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 2 JACK MORAVA

 such problems by a kind of approximation [47]. However, the complete computa-
 tion of the second stage of such a spectral sequence, for the graded group of
 stable maps between (even the simplest) finite complexes, is itself a formidable
 problem of homological algebra.

 To be more precise, we note that the identity and multiplication maps of a
 ring-spectrum [6, III ?9] can be arranged to define a cosimplicial graded algebra
 (with some degeneracy maps omitted from the display)

 [SO, E] *[SO, E AE] * [SO, E AE AE]*..
 If [S0, E A E]*: E*E is flat in (either of) its natural graded [SO, E]*=
 E*(SO)-module structure(s), then this diagram is a redundant presentation of an
 object slightly more general than a graded Hopf algebra, in that E*E is most
 naturally a bilateral E (S0)-module [6, II ?11].

 An element of bidegree (i, k) in the E2-term of the Adams spectral sequence
 of the pair (X, Y) of finite complexes can be interpreted as the Yoneda class
 [25, IV ?9] of an extension

 0 -O E*(Y) * ** E*+ JX) O_0

 of length i in an abelian category of graded left (E *(SO), E*E)-comodules [22]
 in such a way that the composition of maps corresponds to the splicing of
 extensions.

 Unfortunately, the Hopf algebras that arise in nature in this way are very far
 from transparent, and our knowledge of their homological algebra is consequently
 so limited that this very conceptual E2-term in not very practically computable.
 For example, the complex bordism functor satisfies our flatness hypothesis, but
 the associated groups E', *(SO, SO) have been computed only for i = 0, 1, and 2,
 for they are exceedingly intricate [51].

 In this paper, motivated by the special case in which X is the 0-sphere and
 Y is a torsion space [32], we will be concerned with the effect of torsion in the
 complex bordism of Y on the behavior of E', *(SO, Y) for 'large' values of *. That
 is, we will examine extensions of the bordism of a point by torsion comodules,
 and our results will be algebraic; but related results have had direct topological
 application.

 In the remaining sections of this introduction, we will recall some basic
 results about the category C of comodules over the bilateral Hopf algebra of
 cooperations in complex bordism, and we will construct some auxiliary categories
 of comodules. Our main goal here is to make intelligible the terms in which the
 basic result, in Section 1, is formulated; Section 2 is concerned with the reduction
 to group cohomology of the study of certain periodic families of extensions of
 U*(S?) by torsion comodules. We will be more explicit below.
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 COBORDISM COMODULES 3

 0.1 First facts about cobordism comodules. We write U*(S0) for the homo-

 topy of the Thom spectrum of the complex unitary group, following Quillen [57],
 but a knowledgeable reader might prefer to think in terms of BP [7], [82]. We

 will write ? u to signify the graded tensor product of U*(S0)-modules, to
 simplify subscripts.

 To begin, recall that a (nontrivial) graded prime ideal of U*(S0), finitely
 generated and invariant under the Landeweber-Novikov operations, takes the
 form

 In= (pav1, . . . . n-1)

 for appropriate elements vi of dimension 2(pl - 1), for some prime p and
 natural number n; furthermore, Ip n contains Ip n-1

 A comodule M* E C is vn-torsion if its localisation

 V-nM* = U*(So)[5nl] ?uM* E U*(So)[inI]-modules

 is zero; alternately, provided M* is finitely generated, it is v.-torsion when all its
 associated primes contain vn and thus I, n (since by Landweber [38] such primes
 are invariant), so a finitely generated vn-torsion comodule is a vn-1-torsion
 comodule. It has been observed by several authors; cf. [31, Lemma 2.3], [42], [50]
 that this finiteness hypothesis is unnecessary.

 Writing (vn-torsion) for the full subcategory of C generated by such comod-
 des, we have a decreasing filtration of C by abelian subcategories which are
 easily seen to be closed under extensions and direct sums.

 We will write vo = p if the prime is clear from context, and we will write
 (v - 1-torsion) for the full subcategory of p-local comodules (whose endomorphism

 rings are Z (V)7algebras). We will employ this filtration of C by localising [25, III
 ?4] subcategories to analyse

 Ext'*(U*(SO), M*)

 for M* finitely generated in (vn_-ltorsion).
 Now when U*(X) is U*(S0)-projective, the second stage of the Adams

 spectral sequence for complex bordism of the spaces X, Y. is the right-derived
 functor

 Extc (U* (X) , U* (Y))

 of Hom* (U*(X), -) relative to the category of U*(S0)-modules [6, III ?15];
 [22], [56]. It is computable as the homology of the cobar [2], [52] complex

 Hom *(U*(X)I0*,* ? U*(Y))
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 4 JACK MORAVA

 in which

 i + 1 copies

 Qi= U*(Mu) ?u CUU*(MU)

 with an appropriate differential, is the standard relatively injective resolution of

 U*(S0) in C.
 If the vn-1-torsion object M* is finitely generated, it follows [39, ?3.7] that

 VM = multiplication by vP?: M * M * +

 defines, for some least m, a C-endomorphism of M *. We conclude that
 Ext'*(U*(SO), M*) is an object of the category of Z(P)[vM]-modules; its localisa-
 tion

 e(m*) = Z(p)[Vf nv1f] Z(,[VM Extc*(U*(S) *)

 can be interpreted as a module of periodic families of elements in

 Ext',*(U*( SO)5 M*).

 0.2 The quotient categories. From here on we fix a prime p; we restrict our
 attention to the p-component of E2* *(SO, Y) and to the behavior of
 Ext c *(U*(SS), -) on the subcategory of 'v - 1-torsion'.

 The quotient abelian categories

 C (n) = (v -n 1-torsion)/( vn-torsion)

 can be defined by a direct generalisation of the modC theory of Serre [25]; in

 other termns, C(n) is the category of fractions of (vn-l-torsion) in which mor-
 phisms with vn-torsion kernel and cokernel become isomorphisms. C(0) is evi-
 dently the category of graded 0-vector spaces, and C(1) will be seen to be

 (equivalent to) the category of torsion Iwasawa modules [43], [62].

 We denote by v - 'M* the image of M* E (n- n-ltorsion) in C(n); under the
 adjoint to the quotient functor, the image of vn 'M * has

 lim( vn-multiplication on M *)

 as underlying U*(S0)-module; cf. [31], [42].
 We will need to have a more practical description of the categories C(n).

 Let

 U(n)*(S 0) = limv ,1(U*(S )/I ,n);

 This is a graded, flat U*(S0)-algebra, possessing a natural topology. It will be
 convenient to write

 U(n)*C(n) = UT(n)*(S0) ) UU*(MU) ? uU(n)*(S0),
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 COBORDISM COMODULES 5

 for the pair (U(n )(S), U( n)* U(n)) inherits the structure of a bilateral Hopf
 algebra from (U*(S?), U*(MU)); we denote by C(n), the category of graded left

 (U(n) (S0), U(n)*U(n))-comodules.
 Now In-multiplication is nil on a vrntorsion comodule [50]; it follows that if

 M* is such, then

 U(n)*(S0) M* = n

 is a continuous left U( n)*(S0 )-module in its discrete topology.

 0.2.1 PROPOSITION. The functor M* o 1M * defines an equivalence of
 C(n) with the full subcategory of discretely continuous comnodules in C(n).

 Proof This functor evidently renders invertible any morphism of Vn- -tor-
 sion comodules with vn-torsion kernel and cokernel, and hence defines a functor
 from C(n) to C(n).

 Now a discretely continuous object N* of C(n) has an underlying vn -1-tor-
 sion U*(S0)-module NO; and since No 09 U*(MU) is a right vn1-torsion
 U*(S0)-module, we have a (U*(S0), U*(MU))-comodule structure morphism

 N *0 - - N N * C )U(n) U(n) _ No ? U*(MU).

 It is now easy to check that these exact functors are each other's inverses. E

 The categories C(n) appear in part to motivate the introduction of the

 categories C(n). We can now observe that

 (n)** *= CJ(n)*(S0) f2uQ*,* ?uU(n)*(S0)

 is a standard cobar resolution of U(n)*(S0) in C(n), and that the Cartan
 associativities yield natural isomorphisms

 Ext* *(U*(SO), v-'M*) = Ext*,n*)(U(n)*(S0), v,'M*);

 cf. [73, XI ?3.10] and [26, ?5.3.6].

 0.2.2 PROPOSITION. If M* E (Vn- 1-torsion) is finitely generated, then there
 are natural isomorphisms

 tC(M*) Extc*(U*(So),n-1M*).

 Proof The right-hand group can be computed as the ith homology of the

 complex

 Hom*(U*(S0),4-'M* CuQ* *)
 which can be naturally identified with the module of primitive elements in the

 comodule v - M * C) u *; but the primitives of a comodule C * can be defined
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 6 JACK MORAVA

 as the elements of the difference kernel of the maps

 C* C* ? U*(MU)

 defined by the coaction morphism and the map c - c ? 1; by the exactness of
 localisation, the primitives of v-,M* (9 Q* * can be identified with

 Z(p)[vn v n'] ? Z(P)[VM] (primitives of * * 0 M

 Now homology commutes with direct limits, and we are through. El

 0.2.3 COROLLARY.

 8C(M*) _Ext',*n)( U(n)*(S?) ,v-1M*).C

 We can now explain that the main result of Section 1 is a concise description
 of the category of torsion objects in C(n), which will enable us to reduce the

 computation of C*( -) to group cohomology. Our techniques are suggested by
 the theory of commutative one-parameter formal group laws [24], [27], [37]; in
 the next subsection we will review some fundamental constructions related to
 their lifting theory.

 0.3 Statement of the basic result. Thom [76] showed that the rational

 localisation U C) ZQ of the bordism ring

 U= ED?ieZUi(S0)

 is a polynomial algebra generated by the complex projective spaces, and
 Miscenko showed that the logarithm of the formal group law defined on
 U *(C P(x))) by the H-space structure of C P( o) takes the form

 log u(T) = E CP(m 1) TM
 m?1 m

 where T e U2(CP(oo)) is the Euler class of the Hopf bundle. Quillen showed
 that the group law on U*(CP(ox)) is the universal law of Lazard.

 Clearly a unique ring-homomorphism from U to 0 is thus defined by its
 values on the projective spaces. Fixing now the integer n, let XF be such a
 homomorphism, satisfying

 E XF(CP(m - 1))m-s = (I _ pn(1-S)-1)1
 m?1

 as formal Dirichlet series; its formal Mellin transform

 "CP~ - _T kpnk xF(CPm ))m = E p T
 m21 k2O

 is the logarithm of the formal group defined by XF. It is a result of Honda [29]
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 COBORDISM COMODULES 7

 that XF takes its values in the subring Z(P) of Q; thus the image of the universal
 group law defines a group law over Z(p). Similarly, the graded homomorphism

 V - X*(V) = XF(V)Udegv: U*(S0) -*z(p)U, ]

 with u an indeterminate of degree two, defines a group law over the target. We

 will write F(X,Y) E IFP[[X,Y]] for its reduction modulo p. We will also write
 X +FY instead of F(X,Y), and [i]F(X) instead of X +F * * * +FX (i times). It

 can be shown that X + FY is congruent to X + Y modulo terms of degree at

 least pn, and that [p]F(X) = X P; thus F is a group law of height n, and is in

 some sense the simplest such formal group law.

 The case n = 1 below will be the most familiar to us, but the cases n ? 2

 will be the most interesting. For the case n = x, see [9], [49].

 In Section 1 we use the theory of lifts of formal group laws in its most

 classical form [44]. More exactly, given a group law over a perfect field k (for

 instance, F over Fp) and given a local ring A whose residue field
 kA:= A/mA

 is a k-algebra, a formal group law F0 over A is said to lift F to A provided that
 its coefficients reduce, modulo the maximal ideal mA of A, to those of F.

 Because F has finite height, there exists a lift F of F to a (complete, local)

 domain EF with quotient field of characteristic 0, such that for any lift F0 of F to
 an Artinian ring A, there is a unique homomorphism

 i A io:EF -)-A

 of local rings, with image group law i0F isomorphic to F0 by the unique
 isomorphism which reduces, modulo mA, to the identity.

 For our purposes it will be helpful to have a graded version of this

 construction of Lubin and Tate. We list some more of their results as a

 0.3.1 PROPOSITION.

 i) EF * is isomorphic to the graded power series algebra

 Z,[[ul,.. u.-1]][uTu-1]. with dimu = 2,dimui = 0;
 ii) the classifying homomorphism et: U*(S0) -> EF* satisfies the con-

 gruences

 ek(v) = XF(V)Ul/2dimv modulo (p, ul,..., u,_1);

 iii) [p]1p(T) = uiuP-'TlP + terms of higher order in T. modulo
 (pU1)...,) ui1), fori = 0,...,n - 1.

 Proof This is as in [44, Prop. 1.1], with t2 = uiuP 1; we have

 F(X, Y) = u-'Y(uX, uY).
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 8 JACK MORAVA

 0.3.2 Remark. EF* is isomorphic to a sum of (pf - 1) copies of the

 (p, v1,. . ., v n-1)-adic completion of the graded BP*-algebra

 E(n)* = Zp[V * * . 1n1 nO = (P)[VL,...,Vfl1,Vfl,Vnl

 studied in [50, ?3.8]. El

 Now because ep(vi) = uip-P1 modulo (p,ul, . . , ui-1) for i less than n,
 and because ep(vn) = uP"n1 modulo (p,u1, . . ,un-1), the graded U*(S0)-alge-
 bra EF * fulfills the hypotheses of Landweber's celebrated exact functor theorem

 [41], and

 EF*(-) =EF* ? UU*(-)

 defines a homology functor.

 0.3.3. We show in Section 1 that the functor EF * X extends to an

 equivalence of the subcategory of torsion objects in C(n) with the category of

 torsion EF*-modules enriched by an action of a proetale groupscheme SF,

 defined over Z P7 of automorphisms of the group law F.
 More specifically, we construct below the Hopf Z P-algebra HF of coordinate

 functions on SFI together with a coaction of HF on EF*' rendering the torsion
 (EF*I EF* ? z HF)-comodules and the torsion subcategory of C(n) equivalent.
 (Torsion here refers to the underlying abelian groups.)

 The module Sc*(U*(Y)) of periodic families of elements in E * *(SO, Y), Y a
 finite complex with U*(Y) E (v_ - -torsion), can then be shown to be isomorphic
 to the Hochschild cohomology groups H*(SF; EF*(Y)) We show in Section 2
 that these modules can be computed from the continuous cochain cohomology of

 profinite groups PG1(D), in which D is the skewfield of isogenies of F defined

 over an algebraic closure of Fp [37, VI ?7.30].
 The PGI( D) are p-adic analytic groups [36] of virtual cohomological

 dimension n2 _ 1, and if (p - 1) + n are Poincare duality groups, as we shall
 see. In 2.1.5 we set up a Hochschild-Serre spectral sequence with E2-term

 HC*(PGI(D); JF*(Y))

 converging to the module Sc*( U*( Y)) of periodic families; here JF*( Y) is the
 Galois cohomology of the Adams operations with coefficients in EF*(Y), gener-

 alizing the J-groups studied by J. Frank Adams [1], [3], [74] and others; the group
 PG1(D) is trivial when D is commutative, i.e. when n = 1. We conclude for

 example that if (p - 1) + n the module c*(U*(Y)) vanishes above dimension n2.
 On the other hand, if p - 1 divides n (e.g. if p = 2) then (because D will

 contain a nontrivial pth root of unity) the cohomology of PG1(D) will have Krull

 dimension one as a consequence of Quillen's solution of the Atiyah-Swan

This content downloaded from 
������������129.240.118.58 on Fri, 10 Mar 2023 20:38:59 UTC������������� 

All use subject to https://about.jstor.org/terms



 COBORDISM COMODULES 9

 conjecture, and the modules Sc((U*(Y)) will themselves be periodic above some
 dimension.

 In Part 0.5 below we sketch how the category of finite spectra is an iterated

 extension of categories F(n) of finite complexes with families of maps of period

 2(pf - 1) (under suspension) as morphisms, which are in some sense categories

 of finite cohomological dimension under suitable hypotheses on p and n. The

 'Adams spectral sequences' for these categories start from the cohomology of unit

 groups of division algebras, the usual J-groups corresponding to the commutative
 case. One of the morals of the story of the J-homomorphism is that homotopy
 theory is very deeply connected with Galois cohomology, and these generaliza-

 tions to the cohomology of units of division algebras suggest that those who have

 'dreamed of a new field of number theory' [30], connected with formal groups,

 did not do so in vain.

 0.4 Acknowledgements. This paper had its beginnings in conversations

 with Atiyah (cf. [9], [10]) and Quillen in the early seventies, but it has been

 profoundly influenced since then by the researches of Haynes Miller, Douglas C.

 Ravenel, and W. Stephen Wilson, to whom I owe special debts. For example, I
 got the germ of a notion of a periodic family from work of Wilson which led to

 [52], and I learned from Ravenel ([60], [61]) to identify certain classes in the

 cohomology of the groups of units of division algebras with the classes hi
 well-known to algebraic topologists. Similarly, the structure theorem presented in

 Section 1 is based on an argument of Haynes Miller. This paper is intended as a

 partial complement to their work; they have freed me to emphasize algebra at

 the expense of topology. I have also profited greatly from the interest and

 encouragement of Michael Barratt, William Browder, Peter Landweber, Mark

 Mahowald, Graeme Segal, Dennis Sullivan, and many others; for example, I

 learned a good deal about finite subgroups of the units of division algebras from

 Hyman Bass. To all these, and to the many others who have helped me in many

 ways, I owe thanks and deep gratitude.

 0.5 Exercises. We include as exercises some remarks suggested by Appen-

 dix 5 of [56]; cf. also [5], [13], [66].

 Let (vn-spaces) denote the category of finite stable complexes whose bordism
 modules are vn-torsion, and let (vn-spaces)? denote the abelian category of
 'images' of morphisms between such objects, as in [17]. (We remind the reader

 that (vu-spaces)? possesses injective envelopes; cf. [23].)
 i) (vn-spaces) ? is closed under extensions.
 ii) An object of the quotient abelian category

 F( n) = (Vn- -spaces) +/( v-spaces) ?

 has a set of subobjects.
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 10 JACK MORAVA

 iii) U*(-) induces an exact functor from F(n) to C(n).
 iv) F( n) is closed under smash product.
 v) C(n) is not a Tannakian category, in that its tensor product is not rigid

 in the sense of [66, ?1.1.4].

 Recent work of Steve Mitchell (cf. [53], [54]) provides examples of finite

 vn-spaces for all n, for example the image of the homogeneous space
 Il~pn(C)/(Z/pZ)n under a certain twisted analogue of the Steinberg idempotent,
 if p is odd. The most general previously known constructions were limited to n
 no greater than three.

 1. A slice of formal groups

 1.0. C as linear representations of [2/b].
 1.0.1. Quillen's results show that the functor

 R 1-+Hom(rings)( Us R )

 from the category of commutative rings to sets, is naturally equivalent to the
 functor which assigns to such R, the set 2(R) of formal power series

 F(X,Y) =F(Y,X) =X+ Y+ eR[[X,Y]]

 which satisfy the relation

 F(X, F(Y, Z)) = F(F(X,Y), Z) E X, Y Z]

 the formal group law corresponding to 4: U -* R is the image of the law defined
 by the H-space structure of C P(oo) on U *(C P(oo)).

 This will lead us to a relatively coordinate-free description of the category C,
 which will be the topic of this subsection.

 1.0.2. Let @(R) denote the group of f(T) E R[[T]] satisfying f(O) = 0,
 f'(0) E (units of R), defined by the composition law [12, III ?4, no. 4]:

 (fo ? f1)(T) = f1(fo(t)),

 and let S be the polynomial algebra on indeterminates bi, i = 1, 2, ... over the
 ring So = Z [ bo0, b&-]; then the identification

 Hom(rings)(S, R) 3 E (b)T 1 E 3,(R)
 i>O

 endows S with the structure of a Hopf Z-algebra [6, II ?11]. This representability
 of the functor ( signifies that it is in fact a group scheme [19], affine over Z; it is
 the inverse limit of the affine algebraic groupschemes

 (5 deg i)(R) = { f E R [T]/(T+ ')If(O) = 05 f'(0) E (units of R)}

 represented by the polynomial S0-algebra on generators bl,..., bi. The normal
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 COBORDISM COMODULES 11

 sub-groupscheme

 ((R 0 = { f E ((R)If(T) = T + higher order terms}

 of (M is represented by the polynomial Z-algebra on the bp, and there is thus an
 exact sequence

 1 (g* 0 Gm*1

 of groupschemes, in which

 Gm(R) = Hom(rings)(So, R)

 is the multiplicative groupscheme (of units in R), represented by So with Hopf
 algebra structure defined by Abo = bo ? bo. Writing (i 0(deg i) for the truncated

 versions of (h50, and noting the exact sequence

 1 -- (30(degi - 1) --* 30(degi) -* Ga 1

 in which Ga(R) is the additive group of R, we conclude that (5 (deg i), being a
 repeated extension of additive groups, is unipotent [19, IV ?4 no. 2]; indeed,

 (i0(deg i)(r) acts naturally on the free R-module R[T]/(Ti+') by upper-triangu-
 lar matrices.

 1.0.3. If we write b'O - bi* bJ for a multi-index I = (ion ... , i)

 with all but the first entry nonnegative, then an S-comodule A M: M -* M X ZS
 amounts to an abelian group M endowed with a family s1 of endomorphism
 defined by

 AM(x) = Esj(x) * b,
 I

 with s1( x) = 0 for III sufficiently large. For example, let io denote the multi-
 index (io0 ,0 ... ), i0 E Z; then

 E Sio
 ieZ

 is a decomposition of the identity map of M into orthogonal idempotents, so that

 M = ED i E Z (image sio )

 and any S-comodule (for example S itself) is naturally a graded object. We write

 M2i for the image of sio; with this convention, deg bi = 2i. An S-comodule M
 consequently has an associated graded S.-comodule M., with an S0-coaction
 defined on m2i E M2i by m2i - m2i ? bo. This S0-coaction is redundant in the
 graded context, and it will sometimes be suppressed by setting bo = 1.

 1.0.4. Now the complex bordism of any space can be seen to be an

 S-comodule; in particular, if F(XY) E 2(R) and f(T) E @5 (R) then

 f(F)(X, Y) = f-'(F(f(X), f(Y))
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 12 JACK MORAVA

 defines an action ( X 2 -- 2 of the groupscheme ( upon the scheme 2,
 represented by a coaction 4u of S on U.

 Similarly, if T is the Euler class of the Hopf bundle on C P(ox), then in the

 appropriate completion (for U *(C P(cx)) is not a comodule in our terms) we have

 4U *(CP(OO))(T) = E biT ,
 i?O

 and if Omu: U *(BU) U *(MU) is the Thom isomorphism, then in the univer-
 sal example we have

 4U*(MU)(4MU(1)) = JZ0Mu(cI) * b
 I

 for polynomials c1 in elementary symmetric functions of indeterminates TP
 defined by

 Ec1(a1,... )b=H (I + ES binT)
 I j?1 i?1

 The free U-module on a single generator, with coaction defined by

 P(generator) = (generator) ? boo

 has as graded counterpart the S*-comodule more usually denoted U*(S2z). We
 write

 S2iM* = M2i+* = U*(S2i) 0 lM* (resp. S2iM = U(S2i) 0 UM)

 for i-fold double suspension in the (equivalent) categories of graded

 (U*(S0),U*(MU)) - (resp. (UU ZS) -) comodules.

 1.0.5. We can now observe that the cosimplicial commutative ring

 U _U0 X S U X zS X zS.**

 (which is an ungraded version of the construction

 U*(SO) 0 U*(Mu) U*(MU A MU) _ ***

 of 0.0) has a natural interpretation as the representing object of the simplicial
 scheme

 this simplicial scheme, in turn, is a familiar presentation of the transformation
 groupscheme defined by the action of ( on 2 by change of coordinates.

 We will write [2/@5 ](R) for the category with formal group laws over R as

 its objects, and coordinate changes as its morphisms; this category is the
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 COBORDISM COMODULES 13

 groupoid defined by the action of the group @3(R) on the set 2(R). The functor

 R --[ /] (R)
 from commutative rings to groupoids (considered as simplicial sets) is thus

 represented, in a natural sense, by (the cosimplicial ring associated to) the

 bilateral Hopf algebra (U, U 0 ZS); cf. [19, III ?2 no. 1] and [40].
 We will therefore speak of the groupoid-scheme [2/(X], and we may take

 this point of view with other bilateral Hopf algebras. Note that the scheme

 (M x 2 of morphisms of our category is flat over the scheme 2 of its objects;
 that is, [2/(X] is a flat groupoid-scheme.

 More generally, if C is any such flat (affine) groupoid-scheme, with cosimpli-

 cial representing algebra

 A9 C [O] A9C[1]1 Ad C [ 2]
 then the category of (AD4O], A4[])-comodules is abelian, with enough relative

 injectives (of the form 'direct summands of Ash] ?Ag[O] (some A,[]-module)'
 [50]). We will write W-comod for the category of such comodules, but we may

 refer to this as the category of linear representations of 9 ([19, II ?2 no. 2]; [66,

 ?3.1.2]) extending the terminology in the case of a connected groupoid.

 Note that the tensor product of a linear representation M of [2/O,] with

 (the representation defined by) the character

 f - f '(?): (M-* Gm

 defined in 1.0.2, is the linear representation corresponding to the double suspen-

 sion of M; similarly, the 2i-fold suspension of M can be identified with the

 product of M and the ith tensor power of that character.

 1.1 Lifts and their automorphisms

 1.1.0. Let C be a general flat affine groupoid-scheme, let k be a field, and

 suppose that x: A40] -* k is a k-valued object of C. If A is a local ring, with
 residue field kA E (k-algebras), then we will denote by XA the image of the

 object x under the map of groupoids induced by k -3 kA.
 An object of C(A) will be said to lift x if its image under the map induced

 by A -* kA is XA. We will denote by !Y(A) the full subcategory of C(A)
 generated by the objects which lift x; this functor restricted to the category Artk

 of Artinian local rings with residue fields in (k-algebras), will be called the formal

 slice through x of C.

 If the field k is perfect, the ring

 A4x [0] = lim.A C [0] /(kernel x)'

 is an algebra over the ring W(k) of Witt vectors of k, and the W(k)-algebra
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 14 JACK MORAVA

 homomorphisms [21, ?6.3]

 A0 -* A, A E Artk,

 correspond bijectively with the objects of i1(A). Similarly, morphisms of 9"(A)
 correspond bijectively with the W(k)-algebra homomorphisms of

 A[1] =A40] A AwO]A [1I ?A[O]A~jOI

 to A. There is a natural bilateral Hopf W(k)-algebra structure defined by AC. on
 (AC [O], AC [1]) which represents a functor on the category of W(k)-algebras

 extending our formal slice functor on the subcategory Artk; we will therefore

 speak of a groupoid-scheme 931 defined over W(k).

 1.1.1. The main technical step in our argument is the construction of a good

 model for the formal slice of [2/(3] through a group law of finite height. (The

 group law of 0.3 is defined over DFp, and its associated slice is therefore defined
 over W(DFP)-ZP.)

 As in the preceding paragraph, we start the construction on the category

 Artk, and eventually extend it to all W(k)-algebras. We begin with a well-known

 lemma:

 1.1.2 LEMMA. Let F5 F, be lifts of a formal group law F of finite height
 from k to A E Artk; then the homomorphism

 PA: HomA(FO, F1) -* Endk (F)

 defined by reduction modulo mA is injective.

 Proof. Suppose f0, f1 to be a pair of homomorphisms from F0 to F1 which
 reduce modulo mA to the same endomorphism of F; then their difference

 f(T) = fo(T) +F I[-1] F(fi1(T))
 is a homomorphism from F0 to F1 with coefficients in mA. Such a series must be
 identically zero; for A satisfies the descending chain condition, and it is easy to

 verify inductively that if f(T) lies in mr[[T]] with r ? 1, then f(T) EG Mr,[[T]].
 Indeed,

 f(F,(X 5Y)) _Fo(f(X) 5f(Y)) _f(X) + f(Y) modulo mA 5[,Y]

 and hence f([p]F(T)) pf(T) modulo mA 1[[T]]. But now p E mA, while

 [p]F(T) O(T") modulo m[+'[[T]] with q = pn and 4) an invertible power
 series. Consequently f(p(Tq)) = 0 modulo Mr+ 1[[T]], and thus f = O. E

 1.1.3 COROLLARY. If F is of finite height over a field, then its groupscheme

 (E F of automorphisms has trivial Lie algebra.
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 COBORDISM COMODULES 15

 Proof We recall that 5 F (the functor which assigns to the k-algebra R, the
 subgroup of f E 05(R) such that

 F(f(X), f(Y)) = f(F(X, Y))

 is represented by a closed subgroupscheme of (M ([19, I ?2 no. 7.7]; cf. also

 1.0.2). Its Lie algebra has underlying k-vector space

 Lie (5F = kernel of 2F(k[e]/(e2 )) F(k)

 (with the map induced by the homomorphism e - 0 from the ring k[e]/(e2) of
 dual numbers of k); but this is trivial by the preceding lemma. [

 It follows that

 (g)F = liM.(2F n 05(degi))

 is the inverse limit of a family of etale [19, II ?5 no. 1.4(v)] k-groupschemes. Such

 an object is determined by its (profinite) group F(kS) of points with values in a

 separable closure kS of k, together with the induced (continuous) action of the
 Galois group Gal(k /k). Indeed, a Hopf k-algebra representing ( F can be

 constructed as the Galois-invariant continuous functions from F( k s) to ks.
 We now recall [64, VIII, Cor. to Prop. 1]; cf. also [75] that if k is perfect, we

 have the following:

 1.1.4 PROPOSITION. The category of finite schemes X etale over k is equiv-

 alent to the category of finite schemes X etale over W(k) in such a way that if

 A E Artk, then

 X(A) = Y(kA)

 This leads us to make the following definition:

 1.1.5 Definition. HF is the W(k)-algebra of locally constant [80, VII ?2]

 functions f from ( F(k,) to W(ks) which are invariant under the action of
 a E Gal(ks/k) defined by

 fo(x) = -'(f(AG(x))).

 If B is a W(ks)-algebra, then SF(B) = HomW(k)-g(HF5 B) is naturally
 isomorphic to the group of continuous functions from Spec B to F( k A) [19, II
 ?2 no. 2.12]. The W(k)-linear dual HF* of HF can be identified with the subring

 of Galois-invariant elements in the profinite group W(ks)-algebra

 W(ik Sr) o d s) lim W(ck s) [ 5 F(k s) /(finite index)

 introduced by Lazard [36].
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 16 JACK MORAVA

 1.1.6. We will call an isomorphism

 f: Fo '-3 F,

 of lifts of F to A E Artk a * -isomorphism if f e @(A) lifts the identity of

 0(kA), that is, if f(T) is congruent to T modulo mA[[T]]. It is a further

 consequence of 1.1.2 that a * -isomorphism of lifts of F of finite height is unique,

 provided it exists at all.

 We denote by lifts *(A) the set of * -isomorphism classes of lifts of F to A. If

 [G] is the class of such a lift G, and if g E @3(A) reduces modulo mA to
 f E F(kA), then the class f[G] = [g(G)] is independent of the choice of g; for

 if g0, g1 are two such choices, then g7 1 o g0 is itself a * -isomorphism.
 Therefore the group (25( kA) acts naturally on the set lifts*(A), defining a

 (transformation) groupoid

 [liftsF( A)/(25F(kA)

 We will write [liftsF/SF] for the functor from Artk to groupoids thus defined.

 1.1.7 PROPOSITION. [lifts*/SF] extends to a W(k)-groupoid-scheme.

 Proof. This is evidently by construction. We have seen above that A

 F(2kA) extends naturally to a representable functor SF on W(k)-algebras; that
 lifts* extends is the principal result of [44]. The ring EF of 0.3 is so constructed

 that to any lift Fo of F to A E Artk there corresponds a unique W(k)-algebra
 homomorphism i : EF -- A with i F *-isomorphic to Fo; this puts lifts*(A) and
 HomW(k)ag(EF5 A) into one-one correspondence.

 To complete the construction there remains the definition of the promised

 coaction of HF on EF. To do this it will be convenient to interpret EF (? W(k)HF
 as a subset of the Gal(ks/k)-invariant functions on (2F(ks) with values in
 EF ? W(k)W(kS); the coaction is then to be a special sort of function from EF to

 EF ? W(k)HF5 and can by adjointness be defined as an element of the
 Gal(ks/k)-invariant functions on (2F(kS) if we take values in Endw(k)-Ag(EF)

 ? WW(ks). It therefore suffices to exhibit an appropriate action of the group
 JF(kS) on F F) w(k)W(ks) by Galois-equivariant algebra endomorphisms.

 Indeed suppose g(T) E W(ks)[[T]] reduces modulo p to g(T) E 25F(kS);
 then g(F) is a lift of F to EF 2 W(k)W(kS) which is just as universal as
 F x w(k)W( k s) is; consequently there exist both a unique W(k s)-algebra endo-
 morphism

 i(g) = ig(F). EF ?W(k)W(ks) - EF ?W(k)W(kS)

 (defined as the limit of homomorphisms of the Artinian quotients) and a unique
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 COBORDISM COMODULES 17

 isomorphism

 g* i(g)F g F)
 which reduces (modulo the maximal ideal of EF) to the identity. If g is the

 identity, then by uniqueness g * is also. It follows that i( g o g 1) = ig0) o if g 1),
 and the Galois naturality is similarly easy. U

 1.1.8 COROLLARY. If A E Artk then the categories

 [liftSF/SF](A) and [2/0] F(A)
 are equivalent.

 Proof The correspondence which assigns to a lift G of Fo to A, its class [G]
 in lifts*(A), extends to a functor on the formal slice through F which will be
 more conveniently denoted UF. Conversely, to the *-isomorphism class [G]
 corresponds the composition

 e1,
 U tE mA

 of classifying homomorphisms, which extends to a functor (which we will

 continue to denote by ep) quasi-inverse (by uniqueness, cf. 1.1.2) to UF. U

 1.1.9 Construction. We will write (UF, UFU) for the bilateral Hopf W(k)-
 algebra representing the groupoid-scheme [2/O] F; thus UF is the ker(x F:

 U -- k)-adic completion of U, with XF the classifying map of F. The functor ep
 of the preceding corollary, restricted to the objects of the category [lifts*F/SF], is
 evidently represented by a universal W(k)-algebra homomorphism

 ejO:UF *F'

 Similarly, UF is represented on objects by a homomorphism

 UF[OI] EF-) UF.

 In this paragraph we sharpen the result of 1.1.8 to show that the quasi-
 inverse functors displayed there can be represented by morphisms of simplicial
 schemes.

 i) To complete the construction of

 eF: [liftS*F/SF] [ /01 F,
 note that if g E - F(kS) is congruent to T modulo terms of high degree, then the

 endomorphism i(g) of the topological W(ks)-algebra EF ? W(k)W(kS) will be
 close to the identity, while g*(T) = i ,Og *Ti+' will be close to T in the power
 series topology of (EF 8) W(k)W(ks))[[T]].
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 18 JACK MORAVA

 The functions g -g* are therefore locally constant EF ? W(k)W(kS)-valued
 functions on E F( k), and the function

 e [1](g) =g *(T): gF(k5 ) -, (LF ?W(k)W(ks))[[TII

 can be regarded as a canonical element of O(EF ? W(k)HF), which is in turn
 represented by

 eF [1I:S EF W(k)HF

 The pair (e[0], e4[l]) now represents the functor ep, where we have written
 ep[l] for the bilateral kerxF-adic completion of

 ei~?~~[1F U F ? W(k)HF

 ii) Similarly, UF is represented by a pair (uF[0], uF[1]), where

 UF [ 1I = UF [0I ( 0uF I[ 1]

 with u? [1]: HF _ UFU a homomorphism of W(k)-algebras.
 It will be useful to interpret u'[1] as the inverse limit of the canonical

 family of elements in

 SF(UFU ? W(k)W(kS)/P )

 = continuous maps of Spec UFU ? w(k)W(ks) to (25F(ks)

 which send an element of Spec UFU ? W(k)W(ks)/pM, interpreted as a pair of
 lifts of F to UF ? w(k)W(ks)/pm together with an isomorphism between them
 (as in [40]), to the automorphism of F defined over ks by the reduction modulo
 the maximal ideal of UF ? W(k)W(ks)/pm of that isomorphism. (We reduce
 modulo Pm to exclude points of Spec UFU ? W(k)W(ks) with residue characteris-
 tic 0.)

 iii) Finally, we note that for any i, the canonical group law over UF/(ker XF)
 is isomorphic to an image of F by a unique isomorphism which reduces modulo

 the maximal ideal, to the identity; as in ii), we can understand this triple as an
 element of

 Homw(k)ag( UFU, UF/(ker XF) )

 The inverse limit e: UFU _4 UF of this family represents the natural transforma-

 tion which assigns to a lift of F to A E Art k its unique * -isomorphism with an
 image of F. E
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 COBORDISM COMODULES 19

 1.1.10 COROLLARY. The morphisms just constructed define a natural equiv-

 alence of the categories

 [lifts*/SF](B) and [v2/01,F(B),

 for any W(k)/pm-algebra B, e.g. an Artinian algebra.

 Proof. We can rephrase the assertion of the corollary in terms of morphisms

 of simplicial schemes defined over W(k)/p'; we eventually have to show that if
 z: Z -3 Z is a morphism of one of these schemes, such that z(A) = 1Z(A) for
 A E Artk, then z = lz is the identity map; and because a morphism of schemes
 is determined by its behavior as a morphism of ringed spaces, a sufficient

 condition for this conclusion is that the local ring at any point of Z be Hausdorff

 in the topology defined by powers of its maximal ideal (unlike the C?? functions

 on R). But the schemes in question here are either noetherian (e.g. EF or HF) or
 smooth (e.g. U or S) or products of combinations of such; and that is enough. El

 1.2 An apparent digression on similarity

 1.2.0. The argument of this section is due to Haynes Miller, and ought to be

 of wider interest.

 1.2.1. We recall that categories C0, C1 are said to be isomorphic when there

 exist functors

 P

 Co C1

 such that 1 c = QP, 1 c = PQ, and are said to be merely equivalent, or
 quasi-isomorphic, when there are natural equivalences

 1 CO =>Qp, 1 C1 PQ

 of functors; indeed this notion is fundamental, in 1.1.

 This concept has been called similarity, by Mackey [46], when the cate-

 gories in question are groupoids. It will therefore perhaps be clearest to say that
 groupoid-schemes 9, 9', interpreted as (representable) functors from commuta-

 tive rings to groupoids, are naturally similar if there is a natural choice of

 similarity, or quasi-isomorphism, or equivalence, of 9(R) with 9'(R), for any
 commutative ring R.

 1.2.2. More precisely, a morphism p: 9 -3 9' of (affine) groupoid-schemes
 can be specified by a pair 4[i]: Ag,[i] -* Aw[i], i = 0, 1, of ring-homomor-
 phisms with the requisite properties of commutativity.

 The set of such morphisms can be given the structure of a category, or,

 indeed, a groupoid; if (L, 'kR are morphisms of groupoid-schemes, from 9 to 9',
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 20 JACK MORAVA

 then a morphism

 6 .L (R

 is to be a ring-homomorphism

 6: A4,[1] A- [AO]
 such that the diagrams

 iL) { i)R[ {9
 * \ \ ~~~~~~~~~~~~~o iL ) 11L94 1] j ~L [?] ' OR [0

 AW[1 - > AW'[1] 0Ag'A[oAWC[l]

 Ai4oof 1] ?~

 Awi ,[l1] X A w[o] AC, [ 1],AWtC[I ]

 commute, where qL' qR are the left and right units of C' and A indicates the
 diagonal map. For example, the identity map of 9 is the 'identity' map
 A41] -* Aw[0]!

 The composition of 6 with 6': (R = (AS in the category of morphisms from
 S to C' is the composition

 0 0 0': AC [1] AC,[1] (&AW [0]A,[l] "AS [0] (AW[01AS[0] -= AS[0];

 the relations i) insure that the product 6 ? 6' is well-defined.

 1.2.3 PROPOSITION. Naturally similar groupoid-schemes have equivalent
 categories of linear representations.

 Proof Suppose p: C -C 9' is a morphism of groupoid-schemes, let V belong
 to 9'-comod, and set 4*(V) = A[O] ?&,[O]V; then the composition

 V 4,v oAw,] XA V - AW,[1] 2)AC ([0 C [] ] AC [0]
 \~~~~W0 A,[ ] AW[]< [ ]

 C [ ] AAW[] (A( )
 AW41] ?AW[O](P(V)

 extends A,0]-linearly to define 4p*(V) E 9.comod, which yields a functor

 (A*: 9'-comod -3 9-comod.
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 COBORDISM COMODULES 21

 Now let 0: 4'L ) (PR be as in 1.2.2, and denote by

 Ov: 4L(V) -* 4R(V)

 the morphism of !-comodules defined by the composition

 A SI'] 4L O, [O]V A[O] [ )4L[O](AW[ ] AC [0] V)

 (A 40] ?AC[o]A5ro KIEVt_ A4O] ? V.R[O]

 It follows from ii) that (O'o 0)* = 0'* o 0*, and it is easy to check that the
 map induced by an identity map is an identity map; since the morphisms from

 one groupoid-scheme to another form a groupoid, it then follows that 0* is a

 natural equivalence of 4 L with 4*, and the proof is complete. []

 1.2.4 COROLLARY. Let C be an affine groupoid-scheme over R, and let R'

 be a flat augmented R-algebra. Then the groupoid-scheme WXRR' over R,
 represented by the bilateral Hopf algebra (A,4] ?RR, R' ?RA[1] RR'), is
 naturally similar to W.

 Proof. The structure map R -* R' defines a morphism

 WXRR' C-

 of groupoid-schemes; to define the quasi-inverse functor, note that B is an
 R-algebra, then (W XRR')(B) is a groupoid with set of objects given by the

 Cartesian product of the set of objects of C(B) with

 (Spec R')(B) = HomR- Ig(R , B),

 while a morphism of (W X RR')(B) can be identified with a pair of objects of the

 category, together with a morphism in C(B) from the first factor of the first

 object to the first factor of the second object.
 Therefore the augmentation of R' defines a functor which sends an object of

 W to an object of 9 x RR'; the necessary natural transformations are left to the
 reader. (This construction is related to the notion of Morita equivalence, found in

 the algebraic literature.) [1

 1.3 Completion of the argument.

 1.3.0. From 1.1.10 and 1.2.3 it follows that EF ?9 defines a quasi-isomor-
 phism, or equivalence, of the category of torsion linear representations of

 [2/(35]F with the torsion linear representations of [1ifts*/SF], for F of finite
 height. To complete the proof of the basic result of 0.3.3, we show that the
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 22 JACK MORAVA

 category C( n) defined in 0.2 is equivalent to the category [ 2/S ]F-comod, with
 F the standard law of height n.

 1.3.1. The homomorphism

 XF: U -> FP

 defining this group law can be characterised as the homomorphism which sends

 the nth Hazewinkel [27] generator of BP to 1, and sends the remaining

 polynomial generators of U to 0; thus U(n) is a formal power series algebra on

 generators v1,... ,v over a graded polynomial Z -'[vavn]-algebra P on
 generators of dimension 2i, i $ pi - i, where j is between 1 and n - 1. UF can

 be similarly described as formal power series algebra over a completion P of P.

 We can now complete the argument by appealing twice to Corollary 1.2.4;

 indeed let ep be as in 0.3.1, and write

 EF*E = EF* ?& UU*(MU) ? UEF*.
 We then have the following:

 1.3.2 PROPOSITION.

 i) UFU P ZEF*E C P,

 ii) TU(n)*CU(n) P P?ZEF*E ?7 P.

 iii) The P-adic completion functor

 UF ?C(f) d(n) C 0 [ /J] comod

 is an equivalence of categories.

 Proof. To see part i) use 1.2.3 et seq: Both (UF, UFU) and (P?X EF,
 A A

 P ? EFE ? P) represent the groupoid-scheme of lifts of F. (In this picture P

 represents the functor which assigns to the W(k)-algebra A, the set of those

 *-isomorphisms of the universal lift, which reduce to the identity map of F.) To

 see ii), we can construct from the ungraded but topologically nilpotent module

 MF, the graded (P* ? F' P* X EFE X P*)-comodule
 M *->*P?* zEF ?)MF;

 n F~~~~ F

 this functor is exact [by Landweber's theorem], and iii) follows. C1

 1.4 A geometric paraphrase

 A slice of the action G X X -> X of a Lie group G on a manifold X

 through a point x E X can be defined as the germ of an immersion of a disk Sx
 through x, with tangent plane transverse to the orbit of x, as for example in [45]

 or [79].
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 COBORDISM COMODULES 23

 The isotropy or stabiliser group S, = { g E G I gx = x } of x evidently acts on
 the ring of germs of smooth functions at the origin of (x; so there is therefore a
 natural action of SX on the formal completion of this ring of functions, or (more
 geometrically) on its formal spectrum. This is a Coo analogue of the sort of

 situation studied in 1.1, and our basic result there is just a slight strengthening of

 the original slice theorem proved by Lubin and Tate. Similar results seem to hold

 for a great variety of moduli problems; cf. [18], or the work of Arnol'd on isolated

 singularities of holomorphic functions.

 Schlessinger's theorem ([67], cf. also [77]) gives elegant and very general

 conditions for the representability of such a slice functor, but for purposes such

 as ours we require more information about the action of SX than lies on the
 surface of his work. (He limits himself to the action of the 'connected compo-

 nent' of SX, which in our case is the identity.)
 Such topological categories as [9x/Sx] would appear to be natural models for

 the formal neighborhood of a point on a very general groupoid-scheme.

 2. Cohomology of PG1(D)

 2.0 Applications of the basic result

 2.0.0. In 0.2.3 we saw that the module v lExtij*(U*(SO), M*) of periodic

 families associated to a finitely-generated vn-l-torsion comodule M * can be
 computed in a purportedly simpler category C(n) of comodules. Now, invoking

 1.1.10 and 1.3.2, we see that the computation can be done in the category of

 comodules over (EF*, EF* ? HF)

 2.0.1. The ith term of the cobar complex of this bilateral Hopf algebra has

 the form

 ------i + 1 copies-----------

 ? F) ?EF . F(EF* HF) -EF* ?(i + 1 copies Of HF),

 unattributed tensor products being over Z P. This identification results in an
 isomorphism of Ext'((* )(U(n)*(S0), v -1M*) with the ith homology of

 Hom'jEF(* (EF* ? UM*) ?LLF* ? (cobar complex of HF)*)

 -(E ?M*) ? (cobar complex of HF)*
 Recalling that HF represents the group-scheme SF, we see that this ho-

 mology is what Demazure and Gabriel [19, II ?3 no. 3.1] call the Hochschild

 cohomology of SF, with coefficients in EF* ? UM*; it is the homology of the
 usual complex of natural-transformation-valued Eilenberg-MacLane cochains,
 from the group-valued functor SF to its linear representation EF* ? uM*
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 2.0.2. We write this conclusion more concisely, as

 c( M *)_H'(SF; EF*8)U'*

 The group on the right of this isomorphism is defined more generally, e.g.

 for any M* E C; note that the Adams spectral sequence for the homology theory
 EF *(-), which might be hoped to converge to the stable maps in a category like
 (v - 1-spaces) +/( v-spaces) ', has

 E* (SO Y) HO(SF; EF*(Y)); cf. [14], [62].

 However when M* is finitely-generated vn-i-torsion, EF* uM* is (as in
 0.2.1) an (EF *, EF* E) HF)-comodule with continuous structure maps, when it is
 given the discrete topology.

 2.0.3. Now a good deal is known about the group-scheme SF; as we saw in
 1.1, it is an inverse limit of etale group-schemes, and can be described most

 explicitly in terms of the profinite topological group 25F(Fp) of automorphisms of

 the formal group law F. with coefficients from the union Fp of the finite fields of
 characteristic p, together with the action of Gal(Fp/Fp) (defined since the
 coefficients of F lie in the prime field).

 It is the purpose of this section, and thus ultimately of this paper, to reduce

 these Hochschild groups with continuous coefficient modules to cohomology
 based on continuous cochains, of such topological groups of points.

 2.1 A more explicit description of SF

 2.1.0. We use the Honda law F to define a 'coordinate system' on SF' but
 our description will apply to a certain extent to any law of finite height over a
 perfect field k; for two one-dimensional group laws of the same height become
 isomorphic over a separable closure of their field of definition [37, VI ?8.1]

 In particular, the construction of 1.1.5 yields for such a general group law, a
 Hopf W(k)-algebra HF; k = IF and W(IF) 7p for Honda's case. In this
 generality, a linear representation of SF is specified by a comodule map

 V V V X W(k)HF,

 V being a W(k)-module.

 Now HF consists of locally constant functions on the topological group

 F(kS); if 8 is an element of this group, and v is an element of V, then 4'v(v) is
 a kind of locally constant function on 25F(AkJ taking its values in

 V = V W(k)W(k s),
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 COBORDISM COMODULES 25

 which we may evaluate at 6, yielding the element

 [8](v)= (= V(VMS).

 The function [8] is W(k)-linear on V, and extends to a W(k,)-linear
 endomorphism of V, satisfying (for a E Gal(k /k))

 i) ([ )) = [8aI(Wu)
 ii) [8]([01] (w)) = [Si ?No] (),

 where w = Ev? ? W(k)ej, wa = Zv9 ? e7 E V. Thus underlying the representa-
 tion V is a Galois-invariant homomorphism

 25F(ks) -'GlW(k j)(V

 of groups. If V, given its discrete topology, is a continuous HF-comodule then

 F( k s) operates on V with open isotropy groups.

 2.1.1 Example (cf. the remarks at the end of 1.0.5). The function defined in

 1.1.9i by

 g '-* E units of EF* ? W(k)W(ks) EF*

 is evidently a crossed homomorphism [55, ?2.1] from ( FAkS) to the units of EF.
 The free one-dimensional EF*-module generated by the symbol [S2] can be

 made an F( kS )-module by the rule

 [8]([S2]) = S0* *[S2].
 it underlies the (EF* EF* ? HF)-comodule EF*(S2).

 2.1.2. Under this heading we sketch briefly the classical description of

 EF(kS), F being Honda's law of height n, ks being FP.
 We recall that a formal group law has a ring, e.g. End-(F), of endomor-

 phisms, which is an integral domain (since the base is a field), as can be seen

 from composition of power series. Similar considerations imply that 7p is the
 center of Endjf(F).

 Now F(X,Y) E Fp[[X,Y]], so the polynomial +(X) = XP satisfies the
 identity

 40(F(X, Y)) = F(40(X), ?>(Y)).
 Hence + is an element of End[(F), and 4n(X) = X9, q = pfn; thus 4n = [P]F
 lies in the center of the endomorphism ring.

 Next remember that the formal group law defined over 7(P) by XF has
 logarithm

 logF(T) = E xF(CDP(m - )) T
 m>1
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 26 JACK MORAVA

 with nonvanishing coefficients only for m = qi, j = 0, 1. If X is a primitive

 (q - 1)th root of unity, then X = wq and hence

 logF(wT) = log,(T);

 writing [co](T) = (o mod p)T, we have constructed [X] e End[S(F). In fact, the
 elements [c] generate a subalgebra of Endr(F) isomorphic to W(Fq). There is
 an immediate relation

 + [cd]= [WPI In

 and it follows [24, II ?2 Prop. 3] that End (F) is a free ZP7-module with basis
 elements [UPi ]4i, 0 < i, j < n - 1.

 In more invariant terms, we can regard the endomorphism ring as the

 valuation ring of its field of quotients D, which can be characterised as the

 division algebra of rank n2 over Q with class 1/n in the Brauer group Q/Z of

 simple algebras with center QP. The valuation will be very useful, and we can
 give a more explicit description of it.

 There is an alternate presentation of D as an algebra of n X n matrices

 with coefficients in the field K of quotients of W(Fq); if a E Gal(Fq/Fp) is a
 generator, then for example, when n = 2, the p-adic quaternions have the

 familiar form

 |ba ab with a, b in K.

 More generally, with ai E K, i = 1,..., n, D can be presented as matrices of
 the form

 al a2 a3 a4 ... ... an

 p1 a 2 3a2 an

 pa 1 pa a1 a2 ... .. a. ~~~~~~~~~~~~~~~n - 2 3. n-12
 a1 a2

 a-i n- 1 n- i - 1 n p pa"' pa3 pa4 ... pa~ a1

 cf. [66, VI ?3.3] and [20, ?105]. The determinant of an element of D in such a

 presentation is independent of the presentation, and is called the reduced norm

 of the element [80, IX ?2]; it lies in the center of D. The map sending an

 element to its reduced norm is in an appropriate sense a polynomial function, of

 degree n. The composition

 ordD = p-order of the reduced norm: Dx QX Qx -,

 is a natural p-order homomorphism on DX, normalised so that ordD(p) = 1.
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 COBORDISM COMODULES 27

 The ring End ( F) can be identified with the subring of elements of D with

 nonnegative p-order, and 5 F(IFP) is the group of strict units, or elements of
 p-order 0, in D. This is the maximal compact subgroup of the locally compact
 topological group Dx.

 2.1.3. We write S(D) for this group of strict units; thus

 S(D) = (F(FP).

 The Galois structure of 5F(Jp) can be described with the aid of + in D;
 that structure is the topic of this heading.

 First of all, + specifies a choice of splitting of the exact sequence

 1 -l S(D) -- DX --*7L -> 0,

 allowing us to write 8 E Dx as 804n ordD(6) in a semidirect product S(D) * Z.
 Now let o0 E Gal(IF/IF) be the Frobenius automorphism. If 8S = (T) =

 E6STz+l with S. E Fl, then by S' we mean EST'+l. Evidently

 8S`?( (T)) = (T)),

 for any 8 E S(D); alternately,

 But this suffices to define the action of Gal(Fp/Fp) -Z on 5 F(Fp) as the
 completion of the action of Z on the normal subgroup S(D) defined by our

 choice of splitting.

 We conclude, as corollaries, that

 i) (5F(FP) = (5F(Fq) (for SaO = ln o ?rn = p o 8 o p =8);
 ii) 5 F(Fp) is commutative (it is the group of strict units of the commutative

 field 2p(4+) of nth roots of p over t p). [1

 This returns us to the construction of 2.1.0; for if V is an HF-comodule then

 V inherits a W(Fp)-linear Dx-action, according to the prescription

 [8](w) = [840 n ordD(8)](WUO ordD(8))

 For example,

 [p](w) = wa.

 2.1.4 PROPOSITION. If V is a discretely continuous torsion HF-comodule,
 then

 Ho(SF; V)cm-gH*(D s; V)us

 the group on the right being group cohomology based upon continuous cochains.
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 Proof. The functor H'( Dx, -) assigns to the comodule V, the submodule of
 elements left fixed by S(D) Z; but this can be identified with the module of

 Gal(F./Fp)-invariant elements in H?(S(D); V), which is also the subcomodule
 of V fixed by SF [19, II ?3, no. 1.3].

 As the two kinds of group cohomology under discussion are derived functors

 it will be enough to show that the SF-acycic module HF is DX-acycic; but this is
 the topological Shapiro lemma [16] applied to 2.1.3.

 Indeed, we can identify HF with the tensor product of W(FG) and the ring

 of locally constant functions Ho from e F(EFp); then the Hochschild-Serre
 spectral sequence [81] of the extension above has E2-term

 H*(Z; H*(S(D); Ho W(F )W(FP)) = W([F) if (**) (0,0),

 and is zero otherwise. E

 2.1.5. We write PG1(D) for the quotient of DX by its center, and S1(D) for

 the kernel of the (suriective, [68, III, ?3.2]) homomorphism

 reduced norm: DX --, Q.

 These are p-adic analytic groups, in the sense of [36, III, ?3.2.6]. If V is an

 HF-comodule, and therefore V is a DX-module, we define

 1*(V) = H*(x;

 we summarize some properties of these groups 1F* in a proposition:
 i) JF*(V) is a W(Fq)-module.
 ii) If p is odd, JF(V) is 0 unless i 0 or 1.
 iii) The action of DX on V induces a W(Fp)-linear action of PG1(D) on

 JF( V).
 iv) The Hochschild-Serre spectral sequence for DX as topological extension

 of PG1(D) takes the form

 HC*(PGI(D); JF*(V)) =*H*(SF; V)

 with discrete torsion coefficients.

 If X is a space or a spectrum one might write JF(X) instead of

 H,*(Q, E7(X)). The study of such groups, for n > 1, can now only be seen in
 outline: information about the cokernel of J is 'wrapped up in one neat

 non-abelian bundle' [8, p. 246], the PG1(D)-representation JF.

 Proof. iv) is an exercise in change of notation. To see i), remember that Q x
 p

 is a topological extension of Z by Z xwhose Hochschild-Serre spectral sequence
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 COBORDISM COMODULES 29

 takes the form

 H* (Z;H* (X P; V C) W(F )W(G ))) JF( V )

 Now W(Fp) is free as a W(Fp)-module, and this E2-term can be written

 H*(Z; HC*(Z7; V) ? W(Fp)W(Fq)) = H* (Zx; V) ? W(FP)W(FP) =F(V)7

 for a generator of Z acts by aor on W(Fp) This is of course not necessarily an
 isomorphism of PG1(D)-modules.

 ii) follows since the cohomological dimension with torsion coefficients of 7Z
 p

 is 1 if p is odd and infinite when p is two, as was known to Gauss. iii) is left to

 the reader. El

 Note that the natural map from SL(D) to PGL(D) is injective, and that

 PGI(D) = S1(D) 7Z/nZ. If we identify Gal(Fq/Fp) with Z/nZ, we can give

 S(D) the structure of a proetale groupscheme over Fp. There is an exact
 sequence

 1 -- S1(D) --(25 P) = S(D) -- Z 1
 of such groupschemes, Z x being a constant groupscheme.

 If D is a p-adic division algebra as above, and oD is its ring of integers, then

 reduction modulo p defines a ring homomorphism

 0 D OD/P OD = Fq(F)/(Fn),

 with q = pn and Fo = wPF for w e Fq. So on units there is an induced group

 homomorphism

 S(D) = o- (Fq(F))x.

 The target group lifts to (a quotient of) the functor A -- (A << F >>)x on

 Fp-algebras, while the domain represents the functor which assigns to A the set of
 maps from Spec A to S(D), continuous in some etale topology. The range has as

 its representing Hopf algebra, the sub-algebra of the Steenrod coalgebra gener-

 ated by o,. . . ., (n-l Thus many Steenrod comodules have obvious liftings to
 S(D)-representations, for example, the Eilenberg-MacLane spaces; cf. [63].

 2.2 Finiteness and duality

 2.2.0. A p-adic analytic group has a 0 p-Lie algebra, and the virtual cohomo-
 logical dimension (i.e. the cohomological dimension of a sufficiently small open

 subgroup) of the group can be shown to be equal [36, V ?2.4.9] to the

 QP -vector-space rank of its Lie algebra.
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 For example, the virtual cohomological dimension of Up is 1, whether p is
 odd or not. In the case of S(D), we have

 aQpLie S(D) = D,

 with bracket [80s 8] = 808- 8180. Thus the virtual cohomological dimension of
 S(D) is n2.

 2.2.1 PROPOSITION. If p is sufficiently large, S( D) has finite cohomological
 dimension.

 Proof We let S(D) denote the pro-Sylow p-subgroup of S(D); in the basis
 of D given in 2.1.2, an element of S(D) can be written as the product of a unit

 of W(Fq) and an element of the form 1 + a4, for some a in End-(F). Now
 Hensel's lemma, together with the logarithm, shows that the unit of W(Fq) is

 isomorphic to Mq-1 X W(Fq), so that

 S(D) = S(D) * lq-

 for Mq-1 cyclic of order q - 1.
 If the cohomological dimension of S(D) is finite, then it agrees with the

 virtual cohomological dimension, as Serre has shown [71]; cf. also [69, ?1] that a

 pro-p-group without p-torsion has finite cohomological dimension. Suppose then
 that p is an element of order pm in S(D) and therefore DX; then the subfield
 O p( p) of D generated by p has degree

 [Q(p): (up] = pm-1(p - 1).
 On the other hand, Q p(p) is contained in a maximal commutative subfield of D,
 whose rank over CO P is necessarily n; so pm '(p - 1) must divide n. E

 Note that Bousfield [14, ?6.10-6.12] has shown that a ring-spectrum with
 countable homotopy groups and operations of finite cohomological dimension has
 a reasonably convergent Adams spectral sequence.

 2.2.2 PROPOSITION. S(D) is a Poincare duality group, of strict cohomologi-
 cal dimension n2 + 1, if p - 1 does not divide n.

 Proof We recall that an analytic pro-p-group of finite cohomological dimen-
 sion is a Poincare duality group ([68, ?I(annexe), Th. 3]; we will explain the strict
 cohomological dimension below, but see also [48].) To show that S(D) is a

 Poincare duality group it suffices to show that the action of 11q-1 on the
 fundamental cohomology class of S(D) is trivial; for the cohomology of S(D)
 will then have a fundamental class in dimension n2. (The notion of strict

 cohomological dimension is concerned with the behavior of infinite coefficient
 groups.)
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 COBORDISM COMODULES 31

 The fundamental class of S(D) restricts to the fundamental class of an open

 subgroup; and the FG-cohomology of a subgroup of the form

 So(D) = {1 + ap'la E End-(F)},

 for p large enough, is [36, V ?2.2.7.1] an exterior algebra on

 H'(o(D); Fp) = Hom(SO(D)ab; Fp).

 If we write 1 + apr = Exi jWPo1 with x in Zr, then

 xi jmodp:?O(D)-F p
 defines a basis for this H1, and H x is a fundamental class for ?O(D).

 Now let o be a primitive (q - 1)th root of unity in D, and let [o]* be the

 map induced by to-conjugation of SO(D) in DX; then

 [M]*(xi') = COP 'iX j

 and the determinant of [X]* on H'(?SO(D); Fp) is the norm from Fq to Fp of the
 determinant of co-conjugation as endomorphism of the Fq-vector space spanned

 by the classes xo j, i.e.

 detF [oI* = normsq/sp( fa+ n ) = 1.

 Finally, we recall that the strict cohomological dimension of a profinite

 group is defined as usual on the category of discrete coefficient modules, which

 need not necessarily be torsion. It equals the usual cohomological dimension

 (resp. the usual cohomological dimension plus one) of a Poincare duality pro-p-
 group, if the canonical orientation homomorphism maps (resp. does not map)

 onto an open subgroup [68, I, Prop. 31].

 This orientation homomorphism takes its values in the group of automor-

 phisms of Q/Z(p), making this latter group into what is usually called the

 dualising module I of the Poincare duality pro-p-group: if V is a discrete torsion
 S(D)-module, let

 V = Hom(V, I)

 be its (appropriately twisted) Pontrjagin dual; then the cup pairing

 HC*(?i(D);V) ? Hg2 - *(?(D); V) -- Q/Z(p)
 is a perfect pairing.

 The orientation homomorphism of a p-adic analytic group assigns to a group

 element the determinant of its adjoint action on the C pLie algebra of the group
 [36, V ?2.5.8]. Since S(D) is compact, with nondegenerate Killing form, the
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 adjoint action preserves volumes, and its determinant homomorphism is trivial.

 So the strict cohomological dimension is one greater than the virtual dimension.

 In particular, V is just the usual Pontrijagin dual to V. []

 2.2.3 PROPOSITION. If p - 1 divides n then the ring H2*(?(D); F,) has
 Krull dimension one.

 Proof We appeal to Quillen's proof [58, ?13.5] of the Atiyah-Swan conjec-

 ture; an alternate argument uses a modification of the construction of Venkov

 [78]. S(D) is compact, and it has a finite set of conjugacy classes of maximal

 abelian subgroups. Indeed, maximal abelian subgroups of DX correspond bijec-
 tively with maximal commutative subfields of D, which by the Skolem-Noether

 theorem [11, VIII ?10.1] are splitting fields of D, of degree n over 0Up, and
 therefore almost enumerable: a theorem of Krasner ([34], cf. also [72]) shows that

 if n = nopm with (no, p) = 1, and o(no) is the sum of the divisors of no, then
 there are

 (p 1)'o(n) E (pm+i+1 - p2i)(pe(i)n _ pe(i-l)n)

 inequivalent field extensions of degree n of (U . where

 e(i) = p- + ... +p-, 0, or -x

 according to whether i is positive, negative, or zero.

 Quillen associates to a group the category of its abelian subgroups, with

 injections induced by conjugation as morphisms, and shows (under appropriate

 hypotheses of finiteness) that the spectrum of its (even-dimensional mod p)

 cohomology ring can be identified with the limit of the spectra of the cohomology
 rings of its abelian subgroups, under the morphisms just defined. (The automor-
 phism group of a maximal object of Quillen's category is the Weyl group, or

 normaliser modulo centraliser, of the associated abelian subgroup; if the group is
 DX, and the maximal abelian subgroup Lx is the unit of a normal extension L of

 up,. then this Weyl group is isomorphic (by the Skolem-Noether theorem again)
 to Gal(L/Q P).)

 The Krull dimension, or maximal length of a chain of prime ideals, of this
 cohomology ring can thus be shown to equal the rank of a maximal Fp-vector
 space in the group. In the case of S(D) or DX, such a group will be contained in

 the group of roots of unity of a field, and will be cyclic. The Krull dimension of
 S(D) is thus 0 or 1, depending on whether or not S(D) contains an element of
 order p.

 Now Artin and Tate [70, XIII ?3, Cor. 3]; [8, XIV ?3, Axiom II] showed that

 any field extension of degree n of 0 P can be embedded as a maximal
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 commutative subfield of D; we can also observe that if n = p - 1, then the

 element woP' \j is a (p - I)th root of -p, and that the field of pth roots of
 unity over p is a splitting field for X P- + p. If n = m(p - 1) we can argue

 similarly.

 2.2.4 Example. Suppose M. is the simple vn- 1-torsion comodule
 U*( S?)/(I v1 ... .I van- 1); then

 EF* ?UM* = P1u'u-1],

 with degu = 2. The action of the Sylow subgroup ?(D) of S(D) is trivial on

 Fp[u u ], while w E It, F x acts by o(u) = wou. Consequently

 JF*(Fp[u,(])7-LH*(Z ; Fq[usu])
 is for odd p an exterior algebra on a generator of degree (1, 0) over

 Fq[UP-1, U-(P-1)], and

 tc(U(S?)(p, 1, . . vn_)=- E(el) 0 H*(PGI(D); Fq [u 1n u-(P-1)]
 The second term in the tensor product on the right can be expressed more

 economically in terms of the pro-Sylow p-subgroup ?Sl(D) of Sl(D). The

 Hochschild-Serre spectral sequence of the decomposition

 PG1(D) -S1(D) * Gal(Fq/Fp),

 with coefficients as on the right above, degenerates to an isomorphism of that

 module with

 Ho (Ga(Fq/Fp); HC*(SI(D); FquPl u-(P-l])

 the coefficients being Fq-vectorspaces, and thus relatively projective Galois mod-
 ules [28, VI ?11.8].

 Now H*(S 1(D); [ [uP-1', u-(P-1)]) inherits a Frobenius-equivariant Mq_1-
 action from S(D); suppression of that grading leads us to an isomorphism

 H*(PGI(D); Fqu s]-H(i ) Gp[Uq-1, u(q -1)]

 with an element c of suppressed grade 2i in the latter group being a Galois-

 invariant cohomology class in H*(?S1(D); FP) satisfying co *(c) = coc
 To see how this grading works out, we recall that Riehm [65, Theorem 7]

 has shown that the quotient ?1(D)ab of ?S1(D) by the closure of its commutator

 subgroup is isomorphic, via

 1 + ad a mod E q
 to the residue field of the valuation ring of D; this result does not depend on the

 class of D in the Brauer group.
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 Consequently, the homomorphisms

 hi(l + a+o) = (a mod()'i, for i = 0,..., n- 1,

 span the F q-vectorspace H'( 1(D); Fq); but since

 hi(p(l + a4))Iv) = (amodo)P = (hi(1 + a4))UO

 the classes hi are Galois-invariant.
 Now

 [w]*(hj)(1 + a4) = hi(co-'(1 + a4) co)
 = hi(l + &-1acoA4)

 = [)P-amod(]Pi

 = coP(P-1)hi(l + a+);

 so the class hi lies in H 12P (p-1)(51(D); Fp).

 Ravenel [60] shows that when n > 2 the product hihi is nontrivial unless
 i= j? 1, but that is beyond the power of our techniques. Furthermore, he

 shows in [61] that if p - 1 divides n, and D thus contains a pth root of 1, then
 certain p-fold Massey product classes

 bi = K-(hi,..., hi ) E H2,2Pi+ '(P _ 1)(S 1( D); FP)

 map by restriction to a 2-dimensional polynomial generator of the cohomology of
 the units of the field of pth roots of 1.

 When n = 2 and p > 3, 5 1(D) is a Poincare duality pro-p-group of

 cohomological dimension 3, and it is thus a corollary to Riehm's theorem that its

 Poincare series (with coefficients in Fp) is

 E T dims H'(Sl(D); Fp) = (1 + T)(1 + T + T2);
 i?O

 similarly, the Poincare series of the 'unit quaternions' ?(D) is

 (1 + T)2(1 + T+ T2).

 The case n = 3 has been resolved by Ravenel [59].

 2.2.5 Remark. The Poincare polynomial of S(D), with continuous coeffi-

 cients in the field of p-adic numbers, i.e.

 AT? dim HC(S(D);QP),
 i?O

 equals

 17 (1 + T2i-),
 1<i <n
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 COBORDISM COMODULES 35

 again independent of the class of D in the Brauer group. Indeed, by results of

 Lazard [36, V, ?2.4], cf. also [16, ?2.2], the cohomology

 H*(S(D); Z,) ? zQ = H*(S(D); Qu) = HiJe(D; Qp)
 is the cohomology of the Q pLie algebra D of S(D). But it is clear from the form
 of the standard resolution of [15, XIII, ?7], that if q is a Lie algebra over a field
 K, and K' is an extension field, then

 H*je( ?KK; K KK) H* e(g; ) ?KKK

 So if K' is normal over K, we have

 H*je(g; -) = H0(Gal(K'/K); Hie( (?KK'; - ?KK)).
 Now the Lie algebra structure on D is a form, in the sense of Galois

 cohomology, of the Lie algebra structure on the n X n matrices over UP; i.e.

 D ?Q K _ Mn(K)
 p

 if K is sufficiently large. We deduce that the Lie algebra cohomology of d is that

 of Mn( p), which is an exterior algebra on generators e2i-l of dimension 2i - 1,
 for i between 1 and n.

 These cohomology classes have representative cocycles of the form

 ej(81, ... I, j) = Zsign(u)traceQ Sa(L) . Sa
 a

 (summed over the permutations of j things [33]). An appropriate multiple of el
 reduces to the class gn of [51, 3.18].

 2.3. To conclude, we sketch Cartier's more explicit construction of EF.
 We denote by CF the module of p-typical curves in F, and write CFO for the

 module of p-typical curves in a lift FO to W(Fq). The modules CFI CFO come
 endowed with certain operations F, V; we recall that the tangent space of F,

 resp. FO, is naturally isomorphic with CF/VCF resp. CFO/VCJO. The composition

 CF/VF -W(Fq)

 of the projection map with the canonical (W(Fq ), F)-linear map c(FO) of [37, VII

 ?6.14], defines a line in the projectification of the W(Fq)-linear dual (Dieudonn )
 module CF. The group S(D) = (5F q) acts by naturality on this module, and

 thus on its associated scheme of lines through the origin.

 Now the map

 Pn 1(K) PW(Fq)(C*) -- P (C* mod p) = Pn -(q)
 defined by reducing homogenous coordinates mod p, is S(D)-equivariant, send-
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 ing the class [prvc(Fo)] to the class of the canonical map

 CF- CF/VCF- Fq.
 Thus the line [prvc(Fo)] is fixed modulo p by S(D). The fiber above this fixed
 line can be described more exactly. The action of PG1(D) on the projectification
 of the left K-vectorspace

 defined by

 [X1 ... *I* X n - EX= xi(i . 8 1

 leaves the line [O,. . . , 0, 1] invariant modulo p. Indeed, the action of S( D) factors
 through an action of the units of the algebra generated over Fq by a symbol 4

 subject to the relations apO = Oa, on = 0 and the line spanned by 4 n-l is fixed
 under multiplication by a unit of this algebra.

 We write W(IFq)[[u1 u_1]] with u = x_1xiJ1, for the algebra of
 formal functions on the fiber above [0,... ,0, 1]; we can extend its natural

 PGL(D)-action to an action of S(D) on W(Fq)[[u1... ,unj][uu-1] such that
 a(u) = au if a lies in the subgroup generated by uq- I and the center in S(D).

 To see that this algebra classifies lifts of F to W(Fq), recall that such lifts

 may be classified by split W(Fq)-submodules L of CF such that L + PCF = VCF;
 cf. [37, VII ?7.17].

 Indeed, the kernel of some representative of prvc(FO) is such a submodule;
 and conversely, every line congruent mod p to our invariant line, has such an
 associated lift.

 This representation seems to be very interesting, and one hopes for an even

 more explicit understanding of it. Z
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