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1. Introduction

This paper is an introduction to the theory of “model categories”, which was devel-
oped by Quillen in [22] and [23]. By definition a model category is just an ordinary
category with three specified classes of morphisms, called fibrations, cofibrations
and weak equivalences, which satisfy a few simple axioms that are deliberately rem-
iniscent of properties of topological spaces. Surprisingly enough, these axioms give
a reasonably general context in which it is possible to set up the basic machinery of
homotopy theory. The machinery can then be used immediately in a large number
of different settings, as long as the axioms are checked in each case. Although many
of these settings are geometric (spaces (§8), fibrewise spaces (3.11), G-spaces [11],
spectra [5], diagrams of spaces [10] . . .), some of them are not (chain complexes
(§7), simplicial commutative rings [24], simplicial groups [23] . . .). Certainly each
setting has its own technical and computational peculiarities, but the advantage
of an abstract approach is that they can all be studied with the same tools and
described in the same language. What is the suspension of an augmented commuta-
tive algebra? One of incidental appeals of Quillen’s theory (to a topologist!) is that
it both makes a question like this respectable and gives it an interesting answer
(11.3).
We have tried to minimize the prerequisites needed for understanding this pa-

per; it should be enough to have some familiarity with CW-complexes, with chain
complexes, and with the basic terminology associated with categories. Almost all of
the material we present is due to Quillen [22], but we have replaced his treatment
of suspension functors and loop functors by a general construction of homotopy
pushouts and homotopy pullbacks in a model category. What we do along these
lines can certainly be carried further. This paper is not in any sense a survey of
everything that is known about model categories; in fact we cover only a fraction of
the material in [22]. The last section has a discussion of some ways in which model
categories have been used in topology and algebra.

Organization of the paper. Section 2 contains background material, principally a
discussion of some categorical constructions (limits and colimits) which come up
almost immediately in any attempt to build new objects of some abstract category
out of old ones. Section 3 gives the definition of what it means for a category C to be
a model category, establishes some terminology, and sketches a few examples. In §4
we study the notion of “homotopy” in C and in §5 carry out the construction of the
homotopy category Ho(C). Section §6 gives Ho(C) a more conceptual significance
by showing that it is equivalent to the “localization” of C with respect to the class
of weak equivalences. For our purposes the “homotopy theory” associated to C is
the homotopy category Ho(C) together with various related constructions (§10).
Sections 7 and 8 describe in detail two basic examples of model categories, namely

the category Top of topological spaces and the category ChR of nonnegative chain
complexes of modules over a ring R. The homotopy theory of Top is of course fa-
miliar, and it turns out that the homotopy theory of ChR is what is usually called
homological algebra. Comparing these two examples helps explain why Quillen
called the study of model categories “homotopical algebra” and thought of it as a



4 Dwyer and Spalinski Chapter 1

generalization of homological algebra. In §9 we give a criterion for a pair of functors
between two model categories to induce equivalences between the associated homo-
topy categories; pinning down the meaning of “induce” here leads to the definition of
derived functor. Section 10 constructs homotopy pushouts and homotopy pullbacks
in an arbitrary model category in terms of derived functors. Finally, §11 contains
some concluding remarks, sketches some applications of homotopical algebra, and
mentions a way in which the theory has developed since Quillen.

We would like to thank GianMario Besana and Krzysztof Trautman for help in
preparing this manuscript. We are also grateful for the comments of J. McClure,
W. Richter and J. Smith, which led among other things to simplifications in the
statement of 9.7 and in the proof of 10.7.

2. Categories

In this section we review some basic ideas and constructions from category theory;
for more details see [17]. The reader might want to skip this section on first reading
and return to it as needed.

2.1. Categories. We will take for granted the notions of category, subcategory,
functor and natural transformation [17, I]. If C is a category and X and Y are
objects of C, we will assume that the morphisms f : X → Y in C form a set
HomC(X,Y ), rather than a class, a collection, or something larger. These mor-
phisms are also called maps or arrows in C from X to Y . Some categories that
come up in this paper are:

(i) the category Set whose objects are sets and whose morphisms are functions
from one set to another,

(ii) the category Top whose objects are topological spaces and whose mor-
phisms are continuous maps,

(iii) the category ModR whose objects are left R-modules (where R is an asso-
ciative ring with unit) and whose morphisms are R-module homomorphisms.

2.2. Natural equivalences. Suppose that F, F ′ : C→ D are two functors, and that
t is a natural transformation from F to F ′. The transformation t is called a natural
equivalence [17, p. 16] if the morphism tX : F (X)→ F ′(X) is an isomorphism in D
for each object X of C. The functor F is said to be an equivalence of categories if
there exists a functor G : D→ C such that the composites FG and GF are related
to the appropriate identity functors by natural equivalences [17, p. 90].

2.3. Full and faithful. A functor F : C→ D is said to be full (resp. faithful) if for
each pair (X,Y ) of objects of C the map

HomC(X,Y )→ HomD(F (X), F (Y ))
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given by F is an epimorphism (resp. a monomorphism) [17, p. 15]. A full subcategory
C′ of C is a subcategory with the property that the inclusion functor i : C′ → C is
full (the functor i is always faithful). A full subcategory of C is determined by the
objects in C which it contains, and we will sometimes speak of the full subcategory
of C generated by a certain collection of objects.

2.4. Opposite category. If C is a category then the opposite category Cop is the
category with the same objects as C but with one morphism fop : Y → X for each
morphism f : X → Y in C [17, p. 33]. The morphisms of Cop compose according
to the formula fopgop = (gf)op. A functor F : Cop → D is the same thing as what
is sometimes called a contravariant functor C→ D. For example, for any category
C the assignment (X,Y ) 7→ HomC(X,Y ) gives a functor

HomC(–, –) : C
op ×C→ Set .

2.5. Smallness and functor categories. A category D is said to be small if the
collection Ob(D) of objects of D forms a set, and finite if Ob(D) is a finite set
and D has only a finite number of morphisms between any two objects. If C is a
category and D is a small category, then there is a functor category CD in which the
objects are functors F : D → C and the morphisms are natural transformations;
this is also called the category of diagrams in C with the shape of D. For example,
if D is the category {a→ b} with two objects and one nonidentity morphism, then
the objects of CD are exactly the morphisms f : X(a) → X(b) of C and a map
t : f → g in CD is a commutative diagram

X(a)
ta−→ Y (a)

f ↓ g ↓

X(b)
tb−→ Y (b)

.

In this case CD is called the category of morphisms of C and is denoted Mor(C).

2.6. Retracts. An object X of a category C is said to be a retract of an object
Y if there exist morphisms i : X → Y and r : Y → X such that ri = idX . For
example, in the category ModR an object X is a retract of Y if and only if there
exists a module Z such that Y is isomorphic to X ⊕ Z. If f and g are morphisms
of C, we will say that f is a retract of g if the object of Mor(C) represented by
f is a retract of the object of Mor(C) represented by g (see the proof of the next
lemma for a picture of what this means).
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Lemma 2.7. If g is an isomorphism in C and f is a retract of g, then f is also
an isomorphism.

Proof. Since f is a retract of g, there is a commutative diagram

X
i
−→ Y

r
−→ X

f ↓ g ↓ f ↓

X ′
i′

−→ Y ′
r′

−→ X ′

in which the composites ri and r′i′ are the appropriate identity maps. Since g is
an isomorphism, there is a map h : Y ′ → Y such that hg = idY and gh = idY ′ . It
is easy to check that k = rhi′ is the inverse of f .

2.8. Adjoint functors. Let F : C → D and G : D → C be a pair of functors. An
adjunction from F to G is a collection of isomorphisms

αX,Y : HomD(F (X), Y ) ∼= HomC(X,G(Y )), X ∈ Ob(C), Y ∈ Ob(D)

natural inX and Y , i.e., a collection which gives a natural equivalence (2.2) between
the two indicated Hom-functors Cop ×D → Set (see 2.4). If such an adjunction
exists we write

F : C⇐⇒ D : G

and say that F and G are adjoint functors or that (F,G) is an adjoint pair, F being
the left adjoint of G and G the right adjoint of F . Any two left adjoints of G (resp.
right adjoints of F ) are canonically naturally equivalent, so we speak of “the” left
adjoint or right adjoint of a functor (if such a left or right adjoint exists) [17, p. 81].
If f : F (X) → Y (resp. g : X → G(Y )), we denote its image under the bijection
αX,Y by f ♯ : X → G(Y ) (resp. g♭ : F (X)→ Y ).

2.9. Example. Let G : ModR → Set be the forgetful functor which assigns to
each R-module its underlying set. Then G has a left adjoint F : Set → ModR

which assigns to each set X the free R-module generated by the elements of X.
The functor G does not have a right adjoint.

2.10. Example. Let G : Top → Set be the forgetful functor which assigns to
each topological space X its underlying set. Then G has a left adjoint, which is
the functor which assigns to each set Y the topological space given by Y with the
discrete topology. The functor G also has a right adjoint, which assigns to each set
Y the topological space given by Y with the indiscrete topology (cf. [17, p. 85]).
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2.11. Colimits

We introduce the notion of the colimit of a functor. Let C be a category and D
a small category. Typically, C is one of the categories in 2.1 and D is from the
following list.

2.12. Shapes of colimit diagrams.
(i) A category with a set I of objects and no nonidentity morphisms.
(ii) The category D = {a ← b → c}, with three objects and the two indicated

nonidentity morphisms.
(iii) The category Z+ = {0 → 1 → 2 → 3 → . . .} with objects the nonnegative

integers and a single morphism i→ j for i 6 j.

There is a diagonal or “constant diagram” functor

∆ : C→ CD,

which carries an object X ∈ C to the constant functor ∆(X) : D → C (by defini-
tion, this “constant functor” sends each object of D to X and each morphism of D
to idX). The functor ∆ assigns to each morphism f : X → X ′ of C the constant
natural transformation t(f) : ∆X → ∆X′ determined by the formula t(f)d = f for
each object d of D.

2.13. Definition. Let D be a small category and F : D→ C a functor. A colimit
for F is an object C of C together with a natural transformation t : F → ∆(C)
such that for every object X of C and every natural transformation s : F → ∆(X),
there exists a unique map s′ : C → X in C such that ∆(s′)t = s [17, p. 67].

Remark. The universal property of a colimit implies as usual that any two colimits
for F are canonically isomorphic. If a colimit of F exists we will speak of “the”
colimit of F and denote it colim(F ). The colimit is sometimes called the direct
limit, and denoted

→
limF ,

→
limDF or colimDF . Roughly speaking, ∆(colim(F )) is

the constant diagram which is most efficient at receiving a map from F , in the sense
that any map from F to a constant diagram extends uniquely over the universal
map F → ∆(colim(F )).

2.14. Remark. A category C is said to have all small (resp. finite) colimits if
colim(F ) exists for any functor F from a small (resp. finite) category D to C. The
categories Set, Top and ModR have all small colimits. Suppose that D is a small
category and F : D → Set is a functor. Let U be the disjoint union of the sets
which appear as values of F , i.e., let U be the set of pairs (d, x) where d ∈ Ob(D)
and x ∈ F (d). Then colim(F ) is the quotient of U with respect to the equivalence
relation “∼” generated by the formulas (d, x) ∼ (d′, F (f)(x)), where f : d → d′

is a morphism of D. If F : D → Top is a functor, then colim(F ) is an analogous
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quotient space of the space U which is the disjoint union of the spaces appearing as
values of F . If F : D→ModR is a functor, then colim(F ) is an analogous quotient
module of the module U which is the direct sum of the modules appearing as values
of F .

Remark. If colim(F ) exists for every object F ofCD, an argument from the universal
property (2.13) shows that the various objects colim(F ) of C fit together into a
functor colim(–) which is left adjoint to ∆:

colim : CD ⇐⇒ C : ∆ .

We will now give some examples of colimits [17, p. 64].

2.15. Coproducts. Let D be the category of 2.12(i), so that a functor X : D→ C
is just a collection {Xi}i∈I of objects of C. The colimit of X is called the coproduct
of the collection and written

∐

i Xi or, if I = {0, 1}, X0

∐

X1. If C is Set or Top
the coproduct is disjoint union; ifC isModR, coproduct is direct sum. If I = {0, 1},
then the definition of colimit (2.13) gives natural maps in0 : X0 → X0

∐

X1 and
in1 : X1 → X0

∐

X1; given maps fi : Xi → Y (i = 0, 1) there is a unique map
f : X0

∐

X1 → Y such that f · ini = fi (i = 0, 1). The map f is ordinarily denoted
f0 + f1.

2.16. Pushouts. If D is the category of 2.12(ii), then a functor X : D→ C is a di-
agramX(a)← X(b)→ X(c) inC. In this case the colimit ofX is called the pushout
P of the diagram X(a) ← X(b) → X(c). It is the result of appropriately gluing
X(a) to X(c) along X(b). The definition of colimit gives a natural commutative
diagram

X(b)
i
−→ X(c)

j ↓ j′ ↓

X(a)
i′

−→ P

.

Any diagram isomorphic to a diagram of this form is called a pushout diagram; the
map i′ is called the cobase change of i (along j) and the map j′ is called the cobase
change of j (along i). Given maps fa : X(a) → Y and fc : X(c) → Y such that
faj = fci, there is a unique map f : P → Y such that fj′ = fc and fi′ = fa.

2.17. Sequential colimits. If D is the category of 2.12(iii), a functor X : D → C
is a diagram of the following form

X(0)→ X(1)→ · · · → X(n)→ · · ·
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in C; this is called a sequential direct system in C. The colimit of this direct system
is called the sequential colimit of the objects X(n), and denoted colimnX(n). If C is
one of the categories Set,Top orModR and each one of the mapsX(n)→ X(n+1)
is an inclusion, then colimnX(n) can be interpreted as an increasing union of the
X(n); if C = Top a subset of this union is open if and only if its intersection with
each X(n) is open.

2.18. Limits

We next introduce the notion of the limit of a functor [17, p. 68]. This is strictly
dual to the notion of colimit, in the sense that a limit of a functor F : D→ C is the
same as a colimit of the “opposite functor” F op : Dop → Cop. From a logical point
of view this may be everything there is to say about limits, but it is worthwhile to
make the construction more explicit and work out some examples.

Let C be a category and D a small category. Typically, C is as before (2.1) and
D is one of the following.

2.19. Shapes of limit diagrams.
(i) A category with a set I of objects and no nonidentity morphisms.
(ii) The category D = {a → b ← c}, with three objects and the two indicated

nonidentity morphisms.

Let ∆ : C→ CD be as before (2.11) the “constant diagram” functor.

2.20. Definition. Let D be a small category and F : D → C a functor. A limit
for F is an object L of C together with a natural transformation t : ∆(L) → F
such that for every object X of C and every natural transformation s : ∆(X)→ F ,
there exists a unique map s′ : X → L in C such that t∆(s′) = s.

Remark. The universal property of a limit implies as usual that any two limits for
F are canonically isomorphic. If a limit of F exists we will speak of “the” limit of F
and denote it lim(F ). The limit is sometimes called the inverse limit, and denoted

←
limF ,

←
limDF or limD F . Roughly speaking, ∆(lim(F )) is the constant diagram

which is most efficient at originating a map to F , in the sense that any map from
a constant diagram to F lifts uniquely over the universal map ∆(colim(F ))→ F .

2.21. Remark. A category C is said to have all small (resp. finite) limits if lim(F )
exists for any functor F from a small (resp. finite) category D to C. The categories
Set, Top and ModR have all small limits. Suppose that D is a small category and
F : D→ Set is a functor. Let P be the product of the sets which appear as values
of F , i.e., let U be the set of pairs (d, x) where d ∈ Ob(D) and x ∈ F (d), q : U →
Ob(D) the map with q(d, x) = d, and P the set of all functions s : Ob(D) → U
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such that qs is the identity map of Ob(D). For s ∈ P write s(d) = (d, s1(d)),
with s1(d) ∈ F (d). Then lim(F ) is the subset of P consisting of functions s which
satisfy the equation s1(d

′) = F (f)(s1(d)) for each morphism f : d → d′ of D. If
F : D→ Top is a functor, then lim(F ) is the corresponding subspace of the space
P which is the product of the spaces appearing as values of F . If F : D→ModR

is a functor, then lim(F ) is the corresponding submodule of the module U which is
the direct product of the modules appearing as values of F .

Remark. If lim(F ) exists for every object F of CD, an argument from the universal
property (2.20) shows that various objects lim(F ) of C fit together into a functor
lim(–) which is right adjoint to ∆:

∆ : C⇐⇒ CD : lim .

We will now give two examples of limits [17, p. 70].

2.22. Products. Let D be the category of 2.19(i), so that a functor X : D→ C is
just a collection {Xi}i∈I of objects of C. The limit of X is called the product of the
collection and written

∏

i Xi or, if I = {0, 1}, X0 × X1 (the notation “X0

∏

X1”
is more logical but seems less common). If C is Set or Top the product is what is
usually called direct product or cartesian product. If I = {0, 1} then the definition
of limit (2.20) gives natural maps pr0 : X0 ×X1 → X0 and pr1 : X0

∏

X1 → X1;
given maps fi : Y → Xi (i = 0, 1) there is a unique map f : Y → X0 × X1 such
that pri · f = fi (i = 0, 1). The map f is ordinarily denoted (f0, f1).

2.23. Pullbacks. If D is the category of 2.19(ii), then a functor X : D → C is
a diagram X(a) → X(b) ← X(c) in C. In this case the limit of X is called the
pullback P of the diagram X(a) → X(b) ← X(c). The definition of limit gives a
natural commutative diagram

P
i′

−→ X(c)

j′ ↓ j ↓

X(a)
i
−→ X(b)

.

Any diagram isomorphic to a diagram of this form is called a pullback diagram; the
map i′ is called the base change of i (along j) and the map j′ is called the base
change of j (along i). Given maps fa : Y → X(a) and fc : Y → X(c) such that
ifa = jfc, there is a unique map f : Y → P such that i′f = fc and j′f = fa.

2.24. Some remarks on limits and colimits

An object ∅ of a category C is said to be an initial object if there is exactly one
map from ∅ to any object X of C. Dually, an object ∗ of C is said to be a terminal
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object if there is exactly one map X → ∗ for any object X of C. Clearly initial and
terminal objects of C are unique up to canonical isomorphism. The proof of the
following statement just involves unravelling the definitions.

Proposition 2.25. Let C be a category, D the empty category (i.e. the category
with no objects), and F : D→ C the unique functor. Then colim(F ), if it exists, is
an initial object of C and lim(F ), if it exists, is a terminal object of C.

Suppose that D is a small category, that X : D → C is a functor, and that
F : C → C′ is a functor. If colim(X) and colim(FX) both exist, then it is
easy to see that there is a natural map colim(FX) → F (colimX). Similarly, if
lim(F ) and lim(FX) both exist, then it is easy to see that there is a natural
map F (limX) → lim(FX). The functor F is said to preserve colimits if when-
ever X : D → C is a functor such that colim(X) exists, then colim(FX) exists
and the natural map colim(FX) → F (colimX) is an isomorphism. The functor F
is said to preserve limits if the corresponding dual condition holds [17, p 112]. The
following proposition is a formal consequence of the definition of an adjoint functor
pair.

Proposition 2.26. [17, p. 114–115] Suppose that

F : C⇐⇒ C′ : G

is an adjoint functor pair. Then F preserves colimits and G preserves limits.

Remark. Proposition 2.26 explains why the underlying set of a product (2.22) or
pullback (2.23) in the categoryModR orTop is the same as the product or pullback
of the underlying sets: in each case the underlying set (or forgetful) functor is a right
adjoint (2.9, 2.10) and so preserves limits, e.g. products and pullbacks. Conversely,
2.26 pins down why the forgetful functor G of 2.9 cannot possibly be a left adjoint
or equivalently cannot possibly have a right adjoint: G does not preserve colimits,
since for instance it does not take coproducts of R-modules (i.e. direct sums) to
coproducts of sets (i.e. disjoint unions).

We will use the following proposition in §10.

Lemma 2.27. [17, p. 112] Suppose that C has all small limits and colimits and
that D is a small category. Then the functor category CD also has small limits and
colimits.

Remark. In the situation of 2.27 the colimits and limits in CD can be computed
“pointwise” in the following sense. Suppose that X : D′ → CD is a functor. Then
for each object d of D there is an associated functor Xd : D′ → C given by the
formula Xd(d

′) = (X(d′))(d). It is not hard to check that for each d ∈ Ob(D) there
are natural isomorphisms (colimX)(d) ∼= colim(Xd) and (limX)(d) ∼= lim(Xd).
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3. Model categories

In this section we introduce the concept of a model category and give some exam-
ples. Since checking that a category has a model category structure is not usually
trivial, we defer verifying the examples until later (§7 and §8).

3.1. Definition. Given a commutative square diagram of the following form

A
f
−→ X

i ↓ p ↓

B
g
−→ Y

(3.2)

a lift or lifting in the diagram is a map h : B → X such that the resulting diagram
with five arrows commutes, i.e., such that hi = f and ph = g.

3.3. Definition. A model category is a category C with three distinguished classes
of maps:

(i) weak equivalences (
∼
→),

(ii) fibrations (→→), and
(iii) cofibrations (→֒)

each of which is closed under composition and contains all identity maps. A map
which is both a fibration (resp. cofibration) and a weak equivalence is called an
acyclic fibration (resp. acyclic cofibration). We require the following axioms.

MC1 Finite limits and colimits exist in C (2.14, 2.21).
MC2 If f and g are maps in C such that gf is defined and if two of the three maps

f , g, gf are weak equivalences, then so is the third.
MC3 If f is a retract of g (2.6) and g is a fibration, cofibration, or a weak equiva-

lence, then so is f .
MC4 Given a commutative diagram of the form 3.2, a lift exists in the diagram

in either of the following two situations: (i) i is a cofibration and p is an acyclic
fibration, or (ii) i is an acyclic cofibration and p is a fibration.

MC5 Any map f can be factored in two ways: (i) f = pi, where i is a cofibration
and p is an acyclic fibration, and (ii) f = pi, where i is an acyclic cofibration
and p is a fibration.

Remark. The above axioms describe what in [22] is called a “closed” model category;
since no other kind of model category comes up in this paper, we have decided to
leave out the word “closed”. In [22] Quillen uses the terms “trivial cofibration”
and “trivial fibration” instead of “acyclic cofibration” and “acyclic fibration”. This
conflicts with the ordinary homotopy theoretic use of “trivial fibration” to mean a
fibration in which the total space is equivalent to the product of the base and fibre;
in geometric examples of model categories, the “acyclic fibrations” of 3.3 usually
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turn out to be fibrations with a trivial fibre, so that the total space is equivalent
to the base. We have followed Quillen’s later practice in using the word “acyclic”.
The axioms as stated are taken from [23].

3.4. Remark. By MC1 and 2.25, a model category C has both an initial object
∅ and a terminal object ∗. An object A ∈ C is said to be cofibrant if ∅ → A
is a cofibration and fibrant if A → ∗ is a fibration. Later on, when we define the
homotopy category Ho(C), we will see that HomHo(C)(A,B) is in general a quotient
of HomC(A,B) only if A is cofibrant and B is fibrant; if A is not cofibrant or B is
not fibrant, then there are not in general a sufficient number of maps A→ B in C
to represent every map in the homotopy category.
The factorizations of a map in a model category provided by MC5 are not

required to be functorial. In most examples (e.g., in cases in which the factorizations
are constructed by the small object argument of 7.12) the factorizations can be
chosen to be functorial.

We now give some examples of model categories.

3.5. Example. (see §8) The category Top of topological spaces can be given the
structure of a model category by defining f : X → Y to be

(i) a weak equivalence if f is a weak homotopy equivalence (8.1)
(ii) a cofibration if f is a retract (2.6) of a map X → Y ′ in which Y ′ is obtained

from X by attaching cells (8.8), and
(iii) a fibration if f is a Serre fibration (8.2).

With respect to this model category structure, the homotopy category Ho(Top) is
equivalent to the usual homotopy category of CW-complexes (cf. 8.4).

The above model category structure seems to us to be the one which comes
up most frequently in everyday algebraic topology. It puts an emphasis on CW-
structures; every object is fibrant, and the cofibrant objects are exactly the
spaces which are retracts of generalized CW-complexes (where a “generalized CW-
complex” is a space built up from cells, without the requirement that the cells
be attached in order by dimension.) In some topological situations, though, weak
homotopy equivalences are not the correct maps to focus on. It is natural to ask
whether there is another model category structure on Top with respect to which
the “weak equivalences” are the ordinary homotopy equivalences. There is a beau-
tiful paper of Strom [26] which gives a positive answer to this question. If B is a
topological space, call a subspace inclusion i : A→ B a closed Hurewicz cofibration
if A is a closed subspace of B and i has the homotopy extension property, i.e., for
every space Y a lift (3.1) exists in every commutative diagram

B × 0 ∪ A× [0, 1] −→ Y

↓ ↓

B × [0, 1] −→ ∗

.



14 Dwyer and Spalinski Chapter 1

Call a map p : X → Y a Hurewicz fibration if p has the homotopy lifting property,
i.e., for every space A a lift exists in every commutative diagram

A× 0 −→ X

↓ p ↓

A× [0, 1] −→ Y

.

3.6. Example. [26] The category Top of topological spaces can be given the struc-
ture of a model category by defining a map f : X → Y to be

(i) a weak equivalence if f is a homotopy equivalence,
(ii) a cofibration if f is a closed Hurewicz cofibration, and
(iii) a fibration if f is a Hurewicz fibration.

With respect to this model category structure, the homotopy category Ho(Top) is
equivalent to the usual homotopy category of topological spaces.

Remark. The model category structure of 3.6 is quite different from the one of
3.5. For example, let W be the “Warsaw circle”; this is the compact subspace of
the plane given by the union of the interval [−1, 1] on the y-axis, the graph of
y = sin(1/x) for 0 < x 6 1, and an arc joining (1, sin(1)) to (0,−1). Then the
map from W to a point is a weak equivalence with respect to the model category
structure of 3.5 but not a weak equivalence with respect to the model category
structure of 3.6.

It turns out that many purely algebraic categories also carry model category
structures. Let R be a ring and ChR the category of nonnegatively graded chain
complexes over R.

3.7. Example. (see §7) The category ChR can be given the structure of a model
category by defining a map f : M → N to be

(i) a weak equivalence if f induces isomorphisms on homology groups,
(ii) a cofibration if for each k > 0 the map fk : Mk → Nk is a monomorphism

with a projective R-module (§7.1) as its cokernel, and
(iii) a fibration if for each k > 1 the map fk : Mk → Nk is an epimorphism.

The cofibrant objects in ChR are the chain complexes M such that each Mk is a
projective R-module. The homotopy category Ho(ChR) is equivalent to the cate-
gory whose objects are these cofibrant chain complexes and whose morphisms are
ordinary chain homotopy classes of maps (cf. proof of 7.3).

Given a model category, it is possible to construct many other model categories
associated to it. We will do quite a bit of this in §10. Here are two elementary
examples.

3.8. Example. Let C be a model category. Then the opposite category Cop (2.4)
can be given the structure of a model category by defining a map fop : Y → X to
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be
(i) a weak equivalence if f : X → Y is a weak equivalence in C,
(ii) a cofibration if f : X → Y is a fibration in C,
(iii) a fibration if f : X → Y is a cofibration in C.

3.9. Duality. Example 3.8 reflects the fact that the axioms for a model cate-
gory are self-dual. Let P be a statement about model categories and P ∗ the dual
statement obtained by reversing the arrows in P and switching “cofibration” with
“fibration”. If P is true for all model categories, then so is P ∗.

Remark. The duality construction in 3.9 corresponds via 3.5 or 3.6 to what is
usually called “Eckmann-Hilton” duality in ordinary homotopy theory. Since there
are interesting true statements P about the homotopy theory of topological spaces
whose Eckmann-Hilton dual statements P ∗ are not true, it must be that there are
interesting facts about ordinary homotopy theory which cannot be derived from
the model category axioms. Of course this is something to be expected; the axioms
are an attempt to codify what all homotopy theories might have in common, and
just about any particular model category has additional properties that go beyond
what the axioms give.

If C is a category and A is an object of C, the under category [17, p. 46] (or
comma category) A↓C is the category in which an object is a map f : A → X in
C. A morphism in this category from f : A→ X to g : A→ Y is a map h : X → Y
in C such that hf = g.

3.10. Remark. LetC be a model category and A an object ofC. Then it is possible
to give A↓C the structure of a model category by defining h : (A→ X)→ (A→ Y )
in A↓C to be

(i) a weak equivalence if h : X → Y is a weak equivalence in C,
(ii) a cofibration if h : X → Y is a cofibration in C, and
(iii) a fibration if h : X → Y is a fibration in C.

Remark. Let Top have the model category structure of 3.6 and as usual let ∗ be the
terminal object of Top, i.e., the space with one point. Then ∗↓Top is the category
of pointed spaces, and an object X of ∗↓Top is cofibrant if and only if the basepoint
of X is closed and nondegenerate [25, p. 380]. Thus (3.7) from the point of view
of model categories, having a nondegenerate basepoint is for a space what being
projective is for a chain complex!

3.11. Remark. In the situation of 3.10, we leave it to the reader to define the over
category C↓A and describe a model category structure on it. If C is the category of
spaces (3.5 and 3.6), the model category structure on C↓A is related to fibrewise
homotopy theory [15].
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In the remainder of this section we make some preliminary observations about
model categories.

3.12. Lifting Properties. A map i : A→ B is said to have the left lifting property
(LLP) with respect to another map p : X → Y and p is said to have the right lifting
property (RLP) with respect to i if a lift exists (3.1) in any diagram of the form
3.2.

Proposition 3.13. Let C be a model category.
(i) The cofibrations in C are the maps which have the LLP with respect to

acyclic fibrations.
(ii) The acyclic cofibrations in C are the maps which have the LLP with respect

to fibrations.
(iii) The fibrations in C are the maps which have the RLP with respect to acyclic

cofibrations.
(iv) The acyclic fibrations in C are the maps which have the RLP with respect

to cofibrations.

Proof. Axiom MC4 implies that an (acyclic) cofibration or an (acyclic) fibration
has the stated lifting property. In each case we need to prove the converse. Since
the four proofs are very similar (and in fact statements (iii) and (iv) follow from (i)
and (ii) by duality), we only give the first proof. Suppose that f : K → L has the
LLP with respect to all acyclic fibrations. Factor f as a composite K →֒ L′

∼
→→ L

as in MC5(i), so i : K → L′ is a cofibration and p : L′ → L is an acyclic fibration.
By assumption there exists a lifting g : L→ L′ in the following diagram:

K
i
−→ L′

f ↓ p ↓ ∼

L
id
−→ L

.

This implies that f is a retract of i:

K
id
−→ K

id
−→ K

f ↓ i ↓ f ↓

L
g
−→ L′

p
−→ L.

By MC3 we conclude that f is a cofibration.

Remark. Proposition 3.13 implies that the axioms for a model category are overde-
termined in some sense. This has the following practical consequence. If we are
trying to set up a model category structure on some given category and have cho-
sen the fibrations and the weak equivalences, then the class of cofibrations is pinned
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down by property 3.13(i). Dually, if we have chosen the cofibrations and weak equiv-
alences, the class of fibrations is pinned down by property 3.13(iii). Verifying the
axioms then comes down in part to checking certain consistency conditions.

Proposition 3.14. Let C be a model category.
(i) The class of cofibrations in C is stable under cobase change (2.16).
(ii) The class of acyclic cofibrations is stable under cobase change.
(iii) The class of fibrations is stable under base change (2.23).
(iv) The class of acyclic fibrations is stable under base change.

Proof. The second two statements follow from the first two by duality (3.9), so we
only prove the first and indicate the proof of the second. Assume that i : K →֒ L
is a cofibration, and pick a map f : K → K ′. Construct a pushout diagram (cf.
MC1):

K
f
−→ K ′

i ↓ j ↓

L
g
−→ L′.

We have to prove that j is a cofibration. By (i) of the previous proposition it
is enough to show that j has the LLP with respect to an acyclic fibration. Let
p : E → B be an acyclic fibration and consider a lifting problem

K ′
a
−→ E

j ↓ p ↓

L′
b
−→ B

. (3.15)

Enlarge this to the following diagram

K
f
−→ K ′

a
−→ E

i ↓ p ↓

L
g
−→ L′

b
−→ B

.

Since i is a cofibration, there is a lifting h : L → E in the above diagram. By the
universal property of pushouts, the maps h : L → E and a : K ′ → E induce the
desired lifting in 3.15. The proof of part (ii) is analogous, the only difference being
that we need to invoke 3.13(ii) instead of 3.13(i).

4. Homotopy Relations on Maps

In this section C is some fixed model category, and A and X are objects of C. Our
goal is to exploit the model category axioms to construct some reasonable homotopy
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relations on the set HomC(A,X) of maps from A to X. We first study a notion of
left homotopy, defined in terms of cylinder objects, and then a dual (3.9) notion of
right homotopy, defined in terms of path objects. It turns out (4.21) that the two
notions coincide in what will turn out to be the most important case, namely if A
is cofibrant and X is fibrant.

4.1. Cylinder objects and left homotopy

4.2. Definition. A cylinder object for A is an object A ∧ I of C together with a
diagram (MC1, 2.15):

A
∐

A
i
→ A ∧ I

∼
→ A

which factors the folding map idA + idA : A
∐

A → A (2.15). A cylinder object
A ∧ I is called

(i) a good cylinder object, if A
∐

A→ A ∧ I is a cofibration, and
(ii) a very good cylinder object, if in addition the map A∧I → A is a (necessarily

acyclic) fibration.

If A∧I is a cylinder object for A, we will denote the two structure maps A→ A∧I
by i0 = i · in0 and i1 = i · in1 (cf. 2.15).

4.3. Remark. By MC5, at least one very good cylinder object for A exists. The
notation A∧ I is meant to suggest the product of A with an interval (Quillen even
uses the notation “A× I” for a cylinder object). However, a cylinder object A∧ I is
not necessarily the product of A with anything in C; it is just an object of C with
the above formal property. An object A of C might have many cylinder objects
associated to it, denoted, say, A∧ I, A∧ I ′,. . ., etc. We do not assume that there is
some preferred natural cylinder object for A; in particular, we do not assume that
a cylinder object can be chosen in a way that is functorial in A.

Lemma 4.4. If A is cofibrant and A ∧ I is a good cylinder object for A, then the
maps i0, i1 : A→ A ∧ I are acyclic cofibrations.

Proof. It is enough to check this for i0. Since the identity map idA : A→ A factors

as A
i0→ A∧I

∼
→ A, it follows from MC2 that i0 is a weak equivalence. Since A

∐

A
is defined by the following pushout diagram (2.16)

∅ −→ A

cofibration ↓ in0 ↓

A
in1−→ A

∐

A
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it follows from 3.14 that the map in0 is a cofibration. Since i0 is thus the composite

A
in0→ A

∐

A→ A ∧ I,

of two cofibrations, it itself is a cofibration.

Definition. Two maps f, g : A → X in C are said to be left homotopic (written

f
l
∼ g) if there exists a cylinder object A ∧ I for A such that the sum map f + g :

A
∐

A → X (2.15) extends to a map H : A ∧ I → X, i.e. such that there exists a
map H : A ∧ I → X with H(i0 + i1) = f + g. Such a map H is said to be a left
homotopy from f to g (via the cylinder object A∧ I). The left homotopy is said to
be good (resp. very good) if A∧ I is a good (resp. very good) cylinder object for A.

Example. Let C be the category of topological spaces with the model category
structure described in 3.5. Then one choice of cylinder object for a space A is
the product A × [0, 1]. The notion of left homotopy with respect to this cylinder
object coincides with the usual notion of homotopy. Observe that if A is not a
CW-complex, A× [0, 1] is not usually a good cylinder object for A.

4.5. Remark. If f
l
∼ g via the homotopy H, then it follows from MC2 that the

map f is a weak equivalence if and only if g is. To see this, note that as in the
proof of 4.4 the maps i0 and i1 are weak equivalences, so that if f = Hi0 is a weak
equivalence, so is H and hence so is g = Hi1.

Lemma 4.6. If f
l
∼ g : A → X, then there exists a good left homotopy from f to

g. If in addition X is fibrant, then there exists a very good left homotopy from f to
g.

Proof. The first statement follows from applyingMC5(i) to the map A
∐

A→ A∧I,
where A∧I is the cylinder object in some left homotopy from f to g. For the second,
choose a good left homotopy H : A ∧ I → X from f to g. By MC5(i) and MC2,
we may factor A ∧ I

∼
→ A as

A ∧ I
∼
→֒ A ∧ I ′

∼
→→ A.

Applying MC4 to the following diagram

A ∧ I
H
−→ X

↓ ↓

A ∧ I ′ −→ ∗

gives the desired very good homotopy H ′ : A ∧ I ′ → X.

Lemma 4.7. If A is cofibrant, then
l
∼ is an equivalence relation on HomC(A,X).
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Proof. Since we can take A itself as a cylinder object for A, we can take f itself
as a left homotopy between f and f . Let s : A

∐

A → A
∐

A be the map which
switches factors (technically, s = in1+ in0). The identity (g+ f) = (f + g)s shows

that if f
l
∼ g, then g

l
∼ f . Suppose that f

l
∼ g and g

l
∼ h. Choose a good (4.6)

left homotopy H : A ∧ I → X from f to g (i.e. Hi0 = f,Hi1 = g) and a good left
homotopy H ′ : A∧ I ′ → X from g to h (i.e. H ′i′0 = g,H ′i′1 = h). Let A∧ I ′′ be the
pushout of the following diagram:

A ∧ I
i1

∼
←− A

i′0

∼
−→ A ∧ I ′ .

Since the maps i1 : A→ A∧I and i′0 : A→ A∧I ′ are acyclic cofibrations, it follows
from 3.14 and the universal property of pushouts (2.16) that A ∧ I ′′ is a cylinder
object for A. Another application of 2.16 to the maps H and H ′ gives the desired
homotopy H ′′ : A ∧ I ′′ → X from f to h.

Let πl(A,X) denote the set of equivalence classes of HomC(A,X) under the
equivalence relation generated by left homotopy.

4.8. Remark. The word “generated” in the above definition of πl(A,X) is im-
portant. We will sometimes consider πl(A,X) even if A is not cofibrant; in this
case left homotopy, taken on its own, is not necessarily an equivalence relation on
HomC(A,X).

Lemma 4.9. If A is cofibrant and p : Y → X is an acyclic fibration, then compo-
sition with p induces a bijection:

p∗ : π
l(A, Y )→ πl(A,X), [f ] 7→ [pf ].

Proof. The map p∗ is well defined, since if f, g : A → Y are two maps and H is
a left homotopy from f to g, then pH is a left homotopy from pf to pg. To show
that p∗ is onto, choose [f ] ∈ πl(A,X). By MC4(i), a lift g : A → Y exists in the
following diagram:

∅ −→ Y

↓ p ↓ ∼

A
f
−→ X

.

Clearly p∗[g] = [pg] = [f ]. To prove that p∗ is one to one, let f, g : A → Y and

suppose that pf
l
∼ pg : A→ X. Choose (4.6) a good left homotopy H : A∧ I → X
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from pf to pg. By MC4(i), a lifting exists in the following diagram

A
∐

A
f+g
−→ Y

↓ p ↓ ∼

A ∧ I
H
−→ X.

and gives the desired left homotopy from f to g.

Lemma 4.10. Suppose that X is fibrant, that f and g are left homotopic maps

A→ X, and that h : A′ → A is a map. Then fh
l
∼ gh.

Proof. By 4.6, we can choose a very good left homotopy H : A ∧ I → X between f
and g. Next choose a good cylinder object for A′:

A′
∐

A′
j
→֒ A′ ∧ I

∼
→ A′.

By MC4, there is a lifting k : A′ ∧ I → A ∧ I in the following diagram:

A′
∐

A′
h
∐

h
−→ A

∐

A
i
−→ A ∧ I

j ↓ ∼ ↓

A′ ∧ I
∼
−→ A′

h
−→ A

.

It is easy to check that Hk is the desired homotopy.

Lemma 4.11. If X is fibrant, then the composition in C induces a map:

πl(A′, A)× πl(A,X)→ πl(A′, X), ([h], [f ]) 7→ [fh].

Proof. Note that we are not assuming that A is cofibrant, so that two maps A→ X
which represent the same element of πl(A,X) are not necessarily directly related

by a left homotopy (4.8). Nevertheless, it is enough to show that if h
l
∼ k : A′ → A

and f
l
∼ g : A → X then fh and gk represent the same element of πl(A′, X). For

this it is enough to check both that fh
l
∼ gh : A′ → X and that gh

l
∼ gk : A′ → X.

The first homotopy follows from the previous lemma. The second is obtained by
composing the homotopy between h and k with g.

4.12. Path objects and right homotopies

By duality (3.9), what we have proved so far in this section immediately gives
corresponding results “on the other side”.
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Definition. A path object for X is an object XI of C together with a diagram (2.22)

X
∼
→ XI p

→ X ×X

which factors the diagonal map (idX , idX) : X → X × X. A path object XI is
called

(i) a good path object, if XI → X ×X is a fibration, and
(ii) a very good path object, if in addition the map X → XI is a (necessarily

acyclic) cofibration.

4.13. Remark. By MC5, at least one very good path object exists for X. The
notation XI is meant to suggest a space of paths in X, i.e., a space of maps from
an interval into X. However a path object XI is not in general a function object of
any kind; it is just some object of C with the above formal property. An object X
of C might have many path objects associated to it, denoted XI , XI′

,. . ., etc.

We denote the two maps XI → X by p0 = pr0 · p and p1 = pr1 · p (cf. 2.22).

Lemma 4.14. If X is fibrant and XI is a good path object for X, then the maps
p0, p1 : XI → X are acyclic fibrations.

Definition. Two maps f, g : A→ X are said to be right homotopic (written f
r
∼ g)

if there exists a path object XI for X such that the product map (f, g) : A→ X×X
lifts to a map H : A→ XI . Such a map H is said to be a right homotopy from f to
g (via the path object XI). The right homotopy is said to be good (resp.very good)
if XI is a good (resp. very good) path object for X.

Example. Let the category of topological spaces have the structure described in 3.5.
Then one choice of path object for a space X is the mapping space Map([0, 1], X).

Lemma 4.15. If f
r
∼ g : A→ X then there exists a good right homotopy from f to

g. If in addition A is cofibrant, then there exists a very good right homotopy from
f to g.

Lemma 4.16. If X is fibrant, then
r
∼ is an equivalence relation on HomC(A,X).

Let πr(A,X) denote the set of equivalence classes of HomC(A,X) under the
equivalence relation generated by right homotopy.

Lemma 4.17. If X is fibrant and i : A→ B is an acyclic cofibration, then compo-
sition with i induces a bijection:

i∗ : πr(B,X)→ πr(A,X) .

Lemma 4.18. Suppose that A is cofibrant, that f and g are right homotopic maps
from A to X, and that h : X → Y is a map. Then hf

r
∼ hg.

Lemma 4.19. If A is cofibrant then the composition in C induces a map
πr(A,X)× πr(X,Y )→ πr(A, Y ).
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4.20. Relationship between left and right homotopy

The following lemma implies that if A is cofibrant and X is fibrant, then the left
and right homotopy relations on HomC(A,X) agree.

Lemma 4.21. Let f, g : A→ X be maps.

(i) If A is cofibrant and f
l
∼ g, then f

r
∼ g.

(ii) If X is fibrant and f
r
∼ g, then f

l
∼ g.

4.22. Homotopic maps. If A is cofibrant and X is fibrant, we will denote the
identical right homotopy and left homotopy equivalence relations on HomC(A,X)
by the symbol “∼” and say that two maps related by this relation are homotopic.
The set of equivalence classes with respect to this relation is denoted π(A,X).

Proof of 4.21. Since the two statements are dual, we only have to prove the first
one. By 4.6 there exists a good cylinder object

A
∐

A
i0+i1−→ A ∧ I

j
→ A

for A and a homotopy H : A ∧ I → X from f to g. By 4.4 the map i0 is an acyclic
cofibration. Choose a good path object (4.13)

X
q
→ XI (p0,p1)

−→ X ×X

for X. By MC4 it is possible to find a lift K : A ∧ I → XI in the diagram

A
qf
−→ XI

i0 ↓ ↓ (p0,p1)

A ∧ I
(fj,H)
−→ X ×X

.

The composite Ki1 : A→ XI is the desired right homotopy from f to g.

4.23. Remark. Suppose that A is cofibrant, X is fibrant, A∧ I is some fixed good
cylinder object for A and XI is some fixed good path object for X. Let f, g : A→ X
be maps. The proof of 4.21 shows that f ∼ g if and only if f

r
∼ g via the fixed path

object XI . Dually, f ∼ g if and only if f
l
∼ g via the fixed cylinder object A ∧ I.

We will need the following observation later on.

Lemma 4.24. Suppose that f : A → X is a map in C between objects A and X
which are both fibrant and cofibrant. Then f is a weak equivalence if and only if f
has a homotopy inverse, i.e., if and only if there exists a map g : X → A such that
the composites gf and fg are homotopic to the respective identity maps.
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Proof. Suppose first that f is a weak equivalence. By MC5 we can factor f as a
composite

A
q

∼
→֒ C

p
→→ X (4.25)

in which by MC2 the map p is also a weak equivalence. Because q : A → C is a
cofibration and A is fibrant, an application of MC4 shows that there exists a left
inverse for q, i.e. a morphism r : C → A such that rq = idA. By lemma 4.17, q
induces a bijection q∗ : πr(C,C)→ πr(A,C), [g] 7→ [gq]. Since q∗([qr]) = [qrq] = [q],

we conclude that qr
r
∼ 1C and hence that r is a two-sided right (equivalently left)

homotopy inverse for q. A dual argument (3.9) gives a two-sided homotopy inverse
of p, say s. The composite rs is a two sided homotopy inverse of f = pq.

Suppose next that f has a homotopy inverse. By MC5 we can find a factorization
f = pq as in 4.25. Note that the object C is both fibrant and cofibrant. By MC2,
in order to prove that f is a weak equivalence it is enough to show that p is a weak
equivalence. Let g : X → A be a homotopy inverse for f , and H : X ∧ I → X a
homotopy between fg and idX . By MC4 we can find a lift H ′ : X ∧ I → C in the
diagram

X
qg
−→ C

i0 ↓ p ↓

X ∧ I
H
−→ X

.

Let s = H ′i1, so that ps = idX . The map q is a weak equivalence, so by the result
just proved above q has a homotopy inverse, say r. Since pq = f , composing on the
right with r gives p ∼ fr (4.11). Since in addition s ∼ qg by the homotopy H ′, it
follows (4.11, 4.19) that

sp ∼ qgp ∼ qgfr ∼ qr ∼ idC .

By 4.5, then, sp is a weak equivalence. The commutative diagram

C
idC−→ C

idC−→ C

↓ p ↓ sp ↓ p

X
s
−→ C

p
−→ X

shows that p is a retract (2.6) of sp, and hence by MC3 that the map p is a weak
equivalence.

5. The homotopy category of a model category

In this section we will use the machinery constructed in §4 to give a quick construc-
tion of the homotopy category Ho(C) associated to a model category C.
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We begin by looking at the following six categories associated to C.

Cc - the full (2.3) subcategory of C generated by the cofibrant objects in C.
Cf - the full subcategory of C generated by the fibrant objects in C.
Ccf - the full subcategory ofC generated by the objects ofC which are both fibrant

and cofibrant.
πCc - the category consisting of the cofibrant objects in C and whose morphisms

are right homotopy classes of maps (see 4.19).
πCf - the category consisting of fibrant objects in C and whose morphisms are left

homotopy classes of maps (see 4.11).
πCcf - the category consisting of objects in C which are both fibrant and cofibrant,

and whose morphisms are homotopy classes (4.22) of maps.

These categories will be used as tools in defining Ho(C) and constructing a
canonical functor C → Ho(C). For each object X in C we can apply MC5(i) to
the map ∅ → X and obtain an acyclic fibration pX : QX

∼
→→ X with QX cofibrant.

We can also apply MC5(ii) to the map X → ∗ and obtain an acyclic cofibration

iX : X
∼
→֒ RX with RX fibrant. If X is itself cofibrant, let QX = X; if X is fibrant,

let RX = X.

Lemma 5.1. Given a map f : X → Y in C there exists a map f̃ : QX → QY
such that the following diagram commutes:

QX
f̃
−→ QY

pX ↓ ∼ pY ↓ ∼

X
f
−→ Y

.

The map f̃ depends up to left homotopy or up to right homotopy only on f , and
is a weak equivalence if and only if f is. If Y is fibrant, then f̃ depends up to left
homotopy or up to right homotopy only on the left homotopy class of f .

Proof. We obtain f̃ by applying MC4 to the diagram:

∅ −→ QY

↓ ∼ ↓ pY

QX
f ·pX
−→ Y

.

The statement about the uniqueness of f̃ up to left homotopy follows from 4.9. For
the statement about right homotopy, observe that QX is cofibrant, and so by 4.21(i)
two maps with domain QX which are left homotopic are also right homotopic. The
weak equivalence condition follows from MC2, and the final assertion from 4.11.
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5.2. Remark. The uniqueness statements in 5.1 imply that if f = idX then f̃ is
right homotopic to idQX . Similarly, if f : X → Y and g : Y → Z and h = gf , then

h̃ is right homotopic to g̃f̃ . Hence we can define a functor Q : C → πCc sending
X → QX and f : X → Y to the right homotopy class [f̃ ] ∈ πr(QX,QY ).

The dual (3.9) to 5.1 is the following statement.

Lemma 5.3. Given a map f : X → Y in C there exists a map f̄ : RX → RY such
that the following diagram commutes:

X
f
−→ Y

iX ↓ ∼ iY ↓ ∼

RX
f̄
−→ RY.

The map f̄ depends up to right homotopy or up to left homotopy only on f , and is
a weak equivalence if and only if f is. If X is cofibrant, then f̄ depends up to right
homotopy or up to left homotopy only on the right homotopy class of f .

5.4. Remark. The uniqueness statements in 5.3 imply that if f = idX then f̄ is
left homotopic to idRX . Moreover, if f : X → Y and g : Y → Z and h = gf , then
h̄ is left homotopic to ḡf̄ , Hence we can define a functor R : C → πCf sending
X → RX and f : X → Y to the left homotopy class [f̄ ] ∈ πl(RX,RY ).

Lemma 5.5. The restriction of the functor Q : C→ πCc to Cf induces a functor
Q′ : πCf → πCcf . The restriction of the functor R : C → πCf to Cc induces a
functor R′ : πCc → πCcf .

Proof. The two statements are dual to one another, and so we will prove only the
second. Suppose that X and Y are cofibrant objects of C and that f, g : X → Y
are maps which represent the same map in πCc; we must show that Rf = Rg. It
is enough to do this in the special case f

r
∼ g in which f and g are directly related

by a right homotopy; however in this case it is a consequence of 5.3.

5.6. Definition. The homotopy category Ho(C) of a model category C is the cat-
egory with the same objects as C and with

HomHo(C)(X,Y ) = HomπCcf
(R′QX,R′QY ) = π(RQX,RQY ) .

5.7. Remark. There is a functor γ : C → Ho(C) which is the identity on objects
and sends a map f : X → Y to the map R′Q(f) : R′Q(X) → R′Q(Y ). If each
of the objects X and Y is both fibrant and cofibrant, then by construction the
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map γ : HomC(X,Y ) → HomHo(C)(X,Y ) is surjective and induces a bijection
π(X,Y ) ∼= HomHo(C)(X,Y ).

It is natural to ask whether or not dualizing the definition of Ho(C) by replacing
the composite functor R′Q by Q′R would give anything different. The answer is
that it would not; rather than prove this directly, though, we will give a symmetrical
construction of the homotopy category in the next section. There are some basic
observations about Ho(C) that will come in handy later on.

Proposition 5.8. If f is a morphism of C, then γ(f) is an isomorphism in Ho(C)
if and only if f is a weak equivalence. The morphisms of Ho(C) are generated under
composition by the images under γ of morphisms of C and the inverses of images
under γ of weak equivalences in C.

Proof. If f : X → Y is a weak equivalence in C, then R′Q(f) is represented by a
map f ′ : RQ(X) → RQ(Y ) which is also a weak equivalence (see 5.1 and 5.3); by
4.24, then, the map f ′ has an inverse up to left or right homotopy and represents
an isomorphism in πCcf . This isomorphism is exactly γ(f). On the other hand, if
γ(f) is an isomorphism then f ′ has an inverse up to homotopy and is therefore a
weak equivalence by 4.24; it follows easily that f is a weak equivalence.
Observe by the above that for any object X of C the map γ(iQX)γ(pX)−1 in

Ho(C) is an isomorphism from X to RQ(X). Moreover, for two objects X and Y
of C, the functor γ induces an epimorphism (5.7)

HomC(RQ(X), RQ(Y ))→ HomHo(C)(RQ(X), RQ(Y )) .

Consequently, any map f : X → Y in Ho(C) can be represented as a composite

f = γ(pY )γ(iQY )
−1γ(f ′)γ(iQX)γ(pX)−1

for some map f ′ : RQ(X)→ RQ(Y ) in C.

Proposition 5.8 has the following simple but useful consequence.

Corollary 5.9. If F and G are two functors Ho(C) → D and t : Fγ → Gγ is a
natural transformation, then t also gives a natural transformation from F to G.

Proof. It is necessary to check that for each morphism h of Ho(C) an appropriate
diagram D(h) commutes. By assumption D(h) commutes if h = γ(f) or h = γ(g)−1

for some morphism f in C or weak equivalence g in C. It is easy to check that if
h = h1h2, theD(h) commutes ifD(h1) commutes andD(h2) commutes. The lemma
then follows from the fact (5.8) that any map of Ho(C) is a composite of maps of
the form γ(f) and γ(g)−1.

Lemma 5.10. Let C be a model category and F : C→ D be a functor taking weak

equivalences in C into isomorphisms in D. If f
l
∼ g : A → X or f

r
∼ g : A → X,

then F (f) = F (g) in D.
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Proof. We give a proof assuming f
l
∼ g, the other case is dual. Choose (4.6) a good

left homotopy H : A ∧ I → X from f to g, so that A ∧ I is a good cylinder object
for A:

A
∐

A
i0+i1
→֒ A ∧ I

∼

w
−→ A .

Since wi0 = wi1(= idA), we have F (w)F (i0) = F (w)F (i1). Since w is a weak
equivalence, the map F (w) is an isomorphism and it follows that F (i0) = F (i1).
Hence F (f) = F (H)F (i0) is the same as F (g) = F (H)F (i1).

Proposition 5.11. Suppose that A is a cofibrant object of C and X is a fibrant
object of C. Then the map γ : HomC(A,X) → HomHo(C)(A,X) is surjective, and
induces a bijection π(A,X) ∼= HomHo(C)(A,X).

Proof. By 5.10 and 5.8 the functor γ identifies homotopic maps and so induces a
map π(A,X)→ HomHo(C)(A,X). Consider the commutative diagram

π(RA,QX) −→ π(A,X)

γ ↓ γ ↓

HomHo(C)(RA,QX) −→ HomHo(C)(A,X)

in which the horizontal arrows are induced by the pair (iA, pX). By 5.8 the lower
horizontal map is a bijection, while by 4.9 and 4.17 the upper horizontal map is
a bijection. As indicated in 5.7, the left-hand vertical map is also a bijection. The
desired result follows immediately.

6. Localization of Categories

In this section we will give a conceptual interpretation of the homotopy category of
a model category. Surprisingly, this interpretation depends only on the class of weak
equivalences. This suggests that in a model category the weak equivalences carry the
fundamental homotopy theoretic information, while the cofibrations, fibrations, and
the axioms they satisfy function mostly as tools for making various constructions
(e.g., the constructions later on in §10). This also suggests that in putting a model
category structure on a category, it is most important to focus on picking the class
of weak equivalences; choosing fibrations and cofibrations is a secondary issue.

6.1. Definition. Let C be a category, and W ⊆ C a class of morphisms. A functor
F : C→ D is said to be a localization of C with respect to W if

(i) F (f) is an isomorphism for each f ∈W , and
(ii) whenever G : C → D′ is a functor carrying elements of W into isomor-

phisms, there exists a unique functor G′ : D→ D′ such that G′F = G.
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Condition 6.1(ii) guarantees that any two localizations ofC with respect toW are
canonically isomorphic. If such a localization exists, we denote it by C→W−1C.

Example. Let Ab be the category of abelian groups, and W the class of morphisms
f : A→ B such that ker(f) and coker(f) are torsion groups. Let D be the category
with the same objects, but with HomD(A,B) = HomAb(Q ⊗ A,Q ⊗ B). Define
F : Ab → D to be the functor which sends an object A to itself and a map f to
Q ⊗ f . It is an interesting exercise to verify directly that F is the localization of
Ab with respect to W [12, p. 15].

Theorem 6.2. Let C be a model category and W ⊆ C the class of weak equiv-
alences. Then the functor γ : C → Ho(C) is a localization of C with respect to
W .

More informally, Theorem 6.2 says that if C is a model category and W ⊆ C is
the class of weak equivalences, then W−1C exists and is isomorphic to Ho(C).

Proof of 6.2. We have to verify the two conditions in 6.1 for γ. Condition 6.1(i)
is proved in 5.8. For 6.1(ii), suppose given a functor G : C → D carrying weak
equivalences to isomorphisms. We must construct a functor G′ : Ho(C) → D such
that G′γ = G, and show that G′ is unique. Since the objects of Ho(C) are the same
as the objects of C, the effect of G′ on objects is obvious. Pick a map f : X → Y
in Ho(C), which is represented by a map f ′ : RQ(X)→ RQ(Y ), well defined up to
homotopy (4.22). Observe by 5.10 that G(f ′) depends only on the homotopy class
of f ′, and therefore only on f . Define G′(f) by the formula

G′(f) = G(pY )G(iQY )
−1G(f ′)G(iQX)G(pX)−1 .

It is easy to check that G′ is a functor, that is, respects identity maps and compo-
sitions. If f is the image of a map h : X → Y of C, then (5.1 and 5.3) after perhaps
altering f ′ up to right homotopy we can find a commutative diagram

X
pX
←− QX

iQX
−→ RQ(X)

h ↓ h̃ ↓ f ′ ↓

Y
pY
←− QY

iQY
−→ RQ(Y )

.

Applying G to this diagram shows that G′(f) = G(h) and thus that G′ extends
G, that is, G′γ = G. The uniqueness of G′ follows immediately from the second
statement in 5.8.

7. Chain complexes

Suppose that R is an associative ring with unit and let ModR denote the cate-
gory of left R-modules. Recall that the category ChR of (nonnegatively graded)
chain complexes of R-modules is the category in which an object M is a collection
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{Mk}k>0 of R-modules together with boundary maps ∂ : Mk →Mk−1 (k > 1) such
that ∂2 = 0. A morphism f : M → N is a collection of R-module homomorphisms
fk : Mk → Nk such that fk−1∂ = ∂fk. In this section we will construct a model cat-
egory structure (7.2) on ChR and give some indication (7.3) of how the associated
homotopy theory is related to homological algebra.

7.1. Preliminaries. For an object M of ChR, define the k-dimensional cycle mod-
ule Cyk(M) to be M0 if k = 0 and ker(∂ : Mk → Mk−1) if k > 0. Define the
k-dimensional boundary module Bdk(M) to be image(∂ : Mk+1 →Mk). There are
homology functors Hk : ChR →ModR (k > 0) given by HkM = Cyk(M)/Bdk(M)
(we think of these homology groups as playing the role for chain complexes that
homotopy groups do for a space). A chain complex M is acyclic if HkM = 0
(k > 0). Recall that an R-module P is said to be projective [6] if the following three
equivalent conditions hold:

(i) P is a direct summand of a free R-module,
(ii) every epimorphism f : A→ P of R-modules has a right inverse, or
(iii) for every epimorphism A→ B of R-modules, the induced map

HomModR
(P,A)→ HomModR

(P,B)

is an epimorphism.

The first goal of this section is to prove the following result.

Theorem 7.2. Define a map f : M → N in ChR to be
(i) a weak equivalence if the map f induces isomorphisms HkM → HkN (k >

0),
(ii) a cofibration if for each k > 0 the map fk : Mk → Nk is a monomorphism

with a projective R-module as its cokernel, and
(iii) a fibration if for each k > 0 the map fk : Mk → Nk is an epimorphism.

Then with these choices ChR is a model category.

After proving this we will make the following calculation. If A is an R-module,
let K(A,n) (n > 0) denote the object M of ChR with Mn = A and Mk = 0 for
k 6= n (these are the chain complex analogues of Eilenberg-Mac Lane spaces).

Proposition 7.3. For any two R-modules A and B and nonnegative integers m,
n there is a natural isomorphism

HomHo(ChR)(K(A,m),K(B,n)) ∼= Extn−mR (A,B) .

Here ExtkR is the usual Ext functor from homological algebra [6]. We take it to
be zero if k < 0.
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7.4. Proof of MC1–MC3

We should first note that the classes of weak equivalences, fibrations and cofibrations
clearly contain all identity maps and are closed under composition. It is easy to see
that limits and colimits in ChR can be computed degreewise, so that MC1 follows
from the fact that ModR has all small limits and colimits. Axiom MC2 is clear.
Axiom MC3 follows from the fact that in ModR a retract of an isomorphism,
monomorphism or epimorphism is another morphism of the same type (cf. 2.7).
It is also necessary to observe that a retract (i.e. direct summand) of a projective
R-module is projective.

7.5. Proof of MC4(i)

We need to show that a lift exists in every diagram of chain complexes:

A
g
−→ X

i ↓ ∼ ↓ p

B
h
−→ Y,

(7.6)

in which i is a cofibration and p is an acyclic fibration. By the definition of fibration,
pk is onto for k > 0. But since (p0)∗ : H0(X) → H0(Y ) is an isomorphism, an
application of the five lemma [17, p. 198] shows that p0 is also onto. Hence there is
a short exact sequence of chain complexes

0→ K → X → Y → 0

and it follows from the associated long exact homology sequence [6] [25, p. 181]
that K is acyclic.
We will construct the required map fk : Bk → Xk by induction on k. It is easy

to construct a plausible map f0, since, by 7.1 and the definition of cofibration,
the module B0 splits up to isomorphism as a direct sum A0 ⊕ P0, where P0 is a
projective module; the map f0 is chosen to be g0 on the factor A0 and any lifting
P0 → X0 of the given map P0 → Y0 on the factor P0. Assume that k > 0 and that
for j < k maps fj : Bj → Xj with the following properties have been constructed:

(i) ∂fj = fj−1∂ 1 6 j < k,
(ii) pjfj = hj 0 6 j < k,
(iii) fjij = gj 0 6 j < k.

Proceeding as for k = 0 we can write Bk
∼= Ak⊕Pk and construct a map f̃k : Bk →

Xk with properties (ii) and (iii) above. Let E : Bk → Xk−1 be the difference map
∂f̃k − fk−1∂, so that the map E measures the failure of f̃k to satisfy (i). Then

(a) ∂ · E = 0 because fk−1 satisfies (i),
(b) pk−1 · E = 0 because pkf̃k = hk commutes with ∂, and
(c) E · ik = 0 because f̃kik = gk commutes with ∂.
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It follows that E induces a map

E ′ : Bk/ik(Ak) ∼= Pk → Cyk−1(K) .

However, the chain complexK is acyclic and so the boundary mapKk → Cyk−1(K)
is an epimorphism. Since Pk is a projective, E ′ can be lifted to a map E ′′ : Pk → Kk,
which, after precomposition with the surjection Bk → Pk and postcomposition with
the injection Kk → Xk, gives a map E ′′′ : Bk → Xk. It is straightforward to check
that setting fk = f̃k − E

′′′ gives a map Bk → Xk which satisfies all conditions
(i)–(iii). This allows the induction to continue.

7.7. Proof of MC4(ii)

This depends on a definition and a few lemmas. Suppose that A is an R-module.
For n > 1 define the object Dn(A) of ChR to be the chain complex with

Dn(A)k =

{

0 k 6= n, n− 1
A k = n, n− 1;

The boundary map Dn(A)n → Dn(A)n−1 is the identity map of A. The letter “D”
in this notation stands for “disk”.

Lemma 7.8. Let A be an R-module and M an object of ChR. Then the map

HomChR
(Dn(A),M)→ HomModR

(A,Mn)

which sends f to fn is an isomorphism.

This is obvious by inspection. In fact, the functor Dn(–) is left adjoint to the
functor from ChR to ModR which sends M to Mn.

7.9. Remark. Lemma 7.8 immediately implies that if A is a projective R-module
then Dn(A) is what might be called a “projective chain complex”, in the sense
that if p : M → N is an epimorphism of chain complexes (or even an epimorphism
in degrees > 1), then any map Dn(A) → N lifts over p to a map Dn(A) → M .
Similarly, any chain complex sum of the form ⊕iDni

(Ai) is a “projective chain
complex” as long as each Ai is a projective R-module.

Lemma 7.10. Suppose that P is an acyclic object of ChR such that each Pk is
a projective R-module. Then each module CykP (k > 0) is projective, and P is
isomorphic as a chain complex to the sum ⊕k>1Dk(Cyk−1P ).

Proof. For k > 1 let P (k) be the chain subcomplex of P which agrees with P above
degree k − 1, contains Bdk−1P in degree k − 1, and vanishes below degree k − 1.
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The acyclicity condition gives isomorphisms P (k)/P (k+1) ∼= Dk(Cyk−1P ). It is clear
that Cy0(P ) = P0 is a projective R-module, and so by 7.9 there is an isomorphism
P = P (1) ∼= P (2) ⊕ D1(Cy0P ). Since any direct factor of a projective R-module
is projective, it follows that P (2) is a chain complex which satisfies the conditions
of the lemma but vanishes in degree 0. Repeating the above argument in degree 1
gives an isomorphism P (2) ∼= P (3) ⊕ D2(Cy1P ). The proof is now completed by
continuing along these lines.

7.11. Remark. Lemma 7.10 implies that if P is an acyclic object of ChR with
the property that each Pk is a projective R-module, then P is a “projective chain
complex” in the sense of 7.9.

Now we are ready to handle MC4(ii). We need to show that a lift exists in every
diagram of the form 7.6 in which i is an acyclic cofibration and p is a fibration. By
the definition of cofibration, the map i is a monomorphism of chain complexes and
the cokernel P of i is a chain complex with the property that each Pk is a projective
R-module. By the long exact homology sequence [6] associated to the short exact
sequence

0→ A→ B → P → 0

of chain complexes, P is acyclic. It follows from 7.11 that P is a “projective chain
complex” in the sense of 7.9, so that B is isomorphic to the direct sum A⊕P , and
the desired lift can be obtained by using the map g on the factor A and, as far as
the other factor is concerned, picking any lift P → X of the given map P → Y .

7.12. The small object argument

It is actually not hard to prove MC5 in the present case by making very elementary
constructions. We have decided, however, to give a more complicated proof that
works in a variety of circumstances. This proof depends on an argument, called
the “small object argument”, that is due to Quillen and is very well adapted to
producing factorizations with lifting properties. For the rest of this subsection we
will assume that C is a category with all small colimits.
Given a functor B : Z+ → C (ii) and an object A of C, the natural maps

B(n) → colimB induce maps HomC(A,B(n)) → HomC(A, colimB) which are
compatible enough for various n to give a canonical map (2.17)

colimnHomC(A,B(n))→ HomC(A, colimnB(n)) . (7.13)

7.14. Definition. An object A of C is said to be sequentially small if for every
functor B : Z+ → C the canonical map 7.13 is a bijection.
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7.15. Remark. A set is sequentially small if and only if it is finite. An R-module is
sequentially small if it has a finite presentation, i.e., it is isomorphic to the cokernel
of a map between two finitely generated free R-modules. An object M of ChR is
sequentially small if only a finite number of the modules Mk are non zero, and each
Mk has a finite presentation.

Let F = {fi : Ai → Bi}i∈I be a set of maps in C. Suppose that p : X → Y is
a map in C, and suppose that we desire to factor p as a composite X → X ′ → Y
in such a way that the map X ′ → Y has the RLP (3.12) with respect to all of the
maps in F . Of course we could choose X ′ = Y , but the secondary goal is to find
a factorization in which X ′ is as close to X as reasonably possible. We proceed as
follows. For each i ∈ I consider the set S(i) which contains all pairs of maps (g, h)
such that the following diagram commutes:

Ai
g
−→ X

fi ↓ p ↓

Bi
h
−→ Y

. (7.16)

We define the Gluing Construction G1(F , p) to be the object of C given by the
pushout diagram

∐

i∈I

∐

(g,h)∈S(i) Ai

+i+(g,h)g
−→ X

∐

fi ↓ i1 ↓
∐

i∈I

∐

(g,h)∈S(i) Bi

+i+(g,h)h
−→ G1(F , p)

.

This is reminiscent of a “singular complex” construction; we are gluing a copy of
Bi to X along Ai for every commutative diagram of the form 7.16. As indicated,
there is a natural map i1 : X → G1(F , p). By the universal property of colimits, the
commutative diagrams 7.16 induce a map p1 : G1(F , p) → Y such that p1i1 = p.
Now repeat the process: for k > 1 define objects Gk(F , p) and maps pk : Gk(F , p)→
Y inductively by setting Gk(F , p) = G1(F , pk−1) and pk = (pk−1)1. What results
is a commutative diagram

X
i1−→ G1(F , p)

i2−→ G2(F , p)
i3−→ · · ·

ik−→ Gk(F , p) −→ · · ·

p ↓ p1 ↓ p2 ↓ pk ↓

Y
=
−→ Y

=
−→ Y

=
−→ · · ·

=
−→ Y

=
−→ · · ·

.

Let G∞(F , p), the Infinite Gluing Construction, denote the colimit (2.17) of the
upper row in the above diagram; there are natural maps i∞ : X → G∞(F , p) and
p∞ : G∞(F , p)→ Y such that p∞i∞ = p.

Proposition 7.17. In the above situation, suppose that for each i ∈ I the object
Ai of C is sequentially small. Then the map p∞ : G∞(F , p) → Y has the RLP
(3.12) with respect to each of the maps in the family F .
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Proof. Consider a commutative diagram which gives one of the lifting problems in
question:

Ai
g
−→ G∞(F , p)

fi ↓ p∞ ↓

Bi
h
−→ Y

.

Since Ai is sequentially small, there exists an integer k such that the map g is the
composite of a map g′ : Ai → Gk(F , p) with the natural map Gk(F , p)→ G∞(F , p).
Therefore the above commutative diagram can be enlarged to another one

Ai
g′

−→ Gk(F , p)
ik+1
−→ Gk+1(F , p) −→ G∞(F , p)

fi ↓ pk ↓ pk+1 ↓ p∞ ↓

Bi
h
−→ Y

=
−→ Y

=
−→ Y

in which the composite all the way across the top row is g. However, the pair (g′, h)
contributes itself as an index in the construction of Gk+1(F , p) from Gk(F , p);
what it indexes is in fact a gluing of Bi to Gk(F , p) along Ai. By construction,
then, there exists a map Bi → Gk+1(F , p) which makes the appropriate diagram
commute. Composing with the map Gk+1(F , p) → G∞(F , p) gives a lifting in the
original square.

7.18. Proof of MC5

For n > 1, let Dn (the “n-disk”) denote the chain complex Dn(R) (7.7) and for
n > 0 let Sn (the “n-sphere”) denote the chain complex K(R,n) (7.3). There is
an evident inclusion jn : Sn−1 → Dn which is the identity on the copy of R in
degree (n− 1). Let D0 denote the chain complex K(R, 0), let S−1 denote the zero
chain complex, and let j0 : S−1 → D0 be the unique map. Note that the chain
complexes Dn and Sn are sequentially small (7.15).
The following proposition is an elementary exercise in diagram chasing.

Proposition 7.19. A map f : X → Y in ChR is
(i) a fibration if and only if it has the RLP with respect to the maps 0 → Dn

for all n > 1, and
(ii) an acyclic fibration if and only if it has the RLP with respect to the maps

jn : Sn−1 → Dn for all n > 0.

To verify MC5(i), let f : X → Y be the map to be factored, and let F be the
set of maps {jn}n>0. Consider the factorization of f provided by the small object
argument (7.12):

X
i∞−→ G∞(F , f)

p∞

−→ Y .
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It is immediate from 7.17 and 7.19 that p∞ is an acyclic fibration, so what we have
to check is that i∞ is a cofibration. This is essentially obvious; in each degree n,
Gk+1(F , f) is by construction the direct sum of Gk(F , f) with a (possibly large)
number of copies of R; passing to the colimit shows that G∞(F , f)n is similarly the
direct sum of Xn with copies of R.
The proof of MC5(ii) is very similar: let f : X → Y be the map to be factored,

let F ′ be the set of maps {0→ Dn}n>1 and consider the factorization of f provided
by the small object argument:

X
i∞−→ G∞(F ′, f)

p∞

−→ Y .

Again it is immediate from 7.17 and 7.19 that p∞ is a fibration. We leave it to the
reader to check that i∞ in this case is an acyclic cofibration.

Proof of 7.3. We will only treat the case in which m = 0 and n > 0; the general
case is similar. Use MC5(i) to find a weak equivalence P → K(A, 0), where P is
some cofibrant object of ChR. There are bijections

HomHo(C)(K(A, 0),K(B,n)) ∼= HomHo(C)(P,K(B,n)) ∼= π(P,K(B,n))

where the first comes from the fact (5.8) that the map P → K(A, 0) becomes an
isomorphism in Ho(C), and the second is from 5.11. Let X denote the good path
object for K(B,n) given by

Xi =

{

B ⊕B i = n
B i = n− 1
0 otherwise

with boundary map Xn → Xn−1 sending (b0, b1) to b1− b0. The path object struc-
ture maps q : K(B,n) → X and p0, p1 : X → K(B,n) are determined in dimen-
sion n by the formulas q(b) = (b, b) and pi(b0, b1) = bi. According to 4.23, two maps
f, g : P → K(B,n) represent the same class in π(P,K(B,n)) if and only if they
are related by right homotopy with respect to X, that is, if and only if there is a
map H : P → X such that p0H = f and p1H = g.

In the language of homological algebra, P is a projective resolution of A. A map
f : P → K(B,n) amounts by inspection to a module map fn : Pn → B such
that fn∂ = 0. Two maps f, g : P → K(B,n) are related by a right homotopy
with respect to X if and only if there exists a map h : Pn−1 → B such that
h∂ = fn− gn. A comparison with the standard definition of Ext∗R(A, –) in terms of
a projective resolution of A [6] now shows that π(P,K(B,n)) is in natural bijective
correspondence with ExtnR(A,B).

8. Topological spaces

In this section we will construct the model category structure 3.5 on the category
Top of topological spaces.
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8.1. Definition. A map f : X → Y of spaces is called a weak homotopy equivalence
[25, p. 404] if for each basepoint x ∈ X the map f∗ : πn(X,x) → πn(Y, f(x)) is a
bijection of pointed sets for n = 0 and an isomorphism of groups for n > 1.

8.2. Definition. A map of spaces p : X → Y is said to be a Serre fibration [25,
p. 375] if, for each CW-complex A, the map p has the RLP (3.12) with respect to
the inclusion A× 0→ A× [0, 1].

Proposition 8.3. Call a map of topological spaces
(i) a weak equivalence if it is a weak homotopy equivalence,
(ii) a fibration if it is a Serre fibration, and
(iii) a cofibration if it has the LLP with respect to acyclic fibrations (i.e. with

respect to each map which is both a Serre fibration and a weak homotopy equiva-
lence).
Then with these choices Top is a model category.

After proving this we will make the following calculation.

Proposition 8.4. Suppose that A is a CW-complex and that X is an arbitrary
space. Then the set HomHo(Top)(A,X) is in natural bijective correspondence with
the set of (conventional) homotopy classes of maps from A to X.

Remark. In the model category structure of 8.3, every space is weakly equivalent
to a CW-complex.

We will need two facts from elementary homotopy theory (cf. 7.19). Let Dn

(n > 1) denote the topological n-disk and Sn (n > 0) the topological n-sphere.
Let D0 be a single point and S−1 the empty space. There are standard (boundary)
inclusions jn : Sn−1 → Dn (n > 0).

Lemma 8.5. [14, Theorem 3.1, p. 63] Let p : X → Y be a map of spaces. Then
p is a Serre fibration if and only if p has the RLP with respect to the inclusions
Dn → Dn × [0, 1], n > 0.

Lemma 8.6. Let p : X → Y be a map of spaces. Then the following conditions are
equivalent:

(i) p is both a Serre fibration and a weak homotopy equivalence,
(ii) p has the RLP with respect to every inclusion A→ B such that (B,A) is a

relative CW-pair, and
(iii) p has the RLP with respect to the maps jn : Sn−1 → Dn for n > 0.

This is not hard to prove with the arguments from [25, p. 376]. We will also need
a fact from elementary point-set topology.

Lemma 8.7. Suppose that

X0 → X1 → X2 → · · · → Xn → · · ·
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is a sequential direct system of spaces such that for each n > 0 the space Xn is a
subspace of Xn+1 and the pair (Xn+1, Xn) is a relative CW-complex [25, p. 401].
Let A be a finite CW-complex. Then the natural map (7.13)

colimnHomTop(A,Xn)→ HomTop(A, colimnXn)

is a bijection (of sets).

8.8. Remark. In the situation of 8.7, we will refer to the natural map X0 →
colimnXn as a generalized relative CW inclusion and say that colimnXn is obtained
from X0 by attaching cells. It follows easily from 8.6 that any such generalized
relative CW inclusion is a cofibration with respect to the model category structure
described in 8.3. There is a partial converse to this.

Proposition 8.9. Every cofibration in Top is a retract of a generalized relative
CW inclusion.

8.10. Proof of MC1–MC3. It is easy to see directly that the classes of weak
equivalences, fibrations and cofibrations contain all identity maps and are closed
under composition. Axiom MC1 follows from the fact that Top has all small limits
and colimits (2.14, 2.21). Axiom MC2 is obvious. For the case of weak equivalences,
MC3 follows from functoriality and 2.6. The other two cases of MC3 are similar,
so we will deal only with cofibrations. Suppose that f is a retract of a cofibration
f ′. We need to show that a lift exists in every diagram

A
a
−→ X

f ↓ p ↓

B
b
−→ Y

(8.11)

in which p is an acyclic fibration. Consider the diagram

A
i
−→ A′

r
−→ A

a
−→ X

f ↓ f ′ ↓ p ↓

B
j
−→ B′

s
−→ B

b
−→ Y

in which maps i, j, r and s are retraction constituents. Since f ′ is a cofibration,
there is a lifting h : B′ → X in this diagram. It is now easy to see that hj is the
desired lifting in the diagram 8.11.

The proofs of MC4(ii) and MC5(ii) depend upon a lemma.

Lemma 8.12. Every map p : X → Y in Top can be factored as a composite p∞i∞,
where i∞ : X → X ′ is a weak homotopy equivalence which has the LLP with respect
to all Serre fibrations, and p∞ : X ′ → Y is a Serre fibration.
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Proof. Let F be the set of maps {Dn × 0 → Dn × [0, 1]}n>0. Consider the Gluing
Construction G1(F , p) (see 7.12). It is clear that i1 : X → G1(F , p) is a relative
CW inclusion and a deformation retraction; in fact, G1(F , p) is obtained from X by
taking (many) solid cylinders and attaching each one to X along one end. It follows
from the definition of Serre fibration that the map i1 has the LLP with respect to
all Serre fibrations. Similarly, for each k > 1 the map ik+1 : Gk(F , p)→ Gk+1(F , p)
is a homotopy equivalence which has the LLP with respect to all Serre fibrations.
Consider the factorization

X
i∞−→ G∞(F , p)

p∞

−→ Y

provided by the Infinite Gluing Construction. It is immediate that i∞ has the LLP
with respect to all Serre fibrations: given a lifting problem, one can inductively find
compatible solutions on the spaces Gk(F , p) and then use the universal property of
colimit to obtain a solution on G∞(F , p) = colimkG

k(F , p). The proof of Proposi-
tion 7.17 shows that p∞ has the RLP with respect to the maps in F and so (8.5)
is a Serre fibration; it is only necessary to observe that although the spaces Dn are
not in general sequentially small, they are (8.7) small with respect to the particular
sequential colimit that comes up here. Finally, by 8.7 any map of a sphere into
G∞(F , p) or any homotopy involving such maps must actually lie in Gk(F , p) for
some k; it follows that i∞ is a weak homotopy equivalence because (by the remarks
above) each of the maps X → Gk(F , p) is a weak homotopy equivalence.

Proof of MC5. Axiom MC5(ii) is an immediate consequence of 8.12. The proof of
MC5(i) is similar to the proof of 8.12. Let p be the map to be factored, let F be
the set

F = {jn : Sn−1 → Dn}n>0

and consider the factorization p = p∞i∞ of p provided by the Infinite Gluing
Construction G∞(F , p). By 8.6 each map ik+1 : Gk(F , p) → Gk+1(F , p) has the
LLP with respect to Serre fibrations which are weak homotopy equivalences; by
induction and a colimit argument the map i∞ has the same LLP and so by definition
is a cofibration. By 8.7 and the proof of 7.17, the map p∞ has the RLP with respect
to all maps in the set F , and so (8.6) is a Serre fibration and a weak equivalence.

Proof of MC4. Axiom MC4(i) is immediate from the definition of cofibration. For
MC4(ii) suppose that f : A→ B is an acyclic cofibration; we have to show that f
has the LLP with respect to fibrations. Use 8.12 to factor f as a composite pi, where
p is a fibration and i is weak homotopy equivalence which has the LLP with respect
to all fibrations. Since f = pi is by assumption a weak homotopy equivalence, it is
clear that p is also a weak homotopy equivalence. A lift g : B → A′ exists in the
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following diagram

A
i
−→ A′

f ↓ p ↓ ∼

B
id
−→ B

(8.13)

because f is a cofibration and p is an acyclic fibration. (Recall that by definition
every cofibration has the LLP with respect to acyclic fibrations). This lift g expresses
the map f as a retract (2.6) of the map i. The argument in 8.10 above can now be
used to show that the class of maps which have the LLP with respect to all Serre
fibrations is closed under retracts; it follows that f has the LLP with respect to all
Serre fibrations because i does.

Proof of 8.4. Since A is cofibrant (8.6) and X is fibrant, the set HomHo(Top)(A,X)
is naturally isomorphic to π(A,X) (see 5.11). It is also easy to see from 8.6 that the
product A× [0, 1] is a good cylinder object for A. By 4.23, two maps f, g : A→ X
represent the same element of π(A,X) if and only if they are left homotopic via
the cylinder object A × [0, 1], in other words, if and only if they are homotopic in
the conventional sense.

Proof of 8.9. Let f : A→ B be a cofibration in Top. The argument in the proof of
MC5(i) above shows that f can be factored as a composite pi, where i : A → A′

is a generalized relative CW inclusion and p : A′ → B is an acyclic fibration. Since
f is a cofibration, a lift g : B → A′ exists in the resulting diagram 8.13, and this
lift g expresses f as a retract of i.

9. Derived functors

Let C be a model category and F : C→ D a functor. In this section we define the
left and right derived functors of F ; if they exist, these are functors

LF, RF : Ho(C)→ D

which, up to natural transformation on one side or the other, are the best possible
approximations to an “extension of F to Ho(C)”, that is, to a factorization of F
through γ : C→ Ho(C). We give a criterion for the derived functors to exist, and
study a condition under which a pair of adjoint functors (2.8) between two model
categories induces, via a derived functor construction, adjoint functors between the
associated homotopy categories. The homotopy pushout and homotopy pullback
functors of §10 will be constructed by taking derived functors of genuine pushout
or pullback functors.

9.1. Definition. Suppose that C is a model category and that F : C → D is a
functor. Consider pairs (G, s) consisting of a functor G : Ho(C) → D and natural
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transformation s : Gγ → F . A left derived functor for F is a pair (LF, t) of this type
which is universal from the left, in the sense that if (G, s) is any such pair, then
there exists a unique natural transformation s′ : G→ LF such that the composite
natural transformation

Gγ
s′◦γ
−→ (LF )γ

t
−→ F (9.2)

is the natural transformation s.

Remark. A right derived functor for F is a pair (RF, t), where RF : Ho(C) → D
is a functor and t : F → (RF )γ is a natural transformation with the analogous
property of being “universal from the right”.

Remark. The universal property satisfied by a left derived functor implies as usual
that any two left derived functors of F are canonically naturally equivalent. Some-
times we will refer to LF as the left derived functor of F and leave the natural
transformation t understood. If F takes weak equivalences in C into isomorphisms
in D, then there is a functor F ′ : Ho(C) → D with F ′ = Fγ (6.2), and it is
not hard to see that in this case F ′ itself (with the identity natural transforma-
tion t : F ′γ → F ) is a left derived functor of F . The next proposition shows that
sometimes LF exists even though a functor F ′ as above does not.

Proposition 9.3. Let C be a model category and F : C → D a functor with the
property that F (f) is an isomorphism whenever f is a weak equivalence between
cofibrant objects in C. Then the left derived functor (LF, t) of F exists, and for
each cofibrant object X of C the map

tX : LF (X)→ F (X)

is an isomorphism.

The proof depends on a lemma, which for future purposes we state in slightly
greater generality than we actually need here.

Lemma 9.4. Let C be a model category and F : Cc → D (§5) a functor such that
F (f) is an isomorphism whenever f is an acyclic cofibration between objects of Cc.
Suppose that f, g : A → B are maps in Cc such that f is right homotopic to g in
C. Then F (f) = F (g).

Proof. By 4.15 there exists a right homotopy H : A→ BI from f to g such that BI

is a very good path object for B. Since the path object structure map w : B → BI

is then an acyclic cofibration and B by assumption is cofibrant, it follows that BI

is cofibrant and hence that F (w) is defined and is an isomorphism. The rest of
the proof is identical to the dual of the proof of 5.10. First observe that there are
equalities F (p0)F (w) = F (p1)F (w) = F (idB) and then use the fact that F (w) is an
isomorphism to cancel F (w) and obtain F (p0) = F (p1). The equality F (f) = F (g)
then follows from applying F to the equalities f = p0H and g = p1H.
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Proof of 9.3. By Lemma 9.4, F identifies right homotopic maps between cofibrant
objects of C and so induces a functor F ′ : πCc → D. By assumption, if g is a
morphism of πCc which is represented by a weak equivalence in C then F ′(g)
is an isomorphism. Recall from 5.2 that there is a functor Q : C → πCc with
the property (5.1) that if f is a weak equivalence in C then g = Q(f) is a right
homotopy class which is represented by a weak equivalence in C. It follows that
the composite functor F ′Q carries weak equivalences in C into isomorphisms in
D. By the universal property (6.2) of Ho(C), the composite F ′Q induces a functor
Ho(C)→ D, which we denote LF . There is a natural transformation t : (LF )γ → F
which assigns to each X in C the map F (pX) : LF (X) = F (QX) → F (X). If X
is cofibrant then QX = X and the map tX is the identity; in particular, tX is an
isomorphism.
We now have to show that the pair (LF, t) is universal from the left in the sense

of 9.1. Let G : Ho(C)→ D be a functor and s : Gγ → F a natural transformation.
Consider a hypothetical natural transformation s′ : G → LF , and construct (for
each object X of C) the following commutative diagram which in the horizontal
direction involves the composite of s′ ◦ γ and t;

G(QX)
s′QX
−→ LF (QX)

tQX=id
−→ F (QX)

G(γ(pX)) ↓ ↓ LF (γ(pX))=id ↓ F (pX)

G(X)
s′X−→ LF (X)

tX=F (pX)
−→ F (X)

.

If s′ is to satisfy the condition of 9.1, then the composite across the top row of
this diagram must be equal to sQX , which gives the equality s′X = sQXG(γpX)−1

and proves that there is at most one natural transformation s′ which satisfies the
required condition. However, it is obvious that setting s′X = sQXG(γpX)−1 does
give a natural transformation Gγ → (LF )γ, and therefore (5.9) it also gives a
natural transformation G→ LF .

9.5. Definition. Let F : C → D be a functor between model categories. A total
left derived functor LF for F is a functor

LF : Ho(C)→ Ho(D)

which is a left derived functor for the composite γD · F : C → Ho(D). Similarly, a
total right derived functor RF for F is a functor RF : Ho(C)→ Ho(D) which is a
right derived functor for the composite γD · F .

Remark. As usual, total left or right derived functors are unique up to canonical
natural equivalence.

9.6. Example. Let R be an associative ring with unit, and ChR the chain complex
model category constructed in §7. Suppose thatM is a rightR-module, so thatM⊗–
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gives a functor F : ChR → ChZ. Proposition 9.3 can be used to show that the
total derived functor LF exists (see 9.11). Let N be a left R-module and K(N, 0)
(cf. 7.3) the corresponding chain complex. The final statement in 9.3 implies that
LF (K(N, 0)) is isomorphic in Ho(ChZ) to F (P ), where P is any cofibrant chain
complex with a weak equivalence P

∼
→ K(N, 0). Such a cofibrant chain complex P

is exactly a projective resolution of N in the sense of homological algebra, and so
we obtain natural isomorphisms

HiLF (K(N, 0)) ∼= TorRi (M,N) i > 0

where TorRi (M, –) is the usual i’th left derived functor of M ⊗R –. This gives one
connection between the notion of total derived functor in 9.5 and the standard
notion of derived functor from homological algebra.

Theorem 9.7. Let C and D be model categories, and

F : C⇐⇒ D : G

a pair of adjoint functors (2.8). Suppose that
(i) F preserves cofibrations and G preserves fibrations.

Then the total derived functors

LF : Ho(C)⇐⇒ Ho(D) : RG

exist and form an adjoint pair. If in addition we have
(ii) for each cofibrant object A of C and fibrant object X of D, a map f : A→

G(X) is a weak equivalence in C if and only if its adjoint f ♭ : F (A)→ X is a weak
equivalence in D,
then LF and RG are inverse equivalences of categories.

Remark. In this paper we will not use the last statement of 9.7, but this criterion
for showing that two model categories have equivalent homotopy categories is used
heavily by Quillen in [23]. There are various other structures associated to a model
category besides its homotopy category; these include fibration and cofibration
sequences [22], Toda brackets [22], various homotopy limits and colimits (§10), and
various function complexes [9]. All such structures that we know of are preserved
by adjoint functors that satisfy the two conditions above.

9.8. Remark. Condition 9.7(i) is equivalent to either of the following two condi-
tions:

(i′) G preserves fibrations and acyclic fibrations.
(i′′) F preserves cofibrations and acyclic cofibrations.

Assume, for instance, that F preserves acyclic cofibrations. Let f : A → B be
an acyclic cofibration in C and g : X → Y a fibration in D. Suppose given the
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commutative diagram on the left together with its “adjoint” diagram (2.8) on the
right:

A
u
−→ G(X)

f ↓ G(g) ↓

B
v
−→ G(Y )

F (A)
u♭

−→ X

F (f) ↓ g ↓

F (B)
v♭

−→ Y

.

Since F preserves acyclic cofibrations, a lift w : F (B)→ X exists in the right-hand
diagram. Its adjoint w♯ : B → G(X) is then a lift in the left-hand diagram. It follows
that G(g) has the RLP with respect to all acyclic cofibrations in C, and therefore by
3.13(iii) that G(g) is a fibration. This gives 9.7(i). Running the argument in reverse
and using 3.13(ii) shows the converse: if G preserves fibrations then F preserves
acyclic cofibrations.

The proof of 9.7 depends on a lemma that is also useful in verifying the hypotheses
of 9.3.

Lemma 9.9. (K. Brown) Let F : C → D be a functor between model categories.
If F carries acyclic cofibrations between cofibrant objects to weak equivalences, then
F preserves all weak equivalences between cofibrant objects.

Proof. Let f : A → B be a weak equivalence in C between cofibrant objects.
By MC5(i) we can factor the coproduct (2.15) map f + idB : A

∐

B → B as a
composite pq, where q : A

∐

B → C is a cofibration and p : C → B is an acyclic
fibration. It follows from the fact that A and B are cofibrant (cf. 4.4) that the
composite maps q · in0 : A→ C and q · in1 : B → C are cofibrations. Since pq · ini is
a weak equivalence for i = 0, 1 and p is a weak equivalence, it is clear from MC2
that q · ini is a weak equivalence, i = 0, 1. By assumption, then F (q · in0), F (q · in1)
and F (pq · in1) = F (idB) are weak equivalences in D. It follows that the maps F (p)
and hence F (pq · in0) = F (f) are also weak equivalences.

Proof of 9.7. In view of 9.8, 9.9 and the dual (3.9) of 9.9, Proposition 9.3 and its
dual guarantee that the total derived functors LF and RG exist. Since F is a left
adjoint it preserves colimits (2.26) and therefore (2.25) initial objects. Since G is
a right adjoint it preserves limits and therefore terminal objects. It then follows as
in 9.8 that F carries cofibrant objects in C into cofibrant objects in D, and that G
carries fibrant objects in D into fibrant objects in C.

Suppose that A is a cofibrant object in C and that X is a fibrant object in D.
We will show that the adjunction isomorphism HomC(A,G(X)) ∼= HomD(F (A), X)
respects the homotopy equivalence relation (4.21) and gives a bijection

π(A,G(X)) ∼= π(F (A), X) . (9.10)

If f, g : A→ G(X) represent the same class in π(A,G(X)), then f is left homotopic
to g via a left homotopy H : A ∧ I → G(X) in which the cylinder object A ∧ I is
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good (4.6) and hence cofibrant (4.4). It then follows from 9.8(i′′) that F (A ∧ I) is
a cylinder object for F (A) and hence that H♭ : F (A ∧ I) → X is a left homotopy
between f ♭ and g♭. Thus f ♭ ∼ g♭. A dual argument with right homotopies shows
that if f ♭ ∼ g♭ then f ∼ g and establishes the isomorphism 9.10.

Let Q be the construction of 5.2 for C and S the construction of 5.4 for D. (We
have temporarily changed the letter denoting this functor from “R” to “S” in order
to avoid confusion with the notation for right derived functors). In view of the
construction of LF and RG given by the proof of 9.3 and its dual, the isomorphism
9.10 gives for every object A of C and object X of D a bijection

HomHo(C)(A,RG(X))
(γpA)∗

−→ HomHo(C)(QA,G(SX))

∼= HomHo(D)(F (QA), SX)
((γiX)−1)∗
−→ HomHo(D)(LF (A), X) .

It is clear that this bijection gives a natural equivalence of functors from Cop ×D
to Sets, and the argument of 5.9 shows that it also gives a natural equivalence of
functors Ho(C)

op ×Ho(D)→ Sets. This provides the adjunction between LF and
RG.
Suppose that condition (ii) is satisfied. Let A be an cofibrant object of C. The

map i♯
F (A) : A → G(SF (A)) is then a weak equivalence in C because its adjoint

iF (A) : F (A)→ SF (A) is a weak equivalence in D. Let

ǫA = id♯
LF (A) : A→ RG(LF (A))

denote the map in Ho(C) which is adjoint to the identity map of LF (A) in Ho(D). It
follows from the above constructions that ǫA is an isomorphism. Since every object
of Ho(C) is isomorphic to A for a cofibrant object A of C, we conclude that ǫA is an
isomorphism for any object A of Ho(C) and thus that the composite (RG)(LF ) is
naturally equivalent to the identity functor of Ho(C). A dual argument shows that
the composite (LF )(RG) is naturally equivalent to the identity functor of Ho(D).
This proves that LF and RG are inverse equivalences of categories.

9.11. Example. Let F : ChR → ChZ be the functor of 9.6. In order to use 9.3
to show that the total derived functor LF exists, it is necessary to show that F
carries weak equivalences between cofibrant objects to weak equivalences. By 9.9
it is enough to check this for acyclic cofibrations between cofibrant objects. Let
i : A→ B be a acyclic cofibration between cofibrant objects in ChR. The quotient
B/A is then an acyclic chain complex which satisfies the hypotheses of 7.10, so that
by 7.11 there is an isomorphism B ∼= A⊕ (B/A) and (7.10) a further isomorphism
between B/A and a direct sum of chain complexes of the form Dk(P ). Since F
respects direct sums we conclude that F (B) is isomorphic to the direct sum of
F (A) with a number of chain complexes of the form F (Dk(P )). By inspection
F (Dk(P )) is acyclic, and so F (i) is a weak equivalence.
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10. Homotopy pushouts and homotopy pullbacks

The constructions in this section are motivated by the fact that pushouts and
pullbacks are not usually well-behaved with respect to homotopy equivalences. For
example, in the category Top of topological spaces, let Dn (n > 1) denote the
n-disk, jn : Sn−1 → Dn the inclusion of the boundary (n − 1)-sphere, and ∗ the
one-point space. There is a commutative diagram

Dn jn
←− Sn−1 jn

−→ Dn

↓ id ↓ ↓

∗ ←− Sn−1 −→ ∗

(10.1)

in which all three vertical arrows are homotopy equivalences. The pushout (2.16)
or colimit of the top row is homeomorphic to Sn, the pushout of the bottom row
is the space “∗”, and the map Sn → ∗ induced by the diagram is not a homotopy
equivalence.
Faced with diagram 10.1, a seasoned topologist would probably say that the

pushout of the top row has the “correct” homotopy type and invoke the philosophy
that to give a pushout homotopy significance the maps involved should be replaced
if necessary by cofibrations. In this section we work in an arbitrary model category
C and find a conceptual basis for this philosophy. The strategy is this. Let D be
the category {a ← b → c} of 2.12 and CD the category of functors D → C (2.5).
An object of CD is pushout data

X(a)← X(b)→ X(c)

in C and a morphism f : X → Y is a commutative diagram

X(a) ←− X(b) −→ X(c)

fa ↓ fb ↓ fc ↓

Y (a) ←− Y (b) −→ Y (c)

. (10.2)

The pushout or colimit construction gives a functor colim : CD → C. We will con-
struct a model category structure on CD with respect to which a weak equivalence
is a map f whose three components (fa, fb, fc) are weak equivalences in C. As 10.1
illustrates, in this setting the functor colim(–) is not usually homotopy invariant
(i.e., does not usually carry weak equivalences in CD to weak equivalences is C)
and so colim(–) does not directly induce a functor Ho(CD) → Ho(C). However, it
turns out that colim(–) does have a total left derived functor (9.5)

Lcolim : Ho(CD)→ Ho(C)

which in a certain sense (9.1) is the best possible homotopy invariant approximation
to colim(–). We will call Lcolim the homotopy pushout functor; it is left adjoint to
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the functor

Ho(∆) : Ho(C)→ Ho(CD)

induced by the “constant diagram” (2.11) construction ∆ : C → CD. By 9.3,
computing Lcolim(X) for a diagram X involves computing colim(X ′), where X ′ is
a cofibrant object of CD which is weakly equivalent to X. It turns out that finding
such a cofibrant X ′ involves replacing X(b) by a cofibrant object and replacing the
maps X(b) → X(a) and X(b) → X(c) by cofibrations, and so in the end what we
do is more or less recover, in this abstract setting, the standard philosophy. In fact,
it becomes clear (see 9.6) that this philosophy is no different from the philosophy
in homological algebra that a cautious practitioner should usually replace a module
by a projective resolution before, for instance, tensoring it with something.

Working dually gives a construction of the homotopy pullback functor. At the
end of the section we make a few remarks about more general homotopy colimits
or limits in C.

10.3. Remark. In the above situation, there is a natural functor Ho(CD) →
Ho(C)D, but this functor is usually not an equivalence of categories (and much
of the subtlety of homotopy theory lies in this fact). Consequently, the homotopy
pushout functor Lcolim does not provide “pushouts in the homotopy category”,
that is, it is not a left adjoint to constant diagram functor

∆Ho(C) : Ho(C)→ Ho(C)
D
.

10.4. Homotopy pushouts

Let C be a model category, D be the category {a ← b → c} above, and CD the
category of functors D → C. Given a map f : X → Y of CD as in 10.2, let ∂b(f)
denote X(b) and define objects ∂a(f) and ∂c(f) of C by the pushout diagrams

X(b) −→ X(a)

fb ↓ ↓

Y (b) −→ ∂a(f)

X(b) −→ X(c)

fb ↓ ↓

Y (b) −→ ∂c(f)

. (10.5)

The commutative diagram 10.2 induces maps ia(f) : ∂a(f)→ Y (a), ib(f) : ∂b(f)→
Y (b), and ic(f) : ∂c(f)→ Y (c).

Proposition 10.6. Call a morphism f : X → Y in CD

(i) a weak equivalence, if the morphisms fa, fb and fc are weak equivalences in
C,

(ii) a fibration if the morphisms fa, fb and fc are fibrations in C, and
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(iii) a cofibration if the maps ia(f), ib(f) and ic(f) are cofibrations in C.
Then these choices provide CD with the structure of a model category.

Proof. Axiom MC1 follows from 2.27. Axiom MC2 and the parts of MC3 dealing
with weak equivalences and fibrations are direct consequences of the corresponding
axioms in C. It is not hard to check that if f is a retract of g, then the maps ia(f),
ib(f) and ic(f) are respectively retracts of ia(g), ib(g) and ic(g), so that the part
of MC3 dealing with cofibrations is also a consequence of the corresponding axiom
for C. For MC4(i), consider a commutative diagram

(A(a)← A(b)→ A(c)) −→ (X(a)← X(b)→ X(c))

f ↓ p ↓

(B(a)← B(b)→ B(c)) −→ (Y (a)← Y (b)→ Y (c))

in which f is a cofibration and p is an acyclic fibration. This diagram consists of
three slices:

A(a) −→ X(a)

fa ↓ pa ↓

B(a) −→ Y (a),

A(b) −→ X(b)

fb ↓ pb ↓

B(b) −→ Y (b),

A(c) −→ X(c)

fc ↓ pc ↓

B(c) −→ Y (c)

.

Since f is a cofibration and p is an acyclic fibration, we can obtain the desired
lifting in the middle slice by applying MC4(i) in C; this lifting induces maps
u : ∂a(f) → X(a) and v : ∂c(f) → X(c). Liftings in the other two slices can now
be constructed by applying MC4(i) in C to the squares

∂a(f)
u
−→ X(a)

ia(f) ↓ pa ↓

B(a) −→ Y (a)

∂c(f)
v
−→ X(c)

ic(f) ↓ pc ↓

B(c) −→ Y (c)

in which each left-hand arrow is a cofibration. The proof of the second part of
MC4(ii) is analogous; in this case the fact that the maps ic(f) and ia(f) are
acyclic cofibrations follows easily from the fact that the class of acyclic cofibrations
in C is closed under cobase change (3.14).
To prove MC5(ii), suppose that we have a morphism f : A→ B. Use MC5(ii) in

C to factor the map fb : A(b)→ B(b) as A(b)
∼
→֒ Y→→B(b). Let X be the pushout

of the diagram A(a)← A(b)→ Y and Z the pushout of Y ← A(b)→ A(c). There
is a commutative diagram

A(a) ←− A(b) −→ A(c)

∼ ↓ ∼ ↓ ∼ ↓

X ←− Y −→ Z

↓ ↓ ↓

B(a) ←− B(b) −→ B(c)
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in which the lower outside vertical arrows are constructed using the universal prop-
erty of pushouts. Now use MC5(ii) in C again to factor the lower outside vertical

arrows as X
∼
→֒ X ′→→B(a) and Z

∼
→֒ Z ′→→B(c). It is not hard to see that the object

X ′ ← Y → Z ′ of CD provides the intermediate object for the desired factorization
of f . The proof of MC5(i) is similar.

Proposition 10.7. The adjoint functors

colim : CD ⇐⇒ C : ∆

satisfy condition (i) of Theorem 9.7. Hence the total derived functors Lcolim and
R∆ exist and form an adjoint pair

Lcolim : Ho(CD)⇐⇒ Ho(C) : R∆.

Proof. This is clear from 9.8, since the functor ∆ preserves both fibrations and
acyclic fibrations.

This completes the construction of the homotopy pushout functor Lcolim :
Ho(CD)→ Ho(C). According to 9.3, Lcolim(X) is isomorphic to colim(X) if X is
a cofibrant object of CD; in general Lcolim(X) is isomorphic to colim(X ′) for any
cofibrant object X ′ of CD weakly equivalent to X.

10.8. Homotopy pullbacks

The following results on homotopy pullbacks are dual (3.9) to the above ones on
homotopy pushouts, so we state them without proof.
Let C be a model category, let D be the category {a → b ← c}, and CD the

category of functors D→ C. Given a map f : X → Y of CD

X(a) −→ X(b) ←− X(c)

fa ↓ fb ↓ fc ↓

Y (a) −→ Y (b) ←− Y (c)

, (10.9)

let δb(f) denote X(b) and define objects δa(f) and δc(f) of C by the pullback
diagrams

δa(f) −→ X(b)

↓ fb ↓

Y (a) −→ Y (b)

δc(f) −→ X(b)

↓ fb ↓

Y (c) −→ Y (b)

. (10.10)

The commutative diagram 10.9 induces maps pa(f) : X(a)→ δa(f), pb(f) : X(b)→
δb(f), and pc(f) : X(c)→ δc(f).
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Proposition 10.11. Call a morphism f : X → Y in CD

(i) a weak equivalence, if the morphisms fa, fb and fc are weak equivalences in
C,

(ii) a cofibration if the morphisms fa, fb and fc are cofibrations in C, and
(iii) a fibration if the maps pa(f), pb(f) and pc(f) are fibrations in C.

Then these choices provide CD with the structure of a model category.

Proposition 10.12. The adjoint functors

∆ : CD ⇐⇒ C : lim

satisfy condition (i) of Theorem 9.7. Hence the total derived functors Rlim and L∆
exist and form an adjoint pair

L∆ : Ho(CD)⇐⇒ Ho(C) : Rlim .

This completes the construction of the homotopy pullback functor Rlim :
Ho(CD) → Ho(C). According to 9.3, Rlim(X) is isomorphic to lim(X) if X is
a fibrant object of CD; in general Rlim(X) is isomorphic to lim(X ′) for any fibrant
object X ′ of CD weakly equivalent to X.

10.13. Other homotopy limits and colimits

Say that a category D is very small if it satisfies the following conditions
(i) D has a finite number of objects,
(ii) D has a finite number of morphisms, and
(iii) there exists an integer N such that if

A0
f1
→ A1 → · · · → An

is a string of composable morphisms of D with n > N , then some fi is an identity
morphism.
Propositions 10.6 and 10.11 can be generalized to give two distinct model category
structures on the category CD whenever D is very small. These structures share the
same weak equivalences (and therefore have isomorphic homotopy categories) but
they differ in their fibrations and cofibrations. One of these structures is adapted
to constructing Lcolim and the other to constructing Rlim. We leave this as an
interesting exercise for the reader. The generalization of 10.6(iii) is as follows. For
each object d of D, let ∂d denote the full subcategory of D↓d (3.11) generated by
all the objects except the identity map of d. There is a functor jd : ∂d → D which
sends an object d′ → d of ∂d to the object d′ of D. If X is an object of CD, let X|∂d
denote the composite of X with jd and let ∂d(X) denote the object of C given by
colim(X|∂d). There is a natural map ∂d(X)→ X(d). If f : X → Y is a map of CD,
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define ∂d(f) by the pushout diagram

∂d(X) −→ X(d)

↓ ↓

∂d(Y ) −→ ∂d(f)

and observe that there is a natural map id(f) : ∂d(f) → Y (d). Then the general-
ization of 10.6(iii) is the condition that the map id(f) be a cofibration for every
object d of D.

Suppose that D is an arbitrary small category. It seems unlikely that CD has
a natural model category structure for a general model category C. However, CD

does have a model category structure if C is the category of simplicial sets (11.1)
[3, XI, §8]. The arguments of §8 can be used to construct a parallel model category
structure on TopD. In these special cases the homotopy limit and colimit functors
have been studied by Bousfield and Kan [3]; they deal explicitly only with the case
of simplicial sets, but the topological case is very similar.

11. Applications of model categories

In this section, which is less self-contained than the rest of the paper, we will give
a sampling of the ways in which model categories have been used in topology and
algebra. For an exposition of the theory of model categories from an alternate point
of view see [16]; for a slightly different approach to axiomatic homotopy theory see,
for example, [1].

11.1. Simplicial Sets. Let ∆ be the category whose objects are the ordered sets
[n] = {0, 1, . . . , n} (n > 0) and whose morphisms are the order-preserving maps
between these sets. (Here “order-preserving” means that f(i) 6 f(j) whenever
i 6 j). The category sSet of simplicial sets is defined to be the category of functors
∆op → Set; the morphisms, as usual (2.5), are natural transformations. Recall from
2.4 that a functor ∆op → Set is the same as a contravariant functor ∆→ Set. For
an equivalent but much more explicit description of what a simplicial set is see [18,
p. 1]. If X is a simplicial set it is customary to denote the set X([n]) by Xn and
call it the set of n-simplices of X.
A simplicial set is a combinatorial object which is similar to an abstract simplicial

complex with singularities. In an abstract simplicial complex [21, p. 15] [25, p. 108],
for instance, an n-simplex has (n+ 1) distinct vertices and is determined by these
vertices; in a simplicial set X, an n-simplex x ∈ Xn does have n+1 “vertices” in X0

(obtained from x and the (n+1) maps [n]→ [0] in ∆op) but these vertices are not
necessarily distinct and they in no way determine x. Let ∆n denote the standard
topological n-simplex, considered as the space of formal convex linear combinations
of the points in the set [n]. If Y is a topological space, it is possible to construct an
associated simplicial set Sing(Y ) by letting the set of n-simplices Sing(Y )n be the
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set of all continuous maps ∆n → Y ; this is a set-theoretic precursor of the singular
chain complex of Y . The functor Sing : Top→ sSet has a left adjoint, which sends
a simplicial set X to a space |X| called the geometric realization of X [18, Ch. III];
this construction is a generalization of the geometric realization construction for
simplicial complexes. Call a map f : X → Y of simplicial sets

(i) a weak equivalence if |f | is a weak homotopy equivalence (8.1) of topological
spaces,

(ii) a cofibration if each map fn : Xn → Yn (n > 0) is a monomorphism, and
(iii) a fibration if f has the RLP with respect to acyclic cofibrations (equivalently,

f is a Kan fibration [18, §7]).
Quillen [22] proves that with these definitions the category sSet is a model category.
He also shows that the adjoint functors

|?| : sSet⇐⇒ Top : Sing

satisfy both conditions of Theorem 9.7 and so induce an equivalence of categories
Ho(sSet)→ Ho(Top) (this is of course with respect to the model category structure
on Top from §8). This shows that the category of simplicial sets is a good category
of algebraic or combinatorial “models” for the study of ordinary homotopy theory.

11.2. Simplicial Objects. There is an obvious way to extend the notion of simpli-
cial set: if C is a category, the category sC of simplicial objects in C is defined to
be the category of functors ∆op → C (with natural transformations as the mor-
phisms). The usual convention, if C is the category of groups, for instance, is to
call an object of sC a “simplicial group”. The category C is embedded in sC by
the “constant diagram” functor (2.11) and in dealing with simplicial objects it is
common to identify C with its image under this embedding. Suppose that C has an
“underlying set” or forgetful functor U : C→ Set (cf. 2.9). Call a map f : X → Y
in sC

(i) a weak equivalence if U(f) is a weak equivalence in sSet,
(ii) a fibration if U(f) is a fibration in sSet, and
(iii) a cofibration if f has the LLP with respect to acyclic fibrations.

In [22, Part II, §4] Quillen shows that in all common algebraic situations (e.g.,
if C is the category of groups, abelian groups, associative algebras, Lie algebras,
commutative algebras, . . .) these choices give sC the structure of a model category;
he also characterizes the cofibrations [22, Part II, p. 4.11].
Consider now the example C = ModR. It turns out that there is a normaliza-

tion functor N : sModR → ChR [18, §22] which is an equivalence of categories and
translates the model category structure on sModR above into the model category
structure on ChR from §7. Thus the homotopy theory of sModR is ordinary ho-
mological algebra over R. For a general category C there is no such normalization
functor, and so it is natural to think of an object of sC as a substitute for a chain
complex in C, and consider the homotopy theory of sC as homological algebra,
or better homotopical algebra, over C. This leads to the conclusion (11.1) that
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homotopical algebra over the category of sets is ordinary homotopy theory!

11.3. Simplicial commutative rings. Let C be the category of commutative rings.
In [24] Quillen uses the model category structure on sC which was described above
in order to construct a cohomology theory for commutative rings (now called André-
Quillen cohomology). This has been studied extensively by Miller [19] and Goerss
[13] because of the fact that if X is a space the André-Quillen cohomology of
H∗(X;Fp) plays a role in various unstable Adams spectral sequences associated to
X. In this way the homotopical algebra of the commutative ring H∗(X;Fp) leads
back to information about the homotopy theory of X itself; this is parallel to the
way in which, if Y is a spectrum, the homological algebra of H∗(Y ;Fp) as a module
over the Steenrod algebra leads to information about the homotopy theory of Y .

We can now answer a question from the introduction. Suppose that k is a field. Let
C be the category of commutative augmented k-algebras and let R be an object
of C. Recall that C can be identified with a subcategory of sC by the constant
diagram construction. Topological intuition suggests that the suspension ΣR of R
should be the homotopy pushout (§10) of the diagram ∗ ← R → ∗, where ∗ is
a terminal object in sC. Since this terminal object is k itself, ΣR should be the
homotopy pushout in sC of k ← R → k. It is not hard to compute this; up to
homotopy ΣR is given by the bar construction [19, Section 5] [13, p. 51] and the
i’th homotopy group of the underlying simplicial set of ΣR is TorRi (k, k).

11.4. Rational homotopy theory. A simplicial set X is said to be 2-reduced if Xi

has only a single point for i < 2. Call a map f : X → Y between 2-reduced simplicial
sets

(i) a weak equivalence if H∗(|f |;Q) is an isomorphism,
(ii) a cofibration if each map fk : Xk → Yk is a monomorphism, and
(iii) a fibration if f has the RLP with respect to acyclic cofibrations.

In [23], Quillen shows that these choices give a model category structure on the
category sSet2 of 2-reduced simplicial sets. A differential graded Lie algebra X
over Q is said to be 1-reduced if X0 = 0. Call a map f : X → Y between 1-reduced
differential graded Lie algebras over Q

(i) a weak equivalence if H∗(f) is an isomorphism,
(ii) a fibration if fk : Xk → Yk is surjective for each k > 1, and
(iii) a cofibration if f has the LLP with respect to acyclic fibrations.

These choices give a model category structure on the category DGL1 of 1-reduced
differential graded Lie algebras over Q. By repeated applications of Theorem 9.7,
Quillen shows [23] that the homotopy categories Ho(sSet2) and Ho(DGL1) are
equivalent. It is not hard to relate the category sSet2 to the category Top1 of 1-
connected topological spaces (there is a slight difficulty in that Top1 is not closed
under colimits or limits and so cannot be given a model category structure). What
results is a specific way in which objects of DGL1 can be used to model the rational
homotopy types of 1-connected spaces. For a dual approach based on differential
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graded algebras see [4] and for an attempt to eliminate some denominators [7].
There is a large amount of literature in this area.

11.5. Homology localization. Let h∗ be a homology theory on the category of
spaces which is represented in the usual way by a spectrum. Call a map f : X → Y
in sSet

(i) a weak h∗-equivalence if h∗(|f |) is an isomorphism,
(ii) an h∗-cofibration if f is a cofibration with respect to the conventional model

category structure (11.1) on sSet, and
(iii) an h∗-fibration if f has the RLP with respect to each map which is both a

weak h∗-equivalence and an h∗-cofibration.
Bousfield shows [2, Appendix] that these choices give a model category structure
on sSet, called, say the h∗-structure. The hardest part of the proof is verifying
MC5(ii). Bousfield does this by an interesting generalization of the small object
argument (7.12). He first shows that there is a single map i : A→ B which is both
a weak h∗-equivalence and a h∗-cofibration, such that f is a h∗-fibration if and only
if f has the RLP with respect to i. (Actually he finds a set {iα} of such test maps,
but there is nothing lost in replacing this set by the single map

∐

α iα.) Now the
domain A of i is potentially quite large, and so A is not necessarily sequentially
small. However, if η is the cardinality of the set

∐

n An of simplices of A, the
functor HomsSet(A, –) does commute with colimits indexed by transfinite ordinals
of cofinality greater than η. Bousfield then proves MC5(ii) by using the general
idea in the proof of 7.17 but applying the gluing construction G({i}, –) transfinitely;
this involves applying the gluing construction itself at each successor ordinal, and
taking a colimit of what has come before at each limit ordinal.
Let Ho denote the conventional homotopy category of simplicial sets (11.1).

Say that a simplicial set X is h∗-local if any weak h∗-equivalence f : A → B
induces a bijection HomHo(B,X) → HomHo(A,X). It is not hard to show that a
simplicial set which is fibrant with respect to the h∗-structure above is also h∗-local.
It follows that using MC5(ii) (for the h∗-structure) to factor a map X → ∗ as a

composite X
∼
→֒ X ′→→∗ gives an h∗-localization construction on sSet, i.e, gives for

any simplicial setX a weak h∗-equivalenceX → X ′ fromX to an h∗-local simplicial
set X ′. Since the factorization can be done explicitly with a (not so) small object
argument, we obtain an h∗-localization functor on sSet. It is easy to pass from
this to an analogous h∗-localization functor on Top. These functors extract from a
simplicial set or space exactly the fraction of its homotopy type which is visible to
the homology theory h∗.

11.6. Feedback. We conclude by describing a way to apply the theory of model
categories to itself (see [8] and [9]). The intuition behind this application is the
idea that almost any simple algebraic construction should have a (total) derived
functor (§9), even, for instance, the localization construction (§6) which sends a pair
(C,W ) to the localized categoryW−1C. In fact it is possible to construct a total left
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derived functor of (C,W ) 7→ W−1C, although this involves using Proposition 9.3
in a “meta” model category in which the objects themselves are categories enriched
over simplicial sets [17, p. 181]! If C is a model category with weak equivalences W ,
let L(C,W ) denote the result of applying this derived functor to the pair (C,W ).
The object L(C,W ) is a category enriched over simplicial sets (or, with the help of
the geometric realization functor, a category enriched over topological spaces) with
the same collection of objects as C. For any pair of objects X, Y ∈ Ob(C) there is
a natural bijection

π0HomL(C,W )(X,Y ) ∼= HomHo(C)(X,Y )

which exhibits the set HomHo(C)(X,Y ) as just the lowest order invariant of an entire
simplicial set or space of maps from X to Y which is created by the localization
process. The homotopy types of these “function spaces” HomL(C,W )(X,Y ) can be
computed by looking at appropriate simplicial resolutions of objects of C [9, §4];
these function spaces seem to capture most if not all of the higher order structure
associated to C which was envisaged and partially investigated by Quillen [22,
part I, p. 0.4] [22, part I, §2, §3].
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