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 THE GEOMETRIC REALIZATION OF A SEMI-SIMPLICIAL COMPLEX

 BY JOHN MILNOR

 (Received February 9, 1956)

 Corresponding to each (complete) semi-simplicial complex K, a topological
 space I K I will be defined. This construction will be different from that used
 by Giever [4] and Hu [5] in that the degeneracy operations of K are used. This
 difference is important when dealing with product complexes.

 If K and K' are countable it is shown that I K X K' I is canonically homeo-
 morphic to I K i X A K' I . It follows that if K is a countable group complex
 then I I K is a topological group. In particular I K(7r, n)l is an abelian topologi-
 cal group.

 In the last section it is shown that the space I K I has the correct singular
 homology and homotopy groups.

 The terminology for semi-simplicial complexes will follow John Moore [7].
 In particular the face and degeneracy maps of K will be denoted by d: Kn -
 Kn-1 and si:K. -> Kn+1 respectively.

 1. The definition

 As standard n-simplex A. take the set of all (n + 2)-tuples (to, , +,)
 satisfying 0 = to < ti < ... < t.+i = 1. The face and degeneracy maps

 and si: An+l An are defined by

 Si(to * * tn2) = (to, , ti ,, i+2, , tn+2).

 Let K = Ui?o Ki be a semi-simplicial complex. Giving K the discrete to-
 pology, form the topological sum

 K = (Ko X Ao) + (KC X Al) + + (K, X An) +

 Thus K is a disjoint union of open sets ki X Ai,. An equivalence relation in K
 is generated by the relations

 (oikn ) An-l) (kn aibn-1)

 (sikn ) Sn+1) (kn XSibn^+l))

 for each kn E Kn 56n?1 E An?i and for i = 0, 1, ... , n. The identification space
 I K I = K/(--) will be called the geometric realization of K. The equivalence

 class of (kn , An) will be denoted by I1 k, . (The equivalence class I 1tow , o
 may be abbreviated by I ko

 357
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 358 JOHN MILNOR

 THEOREM 1. I K I is a CW-complex having one n-cell corresponding to each
 non-degenerate n-simplex of K.

 For the definition of CW-complex see Whitehead [8].

 LEMMA 1. Every simplex kn e Kn can be expressed in one and only one way as

 kn = sip ... sjlkn-p where kn-p is non-degenerate and 0 < ji < *-- < j< K n.
 The indices ja which occur are precisely those j for which kn C sEjKrt-

 The proof is not difficult. (See [3] 8.3). Similarly we have:

 LEMMA 2. Every An E An can be written in exactly one way as An = aiq * ailbn-q
 where 5f,-q is an interior point (that is the coordinates ti of 6n-q satisfy to < t1 <
 * * < tn-q+l) and 0 < ii < ..< i, < n.
 By a non-degenerate point of K will be meant a point (kn , 6n) with kct non-

 degenerate and n interior.

 LEMMA 3. Each (kn , 6n) c K is equivalent to a unique non-degenerate point.
 Define the map XS K - K as follows. Given k, choose ji, , jp An l, as in

 Lemma 1 and set

 X(kn , An) = (kn-p) sil * Sjpbn)-

 Define the discontinuous function p: K -* K by choosing i ... a, an, as in
 Lemma 2 and setting

 p(kn , An) = (ail ... *iqkn Y An-q).

 Now the composition Xp: K -* K carries each point into an equivalent, non-
 degenerate point. It can be verified that if x -- x' then Xp(x) = Xp(x'); which
 proves Lemma 3.

 Take as n-cells of I K I the images of the non-degenerate simplexes of K. By
 Lemma 3 the interiors of these cells partition i K i . Since the remaining con-
 ditions for a CW-complex are easily verified, this proves Theorem 1.

 LEMMA 4. A semi-simplicial map f:K -* K' induces a continuous map I K
 [K' I .

 In fact the map I f I defined by I kn , An I --- f(in), n i is clearly well defined
 and continuous.

 As an example of the geometric realization, let C be an ordered simplicial

 complex with space I C I . (See [2] pp. 56 and 67). From C we can define a semi-
 simplicial complex K, where Kn is the set of all (n + 1)-tuples (ao, - , an)
 of vertices of C which (1) all lie in a common simplex, and (2) satisfy ao <

 a, < ... < a,, . The operations hi, si are defined in the usual way.
 ASSERTION. The space I C is homeomorphic to the geometric realization

 i K I . In fact the point I (ao , . , an); (to, . , tn+ I) of i K i corresponds to
 the point of i C I whose ath barycentric coordinate, a being a vertex of C, is
 the sum, over all i for which ai = a, of tii - ti . The proof is easily given.

 2. Product complexes

 Let K X K' be the cartesian product of two semi-simplicial complexes (that
 is (K X K'), = Kn X K I). The projection maps p: K X K' -* K and p':K X
 K' -4 K' induce maps I p I and I p' i of the geometric realizations. A map
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 REALIZATION OF A SEMI-SIMPLICIAL COMPLEX 359

 7:1K X K' - IKI X IK'j
 is defined by I = I I X I p'I.

 THEOREM 2. -q is a one-one map of I K X K' I onto I K I X I K' . If either
 (a) K and K' are countable, or (b) one of the two CW-complexes K , K' i is
 locally finite; then -q is a homeomorphism.

 The restrictions (a) or (b) are necessary in order to prove that I K X I K'
 is a CW-complex. (For the proof in case (b) see [8] p. 227 and for case (a) see
 [6] 2.1.)

 PROOF (Compare [2] p. 68). If x" is a point of I K X K' I with non-degenerate
 representative (kn X k'1 , An) we will first determine the non-degenerate repre-

 sentative of p (x") = I kn , A. Since An is an interior point of A. , this repre-
 sentative has the form

 (kn-p A Si,* ... Sip6,) where ke, = sip * silkp

 (see proof of Lemma 3). Similarly I p' I(x") is represented by

 (knqX sj, * ... Sjqtjn)

 where k' = ... sj1k'___ The indices ia and jo must be distinct; for if ia =
 jo for some a, : then kn X k' would be an element of sa(Kn.- X K'~1)

 However the point x" can be completely determined by its image.

 I kn-p a Si, .. sip&" X I k'n-q Sjj ... sjgs"n I .

 In fact given any pair (x, x') e I K X I K' j define n(x, x') e I K X K' I as
 follows. Let (ka X 6a) and (kg, 6b) be the non-degenerate representatives: where

 ba = (to a ,ta+)) 6b' = (Uo a * * * a Ub+1). Let 0 = wo < ..< w,,+, 1 be
 the distinct numbers ti and uj arranged in order. Set n = (wo a , wan+?).
 Then if Al < ...< na are those integers A = 0, 1, , n - 1 such that
 wA+l is not one of the tL, we have ba = s,.s* ln-ab .Similarly 6' = sv, **-
 vn-b it where the sets {Ai } and { vj} are disjoint. Now define

 X(x, X') = ..5na 5Ska) X (b* sv114), n
 Clearly

 p7(X, X') = Sn-a ...= |kaSl-

 = ka , a = X

 and p' I 71(x, x') = x', which proves that -qj is the identity map of K X
 K' . On the other hand, taking x" as above we have

 -q(x") = q(j kn-p Sil . . kSn-q , 5j * Sjq5n |)

 = (sip ... si1kn-p) X (sjq sjlknq), n |= ;X"

 To complete the proof it is only necessary to show that 7 is continuous.
 However it is easily verified that i1 is continous on each product cell of I K I X
 I K' I . Since we know that this product is a CW-complex, this completes the
 proof.
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 360 JOHN MILNOR

 An important special case is the following. Let I denote the semi-simplicial
 complex consisting of a 1-simplex and its faces and degeneracies.

 COROLLARY. A semi-simplicial homotopy h K X I -* K' induces an ordinary

 homotopy i K i X [0, 1] - > | K' I .
 In fact the interval [0, 1] may be identified with I j. The homotopy is

 now given by the composition

 IK l X I I I X I K X I I I )IK'

 3. Product operations

 Now let K be a countable complex. Any semi-simplicial map p K X K -> K
 induces by Lemma 4 and Theorem 2 a continuous product

 I p : K I X I K I - K.

 If there is all element eo in Ko such that so eo is a two-sided identity in Kn for

 each n, then it follows that I eo I is a two-sided identity in I K l; so that I K I
 is an H-space. If the product operation p is associative or commutative then

 it is easily verified that I p is associative or commutative. Hence we have
 the following.

 THEOREM 3. If K is a countable group complex (countable abelian group com-

 plex), then I K i is a topological group (abelian topological group).
 Let K(7r, n) denote the Eilenberg MacLane semi-simplicial complex (see

 [1]). Since K(r, n) is an abelian group complex we have:
 COROLLARY. If ir is a countable abelian group, then for n > 0 the geometric

 realization I K(r, n)l is an abelian topological group.
 It will be shown in the next section that j K(7r, n) I actually is a space with

 one non-vanishing homotopy group.

 The above construction can also be applied to other algebraic operations.

 For example a pairing K X K' -* K" between countable group complexes in-

 duces a pairing between their realizations. If K is a countable semi-simplicial

 complex of A-modules, where A is a discrete ring, then I K I is a topological
 A-module.

 4. The topology of K i

 For any space X let S(X) be the total singular complex. For any semi-sim-

 plicial complex K a one-one semi-simplicial map i:K -* S(I K l) is defined by

 i (k.)(6) = 1 kn C A, I .

 Let H*(K) denote homology with integer coefficients.
 LEMMA 5. The inclusion K -* S(1 K I) induces an isornorphism H*(K)

 H*(SI K 1) of homology groups.
 By the n-skeleton K(n) of K: is meant the subcomplex consisting of all Ki , i <

 n and their degeneracies. Thus I K(n) I is just the n-skeleton of I K considered
 as a CTW-complex. The sequence of subcomplexes
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 REALIZATION OF A SEMI-SIMPLICIAL COMPLEX 361

 K C K C ...

 gives rise to a spectral sequence {Eq }; where E' is the graded group corre-
 sponding to H*(K) under the induced filtration; and

 E1 q = Hp+q(K(p) mod K(P-')).

 It is easily verified that El, = 0 for q $ 0, and that El 0 is the free abelian group
 generated by the non-degenerate p-simplexes of K. From the first assertion it
 follows that E~po = El = Hp(K).

 On the other hand the sequence

 S(j K(0) j) c S(j K"') j) c

 gives rise to a spectral sequence {Erq} where ER is the graded group corre-
 sponding to H*(S(I K 1)). Since it is easily verified that the induced map E ,>
 EPq is an isomorphism, it follows that the rest of the spectral sequence is also
 mapped isomorphically; which completes the proof.

 Now suppose that K satisfies the Kan extension condition, so that 71r(K, ko)
 can be defined.

 LEMMA 6. If K is a Kan complex then the inclusion i induces an isomorphism

 of 7r1(K, ko) onto 7r1(S(I K j), i(ko)) = irn( K I, j ko 1).
 Let K' be the Eilenberg subcomplex consisting of those simplices of K whose

 vertices are all at ko. Then -ri(K, ko) can be considered as a group with one
 generator for each element of K1 and one relation for each element of K'2

 The space I K' i is a CH-complex with one vertex. For such a space the
 group 77r1 is known to have one generator for each edge and one relation for
 each face. Comparing these two descriptions it follows easily that the homo-
 morphism 7ri(K) = 71r(K') -*> 7ri( K' j) is an isomorphism.

 We may assume that K is connected. Then it is known (see [7] Chapter I,
 appendix C) that the inclusion map K' -* K is a semi-simplicial homotopy
 equivalence. By the corollary to Theorem 2 this proves that the inclusion

 I K' I l K I is a homotopy equivalence; which completes the proof of
 Lemma 6.

 REMARK 1. From Lemmas 5 and 6 it can be proved, using a relative Hure-
 wicz theorem, that the homomorphisms

 irn(K, ko) -> n( In K 'ko0)

 are isomorphisms for all n. (The proof of the relative Hurewicz theorem given in
 [9] ?3 carries over to the semi-simplicial case without essential change, making
 use of [7] Chapter I, appendices A and C. This theorem is applied to the pair
 (S(l A 1), K) where K denotes the universal covering complex of K.)

 REMARK 2. The space I K(r, n) I has ntl" homotopy group 7r, and other homo-
 topy groups trivial. This clearly follows from the preceding remark. Alterna-
 tively the proof given by Hu [5] may be used without essential change.

 Now let X be any topological space. There is a canonical map
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 362 JOHN MILNOR

 j:l S(X)[ X

 defined by j(I k. , An 1) = k,(6,).
 THEOREM 4. The map j: S(X) X induces isomorphisms of the singular

 homology and homotopy groups.

 (This result is essentially due to Giever [4]).

 The map j induces a semi-simplicial map jury S(I S(X) ) -* S(X). A map i in
 the opposite direction was defined at the beginning of this section. The compo-
 sition jyi: S(X) -> S(X) is the identity map. Together with Lemma 5 this im-

 plies that j induces isomorphisms of the singular homology groups of I S(X)
 onto those of X. Together with Remark 1 it implies that j induces isomorphisms

 of the homotopy groups of I S(X) I onto those of X. This completes the proof.

 PRINCETON UNIVERSITY
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