) = (G(y, t), t -~ (1 - -  t) pr~ g(y)),  

where pr i :  E -+ I is the projection map.  (This construct ion works for any  inclusion 
map.) 

Hence i has the L L P  with respect to  p. Now define ]:  A -+ E by  j (a) = (a, 0). 
Then p j  --~ l x i ,  and consequently there is a m a p / :  X --~ E extending ~ ~dth p/---- 1x. 
I t  follows tha t  A --~ ]-1 pr}~ (0) is closed in X. 

(c) and (d) follow from [6], Theorems 8 and 9~ and (b). 

Proposition 2. Every continuous map /: X - - ~ Y  can be /actored as / ~ - - p i  ~ p' i ' ,  
where p and p" are/ibrations,  i and i' are closed co/ibrations, and i and p" are homotopy 
equivalences. 

P r o o f .  / ---- pi:  I t  is well known (see for instance [1], 5.27) t ha t  / can be factored 
/ ~- z~ ~, where j : X c W imbeds X as a s t rong deformation retract  of  W, and ~ :  W - +  Y 
is a fibration. As in the proof  of  Proposi t ion 1 (b) let E --~ X • I u W • (0,1] and  
define i: X - - ~  E,  ~':  E - - ) - W  by  i(x) ~ (x, 0), ~'(w, t) -~ w. Then i ( X )  is a s t rong 
deformation re t rac t  of E and i (X) -~ pr~ 1 (0). I t  follows tha t  i is a closed cofibration 
and a homotopy  equivalence, g '  is a fibration, and the desired factorizat ion / ---- p i  
follows, with p -~ ~ ' .  

] ~- p'i" : To get  this factorizat ion it is sufficient to factor  the fibration p:  E -~  Y 
constructed above as p = p'~, with .~ a closed cofibration and p '  a f ibration and  
a homotopy  equivalence. 

L e t Z  be the disjoint union Y ~ ) E •  (0,1] as a set. Define p ' : Z - - ~ Y ,  q z : Z - ~ I ,  
and : ~ : Z - -  Y - ~  E • I by  

p'(e, t) = p(e ) ,  p'(y) = y ,  

(e, t)  = t ,  qJ (y)  = O,  

~. (e, t) = (e, t ) .  

Then give Z the weakest topology making p' ,  cp and ~ continuous. Z - -  Y is then  
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homeomorphic to E • (0, 1], and the only difference between Z and the mapping 
cylinder of p is in the topology near Y. The map ~: E - > Z  given by ~(e) = (e, 1) 
is clearly a closed cofibration. 

I t  only remains to show that  p '  is a fibration. However, one can easily verify 
that  p '  : Z -+ Y is the "generalized Whitney sum" ([3]) of the fibrations ly  and p, 
and therefore p'  is a fibration. 

We can now prove 

Theorem 3. The category Top, with the morphism classes F, C and IV, is a closed 
model category. 

P r o o f .  I t  is sufficient to verify M0, M2, M5 and M6. M0 and M5 are obviously 
true and M2 is just Proposition 2 above, while M6 follows from Proposition 1, 
M2 and M5. 

2. Some lemmas. The following lemmas will be useful in the next section. 

Lemma 4. I]  i: A c X is a co/ibration and Y is a compact space, then the map 

i~,: AYcX Y 

induced by i is also a co/ibration (with respect to the compact-open topology). 

Proo f .  I f  H, 9 are as in [6], Lemma 4, then corresponding functions 

1::I: X r • I--+ X z and ~:  X r - - > I  

are given by 

t7 ([, t) (y) = H (/(y),  t) ,  ~ (/) = sup 9 / (Y) -  
y e Y  

Lemma 5. I / ] :  B --~ A and i: A --> X are maps such that i and i] are co/ibrations, 
then ] is also a co/ibration. 

P r o o f .  We can assume that  i and ?" are inclusion maps. There exists a halo U 
around A in X together with a retraction r: U --~ A. Since U is also a halo around 
B in X, B c U is a cofibration ([2], Satz 2, Korollar). 

Now consider a commutative diagTam 

iv 
B > yz  

(1) $.o 
A >Y 

where g0 (w) ---- w (0). The diagTam 

F 
B > y z  

(2) 
U >Y 

is also commutative, and since B c  U is a cofibration, (2) admits a diagonal G: U--->Y z. 
G]A  is then a diagonal in (1). I t  follows that  ] is a cofibration. 
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Recall tha t  a well-pointed space is a space X together with a base point . e X 
such tha t  the inclusion map {*} c X is a closed cofibration. 

Lemma 6. Consider a pullback diagram 

f, 
E '  > E 

B '  > B 

where p is a/ ibration.  Suppose that E,  B,  B" are well-pointed and that f and p respect 
base poiuts. Then E '  (with the obvious base point) is also well-pointed. I n  particular, 
the fiber of p is well-pointed. 

P r o o f .  Consider the sequence 

w h e r e ,  is the base point of E '  and F is the fiber over the base point of B' .  By [6], 
Theorem 12, i and f ' i  are cofibrations. Since E is well-pointed, (['i)] is a cofibration; 
hence, by Lemma 5 above, ] is a cofibration. I t  follows tha t  i ]  is a cofibration. 

3. The pointed ease. Let  Top* be the category of pointed spaces and continuous 
base point preserving maps. All base points will be denoted by  *. Fibrations and co- 
fibrations in Top* are defined exactly as in Top, except tha t  all maps and homotopies 
are required to respect the base points. From now on homotopies, fibrations, etc. in 
Top will be referred to as free homotopies, fibrations, etc. 

I t  is clear that  ff a map i: A -> X in Top* is a free cofibration (that is, when 
considered as a map in Top), then it is a cofibration in Top*. On the other hand, 
a fibration in Top* is also a free fibration. 

Jus t  as in the free case one can prove tha t  all cofibrations in Top* are imbeddings. 
'Also, if the base point of X is closed, an inclusion A c X in Top* is a eofibration 
if and only if  (X  • 0 u A • I) /* x I is a retract  (and hence a strong deformation 
retract) of X • I f *  • I (A need not be closed). The arguments are similar to those 
in [5] and [6]. 

We shall need the follo~4ng result, analogous to [6], Lemma 4. 

Proposition 7. Let i: A c X be an inclusion map in Top*, and suppose that there 
exists a continuous function y): X --> I such that ~p-1 (0) = {*}. Then i is a cofibration 
if and only if there exist a continuous function q~: X --> I with A c ~-1(0),  and a 
homotopy H:  X • I --> X rel A such that Ho ---- 1,~ and H (x, t) ~ A whenever 

Min(t, V,(x)) > q~(x). 

I f  such q~ and H exist they can be chosen in such a way that qD (x) ~ yJ (x) /or all 
x e X .  

P r o o f .  Suppose first tha t  i is a cofibration. Let  

K = {(x, t) e X  • 0 u A • I ]  t =< ~(x)}  
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and define ~: X •  

~(x, t) = (x, Min (t, ~(x))).  

Since i is a cofibration, ~ e_xtends to r :  X • I --> K.  ~ and  H can then be defined by  

(x) : sup (Min (t, v 2 (x)) - -  prl  r (x, t)), H (x, t) ---- p rx  r (x, t). 

I t  is clear t ha t  ~ and H have the desired properties.  
Conversely, if ~ and  H are given, we can define a retract ion 

r: X x I / * x I - > ( X x O u A x I ) / * x I  
by  

r(x, t) = I (tt(x, t), 0), tW(x) <= ~(x), 
t ( H ( x ,  t) ,  t - ~(x)/~v(x)), t~v(x) > ~(x) .  

Our main  interest will be in the full subcategory Top w of  well-pointed spaces, 
ra ther  t han  the whole category Top*.  I t  is an  easy consequence of  the p roduc t  
theorem for cofibrations ([6], Theorem 6) t ha t  the mapping  cylinder in Top* of  a 
map  between well-pointed spaces is well-pointed. Consequently,  a map in Top w is 
a cofibration in Top w if and only if  i t  is a cofibration in Top*.  

Dually,  i t  follows f rom Lemmas  4 and 6 above tha t  the mapping t rack of  a map  
in Top w is well-pointed, and so a map  in Top w is a fibration in Top w if and  only ff 
it is a f ibration in Top*.  

A necessary and sufficient condition for a pointed space X to  be well-pointed is 
t h a t  there exist a ~v: X --> I with ~v -1 (0) = {*} and a h o m o t o p y  P :  X • I --> X 
with P0 ----- l •  and P(x ,  t) ~ * when t > ~v(x) ([6], Lemma 4). Let  us call (P,  ~v) 
a well-pointing couple for X.  

Lemma 8. I]  A c X is a co/ibration in Top w there exists a well-pointing couple 
(P, ~v) /or X such that P (A • I)  c A .  

P r o o f .  Le t  (Px ,  ~vx) and (PA, ~VA) be well-pointing couples for X and A, respec- 
tively. Choose ~:  X --> I and H :  X • I --> X satisfying the conditions of  Proposi- 
t ion 7 with respect to ~vx, and define ~: X - -  {.} --> I by  co(x) ---- 1 - -  q~(x)/~vx(x). 
Since A c X is a cofibration, PA extends to a h o m o t o p y  15: X • I --> X with P0 ---- lx .  
Also, ~vA can be extended to a continuous ~ :  X --> I by  put t ing  

- I ~(x)~vAH(x, 1) + ~(x) ,  ~(x) < Wx(x), 
~v (x) = ,  ~vx (x), ~ (x) = y'x (x). 

(Recall t h a t  H(x,  1 ) e  A when ~(x) < ~vx(x).) 
We then  have ~-1  (0) ---- {&}. For,  if  x .  * and ~(x) ---- 0, we should have 

~vAH(z, 1) ---- ~ ( x )  = 0 .  

But  this would imply  H (x, 1) ~ .  and x E A. However ,  it is clear t ha t  

yx (x ' )  = ~vxH(x',  1) for all x ' e A ,  

and therefore ~vx(x) ~ O, contradict ing the assumption tha t  x . . .  
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The required couple (P, ~) is now given by 

P(x , t )  = { P ( x , t / ~ ( x ) ) ,  t < ~(x) ,  
P x ( I ' ( x ,  1), t -- ~(x)) ,  t >= -~(x), 

y~(x) = Min(1, ~(x) ~- F x P ( x ,  1)). 

We shall use this lemma to prove 

Proposition 9. A map i : _4 --+ X in Top w is a cofibration i / a n d  only i / i t  is a free 
co/ibration. 

P r o o f .  Only "only if" needs proof. Suppose, then, that  i: ,4 c_ X is a cofibration 
in Top u'. (For simplicity we assume that  i is an inclusion.) Let (P, ~0) be a well- 
pointing couple as described in Lemma 8, and then let H and ~ be as in Proposi- 
tion 7. 

Define H' :  X x I--~ X and ~0': X--~ I by 

H'(x, t) ~- I P ( H  (x, t), Min[t, q~(x)iyJ(x)]) , x 4= *, 

t 
~'(x) = ~(x) -- !p(x) + sup yJH(x, t). 

H'  and ~' then satisfy the conditions of [6], Lemma 4, and it follows that  i is a free 
eofibration. 

The dual statement is also true: 

Proposition 10. A map p: E --+ B in Top w is a/ibration i / a n d  only i / i t  is a free 
/ibration. 

P r o o f .  I t  follows from [5], Theorem 4 that  if p is free fibration, then it has the 
pointed homotopy lifting property with respect to all well-pointed spaces. 

I t  is also true that  a map in Top w is a homotopy equivalence if and only if it is 
a free homotopy equivalence ([1], 2.18). 

Theorem 11. The category Top w, with the classes of (pointed) fibrations, closed co- 
]ibrations, and homotopy equivalences, satisfies the axioms M1--M6. 

P r o o f .  This follows from Theorem 3 and Propositions 9 and 10. I t  is not hard to 
show that  the constructions in the proof of Proposition 2, when performed on well- 
pointed spaces, ~e ld  well-pointed spaces. 

One could hardly expect M0 to hold in Top w, but  Top w does have sums, finite 
products, pullbacks of fibrations, pushouts of cofibrations, smash products, suspen- 
sions, loop spaces, etc., and this goes a long way. 

A simple consequence of the product theorem for cofibrations and Proposition 9 
is the following "smash product theorem". 

Proposition 12. I] A c X and B c Y are cofibrations in Top w and at least one of 
them is closed, then 

X t ,  B W A A Y a X A Y  
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is also a co/ibration in  Top w. (X A B and  A A Y should here be given the  subspace 
topolo~o T induced  b y  X A Y.) 

R e m a r k .  Resu l t s  analogous  to  10, 11 a n d  12 above  hold  in the  larger  ca tegory  
Top 0 consis t ing of  all  po in ted  spaces X for which there  exis t  funct ions  ~ :  X ->  I 
wi th  ~-1 (0) = (*),  b u t  the  proofs  become a b i t  more  compl ica ted .  

One could also t r y  to  generalize the  resul ts  of  th is  sect ion in a different  direct ion.  
I n s t e a d  of  wel l -po in ted  spaces consider  the  ca tegory  Col  K of  closed cofibrat ions 
under  a f ixed space K,  t h a t  is, the  objec ts  of  Cof K are closed free cof ibrat ions K --> X 
and  the  morph i sms  arc  c o m m u t a t i v e  t r iangles  (thus, Top  w ~ Cof*). The  analogues  
of  L e m m a s  6 and  8 and  Propos i t ions  9 and  10 are  easi ly  proved ,  b u t  when we t r y  
to  prove  the  corresponding vers ion of  Theorem 11, we encounte r  a l i t t le  diff icul ty in 
showing t h a t  the  cons t ruc t ions  in  the  p roof  of  Propos i t ion  2 do no t  t ake  us outs ide 
Cof K. The p rob lem is t h a t  i t  is no t  clear t h a t  Col  K has  p a t h  spaces,  which are ne- 
cessary  for  the  cons t ruc t ion  of  the  mapp ing  t r a c k  W. The n a t u r a l  cand ida te  for the  
p a t h  space of  i :  K --> X is i~:s: K -*  K x - *  X I, where s:  K --> K I sends each po in t  
of  K to the  cons tan t  p a t h  a t  t h a t  point .  K --> X I is t hen  an  objec t  of  Cof/~ ff and  
only  ff s is a closed free cof ibrat ion.  This  is equiva len t  to  t he  exis tence of  a con- 
t inuous  ~ : K I --> I wi th  ~-1 (0) ~- s (K). (See [7] for an  example  of  a pa th - connec t ed  
compac t  Hausdor f f  space which  admi t s  no such W.) I f  such a func t ion  exists ,  t hen  
Theorem 11 holds for the  ca t egory  Col  K. 

A sufficient condi t ion  for the  exis tence of  such a 9 : K1 - *  I is t h a t  there  exis t  a 
cont inuous  5 : K • K - *  I wi th  (~-i (0) - -  ((]c, k)] ]r e K ) .  This  condi t ion  is satisfied, 
for ins tance,  for a l l  met r ic  spaces and  all CW-complexes .  
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