
FINITE HEIGHT CHROMATIC HOMOTOPY THEORY
HARVARD MATH 252Y, SPRING 2021

PIOTR PSTRĄGOWSKI

Contents

1. Complex-orientable cohomology theories 1
2. Functors of points 6
3. Formal groups 10
4. Differentials 15
5. Logarithms 20
6. Lazard ring 24
7. Deformation theory 29
8. Deformations of formal groups 33
9. Complex bordism 39
10. Adams spectral sequences 44
11. Quillen’s theorem 49
12. Moduli of formal groups 53
13. Heights 57
14. Lubin-Tate formal group laws 62
15. Isomorphisms of formal groups of finite height 66
16. Morava stabilizer groups 69
17. Local structure of the moduli of formal groups 73
18. Deformations at finite height 77
19. Landweber exact functor theorem 83
20. Landweber exact homology theories 87
21. Chromatic localization 93
22. E-local categories and their Adams spectral sequence 97
23. Chromatic spectral sequence 105
References 110

1. Complex-orientable cohomology theories

Chromatic homotopy theory is the study of the intricate relationship between stable homotopy
theory and the arithmetic of certain objects called formal groups. This relationship, first put on
a firm footing by Quillen, was extremely fruitful, both on a conceptual level (giving algebraic
explanations for results such as the classification of thick ideals in finite spectra) as well as
with respect to computational aspects, such as the determination of stable homotopy groups of
spheres.

The beginning of this relationship usually starts with the class of complex-oriented cohomology
theories, which comes from a detailed study of the generalizations of Chern classes. Let us recall
the following standard definition.

Date: July 2020.
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Definition 1.1. An integral complex characteristic class p is an assignment of a cohomology
class

p(V ) ∈ Hn(X,Z)

to each complex vector bundle V → X which is natural with respect to pullback of vector
bundles. That is, for any continuous map Y → X of topological spaces we have an equality

f∗p(V ) = p(f∗V )

of classes in Hn(Y,Z).

The fundamental example of complex characteristic classes is given by the Chern classes

ck(V ) ∈ H2k(X,Z).

which are uniquely determined by a few simple axioms. To state these, it is convenient to
introduce the total Chern class given by

c(V ) := 1 + c1(V ) + c2(V ) + . . .

Using this notation, the axioms satisfied by the Chern classes are as follows:
(1) c(f∗V ) = f∗c(V ) (Naturality)
(2) c(V ⊕ V ) = c(V ) ∪ c(W ) (Whitney sum)
(3) c(O(1)) = 1+t, where O(1)→ CP∞ is the tautological line bundle and t ∈ H2(CP∞,Z)

is a generator (Normalization)
These axioms give a theory that is in some sense as elegant as possible, in the following sense:

(1) the Chern classes are uniquely defined by the above axioms and
(2) they generate all integral complex characteristic classes; that is, any other class is a

polynomial in Chern classes.
We will be interested in investigating which properties of integral cohomology make it possible
to have such an elegant description of all complex characteristic classes.

Remark 1.2. Notice that there is a minor choice involved in the axiom (3) above, namely that
of the generator of H2(CP∞,Z). In the integral case, this does not lead to stark differences,
since the latter group is isomorphic to Z, so there are only two choices differing by a sign. Each
of these will give a theory of Chern classes satisfying naturality and Whitney sum.

The standard choice in the above case is t = −H, where H is the fundamental class corre-
sponding to the standard complex orientation of CP1, so that c(O(1)) = 1−H. For this reason,
the choice of such a generator is called a complex orientation.

The question of classifying characteristic classes can be reduced to determining cohomology
of certain topological spaces. Namely, for each k ≥ 1 there exists a certain topological space

BU(n) := {V ⊆ C∞ | dim(V ) = n},
the classifying space of the unitary group U(n). Explicitly, as written above, BU(n) is the
space of n-dimensional linear subspaces of C∞ := lim−→Ck. The importance of this topological
space comes from the fact that it carries a particularly important vector bundle.

Definition 1.3. The tautological vector bundle γn → BU(n) is the vector bundle is the
vector bundle

γn := {(V, x) ∈ BU(n)× C∞ | x ∈ V }
whose fibre over a point corresponding to V ⊆ C∞ is the vector space V itself.

The tautological vector bundle has the following universal property: for any CW-complex X,
there’s a canonical bijection

[X,BU(n)]→ { Rank n vector bundles over X} / iso.,
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where the left hand side is given by homotopy classes of maps, given by

f 7→ f∗γn.

In the language of category theory, the above tells us that the functor assigning to each CW-
complex the set of isomorphism classes of rank n vector bundles over it is representable in hS,
the homotopy category of spaces, by the space BU(n). As a consequence, the Yoneda lemma
tells us that there is a bijection

H∗(BU(n),Z) ' { integral characteristic classes for rank n vector bundles }
The good properties of the theory of the Chern classes in integral cohomology can now be traced
back to the following calculation, which tells us that the cohomology of BU(n)-s is very simple.

Proposition 1.4. The cohomology of the classifying space

H∗(BU(n),Z) ' Z[c1(γn), . . . cn(γn)]

is isomorphic to the polynomial ring in the Chern classes.

In fact, the whole calculation above boils down to what happens for CP∞, and we’ll make it
explicit now. More precisely, suppose we have chosen a generator (a complex orientation)

t ∈ H2(CP∞,Z),

corresponding to a choice of the first Chern class of the tautological line bundle. Any such choice
determines by a standard calculation an isomorphism

H∗(CP∞,Z) ' Z[[t]]

with the power series ring in variable t = c1(O(1)).

Warning 1.5. The appearance of the power series ring can be confusing at first, so note that
in the above isomorphism are graded rings and we claim that they’re isomorphic in this sense;
that is, the subspaces of homogeneous elements are isomorphic.

Since Z is concentrated in a single degree, the two expressions Z[[t]] and Z[t] denote the same
graded ring (because if we fix a degree, the homogeneous elements are the same), and it is
customary in many textbooks to use the latter notation. This only works over Z, though, for
more general cohomology theories this really will be a power series ring and not the polynomial
one.

There’s a well-defined homotopy class of maps

(CP∞)×n → BU(n)

classifying the sum of the pullbacks of the tautological bundles over the factors, which is a vector
bundle of rank n. This sum does not depend on the order of the factors, and so this map is
equivariant with respect to the Σn-action on the source permuting the factors. Thus, we get a
map

H∗(BU(n),Z)→ H∗(CP∞)×n,Z)Σn ' Z[[t1, . . . , tn]]Σn ,

into Σn-fixed points, where ti := c1(π∗iO(1)) is the first Chern class of the pullback of the
tautological line bundle from the i-coordinate. The action of Σn permutes the ti-s and one can
show that the above ring map is an isomorphism.

This implies that the cohomology of BU(n) is isomorphic to the ring of symmetric power
series in ti-s; it is well-known that such a ring is itself polynomial in the standard symmetric
polynomials

ej(ti) ∈ Z[[t1, . . . , tn]]Σn ,

for example, we have e1 := t1 + . . . + tn, while the higher ones are described by slightly more
involved formulas. These are the polynomial generators of the cohomology of BU(n) visible in
Proposition 1.4. That is, ck(γn) corresponds to the k-th elementary symmetric polynomial.
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Question. What happens if instead of H∗(−,Z) we instead consider characteristic classes valued
in a different multiplicative cohomology theory E∗(−)?

As it turns out, as long as CP∞ behaves E-cohomologically the same way it does with respect
to integral cohomology, the whole story works out in the same way. Let us be more precise. Let
us formally give a definition which we alluded to before.

Definition 1.6. A complex orientation for a multiplicative cohomology theory E is a choice
of an element

t ∈ Ẽ2(CP∞)

which under the map
Ẽ2(CP∞)→ Ẽ2(CP1) ' Ẽ2(S2) ' E0(pt)

restricts to the unit 1 ∈ E0(pt). A multiplicative cohomology theory is complex orientable if
it admits a complex orientation.

Many important cohomology theories are complex orientable. One important example is as
follows.

Example 1.7. Let E be a cohomology theory which has even coefficients; that is, E∗ is con-
centrated in even degrees. For example, E can be given by complex K-theory KU , since
KU∗ ' Z[β±1], where β is the Bott element of degree 2.

Then, all of the maps E∗(CPn+1) → E∗(CPn) are surjective, since the obstructions lie in
odd degrees, so we can lift any class in CP1 to CP∞.

For complex-oriented cohomology thoeries, the story of Chern classes works out the same
was as integrally. The key is the calculation of E-cohomology of CP∞, which is essentially a
rehrasing of the argument for even E which we saw above.

Since CP∞ is an infinite-dimensional CW-complex, which can be a little bit tricky when
working with cohomology, we do CPn first instead. By filtering the latter by skeleta we obtain
an Atiyah-Hirzrebruch spectral sequence of signature

H∗(CPn, E∗)⇒ E∗(CPn)

The complex orientation t will be detected by an element in H2(CPn, E0), which is then neces-
sarily a permanent cycle. Any class on the E2-page can be written as a polynomial in this class
and classes coming from E∗, all of which are permanent cycles, too. It follows that the spectral
sequence collapses and we have an isomorphism

E∗(CPn) ' E∗[t]/(tn+1)

analogous to what happens in integral cohomology. Passing to the limit, we deduce the following.

Proposition 1.8. If E is complex-orientable, then

E∗(CP∞) ' E∗[[t]]
for any choice of complex orientation t.

One can then show that the rest of calculations of the cohomology of classifying spaces. That
is, if we set c1(O(1)) = t, then we will have

E∗(BU(n)) ' E∗[[c1(γn), . . . , cn(γn)]]

for unique Chern classes satisfying the three axioms given above, namely naturality, Whitney
sum and normalization.

On one hand, this calculation is quite satisfying, because it shows that for a wide range of
cohomology theories, the spaces BU(n) have very simple cohomology. On the other hand, if we
flip the table, and treat the assignment

E 7→ E(CP∞)
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as an invariant of the cohomology theory (rather than the space), Proposition 1.8 can be a
little bit satisfying, because it shows that under fairly weak conditions this doesn’t really tell us
anything interesting about E.

Luckily, there’s a piece of structure we have ignored so far which will turn out to be key in
telling different E apart - the tensor product of vector bundles and its interaction with Chern
classes. Let us focus on line bundles, whose Chern classes we already know determine all of the
other ones.

Question. Given a complex-oriented cohomology theory E, what is the formula FE(t1, t2) such
that for any pair of line bundles L,K over a topological space X we have

c1(L⊗K) ' F (c1(L), c1(K))

as elements of E2(X)?

The existence of the formula can be checked by reducing to the universal case, using the
Yoneda lemma. Namely, the tensor product of line bundles is classified by a homotopy class of
maps

m : CP∞ ×CP∞ → CP∞

which in turn induces a map on cohomology, which under the identification E∗(CP∞) ' E∗[[t]]
and the Kunneth isomorphism is of the form

m∗ : E∗[[t]]→ E∗[[t1, t2]],

where ti are the pullbacks of t along the projections onto the two factors of CP∞ ×CP∞.
Translating as needed, we see that the formula for the tensor product of Chern classes is given

by FE(t1, t2) = m∗(t). As it turns out, this formula does fundamentally depend on the choice of
the cohomology theory.

Example 1.9. When E = HZ is integral cohomology, then

FHZ(t1, t2) = t1 + t2.

Example 1.10. Let E = KU be complex K-theory. Then,

FKU (t1, t2) = β−1((βt1 + 1)(βt2 + 1)− 1).

By the universality argumeny above, the promised formula is always a power series in two
variables (in the two cases above it happens to be a polynomial, but that is not usually the case);
however, it is not completely arbitrary. Since the tensor product of line bundles is commutative,
unital and associative, we must in turn have that

(1) FE(t1, t2) = FE(t2, t1)
(2) FE(0, t) = FE(t, 0) = t
(3) FE(FE(t1, t2), t3) = FE(t1, FE(t2, t3))

A power series over a ring (in this case E∗) satisfying these three identities is called a formal
group law. These are certain objects of algebro-geometric nature whose study will be one of
the main goals of this course.

The above construction, which is due to Quillen, produces an association

{ complex-oriented cohomology theories } → { formal group laws}.

This correspondence is not quite one-to-one, but it is highly non-trivial:
(1) many important classes of formal group laws can be shown to come from a complex-

orineted cohomology theory and
(2) the associated formal group law determines many of its properties.
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Importantly, formal group laws do not just form a discrete set, but come with a natural notion
of isomorphism. Thus, they can be assembled into what algebraic geometers call the moduli
stack of formal groups. As an informal slogan, the geometry of this moduli stack controls
the behaviour of stable homotopy theory, and the above correspondence is just but one instance
of this phenomena.

2. Functors of points

In the previous lecture, we defined a formal group law over a ring R to be a power series
F (x, y) ∈ R[[x, y]] which is unital, associative and commutative in the sense that

(1) F (x, y) = F (y, x)
(2) F (0, x) = F (x, 0) = x
(3) F (F (x, y), z) = F (x, F (y, z))

We’ve seen that any complex-oriented cohomology theory gives rise to a formal group law over
its ring of coefficients.

Observe that the axioms satisfied by F are reminiscent of it being a Taylor expansion of
multiplication in a neighbourhood of the identity of some Lie group; that is, as if F defined a
multiplication on some geometric object. Our goal in this lecture will be to set up the langauge
necessary to make this heuristic precise.

One geometric extension of commutative rings is given by the theory of schemes; unfortunately,
this will not quite be sufficient for our purposes. Roughly, the issue is that F is a power series,
rather than a polynomial, and so for it to define a multiplication we need a some notion of
convergence.

An insight of Grothendieck is that more complicated geometric structures can be described
by specifying how they interact with the simple ones, such as affine schemes; this is the functor-
of-points approach. In concrete terms, this means that if X is our geometric object, perhaps
something more general then a scheme, then the functor on affine schemes

y(X)(Spec(A)) := HomG(Spec(A), X)

where G is a category of geometric objects containing all affine schemes, should retain complete
information about X. This means that our study can be rephrased in terms of such functors,
and our more general class of "geometric objects" can be defined as a subclass of functors of this
type.

Definition 2.1. An étale sheaf is a functor

X : CRing → Set

which satisfies étale descent; that is, for any finite set of étale maps A → Bi of commutative
rings such that A→

∏
Bi is faithfully flat, the diagram

X(A)→
∏
i

X(Bi) ⇒
∏
i,j

X(Bi ⊗A Bj)

is an equalizer.

Remark 2.2. Notice that the étale descent condition is equivalent to saying that under the
contravariant identification CRing ' (Aff)op, the corresponding functor X : (Aff)op → Set is
a sheaf for the étale topology on affine schemes.

Remark 2.3. For the purpose of our course the choice of the étale topology is not terribly
important, although it is the standard one in some sources. Most of the properties we will be
interested in can be verified in the (weaker) Zariski topology, and most of the sheaves we consider
satisfy descent with respect to the (stronger) flat topology.

Since it is sheaves of the type above that will be our language of choice, it is helpful to change
our terminology to reflect this change of viewpoint.
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Example 2.4. If B is a ring, then the corresponding affine scheme is the sheaf Spec(B)

Spec(B)(A) := HomCRing(B,A),

the set of homomorphisms of commutative rings.

Notice that unlike the usual construction of the spectrum of a ring as a certain locally ringed
topological space, the definition above is somewhat tautologous. Nevertheless, some of important
affine schemes are easy to describe in this langauge.

Example 2.5. The affine line A1 is the sheaf defined by

A1(R) = R

It is an affine scheme, because it is isomorphic to the spectrum of the polynomial algebra Z[t].

Example 2.6. The multiplicative group Gm is the sheaf defined by

Gm(R) := R×,

where the latter is the group of units. It has a canonical structure of an abelian sheaf; that is,
it lifts into a functor into abelian groups, corresponding to multiplication of units. This is also
an affine scheme, isomorphic to the spectrum of Z[t±1].

An important construction in the theory of sheaves is that of the category of elements.

Definition 2.7. Let X be an étale sheaf. If R is a ring, then an R-valued element of X is a
point x ∈ X(R). The category of elements Elt(X) is the category of pairs

(R, x), where R ∈ CRing and x ∈ X(R)

whose morphisms f : (R, x) → (S, y) are given by ring homomorphisms f : R → S such that
f∗x = y ∈ X(S), where f∗ = X(f) : X(R)→ X(S) is the induced map.

There’s a forgetful functor Elt(X) → CRing which forgets the element, and this induces
an étale Grothendieck topology on the opposite of the category of elements, where a family is
covering if and only if its image is covering.

Example 2.8. If k is a ring, then an R-valued point of Spec(k) is the same as a ring homomor-
phism k → R. It follows that the category of elements of the affine scheme Spec(k) is equivalent
to the category of k-algebras; the induced topology is just the usual étale one that only depends
on the underlying ring.

It follows from the Yoneda lemma that the category Elt(X) can be identified with the opposite
of the full subcategory of the overcategory Funét(CRing, Set)/X spanned by the representables.
Thus, any sheaf over X determines a covariant functor on the category of elements, and one can
check that the restriction

Funét(CRing, Set)/X → Funét(Elt(X), Set)

is an equivalence, where on the right hand side we have functors which satisfy descent with
respect to the induced topology discussed above.

Example 2.9. Depending on the context, it might be easier to specify a sheaf over a fixed X
by giving its values on the category of elements. For example, under this identification, the
base-change functor −×X Y along f : Y → Y can be identified with

Funet(Elt(X), Set)→ Funet(Elt(Y ), Set)

induced restriction along the functor Elt(Y )→ Elt(X) given by (R, x) 7→ (R, f(x)).
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Example 2.10. As a concrete example, for any sheaf X, the X−affine line A1
X := A1 × X

corresponds to the forgetful functor

Elt(X)→ CRing → Set,

analogously to the absolute affine line discussed above.

Having generalized our objects of study, we now generalize certain geometric classes of mor-
phisms.

Definition 2.11. Let P be a property of maps of rings. We say P is stable under base-
change, if for any homomorphism A0 → B0 having property P and any A0 → A, the extension
of scalars

A→ B0 ⊗A0
A

has property P .

Many important properties of maps of rings are stable under base-change, such as being
finitely generated, finitely presented, flat, faithfully flat, étale, smooth or an open embedding.

Observe that the spectrum construction takes colimits of commutative rings to limits of
sheaves, thus in the notation above we have an isomorphism

Spec(B0 ⊗A0 A) ' Spec(A)×Spec(A0) Spec(B0)

of sheaves. Thus, Definition 2.11 is the same as the corresponding property of morphisms of
affine schemes being stable under base-change along a map from an affine in the category of
sheaves. The advantage of the latter is that it makes sense even for maps between non-affines,
leading to the following definition.

Definition 2.12. We say a map of sheaves f : Y → X of étale sheaves is affine if for every
map f : Spec(A) → X, the pullback f∗Y := Spec(A) ×X Y is an affine scheme. We say an
affine morphism Y → X of sheaves has property P if for any f : Spec(A)→ X as above, the
base-change morphism

Spec(A)×X Y → Spec(A)

of affine schemes has property P .

We have suggested that the category of étale sheaves should be an enlargement of the category
of classical schemes, the embedding given by associating to a classical scheme S the sheaf y(S)
given by

y(S)(A) := HomLocRingTop(SpecZar(A), S)

where on the right hand side we have morphisms of locally ringed topological spaces, and
SpecZar(A) is the classical prime spectrum of a ring A. Here, we’ve used a subscript to dis-
tinguish this construction from the sheaf of Example 2.4; note that in this notation we have
y(SpecZar(A)) ' Spec(A).

Remark 2.13. One can verify that the above functor y gives a fully faithful embedding from
the classical category of schemes into étale sheaves.

From our point of view, it will be more interesting to instead describe in sheaf-theoretic terms
the image of the above embedding. This is largely an exercise in definitions, but it is instructive
in getting used to working with sheaves.

Since schemes are locally ringed topological spaces that admit an open cover using affines,
one expects that what we need is a certain generalization of open covers. Recall that we say a
morphism of rings A → B is an open embedding if there exists a finite list of elements fi ∈ A
whose images generate the unit ideal of B and such that Afi ' Bfi for any i.

Definition 2.14. Let X be a sheaf. We say a collection of morphisms fi : Vi → X is an affine
open cover if
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(1) each fi is an affine open embedding
(2) the composite map

⊔
Vi → X is a surjection of sheaves.

Recall that a scheme S in the classical sense is semi-separated if the intersection of any two
affine open subschemes is again affine. Any separated scheme is semi-separated, any any semi-
separated scheme is quasi-separated.

Theorem 2.15. An étale sheaf X is isomorphic to one of the form y(S) for a quasi-compact,
semiseparated classical scheme S if and only if it admits a finite affine open cover Vi → X in
the sense of Definition 2.14 with each Vi an affine scheme.

Proof. If S is quasi-compact we can choose a finite open cover Ui → S using affine Ui '
SpecZar(Ai) . Since the embedding y preserves limits we have

y(Ui)×y(S) y(Uj) ' y(Ui,j),

where Ui,j = Ui∩Uj . Since S is semi-separated, these are all affine. If Spec(A)→ y(S) is a map
which factors through one of the Ui, then

y(Ui)×y(S) Spec(A) ' y(Ui)×y(S) y(Uj)×y(Uj) Spec(A) ' y(Ui,j)×y(Uj) Spec(A),

which is affine. As étale-locally (even Zariski- locally) any map Spec(A) → y(S), which by
definition of the latter can be identified with a morphism SpecZar(A)→ S of classical schemes,
factors through one of the y(Uj), we deduce that y(Ui) → y(S) are affine open embeddings of
sheaves. By the same argument,

⊔
y(Ui)→ y(S) is a surjection of étale (even Zariski) sheaves,

giving one side of the identification.
Conversely, if X is a sheaf admitting an affine open covering Vi → X with Vi ' Spec(Ai),

then the pullbacks
Spec(Ai)×X Spec(Aj)

are again affine, say of the form Spec(Ai,j), and the homomorphism Ai → Ai,j are open embed-
dings of rings. Then X can be shown to be isomorphic to y(S), where S is obtained from gluing
Ui := SpecZar(Ai) along Ui,j := SpecZar(Ai,j). �

As we remarked before, for the purpose of defining formal groups, the theory of schemes is not
quite enough. Instead, we need to allow certain objects which informally describe infinitesimal
phenomena.

Definition 2.16. Let A be a ring and let I be an ideal, which we can identify with an affine
scheme X = Spec(A) together with a choice of a closed subscheme Z = Spec(A/I). Then, the
formal completion of X along Z is the sheaf X̂Z defined by

X̂Z(B) = lim−→
n

HomCRing(A/I
n, B)

That is, X̂Z is the subfunctor of X consisting of those ring homomomorphisms A → B which
annihilate a power of I. An affine formal scheme is a sheaf isomorphic to one which arises in
this process.

Remark 2.17. One useful perspective on the formal completion X̃Z is that it can be thought
of as the infinitesimal neighbourhood of Z in X. Namely, suppose we have a map of
rings A → B which factors through one of the A/In. Then, at the level of prime spectra, the
continuous map

SpecZar(B)→ SpecZar(A)

of topological spaces factors through the closed subspace SpecZar(A/I). It does not usually
factor in this way as a map of schemes, but the above suggests that it is "infinitesimally close"
to one that does.
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Note that we can equip the ring A with a linear topology where the basis of neighbourhoods
of zero is given by the powers In. This makes A into a topological ring, and one can check that
we have an identification

lim−→
n

HomCRing(A/I
n, B) ' Homcont

CRing(A,B),

where the right hand side is given by continuous ring homomorphisms, where B is considered
as having discrete topology.

Remark 2.18. Observe that the right hand side, given by continuous ring homomorphisms,
given above only depends on A and its topology, and so this formal completion is also called the
formal spectrum of the topological ring A and denoted by Spf(A).

Note that we can always replace A by the completion Â := lim←−A/I
n together with the limit

topology, without changing the formal spectrum. This is one reason why completion often
appears when discussing formal spectra.

Remark 2.19. Two different ideals I, J ⊆ A may very well give rise to the same topology (for
example, one can take J = I2) and it is important to remember that Spf(A) only depends on
the topology and not on the choice of an ideal.

Because of the above remark, we can alternatively think of affine formal schemes as geometric
objects associated to a (certain class of) topological rings.

Example 2.20. If R is a ring, then the formal affine line Â1
R over R is the sheaf on R-algebras

defined by
Â1
R(A) := { a ∈ A | a is nilpotent }

Observe that the formal affine line can be equivalently described as the formal spectrum of the
power series ring R[[t]] equipped with the t-adic topology; that is, with the topology generated
by the ideal (t).

3. Formal groups

In the previous lecture, we introduced the notion of a formal affine scheme, which we also
referred to as the formal completion. Before we move further, let us clarify the relationship
between formal schemes and completion in a little bit more detail, and develop some further
concepts in the language of étale sheaves.

Suppose that R is a ring and that we are given the corresponding affine scheme Spec(R),
which is by the definition the corresponding corepresentable functor CRing → Set. We know
from the Yoneda lemma that the embedding of rings into sheaves is fully faithful, one can then
ask if there is an explicit way to recover R from the knowledge of its spectrum alone.

Recall that we have introduced the affine line A1 := Spec(Z[t]). Then, for any ring R we have

HomShv(Spec(R),A1) := HomCRing(Z[t], R) ' R,

so that the maps into the affine line can be identified, as a set, with the elements of the ring we
started with. In fact, more is true: the maps

f+, f· : Z[t]→ Z[t1, t2]

defined by f+(t) = t1 + t2 and f·(t) = t1 · t2 yield after applying the spectrum functor morphisms

+, · : A1 × A1 → A1

which make the affine line into a ring object in the category of sheaves. Thus, for any étale
sheaf X, the set of morphisms into the affine line has a canonical structure of a ring, functorial
in maps of sheaves.



FINITE HEIGHT CHROMATIC HOMOTOPY THEORY HARVARD MATH 252Y, SPRING 2021 11

Definition 3.1. Let X be an étale sheaf. Then, the ring of global sections is given by

Γ(X,OX) := HomShv(X,A1)

Remark 3.2. If X = Spec(R) is affine, then the ring of global sections is canonically isomorphic
to R. There is always a comparison map X → Spec(Γ(X,OX)) which is an isomorphism of
sheaves precisely when X is affine.

Remark 3.3. From Definition 3.1 we see that the construction

X → Γ(X,OX)

takes colimits of étale stacks to limits of commutative rings. Together with the isomorphism
Γ(Spec(R),OSpec(R)) ' R of Remark 3.2, these two properties specify global sections uniquely,
as any stack is a colimit of affine schemes.

Remark 3.4. When the étale sheaf in question is the Yoneda embedding of a classical scheme
S, the ring of global sections is just the ring global sections of the structure sheaf OS , which
motivates the notation. We will see below that for that there’s a description in this vain which
is valid for an arbitrary étale sheaf.

Let us get back to formal schemes. Suppose that A is a topological ring, equipped with an
I-adic topology, where the basis of open neighbourhoods of zero is given by the powers of the
ideal. To such a ring we associated a sheaf Spf(A) : CRing → Set which sends a ring B to

Homcont
CRing(A,B) ' lim−→HomCRing(A/I

n, B),

the set of continuous ring homomorphisms into B; equivalently, those that factor through one
of the quotients A/In.

Proposition 3.5. There’s a canonical isomorphism

Γ(Spf(A),OSpf(A)) ' Â

between the global sections of the formal scheme Spf(A) and the completion Â := lim←−nA/I
n.

Proof. The definition of the formal spectrum given above shows that we have a colimit expression

Spf(A) := lim−→
n

Spec(A/In)

in the category of étale sheaves. Since mapping into an object takes colimits to limits we deduce
that

HomShv(Spf(A),A1) ' lim←−
n

HomShv(Spec(A/In),A1) ' lim←−
n

A/In,

as claimed. �

Note that this implies that there’s a canonical map Spf(A) → Spec(Â) which is always a
monomorphism: the right hand side classifies all homomorphisms out of Â, while the left hand
side those which are continuous with respect to the limit topology on the completion. In this par-
ticular case, we can can think of the global sections Â as the coordinate ring of the corresponding
formal scheme.

Remark 3.6. The fact that the above comparison map is a monomorphism is special to formal
affine schemes. For example, when X is a connected projective variety over a field k, then
Γ(X,OX) ' k and the comparison map X → Spec(k) is in general very far from being a
monomorphism.

Let us now go back to the first lecture and to the notion of a formal group law F ∈ R[t1, t2],
which is a power series in two variables over a ring R such that

(1) F (t1, t2) = F (t2, t1)
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(2) F (0, t1) = F (t1, 0) = t
(3) F (F (t1, t2), t3) = F (t1, F (t2, t3))

We would like to use F to define a multiplication, but we run into trouble since power series in
general involve infinite sums. This is not an issue when we evaluate the given power series on
nilpotent elements, suggesting that one should work with formal schemes.

Definition 3.7. Let F ∈ R[t1, t2] be a formal group law. Then, the corresponding formal
group GF is the the abelian group object GF : CRingR → Ab in étale sheaves over Spec(R)
defined by

GF (B) = Nil(B),

the set of nilpotent elements of B, with multiplication given by (b1, b2) 7→ F (b1, b2).

Notice that there are no issues with convergence here, because when b1, b2 are nilpotent, then
the expression F (b1, b2) involves only finitely many non-zero terms. Also, observe that as a sheaf,
GF is a formal scheme, in fact the formal affine line Â1

R := Spf(R[[x]]); the power series F is
only used to define the multiplication.

Notation 3.8. To work with formal group laws, it is convenient to introduce the notation

x+F y := F (x, y).

The axioms of being a formal group law can then be conveniently restated as
(1) x+F y = y +F x
(2) x+F 0 = 0 +F x = x
(3) (x+F y) +F z = x+F (y +F z)

Despite its simplicity, the second axiom is very important, because it implies that

x+F y = x+ y + higher order terms.

The reason for that additional power is that it not only specifies that F is unital, but has the
specific element 0 as a unit.

Notice that there is an assertion implicit in Definition 3.7, namely that GF is in fact an
abelian group; that is, that we have inverses. This is not immediate, since the axioms of a formal
group law only guarantee that the multiplication is associative, commutative and unital with
unit 0. This is something we will have to verify.

Lemma 3.9. For any formal group law F ∈ R[[x, y]], for any R-algebra B, the multiplication
(b1, b2) 7→ b1 +F b2 makes Nil(B) into an abelian group.

Proof. We have to show that any nilpotent b ∈ B has an inverse. Let us prove this by induction
on the lowest n such that bn = 0, the case of n = 1 being easy since 0 is the unit and so has an
inverse. If n > 1, then by expanding out, we see that

b+F (−b) = b− b+ b2x = b2x

for some element x ∈ B. However, (b2x)n−1 = 0, so that the latter has an inverse by the
inductive assumption. This ends the argument. �

We’ve seen that a formal group law defines a multiplication on the formal affine line, we would
like to know that this is in fact a 1-to-1 correspondence. For this, we need to classify maps into
the formal affine line.

Lemma 3.10. Let A be an R-algebra, complete with respect to an I-adic topology. Then, there’s
a bijection

HomSpec(R)(Spf(A), Â1
R) ' Niltop(A)

between maps of formal affine schemes over Spec(R), and the set of topologically nilpotent ele-
ments of A; that is, those x such that xn → 0 converges to zero.
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Proof. Since A is complete, we know there’s a bijection between maps from Spf(A) into A1
R and

A itself; since Â1
R → A1

R is a monomorphism, it is enough to verify which of these factor through
the formal affine line.

We have
Spf(A) ' lim−→ Spec(A/In)

and we see that an element x ∈ A determines a map into a formal affine line if and only if it is
nilpotent modulo In for each n. This is the same as being topologically nilpotent. �

Corollary 3.11. There’s a bijection between maps of formal affine spaces

ÂnR := (Â1
R)×n → Â1

R

over Spec(R) and the ideal of those power series in R[[x1, . . . , xn]] which have nilpotent constant
term.

Proof. The formal affine space ÂnR can be identified with Spf(R[x1, . . . , xn]]), where the power
series ring is equipped with the m = (x1, . . . , xn)-adic topology, since continous maps out of the
latter into a discrete R-algebra correspond to an n-tuple of nilpotent elements.

The conclusion then follows from Lemma 3.10, since an element of this power series ring is
m-adically topologically nilpotent if and only if it has nilpotent constant term. �

Corollary 3.12. Any abelian group structure on Â1
R as a sheaf over Spec(R) with 0 as a unit

comes from a unique formal group law over R.

Proof. By the above, maps Â2
R → Â1

R correspond uniquely to certain power series in two vari-
ables. Composition of maps corresponds to composition of power series and we see that a map
makes Â1

R into a commutative monoid with zero as a unit if and only if the corresponding series
is a formal group law. This commutative monoid will be automatically a group by Lemma
3.9. �

Remark 3.13. We’ve seen that the commutative monoid GF associated to a formal group
is always an abelian group. Taking inverses defines a natural transformation −1 : GF → GF ,
which by Corollary 3.11 corresponds to some power series −[1]F (x) ∈ R[[x]]. This power series
has the property that

F (x, [−1]F (x)) = 0.

This can (and usually is) shown by direct manipulation with power series. A close observation
of the proof of the previous lemma shows that this power series has a leading term −x. More
generally, the leading term of the power series [n]F representing multiplication by n is nx.

We are now ready to define one of the central objects of this course.

Definition 3.14. Let R be a ring. Then, a formal group G over Spec(R) is an abelian group
object in étale sheaves over Spec(R) which is locally in the Zariski topology on R of the form
GF , where F is a formal group law.

That is, a formal group is an abelian group object which "locally" comes form a formal group
law; one can be very explicit about what this exactly means. Namely, an étale sheaf

G : CRingR → Ab

is a formal group if there exists a finite list of elements fi ∈ R which jointly generate the unit
ideal such that for any i, the restriction of the above functor to Rfi -algebras is isomorphic to
GFi where Fi is a formal group law over Rfi .

We will see later that while there do exist formal groups that do not come from a formal
group law, it is easy to tell whether one does, and in many situations it is enough to focus on
the ones that do. For example, when R is local, then any formal group comes from a formal
group law, because the only way fi can generate a unit ideal is for one of them to be a unit.
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The important part of a definition of a formal group is rather that it is "coordinate-free",
even when there exists an isomorphism G ' GF , it is not fixed. This leads to more natural
statements.

Example 3.15. The additive formal group Ga is defined by

Ga(B) := Nil(B),

with the group structure given by ordinary addition. This is isomorphic to the formal group
corresponding to the formal group law F (x, y) = x+ y.

Example 3.16. The multiplicative formal group Gm is defined by

Gm(B) := { 1 + b | b is nilpotent },
with multiplication induced by multiplication in the ring B. This is isomorphic to the formal
group associated to the multiplicative formal group law F (x, y) = x+ y + xy.

The above two examples are somewhat simple, because in both cases it is very easy to write
down an isomorphism with a formal group corresponding to a simple formal group law.

The following two examples are more interesting because they are common situations where
there is no canonical or even natural coordinate to choose.

Example 3.17. Let E be a complex-orientable cohomology theory, and for simplicity let’s
assume that the coefficient ring E∗ is concentrated in even degrees, so that the underlying
ungraded ring is commutative. Then, Spf(E∗(CP∞)) is a formal group over Spec(E∗).

Here, we treat E∗(CP∞) as a topological ring with respect to the limit topology induced by
the isomorphism E∗(CP∞) ' lim←−nE

∗(CPn), and the multiplication is the one induced by the
map CP∞ ×CP∞ → CP∞ classifying the tensor product of line bundles.

Indeed, since E is complex-orientable, we’ve verified in the first lecture that a choice of a
complex orientation t ∈ E2(CP∞) will determine an isomorphism E∗(CP∞) ' E∗[[t]]. This
isomorphism is compatible with topologies on both sides and so lifts to one of formal schemes
under which the multiplication on Spf(E∗(CP∞)) will correspond to the one coming from the
formal group law which we denoted by FE .

Note that the formal group law FE depended on a choice of a complex-orientation, but the
formal group Spf(E∗(CP∞)) does not. It is an intrinsic invariant of the complex-orientable
cohomology theory E.

Remark 3.18. One can show that the formal groups corresponding to the two examples we
considered, integral cohomology HZ and complex K-theory KU , are isomorphic to, respec-
tively, the additive and multiplicative group. However, we will later see that there are many
complex-oriented cohomology theories for which writing down the corresponding formal group
law explicitly is impractical.

Example 3.19. Let E → Spec(R) be an elliptic curve; that is, an abelian group scheme which
is proper and smooth of relative dimension 1 over Spec(R). (It is not important to know this
example in vast generality, it is already interesting enough if we assume that R = k is a field, so
that E is a genus 1 projective curve over k equipped with a choice of a basepoint.)

The basepoint section e : Spec(R)→ E is a closed inclusion, and so we can define the formal
completion Ê along this closed subscheme as in Definition 2.16 (locally, we can replace E by
an affine open neighbourhood of the zero section, and then use the affine description given in
the previous lecture).

Then, Ê acquires a multiplication from E and this makes Ê into a formal group over Spec(R),
these formal groups are called elliptic. The non-trivial fact needed to be checked here is that
the formal completion along a section of a smooth morphism is always locally isomorphic to the
formal spectrum of a power series ring.
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Remark 3.20. The behaviour of the formal group associated to an elliptic curve E depends on
the characteristic. We will see later that if char(k) = 0, then any formal group is isomorphic to
the additive one. In positive characteristic, Ê is instead usually isomorphic to the multiplicative
formal group, but there exist special elliptic curves (called supersingular) for which the associated
formal group is zneither of these two.

Example 3.21. An example of a formal group which is not globally isomorphic to one coming
from a formal group law is given by a formal completion L̂ along a zero section of a non-trivial
line bundle L → Spec(R). This acquires addition from that of L and is locally isomorphic to
the additive formal group, but there will be no global isomorphism unless L is trivial.

Informally, the reason is that the transition maps in a line bundle are linear and so are
determined by their derivative, which is an infinitesimal phenomenon. Thus, L can be recovered
from the formal group as its Lie algebra, which we will see in the next few lectures.

Another advantage of working of formal groups is that there is a natural notion of a morphism
evident; namely, morphisms of abelian sheaves. It is natural to ask what this notion corresponds
to in the language of power series.

If F,G ∈ R[[x, y]] are formal group laws, then an application of Corollary 3.11 shows that
a morphism φ : GF → GF of corresponding formal groups is uniquely determined by a certain
power series. Unwrapping what would be required of this power series leads to the following
definition.

Definition 3.22. Let F,G ∈ R[[x, y]] be formal group laws. A morphism φ : F → G is a
power series φ(x) ∈ R[[x]] with no constant term such that

φ(x+F y) = φ(x) +G φ(y).

An isomorphism is a morphism which is invertible as a power series under composition.

It is immediate from the definition that morphisms of formal group laws are in one-to-one
correspondence with morphisms of corresponding formal groups over Spec(R). This leads to
some examples; for example, for any F ∈ R[[x, y]] and n ∈ Z we have a power series [n]F
corresponding to multiplication by n on GF .

Example 3.23. Let R be a Q-algebra. Then, the power series

logGm
(x) := log(1 + x) =

∞∑
k=1

(−1)k+1x
k

k!

defines an isomorphism from the multiplicative to the additive formal group law.

The above example is somewhat typical; we will see later that over a Q-algebra, all formal
group laws are isomorphic to the additive one. Thus, formal groups in characteristic zero are es-
sentially equivalent to a datum of a line bundle; they all arise as formal completions of Example
3.21.

However, observe that the definition of the logarithm involved division, and so one can expect
that things become more involved in positive characteristic. This is indeed the case, we will see
that Gm and Ga are not isomorphic to each other over any field of positive characteristic, and
hence neither over the integers.

4. Differentials

If M is a manifold, we can associate to it its cotangent bundle. The sections of that bundle
are differential forms of M which are very useful in the study of both geometric and topological
structure of M .
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The notion of the cotangent bundle has its analogue in algebraic contexts. Namely, if R is
a k-algebra, and and M is an R-module, then a k-linear derivation d : R → M is a k-linear
map such that the Leibniz rule

d(r1r2) = r1d(r2) + r2d(r1)

holds. One can show that there exists a universal R-module ΩR/k, the module of Kahler
differentials, equipped with a derivation d : R → ΩR/k such that any other derivation factors
uniquely through an R-linear map ΩR/k →M . This R-module can be thought of as the module
of differential forms on the scheme Spec(R).

Example 4.1. Let R = k[x, y]/f(x, y) be the ring of coordinates on the plane curve C defined
by the equation f(x, y) = 0. Then,

ΩR/k ' R{dx, dy}/(fx(x, y)dx+ fy(x, y)dy),

that is, ΩR,k is generated as a module by two symbols dx, dy subject to the equation given above.
Note that if fx(x, y), fy(x, y) never vanish simultaneously on the curve (ie. C is smooth), then

the above module is locally free of rank one, which is what we would expect from the cotangent
bundle of a curve.

One can show that the construction of Kahler differentials is compatible with localization of
rings, so that the whole discussion can be extended to schemes with not much difficulty. We
would like to further make this extension to formal schemes, which first of all forces us to create
an appropriate notion of a sheaf over geometric objects more general than schemes.

From our perspective, geometric objects X are completely described by the way affine schemes
can map into them. If M was a quasi-coherent sheaf over X, for any reasonable definition, then
for any map

f : Spec(R)→ X

we would be able to define a pullback f∗M , which would be now a quasi-coherent sheaf over
Spec(R), and so can be identified with an R-module. From the functor of points perspective,
this can actually be taken as a definition.

Definition 4.2. Let X : CRing → Set be an étale sheaf. A quasi-coherent sheaf M over X
is an association

(1) of an R-module M(x) for every R-valued point x ∈ X(R) and
(2) of a map f∗ : M(x)→M(f(x)) of R-modules adjoint to an isomorphism S ⊗RM(x) '

M(y) for every ring homomorphism f : R→ S

These have to be compatible in the sense that if f : R→ S and g : S → T are composable maps
of rings, then g∗f∗ ' (g ◦ f)∗ as maps M(x)→M(g(f(x)).

If X is an étale sheaf, we will denote the associated category of quasi-coherent sheaves by
QCoh(X). Note that it is symmetric monoidal, with tensor product given levelwise by tensor
product of modules.

Example 4.3. The structure sheaf of X is the quasi-coherent sheaf OX defined by OX(x) :=
R for any x ∈ X(R). This is the unit of the monoidal structure.

Observe that the a quasi-coherent sheaf specifies an objectM(x) ∈Mod(R) for every element
x ∈ R; in other words, we have a family of modules (over varying rings) indexed by category of
elements Elt(X) of Definition 2.7.

Restating this in the language of higher category theory, we see that QCoh(X) can by definition
be identified with the limit of the covariant functor

(R, x) 7→ QCoh(Spec(R)) := Mod(R)
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taken in an appropriate∞-category of categories. Since the category of elements is the opposite
of Aff/X of the category of affine schemes over X, this shows that the association

QCoh : Shvopet → Cat

is the right Kan extension of the functor QCoh : Affop → C given by QCoh(Spec(R)) := Mod(R).
This description has the following consequence.

Lemma 4.4. The association QCoh : Shvopet → Cat takes colimits of sheaves to limits of cate-
gories.

Proof. Our definition o quasi-coherent sheaves makes sense generally for presheaves over affines.
The left Kan extension along the Yoneda embedding always preserves all colimits, so that the
above formula gives a functor

QCoh : Fun(CRing, Set)op → Cat

that takes colimits of presheaaves to limits of categories. We claim this factors (necessarily
uniquely) through the sheafication functor, which for formal reasons is the same as saying that
the functor R 7→ Mod(R) is a sheaf on affines in the étale topology. Concretely, this means that

(1) it takes products of commutative rings to products of categories
(2) for any étale faithfully flat map A→ B of rings, the diagram

Mod(A)→ Mod(B) ⇒ Mod(B ⊗A B) . . .

is a limit diagram of categories.
The first one is clear and the second is a result of Grothendieck, and holds for any faithfully flat
map of rings, see [17, 023F]. Since QCoh factors through sheafication, one can verify by hand
that it is cocontinuous when restricted to sheaves, since colimits in the latter are computing
them in presheaves and then by sheafifying. �

Remark 4.5. The right Kan extension definition of QCoh(X) given above is very flexible; for
example, we can similarly define the derived ∞-category D(X) of quasi-coherent sheaves as a
limit of derived ∞-categories D(R) taken over the category of elements of X. This will also, by
virtue of a derived analogue of a result of Grothendieck, take all colimits of sheaves to limits of
∞-categories.

The advantage of Lemma 4.4 is that it makes it clear that much less data needs to be
specified to give a quasi-coherent sheaf then is a priori apparent. For example, we can use it to
easily describe quasi-coherent sheaves on formal schemes.

Example 4.6. Let A be a commutative ring equipped with an I-adic topology. Then, since
Spf(A) ' lim−→ Spec(A/In), we deduce that

QCoh(Spf(A)) ' lim←−Mod(A/In).

That is, a quasi-coherent sheaf M on Spf(A) can be identified with a sequence of A/In-modules
{Mn} together with isomorphism Mn+1/I

nMn+1 ' Mn. If M,N are two such quasi-coherent
sheaves, then

HomSpf(A)(M,N) ' lim←−
n

HomA(Mn, Nn).

Example 4.7. If S is a classical scheme (considered as an étale sheaf), then QCoh(S) in the
sense given above coincides with the classical definition of a quasi-coherent sheaf.

To see this, one notices that S is a colimit (in the category of étale sheaves) of the poset of
its affine opens; this amounts to saying that étale locally any map Spec(R)→ S factors through
an affine open. Thus, a quasi-coherent sheaf on S is the same as a specification of an R-module
for each affine open Spec(R) ⊆ S, which is the classical definition of quasi-coherent sheaf.

https://stacks.math.columbia.edu/tag/0123
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Notation 4.8. Let f : Y → X be a map of étale sheaves. We denote the induced functor
between quasi-coherent sheaves by f∗ : QCoh(Y )→ QCoh(X).

Remark 4.9. Note that if Y ' Spec(R) is affine, then f∗M for M ∈ QCoh(X) can be identified
with the R-module which we denoted by M(f) in Definition 4.2.

We will only be interested in this course in sheaves which are small colimits of representables,
in which case QCoh(X) is a small limit of presentable ∞-categories (and left adjoints) and so
is itself presentable. One consequence of this is that restricted to such sheaves, all pullback
functors are left adjoints so that we have the usual adjunction

f∗ a f∗ : QCoh(X) � QCoh(Y )

When X,Y are affine, this is the usual adjunction between extension and restriction of scalars.
Given a quasi-coherent sheaf over a classical scheme, we can take its global sections. There

is an analogous construction in the more general world of étale sheaves.

Definition 4.10. Let M be a quasi-coherent sheaf over X. Then, the global sections are
given by

Γ(X,M) := HomQCoh(X)(OX ,M).

Remark 4.11. For any quasi-coherent sheaf, Γ(X,M) is a module over the ring of global
sections Γ(X,OX), where the latter acts by precomposition of homomorphisms. This notation
agrees with the one introduced in Definition 3.1; that is, for any X we have

HomQCoh(X)(OX ,OX) ' HomShv(X,A1)

To check this, one verifies that both sides take colimits of sheaves to limits of rings, and they
agree on affine schemes.

Example 4.12. Let Spf(A) be an affine formal scheme, so that a quasi-coherent sheaf is the
same as a diagram of A-modules Mn together with isomorphisms Mn+1/I

nMn+1 ' Mn. The
global sections are given by the A-module

Γ(Spf(A),M) ' lim←−
n

Mn

We would like to define a quasi-coherent sheaf which corresponds to the module of Kahler
differentials. To do so, it is convenient to rephrase the notion of a derivation.

Construction 4.13. If R is a k-algebra andM is an R-module, the we can form a square-zero
extension which is given by the ring R⊕M together with multiplication given by

(r1m1, r2m2) := (r1r2, r1m2 + r2m1)

The natural projection map π : R⊕M → R is a homomorphism of rings, and the abelian group
structure on M makes R⊕M into an abelian group object in commutative rings over R.

Lemma 4.14. Let s : R→ R⊕M be a map of k-algebras which is a section of π : R⊕M →M .
Then we can write s in the form s(r) = (r, d(r)) for a unique k-linear derivation d : R→M .

Proof. This is a routine calculation. �

Note that we observed before that R ⊕M → R is an abelian group object in commutative
rings over R, so that the set of sections s has an additive structure. This corresponds to simply
adding the corresponding derivation.

Rephrasing the universal property of the module of Kahler differentials in the language of
square-zero extensions leads to the following definition.
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Definition 4.15. Let X be an étale sheaf over Spec(k). The sheaf of Kahler differentials,
when it exists, is a quasi-coherent sheaf ΩX/k such that for every point f : Spec(R) → X and
every R-module M , there’s a natural bijection between the set of R-linear maps

HomR(ΩX/k(R),M)

and the set of dotted arrows making diagrams of the form

Spec(R) X

Spec(R⊕M) Spec(k)

commute.

Note that the above makes it clear why Kahler differentials have to do with infinitesimal
phenomena: they control the ways a given morphism from an affine scheme can be extended
along the "infinitesimal thickening" Spec(R)→ Spec(R⊕M). Here, by the latter we mean that
it is a closed inclusion defined by a nilpotent ideal.

The above definition looks abstract and like it is not well adapted to making concrete cal-
culations, but it works out well for our purposes, as the objects we’re interested are essentially
smooth. The following is the key calculation.

Proposition 4.16. Let k be a ring and let Ânk := Spf(k[[x1, . . . , xn]] be the formal affine n-space.
Then, the sheaf of Kahler differentials

Ω1
Ânk/k

exists and is free of rank n.

Proof. By the universal property, this is saying that for any k-algebraR, any arrow f : Spec(R)→
Ânk over Spec(k) and and R-module M , the set of dotted arrows

Spec(R) Ânk

Spec(R⊕M) Spec(k)

can be identified with an n-tuple of elements of M . To see this, notice that by definition f can
be identified with a continuous map f : k[[x1, . . . , xn]]→ R which in turn can be identified with
with an n-tuple (r1, . . . , rn) of nilpotent elements of R, namely f(xi). To give a dotted arrow is
to extend this to an n-tuple

((r1,m1), . . . , (rn,mn))

of nilpotent elements of R⊕M . This is the same as a choice of the mi, which can be arbitrary,
as (ri,mi) is nilpotent if and only if ri is. �

Note that we can even be more explicit about Ω1
Ânk

being free of rank n here. Namely, a

map f∗Ω1
Ânk
→ M is the same as a dotted arrow filling the diagram above, and we’ve seen this

explicitly specifies the elements the elements mi, namely the M -coordinates of the images of the
xi.

By the Yoneda lemma, this association gives for each 1 ≤ i ≤ n a morphism OÂnk
→ Ω1

Ânk
(which is usually denoted dxi), and a stronger statement is that the sum of all of these maps
induces an isomorphism

⊕
1≤i≤nOÂnk

→ Ω1
Ânk

.
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5. Logarithms

In the last lecture, we’ve introduced the notion of Kahler differentials, and we’ve computed
it in the particular case of the formal affine space. In this lecture, we will see that this concept
can be useful in constructing certain isomorphisms of formal groups.

Let Ânk = Spf(k[[x1, . . . , xn]] be the formal affine n-space over Spec(k), recall that we have
computed that Ωn

Ânk/k
is a free rank n quasi-coherent sheaf on an explicit basis

dxi : OÂnk
→ Ω1

Ânk/k

These maps are uniquely defined by the property that for each map f : Spec(R)→ Ânk , which we
can identify with a continuous map k[[x1, . . . , xn]]→ R, and each lift f̃ : k[[x1, . . . , xn]]→ R⊕M
into a trivial square-zero extension, the corresponding composite

R ' f∗OÂnk
→ f∗Ω1

Ânk/k
→M

is the R-linear map determined by the projection of f̃(xi) onto the M -coordinate.

Definition 5.1. A differential 1-form on an étale sheaf X (relative to Y ) is a global section
of the sheaf of Kahler differentials ΩX/Y

In the relative case, one should think of differentials forms being given on the fibres of X → Y
and varying continuously as a family. The above shows that for the formal affine n-space we
have that

Γ(Ânk ,Ω1
Ânk/k

) ' {
n∑
i=1

fi(x1, . . . , xn)dxi }

is a free Γ(Ânk ,OÂnk
) ' k[[x1, . . . , xn]]-module spanned by the global sections dxi described above.

It is quite common to abuse notation and idenfify Ω1 with its module of global sections, this
is not particularly dangerous in the case of formal affine spaces because they can be shown to
determine each other.

One can compute with differential forms using the usual formulas. That is, suppose that
φ : Ânk → Â1

k is a map of formal affine spaces over Spec(k), which we is uniquely determined by
a formal power series

φ(xi) ∈ k[[x1, . . . , xn]]

with nilpotent constant term, where Ânk ' Spf(k[[x1, . . . , xn]]) and Â1 ' Spf(k[[x])). Then, the
induced map

dφ : φ∗Ω1
Â1
k/k
→ Ω1

Ânk/k

sends the generator dx to
n∑
i=1

∂φ

∂xi
dxi ∈ Ω1

Ânk/k
.

This can be checked by going through our definitions.
These calculations have the following pleasant consequence, which can be thought of as a

formal geometric analogue of the basic fact from calculus that a smooth function f : R → R
such that f(0) = 0 is uniquely determined by its derivative.

Lemma 5.2 (Poincare). Let k be a Q-algebra. Then, a map

φ : Ânk → Â1
k

of formal affine spaces over Spec(k) which sends zero to zero is uniquely determined by its
derivative; that is, the image of dx under the induced map on differentials. If n = 1, then any
possible derivative arises from such a map.
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Proof. We know that φ is uniquely determined by a power series φ(xi) ∈ k[[x1, . . . , xn]]; if φ
takes zero to zero then this power series has no constant term. Then, the first part is saying
that a formal power series over a Q-algebra is uniquely determined by its partial derivatives.

If n = 1, then given any differential φ′(x)dx, where

φ′(x) =

∞∑
i=0

aix
i,

we define the needed map by

φ(x) =

∫ x

0

φ′(s)ds :=

∞∑
i=1

ai
i+ 1

xi+1.

�

Remark 5.3. One can interpret Lemma 5.2 as a formal version of Poincare lemma, which
asserts that we have an isomorphism H0

dR(Rn) ' R.

Remark 5.4. The second part is not quite true when n > 1, because there are further relations
between partial derivatives, namely that ∂

∂xj

∂φ
∂xi

= ∂
∂xi

∂φ
∂xj

. One can show that this is the only
obstruction to finding a map with prescribed derivative.

Note that it is important in the above lemma that we assumed that k is a Q-algebra. Other-
wise, a derivative of a non-zero formal power series might very well be zero, such as φ(x) = xp

over Fp.
As we’ve observed before, the sheaf of differentials on a formal group depends only on the

underlying formal scheme, but not on the additive structure. It plays the analogue role to the
sheaf of differentials on a Lie group G, which depends only on the underlying smooth manifold.

However, we know that if G is a Lie group, then we can speak of invariant differentials
ω ∈ Ω1(G), which are the differentials preserved by the right multiplication mg(h) = (hg) in the
sense that m∗gω = ω, for any g ∈ G. This can be shown to be an n-dimensional real vector space,
where n is the dimension of G, and can be identified with the dual of the Lie algebra of G.

Remark 5.5. One can show that ω ∈ Ω1(G) is invariant if and only if π∗1ω = m∗ω ∈ Ω1(G×G),
where π1,m : G×G→ G are projection and multiplication maps, agree when restricted to any
fibre of π2 : G×G→ G.

Note that the condition on agreeing n every fibre can be interpreted as the two differentials
being equal in an appropriate relative cotangent bundle. This motivates the following definition.

Definition 5.6. Let G → Spec(R) be a formal group. We say a differential ω ∈ Ω1
G/R is

invariant if we have
π∗1ω = m∗ω

as elements of Ω1
G×Spec(R)G/G

, the differentials relative to π2 : G×R G→ G.

In the particular case of a formal group G associated to a formal group law F ∈ R[[x, y]], we
can be more explicit. We have GF := Spf(R[[x]]) with multiplication specified by F , and the
condition of being invariant can be rephrased using the explicit formulas for induced maps on
differentials.

Working out the relevant formulas, we see that ω = ω(x)dx is invariant if and only if we have
an equality

(5.1) ω(x) = ω(F (x, y))Fx1
(x, y)

of power series in x, y. Let us give a couple of examples.

Example 5.7. Let Ga be the additive formal group, associated to F (x, y) = x+y. Then ω = dx
is invariant.



FINITE HEIGHT CHROMATIC HOMOTOPY THEORY HARVARD MATH 252Y, SPRING 2021 22

Example 5.8. Let Gm be the multiplicative formal group, associated to F (x, y) = x+ y + xy.
Then ω = 1

1+xdx is invariant.

As it happens, we have an explicit formula for the invariant differential which is valid in a
general case.

Proposition 5.9. Let F ∈ k[x, y] be a formal group law and let GF be the associated formal
group. Then, invariant differentials on GF form a free R-module of rank one, spanned by

ωF := p(x)dx,

where
p(x) =

1

Fx1(0, x)
.

Note that in the notation above, we mean that should take the partial derivative of F with
respect to the first variable, then substitute 0, x, and finally take the multiplicative inverse in
the ring of power series.

Proof. Suppose that ω = ω(x)dx is invariant, so that it satisfies the equation 5.1. Substituting
x = 0 gives

ω(0) = ω(y)Fx1(0, y),

where we’ve used that F (0, y) = y. The latter also shows that Fx1(0, y) = 1+ higher order terms,
so that Fx1(0, y) is invertible and

ω(y) = ω(0)Fx1
(0, y)−1.

Thus, every invariant differential is necessarily a multiple of ωF . We’re left with showing that
the latter is actually invariant. Taking the associative law

F (x, F (y, z)) = F (F (x, y), z)

and taking the partial derivative with respect to x we see that

Fx1(x, F (y, z)) = Fx1(F (x, y), z)Fx1(x, y).

Now if we set x = 0 and recall that F (0, y) = y, we obtain

Fx1(0, F (y, z)) = Fx1(y, z)Fx1(0, y)

which is the same as
(Fx1(0, y))−1 = (Fx1(0, F (y, z)))−1Fx1(y, z)

and
ωF (y) = ωF (F (y, z))Fx1

(y, z)

which is what we wanted. �

Remark 5.10. Note that the above shows that ωF can be specified as the unique invariant
differential such that p(x) = 1 + higher order terms in the expression ωF (x) = p(x)dx in terms
of the standard coordinate.

Note that Definition 5.6 really defines right-invariant differentials. However, since a formal
group law is always commutative, this is the same as being left-invariant, which leads to the
following observation.

Lemma 5.11. If G is a formal group over Spec(R), the following conditions on a differential
ω ∈ Ω1

G/R are equivalent:

(1) ω is invariant,
(2) m∗ω = π∗2ω in Ω1

G×RG/G, the differentials relative to π1 : G×R G→ G,
(3) m∗ω = π∗1ω + π∗2ω ∈ Ω1

G×RG/R
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Proof. Since G is commutative, the multiplication m : G ×R G → G is invariant under the
"twist" isomorphism T : G×RG→ G×RG. The latter exchanges π∗1ω and π∗2ω in the relevant
relative differentials, showing that (1) and (2) are equivalent.

To see that (1) and (2) together are equivalent to (3), observe that

Ω1
G×RG/R ' Ω1

G×RG/G ⊕ Ω1
G×RG/G,

where the two latter differentials are relative to the two projections π1, π2. Then, (1) is the same
as saying that m∗ω = π∗1ω+π∗2 holds relative to the second summand, and (2) that it holds with
respect relative to the second summand. �

Remark 5.12. The condition (3) in Lemma 5.11 is sometimes taken as the definition of
invariant differentials on a formal group. The advantage of (1), which we used, is that it is easier
to compute with, providing a quick proof of Proposition 5.9.

The following is the powerful consequence of the existence of invariant differentials.

Theorem 5.13. Let F (x, y) be a formal group law over a Q-algebra R. Then, there exists a
unique isomorphism φ(x) ∈ R[[x]] from F to the additive formal group law such that φ′(0) = 1.
In particular, any such formal group law is isomorphic to the additive formal group law, and any
formal group over Spec(R) is locally isomorphic to Ga.

Proof. Let G be the formal group associated to F and let φ : G→ Ga be the unique morphism
of formal affine lines over Spec(R) which takes zero to zero and which satisfies φ∗ωF = ωa = dx,
ie. it takes the distinguished invariant differential associated to F the distinguished invariant
differential of the additive formal group law. We know a morphism like that exists by Lemma
5.2, and since ωa(0) = ωF (0) = 1, we must have φ′(0) = 1.

The latter property implies that φ is an isomorphism of formal affine lines; we claim that it
is in fact an isomorphism of formal groups. To do so, consider the multiplication G×2 → G
transported to Ga using the isomorphism φ; that is, the composite

G×2
a G×2 G Ga

(φ−1)×2 φ
.

This defines a second formal group structure on Ga, with the same zero and the same invariant
differential ωa = dx by construction, and to say that φ is an isomorphism of formal groups
is to say that these two group structures agree. By Lemma 5.11, for both multiplications
the pullback of dx is equal to π∗1dx + π∗2dx, and we deduce from Lemma 5.2 that these two
multiplications must be the same. �

The above result, which we have promised a while ago, shows that the theory of formal
groups simplifies considerably in characteristic zero. This is perhaps not surprising; notice that
our formal groups are implicitly only one-dimensional and commutative. The only such Lie
groups, up to isomorphism, are the circle and the real line, and these are locally isomorphic.

Note that to prove the above we used the fact that over a Q-algebra any differential form can
be integrated to an actual map, this crucially relied on being able to introduce denominators.
This can fail in positive characteristic and indeed it does, as the following shows.

Lemma 5.14. Let k be any field of positive characteristic p > 0. Then, the formal multiplicative
Ga and formal additive Gm groups over Spec(k) are not isomorphic.

Proof. Since Ga(R) = Nil(R) is strictly p-torsion for any k-algebra R (that is, multiplication by
p acts by zero), it is enough to find an R such that the group of elements

{ 1 + r | r ∈ Nil(R) }
under multiplication is not strictly p-torsion. The R-algebra k[[x]]/xN and the element 1 + x
will do for N > p. �
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Remark 5.15. The above proof can be made slightly more elegant if we allow ourselves to
evaluate formal groups on not-necessarily affine schemes. That is, we have that

Gm(Spf(k[[x]]) := HomSpec(k)(Spf(k[[x]]),Gm)

can be identified with the group of power series of the form φ = 1 + higher order terms under
multiplication. In this group, the power series 1 + x is not torsion in the first place, much less
strictly p-torsion, since (1 + x)n 6= 1 for any n.

The above discussion of invariant differentials was so far restricted to formal groups which
come from formal group laws. The definition of invariant differential as given above makes sense
for a general formal group, but it is less useful. Roughly, the issue is that a formal affine line
always has plenty of differentials, but a formal scheme which is only locally of this form need
not; much less any invariant ones if it is a formal group.

This suggests that what we should consider instead is a sheaf of invariant differentials. Note
that one has to be careful here, as the sheaf of invariant differentials will not be a sheaf on G -
the requirement to be invariant is global in nature and only makes sense when we have a group
object. However, it is local in the base, so we make the following definition.

Definition 5.16. Let G→ Spec(R) be a formal group. The sheaf Lie∨G of invariant differen-
tials is the quasi-coherent sheaf over Spec(R) which associates to any f : Spec(S)→ Spec(R) the
S-module of invariant differentials on the formal group f∗G := G×Spec(R) Spec(S)→ Spec(S).

Note that if 0 : Spec(R)→ G is the zero section, then there’s a canonical map

Lie∨ → 0∗Ω1
G/ Spec(R)

from the sheaf of invariant differentials into the pullback of Ω1 along the zero section. The latter
can be rightfully thought of as the dual of the Lie algebra, and our notation is motivated by the
following.

Lemma 5.17. The morphism Lie∨G → 0∗Ω1
G/ Spec(R) is an isomorphism of quasi-coherent

sheaves. In particular, the sheaf of invariant differentials is locally free of rank one.

Proof. Since any map Spec(S)→ Spec(R) locally factors through an affine open of Spec(R) on
which G comes from a formal group law, we can assume that this is the case. In this case, the
above amounts to the statement that the association

ω(x)dx→ ω(0)

is bijective, so that an invariant differential is determined by its value at the zero section.
The second part follows from the fact that Ω1

G/ Spec(R) is locally free of rank one, because it
is free over every open subset of Spec(R) on which G is isomorphic to the formal affine line, as
we computed in Proposition 4.16. �

6. Lazard ring

We are interested in the classification of formal groups. Any such formal group is locally
isomorphic to one coming from a formal group law, and the collection of the latter can be
assembled into a set

Fgl(R) := { F (x, y) =
∑

ai,jx
iyj ∈ R[[x, y]] | F is a formal group law }

which depends covariantly on the ring. Here, given a ring homomorphism f : R → S, we set
f∗ : Fgl(R)→ Fgl(S) by

f∗F (x, y) =
∑

f(ai,j)x
iyj ∈ S[[x, y]].
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This operation is dual to the pullback of formal groups which appeared in the last lecture; that
is, one can check that there’s a canonical isomorphism

f∗GF := Spec(S)×Spec(R) GF ' Gf∗F .

There is a geometric structure on the functor Fgl, as we will now observe.

Lemma 6.1. The functor Fgl : CRing → Set is an affine scheme.

Proof. Consider the polynomial ring Z[ai,j ] on infinitely many generators, let F (x, y) =
∑
ai,jx

iyj .
Let I the ideal generated by the coefficients of the power series

(1) F(F(x, y), z) - F(x, F(y,z))
(2) F(x, y) - F(y, x)
(3) F(x, 0) - x

Then, F defines a formal group law over the quotient ring L := Z[ai,j ]/I. A choice of a two-
variable power series over a ring R is the same as a map Z[ai,j ] → R, and this map will factor
through L uniquely if and only if the corresponding power series is a formal group law. This
shows that the map Spec(L) → Fgl defined by the formal group law F is an isomorphism of
étale sheaves. �

Definition 6.2. The ring L corepresenting the affine scheme Fgl is called the Lazard ring.

Note that the choice of an isomorphism Spec(L) ' Fgl is part of the data of the Lazard ring.
That is, any ring L equipped with a formal group law which induces such an isomorphism can
be rightfully called the Lazard ring, they are all uniquely isomorphic. Our goal is to give a more
explicit description of this a priori very complicated ring.

There a little bit more structure on the set of formal group laws that we have to take into
account. Recall that we have introduced the notion of an isomorphism φ : F → G of formal
group laws over fixed ring R, which was an invertible power series φ(x) ∈ R[[x]] such that

φ(x+F y) = φ(x) +G φ(y).

The datum of such a φ(x) was the same as of an isomorphism of the underlying formal groups.
Note that the formal group law G is in fact determined by F , as since φ is invertible, the above
condition can be rewritten as

G(x, y) := φ(F (φ−1(x), φ−1(y)).

In fact, for any invertible φ(x) and any F , the above formula would define a formal group law G
such that φ becomes an isomorphism between them. This gives a way to produce formal group
laws by "twisting" their multiplication by a change of coordinates; the resulting formal groups
are always isomorphic, but the resulting formal group laws are usually distinct.

Definition 6.3. Let Ginv : CRing → Grp be the affine group scheme

Ginv(R) := {φ(x) :=
∑
i≥0

bix
i+1 ∈ R[[x]] | b0 ∈ R× }

classifying invertible power series under composition.

Note that we implicitly claimed that the above functor is an affine scheme; in fact, we have

Ginv ' Spec(Z[b±1
0 , b1, b2, b3, . . .]).

The above twisting formula defines an action of the group scheme Ginv on the functor Fgl in the
category of étale sheaves. This action is crucial part of the structure, as the following shows.
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Remark 6.4. By retracing the definitions we see that two formal group laws

F,G ∈ Fgl(R)

are isomorphic if and only if they belong to the same Ginv(R)-orbit. In fact, then φ · F = G
with respect to the action · : Ginv ×Fgl→ Fgl for a φ(x) ∈ Ginv(R) if and only if the invertible
power series φ(x) defines an isomorphism between formal group laws F and G.

The group scheme Ginv admits a semi-direct product decomposition

Ginv := Gsinv oGm,

where
Gsinv(R) := { φ(x) :=

∑
i≥0

bix
i+1 ∈ R[[x]] | b0 = 1 }

is the group of "strict" power series (that is, with leading coefficient equal to one) and Gm is
the multiplicative group, here identified with the subgroup of invertible power series

{ φ(x) := ax | a ∈ R× }

In the study of structure of the Lazard ring, it is useful to take both the action of Gsinv and Gm
into account, let us start with the latter.

As it turns out, the action of the multiplicative group can be elegantly rephrased in the
algebraic world as an existence of the even grading. Let us first make some conventions.

Lemma 6.5. For a ring R, the following pieces of data are equivalent:
(1) a Gm-action on the affine scheme Spec(R)
(2) an even grading on R; that is, a choice of abelian subgroups R2n ⊆ R which form a

graded ring such that R '
⊕

n∈ZR2n.

Proof. Given an action Gm × Spec(R)→ Spec(R), where we write Gm := Spec(Z[b±1]), let

∆ : R→ R⊗ Z[b±1] ' R[b±1]

be its algebraic dual. Then, we set

R2n = { r ∈ R | ∆(r) = rbn },

since ∆ is a ring homomorphism it is clear that
(1) 1 ∈ R0

(2) R2n ·R2m ⊆ R2(n+m)

To check that these generate R as a direct sum, observe that given any r ∈ R, we can write
∆(r) =

∑
n r2nb

n. Then, using the (duals of) axioms of a group action one verifies that
(1) r2n ∈ R2n (using associativity)
(2)

∑
n r2n = r (using unitality).

These two together imply that we have a direct sum decomposition.
Conversely, given a grading we define the coaction by ∆(r) = rbn when r ∈ R2n and extending

linearly. �

Remark 6.6. Since this is a class in homotopy theory, for us a graded ring (Rn) is commutative
if it satisfies the Koszul sign rule; that is

xy = (−1)|x||y|yx

for any homogeneous x, y. This in particular means that the underlying ring of a commutative
graded ring need not be commutative. These difficulties disappear if we work with even gradings,
on which the Koszul sing rule trivializes, which is why we phrase Lemma 6.5 in this way.
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Since the group Gm ⊆ Ginv acts on the spectrum of the Lazard ring, we deduce that L admits
a canonical even grading. In the proof of Lemma 6.1 we have a somewhat explicit description
of the Lazard ring as generated by the coefficients ai,j of a formal group law

∑
ai,jx

iyj , subject
exactly to the conditions which guarantee the formal group law axioms.

If
∑
ai,jx

iyj ∈ R[[x, y]] is a formal group law over R, corresponding to a point F ∈ Fgl(R),
and λ ∈ Gm(R) is a unit, then

λ · F := λ−1
∑
i,j

ai,j(λx)i(λy)j =
∑
i,j

λi+j−1ai,jx
iyj .

We deduce that in the grading of the Lazard ring coming from this Gm-action, ai,j is of homo-
geneous degree 2(i+ j − 1). This has the following consequence.

Lemma 6.7. As a graded ring, L is concentrated in non-negative degrees and it is connected in
the sense that L0 ' Z.

Proof. The generators ai,j are indexed by i, j ≤ 0 of homogeneous degree 2(i + j − 1), so the
only generator of possibly negative degree is a0,0. However, a0,0 = 0 in the Lazard ring since
any formal group law has no constant term.

To show that L is connected, observe that the only generators of homogeneous degree 0 are
a1,0 and a0,1. However, these are both equal to 1, so that in degree zero we have only a copy of
Z. �

Note that the above already gives us some good amount of control over the Lazard, in many
respects a connected ring over Z can be treated as a "thickening" of the integers themselves. A
deep result of Lazard will tell us that L is in fact of an even simpler form.

Theorem 6.8 (Lazard). There’s an isomorpism of graded rings

L ' Z[x1, x2, x3, . . .]

between the Lazard ring and a polynomial ring on generators xi of homogeneuous degree 2i.

We will see throughout the proof of Lazard’s theorem that the above isomorphism is nec-
essarily quite complicated and difficult to make explicit. Equivalently, even though as a ring
Z[x1, x2, . . .] is isomorphic to the Lazard ring, the resulting universal formal group law is quite
complicated. However, even in the form of an existence of an isomorphism, this result already
has interesting consequences.

Corollary 6.9. Let f∗ : R→ S be a surjective ring homomorphism and let F ∈ Fgl(S). Then,
the exists a G ∈ Fgl(R) such that f∗G := F . That is, formal group laws can always be lifted
along surjective homomorphisms.

We will proceed with the proof of Lazard’s theorem. The idea is to use the fact that many
examples formal group laws can be produced from known ones by twisting them by the group
of invertible power series.

We will start with the additive formal group law F (x, y) = x + y. Our computation of the
degrees of generators of the Lazard ring preceding Lemma 6.7 shows that this is in fact a
graded formal group law; that is, it is classified by a map L → Z of graded rings, where Z is
here considered as having the trivial grading where everything is in degree zero.

In the language of schemes, this tells us that the map

Spec(Z)→ Spec(L)

classifying the additive formal group law is Gm-equivariant if we endow Spec(Z) with the trivial
G-action. The target here has an action of the larger group Ginv ' Gsinv o Gm, and the above
map can be promoted to a Ginv-equivariant map

Gsinv → Spec(L).



FINITE HEIGHT CHROMATIC HOMOTOPY THEORY HARVARD MATH 252Y, SPRING 2021 28

Explicitly, here we have Gsinv ' Spec(Z[b1, b2, . . .]) and the dual ring homomorphism

ψ : L→ Z[b1, b2, . . .]

classifies the formal group law

b(b−1(x) + b−1(y)) ∈ Fgl(Z[b1, b2, . . .]),

where

b(x) = x+
∑
i≥1

bix
i+1.

The map ψ is a homomorphisms of graded rings, because it is dual to a Gm- (even Ginv-)
equivariant morphism of affine schemes. The action of Gm on Gsinv is that by conjugation, and
one can check that it induces a grading in which |bi| = 2i.

Notice that Z[b1, b2, . . .] is of the same form which we claim the Lazard ring, a naive guess
would be that ψ is an isomorphism. This is not the case. Here, Z[b1, b2, . . .]) can be interpreted
as classifying formal group laws together with a choice of a strict isomorphism to the additive
formal group law, so to ψ to be an isomorphism we would need to know that every formal group
law is uniquely strictly isomorphic to the additive one.

This is not true, as we’ve seen in Lemma 5.14 that in positive characteristic the multiplicative
and additive formal group laws are not isomorphic. However, we’ve proven in Theorem 5.13
that in characteristic zero, any formal group law is uniquely strictly isomorphic to the additive
one. This implies the following.

Corollary 6.10. The map ψ : L→ Z[b1, b2, . . .] is an isomorphism after tensoring with Q.

The rest of the proof follows by studying exactly how the map ψ : L → Z[b1, b2, . . .], which
is completely canonical, fails to be an isomorphism. Both rings here are graded and connected,
and in the study of such rings it is useful to have the following notion.

Definition 6.11. Let R be a non-negatively graded ring and I its ideal of positive degree
elements. The module of indecomposables is the graded module I/I2.

The map ψ : L→ Z[b1, b2, . . .] induces a map

I/I2 → J/J2

on the corresponding modules of indecomposables. The target here can be described explicitly,
namely we have that

(J/J2)2n ' Z{bn}

is the free Z-module generated by the class of the element bn. The following key result, which is
the heart of the proof of Lazard’s theorem, identifies the image of ψ modulo decomposables.

Lemma 6.12 (Symmetric cocycle lemma). For every n ≥ 1, the map (I/I2)2n → (J/J2)2n is
injective and its image is

(1) the subgroup generated by the class of bn when n+ 1 is not a prime power or
(2) the subgroup generated by the class of pbn when n+ 1 = pk for some k ≥ 1.

In particular, (I/I2)2n is free of rank one for every n ≥ 1.

We will prove the above result, and finish the proof of Lazard’s theorem, by reducing it to the
problem of studying formal group laws over square-zero extensions, which can be tackled using
deformation theory.
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7. Deformation theory

We begin by finishing the proof of Lazard’s theorem while assuming that the symmetric
cocycle lemma holds.

Suppose that each graded piece (I/I2)2n of the module of indecomposables of the Lazard ring
L is a free abelian group of rank one, as claimed, and choose a lifts tn ∈ I2n of generators. This
specifies a map

φ : Z[t1, t2, . . .]→ L,

where again |tn| = 2n, which is an isomorphism on modules of indecomposables. This readily
implies the following.

Lemma 7.1. The map φ : Z[t1, t2, . . .]→ L is surjective.

Proof. Let us prove this by induction on degree. We know the given map is surjective, even
bijective, in degree zero, since L is connected.

If n > 0, then we want to show that the map surjects onto I2n, where I ⊆ L as before is the
ideal of positive degree elements. However, by inductive assumption φ surjects onto I2

2n, because
any element inside is a linear combination of products of lower degree elements. Since is also
surjects onto (I/I2)2n by construction, we are done. �

Theorem 7.2 (Lazard). The map φ : Z[t1, t2, . . .]→ L is an isomorphism.

Proof. Recall that we also had a map

ψ : L→ Z[b1, b2, . . .]

which classified the formal group law obtained from the additive one by a universal strict change
of coordinates, let us consider the composite

ψ ◦ φ : Z[t1, t2, . . .]→ Z[b1, b2, . . .],

we claim that this is injective. This will finish the proof of the theorem, as then φ is also injective,
and we already know it’s a surjection.

Since both the target and source of ψ ◦ φ are torsion-free, it’s enough to show that the
rationalization

Q⊗Z (ψ ◦ φ) : Q[t1, t2, . . .]→ Q[b1, b2, . . .]

is injective. By the symmetric cocycle lemma, this map is an isomorphism on modules of
indecomposables, and we deduce as in the proof of Lemma 7.1 that it is surjective. As both
sides are graded rings which are of the same finite dimension over Q in each degree, we deduce
that this map is an isomorphism, ending the argument. �

Thus, we have reduced the proof of Lazard’s theorem to the symmetric cocycle lemma, which
we stated as Lemma 6.12. Recall that the precise claim is that the graded pieces (I/I2)2n of
the module of indecomposables of L are free of rank one for each n, and that the map

(I/I2)2n → (J/J2)2n ' Z{[bn]}
induced by ψ can be identified with multiplication by p when n+ 1 = pk is a prime power and
is an isomorphism otherwise.

The idea of the proof is to interpret both sides using formal groups, and prove the needed
result by a deformation-theoretic calculation.

Construction 7.3. If A is an abelian group and n > 0, then by Z⊕A[2n] we denote the evenly
graded ring with Z in degree zero, A in degree 2n, and whose underlying ring is the trivial
square-zero extension Z⊕A.
Lemma 7.4. If R is an even graded, connected ring with module of indecomposables M , then
there’s a bijection between graded ring homomorphisms R → Z ⊕ A[2n] and homomorphisms
(M/M2)2n → A of abelian groups.
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Proof. This correspondence is induced by taking modules of indecomposable, which for Z⊕A[2n]
is simply A/A2 ' A, concentrated in degree 2n. To check that it is a bijection is a routine
calculation. �

Remark 7.5. The above shows in particular that the set of ring homomorphisms into Z⊕A[2n]
from a non-negatively even graded, connected ring, has a canonical structure of an abelian
group. This can be made explicit, by observing that Z ⊕ A[2n] has an abelian group object in
the category of rings equipped with a map to Z, and that graded, connected rings do not have
non-trivial maps into Z.

Our proof of the symmetric cocycle lemma, instead of studying the map (I/I)2n → (J/J2)2n

directly, will instead study maps

Hom((J/J2)2n, A)→ Hom((I/I2)2n, A),

where A is an abelian group. Note that both graded pieces are finitely generated over the integers
(in the case of L, by our direct construction), so that it’s enough to understand how these maps
behave when A itself is finitely generated.

By Lemma 7.4, we know that the map above can be identified with

Gsinv(Z⊕A[2n])→ Fgl(Z⊕A[2n]),

induced by ψ, which sends a strictly invertible power series over Z⊕A[2n] to the corresponding
twisted additive formal group law.

Note that here, we want to treat Z ⊕ A[2n] as a graded ring, and we’re only interested in
power series and formal group laws that respect the relevant gradings. In the correspondence of
Lemma 6.5, this corresponds to studying Gm-equivariant maps, and considering formal groups
equipped with a compatible Gm-action.

Lemma 7.6. Let A be an abelian group and let n > 0. Then, the kernel of

Gsinv(Z⊕A[2n])→ Fgl(Z⊕A[2n])

can be identified with kernel of the reduction map

Aut(Ĝa)(Z⊕A[2n])→ Aut(Ĝa)(Z);

that is, with those Gm-equivariant automorphisms of the additive formal group over Z ⊕ A[2n]
which reduce to the identity modulo A.

Proof. The abelian group structure on both sides is that of Remark 7.5; note that it agrees
with that on Gsinv by an Eckmann-Hilton argument. Any element of Gsinv(Z⊕A[2n]) corresponds
to a strictly invertible power series which reduces to the identity modulo A for grading reasons,
as there are no non-trivial maps Z[b1, b2, . . .]→ Z since |bi| > 0.

Thus, we only have to check that a power series b(x) ∈ (Z ⊕ A[2n])[[x]] is in the kernel of ψ
if and only if it is an automorphism of the additive formal group. This is clear, since b(x) is in
the kernel if and only if x+ y = b−1(b(x) + b(y)). �

We can also give a description of the cokernel, but this will require introducing some ideas of
deformation theory. Let us begin with an informal definition.

Definition 7.7 (Informal). Let R → R0 be a surjection of rings with nilpotent kernel, corre-
sponding to a closed inclusion S0 ↪→ S of affine schemes. If X0 → S0 is a geometric object, then
a deformation of X0 to S is a pair (X,φX) consisting of geometric object X → S together
with an isomorphism φX : S0 ×S X ' X0.

In the above informal "meta-definition", the geometric objects should be of fixed type; for
example, smooth schemes, line bundles, or (relevant to this course) formal groups.
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Definition 7.8. Suppose (X,φX) and (X ′, φX′) are deformations of X0 → S0 along S0 → S.
An isomorphism of deformations is an invertible map f : X → X ′ such that the diagram

S0 ×S X S0 ×S X ′

X0

φX φX′

f

commutes.

It is extremely common to drop the identification φX from the notation, but it is important
to remember it is there. For example, the only automorphisms of a given deformation are those
which become the identity after applying S0 ×S −.

Lemma 7.9. The cokernel of

Gsinv(Z⊕A[2n])→ Fgl(Z⊕A[2n])

can be identified with isomorphism classes of Gm-equivariant deformations of the additive formal
group along Spec(Z) ↪→ Spec(Z⊕A[2n]).

Proof. Let Def denote the relevant groupoid of deformations of the additive formal group, and
let π0 Def denote the isomorphism classes. We first have to check that the map

Fgl(Z⊕A[2n])→ π0 Def,

which sends a formal group law to the corresponding formal group, is surjective. That is, that
any deformation is isomorphic to one coming from a formal group law.

We didn’t show it in this course, but the latter happens precisely when the sheaf of invariant
differentials introduced in Definition 5.16 (which is always locally free) is free of rank one. For
any deformation, this sheaf can be identified with locally free graded Z⊕A[2n]-module M such
that M ⊗(Z⊕A[2n]) Z ' Z. Any such module is actually free.

We’re left with identifying the kernel of

Fgl(Z⊕A[2n])→ π0 Def,

but that’s precisely the set of formal group laws such that the underlying formal group is iso-
morphic, Gm-equivariantly, to the additive formal group over Spec(Z⊕A[2n]). This is precisely
the image of Gsinv(Z⊕A[2n]). �

The combination of Lemma 7.6 and Lemma 7.9 describes the kernel and cokernel of the
map we’re trying to understand, but it might seem that the problem has gotten worse, because
suddenly we’re being tasked with understanding isomorphism classes of formal groups, which is
in general very difficult.

However, since we’re only asked to understand deformations; that is, how a formal group
can be extended along an infinitesimal thickening, these groups are more tractable than might
appear at first sight. The collection of tools to understand such things is known as deformation
theory, and the rest of the lecture will be devoted to a gentle introduction to these ideas in a
slightly easier setting of classical schemes.

To fix ideas, we will consider the problem of deforming a smooth scheme X0 → Spec(k) along
the map k[ε] → k, where k[ε] := k[ε]/ε2 is the trivial square-zero extension. In this case, we
always have the trivial deformation

X := X0 ×Spec(k) Spec(k[ε]),

obtained by extending scalars.

Remark 7.10. There’s a group structure on the groupoid of deformations, induced by the
abelian group structure on k[ε] in the category of k-algebras with a map to k, and the trivial
deformation is the identity of this group.
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Lemma 7.11. Let X0 be affine. Then any deformation X along k[ε]→ k is trivial.

Proof. One can show that in this context X ' Spec(R) is affine as well. For simplicity, assume
that X0 ' Spec(k[x1, . . . , xn) is the affine n-space. The reduction map

R→ R⊗k[ε] k ' k[x1, . . . , xn]

is surjective, and so we can choose a lift x̃i ∈ R of the xi-s. The induced map k[ε][x̃1, . . . , x̃n]→ R
is a map of flat k[ε]-algebras which reduces to an isomorphism modulo ε, it follows that it is an
isomorphism.

In the general case, even if X0 = Spec(A) is not the affine n-space, smoothness implies the
infinitesimal lifting property and the identity of X0 can be extended to a map X → X0, allowing
the previous argument to go through again, see [5][4.9]. �

Note that the above gives us a foothold on the problem. Observe that the isomorphism
X ×k[ε] k ' X0 will always induce a homeomorphism of the underlying topological space, as the
map is locally a reduction by a nilpotent ideal. Thus, it makes sense to "restrict" a deformation
X to an open subset U ⊆ X0, by passing to the corresponding open subset in X.

By Lemma 7.11, if Uα ⊆ X0 is an affine open cover, then each restriction X|Uα must be
isomorphic to the trivial deformation Uα ×Spec(k) Spec(k[ε]). Thus, the only way a deformation
of X can be non-trivial if these isomorphisms, which necessarily satisfy the cocycle condition,
cannot be chosen globally. This is an obstruction of cohomological nature, and so is relatively
computable.

Lemma 7.12. The group AutX0
(X0 ×k k[ε]) of the automorphisms of the trivial square-zero

deformation is isomorphic to HomOX0
(Ω1

X0/k
,OX0

).

Proof. If X0 = Spec(A) is affine, then the relevant automorphism group is the group of auto-
morphisms

A⊗k k[ε]→ A⊗k k[ε]

of k[ε] algebras which reduce to the identity modulo ε. Since the source is an extension of scalars,
this can be identified with those maps

A→ A⊗k k[ε]

which are section of the projection A⊗k k[ε]→ A. This is the same as HomA(Ω1
A/k, A), by the

universal property of Kahler differentials, as claimed. One can check that this identifiaction is
canonical and compatible with localization, so that it induces an identification

AutX0(X0 ×k k[ε]) ' HomOX0
(Ω1

X0/k
,OX0),

as both sides are sheaves in the Zariski topology. �

Ultimately, we would like to understand isomorphism classes of of deformations of X0, but
this is difficult to understand globally because deformations can be locally isomorphic without
there being a global isomorphism. In other words, the presheaf of sets

U 7→ π0 Def(U)

sending an open subset U ⊆ X0 to isomorphism classes in the groupoid of deformations, is not
a sheaf. Instead, we are bound to consider the presheaf of groupoids

U → Def(U),

and this is a sheaf in the homotopy-theoretic sense.
Thus, we can consider the subpresheaf Deftriv(−) ⊆ Def(−) consisting of only the trivial

deformation and its automorphisms. This is not a sheaf, but instead the inclusion

Deftriv(U) ↪→ Def(U)
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is a sheafication, again in the homotopy theoretic sense. This is a restatement of Lemma
7.11, which tells us that locally any deformation is isomorphic to the trivial one. However, we
understand the automorphisms of the trivial deformation, and we know that

Deftriv(U) ' BHomOU (Ω1
U/k,OU ),

where on the right hand side we have the classifying groupoid, ie. we treat the group as a
groupoid with one object. Combined, these two observations identify Def itself as a sheafication
of a very explicit presheaf, and will allow us to compute its global sections in terms of sheaf
cohomology. This will be taken up in the next lecture, and applied to the setting of formal
groups.

8. Deformations of formal groups

Last time, we reduced the proof of Lazard’s theorem to showing that a certain map of abelian
groups is of a specified form, and we described its kernel and cokernel in terms of deformations
of formal groups. Today, we will describe the latter.

Last time, we talked about first-order deformations of a smooth scheme X0. We observed
that since any such deformation X → Spec(k[ε]) has necessarily the same topological space as
X, it makes sense to restrict the deformation to an open subset U ⊆ X. We claim that the
groupoid-valued presheaf

U 7→ Def(U) := { deformations of U and their isomorphisms }

on the underlying topological space of X, is a sheaf in the homotopy-theoretic sense, let us
describe in a little bit more detail what this entails.

The 2-category of groupoids, functors and natural trasnformations can be identified with the
subcategory τ≤1S of the∞-category S of spaces spanned by those spaces S which are 1-truncated,
ie. such that πk(S, s) = 0 vanishes for any k > 1 and at any basepoint s ∈ S. Thus, the above
association can be considered as a functor of ∞-categories

{ open subsets U ⊆ X }op → S

and this functor is a sheaf in the following sense.

Definition 8.1. Let C be a category equipped with a Grothendieck pretopology. We say a
functor F : Cop → S of ∞-categories is a sheaf if for any covering family {ci → c}, the induced
augmented cosimplicial object of the form

F (c)→
∏
i

F (ci) ⇒
∏
i,j

F (ci ×c cj)
∏
i,j,k

F (ci ×c cj ×c ck) . . .

is a limit diagram in the ∞-category S of spaces.

When our presheaf is presented by a presheaf of groupoids F : Cop → Gpd, which is the kind
of situation we would be interested in, the sheaf condition is equivalent to saying that:

(1) for any c ∈ C, and any pair x, y ∈ F (c) of objects, the association Hom(x, y) : Cop/c → Set

given by
Aut(x)(d→ c) := HomF (d)(x|d, y|d)

is a sheaf of sets with respect to the induced topology on the overcategory C/c and
(2) given a covering family {ci → c}, objects xi ∈ F (ci) and compatible isomorphisms

φi,j : xi|cj ' xj |ci , there exists a a unique x ∈ F (c) such that xi ' x|ci
In other words, the ∞-categorical sheaf condition encodes the classical idea of descent. Thus,
our claim that

U → Def(U)
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is a sheaf in this sense amounts to saying that isomorphisms of deformations (in fact, of any
schemes) can be defined locally in the Zariski topology, and the deformations can be glued along
identifactions given on open subsets.

Now, we’ve seen that if U is affine, then any deformation is isomorphic to the trivial one
U ×k k[ε]. Thus, in this case the space Def(U) is connected and so we have an equivalence

Def(U) ' B AutU (U ×k k[ε]) ' BHomOU (Ω1
U/k,OU ).

In fact, the right hand side defines a presheaf of spaces (which we can identify levelwise with the
full subgroupoid Deftriv on the trivial deformation) of which Def is a sheafication. This implies
the following.

Proposition 8.2. Let Ui ⊆ X be an affine cover of X. Then, the groupoid Def(X) of first-order
deformations of X is equivalent to the totalization of the cosimplicial space∏

i

BHom(Ω1
Ui/k

,OUi) ⇒
∏
i,j

BHom(Ω1
Ui,j/k

,OUi,j )
∏
i,j

BHom(Ω1
Ui,j,k/k

,OUi,j,k) . . . ,

where Ui,j := Ui ×X Uj, Ui,j,k := Ui ×X Uj ×X Uk and so on.

Note that the cosimplicial object extends infinitely to the right, and it contains information
about what happens on quadruple and further intersections.

Remark 8.3. Since the spaces in question are 1-truncated, it is enough to consider the limit
taken over the finite subdiagram depicted above; this will, however, not be important for what
we do.

If X ' lim←−X
• is a limit of a cosimplicial diagram of spaces (for simplicity, let’s assume

connected and with abelian fundamental group, so that the homotopy groups are defined without
a choice of a basepoint), then there is a spectral sequence

HtπsX• → πs−t,

where on the right hand side we have the cohomology of the cochain complex associated to the
cosimplicial abelian group πs. In the case at hand, this leads to the following.

Theorem 8.4. Let X be a smooth scheme over X. Then, we have an isomorphism

π0 Def(X) ' H1(X, (Ω1
X/k)∨)

between isomorphism classes of deformations of X to k[ε] and the cohomology of the tangent
sheaf (Ω1

X/k)∨ := Hom(Ω1
X/k,OX).

Proof. The cosimplicial space appearing in Proposition 8.2 has homotopy groups concentrated
in single degree, so that the totalization spectral sequence collapses and induces an isomorphism
and isomorpism between π1−s (for s = 0, 1) and the s-th cohomology of the complex∏

i

Hom(Ω1
Ui/k

,OUi)→
∏
i,j

Hom(Ω1
Ui,j/k

,OUi,j )→
∏
i,j

Hom(Ω1
Ui,j,k/k

,OUi,j,k)→ . . . .

Rewriting the above in terms of the tangent sheaf, we get∏
i

(Ω1
X)∨(Ui)→

∏
i,j

(Ω1
X)∨(Ui,j)→

∏
i,j,k

(Ω1
X)∨(Ui,j,k)→ . . .

which computes the claimed cohomology group through Čech cohomology. �

We would like to apply similar ideas to the problem of deforming a formal group. However,
this is a slightly different situation, as any formal group locally looks like the formal affine line;
it is the group structure that makes things interesting. Thus, deforming the formal group is
really about deforming the multiplication, rather than the underlying formal scheme.
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To reduce to the case of deforming a (formal) scheme, we take a clue from homotopy theory.
Namely, if we have an (ordinary) group G, then we can form the classifying space BG, which
can be defined as the colimit of the nerve

. . . G×G G⇒ pt

taken in the∞-category of spaces. The space BG is canonically pointed, and one can show that
the association

G 7→ BG

provides a fully faithful emnbedding from the category of groups into the∞-category of pointed,
spaces. The image of this embedding is the full subcategory spanned by those spaces which are
both connected and 1-truncated.

Remark 8.5. Note that we can treat G as a groupoid with one distinguished object, then BG
is just the 1-truncated space corresponding to this groupoid under the equivalence we discussed
above.

This construction makes sense in families, and so it allows us to replace a group object in a
category of sheaves by an appropriate sheaf of spaces.

Definition 8.6. Let G→ Spec(R) be a formal group, corresponding to a functor

G : CRingR → Ab.

The classifying stack BG : CRingR → S is sheaf of spaces in the flat topology associated to
the presheaf

A ∈ CRingR 7→ BG(A) ∈ S

Remark 8.7. The above definition makes sense for any group object in sheaves, not necessarily
a formal group. In an interesting exercise through definitions, one can show that BG is the
sheaf which associates to any R-algebra A the groupoid of G-torsors, locally trivial in the flat
topology.

Note that BG is an object more general then the ones we have considered from before; it is a
sheaf, but a sheaf of spaces rather than sets. In the abstract approach we have taken to points,
quasi-coherent sheaves, global sections, these definitions make perfect sense in this context.

Notation 8.8. It is common to call a sheaf of spaces on affine schemes (depending on the
author, perhaps satisfying some technical conditions) a stack. We will largely use the two
words interchangeably.

For example, it follows Remark 8.7 that the category of elements of BG is equivalent to the
category of R-algebras equipped with a choice of a G-torsor. Note that this is still an ordinary
1-category; this is because BG is not too far from a (formal) scheme. Namely, the canonical
basepoints of BG provide a map of sheaves

Spec(R)→ BG

and this map is a surjection (ie. a π0-epimorphism) and so can be thought of as a generalized
covering. Thus, we would expect that calG can be obtained from Spec(R) by gluing along
intersections; this is indeed the case. We have canonical equivalences

Spec(R)×BG . . .×BG Spec(R) ' G×(n−1),

where on the right hand side the fibre product has n factors. This has the following consequence.

Corollary 8.9. The classifying stack BG of a formal group has a covering by Spec(R) such
that all of the iterated intersections are formal affine schemes.
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The above should be compared with Theorem 2.15, where we’ve seen that a sheaf associated
to a quasi-compact, semi-separated scheme admits a covering from an affine scheme such that
all of the intersections are again affine. In this case of BG, this condition gets relaxed in two
ways:

(1) the interated intersections are affine formal schemes, rather than affine schemes
(2) the two projection maps G ' Spec(R) ×BG Spec(R) → Spec(R) are (formally) smooth

rather than open submersions
From the point of view of sheaves, these are not strong generalizations, which enforces our
intuition that BG is a stack of geometric nature.

Remark 8.10. In literature, stacks admitting a covering satisfying some variant of the two
conditions above are called algebraic. We will not be interested in such stacks beyond a couple
examples of immediate interest, so we will not dig further into appropriate definitions.

To set up an appropriate deformation problem in this case, prove that it’s a sheaf, and use
the above covering of the classifying stack to compute it would take us too far afield, so let us
focus on one specific case where G ' Spf(R[[x]]) is a formal group coming from a formal group
law F ∈ R[[x, y]]. Corresponding to the above iterated intersections of BG is the cosimplicial
topological ring

R⇒ R[[x]] R[[x, y]] . . . ,

where the maps are induced by multiplication of G (this is the diagram of global sections of the
corresponding simplicial formal scheme). Given an R-module I, we can tensor this diagram with
I (and complete) to get a diagram of the form

I ⇒ I[[x]] I[[x, y]] . . . .

The i-th cohomology of the corresponding chain complex is denoted by Hi(G, I), it is a form of
group cohomology appropriate to group schemes.

Remark 8.11. Note that the notationHi(G, I) is potentially misleading, this is the cohomology
of G as a group and not as a formal scheme. This really is the cohomology of the classifying
stack, similarly to how group cohomology in the classical case can be defined as the cohomology
of the classifying space.

Theorem 8.12. [Lubin-Tate, Illusie] Let G0 → Spec(R) be a formal group. Then, isomorphism
classes of deformations to G0 to a group object over Spec(R⊕I) are in one-to-one correspondence
with elements of

H2(G0,LieG0
⊗ I),

where LieG0 is the dual of the sheaf of invariant differentials. The isomorphisms of the trivial
deformation are given by

H1(G0,LieG0
⊗ I)

Proof. This is somewhat involved, but see [9]. �

Note that when G0 ' Spf(R[[x]]) comes from a formal group law, the Lie algebra is trivial so
that the above cohomology can be identified with those with coefficients in I, which we defined
using an explicit cochain complex. This is the only case we will be interested in, but it is
instructive to see the result in full generality.

Warning 8.13. Any deformation of a formal group in the above sense is necessarily locally
isomorphic to the formal affine line. However, it need not be commutative, which is why we say
"a group object", rather than a formal group, which are implicitly commutative.
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We will not give a detailed proof of the above, but let us describe how this correspondence
works when G0 comes from a formal group law. In this case, the Lie algebra is trivial, so that
we can instead use cohomology with coefficients in I.

Since G0 is isomorphic to the formal affine line, one can show that so is any deformation
G → Spec(R ⊕ I), so that we can choose an isomorphism G ' Spf((R ⊕ I)[[x]]). In these
coordinates, the multiplication of G is determined by a power series

FG ∈ (R⊕ I)[[x, y]]

which modulo I reduces to the multiplication of G0 (this power series is a formal group law,
except it need not be commutative). Because of this constraint, this power series is determined
by its projection onto I which is an element of I[[x, y]]. This turns out to be a cycle in the above
chain complex, and so defines a cohomology class, this is the element of H2(G0, I) classifying
G.

To prove Lazard’s theorem, we need to understand deformations of the additive formal group
Ga → Spec(Z). Let us do this when A = k is a field, this gives the cohomology groups a
structure of a ring. In this case, the relevant cochain complex is given by

k → k[[x]]→ k[[x, y]]→ . . .

and can be identified with the cobar resolution computing Extk[[x]](k, k), the extension groups in
the category of k[[x]]-comodules. Here, k[[x]] is given the comultiplication ∆(x) = x⊗ 1 + 1⊗ x
corresponding to the additive formal group law, and we need to treat it as a coalgebra with
respect to the completed tensor product.

We can apply the linear duality Homk(−, k) = (−)∨ to obtain a chain complex

. . .→ (k[[x, y]])∨ → (k[[x]])∨ → k

which computes the torsion groups Tork[[x]]∨(k, k) over the topological dual of k[[x]]. The latter
can be shown to be isomorphic to the free divided power algebra Γk[y] over k on a single variable
y, the structure of the latter is known and depends only on the characteristic.

Proposition 8.14. If k is of characteristic zero, then we have a canonical isomorphism

Γk[y] ' k[y]

between the divided power algebra and the polynomial algebra. If k is of positive characteristic
p, then

Γk[y] '
⊗
k≥0

k[yk]/(ypk)

is a tensor product of truncated polynomial algebras.

The torsion groups of these algebras are known, allowing us to deduce the following result.

Theorem 8.15. If k is a field of characteristic zero, then H∗(Ga, k) is isomorphic to

ΛQ(α0),

an exterior algebra in a single variable. If k is of characteristic 2, then it’s isomorphic to

k[αk],

a polynomial ring in variables αk for k ≥ 0. If k is of positive, odd characteristic p then it is
isomorphic to

Λk(αk)⊗ k[βk],

a tensor product of an exterior algebra on αk, and a polynomial algebra in βk.
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Remark 8.16. The discrepency between the odd and even characteristic comes from the fact
that the torsion groups over k[x]/xp differ. We can identify the latter ring with the group algebra
of the cyclic group of order p, and the difference witnessed above is the same as that between
H∗(C2,F2) ' F2[α] and H∗(Cp,Fp) ' Λ(α)⊗ Fp[β].

One can be explicit about the cocycles representing the cohomology classes mentioned above.
Namely, we have αk = xp

k

, and βk is the image of the Bockstein homomorphism applied to
αk (which exists because the chain complex computing cohomology with coefficients in Fp is
canonically the quotient of the one computing the Z-cohomology, and so admits a Bockstein
homomorphism).

The above cohomology groups have a cohomological grading, as well as an internal grading
coming from the fact that the additive formal group law is graded, and so everything inherits a
Gm-action. With respect to this grading we have |αk| = (1, 2 · pk), since the variable x was of
degree 2, and |βk] = (2, 2 · pk).

Note, however, that relevant to deformation theory is not the cohomology with coefficients in
k, but rather Lie⊗ k, ie. we need to twist the coefficients. In our case, the Lie algebra of Ĝa is
trivial, because it comes from a formal group law, but this does affect the resulting Gm-action,
so that one can show that there’s an isomorphism

H∗(Ĝa,Lie⊗ k) ' H∗(Ĝa, k)[0,−2],

that is, the internal grading gets shifted down by two. Thus, for example, the images of the
classes αk and βk under this isomorphism are in degrees (1, 2 ·pk−2) and similarly (2, 2 ·pk−2).

Remark 8.17. The above grading might appear counterintuitive first, but it is exactly the one
compatible with our gradings on the Lazard ring and the ring classifying strict power series.

For example, if k is of positive characteristic, then αk is represented by the cycle d(x) = xp
k

which observes that φ(x) = x+ εd(x) defines an automorphism of the trivial deformation of the
additive formal group to k[ε] ' k ⊕ k. This is homogeneous of degree 2 · pk − 2, because the
element of Z[b1, b2, . . .] classifying the coefficient of xp

k

is of that degree.

Let us get back to the proof of Lazard’s theorem. We’ve reduced it to the symmetric 2-cocycle
lemma which states that the map (I/I2)2n → (J/J2)2n ' Z of Lemma 6.12 is injective, with
cokernel either trivial or isomorphic to Z/p, which happens exactly when n+ 1 = pk is a prime
power.

Mapping into a fixed abelian group A, Lemma 7.4 tells us that we can identify it with a map
between the set of invertible power series and formal group laws over the graded ring Z⊕A[2n].
As a consequence of Lemma 7.6 and Lemma 7.9, the kernel and cokernel of this map can be
identified in terms of deformations of the additive formal group, which we described in Theorem
8.12. As a combination of all of these, we deduce that there’s an exact sequence

0→ H1(Ĝa, A)2n+2 → A→ Hom((I/I2)2n, A)→ H2(Ĝa, A)2n+2,

where the subscripts mean that we reduce to homogeneous elements of a given degree, and we’ve
taken the degree shift mentioned above into account.

Remark 8.18. Notice that the map from H1 is injective, but the map into H2 is not necessarily
surjective. This is because the latter classifies all (not necessarily commutative) deformations of
Ĝa, but only the commutative ones (ie. formal groups) are classified by a map from a Lazard
ring.

Note that here n > 0, and since we computed the additive group has no cohomology over
Q in positive internal degree, this calculation recovers that (I/I)2n → (J/J2)2n is a rational
isomorphism.

Let us now describe the kernel and cokernel in the case of A = Fp. In this case, the possible
classes in H1 are given by αk of internal degree 2pk − 2. In the case of H2, the existing classes
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are βk (or α2
k at p = 2) of internal degree 2pk and the classes αiαj for i 6= j. One can show the

latter cannot be in the image because they correspond to a non-symmetric multiplication.
We deduce that when n+1 is not a power of a prime, then ψ : Hom(Z,Fp)→ Hom((I/I)2

2n,Fp)
is an isomorphism. If the map I/I2

2n → Z has a non-trivial cokernel, the map from that cokernel
would give a map Z → Fp which goes to zero under ψ, as any finite abelian group admits a
non-zero map to one of the Fp. Similarly, since I/I2 → Z is surjective, it is necessarily split, and
if it is not an isomorphism then we could produce a map (I/I)2 → Fp for some p which does
not factor through Z.

If n+ 1 = pk is a power of a prime, then we deduce that we have an exact sequence

0→ Fp → Hom(Z,Fp)→ Hom((I/I)2
2n,Fp)→ Fp → 0

as well as
0→ Hom(Z,Fq)→ Hom((I/I)2

2n,Fq)→ 0

for any other prime q 6= p. The second set of sequences tell us that (I/I2)2n → Z is p-locally an
isomorphism; that is, that its kernel and cokernel are finite p-groups.

The first exact sequence tells us that if C is the cokernel, then Hom(C,Fp) ' Fp, so that it is
a finite cyclic p-group. If we had, by contradiction, C ' Z/pl for l > 1, then we would have

H1(Ĝa,Z/p2)2pk+2 ' Hom(C,Z/p2) ' Z/p2,

but one can show this is not the case: the class αk ∈ H1(Ĝa,Z/p)2pk+2 does not lift to a class
in Z/p2, because it is acted on non-trivially by the Bockstein homomorphism, which takes it to
βk. This shows that C ' Fp, as claimed.

To see that there is no kernel, observe that if we write (I/I2)2n ' Z⊕K using classification of
finitely generated abelian groups, the second sumand will be necessarily exactly the kernel as the
first one must map injectively into Z. Thus, if K was to be non-zero, there would be a non-trivial
map K → Fp which is impossible, because the first sequence gives Hom((I/I2)2n,Fp) ' Fp and
Hom((I/I2)2n,Fp) ' Fp ⊕ Hom(K,Fp). This ends the proof of the symmetric cocycle lemma,
and hence of Lazard’s theorem.

9. Complex bordism

Recall that we have introduced a notion of a complex-orientable cohomology theory E, which
is one such that the map E2(CP∞) → E2(S2) is surjective, as well as the following notion of
an orientation.

Definition 9.1. A complex orientation is class t ∈ Ẽ2(CP∞) which restricts to the canonical
generator of Ẽ2(S2) ' E0.

We’ve seen that any choice of a complex orientation induces an isomorphism E∗(CP∞) '
E∗(pt)[[t]] as topological rings, so that Spf(E∗(CP∞)) is a formal group, with multiplication
induced by that of CP∞.

Remark 9.2. Note that unless E∗(pt) is concentrated in even degrees, the underlying ungraded
ring of E∗ or E∗[[t]] need not be commutative. One way out of this is notice that we have
an isomorphism E∗(CP∞)ev ' (E∗[[t]])ev ' (E∗)ev[[t]], so that the even degree cohomology of
CP∞ defines a formal group over the ring of even coefficients.

Another solution is to notice that we can make sense of Spf(E∗[[t]]) as an appropriate "graded
formal scheme", in a geometry of sheaves on graded rings analogous to what we have done in the
ungraded case. In what follows, we will largely ignore this issue; the theory is plenty interesting
for even rings.



FINITE HEIGHT CHROMATIC HOMOTOPY THEORY HARVARD MATH 252Y, SPRING 2021 40

If a complex-orientation exists, a choice of a complex orientation is the same as a choice of a
coordinate for the formal group Spf(E∗(CP∞)) compatible with its Gm-action. Note that the
needed cohomology class is the same as a homotopy class of maps of spectra

Σ∞−2CP∞ → E.

Since E is assumed to have a structure of a homotopy ring spectrum (that is, a commutative
monoid in hSp, the stable homotopy category), it is natural to ask if the choice of complex
orientations can be corepresented in this context. This is indeed the case, the description of this
ring spectrum, called the complex bordism and denoted by MU, will be the subject of today’s
lecture.

Remark 9.3. Note that since a complex orientation is a choice of a homotopy class of maps,
MU will also have its universal property in the stable homotopy category, rather than in the
more structured ∞-category of spectra. There are many interesting things one can say in the
latter context too, but for now we will keep our sights fixed on hSp.

Note that complex orientations are represented by (certain) maps from Σ∞−2CP∞, which is
a spectrum and so essentially a linear object. We would like to use it to generate a ring spectrum,
and so it is helpful to analyze how this situation works out in classical algebra.

Suppose that V is a vector space over a field κ. Then, the free commutative k-algebra
generated by V can be described explicitly as

Symk(V ) :=
⊕
n≥0

Symn
k (V ),

where Symn
k (V ) := (V ⊗n)Σn is the vector space of coinvariants for the action of the symmetric

group on the iterated tensor product. However, if V is pointed; that is, has a preferred map
u : k → V , then we can also consider the free commutative k-algebra subject to the relation that
the chosen map becomes the unit, and this is instead given by the filtered colimit

S̃ymk(V )) := lim−→
n≥0

Symn
k (V ).

Here, the connecting maps are induced by the maps V ⊗n−1 → V ⊗n obtained by applying u in
one of the coordinates, which all become the same map after taking coinvariants.

In what follows, we will freely use the identification CP∞ ' BU(1). We’ve seen in the first
lecture, that given a complex orientation t, declaring that cE1 (ζ1) := t, where ζ1 = O(1) is the
universal line bundle over CP∞, uniquely determines a theory of Chern classes in E-cohomology
satisfying Whitney sum and naturality, and moreover that in this context we get

E∗(BU(n)) ' E∗[[c1, c2, . . . , cn]],

the Chern classes in question being that of the tautological bundle ζn over BU(n). In fact, the
precise result was that E∗(BU(n)) gets identified with the Σn-invariants in

E∗((CP∞)×n) ' E∗(CP∞)⊗̂n

In this sense, any complex-orientable cohomology theory E "thinks" that BU(n) is a suitable
symmetric power "Symn(CP∞)". This, informally, is why our universal complex oriented ring
spectrum will be constructed from BU(n), which play the role of the symmetric tensor products
of CP∞.

Remark 9.4. The above description is only informal. In the∞-category S of spaces, it is possible
to construct a space of homotopy coinvariants, often denoted by (CP∞)×nhΣn, by the process of
taking a suitable ∞-categorical colimit. There is a map (CP∞)×nhΣn → BU(n) obtained by
symmetrizing the multiplication map (CP∞)×n → BU(n), but it is not an equivalence, even on
E-cohomology when E is complex oriented.
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The issue at hand is that the cohomology of homotopy coinvariants will necessarily involve
the cohomology of the symmetric group, and this is not trivial in higher degrees unless E is
rational.

One way in which we need to adjust the picture is that a complex orientation is not a map
out of Σ∞+ CP∞ (the suspension spectrum of the space CP∞), but rather out of Σ∞−2CP∞.
Moreover, this is not an arbitrary map, but rather one such that the composite

S0 → Σ∞−2CP∞ → E,

where the first map is induced by the inclusion S2 ↪→ CP∞, coincides with the unit of the
ring spectrum E. Thus, our construction will be more similar to the construction of the "re-
duced" symmetric algebra on a pointed vector space, with the role of the vector space played by
Σ∞−2CP∞. To make sense of this, let us give a different description of the latter, in the terms
of the following classical geometric construction.

Definition 9.5. Let V be a vector bundle over a CW -complex X with a chosen Riemannian
metric g. The Thom space ThX(V ) is the quotient

D(V )/S(V )

of the disk bundle of vectors of at most unit length by the sphere bundle of unit vectors.

Observe that the Thom space is canonically a pointed space, with a canonical basepoint
corresponding to the equivalence class of the sphere bundle. It also receives a canonical map
from X, which embeds as a zero section.

Example 9.6. Let V = X × Rn with the trivial metric. Then the associated Thom space is

(X × Dn)/(X × ∂Dn),

which is homeomorphic ΣnX+ ' X+ ∧ Sn, the n-th reduced suspension of X+.

Note that since any vector bundle is locally of the above form, a Thom space can be thought
of as as a twisted form of suspension.

Remark 9.7. This classical constructions has an∞-categorical interpretation. Namely, a vector
bundle V over a CW -complex X is classified by a functor of ∞-categories

Sing(X)→ Vect'R

from the space underlying X into the ∞-category underlying the topological groupoid of finite-
dimensional real vector space and linear isomorphisms. The latter admits a functor into the
∞-category of pointed spaces, given by the one-point-compactification, and the underlying ho-
motopy type Sing(ThX(V )) of the Thom space is the colimit of the composite

Sing(X)→ Vect'R → S∗.

That is, the Thom space is a construction that makes sense at the level of spaces (ie. in the
∞-category S) rather than just for topological spaces. We’re only interested in the former, so
that we will blur the distinction between X and Sing(X) in what follows, but it is good to keep
the above geometric picture in mind.

Note that since ThX(V ) is canonically pointed, we have a reduced suspension spectrum
Σ∞ThX(V ) called the Thom spectrum. Since

Σ∞ThX(V ⊕ Rn) ' Σ∞ΣnThX(V ) ' ΣnΣ∞ThX(V )

by Example 9.6, we see that the operation of adding a trivial vector bundle is invertible at
the level of Thom spectra. Thus, Thom spectra make more sense generally for virtual vector
bundles; that is, formal expressions of the form V − Rn, where we define

Σ∞ThX(V − Rn) := Σ−nΣ∞ThX(V ).
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Note that this is a somewhat abusive notation, the left hand side is not necessarily a suspension
spectrum of any space (although it is a finite desuspension of one).

Lemma 9.8. There’s an equivalence

ThBU(n)(ζn) ' BU(n)/BU(n− 1)

between the Thom space of the tautological bundle over BU(n) and the homotopy cofibre of
BU(n− 1) ↪→ BU(n).

Proof. The canonical map BU(n− 1)→ BU(n) has homotopy fibre equivalent to

U(n)/U(n− 1) ' S2n−1,

where on the left hand side we have the group quotient. Thus, it is classified by a spherical
bundle which one can check is the same as the unit spherical bundle of ζn. The result then
follows. �

In particular, this implies that Σ∞−2CP∞ can be identified with the Thom spectrum of the
virtual vector bundle ζ1 − R2. This generalizes to higher n.

Notation 9.9. We will write write MU(n) for the Thom spectrum of the virtual vector bundle
ζn − R2n over BU(n), so that MU(n) := Σ∞ThBU(n)(ζn − R2n).

Remark 9.10. Note that it follows from the above lemma that we have a canonical equivalence

MU(n) ' Σ∞−2nBU(n)/BU(n− 1).

Since for any complex-orientable E the map E∗(BU(n)) → E∗(BU(n − 1)) is surjective, with
kernel the ideal generated by cn, it follows that we have a canonical identification with the shifted
ideal

E∗(MU(n)) := (cnE
∗[[c1, . . . , cn]])[−2n],

where the grading shift makes it so that cn is in degree zero.

We have an isomorphism of vector bundles ζn|BU(n−1) ' ζn−1 ⊕R2, and this means that the
virtual vector bundle ζn − R2n restricts on BU(n − 1) to ζn − R2(n−1). Thus, the inclusions
BU(n− 1)→ BU(n) induce maps of Thom spectra

MU(n− 1)→ MU(n).

Informally, these are analogous to the maps Symn−1
k (V ) ↪→ Symn

k (V ) in the case of a pointed
vector space, the role of the vector space played by the spectrum MU(1) ' Σ∞−2CP∞.

Remark 9.11. Observe that the above definitions make sense for n = 0, and MU(0) ' S0, the
Thom space of the trivial line bundle over a point. Moreover, the induced map

S0 ' MU(0)→ MU(1) ' Σ∞−2CP∞

coincides with the one induced by the inclusions S2 ↪→ CP∞. Thus, a complex orientation on
E is the same as a map MU(1)→ E of spectra which restricts to the unit on MU(0).

Definition 9.12. The complex bordism spectrum MU is the colimit

MU := lim−→MU(n)

The spectrum MU admits a structure of a homotopy ring spectrum. The unit is given by the
inclusion S0 ' MU(0) ↪→ MU. The multiplication comes from the maps

+n,m : BU(n)×BU(m)→ BU(n+m)

which classify the direct sum of line bundles. The pullback along the above map of the virtual
line bundle ζn+m − R2(n+m) is the sum (ζn − R2n)⊕ (ζm − R2m), and since Thom spectra take
external direct sums of vector bundles to smash products, we get induced maps

MU(n) ∧MU(m)→ MU(n+m).
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The associativity and commutativity follows from the corresponding properties of +n,m, which
are inherited from the corresponding properties of the direct sum of vector bundles.

Remark 9.13. In fact, the situation is better than the above, as the different multiplications
BU(n)×BU(m)→ BU(n+m) are not just homotopy commutative or associative, but in fact
have these properties up to all coherent homotopies. This endows MU with a canonical structure
of an E∞-ring spectrum.

It is often useful to know that such a structure exists, as that allows one to construct a stable,
symmetric monoidal∞-category of MU-modules, but the relationship of this E∞-structure with
formal groups is somewhat complicated.

The following is the main result of this lecture.

Theorem 9.14. The homotopy ring spectrum MU is canonically oriented through the inclusion
t : MU(1)→ MU. Moreover, for any other homotopy ring spectrum E, the association

(f : MU→ E) 7→ f∗(t)

provides a bijection between maps MU→ E of homotopy ring spectra and complex orientations
of E.

Proof. We’ve seen that a complex orientation is the same as a map MU(1)→ E which restricts
to the unit on S0 ' MU(0). Thus, the claim is that such a map canonically extends to a map
MU→ E. Observe that we have calculated above in Remark 9.10 that

E∗(MU(n)) := (cnE
∗[[c1, . . . , cn]])[−2n],

which is canonically isomorphic to E∗(BU(n)) by multiplication by cn (this is called the Thom
isomorphims). Thus, at the level of cohomology, the maps E∗(MU(n))→ E∗(MU(n−1)) can be
identified with the surjective maps E∗(BU(n))→ E∗(BU(n−1)). Thus, the relevant lim←−

1-terms
in the Milnor sequence vanish and

E∗(MU) ' lim←−E
∗(MU(n)).

Thus, to define a map out of MU we just need to define a map out of each MU(n). To do so,
we let MU(n)→ E be the map corresponding to the class of cn in the isomorphism above. Note
that this gives the right map on MU(1) since c1 is exactly the complex orientation.

We first check that these choices are multiplicative; that is, that for each n,m ≥ 0 the resulting
diagram

MU(n)⊗MU(m) MU(n+m)

E ⊗ E E

is homotopy commutative. After tracing through the relevant isomorphisms, this corresponds
to the equality cn+m(ζ ⊕ ξ) = cn(ζ)cm(ξ) whenever ζ, ξ are vector bundles of rank n,m. This is
implied by the Whitney sum axiom.

We claim that this implies that these fn are compatible with each other; that is, that fn+1

restricts to fn along the inclusion, and so define the needed homotopy ring spectrum homomor-
phism MU → E. This follows from multiplicativity, since the inclusion can be identified with
the composite MU(n) ' MU(n)⊗MU(0)→ MU(n)⊗MU(1)→ MU(n+ 1). �

Note that the above result is interesting, because it talks about corepresentability in homotopy
ring spectra. The latter is not well-behaved as a category and so the existence of a corepresenting
object for even a simple functor is usually not clear.

On the other hand, MU was built to satisfy this universal property; we’ve seen that a choice
of a complex orientation gives a unique theory of Chern classes, and it is these Chern classes
are that classfied by a homotopy class of maps out of MU, essentially by definition. There’s a
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similar story for so-called real orientations, where CP∞ is replaced by RP∞, and Chern classes
by Stiefel-Whitney classes.

The central role played by MU in homotopy theory is a consequence of the following result of
Quillen.

Theorem 9.15 (Quillen). The formal group law associated to the canonical complex orientation
of MU is the canonical one. That is, the induced map L → MU∗ from the Lazard ring is an
isomorphism.

The above, which is not at all an immediate consequence of the construction, is the founding
result of homotopy theory. In the next lecture, we will talk about Quillen’s theorem, explore its
consequences, and deepen the relationship between MU and the theory of formal groups.

10. Adams spectral sequences

There is a certain analogy between stable ∞-categories and abelian categories. The role of
short exact sequences

0→ a→ b→ c→ 0

in an abelian category is played in the stable context by cofibre sequences

d→ e→ f.

However, one extremely important difference is that in the stable context, such a sequence can
always be continued infinitely in both directions to a Puppe sequence

. . .→ Σ−1e→ Σ−1f → d→ e→ f → Σd→ . . . ,

where every three terms are a cofibre. In this sense, a cofibre sequence in a stable context has
neither a beginning or and end, unlike short exact sequences. This difference is related to the
fact that in a stable ∞-category, a triangle is fibre if and only if it is cofibre; while in an abelian
category an exact in the middle

a→ b→ c

is cofibre (ie. a cokernel) if and only if the second arrow is surjective, and fibre (ie. a kernel) if
and only if the first arrow is injective. These two conditions are independent from each other.

To summarize this discussion, an abelian category has two special classes of morphisms,
namely monomorphisms and epimorphisms. In general, a stable ∞-category does not have any
useful generalizations of these. In this lecture, we will explore what happens if we equip a stable
∞-category with some choice of "epimorphisms".

Remark 10.1. There is one notion of an epimorphism which makes sense in any ∞-category
with finite limits, namely that of an effective epimorphism. We say c → d is an effective epi if
the Čech diagram

. . . c×d c⇒ c→ d,

which is an augmented simplicial object, is a colimit. To underscore the point made above, in
an abelian category effective epimorphisms are exactly the categorical epimorphisms; while in a
stable ∞-category any morphism is effective epi.

One way to equip a stable ∞-category C with some notion of an epimorphism is to provide a
functor H : C → A into an abelian category. The ones that arise in practice are usually of the
form of homology theories.

Definition 10.2. Let R be a spectrum. We say a map X → Y of spectra is an R∗-monic if
R∗X → R∗Y is a monomorphism of graded abelian groups.
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One usefulness of the notions of an epimorphism and monomorphism is that they allow one to
define two classes of objects, namely projectives and injectives. When there’s enough of these,
any object can be resolved using either projectives and injectives, and this leads to spectral
sequences. An observation due to Miller is that a similar procedure works in the stable context.

Definition 10.3. We say a spectrum I is R∗-injective if for any R∗-monic map X → Y , the
induced map [Y, I] → [X, I] is surjective. In other words, I is R∗-injective if it has the right
lifting property with respect to the R∗-monic maps.

Lemma 10.4. The∞-category of spectra has enough R∗-injectives; that is, any spectrum admits
an R∗-monic map into an R∗-injective.

Proof. The shifts (Q/Z)[n] for n ∈ Z are injective in the category of graded abelian groups and
they generate all the injectives; any graded abelian group embeds into a suitable product of
these. Consider the functor

X → HomgrAb(R∗X, (Q/Z)[n]),

injectiveness of the target guarantees that this is a cohomology theory on spectra and so there
exists a unique up to equivalence spectrum BQR such that

HomgrAb(R∗X, (Q/Z)[n]) ' [X,ΣnBCR].

Thus, BCR and its shifts are R∗-injective, and so all of their products. We claim any spectrum
admits na R∗-monic map into one of these.

By naturality, the above isomorphism is induced by some map

R∗(
∏

BCR)→
∏

Q/Z,

where we’ve suspended the shifts from the notation. Choose a map X →
∏

BCR such that the
corresponding map R∗X →

∏
Q/Z is an injection. Since the latter is given by the composite

R∗X → R∗(
∏

BCR)→
∏

Q/Z,

we deduce that the first arrow is also injective. �

Remark 10.5. The spectrum BCR is a variant on the Brown-Comenatz dual; it is the usual
Brown-Comenatz dual of the sphere if R = S0. Beware that the canonical map R∗(BCR)→ Q/Z
is virtually never an isomorphism.

Construction 10.6 (Miller’s Adams spectral sequence). Let X = X0 be a spectrum, by the
above lemma we can choose an R∗-monic map X → I0 into an R∗-injective. Proceeding induc-
tively by setting Xi+1 = cofib(Xi → Ii), we construct an R∗-Adams resolution of the form

X0 I0 I1 I2 . . .

X1 X2 . . .

Remark 10.7. The fundamental property of the Adams resolution is that it is R∗-exact in the
sense that

0→ R∗X → R∗I
0 → R∗I1 → . . .

is a long exact sequence of graded abelian groups.

Applying [Y,−] for any other spectrum Y to the Adams resolution of X leads to a spectral
sequence, the R∗-Adams spectral sequence. One can show using an argument similar to
the abelian case that any two R∗-Adams resolutions are related by an appropriate notion of
homotopy and so all such spectral sequences are isomorphic from the second page on. The
resulting spectral sequence will converge to the associated graded of [Y,X] equipped with the
following filtration.
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Definition 10.8. We say a map Y → X is of Adams filtration ≥ n if it can be written as a
composite of n maps all of which are zero in R∗-homology.

Remark 10.9. Note that a map X → Y is of positive Adams filtration if and only if it is zero
on R∗-homology, if and only if the map Y → cofib(X → Y ) is R∗-monic. Thus, the filtration is
also canonically attached to the choice of our notion of monomorphism.

By inspecting the relevant definitions, the E2-page of the spectral sequence is given by the
cohomology of the chain complex

[Y, I0]→ [Y, I1]→ [Y, Y 2]→ . . .

In the abelian context, if I were actual injectives, this would compute the Ext-groups. A similar
identification is available in the stable context. For simplicitly, we will restrict to the case when
R is a commutative homotopy ring spectrum, such as MU or HFp.

In this case, applying homotopy groups to the cosimplicial object

R⇒ R⊗R R⊗R⊗R . . .

in the stable homotopy category we obtain a cosimplicial commutative graded ring

R⇒ R∗R R∗(R⊗R) . . . .

This cosimplicial ring can in general be hard to identify, because R-homology need not interact
in an easy way with tensor products. An exception happens when we’re in the flat situation.

Definition 10.10. We say a commutative homotopy ring spectrum R is flat if R∗R is flat as
an R∗-algebra.

Remark 10.11. Note that R∗R has two different R∗-algebra structures, induced by the two
different maps R → R ⊗ R. These two maps are related by the twist in the target and hence
isomorphic, and so R∗R is flat with respect to one of these if and only if it is flat from the other
one.

If R is flat, then a standard argument shows that R∗(R ⊗ X) ' R∗R ⊗R∗ R∗X for any
spectrum X, since both sides define homology theories and agree on the sphere. In this case the
above cosimplicial ring can be rewritten as

R∗ ⇒ R∗R R∗R⊗R∗ R∗R . . . ;

in particular, the whole cosimplicial ring is determined by what happens in degrees 0, 1, and
everything else is an appropriate tensor product. To be more precise, a more detailed analysis
shows that the above is a cogroupoid object in graded rings in the sense that mapping into any
other ring yields a nerve of a groupoid.

Any spectrum X yields a cosimplicial module

R∗X ⇒ R∗(R⊗X) . . . .

which is quasi-coherent in the sense that for any arrow [n] → [m] in the simplex category, the
map π∗(R⊗[n] ⊗X)→ π∗(R

⊗[m] ⊗X) induces an isomorphism

π∗(R
⊗[m])⊗π∗(R⊗[n]) π∗(R

⊗[n] ⊗X) ' π∗(R⊗[m] ⊗X).

This is analogous to the way we defined quasi-coherent sheaves in the context of étale sheaves
in Definition 4.2. Using the cogroupoid perspective given above, the above datum can more
conveniently packaged in the following form.

Definition 10.12. Suppose that R is flat. An R∗R-comodule M is an R∗-module together
with a coassociative, counital map ∆ : M → R∗R⊗R∗ M .
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The discussion preceding the above definition tells us that there’s an equivalence

ComodR∗R ' lim←−Modπ∗(R⊗[n]);

the left hand side is the category of comodules, while the right hand side the category of quasi-
coherent modules over a cosimplicial ring, which can be written as an appropriate limit of module
categories and extension of scalars functors.

Remark 10.13. In the case of a spectrum X, we can be very explicit where the comodule
structure comes from. Namely, we have two different maps R ⊗X → R ⊗ R ⊗X; one of these
will induce the Künneth isomorphism R∗(R ⊗X) ' R∗R ⊗R∗ R∗X, the other will become the
comodule structure map ∆.

By the preceding discussion, if R is flat, then the functor R∗(−), a priori only valued in graded
abelian groups, has a canonical lift

R∗ : Sp→ ComodR∗R

to a functor into the category of comodules. The following set of conditions will tell us that this
functor retains enough information to give a description of the Adams spectral sequence.

Definition 10.14. Let R be a commutative homotopy ring spectrum. We say R isAdams-type
if it can be written R ' lim−→Rα as a filtered colimit of finite spectra Rα such that

(1) R∗Rα is finitely generated, projective as an R∗-module and
(2) the universal coefficient map R∗Rα → HomR∗(R∗Rα, R∗) is an isomorphism.

Remark 10.15. The second condition is almost always implied by the first one; for example,
whenever R admits a structure of an E1-ring spectrum.

Example 10.16. Let R be a commutative ring spectrum such that R∗ is a field. Then R is
Adams, and any way of writing R as a filtered diagram of finite spectra will do.

Example 10.17. The result of Quillen, which we will sketch later, implies that MU∗ is concen-
trated in even degrees (being isomorphic to the Lazard ring). Let us show this implies that MU
is Adams.

We have defined MU as a filtered colimit of MU(n) ' Σ∞−2nBU(n)/BU(n−1), each of which
has integral homology concentrated only in even degrees, finite in each degree. Thus, MU can be
written as a filtered colimit of finite spectra with only even-dimensional cells. The two needed
properties follow for these through the use of Atiyah-Hirzrebruch spectral sequences, which will
all collapse as everything is of even total degree.

Theorem 10.18 (Devinatz). Let R be an Adams-type commutative homotopy ring spectrum.
Then, the E2-page of the R∗-based Adams spectral sequence converging to the associated graded
of [Y,X] is given by Exts,tR∗R(R∗X,R∗Y ), the extension groups in the category of comodules.

Proof. By the fundamental property of the Adams resolution, see Remark 10.7, we have that

0→ R∗X → R∗I
0 → R∗I

1 → . . .

is a long exact sequence of R∗R-comodules. Thus, to establish the claim we will show that
(1) for any R∗-injective I, R∗I is injective as a comodule and
(2) [A, I]→ HomR∗R(R∗A,R∗I) is an isomorphism for any spectrum A.

Applying this to A = Y we obtain the needed identification.
Let C be an injective comodule over R∗R (these exist by a result of Grothendieck), using

Browh representability we deduce that we have an R∗-injective IC with the property that

[A, IC ] ' HomR∗R(R∗A,C).

The same argument as in the proof of Lemma 10.4 will show us that any spectrum admits
an R∗-monic map into an injective of the above form; in particular, an arbitrary injective is a
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retract of one of this form. Thus, we only have to check the claim in the case of injectives of the
form IC . The above Brown representability isomorphism is induced by a map

R∗IC → C

of comodules; our claim amounts to saying that this is an isomorphism.
This will require the Adams-type condition. Let us write R ' lim−→Rα as a filtered colimit of

finite spectra as in Definition 10.14. Then,

R∗IC ' lim−→(Rα)∗IC ' lim−→[DRα, IC ] ' lim−→HomR∗R(R∗(DRα), C)

and further using that
R∗(DRα) ' E∗Rα ' HomR∗(R∗Rα, R∗)

is dualizable as an R∗-module and hence as a comodule,

lim−→HomR∗R(R∗(DRα), C) ' lim−→HomR∗R(R∗, R∗Rα ⊗R∗ C) ' HomR∗R(R∗, R∗R⊗R∗ C).

The target in the last Hom-group is the cofree comodule on R∗, so that

HomR∗R(R∗, R∗R⊗R∗ C) ' HomR∗(R∗, C) ' C

as was needed. �

Example 10.19. Let H := HF2 be the Eilenberg-MacLane spectrum at the even prime. A
classical computation of Milnor shows that the dual Steenrod algebra

A∗ := H∗H ' F2[ζ1, ζ2, . . .]

is isomorphic to the polynomial algebra in infinitely many variables of degree |ζn| = 2n−1, with
coproduct ∆(ζn) :=

∑
0≤k≤n ζ

2k

n−k ⊗ ζk, where we write ζ0 := 1 for convenience. The second
page of the H∗-based Adams spectral sequence is given by the Ext-groups in the category of
comodules over A∗.

Since we’re in characteristic 2, the underlying ring of A∗ is commutative in the usual sense,
and so we can give an algebro-geometric interpretation of this coalgebra and its category of
comodules.

Construction 10.20. For every n ≥ 0, the homology of the dual D(Σ∞+ RPn) can be identified
with H∗(RPn) and so the latter acquires a coaction of the dual Steenrod algebra

H∗(RPn)→ A∗ ⊗H∗(RPn)

which is in fact also a map of algebras. Dualizing, we obtain action maps

Spec(A∗)×F2
Spec(H∗(RPn))→ Spec(H∗(RPn))

and by passing to the limit

Spec(A∗)×F2
Spf(H∗(RP∞))→ Spf(H∗(RP∞)).

In terms of the action given above, Milnor shows the following.

Theorem 10.21 (Milnor). The above action identifies Spec(A∗) with the group scheme of
grading-preserving isomorphisms of the formal group Spf(H∗(RP∞)). That is, for any com-
mutative graded F2-algebra R, the set of ring homomorphisms A∗ → R is in natural bijection
with the set of automorphisms of the formal group Spec(R∗)×F2

Spf(H∗(RP∞))→ Spec(R∗).

Remark 10.22. As a formal group, Spf(H∗(RP∞)) is isomorphic to the additive one. In fact,
it is abstractly isomorphic (that is, in a way not compatible with the grading) with the formal
group Spf(H∗(CP∞)) we studied previously, the isomorphism given by the Frobenius map on
H∗(RP∞) whose image is exactly H∗(CP∞).
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Remark 10.23. A similar strategy allows one to identify (HFp)∗HFp at odd primes, although
in this case the underlying ring is not commutative in the usual sense, and so everything needs
to be done internally to "graded geometry" of sheaves on commutative graded rings.

In this case, we have a coaction of the dual Steenrod algebra on the cohomology of the
classifying space

HF∗p(BCp) ' Fp[y]⊗ Λ(x),

where |y| = 2 and |x| = 1. The latter is a free graded Fp-algebra on generators x, y, since the
signs force any odd degree element to square to zero, and so Spf(HF∗p(BCp)) can be thought of
as a "two-dimensional formal group".

The dual action identifies Spec((HFp)∗HFp) as the subgroup of automorphisms of this formal
group; namely the subgroup of those automorphisms which descend to the quotient formal group
Spf(HF∗p(BS1)). Note that the same description is true when p = 2, although in this case all
automorphisms have this property and so there is no further condition.

Let us sketch how these ideas lead to the proof of Quillen’s theorem, which identifies the
coefficient ring of the complex bordism spectrum with the Lazard ring. The key step is to study
the Hurewicz homomorphism

MU∗ → (HZ)∗MU

and to identify it with the canonical map from the Lazard ring to the ring parametrizing strictly
invertible power series; this is the ring homomorphism which we studied extensively in the proof
of Lazard’s theorem. This homomorphism is studied separately at each prime through the use
of the Adams spectral sequence based on HFp.

11. Quillen’s theorem

Let us sketch some of the arguments going into the proof of Quillen’s theorem. The first
step is to identify the relevant homology algebra, which can in fact be done for an arbitrary
complex-orientable homology theory.

Lemma 11.1. Let E be a complex-oriented homology theory, so that the ring E ⊗MU has two
complex orientations tE and tMU induced by the one of E and the canonical one of MU . Then,

E∗MU ' E∗[b1, b2, . . .]

is a polynomial algebra on the unique elements bi such that tMU := tE +
∑
i≥1 bit

i+1
E .

We will not show the above; note that the additive structure is easy to compute using the
Thom isomorphism, but it is the multiplicative one that requires some care. In any case, in the
particular case of integral homology, this yields the following.

Remark 11.2. Note that the above can be rephrased by saying that for any complex-oriented
homology theory E with associated formal group law FE(x, y) ∈ E∗[[x, y]], E∗MU is uniquely
specified by the property that for any other E∗-algebra R, the set of algebra homomorphism
E∗MU → R is bijection with the following pieces of data:

(1) a formal group law F over R (compatible with the grading) and
(2) a strict (that is, preserving the canonical invariant differentials; equivalently, φ(x) =

x mod x2) isomorphism φ : FE → F

Of course, the formal group law F is determined by FE and φ; but this description generalizes
better to other homology theories.

In the particular case of integral homology, we deduce the following.

Corollary 11.3. We have an isomorphism

H∗(MU,Z) ' Z[b1, b2, . . .]
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of algebras and the formal group law coming from the complex orientation of MU is given by

h(h−1(x) + h−1(y)),

where h(y) = y +
∑
i≥1 biy

i and H∗(CP∞,Z) ' Z[[y]] is the isomorphism coming from the
complex orientation of HZ.

This implies that the composite

L→MU∗ → (HZ)∗MU

does coincide with the map of rings used throughout the proof of Lazard’s theorem. Recall
that this composite is injective (both the source and target are torsion-free, and it is a rational
isomorphism). In fact, the second map is also necessarily a rational isomorphism, as the rational
Hurewicz isomorphism

π∗X → H∗(X,Q)

is an isomorphism for any X ∈ Sp (since both sides are homology theories which agree on the
sphere, by Serre’s finiteness). Thus, to prove Quillen’s identification it is enough to check that:

(1) MU∗ is torsion-free
(2) its image in (HZ)∗MU coincides with the image of L

To do so, one employs the Adams spectral sequence based on HFp, one prime at a time. Let us
describe what happens at p = 2, in what follows, we will write H := HF2.

As an input into the Adams spectral sequence, we have to understand H∗MU as an A∗ :=
H∗H-comodule. To identify this coaction, it is convenient to employ the langauge of formal
groups. We’ve seen in Theorem 10.21 that Spec(A∗) can be identified with a group scheme
which associates to any F2-algebra R the set of strict automorphisms of the formal group
Spec(R) ×F2

Spf(H∗(RP∞)) → Spec(R). This can be made explicit; namely, one can show
that any automorphism is necessarily of the form

ψ(x) := x+
∑
i≥1

bix
2i ;

that is, it is a possibly infinite sum of the Frobenius. The correspondence sends a homomorphism
f : A∗ → R of algebras to the automorphism given by

ψf (x) := x+
∑
i≥1

f(ζi)x
2i .

Note that since we’re working with the formal group Spf(H∗(RP∞)) ' Spf(F2[[x]]), where x is
of degree one, we need to have |bi| = 2i− 1 which is exactly the grading on the generators of the
dual Steenrod algebra we’ve seen before.

On the other hand, we’ve seen in Remark 11.2 that the homology H∗MU corepresents the
functor which associates to any R the set of pairs (F, φ), where F is a formal group law over R
and φ : GF → Spf(H∗(CP∞)) is a strict isomorphism of formal groups.

Remark 11.4. One has to be careful here, both algebras can be described in terms of formal
groups, but these are not the same formal group. That is; the dual Steenrod algebra classifies
automorphisms of Spf(H∗(RP∞)), while H∗MU classifies isomorphisms out of Spf(H∗(CP∞)).
Both of these two formal groups happen to be isomorphic to the additive formal group over F2,
but this abstract isomorphism is not relevant to the discussion here; for example, it completely
disregards the grading.

The coaction of A∗ on H∗MU induces an action at the level of affine schemes, given by

ψ · φ := ψ′ ◦ φ,
where ψ′ is the restriction of ψ : Spf(H∗(RP∞))→ Spf(H∗(RP∞)) to the quotient formal group
Spf(H∗(CP∞)). This action is not free; for example, the whole subgroup of automorphisms
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acting trivially on Spf(H∗(CP∞)) necessarily acts trivially. As it turns out, this is the only
obstruction.

Let us write P∗ for the algebra representing automorphisms of Spf(H∗(CP∞)); this is a
subalgebra of the dual Steenrod algebra; in terms of the standard generators, we have P∗ :=
F2[ζ2

i ].

Lemma 11.5. The group scheme Spec(P∗) acts freely on Spec(H∗MU), and the quotient can be
identified with the affine scheme Spec(F2[b2, b4, b5, . . .]), where F2[b2, b4, b5, . . .] ⊆ H∗MU is the
subalgebra on generators which are not of the form bi for i = 2k − 1.

Proof. This is saying that any strictly invertible power series φ(x) ∈ R[[x]] over an F2-algebra R
can be uniquely written in the form φ = ψ ◦ θ, where ψ is a strict automorphism of the additive
formal group law and θ is a power series with vanishing coefficients next to xi

2

. This can be
proven by writing down the equations on the coefficients on ψ and θ and showing by induction
they have unique solutions. �

This discussion shows that as an A∗-comodule, H∗MU is isomorphic to P∗⊗F2
F2[b2, b4, b5, . . .],

with the coaction on the right factor trivial. Thus, we deduce that the E2-page of the Adams
spectral sequence computing π∗MU is isomorphic to

Exts,tA∗(F2,H∗MU) ' Exts,tA∗(F2, P∗)⊗ F2[b2, b4, b5, . . .].

The first factor is cohomology of the group scheme Spec(A∗) with coefficients in the quotient
group Spec(P∗), by an appropriate base-change result it can be identified with cohomology of
the kernel with coefficients in the base field. This kernel can be identified with Spec(Λ(ζi)),
where

Λ(ζ1, ζ2, . . .) := F2[ζ1, ζ2 . . .]/(ζ
2
i )

is the quotient Hopf algebra of the dual Steenrod algebra. Using the formulas of Milnor which
we gave in Example 10.19, we see that ζi are already primitive in this quotient; that is,
∆(ζi) = ζ1 ⊗ 1 + 1⊗ ζ1. Thus, we have that

Λ(ζ1, ζ2, . . .) '
⊗
n≥1

Λ(ζn)

is a tensor product of exterior algebras on ζn, both as a coalgebra and algebra. It follows that its
cohomology (that is, the Ext-groups of the monoidal unit) is a tensor product of cohomologies
of the individual Λ(ζn).

The Hopf algebra Λ(ζn) is self-dual, and so we can compute the Ext-groups in the category
of modules. These are known, and we deduce that

Ext∗,∗Λ(ζn)(F2,F2) ' F2[εn],

is a polynomial ring, where |εn| = (1, 2n−1). Combining all of these results together, we deduce
the following.

Proposition 11.6. The second page of the Adams spectral sequence for π∗MU is given by the
bigraded polynomial ring

Exts,tA∗(F2,H∗MU) ' F2[ε1, ε2, . . . , b2, b4, b5, . . .],

where |εn| = (1, 2n − 1) and n ≥ 1, while bk = (0, 2k) for k + 1 6= 2j.

In particular, in the total grading t−s (which is the one relevant to Adams spectral sequences)
the E2-page is isomorphic to a polynomial algebra over F2 with a single generator in each non-
negative even degree (including ζ1, which is of total degree zero). Since everything is even total
degree, the Adams spectral sequence collapses and we deduce the following.
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Proposition 11.7. The H-based Adams spectral sequence for MU collapses and the second page

F2[ε1, ε2, . . . , b2, b4, b5, . . .]

can be identified with the associated graded of π∗MU with respect to the H-Adams filtration.

From here one can deduce Quillen’s identification, let us briefly sketch the argument. The
element ε1 must necessarily correspond to the class of 2 ∈ π0MU ' Z, the latter identification
given by the Hurewicz theorem, as the only elements of total degree zero are its powers. Since
ε1 is a non-zero divisor in the above Ext-group, we deduce that π∗MU must be 2-torsion free.

Since MU is a connective spectrum with finitely generated homology group in each degree,
the theory of Serre classes tells us that the same is true for the homotopy groups. Thus, the
localization Z(2) ⊗ π∗MU must in fact be free in each degree. It follows that the Hurewicz map

Z(2) ⊗ π∗MU→ H∗(MU,Z(2))

must be injective, because both sides are torsion-free and the map is a rational isomorphism.
We deduce that the map Z(2) ⊗ L→ Z(2) ⊗ π∗MU is injective, so we just have to check that

they have the same image in H∗(MU,Z(2)) ' Z(2)[b1, b2, . . .]. It is enough to verify that this is
the case in modules of indecomposables.

Note that the the image of L in the module of indecomposables (b1, b2, . . .)/(b1, b2, . . .)
2
2n was

either the class of bn, or 2 · bn, by the symmetric cocycle lemma, and the image of π∗MU can
only be larger as the map from L factors through it. Thus, the only thing that could happen
was if the class of bpn−1 was in the image of π∗MU, but this is not possible, as εn is the only
indecomposable in this degree and it has positive Adams filtration and so its image in H∗(MU,Z)
must be divisible by two. This ends the proof of the 2-local version of the following result, which
we will state again due to its importance.

Theorem 11.8 (Quillen). The map L → π∗MU classifying the formal group law coming from
the canonical complex orientation of MU is an isomorphism.

Remark 11.9. The argument is essentially the same when p > 2 is odd. In this case, as we
observed in Remark 10.23 the relevant dual Steenrod algebra classifies those automorphisms
of the "2-dimensional formal group" Spf(HF∗p(BCp)) which descend to the quotient formal group
Spf(HF∗p(CP∞)).

The analogue of Lemma 11.5 stays true in this case, where P∗ ⊆ (HFp)∗HFp is again
an appropriate polynomial subalgebra of the dual Steenrod algebra, and the computation of
cohomology is reduced to that of a quotient of A∗ by P∗, which is again exterior. The rest is
done without any changes.

It might seem strange that the odd prime case involves a "two-dimensional formal group",
but this is really a trick of light. Both at the even and at odd primes, Spf(HF∗p(BCp)) is an
extension in the category of étale sheaves of its quotient group Spf(HF∗p(CP∞)) by the finite
group scheme Spec(Fp[x]/(x2)).

It happens that this extension is non-trivial at p = 2, so that the resulting representing ring
happens to be again a polynomial ring in a single variable (but of a different degree). However,
the triviality or non-triviality of this extension does not inform the proof of Quillen’s theorem.

The result of Quillen tells us that there’s a connection between complex bordism and formal
group laws; in fact, this connection extends all the way to formal groups. Since MU is a complex-
oriented itself, Lemma 11.1 tells us that

MU∗MU ' MU∗[b1, b2, b3, . . .];

the ring classifying a map out of MU∗ together with an isomorphism into the resulting formal
groups. By Quillen’s result, the map out of MU∗ itself is the same as a choice of a formal group
law so that

HomCAlg(MU∗MU, R) ' { (F,G, φ) | F,G ∈ Fgl(R), φ : F → G },
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where on the right hand side we have the set of triples with φ a strict isomorphism of formal
group laws. This shows the following.

Theorem 11.10. The pair of rings (MU∗,MU∗MU) is a cogroupoid in commutative rings corep-
resenting the functor that sends any ring R to the groupoid of formal group laws and their strict
isomorphisms.

In fact, we’ve seen this groupoid before. Since MU∗MU is flat over MU∗, we have a canonical
cosimplicial ring

MU∗ ⇒ MU∗MU MU∗MU⊗MU∗ MU∗MU . . . ,

coming from applying homotopy groups to the diagram

MU ⇒ MU⊗MU MU⊗MU⊗MU . . . .

Using flatness one can show that this cosimplicial ring corepresents a nerve of a groupoid,
necessarily given by the objects in cosimplicial degrees zero and one. This endows the pair
(MU∗,MU∗MU) with a structure of a cogroupoid object in commutative rings; a more detailed
analysis shows that this structure coincides with that the explicit one of Theorem 11.10 given
in terms of formal group laws.

One can then expect that theMU -based Adams spectral sequence, whose input is the category
of MU∗MU-comodules, can be interpreted in terms of formal groups. This is indeed the case,
we will see this in the next lecture.

12. Moduli of formal groups

Throughout the proof of Lazard’s theorem, we have studied the sheaf Fgl which associates to
any ring the set of formal group laws over it.

However, this approach is somewhat limited because it misses the fact that formal group laws
are local presentations of formal groups, and the latter have their notion of isomorphism which
we should take into account. This leads to the following definition.

Definition 12.1. The moduli stack of formal groups Mfg : CRing → S is the sheaf of
spaces which associates to any ring R the groupoid of formal groups over Spec(R) and their
isomorphisms.

Note that this is a sheaf of spaces in the homotopy-theoretic sense of Definition 8.1. We will
not show this, but it is in fact a sheaf not just in the étale topology, but in the much stronger
flat Grothendieck topology.

We would like to show that the moduli stack of formal groups is algebraic; that is, informally
"not too far from being a scheme". To see this, notice that the construction F 7→ GF assigning
a formal group to a formal group law provides a morphism

Fgl→Mfg

of sheaves. This is in fact an effective epimorphism (ie. a surjection on the sheaves of path
components) and it follows thatMfg can be recovered as the colimit of the Čech nerve

. . . Fgl×Mfg
Fgl×Mfg

Fgl Fgl×Mfg
Fgl ⇒ Fgl

taken in the ∞-category of sheaves of spaces. These iterated intersections, which we have seen
before, are easy to understand.

Proposition 12.2. The morphism Fgl→Mfg is faithfully flat, affine and

Fgl×Mfg
Fgl ' Spec(L)×Ginv,

where Ginv is the affine scheme classifying invertible power series.
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Proof. We have to show that for any ring R and any map Spec(R) → Mfg, the pullback
Spec(R)×Mfg

Fgl is an affine scheme and the projection map onto Spec(R) is faithfully flat. A
map Spec(R)→Mfg is the same as a choice of formal group G→ Spec(R). Evaluated at a ring
S, the 1-truncated space

(Spec(R)×Mfg
Fgl)(S)

can be identified with the set of triples

(f : R→ S, F ∈ Fgl(S), φ : GF ' f∗G),

where φ is an isomorphism of formal groups.
Assume first that G admits a coordinate, ie. it comes from a formal group law G over R.

Then, the isomorphism φ can be identified with an invertible power series over S, and F is
necessarily determined by it as a twist of G. Thus, we deduce that in this case

Spec(R)×Mfg
Fgl ' Spec(R)×Ginv.

Taking R to be the Lazard ring proves the second part.
In the general case, Spec(R) admits an open covering by open affine Uα ' Spec(Rα) such

that G can be presented using a formal group law over each of these. Then, Spec(R)×Mfg
Fgl

admits an open covering by U ×Mfg
Fgl ' U ×Ginv and so is a scheme. It is faithfully flat and

affine over Spec(R) as both properties can be checked locally on the latter. �

Note that the isomorphism Fgl ×Mfg
Fgl ' Spec(L) × Ginv is canonical, encoding the fact

that a pair of formal group laws together with an isomorphism between then is the same as as
that of one formal group law and an invertible power series. There is an action of the group
scheme Ginv on Spec(L), acting by twisting the universal formal group law, and the map

Spec(L)→Mfg

can be made canonically Ginv-equivariant; this is saying that twisting the formal group law does
not change the underlying formal group (up to a canonical isomorphism, given by the formal
group we twisted by). This discussion can be summarized in the following way.

Proposition 12.3. The map Fgl→Mfg presents the moduli of formal groups as the homotopy
quotient of Fgl by the action of Ginv in étale sheaves of spaces.

Proof. The homotopy quotient can be identified with the colimit in the ∞-category of sheaves
of spaces of the simplicial diagram

. . . Fgl×Ginv ×Ginv Fgl×Ginv ⇒ Fgl

induced by the action. By Proposition 12.2, this is the same as the Čech nerve of Fgl→Mfg,
which is a colimit diagram as the latter is an effective epimorphism. �

Remark 12.4. The above should be intuitively clear; it says that locally any formal group
comes from from a formal group law, and locally their isomorphisms are given by invertible
power series. The adjective locally here is important, the above would not be true if we worked
with presheaves of spaces instead.

We have seen before that the Lazard ring can be canonically identified with MU∗, the ho-
motopy groups of complex bordism. The group of invertible power series has also appeared in
connection with the latter, but not quite in its full form.

Rather, we’ve seen that MU∗MU is the ring classifying a choice of a formal group law together
with a strict invertible power series, ie. with leading coefficient one. Luckily, there is a variant
on the moduli of formal groups which takes it into account.

Definition 12.5. The moduli of formal groups with trivialized Lie algebra is the étale
sheaf that associates to any ring R the groupoid of pairs (G, φ) where G→ Spec(R) is a formal
group and φ : ωG ' R is the trivialization of its sheaf of invariant differentials.
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Note that a trivialization of the sheaf of invariant differentials is the same as a choice of a
globally non-vanishing invariant differential. If G comes from a formal group law F , then we
have constructed a canonical such generator in Proposition 5.9. Applying this to the the
universal formal group law, we obtain a map

Fgl→MLie'triv
fg

which is also an epimorphism, because locally any formal group together with a choice of a
non-vanishing invariant differential is isomorphic to one coming from a formal group law with
its canonical invariant differential.

Note that the above map is not not quite Ginv-invariant, as isomorphisms of formal group laws
in general do not have to preserve our chosen distinguished invariant differentials. Instead, the
ones that do are exactly the strictly invertible power series, and we obtain canonical isomorphisms

Fgl×MLie'triv
fg

Fgl ' Fgl×Gsinv ' Spec(MU∗MU).

where the latter is the group of strictly invertible power series. In fact, this extends to whole
simplicial objects, and so we obtain the following fundamental result of chromatic homotopy
theory.

Proposition 12.6. The colimit of the simplicial affine scheme Spec(π∗(MU⊗[n]) of the form

. . . Spec(MU∗MU⊗MU∗ MU∗MU) Spec(MU∗MU) ⇒ Spec(MU)

can be canonically identified with the moduli MLie'triv
fg of formal groups with trivialized Lie

algebra.

Remark 12.7. It is quite common, but somewhat abusive, to callMLie'triv
fg the strict moduli of

formal groups and denote it byMs
fg. This stems from the fact that it is canonically equivalent

to the quotient Fgl/Gsinv of the scheme of formal group laws by the group of strictly invertible
power series.

We have seen the above simplicial scheme (or rather the cosimplicial ring) before, when
discussing Adams spectral sequences. We have proven that MU is Adams-type, and so it has an
associated spectral sequence whose E2-term is given by Ext-groups in the category of MU∗MU-
comodules. This was a limit of module categories over the graded rings

MU∗ ⇒ MU∗MU MU∗MU⊗MU∗ MU∗MU . . . .

This looks very much like the definition of quasi-coherent sheaves over MLie'triv
fg , which we’ve

seen is the colimit of the corresponding diagram of schemes, and so gives a limit diagram of quasi-
coherent sheaves by Lemma 4.4 (stated there for sheaves of sets, but the proof for sheaves of
spaces is identical).

However, the outstanding issue is that of a grading - the Ext-groups describing the MU∗-
based Adams spectral sequence are taken in the category of MU∗MU-comodules equipped with
a compatible grading, while our definitions of étale sheaves and stacks did not take the grading
into account.

There are several options to deal with this discrepency:
(1) Allow our étale sheaves to be indexed by commutative graded rings, rather than just

commutative rings, and build algebraic geometry starting out of there. In this solution,
MLie'triv

fg would have a structure of a "graded stack" classifying formal group laws
"of degree 2" with trivialized Lie algebra, and the quasi-coherent sheaves over it would
correspond exactly to the category of graded comodules. We’ve alluded to this idea in our
discussion of odd prime Steenrod algebra, where this approach becomes indispensable.

(2) Use that all of the rings (MU∗MU)⊗MU∗n are even and so by Lemma 6.5 can be
identified with an affine scheme equipped with a Gm-action.
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The first approach is philosophically correct, but the second one is more common and in the
particular case of MU works just as well. Since all of the above rings are even graded, we see
that the simplicial scheme

. . . Spec(MU∗MU⊗MU∗ MU∗MU) Spec(MU∗MU) ⇒ Spec(MU)

has a Gm-action. This action passes to the quotientMLie'triv
fg ; by tracing the definitions we see

that this is the action of Gm on pairs (G, φ) acting by change of trivialization, and keeping the
formal group as is.

Thus, the projection mapMLie'triv
fg →Mfg is Gm-equivariant; in fact, since locally any two

trivializations differ by an element of the multiplicative group, this induces an equivalence

MLie'triv
fg /Gm 'Mfg.

In a more geometric language, the above tells us that the projection map exhibitsMLie'triv
fg as

a Gm-torsor onMfg. Again tracing through definitions, we see that the quasi-coherent sheaves
on a Gm-quotient can be identified with quasi-coherent sheaves on the original stack equipped
with a compatible Gm-action. In our case, this translates to the even grading, leading to the
following.

Proposition 12.8. There is an equivalence of symmetric monoidal abelian categories

ComodevMU∗MU ' QCoh(Mfg)

between even graded MU∗MU-comodules and quasi-coherent sheaves on the moduli of formal
groups.

Remark 12.9. Note that the category of even graded comodules has a canonical C 7→ C[2]
which changes the internal grading by two, while keeping the coaction intact. In terms of the
equivalence above, this corresponds to the functor F 7→ F ⊗ ω, where ω is the line bundle of
invariant differentials onMfg; that is, the unique line bundle which pulled back to any ring gives
the line bundle of invariant differentials of the corresponding formal group.

Since MU∗MU is even, for any comodule C the canonical decomposition C ' Cev⊕Codd into
even and odd parts is in fact a decomposition of comodules. Combined with our description
of the Adams E2-term of the MU∗-based Adams spectral sequence, called the Adams-Novikov
spectral sequence, and Remark 12.9, we deduce the following.

Theorem 12.10 (Adams-Novikov spectral sequence). For any spectrum X, the even MU∗-
modules MUev

∗ X and MUodd
∗ [−1] carry canonical descent datum to quasi-coherent sheaves FevX ,

FoddY over Mfg. For any spectrum Y , the E2-term of the Adams-Novikov spectral sequence has
signature

Es,t2 ⇒ [Y,X]t−s

with differentials of degree |dr| = (r, r − 1) and the second page given by

Es,2t2 ' ExtsQCoh(Mfg)(FevY ,FevX ⊗ ωt)⊕ (FoddY ,FoddX ⊗ ωt)
and

Es,2t+1
2 ' ExtsQCoh(Mfg)(FevY ,FoddX ⊗ ωt)⊕ (FoddY ,FevX ⊗ ωt+1)

Remark 12.11. In practice, it is very common to use the equivalence of Proposition 12.8 to
study the category of MU∗MU-comodules in terms of geometry of formal groups. It is far less
common, outside of textbooks, to describe the Adams-Novikov spectral sequence in the terms
given above, as keeping track of even and odd parts separately is a headache and can easily lead
to mistakes.

The reason for the above slightly unappealing form is that while MU∗MU is even, MU∗X for
an arbitrary spectrum X will usually not be. This is the price we’re paying for a description in
terms of Gm-equivariant geometry, which only describes even gradings.
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Example 12.12. In the particular case of the sphere, MU∗S
0 ' MU∗ is concentrated in even

degrees. Since MU∗ is the monoidal unit in the category of comodules, it corresponds to the
structure sheaf OMfg

of the moduli of formal groups. We deduce that the Adams-Novikov
spectral sequence computing π∗S0 has E2-term given by

Es,2t2 ' ExtsQCoh(Mfg)(OMfg
, ωt) ' Hs(Mfg, ω

t).

This leads to the often-used slogan
"the cohomology of the moduli of formal groups is an approximation to the stable homotopy

groups of spheres".
We will see later that the above relationship runs deeper, as geometric objects related to Mfg

tend to have their analogues in stable homotopy theory.

To understandMfg is to understand formal groups and their isomorphisms. We have already
seen what happens in characteristic zero, using the theory of logarithms.

Proposition 12.13. There’s an equivalence

Spec(Q)×Mfg ' Spec(Q)× BGm.

between the rational moduli of formal groups and the rational classifying stack of the multiplicative
group.

Proof. This is the same as saying that over a Q-algebra, any formal group is locally isomorphic
to the additive one, and the automorphism group of the latter is the multiplicative group. �

The above suggests that what is missing form our knowledge is some description of

Spec(Fp)×Mfg,

the moduli of formal groups over Fp-algebras. We have already seen in Lemma 5.14 that in
this case two distinct formal groups need not be isomorphic, even locally. In next lecture, we will
extend this argument to show existence of a variety of different formal groups by introducing
the important notion of height.

13. Heights

Suppose that R is an algebra over the field Fp with p-elements; this is the same as a com-
mutative ring such that p = 0. In this case, we have a canonical Frobenius homomorphism
FrobR : R→ R given by

FrobR(r) = rp.

The above formula is manifestly functorial in homomorphisms of rings; that is, if f : R → S is
any morphism of Fp-algebras, then FrobS ◦f = f ◦ FrobR. In other words, it defines a natural
transformation from the category of Fp-algebras to itself.

If X → Spec(Fp) is an étale sheaf, possibly of spaces, then it can be written as a colimit of a
diagram of affine schemes Spec(Aα). Since each Aα is necessarily an Fp-algebra, as the associated
affine scheme maps into Spec(Fp), the diagram admits a self-map given by the Frobeni, and so
we get an induced morphism

FrobX : X → X

of étale sheaves over Spec(Fp). Thus, the definition of the Frobenius makes sense more generally
for arbitrary sheaves, in particular for schemes.

The Frobenius is always a morphism of sheaves over Spec(Fp), but if X → Y is a map of
such sheaves, then FrobX is usually not a morphism over Y . Instead, we have a commutative
diagram
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X X

Y Y

FrobX

FrobX

and this leads to the following definition.

Definition 13.1. The relative Frobenius FrobX/Y : X → Frob∗Y X is the map of étale sheaves
over Y induced by the above diagram.

Example 13.2. Let us describe the relative Frobenius in the case of the formal affine line. Thus,
let Y = Spec(R) be affine, with R an Fp-algebra and let X = Â1 × Spec(R) := Spf(R[[x]]) be
the corresponding formal affine line. Then,

Frob∗Y X ' Spf(R⊗R R[[x]]) ' Spf(R[[x]]),

where the tensor product in the middle is the extension of scalars along the Frobenius morphism
of X, which is again canonically isomorphic to the formal affine line.

On rings of global sections, which on both sides can be identified with R[[x]], FrobX/Y induces
the unique homomorphism of R-algebras such that x 7→ xp. Note that this is not the same as the
absolute Frobenius FrobX : X → X, which instead would give on global sections the Frobenius
of R[[x]]. However, the latter is in general not R-linear; intuitively, the relative Frobenius is the
obvious modification we can make to make the absolute one into an R-linear map.

Remark 13.3. Note that Example 13.2 is somewhat special, as in this case X and Frob∗Y X

can be canonically identified with each other (they are both canonically the base-change of Â1
Fp).

No such identification is possible in general.

Proposition 13.4. Let Â1
R be the formal affine line over an Fp-algebra R. Then, the rela-

tive Frobenius Â1
R → Frob∗R Â1 is a surjection of sheaves in the flat topology and is an affine

morphism, free of rank p.

Proof. We’ve seen in Example 13.2 that both the source and target can be canonically identified
with Spf(R[[x]]), and the relative Frobenius with the R-algebra homomorphism given by x 7→ xp.
To check surjectivity, we have to show that given an R-algebra S and an element

a ∈ Spf(R[[x]]) = Nil(S),

there exists a faithfully flat ring homomorphism f : S → S′ such that f(a) is in the image of the
relative Frobenius; that is, is a p-th power. We can take S′ = S[x]/(xp − a).

For the second part, notice that the diagram

Â1
R A1

R

Â1
R A1

R

FrobÂ1
R
/R FrobA1

R
/R

of relative Frobeni is a pullback diagram; this can be checked levelwise, in which case it amounts
to observing that a p-th root of a nilpotent element is nilpotent. Thus, it’s enough to check
that the relative Frobenius of the affine space is free of rank p, but it can be identified with the
morphism of affines schemes induced by the map R[x] → R[x] given by x 7→ xp, which has the
needed property.

�

Remark 13.5. The relative Frobenius on the formal affine line is usually not surjective as a
map of étale sheaves, the algebra S′ constructed in Proposition 13.4 is always faithfully flat
but usually not étale. We’ll ignore this minor technical point; the sheaves we have in mind (such
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as the formal affine line) are formal colimits of representables and so are in fact sheaves with
respect to the flat topology.

Observe that everything we discussed so far was at the level of étale sheaves, there were no
group structures involved. However, the naturality properties of the Frobenius guarantee that if
G → Spec(R) is a formal group, the relative Frobenius G → Frob∗RG is a morphism of formal
groups. We can make explicit how this morphism looks like.

Example 13.6. Suppose that F ∈ Fgl(R) is a formal group law, say F (x, y) =
∑
i,j ai,jx

iyk.
Then, since the corresponding formal group GF can be canonically identified with the formal
affine line, so can Frob∗RGF . However, the induced multiplication is different; in fact, tracing
through definitions we see that

Frob∗RGF ' GF ′ ,

where F ′ =
∑
i,j a

p
i,jx

iyk is the formal group law obtained by raising all coefficients to the p-th
power. The relative Frobenius corresponds to a morphism φ : F → F ′ given by φ(x) = xp.

Leading to the definition of height is the following observation.

Proposition 13.7. Suppose that f : G → G′ is a morphism of formal groups over Spec(R),
where R is an Fp-algebra. Then, then following are equivalent:

(1) the induced map df : ωG′ → ωG on R-modules of invariant differentials is zero,
(2) the morphism f factors uniquely through the relative Frobenius FrobG/R of G.

Proof. The uniqueness in the second part guarantees that this statement is local on Spec(R), so
that we can assume that both G and G′ come from formal group laws F, F ′ ∈ Fgl(R). Once
such an identification is chosen, f can be represented by a formal power series f(x) ∈ R[[x]].

By Lemma 5.17, there exists a unique invariant differential ω ∈ Lie∨G′ which over the zero
section restricts to the canonical generator of 0∗Ω1

G′/R ' 0∗Ω1
Spf(R[[x]])/R ' R; in fact, we’ve

constructed one in Proposition 5.9. It follows that this differential generates Ω1
G′/r as an

Γ(G′,OG′) ' R[[x]]-module and since df : f∗Ω1
G′/R → Ω1

G/R is linear over the global sections,
we deduce that df vanishes on all differentials, not just the invariant ones.

We move to the proof proper. Suppose first that (1) holds, the argument givne above tells us
that f∗dx = f ′(x)dx vanishes. If we write f(x) =

∑
i aix

i, this means that iai vanishes for all
i so that ai must be zero unless i is a multiple of p. It follows that we can write f(x) = f ′(xp)
for a different power series f ′. This is the required factorization, it is clear it is unique.

Conversely, the relative Frobenius x 7→ xp induces the zero map on differentials, and hence so
must any morphism which factors through it. �

To make use of the above, we need a good supply of morphisms. These can be quite hard to
come by, but luckily any group object, in particular a formal group G comes equipped with a
canonical family of maps

nG : G→ G

corresponding to multiplication by n. If G is a formal group law over an Fp-algebra, it is natural
to focus our attention on multiplication by p, see

Definition 13.8. We say a formal group G over an Fp-algebra is of height at least ≥ n if the
multiplication by p map factors through the n-th relative Frobenius, as in the diagram

G (FrobnR)∗G

G.

pG

FrobnG/R
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Remark 13.9. There is a different notion of height at every prime. This fact is implicit in
almost any source on chromatic homotopy theory, where the prime is fixed ahead of time, and
one only works with p-local spectra and p-local commutative rings.

Remark 13.10. Notice that according to this definition, any formal group is of height at least
zero. It does not need to be a formal group over an Fp-algebra.

Note that by the uniqueness part of Proposition 13.7, when such a factorization exists, it
is necessarily unique. Morevoer, since the Frobenius is surjective, it will necessarily again be a
morphism of formal groups.

Definition 13.11. We say a formal group G is of height exactly n if it is height at least n
and the the unique factorization (FrobnR)∗G → G of multiplication by p is an isomorphism of
formal groups. We say it is of infinite height if it is at least of height n for every n ≥ 0.

Informally, the height measures how far multiplication by p is from being an isomorphism.
This is to a large extent controlled by the characteristic, as the following shows.

Remark 13.12. Let R be a ring. Then, by functoriality the map on invariant differentials
induced by p : G→ G is necessarily multiplication by p : ωG → ωG.

Thus, if R is a ring in which p is invertible, then multiplication by p induces an isomorphism
on invertible differentials. It follows it itself must be an isomorphism, as locally in coordinates
it is given by a power series with an invertible leading term.

Conversely, if R is an Fp-algebra, then the same argument shows that the induced map on
differentials is zero, and so by Proposition 13.7 any formal group over Spec(R) is at least of
height one.

Note that it is not in general true that a formal group G of height at least n and not of
height at least n + 1 is of height exactly n. However, this is true for formal groups over a field
k. Namely, applying Proposition 13.7 to the unique factorization

(Frobnk )∗G→ g

we see that it induces a non-zero map on invariant differentials, as otherwise we could factor it
through another Frobenius. However, since we’re over a field, any non-zero map on invariant
differentials must be an isomorphism, and we deduce the same is true for the above morphism
of formal groups. This, combined with Remark 13.12 shows the following.

Corollary 13.13. Any formal group G over Spec(k), where k is a field, is either of infinite
height or exactly of height n for 0 ≤ n <∞.

Let us see a couple examples.

Example 13.14. Let R be an Fp-algebra, and letGA be the formal additive group over Spec(R).
Then, since levelwise p : Ga → Ga is given by p-fold addition of nilpotent elements in R-algebras,
we deduce that it is zero. It follows that it factors through arbitrarily large powers of the relative
Frobenius, and so Ga is of infinite height. We will see later any formal group of infinite height
is locally isomorphic to the additive one.

To compute heights of formal groups, the following result is useful.

Lemma 13.15. Let G → Spec(R) be of height exactly n. Then, the subsheaf G[p] defined for
an R-algebra S by

G[p](S) := ker(p : G(S)→ G(S))

is an affine group scheme over Spec(R), locally free of rank p.
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Proof. This is a statement local in Spec(R), so we can assume that G is given by a formal
group law. If G is of height exactly n, then p : G → G is isomorphic to the relative Frobenius
FrobnG/R : G → (FrobnR)∗G. The latter does not depend on the group structure, and it is an
affine morphism of rank pn by Proposition 13.4, so we deduce the same is true for p : G→ G.
Since G[p] can be computed as the fibre product

Spec(R)×G G,

taken over multiplication by p map, the statement follows. �

Thus, another way to describe height is that it measures the size of the p-torsion in the formal
group. This gives a concrete way to determine height in any explicit example.

Example 13.16. Let Gm be the formal multiplicative group over an Fp-algebra Spec(R). Then,
for any R-algebra S, (Gm[p])(S) is the group of p-th roots of unity which differ from the unit
by a nilpotent element.

In characteristic p, any element ζ with ζp = 1 differs from the identity by a nilpotent (in fact
(ζ − 1)p = ζp− 1 = 0), so that we have Gm[p] ' Spec(R[x]/(xp− 1)). This is a finite free group
scheme of rank p, and we deduce that the formal multiplicative group is of height one.

Above we have given a coordinate-free description, but the height can be more easily read off
if we are given a formal group law F ∈ Fgl(R). In this case, we have a power series

[p]F (x) = px+ higher degree terms

representing multiplication by p on GF ' Spf(R[[x]]), called the p-series of F . Tracing through
definitions, we see that GF is of height at least n if we can write, necessarily uniquely,

[p]F (x) = h(xp
n

)

for a different power series h. It is of height exactly n if this h is invertible.
This tells us that the coefficients of the xp

n

in the p-series of a formal group law control its
height, which suggests they deserve more of our attention.

Definition 13.17. The element vn ∈ L of the Lazard ring is the coefficient of xp
n

in the p-series
of the universal formal group law.

Remark 13.18. Note that v0 = p from what we’ve seen above. The other elements are quite
hard to describe, as it is not easy to get explicit generators of the Lazard ring in the first place.

Note that vn are the elements of the Lazard ring, but this means they determine elements
in any ring R together with a choice of F ∈ Fgl(R). Indeed, the latter induces a unique ring
homomorphism φ : L→ R, and the corresponding element of R is φ(vn). It will be the same as
coefficient of xp

n

in the p-series [p]F . Our discussion of the latter yields the following.

Corollary 13.19. The formal group GF → Spec(R) is of height at least n if and only if the
corresponding elements vi ∈ R vanish for 0 ≤ i < n.

Remark 13.20. Note that the elements vi really depend on the choice of a formal group law
and not just a formal group; that is, if we have an isomorphism GF ' GF ′ of formal groups, it
does not mean that vi(F ) = vi(F

′), the two p-series will generally be different.
However, the above tells us that whether the ideal (v0, v1, . . . , vn−1) vanishes depends only on

the isomorphism class of the formal group. It follows that the closed subscheme of the Lazard
ring cut out by this ideal descends to the moduli of formal groups, providing a filtration of the
latter by closed substacks.
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14. Lubin-Tate formal group laws

In the last lecture, we’ve introduced the notion of a height of a formal group G, which
informally measures how far multiplication p : G→ G was from being an isomorphism.

If G ' GF is induced by a formal group law, we’ve seen in Corollary 13.19 that the height
is controlled by elements vn(F ), the coefficients of xp

n

in the p-series of F . These elements do
depend on F , not just its isomorphism class, but the ideal they generate does not, as we will
show now.

Proposition 14.1. Let F, F ′ be isomorphic formal group laws over a ring R. Then, the ideals
In(F ) = (v0(F ), . . . , vn−1(F )) and In(F ′) = (v0(F ′, . . . , vn−1(F ′)) coincide.

Proof. By symmetry, it is enough to show that In(F ) ⊆ In(F ′). Since F ′ is of height at least n
over the quotient ring R/In(F ′) by Corollary 13.19, we deduce that the same is true for F .
An application of the same statement shows that the image of In(F ) vanishes in this quotient
ring, giving the needed containment. �

Intuitively, the ideal In(F ) is the smallest ideal such that the F is of height at least n over
the corresponding quotient. Since the notion of height is isomorphism-invariant, so must be the
ideal. This construction generalizes to the case of an arbitrary formal group.

Definition 14.2. Let G → Spec(R) be a formal group. The n-th invariant ideal In is the
unique ideal such that over any affine open Spec(S) such that G|Spec(S) ' GF for some formal
group F ∈ Fgl(S), S ⊗R In = In(F ) as ideals of S.

Note that this construction can be interpreted as specifying an ideal in the structure sheaf of
Mfg, the moduli of formal groups. We would expect that this ideal defines a closed substack,
which is indeed the case.

Proposition 14.3. The inclusion M≥nfg ↪→ Mfg of the substack classifying formal groups of
height at least n is an affine closed inclusion specified by the ideal In.

Proof. We have to verify that for any map Spec(R) → Mfg, which can be identified with the
choice of a formal group G→ Spec(R), the fibre product

Spec(R)×Mfg
M≥nfg

is a closed subscheme of Spec(R), defined by the ideal In. This can be checked Zariski-locally
on Spec(R), reducing to the case of G ' GF specified by a formal group law, in which case the
above fibre product is exactly Spec(R/In(F )), as needed. �

It follows that we have a filtration ofMfg ⊗ Z(p) :=Mfg × Spec(Z(p)), the moduli of formal
groups over p-local rings, by closed substacks

Mfg ⊗ Z(p) ←↩M≥1
fg ←↩M

≥2
fg ←↩ . . .←↩M

∞
fg .

This is the height filtration, also sometimes called the chromatic filtration. As we will later
see, there are analogues of this filtration in the stable homotopy theory itself.

One missing piece in our understand is that we don’t know yet whether this filtration is
non-trivial. We’ve seen examples of the formal groups of height one and infinity, namely the
multiplicative and additive ones. Unfortunately, constructing formal groups of intermediate
height requires quite a bit of work, and cannot be made explicit in quite the same way.

One way to construct formal groups of arbitrary height is to make use of the elements vn we
just studied.

Proposition 14.4. Let L be the Lazard ring, I its ideal of positive degree elements and n > 0.
Then, the image of vn in (I/I)2pn−2 is (pp

n−1−1) ·x, where x is a generator of (I/I2)2pn−2 ' Z.
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Proof. Since the map L→ Z[b1, b2, . . .] classifying the universal strict twist of the additive formal
group law induces an injective map on indecomposables, it is enough to check the formula there.
This can be done directly, see [12, Lecture 13]. �

Notice that pp
n−1 − 1 is p-locally a unit; that is, a unit in the p-local integers Z(p). It follows

that p-locally the image of vn generates the relevant group of indecomposables, so that we can
choose an isomorphism

Z(p)[t1, t2, . . .] ' L⊗ Z(p)

under which tpn−1 = vn. This has the following consequence.

Corollary 14.5. Let R be a p-local commutative ring. Then, for an arbitrary sequence of
elements rn indexed by n > 0 there exists a formal group law F ∈ Fgl(R) such that vn(F ) = rn.

Corollary 14.6. If R is an Fp-algebra, then there exist F ∈ Fgl(R) which are exactly of height
n for any 1 ≤ n <∞.

Proof. Choose a formal group law F with vn(F ) = 1 and vk(F ) = 0 for k 6= n. �

The above result establishes the needed existence, but we would prefer to have a direct
construction. An important class, which we will introduce now, is given by the Lubin-Tate
formal group laws. These are a key ingredient in local class field theory, which studies the
behaviour of local fields.

Definition 14.7. A p-adic local field K is a finite extension of the field Qp ' Q⊗Zp of p-adic
numbers.

The p-adic numbers are equipped with a valuation where v(pku) = k if u ∈ Z×p . This valuation
uniquely extends to a valuation on K, and elements of non-negative valuation form the ring of
integers OK ⊆ K. This is the same as the integral closure of p-adic integers inside K.

The ring OK is a complete discrete valuation ring with maximal ideal m := (π) for some
element π, called the uniformizer. Note that any element of the smallest possible non-zero
valuation can be chosen as the uniformizer, they all necessarily differ only by a unit. The residue
field is given by k = OK/m, it is always a finite field.

Example 14.8. The cyclotomic field K := Qp[ζpn−1] obtained by attaching the pn − 1-root of
unity. In this case, OK ' Zp[ζpn−1] 'W (Fpn). The element p is a uniformizer, and the residue
field is given by Fp[ζpn−1] ' Fpn .

This is a Galois extension of Qp, with Galois group canonically isomorphic to that of Fpn ,
which is cyclic of order n. Extensions of this form are exactly the unramified extensions of Qp;
that is, those where p is the uniformizer.

Example 14.9. Let K = Qp[x]/(πn − p). Then OK := Zp[π]/(πn − p) with uniformizer π and
residue field Fp. This is also Galois of degree n, but it is totally ramified ; that is, the inclusion
Qp ↪→ K induces an isomorphism on residue fields; in particular, the Galois group of K is
different from that of its residue field.

Our construction will produce formal group laws over local fields such that a chosen power
series is an endomorphism. This power series will not be arbitrary, but will satisfy certain
conditions which guarantee the existence and uniqueness of the formal group law.

Let K be a local field with residue field of order q = pn. Suppose that π ∈ OK is a fixed
uniformizer, and consider the subset of power series

Fπ := {f ∈ OK [[x]] | f(x) = πx+ higher order terms , f(x) = xq mod m }.
Note that this definition is somewhat reminiscent of the definition of an Eisenstein polynomial,
but with differences - here, it is the linear term that is divisible by π but not by π2, and we
allow general power series rather than just polynomials.
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Lemma 14.10 (Lubin-Tate). Let f, g ∈ Fπ and let φ1(x) = a1x1 + . . . akxk linear form in m
variables with coefficients in OK . Then, there exists a unique power series φ(x) ∈ OK [[x]] such
that

(1) φ(x) = φ1(x) modulo terms of degree two and higher and
(2) f(φ(x)) = φ(g(x)) := φ(g(x1), . . . , g(xm).

Proof. Suppose by induction that we constructed power series φ(x) such that the two above
equations hold modulo terms of degree n+ 1 and higher, and that φ(x) is unique subject to this
property. The base case holds with φ(x) := φ1(x), since both f, g necessarily agree on linear
terms, so the second condition is automatic.

Assume we’ve proven the result for a given n, we will now prove it for n + 1. By inductive
assumption

En+1 = f((x))− φ(g(x))

vanishes up to degree n. We want to correct φ(x) by adding a "correction term" φn+1(x),
homogeneous of degree n + 1, such that the modified En+1 will vanish modulo terms of degree
n+ 2. Using the definition of Fπ, we have that

f(φ+ φn+1) = f(φ) + πφn+1

and
φ(g(x)) + φn+1(g(x)) := φ(g(x)) + πn+1φn+1(x)

hold relative to terms of degree n + 2 and higher. Thus, for the corrected En+1 to vanish we
need to have En+1 = (π − πn+1)φn+1 and since π is a non-zero divisor and (1 − πn) is a unit,
the correction term satisfies

φn+1 =
En+1

π(1− πn)

relative to terms of degree n + 2 and higher. It follows that the needed correction is unique, if
it exists To verify the latter, we have to check that En+1 is divisible by π in OK ; that is, that
En+1 vanishes in the residue field.

Relative to π, we have f(x) = xq and g(x) = xq, so we just have to check that φ(xq) = φ(x)q

as power series over the residue field k. This holds for any φ(x) =
∑
i aix

i, as∑
i

aqix
qi =

∑
i

aix
qi

because aqi = ai since the residue field is of order q. �

Remark 14.11. Note that the only three properties of OK and π used in the proof of the
Lubin-Tate lemma were that:

(1) π is a non-zero divisor and OK/π is an Fp-algebra
(2) (1− πn) is a unit, since OK is complete with respect to the π-adic topology in which π

is topologically nilpotent and
(3) every element x ∈ OK satisfies xq = x.

Remark 14.12. There is another, less common, situation to which the Lubin-Tate lemma
applies, which we now describe. To a perfect Fp-algebra R; that is, one for which the Frobenius
is an isomorphism, we associate the algebra W (R) of p-typical Witt vectors. The latter is
uniquely characterized by the properties that

(1) W (R)/p ' R
(2) W (R) is Zp-flat and complete with respect to the p-adic topology,

see [6][Proposition 13]. It follows that if the algebra R is q-perfect in the sense that rq = r for
any r ∈ R, then W (R) together with the element p satisfies the conditions of the Lubin-Tate
lemma.
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Suppose we fix a local field K, a uniformizer π ∈ OK and an f ∈ Fπ. By the above lemma,
there exists a unique F ∈ OK [[x, y]] such that

(1) Ff (x, y) = x+ y + higher order terms and
(2) Ff (f(x), f(y)) = f(Ff (x, y)).

We claim that resulting power series Ff is actually a formal group law. To check this, we have
to verify the axioms of formal group laws, and we use the uniqueness part of Lemma 14.10.
For example, to see that

F (F (x, y), z) = F (x, F (y, z)),

observe that both sides are formal power series in OK [[x, y, z]] which commute with f and which
reduce to the linear form x+ y + z relative to terms of higher degree. It follows that they must
coincide, and the same method establishes that Ff is also unital and commutative, proving the
following.

Theorem 14.13. For any local field K, a uniformizer π ∈ OK and an f ∈ Fπ, there exists a
unique formal group law Ff ∈ OK [[x, y]] such that f is an endomorphism of F .

The formal group laws uniquely determined by the above result are called the Lubin-Tate
formal group laws. The dependance on f is rather mild, as the following shows.

Proposition 14.14. For any f, g ∈ Fπ, the Lubin-Tate formal group laws Ff , Fg are canonically
isomorphic.

Proof. By another application of Lemma 14.10, the linear form φ(x) = x extends uniquely to
a power series such that f(φ(x)) = φ(g(x)). We claim that this φ is an isomorphism from Fg to
Ff , so that

Ff (φ(x), φ(y) = φ(Fg(x, y)).

To see this, notice that both sides define power series h(x, y) such that f(h(x, y)) = h(g(x), g(y))
and which agree on linear terms, and so must agree by the uniqueness part of the Lubin-Tate
lemma. �

Remark 14.15. In the proof of Proposition 14.14, there is nothing special about the linear
form φ(x) = x, in fact, any linear form will do. Applying this to the case f = g, it follows that
for any a ∈ OK , there is a canonical endomorphism φa(x) = ax + higher order terms of Ff
commuting with f . This gives a map

[−] : OK → End(Ff ),

which is in fact a ring homomorphism with respect to the ring structure on endomorphisms
induced by addition on the formal group law, as can be again checked using uniqueness part of
the lemma. Note that we have [π] = f(x), as the latter is an endomorphism commuting with f
with the correct leading term.

Example 14.16. Let K := Qp[ζpn−1] be a cyclotomic field, so that OK ' Zp[ζpn−1] with
uniformizer π = p. It follows that we have a unique Lubin-Tate formal group law F ∈ Fgl(OK)
with p-series [p]F = px+ xq.

The reduction of F to the residue field Fq is called the Honda formal group law. By
construction, it has p-series [p] = xq and so it is of height exactly n. Note that since f is
invariant under the action of the Galois group of K, so is the resulting formal group law and so
F must in fact have coefficients in Zp. It follows that the Honda formal group law is actually a
formal group law over Fp.
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15. Isomorphisms of formal groups of finite height

Our goal in lecture is to understand the extent to which formal groups are classified by their
height. The main result will be a theorem of Lazard, which states that two formal groups of
over a field of the same height are isomorphic over the separable closure.

If G0 → Spec(R0) and G1 → Spec(R1) are formal groups, we have an isomorphism scheme
which fits into a pullback diagram

Iso(G0,G1) Spec(R0)

Spec(R1) Mfg

The S-points of Iso(G0,G1) are given by triples consisting of maps fi : Ri → S together with
an isomorphism f∗0G0 ' f∗1G1 of formal groups.

If G0 := GF0
and G1 := GF1

come from formal group laws, the resulting scheme is affine and
we can be more explicit. Namely, Iso(G0,G1) ' Spec(AF0,F1), where AF0,F1 is the R0 ⊗Z R1

algebra generated by symbols bi for i ≥ 0 subject to the relations which state that the power
series φ(x) =

∑
i bix

i+1 is an isomorphism from F0 to F1. Explicitly, the relations are
(1) φ(F0(x, y)) = F1(φ(x), φ(y)),
(2) b0 is invertible.

In this lecture, we will focus explicitly on the case of formal group laws, as the only global
obstruction to the existence of an isomorphism is the Lie algebra.

Our goal is to give an explicit description of the ring classifying isomorphisms. To begin with,
observe that AF0,F1

has a canonical sequence of generators, and hence an induced filtration.

Notation 15.1. By AF0,F1
(m) we denote the R0⊗R1-subalgebra of AF0,F1

generated by bi for
i < m.

Note that it is very well possible for the algebra AF0,F1
to be trivial; for example, this will

always happen if F0, F1 are exactly of heights n0 6= n1. In particular, it is not necessarily the
case that AF0,F1

(0) ' R0 ⊗R1.
The main result of this lecture is the following.

Theorem 15.2. Let F0, F1 be formal groups which are both exactly of finite height n > 0. Then,
(1) AF0,F1(0) ' R0 ⊗R1 and
(2) each of the maps AF0,F1(m) ↪→ AF0,F1(m+ 1) is finite étale.

In particular, AF0,F1
is a filtered colimit of finite étale extensions of R0 ⊗R1.

Let us explore some of the consequences.

Corollary 15.3. The ring AF0,F1 is a faithfully flat over R0 ⊗R1.

Proof. Any étale algebra is flat, by definition, and it is faithfully flat when it is injective and
finite, as the induced map of affine schemes is both proper and dominant. It follows that each
of AF0,F1

(m) is faithfully flat over R0 ⊗ R1, and a filtered colimit of faithfully flat algebras is
faithfully flat, see [17, Tag 090N]. �

Corollary 15.4 (Lazard). Over a separably closed field k, any two formal group laws of finite
height n are isomorphic.

Proof. Let F0, F1 be two such formal group laws, and let us consider the base-change

B := AF0,F1
⊗k⊗k k.

By unwrapping the definitions, we see that k-algebra maps f : B → R are in one-to-one corre-
spodence between isomorphisms F0 ' F1 over R.

https://stacks.math.columbia.edu/tag/090N


FINITE HEIGHT CHROMATIC HOMOTOPY THEORY HARVARD MATH 252Y, SPRING 2021 67

By Theorem 15.2, we see that B ' lim−→B(m) is a filtered colimit of finite étale algebras over
k. Since the latter is separably closed, we deduce that each B(m) is isomorphic to a finite product
of copies of k. It follows that we can choose a compatible sequence of k-algebra homomorphisms
B(m)→ k, which together assemble into a map B → k. This classifies the desired isomorphism
between F0 and F1 over k. �

Our strategy of proving Theorem 15.2 will be somewhat roundabout. First, we will prove
that there exists a faithfully flat R0 ⊗ R1-algebra A (in fact, a filtered colimit of finite étale
extensions) such that F0 and F1 are isomorphic. By faithfully flat descent, we will be able to
reduce the description of AF0,F1

to the case of the Honda formal group law of Example 14.16
and its automorphisms, which we can then tackle directly. Both parts will use the theory of
Lubin-Tate formal group laws developed in the previous lecture.

Remark 15.5. It is possible to give a very direct proof of Theorem 15.2, that does not
proceed through faithfully flat descent to the Honda formal group law, see [12][Lecture 14]. We
will not proceed in this way, because automorphisms of the Honda formal group law will become
important later, so that we might as well compute them now.

Let us write R = R0⊗R1, we are interested in the R-algebra AF0,F1
classifying isomorphisms

between F0, F1.

Lemma 15.6. Let F0, F
′
0, F1 be formal group laws over R. Then, any choice of isomorphism

φ : F0 → F ′0 induces an isomorphism of R-algebras AF0,F1
' AF0,A1

compatible with the filtration.

Proof. The functors on R-algebras corepresented by these two algebras are isomorphic, with
isomorphism given by precomposition with φ. Explicitly, the map AF0,F1

→ AF ′0,F1
is the

unique one sending the power series
∑
i bix

i+1 to (
∑
i b
′
ix
i+1) ◦ φ(x). It is compatible with the

filtrations because the first m terms of each power series only depend on the first m terms of the
other. �

Lemma 15.7. For any homomorphism of rings f : R → R′, we have a canonical isomorphism
of R′-algebras R′ ⊗R AF0,F1

' Af∗F0,f∗F1
. If f is flat, then R′ ⊗R AF0,F1

(m) ' Af∗F0,f∗F1
(m)

for any m.

Proof. The first part is clear from the universal property of both sides. The second follows
from the fact that passing to a subalgebra generated by a set of elements commutes with flat
base-change. �

The following terminology is somewhat non-standard, but we will find it useful.

Notation 15.8. If R is an Fp-algebra and q = pn, then the q-perfect subalgebra Rq is given by

Rq := {x ∈ R | x = xq}.

Remark 15.9. Note that if R is a field, then Rq = R ∩ Fq. In general, Rq can be much larger;
an example would be given by an arbitrary product of Fq.

Lemma 15.10. Let R be an Fp-algebra and F a formal group law with p-series [p]F (x) = xq,
where q = pn. Then,

(1) F is a formal group law over the q-perfect subalgebra Rq,
(2) all endomorphisms of F have coefficients in Rq and
(3) F is isomorphic to the Honda formal group law of height n.

Proof. Let us write F (x, y) =
∑
ai,jx

iyj . Since the p-series is an endomorphism of F , we deduce
that F (x, y)q = F (xq, yq), so that∑

aqi,jx
qiyqj =

∑
ai,jx

qiyqj .
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This proves (1). Similarly, any endomorphism of F must also commute with the p-series, and
the same argument applied to it shows (2).

We are left with (3), by the above we can assume that R = Rq. In this case, R is perfect, so
that we have the ring of Witt vectors W (R) which is flat over Zp and W (R)/p ' R, so that the
Lubin-Tate lemma applies to it, see Remark 14.12.

Choose a lift F ′ of F to W (R), this can be done by the theorem of Lazard. Then, F ′ is
a Lubin-Tate formal group law for [p]F ′ ∈ Fp, as the latter reduces to [p]F (x) = xq modulo
p. The Honda formal group law is also Lubin-Tate, by definition, and the result follows as all
Lubin-Tate formal group laws are isomorphic by Proposition 14.14. �

Proposition 15.11. Let R be an Fp-algebra and F a formal group law of height exactly n. Then
there exists a faithfully flat R-algebra R′ over which F is isomorphic to the Honda formal group
law.

Proof. Since F is of height n, the multiplication by p on the associated formal group factors
through the n-th power of a relative Frobenius followed by an isomorphism. It follows that we
can write [p]F (x) = g(xq), where g(x) is an invertible power series over R.

By Lemma 15.10, it is enough to show that there is an isomorphism φ(x) to a formal group
law G with p-series [p]G(x) = xq. Since the latter p-series is the same as φ(x) ◦ g(xq) ◦ φ−1(x).
Thus, we’re looking for an invertible power series φ(x) such that

φ(x)q = φ(g(xq)).

If we write g =
∑
k akx

k+1 and φ(x) =
∑
i bix

i+1, the above translates into an equation

(
∑
i

bix
i+1)−1 ◦ (

∑
i

bqix
q(i+1)) = g(xq),

or in the notation φσ(x) =
∑
bqix

i+1, into the simpler

φ−1 ◦ φσ = g.

We will show this equation has a solution in some faithfully flat algebra R′.
For the above equation to hold for coefficients of x, we need to have

bq−1
0 = a0.

For any fixed a0, this can be solved by attaching to R the root of the polynomial p(x) = xq−1−a0.
Since p′(x) = (q − 1)xq−2 and a0 is a unit, these two are coprime in R[x] - in other words, p is
a separable polynomial - and it follows that attaching said root leads to a finite étale extension
R0.

Now suppose inductively that we have constructed compatible finite étale extensions R ↪→ Rm
such that the above equation has solutions for coefficients bk for k < m. By twisting F by the
resulting power series, with arbitrary choice of bk for k ≥ m, we can assume that

g(x) = x+ akx
k+1 + higher degree terms.

In this case, it is enough to look for φ of the form φ(x) = x + bkx
k+1. For the above equation

to hold for coefficients of xk+1, we need

bqk − bk = ak.

In other words, we need a root of p(x) = xq−x−ak. Since p′(x) = −1, which is a unit, attaching
the root of this polynomial to Rm gives a finite étale extension Rm → Rm+1.

We have constructed a sequence of finite étale maps R ↪→ R0 ↪→ R1 ↪→ . . . and a sequence
of power series φ such that the twists of F have p-series converging (in the x-adic topology) to
xq. Since the power series we twist by converge to the identity, the infinite composition of these
twists over R′ := lim−→Rm is well-defined and gives a formal group law isomorphic to F with the
needed p-series. �
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Recall that to prove Theorem 15.2, we need to prove that for any two formal groups F0, F1

over R, we have
(1) AF0,F1

(0) ' R
(2) AF0,F1

(m) ↪→ AF0,F1
(m+ 1) are finite étale

Since the property of being an isomorphism and of being finite étale are both preserved and
detected by faithfully flat extensions, Lemma 15.7, we deduce that the result holds for AF0,F1

if and only if it holds for Af∗F0,f∗F1 for any faithfully flat f : R→ R′.
By Proposition 15.11, there exists a faithfully flat extension over which both F0, F1 are

isomorphic to the Honda formal group law. Then Lemma 15.6 implies that it is enough
to prove the result when both F0, F1 are exactly the Honda formal group law. This is already
defined over Fp, and in this case we will describe the resulting algebra classifying automorphisms
explicitly.

16. Morava stabilizer groups

In the previous lecture, we have reduced the description of the algebra classifying isomor-
phisms between two formal group laws of the same exact height to the problem of describing the
algebra classifying automorphisms of the Honda formal group law.

Let us recall that Hn is the unique Lubin-Tate formal group law over Fp which admits a lift
H̃n to Zp with p-series [p]H̃n(x) = px+xq. Note that this in a certain sense the simplest possible
p-series that a formal group law over the p-adics which is of height exactly n after passing to Fp.

Since Hn is defined over Fp, it defines a formal group law over any Fp-algebra R, and our
goal is to understand its endomorphisms. Note that by Lemma 15.10, these endomorphisms
over R are the same as over the q-perfect subalgebra Rq := {r ∈ R | rq = r}, as they have to
commute with the p-series.

The algebra Rq is in particular perfect, and so it has a ring of Witt vectors W (Rq) to which
the Lubin-Tate lemma applies. The construction of endomorphisms of Lubin-Tate formal groups
given in Remark 14.15 gives a homomorphism of rings

[−] : W (Rq)→ End(H̃n/W (Rq))→ End(Hn/R
q)

into the endomorphism algebra of the Honda formal group law over Rq.

Remark 16.1. The above map is not quite surjective; since Hn is defined over Fp, the Frobenius
S(x) = xp is another endomorphism. We will show that together with the image of [−], the
Frobenius generates all endomorphisms of Hn.

Our first goal is to get a more explicit description of the ring homomorphism [−], at least for
some elements.

Lemma 16.2. Let r ∈ Rq and r̃ ∈W (Rq) be its Teichmüller representative. Then, [r̃](x) = r̃x.

Proof. Since [r̃] is by definition the unique endomorphism with leading term r̃, it is enough to
show that r̃x commutes with p-series and so defines an endomorphism of the Lubin-Tate formal
group law H̃n.

Since taking Teichmüller representatives is multiplicative and rq = r, we deduce that r̃q = r̃.
Then,

[p]H̃n(r̃x) = pr̃x+ (r̃x)q = r̃(px+ xq) = r̃[p]H̃n(x),

which is what we wanted. �

Observe that since r̃ reduces to r modulo p, we see that [r̃](x) = rx as an endomorphism of
the Honda formal group law (rather than its lift to the Witt vectors). To emphasize this point,
let us write [r] for this endomorphism, identifying r with its Teichmüller representative.
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Proposition 16.3. Any endomorphism φ(x) of the Honda formal group law Hn over Rq can be
written in the form

φ(x) =
∑
Hn

[ri] ◦ Si(x) =
∑
Hn

rix
pi

for a unique sequence ri ∈ Rq, where the sum is taken using the formal group law Hn and
S(x) = xp is the Frobenius. Conversely, any such sequence determines an endomorphism via
the above formula, which is invertible if and only if r0 is.

Proof. Suppose that φ(x) = rx+ higher order terms. Then, φ−Hn [r] is an endomorphism with
zero leading coefficient, and hence must be divisible by the Frobenius S by Proposition 13.7,
as the induced map on differentials is zero. Thus, we can write

φ = [r] +Hn (φ′ ◦ S)

for a unique r ∈ Rq. We can now apply the same argument to φ′(x) and induction gives the
needed decomposition.

Conversely, given any sequence ri as above, the above formula defines an automorphism, as
this infinite sum of endomorphisms converges in the x-adic topology. �

This almost immediately leads to the following fundamental result, which by the previous
lecture implies Theorem 15.2.

Theorem 16.4. The Fp-algebra AHn,Hn classifying automorphisms of the Honda formal group
law is isomorphic to

AHn,Hn ' Fp[t0, t1, t2, . . .]/(tq−1
0 = 1, tqk = tk for k > 0).

Under this isomorphism, the subalgebra A(m) corresponds to the subalgebra generated by those
ti such that pi < m. In particular

(1) A(0) ' Fp and
(2) each of the maps A(m)→ A(m+ 1) is finite étale, and an isomorphism unless m+ 1 is

a power of p.

Proof. The correspondence sends f : AHn,Hn → R to the automorphism

φf (x) =
∑
Hn

f(ti)x
pn

It is clearly natural in R, and a bijection by Proposition 16.3.
We are left with identifying the filtration. By definition, A(m) is the subalgebra generated

by the coefficients bk of xk+1 in the universal automorphism of Hn defined over AHn,Hn , which
in our case is ∑

k

bkx
k+1 =

∑
Hn

tix
pi

Expanding this out, we see that bk for k < m can be written as expressions in terms of ti for
pi < m and conversely, identifying the two filtrations. �

In fact, we can identify the algebra structure of End(Hn/R), where R = Rq is a q-perfect
Fp-algebra. We’ve seen that there’s a homomorphism

[−] : W (R)→ End(Hn/R)

which by the above together with the Frobenius S generates the whole endomorphism algebra.
This yields a surjective map

W (R)〈S〉 → End(Hn/R)

where the source is the free ring obtained from W (R) by attaching a single variable S, not
necessarily required to commute with the Witt vectors.
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It is necessarily to adjoin a non-commuting variable, as the element S does not commute with
endomorphisms defined by the Witt vectors. To describe what happens instead, we will need to
recall the Witt vector-Frobenius.

Remark 16.5. If R is perfect, the Frobenius automorphism FrobR(r) = rp lifts to an auto-
morphism σ : W (R)→ W (R) of the Witt vectors which on Teichmüller representatives acts by
taking p-th powers. From the latter property, we can describe σ completely.

That is, since p is a non-zero divisor in W (R) and the latter is p-complete, any Witt vector
can be uniquely written in the form ∑

i≥0

r̃ip
i

for unique ri ∈ R. Then
σ(
∑
i≥0

r̃ip
i) =

∑
≥0

r̃i
ppi.

Now suppose that [a](x) = ax is an endomorphism of Hn. In this case, we have

(S ◦ [a])(x) = (ax)p = apxp = ([ap] ◦ S)(x).

Thus, whenever x ∈W (R) is a Teichmüller representative, we have

S ◦ [x] = [σ(x)] ◦ S.
in the endomorphism algebra. As S necessarily commutes with p, we deduce that the above
relation holds in general, so that we have an induced ring homomorphism

W (R)〈S〉/(S · x− σ(x) · S)→ End(Hn/R).

There is one further relation in the target; namely, we have [p]Hn(x) = xq by construction,
the n-th power of the Frobenius. Thus, in the target we have Sn = p. Using Proposition 16.3,
we see that this is enough to give an isomorphism, yielding the following result.

Theorem 16.6. For any q-perfect R, the ring

W (R)〈S〉/(S · x− σ(x) · S, Sn − p),
where x ∈W (R), is canonically isomorphic to the endomorphism algebra End(Hn/R).

In the special case of a field when R = Fq is a field, the above algebra is known under a
slightly different name. In this case, we have W (Fq) = Zp[ζ], where ζ is a primitive (q− 1)-root
of unity. This is the ring of integers in the unramified extension of the p-adics described in
Example 14.8.

Applying Theorem 16.6, we see that

End(Hn/Fq) ' Zp[ζ]〈S〉/(Sζ − ζpS, Sn − p)
This is a free module over Zp[ζ] of rank n, and hence a free module over Zp of rank n2. Note
that Zp is in the center of this algebra, and in fact coincides with it. Moreover, the algebra of
endomorphisms is the division ring - over a field, a composition of two non-zero endomorphisms
is necessarily non-zero. Inverting p, we deduce that

Qp ⊗Zp End(Hn/Fq) ' Qp[ζ]〈S〉/(Sζ − ζpS, Sn − p)

is a central division algebra over the p-adic numbers of rank n2. Let us recall some facts about
such objects.

Remark 16.7. Isomorphism classes of central division algebras over a fixed field can be given
the structure of a group (by identifying them with Morita equivalence classes of central simple
algebras), the Brauer group. In the case of a p-adic local fieldK, we a have group homomorphism

inv : Br(K)→ Q/Z,
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called the Hasse invariant, which is in fact an isomorphism [16]. It follows that central division
algebras over K are classified by their Hasse invariant.

In the particular case of Qp ⊗Zp End(Hn/Fq), the Hasse invariant takes value 1
n . There is a

way to extend the p-adic valuation to a central division algebra, so similarly to local fields, they
have their rings of integers. In our case, the ring of integers is exactly End(Hn/Fq) which allows
us to rephrase Theorem 16.6 in the following way.

Proposition 16.8. The endomorphism ring of the Honda formal group law over Fq is isomor-
phic to the ring of integers in the central division Qp-algebra of Hasse invariant 1

n .

Remark 16.9. Note that in the statement of Proposition 16.8, we could have replaced Fq by
any separably closed field of characteristic p (or in fact any field containing primitive (q − 1)-th
roots of unity).

This is the curious feature of finite height formal groups which sets them apart from their
infinite height cousins - they have tendency to not gain automorphisms as we pass to larger
extensions.

Of particular importance is the automorphism group, which thus deserves a special name.

Definition 16.10. The Morava stabilizer group Sn is the group of automorphisms of the
Honda formal group law of height n over Fq.

Remark 16.11. The above group of automorphisms is almost universally called the Morava
stabilizer group in homotopy-theoretic literature, honoring the work of Jack Morava who was
the first to observe their importance to stable homotopy [13].

This group is also important in many parts of number theory, its representations related
to that of the general linear group by the Jacquet-Langlands correspondence. In arithmetic
literature, it is more often referred to as "the group of units in the integers of a central division
algebra of Hasse invariant 1

n".
The fact that the Morava stabilizer group arises as such a group of units has important

consequences, it makes it into a p-adic analytic Lie group. We will later see that this gives Sn
excellent cohomological properties.

By our classification of endomorphisms of the Honda formal group law, we see that any
element of the Morava stabilizer group can be written as an infinite sum∑

i≥0

aiS
i,

where ai ∈ Fq and a0 is a unit. The group structure here is multiplication, which distributes
over addition and for which we have Sa = apS, which guarantees that the product of any two
such sums can again be written in this form.

This is a profinite group, with a system of neighbourhoods of zero given by the open, finite
index subgroups

FkSn := {s ∈ Sn | s = 1 +
∑
i>k

aiS
i}

This profinite topology is the same as the x-adic topology on automorphisms.

Remark 16.12. There are two common variants on the Morava stabilizer group which are good
to keep in mind. The first one is the subgroup Sn := F0Sn of strict isomorphisms, sometimes
called the small Morava stabilizer group. This is a finite index subgroup, and taking the leading
coefficient gives a short exact sequence

0→ Sn → Sn → F×q → 0.
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The other one is the automorphism group Gn of the pair (Fq, Hn), sometimes called the
extended Morava stabilizer group. Its objects are pairs (σ, φ), where σ : Fq → Fq is an automor-
phism and φ : σ∗Hn → Hn is an isomorphism of formal group laws. This description gives a
semi-direct product decomposition

Gn ' Sn o Gal(F×q /Fp),

where the Galois group acts on Sn by acting on the coefficients in the "S-power series" expansion.
Note that Gn can be identified with the automorphism group of Spec(Fq) considered as an étale
sheaf overMfg through the choice of the Honda formal group law.

17. Local structure of the moduli of formal groups

We can use the results of the results of the last lecture to give a description of the moduli
stackM=n

fg of moduli of formal groups of height exactly n. There is a map Spec(Fp) →M=n
fg ,

classifying the Honda formal group law.
Our first goal is to show that this is an appropriate notion of a cover.

Lemma 17.1. The map Spec(Fp)→M=n
fg is faithfully flat.

Proof. We have to show that for any map Spec(R)→M=n
fg , which we can identify with a formal

group G → Spec(R) of height exactly n, the base-change Spec(R) ×M=n
fg

Spec(Fp) → Spec(R)

is a flat and surjective morphism of schemes.
This is a property Zariski-local on Spec(R), so we can assume that G ' GF comes from a

formal group law F . In this case,

Spec(R)×M=n
fg

Spec(Fp)→ Spec(R) ' Spec(AF,Hn)

is the R⊗Fp ' R algebra classifying isomorphisms between F and the Honda formal group law.
We have proven this is faithfully flat in Theorem 15.2. �

In fact, the proof of the above result shows that Spec(Fp) → M=n
fg is not only faithfully

flat, but also pro-étale, as the algebra AF,Hn is a filtered colimit of étale R-algebras. A minor
variation in our argument will show that it is even better than this; namely, that it is Galois.

Let us recall some basic results about Galois extensions. The relevant group here is the
Morava stabilizer group, which is profinite rather than finite, so that we need to work in this
level of generality.

Let A → B be a map of commutative rings, which we treat as equipped with the discrete
topology, and that G is a profinite group acting continuously on B by A-algebra homomorphisms.
In this case, we have a map

G×B ⊗A B → B

of sets, A-linear in the second variable, given by

(g, b1 ⊗a b2) 7→ (g · b1)b2.

This has an adjoint δ : B⊗AB → mapcts(G,B) into the ring of continuous functions on G, with
the coordinate-wise multiplication.

Definition 17.2. We say B is a G-Galois extension if
(1) B is a faithfully flat A-algebra,
(2) the map A→ B induces an isomorphism A ' BG between the fixed points and
(3) δ : B ⊗A B → mapcts(G,B) is an isomorphism.

Example 17.3. A finite extension K → L of fields is Galois in the classical sense if and only if
it is Aut(L/K)-Galois according to Definition 17.2.
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Example 17.4. Let K → L be a finite G-Galois extension of p-adic local fields. Then the
induced map OK → OL on rings of integers is Galois if and only if the extension is unramified;
that is, the image of any uniformizer of OK is a uniformizer of OL.

In particular, the only integral Galois extensions of Zp 'W (Fp) are the rings of Witt vectors
W (Fpn) for varying n. This is a general phenomena, Galois extensions of a complete discrete
valuation ring are in one-to-one correspondence with extensions of the residue field.

Example 17.5. For any ring A, mapcts(G,A) is the trivial G-Galois extension. Note that by
property (3) in Definition 17.2, any G-Galois extension is isomorphic to the trivial one after
passing to a faithfully flat extension.

Remark 17.6. If B is an A-algebra equipped with a continuous G-action which is Galois after
tensoring with a faithfully flat extension A → A′, then it is Galois. Indeed, all three of the
required properties are local in the faithfully flat topology.

In fact, in the last lecture we have seen an algebra which is almost a trivial Galois extension.
For brevity, let us write An for the Fp-algebra classifying automorphisms of the Honda formal
group law of height n, we have seen in Theorem 16.4 there is an isomorphism

An ' Fp[t0, t1, t2, . . .]/(tq−1
0 = 1, tqk = tk for k > 0).

This is not quite the ring of Fp-valued functions on any profinite group, which would necessarily
be just a filtered colimit of finite products of Fp; the reason for this failure is that the polynomials
xq − x do not split over Fp.

This problem disappears after passing to Fq, and in fact we can describe the resulting algebra
using the Morava stabilizer group. Recall that any element g ∈ Sn can be uniquely written in
the form

g =
∑
Hn

aiS
i,

where ai ∈ Fq and a0 is a unit. The elements ai define continuous Fq-valued functions on Sn.
Observe that these functions satisfy aqi = ai, as they are Fq-valued, and moreover aq−1

0 = 1, as
it is valued in units. The expression ∑

Hn

aix
pi

defines an automorphism of the Honda formal group law defined over the ring of continuous
functions on Sn, which is necessarily classified by an Fq-algebra homomorphism

h : Fq ⊗Fp An → mapcts(Sn,Fq).
Explicitly, this is the unique Fq-algebra map with h(ti) = ai.

Theorem 17.7. The algebra homomorphism h : Fq ⊗An → mapcts(Sn,Fq) is an isomorphism.

Proof. The coordinate functions ai define an isomorphism of profinite sets

Sn ' F×q × Fq × Fq × Fq × · · ·
The ring of continuous functions on Sn is the filtered colimit of functions on the finite product of
the first k factors, and Fq ⊗Fp An is the filtered colimit of subalgebras generated by ti for i < k,
we claim these get identified with each other.

As the space of functions on the first k factors can be identified with the tensor product of
spaces of functions of individual factors, it is enough to show that the latter get identified with
subalgebras generated by ti for a fixed i.

Since the polynomials tq−1
0 − 1 and tqi − ti split completely over Fq, the algebras obtained

by attaching their roots are just finite products of Fq. In fact, one checks directly that for the
zero-th factor we have mapcts(F×q ,Fq) ' Fq[t0]/(tq−1

0 − 1), where t0 corresponds to the inclusion
F×q → Fq, and mapcts(Fq,Fq) ' Fq[ti]/(tqi − ti) for the other factors. �
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Remark 17.8. Using the construction of the map h, one can check that it is even an isomorphism
of Hopf algebras over Fq. Here, the Hopf algebra structure on Fq⊗FpAn is induced by composition
of isomorphisms, and that of mapcts(Sn,Fq) by the composition in the Morava stabilizer group.

The algebra Fq ⊗An appearing in Theorem 17.7 is almost the self-intersection of

Spec(Fq)→M=n
fg ,

To get the actual intersection, we will have to use the full automorphism group of the above
map, that is, the extended Morava stabilizer group Gn ' Sn o Gal(Fq/Fp) of Remark 16.12,
as the field Fq has automorphisms which are compatible with the Honda formal group law.

We claim that the above map of stacks is Gn-Galois. In this case, the tensor product appearing
in Definition 17.2 corresponds to a self-intersection, and so we have to look at

Spec(Fq)×M=n
fg

Spec(Fq) ' Spec(Fq ⊗Fp An ⊗Fp Fq).

Note that as Fq-algebras, we have

Fq ⊗Fp An ⊗ Fq ' (Fq ⊗An)⊗Fq (Fq ⊗Fp Fq).
Using Theorem 17.7 and standard Galois theory applied to the extension Fp → Fq, we can
rewrite the right hand side as

mapcts(Sn,Fq)⊗Fq mapcts(Gal(F×q /Fp),Fq) ' mapcts(Gn,Fq).
One can check that this isomorphism is exactly the canonical one coming from the Gn-action on
Spec(Fq), proving the following.

Theorem 17.9. The map Fq → M=n
fg classifying the Honda formal group law is a Galois

covering with respect to its automorphism group Gn, the extended Morava stabilizer group.

Remark 17.10. Note that this implies thatM=n
fg is a quotient of Spec(Fq) by the action of the

Morava stabilizer group Gn in the ∞-category of stacks. Here, we have to consider stacks with
respect to the flat topology, as the étale topology is not quite enough - not all formal groups of
height exactly n are isomorphic to the Honda one over an étale extension. Thus, Theoorem
17.9 is often summarized by saying that

"the moduli of formal groups of height n is the classifying stack for the Morava stabilizer
group".

There is a subtlety here, because the action of Gn on Spec(Fq) is not trivial, so it is not quite the
classifying stack in the usual sense, but rather a Galois-twisted form of it. This can be avoided,
as we have an isomorphism of Fq-stacks

Spec(Fq) // Sn ' Fq ×M=n
fg ,

where on the left hand side we have the quotient in stacks, and now the action of Sn is trivial.
Beware that the above isomorphism is not equivariant with respect to the Galois group

Gal(Fq/Fp), as otherwise it would necessarily descend to one over Fp, which is not possible.
This reflects that most automorphisms of the Honda formal group law are not yet defined over
Fp, but they’re all already defined over the finite extension Fq.

The above result gives us a complete description of the moduli of formal groups of fixed finite
height. However, it is perfectly possible for a formal group to not be exactly of any height,
even locally; that is, Mfg is not just a disjoint union of the substacks M=n

fg . To understand
Mfg, the cohomology of which approximates the stable homotopy groups of spheres, we need to
understand how these strata are glued.

Example 17.11. Let F be a formal group law over k[ε] := k[ε]/(ε2) for which v1 = ε and v2 = 1,
we know one like that exists by Corolary 14.5. Then, this formal group is not at least of height
two, as v1 is not zero.
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On the other hand, k[ε] has only a single maximal ideal, given by (ε), and the projection F |k
is of height exactly two. The failure of that to be true over k[ε] itself is somewhat mild, it comes
to the element v1 which is not zero, just nilpotent.

To begin with, let us understand the formal groups which are similar to the one appearing
in Example 17.11; that is, those which are of exact height "up to nilpotents". In geometric
language, we will be studying the infinitesimal neighourhood of M=n

fg in the whole moduli of
formal groups.

To begin with, we need some notion of a ring which is "not too far from a field".

Definition 17.12. An infinitesimal thickening of a field k is a ring A together with a
surjection p : A→ k such that for m = ker(p) we have

(1) mn = 0 for n large enough and
(2) mn/mn+1 is a finite dimensional k-vector space for every n.

We denote the category of infinitesimal thickenings by Artk.

Remark 17.13. Every infinitesimal thickening A is an Artin local ring; conversely, any Artin
local ring is canonically an infinitesimal thickening of its residue field.

The key point in Definition 17.12 is that the map A→ k induces an isomorphism A/m ' k
which is part of the data; this means that for a map of Artin local rings to be a morphism in
Artk it needs to be compatible with these identifications.

Suppose that G0 → Spec(k) is a formal group. A deformation of G0 to an infinitesimal
thickening A is a formal group G→ Spec(A) together with an isomorphism

G×Spec(A) Spec(k) ' G0.

This is analogous to the notion of deformation we have introduced previously, except now we’re
allowing deformations to arbitrary A ∈ Artk, rather than just k[ε]. Informally, G0 can be iden-
tified with a point x : Spec(k)→Mfg and its deformations form an infinitesimal neighbourhood
of that point.

It is possible to phrase our results in terms of formal groups, but since over a field - in fact,
over any local ring - a formal group can always be presented by a formal group law, it will be
convenient to work directly with the latter.

If F0 ∈ Fgl(k), let us say that F ∈ Fgl(A) is a deformation if p∗F = F0; that is, if F
reduces to F0 modulo the maximal ideal of A. Note that this is an actual equality of formal
group laws, we will see in a second that is actually okay. An isomorphism of deformations of F0

is an isomorphism of formal group laws which is the identity modulo m.

Lemma 17.14. The natural map DefF0
(A)→ DefGF0

(A) between the groupoids of deformations
of a formal group law F0 and its associated formal group is an equivalence of groupoids for any
infinitesimal thickening A→ k.

Proof. It is clear this is fully faithful, we just have to check that it is essentially surjective. If
G ∈ DefG0(A), then its Lie algebra must be free of rank one, as A is a local ring, so that we can
assume that G ' GF for some formal group law together with an isomorphism φ : p∗F → F0.
Since A → k is surjective, we can lift φ to an element of A[[x]]; the twist of F by this power
series is a deformation of F0 whose formal group is isomorphic to G as a deformation of G0. �

The key property distinguishing formal groups of finite height from their infinite height cousins
is the following result.

Theorem 17.15. If F0 is a formal group law over k of finite height, then the groupoid DefF0(A)
is discrete; that is, it has only identity automorphisms.
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Proof. Suppose that F is a deformation of F0 and suppose that φ : F → F is its automorphism as
a deformation; that is, such that φ(x) = x modulo m. We want to show that φ(x) = idF (x) = x.

The automorphism φ is classified by A-algebra homomorphism φ̃ : AF → A from the A-
algebra classifying automorphisms of F , which we have described in Theorem 15.2. There is a
different homomorphism classifying the identity of F , we want to show these are in fact equal.

By assumption the two different composites

AF → A→ A/m

coincide; we will show by induction that they agree as maps into A/mn for all n. Since A/mn ' A
for all n large enough, this will finish the proof.

Suppose we know that the two ring homomorphisms into A/mn coincide. It follows that the
difference φ̃− ĩdF of the two composites

AF → A/mn+1

is a mn/mn+1-valued A-linear derivation, as A/mn+1 → A/mn is a square-zero extension. This
is classified by a map

Ω1
AF /A

→ mn/mn+1

which is necessarily zero, as the source vanishes because AF is a filtered colimit of étale extensions
of A. This ends the argument. �

Remark 17.16. In the statement of Theorem 17.15, it is important that we assume that
F0 is of finite height. For example, φ(x) = (1 + ε)x is an automorphism of the additive formal
group law over k[ε] which is the identity modulo m = (ε), but is not the identity itself. Thus,
deformations of formal group laws of infinite height can have additional automorphisms.

18. Deformations at finite height

In the previous lecture, we introduced the notion of an infinitesimal thickening which is an
Artin local ring A together with a chosen isomorphism A/m ' k. These can be assembled into
a category Artk, and we have a deformation functor

A→ DefG0
(A)

which sends an infinitesimal thickening to the groupoid of deformations of G0 to A and their
isomorphisms. The main result, namely Theorem 17.15, was that in the finite height case, this
groupoid is actually discrete. That is, deformations of formal groups of finite height to Artin
local rings do not have any non-trivial automorphisms.

It is easier to work here in the relative situation, as this will give us an access to a powerful
criterion for describing deformation functors. In what follows, let R be a complete neotherian
local ring with residue field A/m ' k.

Definition 18.1. A local R-algebra A is an infinitesimal thickening of k if it is an Artin
local ring and the structure map R→ A induces an isomorphism k ' R/m ' A/mA on residue
fields.

We will denote the category of R-algebra infinitesimal thickenings by ArtR. Note that it is
not needed to keep k as part of the notation, as the following remark shows.

Remark 18.2. The main advantage of this relative situation is that the identification A/mA ' k,
which is part of the structure of an infintesimal thickening, is now determined by the R-algebra
structure. Thus, the category of R-algebra infinitesimal thickenings is a full subcategory of the
category of R-algebras.

Remark 18.3. The ring R itself is not itself an object of ArtR unless R is an Artin local ring,
but it is always a limit of such. Namely, by completness we have R ' lim←−R/m

n, and each of the
latter is an Artin local ring since it is local neotherian with nilpotent maximal ideal.
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Remark 18.4. We will later show that if k is a perfect, it is possible to reduce the absolute
situation to the relative one using the Witt vectors.

In this context, Lubin and Tate prove the following fundamental result [10].

Theorem 18.5 (Lubin-Tate). Let R be a complete neotherian local ring with residue field k and
let G0 → Spec(k) be of finite height n. Then, there exists a natural in A ∈ ArtR equivalence

DefG0(A) ' m×n−1
A

between the groupoid of deformations of G0 and the set of (n − 1)-tuples of elements of the
maximal ideal of A, considered as a groupoid with only identity morphisms.

Remark 18.6. The equivalence of Theorem 18.5 is not canonical, and there are many equiv-
alences as above, none of which is preferred.

The equivalence of Theorem 18.5 doesn’t quite say that the deformation functor is rep-
resentable, as it is quite difficult to be representable in the category of R-algebra infinitesimal
thickenings, as it is very small. Instead, the functor is represented by a "formal scheme".

Proposition 18.7. The functor Fn : ArtR → Set given by F (A) = mnA is isomorphic to the
formal spectrum of the power series ring R[[u]] := R[[u1, . . . , un−1]]; that is, we have natural
isomorphisms

Spf(R[[u]])(A) ' lim−→
i

Spec(R[[u]]/ni)(A) ' lim−→
i

HomCAlgR(R[[u]]/ni, A) ' mnA,

where n = (m, u1, . . . , un) is the unique maximal ideal of R[[u1, . . . , un−1]].

Proof. We’ve seen in Example 2.20 that the power series ring represents the set of nilpotent
elements. These coincide with mA here, since A is an Artin local ring. �

Remark 18.8. In the language of schemes, the functor Fn(A) = mnA is Ind-representable, that
is, it is a filtered colimit of representables, as each of R[[u]]/ni is an R-algebra infinitesimal
thickening. Dually, working with rings, it is common to say that Fn is pro-representable by
R[[u]]. Both of these mean the same thing, namely Proposition 18.7.

The advantage of this set up is that there is a powerful criterion due to Schlessinger which
allows one to show that a functor F : ArtR → Set is represented by a formal affine space; that
is, that it is of the simple form given in Proposition 18.7. In this lecture, we will apply this
criterion to the problem of deforming formal groups, recovering Lubin-Tate’s Theorem 18.5.

Observe that any functor of the form A 7→ mnA for some fixed n has the following properties:
(1) F (k) = pt.
(2) if A0 → A01 and A1 → A01 are surjections of R-algebra infinitesimal thickenings, then

the canonical map

F (A0 ×A01
A1)→ F (A0)×F (A01) F (A1)

is an isomorphism.
(3) if A→ A is surjective, so is F (A)→ F (A)

There will be one more property we will need, but first let us see why A→ Def(A)G0 satisfies
the above three criteria of Schlessinger.

To begin with, the "zero-th" implicit criterion is that DefG0
(A) is in fact valued in sets, rather

than groupoids. We verified this is the case of G0 is of finite height in Theorem 17.15.
The first property is immediate, there are no non-trivial deformations to k itself, since the

formal group G0 is fixed. The second one is more involved. The key is the following result which
tells us that we can glue schemes along an inclusion of a closed subscheme.
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Lemma 18.9. Let A0 → A01 and A1 → A01 be a map of rings, the first one of which is
surjective. Then, the diagram

Spec(A01) Spec(A0)

Spec(A1) Spec(A0 ×A01 A1)

is a pushout diagram of schemes.

Proof. This is [17, Tag 0ET0]. �

In fact, one can show that in the situation of Lemma 18.9, the above diagram is even a
pushout of stacks. Since the category of étale stacks is an ∞-topos, to define an object

V → Z0 tZ01
Z1

over a pushout it is enough to give an objects over Z0, Z1 and Z01 together with relevant
identifications; that is, passing to overcategories takes colimits of stacks to limits of∞-categories.
In our situation, this tells us that we an equivalence

DefG0
(A0 ×A01

A1)→ DefG0
(A0)×DefG0

(A01) DefG0
(A1).

These are all discrete groupoids in this case, so this is just a pullback of sets in the usual sense,
giving property (2).

Remark 18.10. The above "gluing along closed subschemes" argument is very general, and
shows that almost any natural functor of geometric nature will satisfy the second property.
Where things usually go wrong is that often functors fail the implicit requirements of being
valued in sets, rather than groupoids.

One can try to pass from groupoids to sets by "forcing it"; that is, passing to isomorphism
classes of objects. Unfortunately, this will in general destroy property (2), as to give a geometric
object over the pushout it’s not enough to choose an isomorphism class over each piece, one also
needs identifications. In the Lubin-Tate case, we get around this using Theorem 17.15, which
says that the needed isomorphisms, if they exist, are necessarily unique.

Finally, property (3) is a consequence of Lemma 17.14, which allows us to replace the
functor of deforming a formal group by one of deforming a formal group law. in the second case,
surjection is an immediate consequence of Lazard’s theorem, as formal group laws can always
be lifted along surjections.

Unfortunately, the first three criteria of Schlessinger don’t quite yet identify functors of the
form A 7→ m×nA . The last criterion requires a little bit of an explanation.

Construction 18.11. Namely, recall from our discussion of deformations preceding the proof
of Lazard’s theorem that the algebra k[ε] := k[ε]/ε2 has a structure of an abelian group object
in algebras over k, in fact of a k-vector space object. This follows from the fact that trivial
square-zero extension construction

V 7→ k ⊕ V
from k-vector spaces to algebras over k is a limit preserving functor, and so it takes k to the
k-vector space object k ⊕ k ' k[ε].

If F is a functor satisfying Schlessinger’s (1)− (3) then the addition map

k[ε]×k k[ε]→ k[ε]

induces a map

F (k[ε])× F (k[ε]) ' F (k[ε])×F (k) F (k[ε]) ' F (k[ε]) ' F (k[ε]×k k[ε])→ F (k[ε]),

https://stacks.math.columbia.edu/tag/0ET0
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where in the first bijection we’ve used property (1) and in the second property (2). Similarly,
we get maps corresponding to multiplication by scalars. By functoriality, this will make F (k[ε]),
which is a priori only a set, into a k-vector space.

Definition 18.12. Let F : ArtR → Set be a functor satisfying Schlessinger’s criteria (1)− (3).
The tangent space of F is the k-vector space F (k[ε]).

Example 18.13. The tangent space of the functor Fn(A) = m×nA is Fn(k[ε]) ' (ε)×n. This is
an n-dimensional k-vector space; in particular, it is of finite dimension.

We have an isomorphism Fn ' Spf(R[[u1, . . . , un]]) by Proposition 18.7 and under this
isomorphism a basis of the tangent space is given by the unique continuous R-algebra maps
R[[u1, . . . , un]]→ k[ε] which send one of the ui to ε and all the others to zero.

The fundamental result of Schlessinger, extending earlier work of Grothendieck, is that the
last property uniquely characterizes functors represented by a formal affine space.

Theorem 18.14. Let F : ArtR → Set be a functor satisfying Schlessinger’s criteria (1) − (3)
and suppose that the tangent space F (k[ε]) is of finite dimension n over k. Then, there exists a
natural isomorphism

F (A) ' m×nA ;

that is, F is isomorphic to the formal affine space over R of dimension n.

Proof. Choose a basis ai of the tangent space of F . The tuple a = (a1, · · · , an) specifies an
element

a ∈ F (k[ε]×k · · · ×k k[ε]) ' F (k[ε])× · · ·F (k[ε]).

There is a unique continuous map of R-algebras f : R[[u1, · · · , un]] → k[ε] ×k · · · ×k k[ε] such
that

f(ui) = (0, · · · , 0, ε, 0, · · · , 0),

with ε in the i-th spot. This map is surjective and defines a compatible system of surjections

. . .→ R[[u]]/n3 → R[[u]]/n2 → k[ε]×k · · · ×k k[ε]

of R-algebra nilpotent thickenings, where n = (m, u1, . . . , un) is the maximal ideal of R[[u]].
Applying F to the above tower, we obtain surjections of sets and so we can pick an element

a ∈ F (R[[u]]) := lim←−F (R[[u]]/ni) whose image in F (k[ε] ×k · · · ×k k[ε]) is a. The element a
specifies a natural transformation

Spf(R[[u]])→ F

which is an isomorphism on tangent spaces by construction and Example 18.13.
To finish the proof, it is enough to check that if F → G is any natural transformation of

functors satisfying Schlessinger’s criteria which is an isomorphism on tangent spaces, is actually
a natural isomorphism. We will check that F (A) → G(A) is a bijection for any A ∈ ArtR by
induction on the "size"

s(A) :=
∑
i≥0

dimk(miA/m
i+1
A ).

The base case is not difficult; if s(A) = 1, then s(A) = k and F (k) → G(k) is a bijection by
criterion (1).

Now assume that s(A) > 1, then we can pick an element x ∈ A which is non-zero but
annihilated by mA. The map m : k[ε]×k A→ A given by

m(a+ bε, a) = a+ bε,

where a ∈ k ' A/mA is the reduction of a, given an action of the tangent space on F (A). Since
m and projection onto A coincide after mapping to A/x, we deduce that the tangent space acts
separately on each fibre of F (A) → F (A/x). We claim this action is free; that is, that F (A) is
a torsor for F (k[ε]) with quotient exactly F (A/x).



FINITE HEIGHT CHROMATIC HOMOTOPY THEORY HARVARD MATH 252Y, SPRING 2021 81

There is an isomorphism of R-algebras ∆ : A×k k[ε]→ A×A/x A given by the formula

∆(a, a+ bε) = (a, a+ bx),

where a ∈ k ' A/mA is the reduction of a. It follows that

F (A)×F (A/x) F (A) ' F (A×A/x A) ' F (A×k k[ε]) ' F (A)× F (k[ε]).

This identification is compatible with the actions and we deduce that the action on F (A) was
free as needed.

Finally, by induction F (A/x)→ G(A/x) is a bijection, as is F (k[ε])→ G(k[ε]) by assumption.
It follows that F (A)→ G(A) is a map of torsors for isomorphic groups with bijective quotients.
It must be then a bijection, ending the argument. �

Since we verified that the deformation functor of a formal group G0 of finite height satisfies
criteria (1)− (3), to finish proving Lubin-Tate’s Theorem 18.5 we have to prove the following.

Proposition 18.15. Let G0 → Spec(k) be a formal group of finite height n. Then, the tangent
space to the functor DefG0

(−) is (n− 1)-dimensional.

Proof. We have to describe the groupoid DefG0
(k[ε]) of deformations to the trivial square-zero

extension. By Lemma 17.14, we can assume that G0 ' GF0 comes from formal group law F0

and instead consider deformations of the latter.
Let F ∈ Fgl(k[ε]) be a deformation; that is, it is a formal group law which reduces modulo

ε to F0. Since F0 is of height n, we have vi(F0) = 0 for i < n. It follows that we can write
vi(F ) = aiε. We claim that the (n− 1)-tuple

(a1, . . . , an−1)

depends only on the isomorphism class of F as a deformation. Suppose that F ′ is an isomorphic
deformation, so that these two differ by twist by φ(x) = x+ a(x)ε. Then,

[p]F ′(x) = φ(x) ◦ [p]F (x) ◦ φ−1(x).

Since ε2 = 0 and [p]F (x) is divisible by ε below xp
n

, we deduce that the terms up to xp
n

are
unchanged. Thus, vi(F ) = vi(F

′) for i < n.
The above tuple defines a map

DefF0
(k[ε])→ kn−1

from the tangent space to deformations. It is surjective, as the elements vi are generators of the
p-local Lazard ring and so their lifts can be chosen arbitrarily.

We have to check that it is injective; it is not hard to verify that it is a map of abelian groups
so that we only have to show that the kernel vanishes. Thus, let F,G be deformations of F0

such that both vi(F ) and vi(G) vanish for i < n. It follows that F,G are both of height exactly
n. We have to check they’re isomorphic.

Let R be the k[ε]-algebra classifying isomorphisms between them, we have to show that there
is a map R → k[ε] such that the composite R → k corresponds to the identity of F0, so that F
and G are isomorphic as deformations. However, R is an inductive limit of étale extensions of
k[ε] and so there is a unique lift to k[ε] of the given map into k. �

Remark 18.16. We have seen before that the isomorphism classes of deformations to k[ε] (to a
possibly non-commutative formal group scheme) are classified by the second cohomology group
H2(G0, k) by a result of Illusie, which we stated as Theorem 8.12.

This cohomology group can be attacked directly, by filtering the resulting complex using the
x-filtration. Since any formal group is given by ordinary addition up to higher order terms, the
cohomology of the associated graded complex is the cohomology of the additive formal group
law which we computed in Theorem 8.15. The differentials can be computed explicitly, giving
a different proof of Proposition 18.15, see [14][3.4.12].
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Depending on the context, there might not be a preferred complete neotherian local R such
that one is interested in classifying deformations to R-algebra infinitesimal thickenings. Luckily,
if k is perfect, there is a canonical choice, given by the Witt vectors W (k).

The key is the following little result.

Lemma 18.17. Let k be a perfect field of characteristic p. Then, for any infinitesimal thickening
A ∈ Artk there is a unique continuous map W (k)→ A compatible with projections onto k.

Proof. The key step is showing that for any m ≥ 1, we have

Ω1
(W (k)/pm)/(Z/pmZ) = 0,

in fact the whole cotangent complex vanishes. This is proven by base-changing to Z/pZ and
using the assumption that k is perfect to prove vanishing there. This is not too involved, but
requires the theory of the cotangent complex which we didn’t cover, for an elementary account
see [18][3.27].

Now suppose that A is an infinitesimal thickening. Since the maximal ideal is nilpotent and p
necessarily belongs to it, we must have pm = 0 in A for some m. Then, it is enough to check that
there is a unique mapW (k)/pm → A compatible with projections onto k, this will necessarily be
a map of Z/pmZ-algebras. This is proven as in Theorem 17.15, by arguing that it is enough
to construct unique lifts A/mi+1

A → A/miA for all i, which follows from the vanishing of the
cotangent complex. �

Corollary 18.18. The forgetful functor ArtW (k) → Artk from W (k)-algebra thickenings infini-
tesimal to infinitesimal thickenings is an equivalence.

Combining the above together with Lubin-Tate’s result, we obtain the following special case.

Corollary 18.19. For any perfect field k and any formal group G0 → Spec(k) of height n <∞,
there exists a complete local neotherian W (k)-algebra E0(G0), non-canonically isomorphic to
W (k)[[u1, · · · , un−1]] and a deformation G→ Spf(E0) inducing an isomorphism

Spf(E0)(A) ' DefG0
(A)

for any infinitesimal thickening A of k.

The object whose existence is implied by the above result is one of the central objects in the
theory of formal groups and chromatic homotopy theory, and so deserves an explicit definition.

Definition 18.20. If G0 → Spec(k) is a formal group of finite height over a perfect field,
the complete neotherian local W (k)-algebra E0(G0) representing the functor of deformations is
called the Lubin-Tate ring.

Remark 18.21. The subscript in E0 refers to the fact that E0(G0) can be canonically identified
with the zero-th homotopy group of a certain ring spectrum, as we will see later. It is common
to just write E0 if the formal group is understood.

Remark 18.22. The universal property shows that E0 is functorial in the formal group and
the base field. In particular, for k = Fpn and G0 the Honda formal group, we obtain an action
of the Morava stabilizer group Gn.

Beware that while E0 is (non-canonically) isomorphic to a power series ring, and so can be
made quite explicit, this action turns out to be incredibly complicated.

Remark 18.23. It is possible to write down the explicit deformation quite explicitly by analyz-
ing the proof of Lubin-Tate’s theorem. Namely, if G0 is a formal group associated to a formal
group law H over k, then any deformation H̃ ∈ Fgl(W (k)[[u1, . . . , un−1]]) such that vi(H̃) = ui
for 1 ≤ i ≤ n− 1 is universal.
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19. Landweber exact functor theorem

Recall that the basic connection between Mfg and the stable homotopy category was as
follows. We have the complex bordism spectrum which determines a homology theory

X ∈ Sp 7→ MU∗X ∈ModMU∗

Since MU is a homotopy ring spectrum of Adams-type, the MU-homology in fact has a structure
of a a comodule over MU∗MU.

We have seen in Proposition 12.8 that the category of even graded MU∗MU-comodules can
be identified with quasi-coherent sheaves on Mfg. Thus, each spectrum determines two such
quasi-coherent sheaves, one for even and odd degree homology. The Adams-Novikov spectral
sequence then relates stable homotopy groups to the cohomology of the moduli of formal groups,
as we’ve seen in Theorem 12.10.

This gives us a way to passage from homotopy-theoretic to algebraic information, and we
would like at least a partial way back. The key construction that allows this is the Brown
representability theorem, which tells us that any cohomology theory on spectra is represented
in the stable homotopy category. As we already have a homology theory valued corresponding
to moduli of formal groups itself, namely complex bordism, it is natural to start there with the
following construction.

Construction 19.1. To an MU∗-moduleM we associate a functor MU∗(X,M) : Sp→ModMU∗

given by
MU∗(X,M) := M ⊗MU∗ MU∗(X)

Let us give a couple of simple examples.

Example 19.2. If M = MU∗, then MU∗(X,MU∗) ' MU∗X.

Example 19.3. Similarly, we have MU∗(X, p
−1MU) ' p−1MU∗(X).

In the above examples, the functor MU∗(X,M) is actually a homology theory. Unfortunately,
this is not always the case.

In more detail, MU∗(X,M) preserves direct sums and takes the suspension to a grading shift.
However, it need not be exact, as tensor products do not in general preserve exactness. This
leads to the following natural question.

Question. For which MU∗-modules M is the functor MU∗(−,M) a homology theory?

Note that a sufficient condition is for M to be flat as an MU∗-module; this is exactly what
happened in Example 19.2 and Example 19.3. Unfortunately, this is a very strong condition,
since the Lazard ring L ' MU∗ is a polynomial ring in infinitely many variables, and flatness
over such rings is quite involved, in particular implying that each polynomial generator acts
injectively.

To show that less is needed, we would like to involve the moduli of formal groups into the
picture. Consider the faithfully flat covering

p : Spec(L)→Mfg

which induces an adjunction

p∗ a p∗ : QCoh(Mfg) � QCoh(Spec(L)) 'ModL

which in terms of comodules corresponds to forgetful-cofree adjunction

ComodevMU∗MU � ModevMU∗

between even graded comodules and modules.
The key observation is that for any spectrum X, its MU -homology has a descent datum to

quasi-coherent sheaf over the moduli of formal groups. In terms of the above adjunction, this



FINITE HEIGHT CHROMATIC HOMOTOPY THEORY HARVARD MATH 252Y, SPRING 2021 84

is saying that MUev∗ X ' p∗FX for some canonical FX ∈ QCoh(Mfg). Suppose that M has a
structure of a comodule, so that M ' p∗FM . Then, at least when MU∗X is in even degrees, we
have

MU∗(X)⊗MU∗ M ' p∗FX ⊗MU∗ p
∗FM ' p∗(FX ⊗Mfg

FM )

since the pullback functor p∗ is symmetric monoidal. In general, MU∗X will determine two
quasi-coherent sheaves, and the above formula will hold for each one separately. Since p is flat,
the pullback functor p∗ is exact, and we deduce the following.

Corollary 19.4. If M is an even graded MU∗MU-comodule such that the corresponding quasi-
coherent FM ∈ QCoh(Mfg) is flat, then MU∗(−,M) is a homology theory.

The power of the above is that it is much easier to be flat over the moduli of formal groups
rather than its faithufully flat cover given by the Lazard ring. In fact, we have the following
criterion of Landweber.

Theorem 19.5 (Landweber). Let M be an even graded MU∗MU-comodule such that for every
prime p, we have that

(1) vi acts injectively on M/(v0, · · · , vi−1) and
(2) M/(v0, · · · , vn) vanishes for n large enough.

Then, the corresponding FM ∈ QCoh(Mfg) is flat.

Remark 19.6. Note that the choice of prime is implicit in the choice of elements vi, which are
defined as the coefficients of xp

i

in the p-series of the universal formal group law over the Lazard
ring L ' MU∗. Since v0 = p at every prime, the first part of the condition implies that M is
torsion free as an abelian group.

Before proving the above criterion, it will be convenient to translate it into algebro-geometric
terms. Recall that we have the chromatic filtration of the moduli of formal groups

Mfg ⊇M≥1
fg ⊇M

≥2
fg ⊇ . . .

given by substacks classifying formal groups at least of a certain fixed height. Here, each substack
M≥nfg is closed, defined by the vanishing of the n-th invariant ideal In of Definition 14.2.

Lemma 19.7. The inclusion in :M≥nfg ↪→Mfg induces an adjunction

i∗n a (in)∗ : QCoh(Mfg) � QCoh(M≥nfg )

in which the right adjoint is exact and fully faithful, and the left adjoint satisfies Rti∗n = 0 for
t > n; that is, its left derived functors vanish above degree n.

Proof. Since a formal group associated to a formal group law is of height at least n if and only
if vi = 0 for i < n, we deduce that we have a pullback diagram of the form

Spec(L/(v0, · · · , vn−1)) Spec(L)

M ′ M

pp′
i′n

in

Since the right vertical arrow is faithfully flat, so is the left vertical one.
We first claim that the adjunction induced by the upper horizontal arrow, which can be

identified with the extension of scalars adjunction along L→ L/(v0, · · · , vn−1), has the claimed
properties. It is clear that the right adjoint is fully faithful and exact, so we only have to prove
that TortL(L/(v0, · · · , vn−1,−) vanishes for t > n. This can be proven by induction on n, since
after modding out by p the elements v1, v2, . . . can be chosen as polynomial generators of the
Lazard ring by Proposition 14.4 and so form a regular sequence.
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To see this is enough, observe that we have p∗(in)∗F ' (i′n)∗(p
′)∗F since all of these maps

in the pullback square are affine. It follows that (in)∗ is exact, since p∗ is faithfully exact and
the right hand side is exact. To see it’s fully faithful, we have to check that the counit map
i∗n(in)∗F → F is an isomorphism for any F ∈ QCoh(M≥nfg ), we can check it after pulling back
along p′. Then

(p′)∗i∗n(in)∗F ' (i′n)∗p∗(in)∗F ' (i′n)∗(i′n)∗(p
′)∗F ' (p′)∗F

which is what we wanted.
Finally, since p∗ and (p′)∗ are exact, the derived functors of p∗(in)∗F ' (i′n)∗(p

′)∗F can be
identified with

p∗ ◦Rt(in)∗ ' Rt(i′n)∗ ◦ (p′)∗.

The right hand side vanishes for t > n by what we’ve done above. �

Remark 19.8. The proof of Lemma 19.7 we gave was somewhat involved, since we worked in
algebro-geometric language. In terms of comodules, the adjunction induced by in is the extension
of scalars adjunction

ComodevMU∗MU � ComodevMU∗MU/(v0,...,vn−1).

In these terms, the needed properties can be verified directly by reducing to the case of modules.
This is, in more invariant language, exactly what happens in the proof given above.

The good properties guaranteed by Lemma 19.7 follow from the fact that, geometrically,
each of the inclusions

M≥n+1
fg →M≥nfg

is an effective Cartier divisor; that is, an inclusion of a substack cut out by vanishing of one
regular function. This "function" in this case is the element vn, which is not quite a global
section of the structure sheaf, but rather of a certain line bundle, as we will now see.

Lemma 19.9. The element vn defines a section of i∗nωp
n−1, the restriction of the power of the

Lie algebra line bundle toM≥nfg .

Proof. If F ∈ Fgl(R) is a formal group of height at least n, so that [p]F (x) = vn(F )xp
n

+
higher order terms, and φ(x) is an invertible power series with leading term a ∈ R×, then

φ(x)−1 ◦ [p]F (x) ◦ φ(x) = ap
n−1vn(F ) + higher order terms.

Thus, vn(F ) is acted on trivially by the group of strictly invertible power series and acted on by
Gm using the rule (a, vn) 7→ ap

n−1vn and so descends to a section of the given line bundle after
unwrapping the definitions. �

Remark 19.10. The element vn doesn’t define a section of ωp
n−1 on all of Mfg, as unless F

is of formal group law of height at least n, the action by conjugation is more complicated than
that appearing in the proof of Lemma 19.9.

If OMfg
is the structure sheaf of the moduli of formal groups, then multiplication by vn yields

a short exact sequence of quasi-coherent sheaves

0→ ω⊗−(pn−1) ⊗ (in)∗i
∗
nOMfg

→ (in)∗i
∗
nOMfg

→ (in+1)∗i
∗
n+1OMfg

→ 0.

or perhaps more suggestively of the form

0→ ω⊗−(pn−1) ⊗OM≥nfg
→ OM≥nfg

→ OM≥n+1
fg

→ 0,

where we’ve dropped the pushforwards along closed inclusions, as is usually done, since they are
fully faithful embeddings of categories.

If F ∈ QCoh(Mfg) is flat, then tensoring with it will preserve exactness of the above sequences.
In this language, Landweber’s theorem can be translated as saying that this is also sufficient,
giving the following criterion.
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Theorem 19.11 (Landweber). Let F ∈ QCoh(Mfg) be a quasi-coherent sheaf such that for
every prime p we have

(1) for every n, the induced right exact sequence

ω⊗−(pn−1) ⊗ i∗nF → i∗nF → i∗n+1F → 0,

is also exact on the left and
(2) i∗nF vanishes for n large enough.

Then F is flat.

Remark 19.12. We should stress here that Theorem 19.5 and Theorem 19.11 are exactly
the same result, just stated in slightly different languages.

Proof. Flatness can be detected one prime at a time, since an abelian group A is flat if and only
if A ⊗ Z(p) is flat for every prime p. Thus, we can assume that p is fixed an work exclusively
withMfg × Spec(Z(p)), the moduli of formal groups over p-local rings.

Suppose F ∈ QCoh(Mfg) satisfies the above conditions. We have to show that Tor1(F ,N ) = 0
for any other quasi-coherent N . The multiplication by p sequence,

0→ F → F → i∗1F → 0

which is short exact by assumption, induces a long exact sequence of Tor-groups and we see that
to show that the needed group vanishes it’s enough to check that

(1) Tor2(i∗1F ,N ) = 0 and
(2) Tor1(p−1F ,N ) = 0

Note that since we work p-locally, p−1F is already rational and can be identified with j∗1F , where
j1 :M=0

fg ↪→Mfg is the inclusion of the moduli of formal groups of height exactly 0.
We will deal with the second condition later, but to deal with the first, we look at the short

exact sequence
0→ i∗1F ⊗ ω1−p → i∗1F → i∗2F → 0

which again induces a long exact sequence of Tor-groups. We then see that to show that the
needed Tor2-group vanishes, we have to check that

(1) Tor3(i∗2F ,N ) = 0 and
(2) Tor2(v−1

1 i∗1F ,N ) = 0.
Here, we have

v−1
1 i∗1F := lim−→ i∗1F → i∗1F ⊗ ωp−1 → i∗1F ⊗ ω2p−2 → . . .

which can be also identified with j∗1F , where j1 : M=1
fg ↪→ Mfg is the inclusion of moduli

of formal groups of height exactly one. To see this, note that the latter can be written as a
composite

M=1
fg ↪→M≥1

fg ↪→Mfg,

where the first one is open corresponding to the complement of the vanishing locus of v1, and
the second one is closed corresponding to the vanishing locus of v0 = p.

Since i∗nF vanishes for n large enough, arguing inductively we see that it is enough to show
that for every k ≥ 0, we have Tork+1(j∗kF ,N ) = 0, where j∗kF ' v−1

n i∗kF . Since jk is a composite
of closed and open embeddings, we have

j∗kF ⊗N ' j∗kF ⊗ j∗kN ,
thus it’s enough to show that the right hand side has vanishing derived functors above degree k.

The tensor product on the right hand side can be computed in quasi-coherent sheaves over
M=k

fg , which by Theorem 17.9 admits a Galois covering from Spec(Fpk) with Galois group Gk.
It follows QCoh(M=k

fg ) can be identified with the category of Fpk -vectors spaces equipped with
a continuous Gk-action. In particular, every object is flat, and so this tensor product is exact.
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We deduce that the s-th derived functor of j∗kF ⊗N can be identified with

j∗kF ⊗Rsj∗kN .

This vanishes for s > k by Lemma 19.7, as jk is a composite of an open embedding, which has
an exact pullback functor, and ik. �

Remark 19.13. Recall that in Corollary 19.4 we’ve observed that if M is an MU∗MU-
comodule satisfying Landweber’s conditions, then the corresponding functor X 7→ MU∗(X,M)
is a homology theory.

However, both the functor and Landweber’s conditions do not require a comodule structure,
an MU∗-module is enough. Thus, it is natural to ask if the result is still true if we do not have
a fixed comodule structure; this is indeed the case.

To see this, let us observe that if M satisfies Landweber conditions, then so does the cofree
comodule MU∗MU ⊗MU∗ M . This is less obvious than it might seem, as MU∗MU admits two
different maps from MU∗, corresponding to the two obvious maps MU→ MU⊗MU and giving
the source and target of the corresponding groupoid scheme.

These make MU∗MU into a MU∗-bimodule, and the tensor product MU∗MU ⊗M has two
MU∗-modules structures, one induced from multiplying on the right and one on the left. These
do not in general coincide, but one can show that (p, v1, v2, . . .) is a regular sequence for one
of them if and only if it is for the other. This follows from the fact that multiplication by vk
coincides after we mod out by (p, · · · , vk−1), which is a consequence of Lemma 19.9. Thus, if
M is Landweber exact, so is the cofree comodule MU∗MU⊗MU∗ M .

It then follows from Corollary 19.4 that X 7→ MU∗MU⊗MU∗M⊗MU∗MU∗X is a homology
theory. Since MU∗MU is faithfully flat as a right MU∗-module, it follows the same is true for
X 7→M ⊗MU∗ MU∗X.

20. Landweber exact homology theories

In the last lecture, we have proven that if M is an MU∗-module which is Landweber exact in
the sense that for every prime p,

(1) vn acts injectively on M/v0, · · · , vn−1 for every k and
(2) M/v0, · · · , vn vanishes for n large enough

then the functor
X 7→M ⊗MU∗ MU∗X

is a homology theory. Homology theories of this form are known as Landweber exact homology
theories and our goal in this lecture is to describe this important class.

Remark 20.1. One can show that the latter condition is in fact not needed and in most sources
only the first condition is referred to as Landweber exactness. The second condition can be
intepreted as being "of finite height"; this will be the only case which will interest us in this
lecture.

An important source of MU∗-modules is given by MU∗-algebras R, which since MU∗ ' L is
canonically isomorphic to the Lazard ring, can be identified with a ring together with a choice
of a formal group law. This leads to the following definition.

Definition 20.2. Let F be a formal group law over a ring R. We say F is Landweber exact
if R is a Landweber exact as a module over the Lazard ring.

Remark 20.3. The condition of being Landweber exact is equivalent to the classifying map
Spec(R) → Mfg being flat. Thus, it doesn’t depend on the formal group law, but only on the
isomorphism class of the corresponding formal group.
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Note that to get a homology theory, R should not just be a module over the Lazard ring,
but should also have a compatible grading which would make it into a graded MU∗-module.
Examples coming from arithmetic usually do not come with a canonical grading of this form,
but there is an easy way to add one as needed, as the following construction shows.

Construction 20.4. Let R be a ring and L → R be a map classifying a formal group law F .
Then, there exists a unique factorization

L→ R[u±1]→ R,

where the second one is the one induced by sending u to 1 and the first one is a map of even
graded rings with R in degree zero and |u| = 2. This determines a graded formal group law over
R[u±1], the graded form of F .

The above construction, together with Landweber’s criterion, provides for each Landweber
exact formal group law over a ring R an even periodic homology theory given by

(EF )∗(X) := R[u±1]⊗MU∗ MU∗X,

where the tensor product is taken over the map MU∗ → R[u±1] classifying the graded formal
group law corresponding to F . Note that this homomorphism induces a canonical complex
orientation on EF such that the resulting formal group law is exactly the graded form of F .

Example 20.5. Consider Z together with the multiplicative formal group law x+ y + xy. We
claim this is Landweber exact of height 1 at each prime p. Indeed, since p is a non-zero divisor in
Z, it is enough to check that v1 is a unit in Z/p; that is, that the reduction of the multiplicative
formal group law is of height exactly 1 at each prime. We’ve verified this in Example 13.16.

This leads to a Landweber exact homology theory defined by

X 7→ Z[u±1]⊗MU∗ MU∗X,

whose corresponding formal group law is the graded form of the multiplicative formal group,
exactly as in the case of complex K-theory we mentioend in Example 1.10. In fact, these two
homology theories are canonically isomorphic.

To see this, observe that a choice a complex orientation induces a map MU→ KU of homotopy
ring spectra and so defines for each X ∈ Sp a canonical map

KU∗ ⊗MU∗ MU∗ → KU∗X.

This is an isomorphism on the homology of the sphere, and since both sides are homology
theories, we deduce that is in fact a natural isomorphism. Thus, an isomorphism KU∗ ' Z[u±1]
compatible with formal group laws will induce the needed isomorphism between Landweber
exact homology theories.

Remark 20.6. The base-change isomorphism relating KU- and MU-homology appearing in
Example 20.5 is known as the Conner-Floyd isomorphism and it predates the development
of most of chromatic homotopy theory. Observe that from the geometric point of view it is
somewhat mysterious, as KU has to do with virtual complex vector bundles and MU with
cobordism classes of almost complex manifolds.

Example 20.7. If we let R = L be the Lazard ring itself, we obtain the periodic complex bordism
homology theory MUP given by

MUP∗X := MU∗[u
±1]⊗MU∗ MU∗X.

Similarly to complex bordism itself, this homology theory also has a representing spectrum of
geometric nature, namely the Thom spectrum of a virtual vector bundle over BU× Z.
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Note that we have MU0X := MUev
∗ X, the sum of all even MU-homology groups, in particular

MUP0 is the Lazard ring. Thus, if we write FX ∈ QCoh(Mfg) for the quasi-coherent sheaf
corresponding to moduli of formal groups, then we can simply write MUP0X := p∗FX , where
p : Spec(L)→Mfg is the covering.

This makes periodic complex bordism useful to describe the homology theories EF in general.
Namely, we have

(EF )0 ' R⊗MUP0
MUP0X

If we write q : L→ R for the map classifying F , so that we have a commutative diagram

Spec(L)

Spec(R) Mfg

q
p

then we can rewrite the above as

(EF )0(X) ' q∗p∗FX .

Thus, we deduce that (EF )0X doesn’t depend on the formal group law F , but only on the
underlying formal group. This leads to the following definition.

Definition 20.8. Let G → Spec(R) be a Landweber exact formal group classified by a map
g : Spec(R) → Mfg. Then the corresponding weakly even periodic Landweber exact
homology theory is given by

(EG)nX := g∗FΣ−nX .

Note that Zariski-locally on R, we can assume that G can be presented by a formal group
law, in which case this is the same homology theory as the one coming from Construction
20.4. To get a global grip on the situation, let us compute the coefficients.

Proposition 20.9. We have an isomorphism of even graded rings (EG)∗ '
⊕

n∈Z L
⊗n, where

the latter is the twisted Laurent polynomial ring with multiplication induced by the canonical
maps L⊗n ⊗ L⊗m → L⊗n+m.

Proof. We have FS2n ' ω⊗n, since even change of grading in MU∗MU-comodules corresponds
to tensoring by ω, the line bundle of invariant differentials over Mfg, and the odd homology
groups vanish. Since g∗ω⊗n ' L⊗n by definition, the result follows. �

Remark 20.10. The graded ring
⊕

n∈Z L⊗n appearing above has a natural interpretation.
Namely, we have a pullback square

Spec(
⊕

n∈Z L⊗n) MLie'triv
fg

Spec(R) Mfg,

so that
⊕

n∈Z L⊗n is the coordinate ring of a principal Gm-bundle corresponding to the Lie
algebra of G, which is also the universal scheme over which the latter admits a trivialization.

Remark 20.11. Note that one consequence of Proposition 20.9 is that Landweber exact
homology theories of the form EG are weakly even periodic, as our terminology suggests, that is:

(1) they have homotopy concentrated in even degrees and
(2) the multiplication map induces an isomorphism π2EG ⊗π0EG

π−2EG ' π0EG.
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Any multiplicative homology theory E with this property is necessarily complex-orientable, as it
is concentrated in even degrees, and so has an associated formal group given by formal spectrum
of the even homology of CP∞.

In the even periodic case, however, we can do better as one can verify without much difficulty
that in this case Spf(E0(CP∞)) is a formal group over Spec(E0). In the case of the multiplicative
homology theory EG, we will have a canonical isomorphism Spf(E0

G(CP∞)) ' G.

Warning 20.12. Not every weakly even periodic multiplicative homology theory E in the sense
of Remark 20.11 is Landweber exact, that is, arising from Definition 20.8. A necessary
condition is that Spf(E0(CP∞)) is classified by a flat map Spec(E0) → Mfg. One can show
this is also sufficient using an argument similar to the one we’ve used in Example 20.5 as a
Landweber exact homology theory.

According to Definition 20.8, we have a covariant functor

(Spec(R),G) 7→ (EG)∗

from the category of rings equipped with a choice of Landweber exact formal group (equivalently,
a contravariant functor on the category of affine schemes equipped with a map to Mfg) to the
category of homology theories.

By Brown representability, each homology theory (EG)∗ is represented by a unique up to a
non-unique equivalence spectrum EG. Moreover, any transformation of homology theories can
be lifted to a map of spectra. However, this lift is in general not unique, even up to homotopy,
due to existence of phantom maps of spectra. We will now show this phenomena cannot occur
for Landweber exact homology theories.

Lemma 20.13. Every Landweber exact EG is a filtered colimit of finite even spectra; ie. finite
spectra with only even-dimensional cells.

Proof. We first claim that each map X → ER from a finite spectrum X factors through a map
X ′ → EF from an even finite spectrum. A map as above can be identified with a homology class
in

(EG)0(DX) ' g∗FDX
and we claim that this homology class is in the image of homology class of an even finite spectrum.
Since the classifying map g : Spec(R)→Mfg is flat by assumption, g∗ is exact and so it’s enough
to show that the result holds for FDX , which we can identify with MUP0DX. Thus, it’s enough
to check the claim holds for MUP.

Since MUP is a Thom spectrum over BU × Z, which is an infinite Grassmannian and so has
a natural CW-structure using only even cells, it is a filtered colimit of finite even spectra. Thus,
we can find a factorization

S0 → DX ⊗X ′ → DX ⊗MUP

where X ′ is finite even. Then, the Spanier-Whitehead adjoint DX ′ → DX to the first map has
the needed property.

This shows that the inclusion of overcategories Spfin,ev/EG
↪→ Spfin/EG

of finite even and finite
spectra over EG is cofinal. It follows that the first ∞-category is cofiltered and the the obvious
colimit of the obvious diagram is exactly EG, as we needed. �

Lemma 20.14. If EG, EG′ are Landweber exact spectra, then every phantom map EG → EG′

is zero.

Proof. Let us write EG ' lim−→Xα as a filtered colimit of finite even spectra. Then, we have a
Milnor exact sequence

0→ R1 lim←−E
−1
G′ (Xα)→ E0

G′(EG)→ lim←−E
0
R(Xα)→ 0,
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where the left term is the first derived functor of the limit. Since Xα have only even cells
and EG has homotopy concentrated in even degrees, the Atiyah-Hirzrebruch spectral sequence
computing EG′ -homology collapses. Thus, E−1

G′ (Xα) vanishes and we deduce that the second
map is an isomorphism. Since every phantom map would be in the kernel, we deduce that there
are no phantom maps as needed. �

Corollary 20.15. The formation (Spec(R),G) 7→ EG of Landweber exact homology theories
lifts canonically to a functor into the homotopy category of spectra.

The following property of Landweber exact homology theories is useful.

Lemma 20.16. Suppose that G1 → Spec(R1) and G2 → Spec(R2) be Landweber exact formal
groups. Then,

EG1
⊗ EG2

' EG1⊗G2
,

where on the left hand side we have the tensor product of spectra and

G1 ⊗G2 → Spec(R1)×Mfg
Spec(R2)

is the canonical formal group over the pullback.

Proof. By Lemma 20.13, we can write EG2
' lim−→Xα as a filtered colimit of finite even spectra.

Then, (EG1)0(EG2) ' lim−→(EG1)0(Xα). Since each of Xα has finite rank free EG1 -homology, by
collapse of the Atiyah-Hirzrebruch spectral sequence, we deduce that (EG1

)0EG2
is flat over

(EG1
)0 ' R1 and concentrated in even degrees.

It follows from flatness that the natural map

(EG1
)0(EG2

)⊗R1
(EG1

)∗X → (EG1
)0(EG2

⊗X) ' (EG1
⊗ EG2

)∗X

is a natural transformation of homology theories, and since it is an isomorphism for X = S0, it
must be an isomorphism in general.

The left hand side above can be identified in degree zero with π∗1(EG1)0(X) ' π∗1p∗1FX , where
π1 : Spec(R1)×Mfg

Spec(R2)→ Spec(R1) is the projection and g1 : Spec(R1)→Mfg is the map
classifying G1. This is the same as pullback of FX along g1 ◦ π1, ending the argument. �

Remark 20.17. One convenient property of even periodic Landweber exact homology theories
is that (EG1

⊗ EG1
)0 is the coordinate ring of the pullback along the moduli of formal groups,

rather than the moduli of formal groups with trivialized Lie algebra. That is, this ring classifies
all isomorphisms between G1 and G2, rather than just the strict ones, which is what we saw
happens in the non 2-periodic context.

In fact, it doesn’t make sense to ask for strict ones, as the Lie algebras of G1 and G2 are not
only not canonically trivialized, but might not be trivializable in the first place.

One useful consequence of Lemma 20.16 is that the multiplicative structure of homology
theories (EG)∗ can be lifted to the homotopy category of spectra, making EG into an associative,
commutative homotopy ring spectrum.

To see this, observe that we have a canonical diagonal map

∆ : Spec(R)→ Spec(R)×Mfg
Spec(R)

which induces a multiplication

EG ⊗ EG ' EG⊗G → EG.

The naturality properties of the diagonal guarantee that this multiplication is homotopy asso-
ciative, commutative and unital. This proves the following.

Corollary 20.18. The construction (Spec(R),G) → EG gives a contravariant functor on the
category of flat affines overMfg into the category of commutative homotopy ring spectra.



FINITE HEIGHT CHROMATIC HOMOTOPY THEORY HARVARD MATH 252Y, SPRING 2021 92

Remark 20.19. As we observed above, the image of this functor consists of exactly those
homotopy ring spectra E which are weakly even periodic in the sense of Remark 20.10 and
such that Spf(E0(CP∞)) is classified by a flat map Spec(E0)→Mfg.

On this subcategory, the above functor admits an inverse, given by

E → (Spec(E0), Spf(E0(CP∞))).

Thus, these two categories are equivalent to each other; in particular, multiplicative maps be-
tween weakly even periodic Landweber exact homology theories correspond to maps of affines
over the moduli of formal groups.

Remark 20.20. Landweber exact spectra are Adams-type as homotopy ring spectra. To see
this, observe that by Lemma 20.13, we can write E ' lim−→Eα as a filtered colimit of finite even
spectra. Since each Eα is even and E∗ is concentrated in even degrees, the Atiyah-Hirzrebruch
spectral sequence collapses and we deduce that each E∗Eα is free of finite rank.

It follows that we have a well-defined E∗-based Adams spectral sequence whose E2-term can
be described in terms of E∗E-comodules. We will study this spectral sequence in more detail in
the coming lectures.

Landweber’s construction is a wonderful way to construct interesting spectra, but to make
good use of it, we need a good source of Landweber exact formal groups. Note that this is quite
a non-trivial condition, for example; since v0 = p, there exist no Landweber exact formal groups
over rings of positive characteristic. This rules out Honda formal groups, and in fact all formal
groups of exact positive height.

We have shown previously, in Corollary 18.19, that to any finite height G0 → k over a
perfect field of positive characteristic we can associate a complete local neotherian W (k)-algebra
E0(G0), the Lubin-Tate ring, which carries the universal deformation G.

Lemma 20.21. The universal deformation G→ Spec(E0(G0)) is Landweber exact.

Proof. We can assume that G0 is presented by a formal group law H of height n, in which case
Remark 18.23 tells us that we can choose an isomorphism E0(G0) 'W (k)[[u1, . . . , un−1]] for
which G is presented by a lift H̃ of H such that vi(H̃) = ui for 1 ≤ i ≤ n− 1.

In this context, Landweber exactness is the observation that the sequence p, u1, . . . , un−1 is
regular in this power series ring and that vn(H̃) is a unit, as it reduces to the unit vn(H) ∈ k×. �

Definition 20.22. The Lubin-Tate spectrum E(G0) associated to a G0 → Spec(k) of finite
height over a perfect field is the weakly even periodic Landweber exact spectrum associated to
the universal deformation G→ Spec(E0(G0)) over the Lubin-Tate ring.

Note that we have
π0E(G0) ' E0(G0),

the Lubin-Tate ring of G0, which explains our previously introduced notation. By construction,
E(G0) is a commutative homotopy ring spectrum, and as such it is functorial in the formal
group.

In fact, in this particular case, the situation is much better, as we have the following deep
result, which is of prime importance in modern approaches to chromatic homotopy theory.

Theorem 20.23 (Goerss-Hopkins-Miller). The Lubin-Tate spectrum E(G0) admits a unique
E∞-ring structure compatible with the ring structure on its homotopy groups, and it is functorial
as an E∞-ring spectrum in the choice of G0 → Spec(k).

One consequence is that the action of the Morava stabilizer group on the Lubin-Tate spectrum
can be lifted from one in the homotopy category to one through maps of E∞-rings. This allows
one to form homotopy meaningful constructions based on this action, such as homotopy fixed
points, obtaining a variety of chromatically interesting ring spectra.
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21. Chromatic localization

In this lecture, we will begin our study of Bousefield localization with respect to a Landweber
exact homology theory. Our first goal is to show that in many respects, the various Landweber
exact homology theories are equivalent to each other.

Let us fix a prime p, we will be implicitly be working only with p-local rings. In this context,
we have previously introduced for each n, the closed substack

M≥n+1
fg ⊆Mfg

classifying formal groups of height at least n. We have seen this is a closed substack cut out by
the ideal In+1, which locally over Spec(R) → Mfg classifying a formal group G → Spec(R) is
given by

In+1(G) := (v0(F ), v1(F ), . . . , vn(F )),

where F is any formal group law presenting G. We have seen this doesn’t depend on the choice
of presentation.

There is a formal procedure which associates to any closed substack its open complement,
which in this case will look as follows.

Definition 21.1. We say a formal group G→ Spec(R) is at most of height n if In+1(G) = R.

Notation 21.2. We denote the moduli stack of formal groups at most of height n and their
isomorphisms byM≤nfg .

By construction, M≤nfg is the open complement of M≥n+1
fg . However, as is usual, in some

respects open substacks are better-behaved than their closed counterparts. One consequence is
the following simple criterion of being of bounded height.

Proposition 21.3. Let G→ Spec(R) be a formal group. Then, G is of height at most n if for
every residue field p : R → k, the pull-back formal group p∗G → Spec(k) is exactly of height h
where h ≤ n.

Proof. The forward direction is clear, since over a field any formal group is exactly of some
height, and one can check it will be at most of height n if and only if it is of height h with h ≤ n.

Conversely, suppose the latter holds. If In+1(G) was a proper ideal, it would be contained
in some maximal ideal m ⊆ R. Then, In+1(G) would be in the kernel of p : R → R/m and we
would have p∗G at least of height n+ 1, a contradiction. �

Remark 21.4. Note that the analogue of Proposition 21.3 fails for the closed substack of
formal groups of height at least n, as we’ve seen in discussing deformations. For example, the
multiplicative group over Z/p2 is not of height at least 1, but it will be over its only residue field.

Definition 21.5. Let E be a weakly even periodic Landweber exact homology theory with
associated formal group GE := Spf(E0(CP∞)). We will say E is of height n if GE → Spec(E0)
is of height at most n, but not of height at most n− 1. We will say it is of infinite height if it
is not of height at most n for any finite n.

Note that in the language of rings, this translates to saying that E is of height n if
(1) In(GE) 6= E0, but
(2) In+1(GE) = E0.
Since E is Landweber exact, we have a sequence of quotients

E0 → E0/I1(G)→ E/I2(G)→ · · · ,
where each one is obtained from the previous one by taking a quotient by a non-zero divisor. In
this context, we say E if of height n if the n-th term is not zero, but the (n + 1)-th already is,
and we say that E is of infinite height if this sequence never stabilizes at zero.
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Example 21.6. If E = MUP is periodic complex bordism, then GMUP is the formal group
associated to the universal formal group law over the Lazard ring MUP0 ' L. This classifies
formal groups of arbitrarily large height and so MUP is Landweber exact of infinite height.

Example 21.7. Let G0 → Spec(k) be a formal group of height n < ∞ over a perfect field
k. In Definition 20.22, we introduced the Lubin-Tate spectrum E(G0), the homology theory
associated to the universal deformation.

We claim that E(G0) is of height n in the sense of Definition 21.5. To see this, recall that
we can choose an isomorphism E0 'W (k)[[u1, . . . , un−1]] for which the universal deformation is
presented by a formal group law with vi = ui for 1 ≤ i ≤ n− 1 and vn necessarily a unit. Then,
E0/In ' k is non-zero, but E0/In+1 = 0.

An interesting property of Landweber exact homology theories is that in a strong sense they
only depend on their height (and the prime, which we keep implicitly fixed). The key is the
following result.

Lemma 21.8. Let E be a weakly even periodic Landweber exact homology theory of height
0 ≤ n ≤ ∞. Then, the induced map Spec(E0) → M≤nfg classifying the associated formal group
GE := Spf(E0(CP∞)) is a faithfully flat cover.

Proof. The same argument as in the proof of Proposition 12.2 will show this map is affine,
and it is flat by Landweber exactness. We just have to show it is faithfully flat; in other words,
that for any other map Spec(A)→M≤nfg ; in the pullback diagram

Spec(B) Spec(E0)

Spec(A) M≤nfg ,

the flat algebra A→ B is actually faithfully flat.
For this, it is enough to check that for any residue field A → k, we have B ⊗A k 6= 0. Since

we have Spec(B ⊗A k) ' Spec(B)×Spec(A) Spec(k), and a k-algebra is faithully flat if and only
if it is non-zero, by transitivity of the pullback square we can assume that A = k. In this case,
the lower map classifies some formal group Gh → Spec(k), necessarily exactly of height h ≤ n.

Since E is of height n, we know that E0/Ih 6= 0. By Landweber exactness, vh acts invertibly
on this ring and so we have that E′0 := v−1

h E0/Ih is non-zero. Over E′0, GE defines a formal
group which is also exactly of height h, and we deduce from Theorem 15.2 that

Spec(B)×Spec(E0) Spec(E′0) ' Spec(k)×M≤nfg
Spec(E′0)

is an affine scheme associated to a faithfully flat k ⊗Z E
′-algebra. In particular, the latter it is

non-zero, and so the same must be true for B. �

It follows that the diagram of iterated intersections

. . . Spec(E0)×M≤nfg
Spec(E0) ⇒ Spec(E0)→M≤nfg

is a colimit diagram of sheaves in the flat topology, and so induces a limit diagram of categories
of quasi-coherent sheaves. Using Lemma 20.16 we see that this can be rewritten as

. . . Spec(E0E) ⇒ Spec(E0)→M≤nfg

and arguing as in the discussion preceding Proposition 12.6 we deduce the following.

Corollary 21.9 (Hovey-Strickland). Let E be a Landweber exact homology theory of height N .
Then, there exists an equivalence of symmetric monoidal abelian categories

QCoh(M≤nfg ) ' Comod(E0E)
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between quasi-coherent sheaves on the moduli of formal groups of height at most n and E0E-
comodules. In particular, the latter category is independent of the choice of E.

Remark 21.10. Note that in Corollary 21.9 we have the ungraded comodules over the un-
graded ring E0E, while before in the case ofMU we looked at evenly gradedMU∗MU -comodules.

This is a simplification coming from working in the weakly even periodic context; namely, one
can check that in this case the inclusion E0E → E∗E induces an equivalence

Comod(E0E) ' Comodev(E∗E)

between ungraded and even graded comodules over the respective Hopf algebroids. To see this,
notice that locally over E0, we have E∗E ' E[u±1] for |u| = 2, and extension of scalars along
E0 → E0[u±1] induces the needed equivalence between categories of modules. This extends to
categories of comodules.

Corollary 21.11. The Adams spectral sequence based on any Landweber exact E of height n
has E2-page given by Ext-groups in QCoh(M≤nfg ).

The idea we would like to follow is we would like to focus our attention on chromatic phe-
nomena "up to height n". In the context of quasi-coherent sheaves overMfg, this corresponds
to restriction toM≤nfg , and we would like to have a homotopical analogue of this procedure that
works in the ∞-category of spectra.

By Corollary 21.9,M≤nfg corresponds to Landweber exact homology theories of height n. As
it turns out, there is a formal procedure due to Bousefield which allows one to discard information
which in some sense invisible to a fixed homology theory. This works at a vast level of generality.

Definition 21.12. Let E be a spectrum. We say that a map X → Y is an E-equivalence if
E ⊗X → E ⊗ Y is an equivalence; equivalently, if E∗X → E∗Y is an isomorphism.

We say a spectrum S is E-local if map(Y, S) → map(X,S) is an equivalence of mapping
spaces for any E-equivalence X → Y .

Remark 21.13. In the stable context as above, there are many equivalent ways to say that S
is E-local. For example, this is equivalent to

(1) [Y, S] → [X,S] being a bijection on homotopy classes of maps for any E-equivalence
X → Y or

(2) [A,S] = 0 for any spectrum which is E-acyclic in the sense that E ⊗A = 0.
The key here is the long exact sequence of homotopy classes of maps and the observation that
a map X → Y is an equivalence if and only if its cofibre is acyclic.

Informally, E-local spectra are those that "only see information captured by E". This picture
is unfortunately complicated by the fact that, depending on the choice of E, very few spectra
one encounters in practice turn out to be E-local. Instead, we would like to know that there is a
universal way to approximate an arbitrary spectrum by E-local ones. This turns out to be the
case, as we have the following important result.

Theorem 21.14 (Bousfield). The inclusion SpE ↪→ Sp of the ∞-category of E-local spectra
admits a left adjoint LE : Sp → SpE. In other words, any spectrum X admits an essentially
unique E-equivalence X → LEX into an E-local spectrum.

We will not prove the above result, as it is more of categorical than homotopical nature.
The key observation is that the ∞-category Sp is presentable and that E ⊗ − : Sp → Sp is a
cocontinuous functor, see [11][5.5.4.16].

The existence of the left adjoint gives the∞-category SpE excellent categorical properties. In
particular; it is itself presentable, and generated under colimits by LES0, the E-local sphere.

There is an induced symmetric monoidal structure given for X,Y ∈ SpE by the formula

X ⊗ Y := LE(X ⊗ Y );
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note that the localization of the tensor product is in general necessary, as this tensor product
need not be again E-local. Similarly, while the inclusion SpE → Sp is a right adjoint and so
preserves all limits, it does not in general preserve colimits. To compute colimits in SpE , one
computes them in spectra and applies LE , similarly to the tensor product.

Example 21.15. Let E = S0
(p) be the p-local sphere, the spectrum representing the homology

theory X 7→ π∗X ⊗Z Z(p). In this case, one usually calls E-local spectra p-local.
One can show that for any spectrum X we have π∗LS0

(p)
X ' π∗X ⊗Z Z(p); in particular, a

spectrum X is p-local if and only if its homotopy groups are.
Since p-local abelian groups are closed under arbitrary direct sums, we deduce that p-local

spectra are actually stable under colimits of spectra.

Example 21.16. Let E = S0/p be the mod p sphere. In this case one usually calls E-local
spectra p-complete.

One can show that we have LS0/pX ' lim←−X/p
n; this gives a relation between the homotopy

groups of the p-completion to the p-completion of the homotopy groups, which in simple cases
turns out to be an isomorphism.

The subcategory of p-complete spectra is not closed under colimits in Sp; for example, S0/pn

are all p-complete, but S0/p∞ := lim−→S0/pn is not.

Note that in abelian categories, localization and completion are quite different phenomena
and it is an interesting feature of stable ∞-categories that they allow one to view both through
the same lens. The distinct nature of these two operations is however reflected in the fact that
p-local spectra are closed under colimits but p-complete spectra are not. This turns out to be
an important distinction which deserves its own definition.

Definition 21.17. We say the localization LE : Sp→ SpE is smashing if the inclusion SpE ↪→
Sp preserves colimits.

The motivation for this terminology is as follows. If LE is smashing, then considered as an
endofunctor LE : Sp → Sp it is cocontinuous. (Beware that it is always cocontinuous when
considered as valued in E-local spectra). We have a canonical comparison map

LES
0 ⊗X → LEX

which in the smashing case this is a transformation between cocontinuous functors. As both
sides agree for X = S0 which generates spectra under colimits, we deduce that it must be in
fact a natural equivalence. Thus, we say LE is smashing since then LEX ' LES

0 ⊗X; this is
in fact an if and only if.

Let us now focus on the case when E is a Landweber exact homology theory of height n <∞.
In this case, we’ve seen that taking E-homology corresponds to restriction to the open substack
M≤nfg ⊆Mfg.

Notation 21.18. It is customary to denote localization with respect to a Landweber exact
homology theory of height n by Ln. Note that this doesn’t depend on E, as a consequence of
Corollary 21.9, but only on the prime and the height.

Depending on whether we want to emphasize the latter, we will denote E-local spectra by
either SpE or SpE(n); note that again this doesn’t depend on the choice of a specific E, although
Lubin-Tate spectra form one natural class of choices.

Note that, informally, Ln "throws out chromatic information above height n". Since restric-
tion to an open substack is the geometric analogue of localization, our intuition is that Ln should
be a smashing localization. This is indeed the case.

Theorem 21.19 (Hopkins-Ravenel). The localization functor Ln : Sp→ SpE is smashing.
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This is a deep result, although we will later sketch which properties of Ln make the above
possible.

One consequence of Theorem 21.19 is that compact objects of SpE behave very much like
they do in the ∞-category of spectra themselves.

Corollary 21.20. A localization LnX of a finite spectrum X is compact as an object of SpE.
Moreover, any compact object of the latter is a retract of one of this form.

Proof. Let Y ' lim−→Yα be an E-local filtered colimit diagram. If X is a finite spectrum, then

map(LnX,Y ) ' map(X,Y ) ' lim−→map(X,Yα) ' lim−→map(LnX,Yα).

Here, the first and third equivalence is a consequence of the universal property of localization,
while the middle one of the fact that Ln is smashing so that we also have Y ' lim−→Yα in Sp, in
which X is compact as it is finite. This shows that LnX is compact in the E-local ∞-category.

Conversely, suppose that S is a compact E-local spectrum. As a spectrum, we can write
S ' lim−→Xα as a filtered colimit of finite spectra, which after applying Ln yields

S ' lim−→LnXα.

Since S is E-locally compact, we deduce that

map(S, S) ' lim−→map(S,LnXα)

and so the identity of S factors through a map S → LnXα. Since the composite

S → LnXα → S

is the identity, we deduce that S is a retract of LnXα, as needed. �

Note that Theorem 21.19 is really quite special to the finite height situation. In the infinite
height Landweber exact case, we have the following.

Warning 21.21. One can consider localization functors with respect to an infinite height
Landweber exact homology theory, which are all equivalent to localization with respect to MU.
Informally, these should "throw away all non-chromatic information."

Unfortunately, one can show that LMU is not smashing. Worse yet, the ∞-category of MU-
local spectra is somewhat pathological; for example, it has no non-zero compact objects, see
[8][B.13]. One issue here is that the sphere itself is MU -local, essentially due to the convergence
of the Adams-Novikov spectral sequence, so if LMU was smashing, then every spectrum would
be MU-local. This is not the case, as the Brown-Comenatz dual of the sphere is non-zero but
MU-acyclic.

22. E-local categories and their Adams spectral sequence

In this lecture, we will explore some of the properties of E-local categories and how they differ
from the usual ∞-category of spectra.

Most of today’s lecture will be focused on the Adams spectral sequence, which can be quite
technical. Before we dive in, let us give a little bit of the flavour of E-local categories in the
form of the following elementary calculation.

Proposition 22.1. Let A be a p-torsion abelian group and HA the corresponding Eilenberg-
MacLane spectrum. Then E ⊗HA = 0.

Proof. Any p-torsion abelian group is a filtered colimit of its finitely generated subgroups, which
are direct sums of groups of the form Z/pk. Each of the latter can be written as an iterated
extension of groups of the form Z/p, so it’s enough to show the result in the latter case.

We have to show that E ⊗ HZ/p = 0. We can choose a complex orientation MU → E, in
which case by Landweber exactness we get

E∗HZ/p ' E∗ ⊗MU∗ MU∗HZ/p.
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We have computed the latter tensor summand in Lemma 11.1 as the ring classifying strict
twists of the additive formal group law over HZ/p. It follows that the tensor product is an
E∗⊗Z/p-algebra classifying strict isomorphisms between the additive formal group law and the
one induced from E∗. This is the zero algebra, as the formal group law of E∗ is of height at
most n, and so is never isomorphic to the additive one. �

Corollary 22.2. Let X → Y be a map of spectra such that πkX → πkY

(1) has torsion kernel and cokernel for all k ∈ Z and
(2) is an isomorphism for k ≥ N for some large N .

Then, LnX → LnY is an equivalence.

Proof. It’s enough to show that the cofibre C of X → Y is E-acylic; that is, that E ⊗ C = 0.
By assumption, πC is p-torsion and vanishes in high enough degrees.

We can write C ' lim−→ τ≥kC as filtered a colimit of it k-connective covers. For each k, τ≥kC
has only finitely many non-zero homotopy groups, all of which are torsion, and so is an iterated
extension of torsion Eilenberg-MacLane spectra. Thus, Proposition 22.1 implies that E⊗τ≥kC
for each k and thus E ⊗ C = 0. �

Example 22.3. LetX be a finite spectrum such that H∗(X,Q) = 0; such as the Moore spectrum
X = S0/p. By Serre’s finiteness, all of the homotopy groups of X are finite, and so we deduce
that for any k ∈ Z, the map k-connective cover

τ≥kX → X

satisfies the conditions of Corollary 22.2. It follows that the induced map

Ln(τ≥kX)→ LnX

is an equivalence. In this sense, chromatic localization at finite height "rediscovers" the homotopy
groups of X lost in the passage to the connective cover; or perhaps more precisely it doesn’t see
that any of them disappeared.

This example is a first indication that E-local phenomena tend to be "periodic" (at least in
terms of torsion); they are unaffacted by a change of finitely many terms.

Remark 22.4. There is a different chromatic localization, the K(n)-local one, which informally
localizes "at a single height", rather up to height n. In this variant, the torsion assumption in
Corollary 22.2 is superflous.

The distinguishing property of the E-local categories is that they are in a certain sense of
"virtually finite homological dimension", which makes their Adams spectral sequence extremely
well-behaved. Let us first recall some relevant definitions from the abelian context.

Definition 22.5. We say an object a ∈ A of an abelien category with enough injectives is of
injective dimension d if it has an injective resolution

0→ a→ i0 → i1 → . . .→ id → 0

of finite length d.

Remark 22.6. It is not too difficult to show that a is of injective dimension d if and only
if ExtsA(b, a) = 0 for s > d and any b ∈ A. This alternative definition can be sometimes
advantageous, as it makes sense whenever A has well-defined Ext-groups, even if it doesn’t have
enough injectives.

Definition 22.7. We say A is of finite homological dimension d if all of its objects are of
injective dimension at most d.

Example 22.8. The category of vector spaces over a field is of homological dimension zero.
The category of abelian groups is of dimension one.



FINITE HEIGHT CHROMATIC HOMOTOPY THEORY HARVARD MATH 252Y, SPRING 2021 99

The analogue of injective resolutions in stable ∞-categories is given by Adams resolutions,
and so they depend on the choice of a homology theory. In the case of the E-local category, the
natural choice is given by E-homology

E∗ : SpE → ComodE∗E .

Note that we’ve proven in Remark 21.10 that this homology theory can be thought of as
associating to a spectrum a pair of quasi-coherent sheaves onM≤nfg , the moduli of formal groups
up to height n, and so contains only chromatic information. By passage to the E-local category,
we now know that that E∗ detects equivalences.

Through this correspondence, one way to say that an E-local spectrum X is of "finite homo-
logical dimension" is that if its admits a finite length Adams resolution. This turns out to imply
a host of important properties, in particular a very strong form of convergence of the Adams
spectral sequence.

Recall that the E∗-Adams spectral sequence is obtained using resolutions via E∗-injectives;
that is, spectra with right lifting property with respect to E∗-monic maps. In the Adams-type
case, these injectives can be characterized completely.

Lemma 22.9. Let E be an Adams-type homology theory. Then, a spectrum J is E∗-injective if
and only if

(1) it is E-local and
(2) E∗J is injective as a comodule.

Moreover, for any such J and any Y ∈ Sp, the Adams spectral sequence

Exts,tE∗E(E∗Y,E∗J)⇒ [Y, J ]t−s

collapses on the second page and induces an isomorphism [Y, J ] ' HomE∗E(E∗Y,E∗J).

Proof. In the proof of Theorem 10.18 we have shown that for any injective C ∈ ComodE∗E
there exists a "Brown-like" E∗-injective J such that E∗J ' C as comodules and which satisfies
the last isomorphism in the statement. To see that it is E-local, observe that if Y ∈ Sp is
E-acyclic, then

[Y,C] ' HomE∗E(0, C)

vanishes, as needed.
The rest of the lemma will follow from showing that
(1) an arbitrary E∗-injective satisfies conditions (1) and (2) in the statement and
(2) any spectrum satisfying (1) and (2) is equivalent to a "Brown-like" one.
To see the first claim, suppose that I is an arbitrary E∗-injective. We can choose an injection

E∗I → E∗J for a suitably large injective comodule E∗J , which by the above can be realized by
an E∗-monic map I → J into the corresponding Brown-like spectrum. If I itself is E∗-injective,
this map splits, so that I is a retract of J as a spectrum and so a direct summand. It follows
that E∗I is a direct summand of E∗J and hence itself must be injective as a comodule, and that
I is E-local as J was.

To see the second claim, suppose that I has injective homology and is E-local. Then, we can
find a Brown-like injective I ′ such that E∗I ' E∗I ′ as comodules. Any such isomorphism can be
realized by the universal property of I ′ by a map I → I ′ which is an E∗-isomorphism of E-local
spectra and hence necessarily an equivalence.

For the last part, observe that if I is E∗-injective, then it is its own Adams resolution. �

In our context, E will be a Landweber exact homology theory. This is Adams-type, as a
consequence of Lemma 20.13, as finite spectra with even cells have free MU and hence free
E-homology.
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We will be interested in convergence questions about the E∗-Adams spectral sequence, so let
us recall a little bit about the construction. If X is an arbitrary spectrum, then any injective
resolution of E∗X as a comodule can be lifted to an Adams resolution of the form

X0 I0 I1 I2 . . .

X1 X2 . . .

,

where each Xi → Ii+1 → Xi+1 is cofibre and each Ii is injective. If we write

Zi := cofib(Xi → X0),

then we have a tower of spectra
. . .→ Z2 → Z1 → Z0.

By applying [Y,−] for another spectrum Y we obtain a spectral sequence of the tower, which
is exactly the E∗-Adams spectral sequence. By construction, this spectral sequence converges
conditionally to [Y, lim←−Z

i] and we deduce the following.

Corollary 22.10. The E∗-Adams spectral sequence

Exts,tE∗E(E∗Y,E∗X)⇒ [Y,X]t−s

converges conditionally for any Y ∈ Sp if and only if the canonical map X → lim←−Z
i is an

equivalence.

Remark 22.11. Note that by construction we have fib(X → lim←−Z
i) ' lim←−X

i, so that another
way to rephrase the condition of Corollary 22.10 is that lim←−X

i = 0. By Milnor’s exact
sequence, this is the same as lim←−π∗X

i := 0 and lim←−
1 π∗X

i := 0. This is exactly how conditional
convergence is stated by Boardman [3].

Remark 22.12. The limit of the Adams tower lim←−Z
i is called the E∗-nilpotent completion

of X. Note that since each Zi is an iterated extension of E∗-injectives, namely the I-s, it is
E-local and hence so must be the limit. It follows that a necessary condition for the E∗-Adams
spectral sequences to converge conditionally to [Y,X]t−s is for X to be E-local.

This is to be expected; after all, the E2-page of the Adams spectral sequences sees only
homological information about X, and so can’t tell it apart from its E-localization.

Warning 22.13. For a general homology theory E, even Adams-type, not every E-local spec-
trum is E∗-nilpotent complete. There are counterexamples already for E = HFp, the Eilenberg-
MacLane spectrum.

One situation in which we have very strong convergence of the Adams spectral sequence is
when E∗X is of finite homological dimension.

Proposition 22.14. Let X be an E-local spectrum such that E∗X is of finite homological di-
mension d. Then, the Adams spectral sequence

Es,t2 := Exts,tE∗E(E∗Y,E∗X)⇒ [Y,X]t−s

vanishes on the second page for s > d and converges completely after finitely many differentials
d2, . . . , dr.

Proof. The vanishing of the Ext-groups is clear, as they can be computed by an injective reso-
lution of E∗X which can be chosen of length d. To see we have complete convergence, observe
that we can lift the finite resolution of E∗X to an Adams resolution also of length d. In this
case, we will have E∗Xi = 0 for i > d. As they are E-local, being iterated extensions of X and
E∗-injectives, we deduce that they vanish. It follows that X → Zi is an equivalence for i > d,
proving complete convergence.

The differential dr raises homological dimension by r and so must vanish for r > d. �
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Remark 22.15. In the usual way of drawing Adams spectral sequences in the (s, t− s)-plane

. . .

Ext2,2 . . .

Ext1,1 Ext1,2 . . .

Ext0,0 Ext0,1 Ext0,2 . . .

t−s

s ,

the conclusion of Proposition 22.14 is that the groups on the second page vanishing above a
horizontal line s = d. This is usually called a horizontal vanishing line in the Adam spectral
sequence, in this case manifesting already on the second page and necessarily persisting onward.

Note that the condition of being of finite homological dimension is incredibly strong. Some-
what miraculously, it does hold for some of the E-local categories, independently of the choice
of the spectrum, as a consequence of the following result which we will prove later in the course.

Theorem 22.16. Let E be a p-local Landweber exact homology theory of height n and assume
that p > n + 1. Then, the abelian category ComodE∗E of comodules is of finite homological
dimension n2 + n.

Corollary 22.17. If p > n+ 1, then the E∗-Adams spectral sequence

Es,t2 = Exts,tE∗E(E∗Y,E∗X)⇒ [Y,X]t−s

converges strongly and has a horizontal vanishing line on E2 at s = n2 +n for any E-local spectra
X,Y ∈ SpE

Remark 22.18. The conclusion of Corollary 22.17 illustrates a general phenomena in chro-
matic homotopy theory in that it tends to be simpler when the prime is large compared to the
height.

Unfortunately, if p ≤ n+ 1, then the category of E∗E-comodules is not of finite homological
dimension. However, it is always "virtually" of finite homological dimension.

More precisely, one can show that there exists a certain E∗E-comodule M , free and of finite
rank over E∗ and hence dualizable, such that M ⊗E∗ C is of finite injective dimension n2 + n
for any other C ∈ ComodE∗E . In this sense, any object is "finite distance away" to one which
is of finite injective dimension. This finite dimensionality is reflected in the structure of E-local
category, regardless of the prime and height, but in a slightly more involved way.

Observe that an E-local spectrum with a finite E∗-Adams resolution can be written as an
iterated extension of E∗-injectives, and so is in particular nilpotent in the following sense.

Definition 22.19. We say a spectrum X is E∗-nilpotent if it belongs to the smallest thick
subcategory (that is, closed under finite limits, colimits and retracts) of spectra containing E∗-
injectives.

Remark 22.20. The above terminology is motivated by the case of groups, where a group is
nilpotent if, informally, it can be "built out of abelian groups". In the same sense a spectrum is
nilpotent if it can be built out of injectives in finitely many steps.
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The property of being nilpotent is quite a bit weaker than E∗X being of finite injective
dimension; any nilpotent spectrum can be built in finitely many steps out of injectives, but this
procedure cannot usually be used to get a finite resolution of homology. The key difference here
is that the relevant fibres and cofibres need not be short exact on homology and so the latter
can change it quite a bit more than in an Adams resolution.

One of the most striking properties of the E-local categories is the following fundamental
result.

Theorem 22.21 (Hovey-Sadofsky). If E is Landweber exact of finite height, then any E-local
spectrum is E-nilpotent.

Remark 22.22. Note that in the case of p > n + 1, the above is an immediate consequence
of the purely algebraic Theorem 22.16. Indeed, in this case any E-local spectrum has even a
finite E∗-Adams resolution. In the special case of p ≤ n+ 1, more topological input is required,
and the conclusion is a little bit weaker.

We will prove Theorem 22.21 later in this course. Today, we will instead explore some of its
consequences in the behaviour of the E∗-Adams spectral sequence, in the spirit of Proposition
22.14.

Definition 22.23. Let X be a spectrum. We say X has a strong vanishing line at N if
there exists an E∗-Adams resolution such that the composites

Xi+N → Xi+N−1 → . . .→ Xi

are zero for any i ≥ 0.

Example 22.24. If X is E-local and E∗X is of finite homological dimension d, then we can
choose an Adams resolution in which Xi = 0 for i ≥ d. It follows that X has a strong horizontal
vanishing line at N = d+ 1.

The terminology is motivated by the following observation.

Proposition 22.25. Suppose that X has a strong vanishing line at N . Then, for any spectrum
Y we have that the Adams spectral sequence

Es,t2 := Exts,tE∗E(E∗Y,E∗X)⇒ [Y,X]t−s

converges strongly and moreover
(1) Es,tN ' Es,t∞ for any s, t ∈ Z and
(2) Es,tN ' Es,t∞ = 0 for s ≥ N .

Proof. To show the first part, we have to show that differentials dr vanish for r ≥ N . To see
this, notice that an element of Es,tr is represented by a homotopy class of maps Y → Is with the
property that the composite Y → Xs+1 can be lifted all the way up to Y → Xs+r, with dr then
defined as the composite Y → Xs+r → Is+r. If X has a strong vanishing line at N , then the
lift to Xs+r must already vanish for r ≥ N as the map Xs+r → Xs is zero, so that dr vanishes
as needed.

Now suppose we have an element on Es,tN for s ≥ N , represented by a homotopy class of maps
Y → Is. By what was said above, the composite Y → Is → Xs+1 must vanish and so we have
a lift Y → Xs. Since s ≥ N , the composite Y → Xs → Xs−N also vanishes. It follows that the
class of Y → Is is already zero on the N -th page. �

Our goal is to show that being nilpotent implies a strong horizontal vanishing line. Since the
property of being nilpotent tells us that something can be built out of fibres and cofibres from
simple objects, we first need some control on how finite limits and colimits interact with Adams
resolutions.
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Lemma 22.26. Let A→ B → C be a cofibre sequence of spectra. Then, there exists a homotopy
commutative diagram

A0 I0(A) I1(A) . . .

B0 I0(B) I1(B) . . .

C0 I0(C) I1(C) . . .

where each row is an Adams resolution via E∗-injectives and each column is a cofibre sequence.

Proof. Proceeding inductively as in Construction 10.6, it is enough to construct the column
of I0 together with compatible E∗-monics out of the left-most column. Note that if we want the
column of I0-s to be cofibre, I0(C) is determined by I0(A)→ I0(B). Thus, we have to show the
latter in a way where the cofibre will be again an injective.

Let us write p : E∗A → E∗B for the induced map on homology. We have a short exact
sequence of comodules

0→ ker(p)→ E∗A→ im(p)→ 0

which can be embedded by a standard construction into a short exact of injective comodules

0→ i(ker(p))→ i(E∗A)→→ i(im(p))→ 0

Note that here we use the notation i(−) to denote an injective comodule together with a map
from a given one; these are not unique and not in general functorial, but a choice of a short
exact sequence as above can always be made as any short exact sequence of comodules can be
lifted to a short exact sequence of injective resolutions.

We can also choose compatible embeddings same for the short exact sequence

0→ im(p)→ E∗B → coker(p)→ 0

with the same choice of i(im(p)). If we denote the composite

im(p)→ i(E∗B)→ i(coker(p))

by p′, we obtain a commutative diagram

E∗A i(E∗A)

E∗B i(E∗B)

p′p

where ker(p′) ' i(ker(p)) and coker(p′) ' i(coker(p)) are both injective. Let us write I0(A)
and I0(B) for the E∗-injectives corresponding to i(E∗A) and i(E∗B) constructed above, and set
I0(C) := cofib(I0(A)→ I0(B)). We then obtain a diagram of spectra

A B C

I0(A) I0(B) I0(C),

where rows are cofibre by construction and the left and middle vertical arrows are E∗-monics
into an injective. We have to show that the same is true for the right one.

By construction, applying homology to A → B yields p and applying it to I0(A) → I0(B)
yields p′. Thus, long exact sequences of homology induced by the rows give a diagram of short
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exact sequences

0 coker(p) E∗C ker(p) 0

0 coker(p′) E∗I
0(C) ker(p′) 0.

By construction, the outer vertical maps are monic, and a diagram chase shows that so must
be the middle one. Moreover, since coker(p′) and ker(p′) are injective, the lower short exact
sequence splits and we deduce that E∗I0(C) is injective. Since it is also E-local, being a cofibre
of a map of E-locals, it is E∗-injective by Lemma 22.9. �

Theorem 22.27. Any E∗-nilpotent spectrum X has a strong vanishing line at a finite page.

Proof. Every E∗-injective spectrum has a strong vanishing line at N = 1, so it’s enough to
show that the property of having a strong vanishing line (possibly for different N) is stable
under (de)suspensions, extensions and retracts. The first part is clear, as a (de)suspension of an
Adams resolution is an Adams resolution, and it will have the needed property with the very
same N . The same is true for the case of retracts, which we leave to the reader.

We are left with cofibres. Suppose that we have a cofibre sequence

A→ B → C

and that A,C have strong horizontal vanishing lines at NA, NC . We claim that B has a strong
horizontal vanishing line with NB := NA+NC . By Lemma 22.26, we can construct a diagram
of Adams towers

A0 A1 A2 . . .

B0 B1 B2 . . .

C0 C1 C2 . . .

where each column is a cofibre sequence. By assumption, the composite of any NA maps in the
top row is null, and so is the composite of any NC maps in the bottom.

Observe that the composite
Bi → Bi−NC → Ci−NC

vanishes, as it can be rewritten as

Bi → Ci → Ci−NC .

It follows that we have a lift Bi → Ai−NC , and so

Bi → Ai−NC → Ai−NA−NC → Bi−NA−NC

vanishes as the map in the middle does, which is what we wanted.
�

Corollary 22.28. If E is a p-local Landweber exact homology theory of finite height, then any
E-local spectrum X has a strong horizontal vanishing line at a finite page. In particular, the
E∗-Adams spectral sequence is strongly convergent for any pair of E-local spectra.

Proof. This is immediate from Theorem 22.27 and Theorem 22.21. �

Remark 22.29. In the large prime case; that is, when p > n + 1, Theorem 22.16 implies
that we have vanishing lines already on the second page of the Adams spectral sequence; in fact,
N = n2 + n+ 1 works for any E-local spectrum X.
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In the generic case, Corollary 22.28 gives us a weaker conclusion, namely that we have
horizontal vanishing lines, but not necessarily on the second page. One can show that in this
case there is also an N which works for all X at once, depending only on the prime and the
height, but it is quite difficult to bound in practice.

23. Chromatic spectral sequence

Today, we will reduce the proof of finite homological dimensionality of the category of E∗E-
comodules when p > n + 1 to a computation in group cohomology, which we will be later able
to tackle using methods developed by Lazard. We will also outline how to obtain the "virtual"
version of this result using a construction of Smith.

Before we move on, let us outline one important consequence of Theorem 22.21, which
states that E-local spectra are E∗-nilpotent, and hence the E∗-based Adams spectral sequence
always converges strongly and has a horizontal vanishing line at a finite page.

There are at least two different situations in which we can say a map of spectra are nilpotent
(1) if f : X → X is a self-map, possibly of non-zero degree, then we say f is nilpotent if

fN = 0 for N large enough
(2) if x : S0 → R is a map into a ring spectrum, then we say it is nilpotent if it is nilpotent

as element of the ring π∗R.
As a consequence of our previous result, we have the following simple criterion.

Theorem 23.1 (E-local nilpotence). We have that
(1) a map f : X → X of E-local spectra nilpotent if and only if E∗ : E∗X → E∗X is and
(2) an element x ∈ π∗R in the homotopy of an E-local ring is nilpotent if and only if its

image in E∗R is.

Proof. One direction is clear, so suppose that E∗f is nilpotent. By replacing f by a large power,
we can assume that E∗f is zero. It follows that in the Adams spectral sequence

Exts,tE∗E(E∗X,E∗X)⇒ [X,X]t−s,

which is strongly convergent since X is E-local, f is detected by an element in Ek,t+k∞ for k > 0.
By Theorem 22.27, there is a large N such that Es∞ vanishes for s ≥ N . Since the Adams
spectral sequence is compatible with composition, fN is detected by an element in Ek

′,Nt+k′

∞ for
some k′ ≥ Nk ≥ N . It follows that it vanishes, as needed.

The second case follows from the same argument applied to the Adams spectral sequence

Exts,tE∗E(E∗, E∗R)⇒ π∗R,

which is compatible with the multiplicative structure of R. �

Remark 23.2. The above nilpotence true is also true for the ordinary ∞-category of spectra
with E replaced by the complex bordism spectrum MU, as a consequence of the famous nilpo-
tence theorem of Devinatz, Hopkins and Smith. One can deduce Theorem 23.1 from this
classical nilpotence statement.

Our goal is to prove that if p > n + 1, then for every pair M,N ∈ ComodevE∗E of comodules,
we have

ExtsE∗E(M,N) = 0

for s > n2 + n. Since any comodule is a direct sum of its even and odd parts, it is enough to
assume that M,N are even. In this case, we can equivalently prove that

ExtsM≤nfg

(F ,G) = 0

for s > n2 + n, where F ,G ∈ QCoh(M≤nfg ).
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Both perspectives are useful; thinking of quasi-coherent sheaves allows one to give a geometric
interpretation of many important constructions. On the other hand, some of the formal prop-
erties of the relevant abelian categories are easier to observe by thinking about comodules. We
will alternate between the two worlds.

It will be convenient to let E be the Lubin-Tate spectrum associated to the universal deforma-
tion of the Honda formal group law of height n over Fq. In this case, we have a (non-canonical,
but that’s not important here) isomorphism

E0 'W (Fq)[[u1, . . . , un−1]],

which is a regular local ring of dimension n. Note that by Hovey-Strickland’s Corollary 21.9,
the resulting category of comodules is independant of that choice.

We first establish some formal properties of the relevant abelian categories using comodules.
Note that the category of comodules has a symmetric monoidal structure given by tensor product
over E∗, which corresponds to the tensor product of quasi-coherent sheaves.

One can show that a comodule is dualizable with respect to this symmetric monoidal structure
if and only if it is dualizable as a module; that is, of finite rank and projective over E∗. Since
the Lubin-Tate ring is local, this is equivalent to being free of finite rank.

Lemma 23.3. Let E be an Adams-type homology theory. For any E∗E-comodule M , there
exists an epimorphism

⊕
Dα →M from a direct sum of dualizables.

Proof. As we’ve observed in Remark 20.20, E is Adams-type as a homotopy ring spectrum.
This result holds in fact for all Adams-type homology theories.

To see this, write E ' lim−→Eα as a filtered colimit of finite spectra such that E∗Eα is free and
finite rank over E∗. It follows that each of E∗Eα is dualizable as a comodule.

Let M be a comodule and m ∈ M , it is enough to show that there exists a dualizable D
together with a map D →M with m in its image. Using that E∗E⊗E∗ − is right adjoint to the
forgetful functor from comodules to modules, we have

HomE∗(E∗,M) ' HomE∗E(E∗, E∗E ⊗E∗ M) ' HomE∗E(E∗, lim−→E∗Eα ⊗E∗ M)

and using that E∗ is compact as a module, hence a comodule, we further rewrite the above as

lim−→HomE∗E(E∗, E∗Eα ⊗E∗ M) ' lim−→HomE∗E((E∗Eα)∨,M),

where (E∗Eα)∨ := HomE∗(E∗Eα, E∗) is the monoidal dual.
Now choose the unique E∗-linear homomorphism E∗ → M taking 1 to m. Under the above

string of equivalences, we see this homomorphisms corresponds to some map (E∗Eα)∨ → M of
comodules. A diagram chase that this map of comodules has m in its image, as was needed. �

Corollary 23.4. Let E be an Adams-type homology theory. Then, any E∗E-comodule M is a
filtered colimit of comodules which are finitely generated as modules over E∗.

Proof. From Lemma 23.3, it follows that M is a filtered colimit of images of maps from
dualizables, each of which is necessarily finitely generated. �

Remark 23.5. The property of being generated by dualizable objects, guaranteed by Lemma
23.3, is very useful. It does not hold for an arbitrary Hopf algebroid; equivalently, for the
category of quasi-coherent sheaves on an arbitrary algebraic stack. It is another way in which
the Adams-type condition, while slightly strange at first sight, does ensure excellent properties
of a given homology theory.

Remark 23.6. If E∗ is a coherent ring, such as when E is the complex bordism or the Lubin-
Tate spectrum, then the conclusion of Corollary 23.4 is stronger - any comodule is a filtered
colimit of finitely presented ones. Indeed, over a coherent ring, any finitely generated module is
finitely presented.
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Lemma 23.7. Let E be Landweber exact and M a non-zero E∗E-comodule. Then, there exists
a non-trivial map p : E∗ →M of comodules.

Proof. Observe that a map as above is determined by a single elementm ∈M , namely the image
of 1. For p to be a map of comodules, and not just E∗-modules, we need the comultiplication to
be given by

∆(m) = 1⊗m
as elements of E∗E ⊗E∗ M ; in other words, for m to be primitive. A choice of a complex-
orientation MU→ E induces an adjunction

E∗ ⊗MU∗ − a R : ComodMU∗MU � ComodE∗E

which geometrically corresponds to the adjunction induced by the inclusion

M≤nfg ↪→Mfg

of the open substack classifying formal groups of height at most n. Using this interpretation,
one can show that the right adjoint is fully faithful. Thus, replacing M by its image under the
right adjoint, we reduce to the case of MU∗MU-comodules.

By Corollary 23.4, we can assume thatM is finitely generated. It follows thatM is bounded
below in its internal grading. Choose the largest k such that Mi = 0 for i < k. Since MU∗MU
is concentrated in non-negative degrees, the comultiplication in degree k lands in

(MU∗MU⊗MU∗ M)k ' MU0MU⊗MU0
Mk 'Mk.

Since MU0 → MU0MU is an isomorphism, using counitality of multiplication, we deduce that
∆(m) = 1⊗m for any m ∈Mk, hence any choice of such m gives the required element. �

It follows that any non-zero comodule M has a subcomodule M ′ which is cyclic in the sense
that it is a quotient of E∗. Applying Lemma 23.7 inductively to the quotientM/M ′, we deduce
that M admits a filtration where each subquotient is cyclic. If M is finitely presenented, this
filtration is necessarily finite and so we deduce that any finitely presented comodule is an iterated
extension of cyclic ones.

In the particular case of Landweber exact homology theories, we have a much stronger state-
ment, due to Landweber in the case of complex bordism and Hovey-Strickland in the finite height
case.

Proposition 23.8. Any finitely presented E∗E-comodule M admits a finite filtration with sub-
quotients of the form E∗/Ik for 0 ≤ k ≤ n.

Proof. This is [7, Theorem D]. �

Recall that our goal is to show that if p > n + 1, then the category of E∗E-comodules if of
finite homological dimension n2 + n; that is, that for any comodules M,N , ExtsE∗E(M,N) = 0

for s > n2 + n.
Above, we have shown that the category of E∗E-comodules is built using extensions and fil-

tered colimits from the cyclic comodules E∗E/Ik. Because of that, one can expect that verifying
finiteness of homological dimension can also be reduced to a calculation with these special ones;
this is indeed the case.

Proposition 23.9. Suppose that ExtsE∗E(E∗, E∗/Ik) vanishes above degree n2 + n − k. Then,
the category of E∗E-comodules is of finite homological dimension n2 + n.

Proof. Let us say that a finitely presented comodule N is a "good source" if

ExtsE∗E
s(N,E∗) = 0

for s > n2 + n. We claim that in this case we have ExtsE∗E(N,M) for arbitrary M .
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Since E∗/Ik can be obtained from E∗ by modding out by the regular sequence v0, . . . , vk1 ,
we deduce using long exact sequence that if N is a good source, then the result also holds for
M = E∗/Ik. Since any finitely presented comodule is an iterated extension of ones of this form
by Proposition 23.8, we deduce the the vanishing holds when M is finitely presented.

Now suppose that M is a general comodule, by Corollary 23.4 we can write M ' lim−→Mα

as a filtered colimits of its finitely presented subcomodules. Thus, it is enough to show that
ExtsE∗E(N,M) commutes with filtered colimits in M , for any s ≥ 0.

If N is dualizable, then since it is projective over the base ring ExtsE∗E(N,E∗E⊗M) vanishes
for any M and s > 0. It follows that the groups ExtsE∗E(N,−)-groups can be computed using
the relatively injective cobar resolution

M → E∗E ⊗E∗ M → E∗E ⊗E∗ E∗E ⊗E∗ M → . . . ,

in place of an injective resolution, see [15, A.2] for details. This clearly commutes with colimits
in M . If N is merely finitely presented, then Lemma 23.3 implies that it has a resolution using
dualizables which can be made finite of length n as E∗ is an n-dimensional regular local ring.
The resulting long exact sequence of Ext-groups then show that ExtsE∗E(N,−) also commutes
with filtered colimits, which is what we wanted.

We now claim that E∗/Ik are good sources. Note that the relevant Ext-groups can be com-
puted as homotopy classes of maps in the derived category D(E∗E) of comodules. Since E∗/Ik
can be obtained from E∗ by modding out by the regular sequence v0, v1, . . . , vk−1, its monoidal
dual in the derived category of comodules is given by an internal shift of ΣkE∗/Ik.

Thus, monoidal duality in the derived category induces an isomorphism

Exts(E∗/Ik, E∗) ' Exts+k(E∗, E∗/Ik).

This, together with the assumption in the statement, yields that E∗/Ik are good sources. By
another application of a Landweber filtration argument we deduce that all finitely presented
comodules are.

Finally, we show that ExtsE∗E(N,M) vanishes for arbitrary M,N and s > n2 + n can be
deduced from the case when N is finitely presented, but we omit the argument. �

As a consequence of Proposition 23.9, to prove Theorem 22.16, we only have to show
that

Exts,tE∗E(E∗, E∗/Ik)

vanishes for s > n2 + n − k and arbitrary t. These are even comodules, and translating the
statement back into algebraic geometry, we see that we are tasked with showing the vanishing
of

Hs(M≤nfg ,OMk≤,≤n
fg

⊗ ωt) ' Hs(Mk≤,≤n
fg , ωt)

in the specified range of degrees, whereMk≤,≤n
fg is the moduli of formal groups of height between

k and n and ω is the Lie algebra line bundle, tensoring with which corresponds to the shift in
grading.

The main idea is to prove the result by downward induction on k, using that we have a
sequence of closed inclusions

M=n
fg ↪→Mn−1≤,≤n

fg ↪→ . . . ↪→M≤nfg ,

which determines a sequence of open complements. The starting point is the following calcula-
tion.

Theorem 23.10. If p − 1 doesn’t divide n, we have Hs(M=n
fg ,F) = 0 for s > n2 and any

quasi-coherent sheaf on the moduli of formal groups of fixed height n.
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Proof. A formal group is of height zero if and only if p is invertible, so that in the p-local situation
we have

M=0
fg ' Spec(Q)×Mfg ' Spec(Q)×BGm,

where the last equivalence is Proposition 12.13. We deduce that QCoh(M=0
fg ) can be identified

with the category of representations of Gm in rational vector spaces, which is the same as vector
spaces equipped with even grading. It follows that all Ext-groups vanish above s > 0, as needed.

If n > 0, then Theorem 17.9 shows that we have an equivalence

M=n
fg ' Spec(Fq)//Gn,

where Fq is the field with q = pn elements and Gn is the Morava stabilizer group, the automor-
phism group of the Honda formal group. It follows that any quasi-coherent sheaf F determines
a continuous Gn-representation F(Fq) in Fq-vector spaces and that we have an isomorphism

Hs(M=n
fg ,F) ' Hs(Gn,F(Fq)),

where on the right hand side we have continuous cohomology of the profinite group Gn. In the
next lecture, we will use group-theoretic techniques to show this vanishes in the needed range
under the needed assumption that p− 1 doesn’t divide n. �

Remark 23.11. Note that to prove finite homological dimensionality ofM≤nfg , we will need to
apply Theorem 23.10 toM=k

fg for each 0 ≤ k ≤ n. The only way that p− 1 can fail to divide
any k in the range 0 ≤ k ≤ n is if p > n+ 1, which explains where the latter assumption comes
from.

Assume that p > n+ 1, our goal is to verify the vanishing of

Hs(Mk≤,≤n
fg , ωt)

for s > n2 + n − k using downward induction on k. By Theorem 23.10, we know this holds
when k = n. The inductive step proceeds by studying the open-closed decomposition

M=k
fg ↪→Mk≤,≤n

fg ←↩Mk+1≤,≤n
fg ,

which induces a so-called recollement [2].
In particular, it gives for any element of the derived category of quasi-coherent sheaves on

Mk≤,≤n
fg a fibre sequence, by mapping it into its restriction to the open substack and taking the

fibre, which can be described in terms of the formal neighbourhood of the closed substack. We
will not use this language, as the situation we’re in is substantially simpler, but we invite an
interested reader to consult other sources for more on the ubiquity of this situation [1], [4].

Instead, it will be notationally convenient to phrase the proof in terms of comodules. Since
vk is invariant relative to lower vi-s and a non-zero divisor relative to them, we have a short
exact sequence of comodules of the form

0→ E∗/Ik → v−1
k E∗/Ik → E∗/(Ik, v

∞
k )→ 0,

where the middle term is given by

v−1
k E∗/Ik := lim−→E∗/Ik → E∗/Ik[−|vk|]→ E∗/Ik[−2|vk|]→ . . .

with connecting maps given by multiplication by vk, which shifts internal degree by |vk| = 2pk−2,
which we denoted using middle brackets. The last term is given by the cokernel, so that

E∗/(Ik, v
∞
k ) := lim−→ 0→ E∗/(Ik, vk)[−|vk|]→ E∗/(Ik, v

2
k)[−2|vk|]→ . . . .

The above short exact sequence of comodules induces a long exact sequence of Ext-groups

. . .Exts−1(E∗/(Ik, v
∞
k ))→ Exts(E∗/Ik)→ Exts(v−1

k E∗/Ik)→ . . . ,
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where we write Exts(−) := ExtsE∗E(E∗,−) for brevity. Using this long exact sequence, we see
that it is enough to show that the Ext-groups of v−1

k E∗/Ik vanish for s > n2 + n− k and of the
quotient for s > n2 + n− k − 1 = n2 + n− (k + 1).

In terms of algebraic geometry, v−1
k E∗/Ik can be identified with the pushforward of the

structure sheaf ofM=k
fg toMk≤,≤n

fg to. Thus, its Ext-groups can be identified with cohomology
of this open substack, which vanishes above degree k2, and hence also above degree n2 + k, by
Theorem 23.10.

By definition, the quotient is a filtered colimit of shifts of comodules of the form E∗/(Ik, v
j
k).

Each such is an iterated extension of j copies of E∗/(Ik, vk) ' E∗/Ik+1, and so its cohomology
vanishes in the needed range by the inductive assumption. This ends the argument, finishing
the proof of Theorem 22.16.
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