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Preface to the first edition 

In recent years new topological methods, especially the theory of 
sheaves founded by J. LERAY, have been applied successfully to algebraic 
geometry and to the theory of functions of several complex variables. 

H. CARTAN and J.-P. SERRE have shown how fundamental theorems 
on holomorphically complete manifolds (STEIN manifolds) can be for
mulated in terms of sheaf theory. These theorems imply many facts of 
function theory because the domains of holomorphy are holomorphically 
complete. They can also be applied to algebraic geometry because the 
complement of a hyperplane section of an algebraic manifold is holo
morphically complete. J.-P. SERRE has obtained important results on 
algebraic manifolds by these and other methods. Recently many of his 
results have been proved for algebraic varieties defined over a field of 
arbitrary characteristic. K. KODAIRA and D. C. SPENCER have also 
applied sheaf theory to algebraic geometry with great success. Their 
methods differ from those of SERRE in that they use techniques from 
differential geometry (harmonic integrals etc.) but do not make any use 
of the theory of STEIN manifolds. M. F. ATIYAH and W. V. D. HODGE 
have dealt successfully with problems on integrals of the second kind on 
algebraic manifolds with the help of sheaf theory. 

I was able to work together with K. KODAIRA and D. C. SPENCER 
during a stay at the Institute for Advanced Study at Princeton from 
1952 to 1954. My aim was to apply, alongside the theory of sheaves, the 
theory of characteristic classes and the new results of R. THOM on 
differentiable manifolds. In connection with the applications to algebraic 
geometry I studied the earlier research of J. A. TODD. During this time 
at the Institute I collaborated with A. BOREL, conducted a long cor
respondence with THoM and was able to see the correspondence of 
KODAIRA and SPENCER with SERRE. I thus received much stimulating 
help at Princeton and I wish to express my sincere thanks to A. BOREL, 
K. KODAIRA, J.-P. SERRE, D. C. SPENCER and R. THOM. 

This. book grew out of a manuscript which was intended for publica
tion in a journal and which contained an exposition of the results obtained 
during my stay in Princeton. Professor F. K. SCHMIDT invited 
me to use it by writing a report for the "Ergebnisse der Mathematik". 
Large parts of the original manuscript have been taken over unchanged, 
while other parts of a more expository nature have been expanded. In 
this way the book has become a mixture between a report, a textbook 
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and an original article. I wish to thank Professor F. K. SCHMIDT for his 
great interest in my work. 

I must thank especially the Institute for Advanced Study at Princeton 
for the award of a scholarship which allowed me two years of undisturbed 
work in a particularly stimulating mathematical atmosphere. I wish 
to thank the University of Erlangen which gave me leave of absence 
during this period and which has supported me in every way; the Science 
Faculty of the University of Munster, especially Professor H. BEHNKE, 
for accepting this book as a Habilitationsschrift; and the Society for the 
Advancement of the University of Munster for financial help during the 
final preparation of the manuscript. I am indebted to R. REMMERT and 
G. SCHEJA for their help with the proofs, and to H.-J. NASTOLD for 
preparing the index. Last, but not least, I wish to thank the publishers 
who have generously complied with all my wishes. 

Fine Hall, Princeton 

23 January 1956 

Preface to the third edition 

F. HIRZEBRUCH 

In the ten years since the publication of the first edition, the main 
results have been extended in several directions. On the one hand the 
RIEMANN-RocH theorem for algebraic manifolds has been generalised by 
GROTHENDIECK to a theorem on maps of projective algebraic varieties 
over a ground field of arbitrary characteristic. On the other hand ATIYAH 
and SINGER have proved an index theorem for elliptic differential 
operators on differentiable manifolds which includes, as a special case, 
the RIEMANN-RoCH theorem for arbitrary compact complex manifolds. 

There has been a parallel development of the integrality theorems for 
characteristic classes. At first these were proved for differentiable mani
folds by complicated deductions from the almost complex and algebraic 
cases. Now they can be deduced directly from theorems on maps of 
compact differentiable manifolds which are analogous to the RIEMANN
ROCH theorem of GROTHENDIECK. A basic tool is the ring K (X) formed from 
the semi-ring of all isomorphism classes of complex vector bundles over a 
topological space X, together with the BOTT periodicity theorem which 
describes K (X) when X is a sphere. The integrality theorems also follow 
from the ATIYAH-SINGER index theorem in the same way that the 
integrality of the TODD genus for algebraic manifolds follows from the 
RIEMANN-RoCH theorem. 

Very recently ATIYAH and BOTT obtained fixed point theorems of 
the type first proved by LEFscHETz. A holomorphic map of a compact 
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complex manifold V operates, under certain conditions, on the co
homology groups of V with coefficients in the sheaf of local holomorphic 
sections of a complex analytic vector bundle Wover V. For a special 
class of holomorphic maps, ATIYAH and BOTT express the alternating 
sum of the traces of these operations in terms of the fixed point set of the 
map. For the identity map this reduces to the RIEMANN-RoCH theorem. 
Another application yields the formulae of LANGLANDS (see 22.3) for the 
dimensions of spaces of automorphic forms. ATIYAH and BOTT carry 
out these investigations for arbitrary elliptic operators and differentiable 
maps, obtaining a trace formula which generalises the index theorem. 
Their results have a topological counterpart which generalises the 
integrality theorems. 

The aim of the translation has been to take account of these develop
ments - especially those which directly involve the TODD genus -
within the framework of the original text. The translator has done this 
chiefly by the addition of bibliographical notes to each chapter and 
by a new appendix containing a survey, mostly without proofs, of some 
of the applications and generalisations of the RIEMANN-RoCH theorem 
made since 1956. The fixed point theorems of ATIYAH and BOTT could be 
mentioned only very briefly, since they became known after the manus
cript for the appendix had been finished. A second appendix consists of a 
paper by A. BOREL which was quoted in the first edition but which has 
not previously been published. Certain amendments to the text have 
been made in order to increase the usefulness of the book as a work of 
reference. Except for Theorems 2.8.4, 2.9.2, 2.11.2, 4.11.1-4.11.4, 
10.1.1,16.2.1 and 16.2.2 in the new text, all theorems are numbered as in 
the first edition. 

The author thanks R. L. E. SCHWARZENBERGER for his efficient work 
in translating and editing this new edition, and for writing the new 
appendix, and A. BOREL for allowing his paper to be added to the book. 

We are also grateful to Professor F. K. SCHMIDT for suggesting 
that this edition should appear in the "Grundlehren der mathematischen 
Wissenschaften", to D. ARLT, E. BRIESKORN and K. H. MAYER for 
checking the manuscript, and to ANN GARFIELD for preparing the 
typescript. Finally we wish to thank the publishers for their continued 
cooperation. 

Bonn and Coventry 
23 January 1966 

F. HIRZEBRUCH 
R. L. E. SCHWARZENBERGER 
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Introduction 

The theory of sheaves, developed and applied to various topological 
problems by LERAY [1], [2]1), has recently been applied to algebraic 
geometry and to the theory of functions of several complex variables. 
These applications, due chiefly to CARTAN, SERRE, KODAIRA, SPENCER, 
ATIYAH and HODGE have made possible a common systematic approach 
to both subjects. This book makes a further contribution to this develop
ment for algebraic geometry. In addition it contains applications of the 
results of THOM on cobordism of differentiable manifolds which are of 
independent interest. Sheaf theory and cobordism theory together 
provide the foundations for the present results on algebraic manifolds. 
This introduction gives an outline (0.1-0.8) of the results in the book. 
It does not contain precise definitions; these can be found by reference 
to the index. Remarks on terminology and notations used throughout the 
book are at the end of the introduction (0.9). 

0.1. A compact complex manifold V (not necessarily connected) is 
called an algebraic manifold if it admits a complex analytic embedding 
as a submanifold of a complex projective space of some dimension. By 
a theorem of CHOW [1] this definition is equivalent to the classical 
definition of a non-singular algebraic variety. Algebraic manifolds in 
this sense are often also called non-singular projective varieties. In 
0.1-0.6 we consider only algebraic manifolds. 

Let V .. be an algebraic manifold of complex dimension n. The arith
metic genus of V .. has been defined in four distinct ways. The postulation 
formula (HILBERT characteristic function) can be used to define integers 
Pa(V .. ) and Pa(V .. ). These are the first two definitions. SEVERI con
jectured that 

Pa(V .. ) = Pa(V .. ) = g .. - g"-1 + ... + (_1) .. -1 gl' (1) 

where g, is the number of complex-linearly independent holomorphic 
differential forms on V .. of degree i (i-fold differentials of the first kind). 
The alternating sum of the g, can be regarded as a third definition of the 
arithmetic genus. Further details can be found, for instance, in SEVERI 
[1]. Equation (1) can be proved easily by means of sheaftheory (KODAIRA
SPENCER [1]) and therefore the first three definitions of the arithmetic 
genus agree. 

1) Numbers in square brackets refer to the bibliography at the end of the book. 
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The form of the alternating sum of gl in (1) is inconvenient and we 
modify the classical definition slightly. We call 

.. 
X(V .. ) = E (-I)l gt (2) 

i-O 

the arithmetic genus of the algebraic manifold V... The integer go in (2) 
is the number of linearly independent holomorphic functions on V .. and 
is therefore equal to the number of connected components of V ... It is 
usual to call g .. the geometric genus of V .. and gl the irregularity of V". 
In the case n = 1 a connected algebraic curve VI is a compact RIEMANN 
surface homeomorphic to a sphere with p handles. Then g .. = gl = P and 
the arithmetic genus of VI is 1 - p. The arithmetic genus and the 
geometric genus behave multiplicatively: 

The genus 01 the cartesian product V X W 01 two algebraic manilolds is 
the product 01 the genus 01 V and the genus 01 W. 

Under the old terminology the arithmetic genus clearly does not 
have this property. The arithmetic genus X(V,,) is a birational invariant 
because each gl is a birational invariant (KAHLER [1] and VAN DER 
WAERDEN [1]. [2]). Under the old terminology the arithmetic genus of 
a rational variety is O. According to the present definition it is 1. 

0.2. The fourth definition of the arithmetic genus is due to TODD [1]. 
He showed in 1937 that the arithmetic genus could be represented in 
terms of the canonical classes of ECER-ToDD (TODD [3]). The proof 
is however incomplete: it relies on a lemma of SEVERI for which no 
complete proof exists in the literature. 

The ECER-ToDD class K t of V .. is by definition an equivalence 
class of algebraic cycles of real dimension 2n - 2i. The equivalence 
relation implies. but does not in general coincide with. the relation 
of homology equivalence. For example Kl (=K) is the class of canonical 
divisors of V ... (A divisor is canonical if it is the divisor of a meromorphic 
n-form.) The equivalence relation for i = 1 is linear equivalence of 
divisors. The class Ki defines a (2n - 2i)-dimensional homology class. 
This determines a 2i-dimensional cohomology class which agrees (up 
to sign) with the CHERN class Cl of V ... This "agreement" between the 
ECER-ToDD classes and the CHERN classes was proved by NAKANO [2] 
(see also CHERN [2]. HODCE [3] and ATIYAH [3)). 

Remark: The sign of the 2i-dimensional cohomology class deter
mined by K t depends on the orientation of V ... We shall always use the 
natural orientation of V... If Zl' Zs. . • •• z" are local coordinates with 
Z1c = X1c + i Y1c then this orientation is given by the ordering Xl' Yl' 

XS. Ys. •••• X". y .. or in other words by the positive volume element 
dx1 /\ dYl/\ dX2 /\ dY2/\' .. /\ dx" /\ dy ... In this case K t determines the 
cohomology class (-1)1 Ci' 
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In this book we use only the CHERN classes and so the fact that the 
EGER-TODD classes agree with the CHERN classes is not needed. The 
definition of the TODD genus T(V,,) is given in terms of the CHERN 
classes. One of the chief purposes of this book is then to prove that 
X(V,,) = T(V,,). 

0.3. The natural orientation of V" defines an element of the 2n
dimensional integral homology group H2"(V,,, Z) called the fundamental 
cycle of V". The value of a 2n-dimensional cohomology class b on the 
fundamental cycle is denoted by b [V,,]. 

The definition of T(V,,) is in terms of a certain polynomial T" of 
weight n in the CHERN classes Ci of V"' the products being taken in the 
cohomology ring of V". This polynomial is defined algebraically in § 1 ; 
it is a rational 2n-dimensional cohomology class whose value on the 
fundamental cycle is by definition T(V,,). For small n (see 1.7) 

T(Vl) = ~ c1 [VI]' T(V2) = -& (c~ + c2) [V2], T(Va) = ;. c1 c2 [Va]. (3) 

The definition implies that T(V,,) is a rational number. The equation 
xW,,) = T(V,,) implies the non-trivial fact that T(V,,) is an integer 
and that T (V n) is a birational invariant. The sequence of polynomials 
{T,,} must be chosen so that, like the arithmetic genus, T(Vn) behaves 
multiplicatively on cartesian products. There are many sequences with 
this property: it is sufficient for {T,,} to be a multiplicative sequence 
(§ 1). The sequence {T,,} must be further chosen so that T(Vn) agrees 
with X (V n) whenever possible. In particular if P n (C) denotes the n
dimensional complex projective space then T(Pn(C)) = 1 for all n. 
This condition is used in § 1 to determine the multiplicative sequence 
{T,,} uniquely (Lemma 1.7.1). 

For fixed n the polynomial Tn is determined uniquely by the following 
property : Tn [V n] = 1 il V = Pi. (C) X ••• X Pi, (C) is a cartesian product 
01 complex projective spaces with jl + ... + jr = n. There/ore T" is the 
unique polynomial which takes the value 1 on all rational manilolds 01 
dimension n. 

0.4. The divisors of the algebraic manifold V .. can be formed into 
equivalence classes with respect to linear equivalence. A divisor is 
linearly equivalent to zero if it is the divisor (I) of a meromorphic function 
1 on Vn• This equivalence is compatible with addition of divisors and 
therefore the divisor classes form an additive group. We can also consider 
complex analytic line bundles (with fibre C and group C·; see 0.9) over V". 
In this introduction we identify isomorphic line bundles (see 0.9). Then 
the line bundles form an abelian group with respect to the tensor pro
duct ®. The identity element, denoted by 1, is the trivial complex line 
bundle X X C. The inverse of a complex line bundle F is denoted by F-l. 
The group 01 line bundles is isomorphic to the group 01 divisor classes: 
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Every divisor determines a line bundle. The sum of two divisors deter
mines the tensor product of the corresponding line bundles. Two divisors 
determine the same line bundle if and only it they are linearly equivalent. 
Finally. every line bundle is determined by some divisor (KODAIRA
SPENCER [2]). Denote by HOW". D) the complex vector space of all 
meromorphic functions / on V" such that D + (/) is a divisor with no 
poles. H°(V". D) is the "RIEMANN-RoCH space" of D and is finite dimen
sional. The dimension dimHO(V". D) depends only on the divisor class of 
D. The determination of dimHO(V". D) for a given divisor D is the 
RIEMANN-RoCH problem. If F is the line bundle corresponding to the 
divisor D then H°(V". D) is isomorphic to H°(V". F). the complex 
vector space of holomorphic sections of F. 

0.5. It has already been said that one aim of this work is to prove 
the equation 

(4) 

The CHERN number c" [V,,] is equal to the EULER-POINCARE charac
teristic of V". Therefore equation (4) gives. for a connected algebraic 
curve V homeomorphic to a sphere with P handles: 

X(V1) = T(VJ) =~Cl[Vl] =-}(2-2P)· (41) 

The RIEMANN-RoCH theorem for algebraic curves states (see for instance 
WEYL [1]): 

dimH°(Vv D) - dimH°(VI' K - D) = d + 1 - P (4t) 

where d is the degree of the divisor D and K is a canonical divisor of VI. 
Since dimH°(VI' K) = gl the substitution D = 0 in (4t) gives l41). It will 
be shown that for algebraic manifolds of arbitrary dimension equation 
(4) admits a generalisation which corresponds precisely to the generalisa
tion (4r) of (41). This generalisation will be given in terms of line bundles 
rather than divisors. 

Let F be a complex analytic line bundle and let Hf(Vn • F) be the 
i-th cohomology group of V" with coefficients in the sheaf of germs of 
local holomorphic sections of F. In the case F = 1 this is the sheaf of 
germs of local holomorphic functions. The cohomology "group" Hf(V". F) 
is a complex vector space which. by results of CARTAN-SERRE [1] (see 
also CARTAN [4]) and KODAIRA [3]. is of finite dimension. The vector 
space HO\V". F) is the "RIEMANN-RoCH space" of F defined in 0.4. 
A theorem of DOLBEAuLT [1] implies that dim Hi (V". 1) = gi. The integer 
dimHf(V", F) depends only on the isomorphism class of F and is zero 
for i > n. It is therefore possible to define 

.. 
X(Vn. F) = 1: (-I)i dimHi(Vn. F) . (5) 

i=O 



Introduction 5 

This is the required generalisation of the left hand side of (4). It will be 
shown that X (V ... F) can be expressed as a certain polynomial in the 
CHERN classes of V .. and a 2-dimensional cohomology class I determined 
by the line bundle F. Here I is the first CHERN class of F (the cohomology 
obstruction to the existence of a continuous never zero section of F). 
IfFisrepresented by a divisor D then lisalso determined by the (2n - 2)
dimensional homology class corresponding to D. For small n. 

X (VI' F) =(/+-}Ct)[V1]. X (V •• F) = (-} (F + Icl ) + 112 (cf+c.»)[v.L 

X (Va. F) = (~r + + FCl + -&- I(cf + cal + ;. C1 c.) [Va] . 

This is the generalisation of the RIEMANN-RoCH theorem to algebraic 
manifolds of arbitrary dimension (Theorem 20.3.2). By the SERRE 
duality theorem (see 15.4.2) dim HI (VI' F) = dimH°(Vl' K ® F-l) and 
dim HI (V •• F) = dimHO(VII• K ® F-l) where K denotes the line bundle 
determined by canonical divisors. It follows that the equations for 
X(Vl' F) and X (V •• F) imply the classical RIEMANN-RoCH theorem for 
an algebraic curve and for an algebraic surface. Full details are given in 
19.2 and 20.7. 

KODAIRA [4] and SERRE have given conditions under which 
dimHI(V ... F) = 0 for i> 0 (see Theorem 18.2.2 and CARTAN [4]. 
Expose XVIII). The definition of X (V ... F) in (5) then shows that our 
formula for X (V ... F) yields a formula for HO(V ... F). In such cases 
the "RIEMANN-RoCH problem" stated in 0.4 is completely solved. 
This corresponds for algebraic curves to the well known fact that the 
term dimH°(VI' K - D) in (4t) is zero if d > 2P - 2. 

0.6. There is a further generalisation of equation (4). Let W be a 
complex analytic vector bundle over V .. [with fibre CCI and group G L (q. C) ; 
see 0.9]. Let H'(V ... W) be the i-th cohomology group of V .. with co
efficients in the sheaf of germs of local holomorphic sections of W. Then 
HI(V ... W) is again a complex vector space of finite dimension and 
dimHI(V ... W) is zero for i > n. It is therefore possible to define 

.. 
X(V ... W) = E (-1)1 dim HI (V ... W) • (6) 

'=0 
It was conjectured by SERRE. in a letter to KODAIRA and SPENCER 

(29 September 1953). that X(V ... W) could be expressed as a polynomial 
in the CHERN classes of V .. and the CHERN classes of W. We shall obtain 
an explicit formula for the polynomial of X (V ... W). This is the RIEMANN
ROCH theorem for vector bundles (Theorem 21.1.1). A corollary in the 
case n = 1 (algebraic curves) is the generalisation of the RIEMANN-RoCH 
theorem due to WElL [1]. Full details are given in 21.1. 
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The result on X (V .. , W) can be applied to particular vector bundles 
over V ... We define (see KODAIRA-SPENCER [3]) 

x"(VOl) = x (V .. , A" T) (7) 

where A" T is the vector bundle of covariant p-vectors of V ... The CHERN 
classes of A" T can be expressed in terms of the CHERN classes of V .. 
(Theorem 4.4.3). Therefore XJl(VOl) is a polynomial of weight n in the 
CHERN classes of V ... By a theorem of DOLBEAULT [1], dimHIl(VOl' A" T) 
is the number h",11 of complex-linearly independent harmonic forms on .. 
V .. of type (P, q). Therefore XJl(V .. ) = .E (-1)11 h",Il. For example, in the 

q=O 
case n = 4, there is an equation 

Xl (V,) = hI,o - hI,I + hI,. - hI,S + hI," = 4 X (V,) - 112 (2 C, + Cs cI) [V,]. (8) 

.. 
The sum .E X"(V .. ) is clearly zero for n odd. The alternating sum 

1>=0 .. 
E (-1)1> X"(V .. ) is by theorems of DE RHAM and HODGE equal to the 

1>=0 
EULER-POINCARE characteristic c" [V .. ] of V ... The polynomials for 
X"(V .. ) have the same properties. HODGE [4] proved that for n even the .. 
sum E X" (V .. ) is equal to the index of V ... By definition the index of V .. 

1>=0 
is the signature (number of positive eigenvalues minus number of negative 
eigenvalues) of the bilinear symmetric form x y[VOl] (x, y E H"(VOl' R) on 
the n-dimensional real cohomology group of V... Therefore the index 
of V .. is a polynomial in the CHERN classes of V ... This polynomial can 
actually be expressed as a polynomial in the PONTRJAGIN classes of V .. 
and is therefore defined for any oriented differentiable manifold. 

0.7. We have just remarked that the main result of this book [the 
expression of X(VOl' W) as a certain polynomial in the CHERN classes 
of V .. and W] implies that the index of an algebraic manifold V II Ie can be 
expressed as a polynomial in the PONTRJAGIN classes of Vu. In fact this 
theorem is the starting point of our investigation. Let M4.1c be an oriented 
differentiable manifold of real dimension 4 k. In this work" differentiable" 
always means "Coo-differentiable" so that all partial derivatives exist 
and are continuous. The orientation of MU defines a 4k-dimensional 
fundamental cycle. The value of a 4 k-dimensional cohomology class 
b on the fundamental cycle is denoted by b [Mu]. In Chapter Two the 
cobordism theory of THOM is used to express the index T (M4k) of MU as a 
polynomial of weight k in the PONTRJAGIN classes of MU. For example, 

T(M") =iPl[M"] , T(MS) = 4~ (7Pz- Pi) [MS]. (9) 
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The formula for l'(M') was conjectured by Wu. The formulae for 
l'(M') and 1'(M8) were both proved by THOM [2]. A brief summary of the 
deduction of the formula for x (V,., W) from that for l'(MU:) can be found 
in HIRZEBRUCH [2]. 

0.8. The definitions in 0.1-0.6 were formulated only for algebraic 
manifolds. In the proof of the RIEMANN-RoCH theorem we make this 
restriction only when necessary. The index theorem described in 0.7 is 
proved in Chapter Two for arbitrary oriented differentiable manifolds. 
The main results of THOM on cobordism are quoted: the proofs, which 
make use of differentiable approximation theorems and algebraic homo
topy theory, are outside the scope of this work. 

In Chapter Three the formal theory of the TODD genus and of the 
associated polynomials is developed for arbitrary compact almost 
complex manifolds (T-theory). In particular we obtain an integrality 
theorem (14.3.2). This theorem has actually little to do with almost 
complex manifolds; its relation to subsequent integrality theorems for 
differentiable manifolds is discussed in the bibliographical note to 
Chapter Three and in the Appendix. 

In Chapter Four the theory of the integers X(V,., W) is developed 
as far as possible for arbitrary compact complex manifolds (x-theory). 
The necessary results on sheaf cohomology due to CARTAN, DOLBEAULT, 
KODAIRA, SERRE and SPENCER are described briefly. In the course of the 
proof it is necessary to assume first that V,. is a KAHLER manifold. 
Finally, if V,. is an algebraic manifold, we are able to identify the 
x-theory with the T-theory (RIEMANN-RoCH theorem for vector bundles; 
Theorem 21.1.1). 

The Appendix contains a review of applications and generalisations 
of the RIEMANN-RoCH theorem. In particular it is now known that the 
identification of the x-theory with the T-theory holds for any compact 
complex manifold V,. (see § 25). 

The author has tried to make the book as independent of other 
works as is possible within a limited length. The necessary preparatory 
material on multiplicative sequences, sheaves, fibre bundles and charac
teristic classes can be found in Chapter One. 

0.9. Remarks on notation and terminology 

The following notations are used throughout the book. 
Z: integers, D: rational numbers, R: real numbers, (: complex 

numbers, Rq: vector space over R of q-ples (Xl' ... , Xq) of real numbers, 
('1: vector space over ( of q-ples of complex numbers. GL(q, R) denotes 
the group of invertible q X q matrices (ail.) with real coefficients ail., 
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i. e. the group of automorphisms of R" 
tJ 

x~ = E au XI:' 
i-I 

GL+(q, R) denotes the subgroup of GL(q, R) consisting of matrices 
with positive detenninant (the group of orientation preserving auto
morphisms). 0 (q) denotes the subgroup of orthogonal matrices of GL (q, R) 
and SO(q) = O(q) (\ GL+(q, R). Similarly GL(q, C) denotes the group of 
invertible q X q matrices with complex coefficients, and U (q) the sub
group of unitary matrices of GL(q, C). We write C· = GL(l. C), the 
multiplicative group of non-zero complex numbers. P,,-l (C) denotes the 
complex projective space of complex dimension q - 1 (the space of 
complex lines through the origin of C,,). We shall often denote real 
dimension by an upper suffix (for example MUc, Rq) and complex dimen
sion by a lower suffix (for example V .. , Cq). 

We have adopted one slight modification of the usual terminology. 
An isomorphism class of principal fibre bundles with structure group G 
is called a G-bundle. Thus a G-bundle is an element of a certain co
homology set. On the other hand, we use the words fibre bundle, line 
bundle and vector bundle to mean a particular fibre space and not an 
isomorphism class of such spaces (see 3.2). In Chapter Four all con
structions depend only on the isomorphism class of the vector bundles 
involved and it is possible to drop this distinction (see 15.1). 

The book is divided into chapters and then into paragraphs, which 
are numbered consecutively throughout the book. Formulae are num
bered consecutively within each paragraph. The paragraphs are divided 
into sections. Thus 4.1 means section 1 of § 4; 4.1 (5) means formula (5) 
ot § 4, which occurs in section 4.1 ; 4.1.1 refers to Theorem 1 of section 4.1. 
The index includes references to the first occurrence of any symbol. 

Chapter One 

Preparatory material 
The elementary and formal algebraic theory of multiplicative 

sequences is contained in § 1. In particular the TODD polynomials T1, 

and also the polynomials LI used in the index theorem, are defined. 
Results on sheaves needed in the sequel are collected in § 2. The basic 
properties of fibre bundles are given in § 3. In § 4 these are applied to 
obtain characteristic classes. In particular, the CHERN classes and 
PONTRJAGIN classes are defined. The results of § 1 are not used until § 8. 
The reader is therefore advised to begin with § 2 and to refer to § 1 only 
when necessary. 
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§ 1. Multiplicative sequences 

1.1. Let B be a commutative ring with identity element 1. Let 
Po = 1 and let PI' PI' . .. be indeterminates. Consider the ring ~ = 

B fPI' P2' ... J obtained by adjoining the indeterminates P. to B. Then ~ 
is the ring of polynomials in the P. with coefficients in B. and is graded 
in the following way: 

The product Pi. Pi. ... Pi. has weight it + j" + ... + jr and 
00 

(1) 

where ~k is the additive group of those polynomials which contain 
only terms of weight k and ~o = B. The group ~k is a module over B 
whose rank is equal to the number ;7l;(k) of partitions of k. Clearly 

~r ~s C ~r+. . (2) 

1.2. Let {K;} be a sequence of polynomials in the indeterminates Pi 
with Ko = 1 and K; E~; (j = o. 1. 2, ... ). The sequence {KJ} is called a 
multiplicative sequence (or m-sequence) if every identity of the form 

1 + PI z + PI Z2 + ... 
= (1 + P; z + p~ Z2 + ... ) (1 + p~ z + P~ Zl + .... ) (3) 

with z. p;, P;' indeterminate implies an identity 
00 

1: Ki (Pt. P2' ...• Pi) zi 
i=o 

00 00 

= 1: KtCP;. p~, .... P;} Zi 1: Ki(P't', P~ • ...• pi') zi . 
• =0 i=O 

In abbreviated notation we write 

K (i: Pi Zi) = i: K;(Pl' .. " Pi) zi 
i=o i=O 

(4) 

both when the Pi are indeterminates and when they are replaced by 
particular values. The power series 

00 

K(l + z) = 1: bi Zi (bo = 1, bi = Ki(l, O •... ,0) E B) 
1=0 

is called the characteristic power series of the m-sequence {K;}. 
In the sequel we consider formal factorisations 

", 

1 + PI z + ... + Pm zm = II (1 + Pi Z) . 
1=1 

That is. the elements Pi are regarded as the elementary symmetric 
functions in Pi> ... , Pm. The ring ~ is then the ring of all symmetric 
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polynomials in PI' ... , Pm with coefficients in B. The following two 
lemmas give a complete description of all possible m-sequences. 

Lemma 1.2.1. The m-sequence {K;} is completely determined by its 
characteristic power series Q (z) = K (1 + z). 

Proof: By (3), (4) and (5) 
m 00 m 

E K;(Pt,···,P;)zi+ E K;(Pl>···,Pm,O, ... ,O)zi= flQ(Pi Z). (6m) 
;=0 ;=m+) ;=) 

Therefore any polynomial K; with j ~ m is determined as a symmetric 
polynomial in the Pi and hence as a polynomial in the Pi' This holds for 
arbitrary m and so completes the proof. 

00 

Lemm a 1.2.2. To every formal power series Q (z) = E bi Zi (bo = 1, 
i= 0 

bi E B) there is associated an m-sequence {Kj} with K(1 + z) = Q(z). 
m 

Proof: We apply (5m) and consider the product fl Q(Pi z). The .= ) 
coefficient of zi in this product is symmetric in the P; and homogeneous 
of weight j. It can therefore be expressed as a polynomial K}ml (PI' ... , Pi) 
of weightj in a unique way. It follows easily that K}ml does not depend 
on m for m ~ j. Define K; = KJml for m ~ j. The sequence {K;} is the 
required multiplicative sequence. For the proof note that (6m) holds. 
This implies that the multiplicative property "(3) implies (4)" is true if 
the indeterminates P:, P:' are replaced by 0 for large values of i. Hence 
{K;} is an m-sequence. Finally (6m ) for m = 1 shows that K (1 + z) = Q (z). 

Lemmas 1.2.1 and 1.2.2 together show that there is a one-one corre
spondence between m-sequences and formal power series with constant 
term 1. For instance the m-sequence {Pi} has 1 + z as its characteristic 
power series. 

1.3. It is convenient to reformulate 1.1 and 1.2 with the indeterminates 
Pi replaced by Ci' the indeterminate z by x, and the roots Pi in (5m) by ri' 
The two formulations will be linked by putting Co = Po = 1, z = X2 and 
Pi = r~· In other words we introduce the relations 

z = X2 and.to Pi(-Z)i = (~Ci(-X)i) C~ CiX i ) . (7) 

We have the following trivial 

Lemma 1.3.1. Let {Ki(PI' ., ., Pi)} be the m-sequence with Q(z) as 
characteristic power series and {.K;(c}, ... , c;)} the m-sequence with Q(x) 
= Q (x2) as characteristic power series. Then the relations (7) imply 

K j (PI' ... , Pi) = .K2 ; (cI ' ..•• c2 ;) 

0= .K2i+1 (CI • ••• , C2i+1) . 
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In particular the m-sequence in the Ci with 1 + Xl as characteristic 
power series is 1,0, Pl> 0, PI' .... 

Note that 

PI = -2cI + c~, Pa = 2c, - 2ca c1 + c~, Pa = -2c8 + 2c6 c1 - 2c, c1 + ci· 
00 

1.4. Given a power series Q(z) = E bi zi(bi E B, bo = 1) we can 
.=0 

consider the formal factorisation 

1 + bl z + ba ZS + ... + bm zm = (1 + Pi z) (1 + P2 z) ••• (1 + p:n z). (8) 

The sum 
r 

1:(Pi)il(P2)i •... (P;)i" (jl ~ ja ~ .•. ~ j, ~ 1; E js= k ~ m) • (9) 
0=\ 

denotes as usual the symmetric function in the p, which is the sum of all 
pairwise distinct monomials obtained by applying a permutation of 
(Pi, P2' ... , p:n) to the monomial (Pi)il (P2)i •. .. (P;)i,. The number of 
monomials in the sum is m !/h where h is the number of permutations 
of (Pi, P2' ... p:n) which leave (Pi)il (P2)i •... (p;)ir fixed. The condi
tions on jl> ja, . . ., j, in (9) imply that the symmetric function 
1:(pi)i. (P2)i •... (P;)i, is a polynomial of weight k in the bi with integer 
coefficients. It does not depend on m and can be denoted simply by 
l:(jl' ja, ... , j,). We can now formulate a lemma which facilitates the 
explicit calculation of the polynomials of an m-sequence. 

Lemma 1.4.1. Let {Ki(Pl> ... , Pi)} be the m-sequence corresponding 
00 

to the power series Q (z) = E bi Zi. Then the coefficient 01 
;=0 

r 

Pi. Pi, ... Pi, in K" (il ~ js ~ ... ~ jr ~ 1, E j. = k) 
<=1 

is equal to 1:(jl,ja' .. . ,j,). 
The proof uses (6) and (8). The details are left to the reader. As an 

example, the coefficient of p" in K" is equal to s" = 1:(k). 

So = 1, Sl = bl , sa = -2bz + b~, sa = 3ba - 3bz bl + b¥, etc. 

Similarly the coefficient of PI in Ku is 1:(k, k) = {-(sl - Silk)' The s" 
can be calculated by a formula of CAUCHY: 

1 - z :Z 10gQ(z) = Q(z) :Z (Q;Z)) = .Eo (-1); Si zi . 
1= 

(10) 

1.5. In this section, and in the following sections 1.6-1.8, we define 
the particular m-sequences which arise in the present work. We consider 
first the power series 

VZ- 00 21k 
Q(z) = VZ = 1 + E (_1)"-1 (2k) I B" Zk • 

tanh Z "=1 . 
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Here the coefficient ring B is the field 0 of rational numbers. The co
efficients B" are the BERNOULLI numbers (in the notation for which 

I 
B" > 0 and =t= I for all k): 

I I I I 
B1 =6' Ba=30' B.=42' B'=30' 

5 691 7 3617 
B, = 66' B. = 2730' B7 = 6' Ba = 510 • 

The m-sequence with Q (z) as characteristic power series is denoted by 
{L/(Pl' ...• PI)}' The methods of 1.4 can be used to calculate the first 
few polynomials L/: 

L,. = -i-A. 
L. = :5 (7 P. - Pf) • 

L3 = 3.'~'7 (62p. - 13P.Pl + 2Pt) • 

L, = a"~"7 (38IP, - 71PaPI - 19PI + 22P.pf - 3pt). 

x (5110P.-919P,PI-336P.P.+237PaPf+ 127PlPl-83P.P¥+ 10M) . 

The coefficient s" of p" in L" can be calculated by 1.4 (10) 

co . 1 1 2v:r E (- 1); s· z' =-+---'--=-
;=0 ' 2 2 sinh2VZ 

and therefore 
2U(2U-l_1) 

So = 1 and s" = (2k)! B" for k;;; 1 . (11) 

The following lemma shows that the substitution p, = ek t 1) de

fined by 1 + PI % + PI Zl + ... + p" Zi = (1 + %)U+1 (modzH1) gives the 
value L,,(PI' . ". Pit) = 1. 

Lemma 1.5.1. Let Q(z) = v:r v:r • Then for every k the coefficient 
tanh z 

J" of zit in (Q (%»11:+1 is equal to I. and Q (z) is the only power series with 
rational coefficients which has this prOPerly. 

Proof: By the CAUCHY integral formula 

1 J 1 ( v:; )211+ I 
J" = 2ni .,..+1 tanh Vi fiz. 

The substitution t = tanh Vi gives 

1 J ,z, JTr = 2ni (I-II) ,Ik+l = 1. 
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In both cases the integral is over a small circle with centre the origin 
in the z-plane and t-plane. Note that under the substitution a circuit of 
the circle in the t-plane corresponds to two circuits in the x-plane. The 
equations],. = 1 can then be used to calculate the coefficients of Q (z) 
inductively. 

The following lemma is not used in the present work but is never
theless important for applications of the polynomials L,. to cohomology 
operations. A proof is given in ATIYAH-HIRZEBRUCH [4]. 

Lemma 1.5.2. The polynomial L,. can be written in a unique way as a 
polynomial with coprime integer coefficients, divided by a positive integer 
",(L,.), where 

",(L,.) = nq[f/~I] 
is a product over all primes q with 3 ;:;;; q ;:;;; 2 k + 1. 

1.6. The m-sequence with Q (z) = . 2 ~ as characteristic power 
smh2 z 

series is denoted by {A,.(Pl' ... , p,.)}. The methods of 1.4 give 

Al = - ~Pl,AI= 4~ (-4PI+1P~), Aa= 3'~\ (I6Pa- 44PIlPI + 31P:)· 

Remark: The polynomial A,. can be written in a unique way as a 
polynomial with coprime integer coefficients multiplied by 2-(")/",(L,.). 
Here «(k) is the number of non-zero terms in the dyadic expansion of k 
(see ATIYAH-HIRZEBRUCH [2]). 

1.7. The last two particular m-sequences which are needed in the 
sequel will be given in the (Ci' x, )'i) formulation (see 1.3). Let the co
efficient ring B be the field g of rational numbers. Consider the m
sequence {T,.(cl, .•. , C,.)} with characteristic power series 

Jr 1 00 B 
Q(x) = l-e-" 1 +"2 x + if (_1)"-1 (211)! Xu. 

The polynomials T,. are called TODD polynomials. The identity 

Jr (1 ) t Jr • /I 1 " = exp -2 x . h.1 (we wnte exp(a) = e) -e- S1n I Jr 

is useful for the calculation of the first few TODD polynomials. It implies, 
using Lemma 1.3.1, formula (6",) in the (Ci' x, )'i) formulation and the 
relations (7). that 

(12) 

where the sum is over all non-negative integers ". s with" + 2s = k. 
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The result (compare TODD [1]) is 
1 

T1 ="2 Cl' 

T. = * (CII + cl) , 
1 

Ts =24CII~' 

T, = ~O (-C, + C3 C1 + Sci + 4c. cl- ct) • 

TIS = 14~O (-C, C1 + Ca cl + SC~ C1 - c. ct) , 

T. = oo!so (2c. - 2c&c1 - 9c,cll - 5c, ci - cI + llca CII ~ + 
+ 5ca cy + 104 + llci 4 - 12c. ct + 2ct) . 

Remarks: 1). Formula (12) implies that Tic is divisible by C1 for 
k odd. 

2). It follows from formula 1.4 (10) applied to the m-sequence 
{Tic} that the coefficients of Clc and ct in the TODD polynomial Tic are 
equal. It is easy to see that {Tic} is the only m-sequence which has this 
property and for which Tl = ~ c1 • 

The following lemma shows that the substitution Ci = (n t 1) 
defined by 

1 + c1 X + ... + c" X" = (1 + x)"+1 (modX"+I) 

gives the value T,,(c1, ••• , c,,) = 1. 

Lemma 1.7.1. Let Q (x) = 1 ~ r" . Then for every k the coefficient of xrc 

in (Q (X))k+l is equal to 1, and Q (x) is the only power series with rational 
coefficients which has this properly. 

Proo f: By the CAUCHY integral formula as in Lemma 1.5.1. A similar 
proof gives 

Lemma 1.7.2. Substitute in Trc(c1, ••• , crc) the values Ci given by 

1 + c1 x + ... + ClcXIc = (1 + x)Ic(1 - x) (modxk +1). 

Then Tic = 0 for k ~ 1. 
There is a result analogous to Lemma 1.5.2 which is proved in 

ATIYAH-HIRZEBRUCH [4]: 
Lemma 1.7.S. The polynomial Tic can be written in a unique way as a 

polynomial with coprime integer coefficients, divided by a positive integer 
p (T k), where [_11_] 

p(Trc) = IIq '1- 1 

is a product over all primes q with 2 ;;:;; q ;;:;; k + 1. Moreover (see Lemma 
1.5.2} I-' (Tu +1) = 21-' (Tn) = 21k+1 I-' (L rc)· 

1.S. Now let the coefficient ring B be the ring g [y] of polynomials 
in an indeterminate y with rational coefficients. Consider the m-sequence 
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T;(y; C1, ••• , c;) with characteristic power series 

x(y + I) x(y + I) 
Q(y;x) = I_e-'(Hu-Yx= e"'!u+U_I +x. 

The following generalisation of Lemma 1.7.1 shows that the substitution 

(n + I) . 
Co = i gives 

Tn (y; C1, ••• , cn) = 1 - Y + y2 - ... + (- l)n yn . 

Lemma 1.8.1. For every n the coefficient of xn in (Q(y; x))n+l is .. 
equal to E (-I)i yi, and Q(y, x) is the only power series with coefficients 

i= 0 

in g [y] which has this property. 
The polynomial Tn(Y; c1, ••• , cn) can be written in a unique way 

in the form .. 
Tn(Y; c1, ••• , cn) = E T!(c1, .•• , cn) yp. 

p=o 

The polynomials T!(c1, ••• , cn) satisfy 

T!(c1, ••• , cn) = (-I)n r::-P(c1, ••• , cn) . (13) 

Proof of (13): Q (; ; y x) = Q (y; - x) and therefore 

y" Tn(; ; c1 , ••• , c,,) = (-1)" T,,(y; c1, •• • , cn). Q. E. D. 

Consider the formal factorisation .. 
1 + c1 X + ... + Cn xn = II (1 + Yi x) (14) 

• = 1 

where x is an indeterminate. Then (again writing exp(a) = e<» 

T!(c1,···, cn) =:>en [,!;'eXP(-Yil -'" -Yip) .~ I-e:;;(-YI)]' (15) 

The sum is over all (;) combinations of p pairwise distinct Yi' :>en [ ] 

denotes the sum of all homogeneous terms of degree n in the Yi which 
occur in [ ]. By (14) this sum can be written as a polynomial in the Ci of 
weight n. 

Proof of (15): Denote temporarily the expression on the right hand 
side of (15) by 1'!. Then 

pf;o l'!yP =:>en [~(1 + y exp(- Yi)) I-e:;(-YI))] 

=" [if (I + yexp(-(I + y) YI)) . (1 + y) YI ] 
n .=1 1 +y I-exp(-(I +Y)YI) 

= :>en [if Q (y; Yi)] = i; T!(c1, ••• , cn) yP . Q. E. D . 
• =1 p=O 
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x 
Finally note that Q(O;x)=l_e- s , Q(-I;x) 1 + x and 

x 
Q(I; x) = tanhx . Therefore (see 1.5 and Lemma 1.3.1) 

1"g(c1 • •••• e .. ) = T .. (e1 • ••• , e .. ) (TODD polynomial) • 
II 

E (-1)1> T!(e1 • •••• e .. ) = c .. , 
1>=0 

II 

t""' - - • ~ T .. (e1 • •••• e .. ) = L .. (c1 • ••• , e .. ) • s. e. 
1>=0 

.. } = 0 for n odd 
E 11(el • ..•• c .. ) L ( ) f k 

1>=0 = Ie Pl' ...• Pie or n = 2 . 

(16) 

1.9. The TODD polynomials are essentially the BERNOULLI poly
nomials of higher order defined by NORLUND (see N. E. NORLUND. 
Differenzenrechnung. Berlin. Springer-Verlag. 1924. especially p. 143). 
The BERNOULLI polynomial Bf") ("1' ...• " .. ) is defined by 

II.. i'l X 00 xl I,,) 

. exp (i'l x) - 1 = . E J! Bj ("1.···' " .. ) . 
• =1 1=0 

If the Ci are regarded as the elementary symmetric functions in "1' ...• "" 
[see 1.8 (14)] then 

(_ 1)1: (,,) 
TIe(cl • ...• CIe) = kl B" ("1.···' " .. ) for k ~ n. 

A corresponding remark holds for the polynomials A Ie defined in 1.6. 
They are essentially the polynomials Die considered by NORLUND. In the 
notation of 1.3 and 1.6 

221: 
AIe(Pl' ... , Pie) = .AU(Cl' ...• CU) = (2k)! D~)("l' ...• " .. ) for 2k ~ n. 

§2. Sheaves 

This paragraph contains the basic results of sheaf theory needed in 
the present work (see also CARTAN [2]. SERRE [2] and GRAUERT
REMMERT [1]). The book by GODEMENT [1] is strongly recommended 
as a self-contained introduction to algebraic topology and sheaf theory. 

We use the following terminology. A topological space X is a set 
in which certain subsets are distinguished and called open sets of X. 
It is required that the empty set. and X itself, be open sets and that 
arbitrary unions and finite intersections of open sets be open. An open 
neighbourhood of a point x E X is an open set U such that x E u. A system 
of open sets of X is called a basis (for the topology of X) if every open 
set of X is a union of sets in the system. X is a HAUSDORFF space if, 
given any two distinct points Xl> X2 in X, there is an open neighbourhood 
Ul of Xl and an open neighbourhood U2 of X 2 such that Ul f'\ Ua is empty. 
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An open covering U of X is an indexed system U = {U,hE 1 of open 
sets of X whose union is equal to X. The index i runs through the given 
index set I and so it is possible for the same open set to occur several 
times in the covering. Since the index set is arbitrary there are logical 
difficulties in discussing the set of all open coverings of X. These dif
ficulties can be avoided by considering the set of all proper coverings 
of X. An open covering U = {UihEr is proper if distinct indices i, j E I 
determine distinct open sets Ui , Us and if the index set is chosen, in 
the natural way, as the set of all open sets of the covering. Each proper 
covering is then a subset of the set of all subsets of X. 

An open covering QJ = {VS};EJ of X is a refinement of U = {UihEI if 
each Vi is contained in at least one Ui • Two open coverings are cofine 
if each is a refinement of the other. It is clear that, given any open 
covering U, there is a proper covering QJ such that U and QJ are cofine. 
A HAUSDORFF space is compact if for every open covering U = {UihEI 
of X there is a finite subcollection {Ut" ... , U i.J which is an open 
covering of X. 

2.1. Definition of sheaves and homomorphisms 

Definition: A sheaf e (of abelian groups) over X is a triple 
e = (5, n, X) which satisfies the following three properties: 

I) 5 and X are topological spaces and n : 5 -+- X is an onto continuous 
map. 

II) Every point oc E 5 has an open neighbourhood N in 5 such that nlN 
is a homeomorphism between N and an open neighbourhood of n(oc) in X. 

The counterimage n-1 (x) of a point x E X is called the stalk over x 
and denoted by 5". Every point of 5 belongs to a unique stalk. Property 
II) states that n is a local homeomorphism and implies that the topology 
of 5 induces the discrete topology on every stalk. 

III) Every stalk has the structure of an abelian group. The group 
operations associate to points oc, fl E 5" the sum oc + fl E 5" and the difference 
oc - fl E 5". The difference depends continuously on oc and fl. 

In III), "continuously" means that, if 5 ED 5 is the subset 
{( oc, fl) E 5 X 5; n (oc) = n (fl)} of 5 X 5 with the induced topology, the 
map 5 (f) 5 -+- 5 defined by (oc, fl) -+- (oc - fl) is continuous. Properties I), 
II), III) imply that the zero element 0", of the abelian group 5" depends 
continuously on x, i. e., the map X-+-5 defined by x -+- 0" is continuous. 
Similarly the sum oc + fl depends continuously on oc, fl. 

Remark: Property III) can be modified to give a definition of a 
sheaf with any other algebraic structure on each stalk. It is sufficient 
to require that the algebraic operations be continuous. It will often 
happen that each stalk of 5 is a K-module (for some fixed ring K). 
In this case III) must be modified to include the condition: the module 
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multiplication associates to ex E Ss. k E K a point kex E Sill and the map 
S -+ S defined by ex -+ kex is continuous for each k E. K. In the sequel we 
shan tacitly assume that all sheaves are sheaves of abelian groups or 
sheaves of K-modules (fixed ring K). All definitions and theorems are 
formulated for sheaves of abelian groups only but they remain true for 
sheaves of K-modules with the appropriate modifications (e. g. with 
"homomorphism" replaced by "K-homomorphism"). In many cases 
K = C (field of complex numbers). Sections 2.1-2.4 can be carried over 
for sheaves with arbitrary algebraic structures. However. the definition of 
cohomology groups of a topological space X with coefficients in a sheaf 
o given in 2.6 depends essentially on the fact that each stalk of 0 is an 
abelian group or a K-module. The cohomology groups themselves are 
then abelian groups or K-modules. Part of the cohomology theory in 
dimension 1 holds also in the non-abelian case (see 3.1). 

Definition: Let 0 = (S. n. X) and e = (S. if. X) be sheaves 
over the same space X. A homomorphism h: 0 -+ e is defined if 

a) h is a continuous map I'lom S to S. 
b) n = ifh. i. e. h maps the stalk Ss to the stalk Ss 10'1 each x E X. 
c) For each x E X the restriction 

hs: Ss-+ Ss 

is a homomorphism 01 abelian groups. 
By a) and b). h is a local homeomorphism from S to S. 

(1) 

If hs is one-one for each point x (X we call h a monomorphism. 
Similarly h is an epimorphism if hs is onto for each x (X. and an iso
morphism if h" is an isomorphism for each x E X. Further elementary 
properties of sheaves are discussed in 2.4. 

2.2. Preaheavea 
In many concrete cases a sheaf over a topological space X is con

structed by means of a presheaf. 
Definition: A p'lesheal over X consists of an abelian group Su 

for each open set U of X and a homomorphism '1¥: S u -+ S v for each 
pair of open sets U. V of X with V c U. These groups and homomorphisms 
satisfy the following properties: 

I) II U is empty then Su = 0 is the zero group. 
II) The homomorphism '1(}: S u -+ S u is the identity. II We V c U 

then 'Ii = '1IV'IU. 
Remark: By I) it suffices to define Su and '1¥ only for non-empty 

open sets U. V. 
Every presheaf over X determines a sheaf over X by the following 

construction: 
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a) For each point x E X let Ss be the direct limit of the abelian 
groups S u. x E U. with respect to the homomorphisms r~ (see for instance 
ElLENBERG-STEENROD [1]. Chapter VIII). In other words: U runs 
through all open neighbourhoods of x. Each element I E S u determines 
an element Is E. Ss called the germ of I at x. Every point of Ss is a germ. 
If U. V are open neighbourhoods of x and I ( Suo g E: Sy then Is = gs 
if and only if there is an open neighbourhood W of x such that We u. 
we V and ri I = rIV g. 

b) The direct limit Ss of the abelian groups Su is itself an abelian 
group. Let S be the union of the groups Ss for distinct x E X and let 
n: S -+ X map points of Ss to x. Then S is a set in which the group 
operations of 2.1 III) are defined. 

c) The topology of S is defined by means of a basis. An element 
IE SU defines a germ Iy E Sy for each point y E U. The points Iy. y E U. 
form a subset lu of S. The sets lu (as U runs through all open sets of X. 
and I through all elements of Su) form the required basis for the topology 
of S. 

It is easy to check that by a). b) and c) the triple €I = (S. n. X) 
is a sheaf of abelian groups over X. This sheaf is called the sheaf con
structed from the presheal {Suo r~}. 

Let ~ = {Suo rU} and ~ = {Bu. ;:~} be presheaves over X. A homo
morphism h from ~ to ~ is a system {hu} of homomorphisms hu: Su -+Bu 
which commute with the homomorphisms r~. ;:~. i. e. ;:~ hu = h y r~ 
for Vc U. 

The homomorphism h is called a monomorphism (epimorphism. 
isomorphism) if each homomorphism hu is a monomorphism (epi
morphism. isomorphism). ~ is a subpresheaf of ~ if. for each open set U. 
the group Su is a subgroup of Bu and r~ is the restriction of ;:~ to Su 
for V C U. If ~ is a subpresheaf of ~ then the quotient presheaf ~ / ~ 
is defined. This assigns to each open set U the quotient group Bu/Su. 
If h is a homomorphism from the presheaf ~ to the presheaf G) then the 
kernel of h and the image of h are defined in the natural way. The kernel 
of h is a subpresheaf of ~ and associates to each open set U the kernel 
of hu. The image of h is a subpresheaf of ~ and associates to each open 
set U the image of hu. 

Let €I = (S. n. X) and ~ = (B. ii. X) be the sheaves constructed 
from the presheaves ~ and ~. The homomorphism h: ~ -+ ~ induces 
a homomorphism from €I to e which is also denoted by h. In order to 
define this homomorphism it is sufficient to define the homomorphisms 
hs: Ss-+Bs [see 2.1 (1)]: if ocESs is the germ at x of an element fESu 
then hs(oc) is the germ at x of the element hu(f) E Suo This rule gives a 
well defined homomorphism hs: Ss -+ Bs called the direct limit of the 
homomorphisms hu. 
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2.3. The canonical presheaf of a sheaf 
A section of a sheaf e = (5, :re, X) over an open set U is a continuous 

map s: U -+ 5 for which :res: U -+ U is the identity. By 2.1 III) the set 
of all sections of e over U is an abelian group which we denote by 
r(u, e). The zero element of this group is the zero section x -+ 0,$' 
If s is a section of 5 over U the image set s( U) C 5 cuts each stalk 5,$, 
't E U, in exactly one point. 

Now associate to each open set U of X the group r(u, e) of sections 
of e over U, where if U is empty r(u, e) is understood to be the zero 
group. If V C U let rU: r(u, e) -+ r(V, e) be the homomorphism which 
associates, to each section of e over U, its restriction to V (if V is 
empty put r~ = 0). The presheaf {r(u, e), rU} is called the canonical 
presheal of the sheaf e. By the construction of 2.2 a), b), c) the presheaf 
{r(u, e), r~} defines a sheaf; this is again the sheaf e. In fact by 
2.1 I), II) every point oc E 5 belongs to at least one image set s(U), 
where s is a section of e over some open set U. If s, s' are sections over 
U, U' with oc E s (U) (\ s' (U') then s agrees with s' in an open neighbour
hood of x = :retoc). Therefore germs at x of sections of e over open 
neighbourhoods of x [see 2.2 a)] are in one-one correspondence with 
points of the stalk 5,$' Further the system of all image sets s(U) is, 
by 2.1 I), II), a complete system of open sets for the topology of 5, in 
agreement with 2.2 c). 

Let e be the sheaf constructed from a presheaf (; = {5 u, r¥}. 
An element 1 E 5 u has a germ 1,$ at x for each point x E U [2.2 a)]. Let 
h[1 (f) be the section x -+ 1,$ of e over U. This defines a homomorphism 
hu: 5 u -+ r(u, e) and hence a homomorphism h from (; to the canonical 
presheaf of e. In general h is neither a monomorphism nor an epi
morphism (for details see SERRE [2], § 1, Propositions 1 and 2). The 
homomorphism {hu} from (; to the canonical presheaf of e induces 
the identity isomorphism h: e -+ e (see the end of 2.2). 

2.4. Subsheaves. Exact sequences. Quotient sheaves. Restriction and 
trivial extension of sheaves 

We now come to further algebraic concepts of sheaf theory. 
Definition: e' = (5', n', X) is a subsheal of e = (5,:re, X) if 

I) 5' is an open set 01 5. 
II) n' is the restriction ot :re to 5' and maps 5' onto X. 

III) The stalk :re'-l (x) = 5' (\ :re-1 (x) is a subgroup 01 the stalk :re-1 (x) 
lor all x EX. 

Condition I) is equivalent to 
I*) Let s (U) C 5 be the image set 01 a section ot e over U and oc E s (U) (\ 5'. 

Then U contains an open neighbourhood V ot :re (oc) such that s (x) E 5' lor 
aU xE V. 
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Conditions 1*), II) imply that 11.' is a local homeomorphism and III) 
implies that the group operations in e' are continuous. Therefore the 
triple (5', 11.', X) is itself a sheaf. The inclusion of 5' in 5 defines a mono
morphism from e' to e (see 2.1) called the embedding of e' in e. 

The zero sheaf 0 over X can be defined up to isomorphism as the 
triple (X, 11., X) where 11. is the identity map and each stalk is the zero 
group. The zero sheaf is a subsheaf of every sheaf e over X: let 5' be the 
set O(e) of zero elements of stalks of e, i. e. O(e) = s(X) where s is the 
zero element of F(X. e). 

Let e = (5, 11., X) and e = (S, ii, X) be sheaves over X and 
h: e -+ e a homomorphism. If 5' = h-1(O(e» and 11.' = 11.15' then 
(5',11.', X) gives a subsheaf h-I(O) of e called the kernel of h. The stalk 
of the sheaf h-I(O) over x is the kernel of the homomorphism hz : 5 z -+ Sz 

[see 2.1 (1)]. If S' = h(5) and ii' = iilS' then (S', ii'. X) gives a subsheaf 
h(e) of e called the image of h. The stalk of the sheaf h(e) over x is the 
image of the homomorphism hz• 

Let {Ai} be a sequence of groups (or presheaves or sheaves) and {hi} 
a sequence of homomorphisms hi: Ai -+ AH1. (The index i takes all 
integral values between two bounds no, nl which may also be -00 or +00. 

Thus Ai is defined for no < i < n1 and hi for "0 < i < n1 - 1.) The 
sequence Ai, hi is an exact sequence if the kernel of each homomorphism is 
equal to the image of the previous homomorphism, provided the latter is 
defined. If the Ai are presheaves {5~)} over the topological space X, 
then the exactness means that for each open sct U of X there is an exact 
sequence of groups 

••• -+ 5i)1 -+ 5i)+l) -+ 5'c}+2) -+ • . • . (2) 

If the Ai arc sheaves over X then the exactness means that at each 
point x E X the stalks of the sheaves Ai form an exact sequence. Since 
the direct limit of exact sequences is again an exact sequence (ElLEN
BERG-STEENROD [1], Chapter VIII. Theorem 5.4) we have 

Lemma 2.4.1. Consider an exact sequence 

••• -+ <»" -+ <» .. +1 -+ <» .. +2 -+ ••• (3) 

of presheaves over X. Then the induced sequence of sheaves e. constructed 
from <». is an exact sequence of sheaves over X. 

For example let 

.' " o -+ e' -+ e -+ e" -+ 0 (4) 

be an exact sequence of sheaves e' = (5'.11.', X). e = (5,11., X) and 
e" = (5",11.". X) over X. 

The first 0 denotes the zero subsheaf of e', the first arrow the embed
ding of 0 in e'. Therefore exactness implies that h' is a monomorphism 
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and can be regarded as the embedding of the subsheaf e' in e. The 
final 0 denotes the zero subsheaf of e", the final arrow the trivial homo
morphism which maps each stalk of e" to its zero element. Therefore 
exactness implies that h is an epimorphism. For each point x E X the 
exact sequence (4) gives a corresponding exact sequence of stalks over x: 

O 5, h~ 5 h" 5" ~,,-,,-,,~O. (5) 

The group 5'; is isomorphic to the quotient group 5,,/5;. It is easy 
to check that 5" has the quotient topology with respect to the map 
h: 5 --)0 5" (a subset of 5" is open if and only if its counterimage under h 
is an open set in 5). This shows that given the sheaf e and the subsheaf 
e' there is (up to isomorphism) at most one sheaf e" for which the 
sequence (4) is exact. It is possible to prove the existence of such an e" 
directly so that we may speak of the quotient sheaf e" = €lIe'. We shall 
obtain the existence of e" in a slightly different manner by defining 
first a presheaf for e". 

Let e' be a subsheaf of €land U an open set ofX. The group F(U, e') 
of sections of e' over U is then a subgroup of F(U, e), the group of 
sections of e over U. We define 5'U = F(U, e)/F(U, e') so that there 
is an exact sequence 

o ~ F(U, e') --)0 F(U, e) --)0 Su ~ o. (6) 

If V is an open set contained in U the restriction homomorphism 
F(U, e) --)0 F(V, e) maps the subgroup F(U, e') of F(U, e) to the 
subgroup F(V, e') of F(V, e) and induces homomorphisms rU : Su --)0 5~. 
The presheaf {Su, rU} is the quotient of the canonical presheaf of e 
by the subpresheaf given by the canonical presheaf of e'. Let e" be the 
sheaf constructed from the presheaf {Su, r¥}. The exact sequence (6) 
of presheaves induces, by Lemma 2.4.1, an exact sequence of sheaves as 
required. We collect our results in the following theorem: 

Theorem 2.4.2. Let e be a sheaf over a topological space X and e' 
a subsheaf of e with embedding h': e' ~ e. There exists a sheaf e" 
over X, unique up to isomorphism, for which there is an exact sequence 

o ~ e' !:. e ~ e" --)0 0 . (7) 

At each point x E X the homomorphism h" gives an isomorphism between 
the quotient group 5,,/5; and the stalk 5~' 01 e" over x. 

Remark: From (7) one obtains the exact sequence 

o ~ F(U, e') --)0 F( U, e) --)0 F(U, e") . (8) 

In general F(U, e) ~ F(U, e") is not an epimorphism. By (6), Su is 
the subgroup of F(U, e") consisting of all sections of e" over U which 
are images of sections of €lover U. 
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Let e = (5.11:. X) be a sheaf over X and let Y be a subset of X. 
If the subset 1I:-1 (Y) of 5 is given the induced topology the triple 
(11:- 1 (Y). 11:111:-1 (Y). Y) defines in a natural manner a sheaf elY over Y 
called the restriction of e to Y. 

Theorem 2.4.3. Let Y be a closed subset 01 the toP~logical space X 

and e = (5. 11:. Y) a sheal over Y. There exists a shea I e over X. unique 

up to isomorphism. such that elY = e and el(X - Y) = o. -The groups 

r(U. e) and r(U f'I Y. e) are isomorphic lor any open set U 01 X. 
(e is called the (trivial) extension of e to X.) 

Proof: Uniqueness follows immediately from the properties of 

e: if e = (S. n. X) then S = 5 v «(X - Y) X 0). n(ex) = 11: (ex) for 
ex E 5. n (a X 0) = a for a E X - Y and therefore the stalk Bz = n-1 (x) 
is equal to 11:-1 (x) for x E Y and equal to the zero group for x E X - Y. 
The sets s(U f'I Y) v«U (\ (X - Y))XO). for arbitrary open sets U 
of X and arbitrary sections s of e over U. define a basis for the topology 
of S. This completes the construction of e. It is also possible to define 
e by means of a presheaf: associate to each open set U of X the group 
Su = r(U f'I Y. e) and to each pair of open sets U. V with V C U the 
restriction homomorphism r~ : r(U f'I Y. e) -+ r(v f'I Y. e). Since Y 
is closed. each point x EX - Y has an open neighbourhood U for which 
U f'I Y is empty and Su = o. Therefore the sheaf e constructed from 

the presheaf {Suo r~} has eLY = e and elX - Y = O. In fact {SUI r~} 
is the canonical presheaf of e. 

Remark: Suppose that at some boundary point of Y the stalk of e 
has a non-zero element. Then S is a non-HAusDORFF space. 

2.S. Examples 

1) Let X be a topological space and A an abelian group. The constant 
sheal over X with stalk A is defined by the triple (Xx A. 11:. X) and is 
also denoted simply by A. Here 11:: X X A -+ X is the projection from 
the cartesian product Xx A where A is given the discrete topology. 
The sum and difference of points (x. a) and (x. a') in X X A are equal to 
(x. a ±a'). 

2) Let X be a topological space. Associate to each non-empty open 
set U of X the additive group 5 u of all continuous complex valued 
functions defined on U. For V C U the homomorphism rW: 5u -+ 5 v is 
defined by taking the restriction to V of each function defined on U. 
Let Cc be the sheaf constructed from the presheaf {5u. r~} as in 2.2. 
Then Cc is called the sheaf 01 germs of local complex valued continuous 
functions. 



24 Chapter I. Preparatory material 

The sheaf C~ of germs of local never zero complex valued continuous 
functions is defined similarly: associate to each non-empty open set U 
the abelian group st of never zero complex valued continuous functions 
defined on U. The group operation is ordinary multiplication. There is a 
homomorphism S U -+- S~ which associates to each function I E S u the 
function e .... ., E S~. This defines a homomorphism {SUI r¥} -+- {S~. r¥} 
of presheaves and hence a homomorphism Cc -+- ct of sheaves (see 2.2). 
The kernel of the homomorphism Cc -+- ct is a subsheaf of Cc isomorphic to 
the constant sheaf over X with stalk the additive group Z of integers. 
Every point Zo in the multiplicative group C* of non-zero complex 
numbers has an open neighbourhood in which a single branch can be 
chosen for logz. If k is a germ of ct then (2n i)-l logk is a germ of Cc 

which maps to k under Cc -+- ct. Therefore there is an exact sequence of 
sheaves over X 

o -+- Z -+- Cc -+- ct -+- 0 . (9) 

3) Now let X be a n-dimensional differentiable manifold. We adopt 
the following definition (see DE RHAM [1]. § 1. and LANG [1]). X is a HAUS
DORFF space with a countable basis. At each point x E X certain real 
valued functions are distinguished and called differentiable at x. Each 
function is defined on some open neighbourhood of x and the following 
axiom is satisfied: 

There is an open neighbourhood U 01 x and a homeomorphism g Irom U 
on to an open subset 01 R" such that. lor aU y E u. ill is a real valued lunc
tion defined on a neighbourhood Vol y and h = glU (\ V. then I is diffe1en
liable at y il and only ill h-1 is COO-differentiable at g(y). 

Here I h-1 is a real valued function defined on an open neighbourhood 
of g(x) in R". It is COO-differentiable at g(x) if all the partial derivatives 
exist and are continuous in some neighbourhood of g(x). 

A homeomorphism g which satisfies this axiom is called an admissible 
charl of the differentiable manifold X. 

If X is a differentiable manifold. and U is an open set of X. let Su 
be the additive group of complex valued functions differentiable in U 
(a complex valued function is differentiable if and only if its real and 
imaginary parts are differentiable). Just as in 2). the presheaf {SUI r¥} 
defines a sheaf C.,: the sheal 01 germs 01 local complex valued differentiable 
lunctions. Similarly the sheaf C: of germs of local never zero complex 
valued differentiable functions is defined. As in 2) there is an exact 
sequence of sheaves over X 

o -+- Z -+- C., -+- C: -+- 0 . (10) 

4) Now let X be a n-dimensional complex manifold. The definition 
is analogous to that of a differentiable manifold (see WElL [2]). X is a 
HAUSDORFF space with a countable basis. At each point x E X certain 



§ 2. Sheaves 25 

complex valued functions are distinguished and called holomorPhic 
or complex analytic at x. Each function is defined on some open neigh
bourhood of x and the following axiom is satisfied: 

There is an open neighbou,hood U 01 x and a homeomo,phism g I,om U 
on to an open subset 01 C .. such that, 10' all Y E U, ill is a complex valued 
lunction defined on an open neighbou,hood V 01 y and h = g/ Un V, then 
I is holomo,phic at y il and only ill h-1 is holomorPhic at g (y). 

A homeomorphism g which satisfies this axiom is called an admissible 
cha,t of the complex manifold X. The admissible charts of a n-dimensional 
complex manifold X can be used, in a natural way, to define a 2n
dimensional differentiable manifold with the same underlying space X. 

If X is a complex manifold let Su be the additive group of (complex 
valued) functions holomorphic in U. Just as in 2) and 3) these groups 
define a sheaf COl: the sheal 01 ge,ms 01 local holomorphic lunctions. 
Similarly the sheaf C: of germs of local never zero holomorphic functions 
is defined and there is an exact sequence of sheaves over X 

0.-.. Z -+ COl -+ C: -+ 0 . (11) 

Remarks: The sheaves Ce, Cb, COl can also be regarded as sheaves 
of C-modules. In the exact sequences (9), (10), (11) all sheaves are how
ever to be regarded as sheaves of abelian groups. The presheaves used 
to construct Ce, ct, Cb, ct, COJ' C: are all canonical presheaves. For 
instance F(U, Ce) is the additive group of all complex valued continuous 
functions defined on U. 

2.6. Cohomology groups with coefficients in a sheaf 

The aim of this section is to define, for each integer q ~ 0, the co
homology group Htl (X, e) of the topological space X with coefficients 
in a sheaf e over X. As a first step we define the cohomology groups 
H"(U, ~) of an open covering U = {UihEI of X with coefficients in a 
presheaf~. The cohomology groups H" (U. e) of U with coefficients in a 
sheaf e are defined to be the cohomology groups of U with coefficients 
in the canonical presheaf of e. Finally the cohomology groups Htl(X, ~), 
Htl (X, e) are defined as the direct limit of all groups Htl (U, ~), H" (U, e) 
as U runs through "all" open coverings of X. 

Cohomology groups H" (U, ~), Htl (U, e): 
Let ~ = {Su, ,f?) be a presheaf over X and U = {Ui}iEI an open 

covering of X. A q-cochain is a function I which associates to each 
(q+ I)-pIe (io," .,itl) of indices inI an element I (io' ... , i tl) of SW1on ... nu",l' 
The q-cochains form a group C"(U, ~). Define the coboundary homo
morphism 
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by the formula: 
g+l 

(6'l I) (io ••••• i"u) = E (-1)" r:A(I(io • ...• ill, ...• iQ+l)) 
"'-0 

for 1 E O(U. ~). Here the "roof" (A) over a symbol means that the 
symbol is to be omitted. 

W = U-. {\ •.• {\ U'-+a and W" = U-. {\ •.• {\ ()tk {\ ••• (\ U'-+a' 

As usual 6'l+16'1 = 0 and therefore cohomology groups can be defined: 

H"(U, ~) = kemel (6")/image (6"-1) . 

The cohomology groups H'I (U. 0) with coefficients in a sheaf 0 over X 
are then defined as the cohomology groups with coefficients in the 
canonical presheaf of eI. 

Cohomology groups H"(X, ~), H'l(X. eI): 
Let SO = {Villa be a refinement of the open covering U = {U;hEI' 

Choose a map '1': J - I so that ViC UTi for allj EJ. The map 'I' defines 
a homomorphism 

'1'*: O(U, ~) - C'l(SlJ, ~) 
by the formula 

('1'* I) (jo' ... , j,,) = r~' (I ('I' jo' ... , 'I' j'l» 

for 1 E 0 (U, ~). Here we have for the moment put W = Vi. {\ ... {\ VI. 
and W' = U"i, {\ ... (\ UTI. so that We W'. 

For each q ~ 0 there is a commutative diagram ,.. 
C"(U, ~) -+ O(SlJ, ~) 

c5"! 16" .,. 
O+1(U, ~) -+ C'l+I(SO, ~). 

Therefore '1'* induces a homomorphism 

~: H"(U, ~) - H'l(SlJ, ~) . 

Lemma 2.6.1. The homomOlphism ~ depends only on the open 
covering U and the refinement SO 01 U, and flot on the choice 01 refinement 
map 'I' : J - I. Furthermore tH is the identity, and il ~ is a refin.ement 01 SlJ 
then 41 = ~ 4i. 

Proof: LetT, '1" be two maps from J to I with ViC U.,i {\ U";' 
For each q ~ 1 we define a homomorphism (homotopy operator) 

/tl : C" (U, ~) _ 0-1 (SlJ, ~) 
by the formula 

_I 

(/tl I) (jo, .. ·,jll-l) = E (- 1)1' 1':1(1 (Tio' ... , Tj", '1" j". '1" j1&+l> ...• '1" jV-l» 
h=O 
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for I E Cq(l1, ~). Here we have for the moment put 

and 

so that We Who Then 
kl <50 = ('r')* - 1'* 

~-l kq + ~+l <5q = (1")* - 1'* for q ~ 1 . 

This proves the first part of the lemma. The second part follows im
mediately. 

By Lemma 2.6.1, cofine coverings have naturally isomorphic co
homology groups. It is therefore possible, for the definition of the co
homology groups of the space X, to restrict attention to proper coverings 
of X (see the beginning of this paragraph for terminology). 

Definition: The cohomology group Hq(X, ~) 01 the topological 
space X with coetJicients in a presheal ~ is the direct limit of the groups 
Hq (11, ~) with respect to the homomorphisms q}, where 11 runs through 
all proper coverings of X. 

The cohomology groups Hq (X, e) with coetJicients in a sheal e over X 
are the cohomology groups with coefficients in the canonical presheaf of e. 

The cohomology group HO(l1, e) is, by definition, the group of 
functions I which associate to each i E. I a section Ii of el11t such that 
Ii = I; on U i (\ U j • Therefore HO(l1, e) = r(x, e) which gives 

Theorem 2.6.2. The cohomology group HO(X, e) is naturally iso
morphic to the group r(x, e) 01 sections 01 e over X. 

N~w let e be a sheaf over a closed subset Y of the topological space X 

and e the trivial extension of e to X constructed in Theorem 2.4.3. 
With these notations we have 

Theorem 2.6.3. The cohomology groups Hq (Y, e) and Hq (X, €i) 
are naturally isomorphic. 

Proof: An open covering 11 = {UihEl of X defines an open covering 
11IY = {Ui (\ YhEl of Y. Every open covering of Y is obtained in this 

way. For each open set U of X the groups r(U (\ Y, e) and r(U, €i) 
are naturally isomorphic, and these isomorphisms are compatible with 
the restriction maps r~ when V C U. Therefore there is an isomorphism 

o (l1IY, e)~ Cq(l1, €i) 
for each q which commutes with the coboundary homomorphisms in the 
cochain complexes {cq(l1IY, e)} and {Cq(l1, e)}. Therefore there is a 
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natural isomorphism 
H'(UIY, 0)~ H'(U, 0) 

and the statement of the theorem follows. 

2.7. The exact cohomology sequence for presheaves 

Let ~, ~ be two presheaves over the topological space X. A homo
morphism h = {hul from ~ to i (see 2.2) induces in a natural way a 
homomorphism h. from CtlU, ~) to Ct(U, i). This homomorphism 
commutes with the coboundary homomorphisms and therefore defines a 
homomorphism 

for each q ~ O. If ~ is a refinement of U there is a commutative diagram 

H'(U,~) ~ H'(U, i) 
~! 14\ (12) 

H'(~,~) ~ H'(I{"J,i) 

and hence in the direct limit a homomorphism 

h.: H'(X, ~) -+- H'(X, i) . 
Now consider an exact sequence 

It" II 
O-~'- ~- ~"- 0 (13) 

of presheaves over X (see 2.4). Here 0 denotes the zero presheal which 
associates the zero group to each open set of X. Let Su, Su, Su be the 
groups associated to the open set U by the presheaves ~', ~, ~". 

Then Su is the quotient group Su/Su. Therefore for each open covering U 
of X the sequence 

0- Ct(U, ~') S C'(U, ~) ~ C9 (U, ~") -+ 0 (14) 

induced by (13) is exact. 
The theory of cochain complexes implies that there is an exact 

cohomology sequence 

0-+ HO(U, ~I) S HO(U,~) ~ HO(U, ~") A. If1(U, ~')-+-. ~ (~ 
••• -+- H' (U, ~') ~ H' (U, ~) ~ H' (U, ~") ~ H' + 1 (n, ~') -+- •••• 

The homomorphism t5~ is obtained in the following way: Represent 
the element b E H" (U, ~") by a cochain 1 E Ct (U, ~") with t5'l1 = o. 
By the exactness of (14) it is possible to choose a cochain g E C" (U, ~) 
such that h. (g) = I. Therefore t5'l g lies in the subgroup 0 +1 (U, ~') of 
C,+l(U, ~) and t5'l+l(t5Q g) = O. Then 15~ b E H'+l(U, ~') is the element 
represented by the cochain f5'1 g. 
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Now let ~ be a refinement of the open covering!t of X. There is an 
exact cohomology sequence for~. corresponding to (15). and the diagram 

Hq (!t. ~") ..1. HHI (!t. ~/) 
ti\J JtM (16) 

Hq (~. ~") .!l Hq +1 (~. ~/) 
is commutative. Therefore in the direct limit there is a homomorphism 
for each q ~ 0 

!5~: Htl(X. ~") -+ Htl+l(X. ~/) . 

The commutative diagram (16). and the commutative diagrams (12) 
given by h' and h. imply that ti\ is a homomorphism from the exact 
cohomology sequence (15) for !t to the corresponding exact cohomology 
sequence for ~. There is a commutative diagram 

~ h 4 
••• -+ Htl (!t. ~') -+ Htl (!t.~) ~ Hq (!t. ~") -+ H'l +1 (!t. ~') -+ ••• 

! t~ !t~ ! ~ 1 eM (17) 
h~ h of. 

••• -+ Hq ('ll. ~/) -+ Hq(~.~) ~ Htl(~. ~") ~ Hq+l(~. ~/) -+ •••• 

The direct limit of exact sequences is again an exact sequence and 
therefore (17) implies 

Lemma 2.7.1. An exact sequence 0 -+ ~' -+ ~ -+~" -+ 0 01 pre
sheaves over a topological space X gives a natural exact cohomology sequence 

0-+ HO(X. ~/) -+ HO(X.~) -+ HO(X. ~") -+ HI (X. ~/) -+ ••• 

6' (18) 
••• -+ Hq (X. ~/) -+ Hq (X.~) -+ Hq (X. ~") ---.!.. H'l +1 (X. ~/) -+ •••. 

h 
Corollary: Let 0 -+ ~' -+ ~ -+ ~ -+ ~" -+ 0 be an exact sequence 

01 presheaves over a topological space X. and suppose that B'l (X. ~') 
= Btl (X. ~") = 0 lor all q ~ O. Then h. : Bq (X. ~) -+ Htl (X.~) is an 
isomorphism lor all q ~ O. 

Proof: Let h(~) be the image of h. Then the exact sequences 
o -+ ~' -+ ~ -+ h(~) -+ 0 and 0 -+ h(~) -+ ~ -+ ~"-+ 0 imply that h. 
is the composition of isomorphisms Bq (X. ~) -+ Bq (X. h(~» -+ 

-+ B'l (X. ~) for all q ~ O. 

2.8. Paracompact spaces 
Certain results of sheaf theory can be proved only for paracompact 

spaces (see however the bibliographical note to Chapter One). In this 
section we collect the definitions and theorems on paracompact spaces 
which are needed. We follow the definitions given by BOURBAKI (Topo
logie generale). Thus compact. locally compact and paracompact spaces 
are all HAUSDORFF spaces by definition. 



30 Chapter I. Preparatory material 

Definition: An open covering U = {UthEr of a topological space X 
is point finite if each point of X is contained in U i for only finitely many 
i E I. The covering U is locally finite if each point of X has an open 
neighbourhood which meets Ut for only finitely many i E I. 

Definition: The topological space X is paracompact if it is a HAUS
DORFF space and if every open covering of X has a locally finite refine
ment. 

Theorem 2.8.1 (DIEUDONNE [1], Theoreme 1). Every paracompact 
space is normal. 

Theorem 2.8.2 (DIEUDONNE [1], Theoreme 3). Every locally compact 
space, which is the union of a countable number 0/ compact subsets, is 
paracompact. In particular, every locally compact space with a countable 
basis is paracompact. 

The manifolds which occur in this book are, by definition, HAUS
DORFF spaces with a countable basis [see 2.5, 3) and 4)]. They are there
fore paracompact by Theorem 2.8.2. It is also true that every metric space 
is paracompact and that every CW-complex is paracompact [MORITA, 
Math. Japon. 1,60-68 (1948) and Proc. Japan Acad. 30,711-717 (1954)]. 

Theorem 2.8.3 (Shrinking Theorem, DIEUDONNE [1], Theoreme 6). 
Let U = {UihEI be a point finite open covering of a normal space X. 
Then there is an open covering ~ = {VihEI with the same index set I such 
that Vi C Ut for all i E I. 

If fIJ: X ~ R is a continuous function, the support supp fIJ 
= {x EX; fIJ (x) =l= O} is the smallest closed set outside which fIJ is zero. 

Definition: Let U = {Ul}tEr be an open covering of the topological 
space X. A system {flJihEI of real valued continuous functions defined on 
X is called a partition ot unity associated to U if 

1) fIJi (x) ~ 0 tor x E X, 
2) sUPP9't C Ui' 
3) each point x E X has an open neighbourhood which meets sUPP9't 

tor only finitely many i E I, 
4) 1: 9'i (x) = 1 tor all x EX. [The sum can be formed because of 3).] 

tEl 

Theorem 2.8.4. X is paracompact it and only it X is a HAUSDORFF 
space and every open covering of X admits an associated partition of unity. 

Proof: Suppose that X is paracompact and that U = {UthEI is an 
open covering of X. Then X is normal (2.8.1) and U has a locally finite 
(and therefore point finite) refinement U' = {U~};EI' By the shrinking 
theorem (2.8.3) there are open coverings ~ = {VihEI and W = {WihEI 
of X such that WiC Vi and ViC U~. By the URYSOHN lemma there 
exists a real valued non-negative function 9': on X which is continuous, 
identically 1 on Wi and identically 0 outside Vt. Since ~ and Ware 
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locally finite coverings the sum V' = E lFi is a never zero continuous 
lEI 

function. The functions IF, = lFitV' satisfy properties 1), 2), 3), 4). 
Conversely suppose any open covering U = {U,hEI of X admits an 

associated partition of unity {lFihEI' Let Vi be the interior of the closed 
set sUPPIF,. Then ~ = {VihEI is an open covering of X [by 4)], is a 
refinement of U [by 2)], and is locally finite [by 3)]. Therefore X is 
paracompact. 

2.9. Cohomology groups for paracompact spaces 

Let G) be a presheaf over a topological space X and e the correspond
ing sheaf (see 2.2). Let ~ be the canonical presheaf of e and h: G) - ~ 
the natural homomorphism defined in 2.3. For each q;;;;:; 0 there is a 
cohomology homomorphism h.: H'" (X, G») - H'" (X,~) = H'" (X, e) 
defined by h. 

Theorem 2.9.1. Let G) be a presheal over a paracompact space X 
and let e be the corresponding sheal. Then the natural homomorphism 
h. : H'" (X, G») - H'" (X, e) is an isomorphism. 

The above theorem shows that the cohomology groups of a para
compact space with coefficients in a presheaf G) depend only on the 
corresponding sheaf e. We fiNt prove a preliminary lemma. 

Lemma 2.9.2. Let X be a paracompact space, and ~ a presheal 
over X with the zero sheal as corresponding sheaf. Let II = {U,hu be an 
open covering 01 X and IE c'" (U, ~). Then there is a refinement ~ = {Vi}iEJ 
olll and a map T: J - I with Vi C U .. i lor all j E J such that the co~hain 
T· I E c'" (~, ~) is zero. 

Proof (see SERRE [2], p. 218): Let ~ = {Su, r~}. We first make the 
following remark. Let U be any open neighbourhood of a point x E X 
and let g E S u. Then there exists an open neighbourhood V of x such that 
r~ g = O. If V C U and g E S u the element r~ g will be referred to as 
"g regarded as an element of Sv". 

Now let U = {U,hEI be an open coveringofX. A cochain IE C"'(U,~) 
associates to each (q + I)-pIe (io' ... , i",) an element I (io, ... , i",) of 
S(U" n ... n U'.)· We must now construct a refinement ~ = {Vi};EJ of U 
with the required properties. 

Without 10'>5 of generality we may assume that U is locally finite. 
By 2.8.1 and 2.8.3 there is an open covering W = {WihEI of X with 
W, C U,. Let ] = X and let T: X - I be a map for which x E Wu' For 
each point x E X we choose an open neighbourhood V % of x which fulfils 
the following conditions: 

a) If x E Ut then V%C Ut . If x E Wi then V%C Wi' 
b) If V % 1\ Wi is non-empty then V % CUi' 
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c) If % E U t• (\ ••• (\ Uif then I(io' •.. , iq). regarded as an element 
of SYN' is zero. [By a) the set Vz is contained in U t• (\ ••• (\ U t,.] 

Conditions a) and b) can be fulfilled because U and Ware locally 
finite coverings and W t CUt. By the remark at the beginning of the proof, 
V lit: can then be chosen sufficiently small so that c) holds. Let ~ = {V z}sEX. 

We shall now show that the cochain T*/ E O(~, ~) is zero, i. e. 
that, for all (xo •...• xq). the element /(T xo •...• T Xq). regarded as an 
element of S(V •• n ... n V,..l is zero. If V z. (\ ••• (\ V Zf is empty there is 
nothing to prove. If not, then V z. (\ V sa is non-empty for all k with 
0& k & q. By a). Vs• (\ Wn~ is non-empty and therefore. by b), 
V z• C Una for all k with 0 ~ k ~ q. It follows from c) that/(T %0 •••• , T Xq), 

regarded as an element of Sv ••• is zero. This implies immediately the 
corresponding result for the smaller set V z. (\ ••• (\ V Zf. Q. E. D. 

Remark 1: In the particular case q = O. Lemma 2.9.2 holds for an 
arbitrary topological space X. It is sufficient to choose an open covering 
~ = {Vs}sEX and a mapT: X -+- I such that V,. is an open neighbourhood 
of x. V,.C Uu . and I(T x) regarded as an element of Sy" is zero. 

We now come to the proof of Theorem 2.9.1. The method is due to 
SERRE. 

Let G) be the canonical presheaf of €I and h: ~ -+- G) the natural 
homomorphism. There is an exact sequence of presheaves 

(19) 

in which both ~' and ~"have the zero sheaf as corresponding sheaf. 
Lemma 2.9.2 implies that H'l (X, ~') = Hq (X, ~") = 0 for all q 6 o. 
Therefore h* : Hq (X.~) -+- Hq (X, G)) is an isomorphism by the corollary 
to Lemma 2.7.1. Q. E. D. 

Remark 2: In the particular case q = 0, Theorem 2.9.1 holds for an 
arbitrary topological space X provided that ~' = 0 (that is, provided 
that h is a monomorphism). 

2.10. The exact cohomology sequence for sheaves 

Consider an exact sequence 

o -+- €I' -+- €I -+- €I" -+- 0 (20) 

of sheaves over the topological space X. For each open set U of X there is, 
in the notation of 2.4. an exact sequence 

o -+- r(U, €I') -+- r(u, e) -+- S~ -+- 0 . (21) 

Let ~J ~' be the canonical presheaves of e. €I'. but let ~" be the 
presheaf determined by the groups S~. Then there is an exact sequence 

(22) 
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which, by Lemma 2.7.1, gives an exact cohomology sequence. By 
definition Hq (X, ~') = Hq (X, e') and Hq (X, ~) = Hq (X, e). The 
sheaf constructed from ~" is e". If X is paracompact then by Theorem 
2.9.1 the natural homomorphism Hq (X, ~") ~ Hq (X, e") is an iso
morphism. The groups Hq (X, ~") can therefore be replaced by Hq (X, e") 
in the exact cohomology sequence given by (22). Moreover the resulting 
homomorphism 

!5~ : Hq (X, e") ~ HHI (X, e') 

is defined in a natural way. We therefore obtain 

Theorem 2.10.1. An exact sequence 

o~e'~ e~ e"~o (23) 

01 sheaves over a paracompact space X gives an exact cohomology sequence 

o~ HO(X, e') ~ HO(X, e) ~ HO(X, e") A HI(X, e') ~ ... 
,,' " {,o ... ~ Hq (X, e') ~ Hq (X, e) -...!. Hq (X, e") ~ Hq +1 (X, e') ~ ... 

in which all homomorphisms are defined in a natural way. 

Remark: The remarks in the previous section imply that, for an 
arbitrary (not necessarily paracompact) topological space X, an exact 
sequence (23) of sheaves over X gives an exact cohomology sequence 

We now come to some applications of the exact cohomology sequence 
which are used in Chapter Four. Let K be a field and let e be a sheaf of 
K-modules over X (see 2.1). Then the cohomology groups Hq (X, e) are 
vector spaces over K. Let dimH9 (X, e) denote dimension over K. 

Definition: A sheaf e of K-modules over X is 01 type (F) if the 
cohomology groups Hq(X, e) are finite dimensional vector spaces over K 
and if dimHq(X, e) = 0 for all but a finite number of q ~ o. 

If e is of type (F) the EULER-POINCARE characteristic x (X, e) 
can be defined by the formula 

00 

x(X, e) = 1: (-1)9 dimH9(X, e) . 
q=O 

Theorem 2.10.2. Let 0 ~ e' ~ e ~ e" ~ 0 be an exact sequence 01 
sheaves over a paracompact space X. II two 01 the sheaves e', e, e" are 
01 type (F) then so is the third, and 

x(X, e) = x(X, e') + x(X, e") . 

Proof: By direct application of Theorem 2.10.1. 
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Theorem 2.10.3. Let 0 ~ €II ~ €52 ~ €5a ~ ..• -)0 €In -)0 0 be an 
exact sequence 01 sheaves over a paracompact space X which are all 01 type 
(F). Then .. 

E (-I)i x (X, €Ii) = O. 
;= 1 

Proof: Let~, be the kernel of the homomorphism from €I, to €I,+! 
and apply Theorem 2.10.2 to the exact sequences 

o ~ ~, -+ €I, -+ ~'+l -+ 0 . 

2.11. Fine sheaves 

In applications of sheaf theory results on the vanishing of cohomology 
groups are of particular importance. 

Definition: Let €I be a sheaf over a paracompact space X. Then €I 
is a fine sheal if for each locally finite open covering U = {Ui};EI of X 
there is a system {hi}iEI of homomorphisms hi: €I -+ €I such that: 

I) For each i E I there is a closed set Ai 01 X such that Ai CUi and 

hdSx) = 0 lor x ~ Ai, (Sx = stalk of €I at x) . 

II) E hi is the identity. (The sum can be formed because U is locally 
'EI 

finite.) 
Theorem 2.11.1. Let €I be a fine sheal over a paracompact space X. 

Then Bq (X, €I) vanishes lor q ~ 1. 

Proof (see CARTAN [4], Expose XVII): Since X is paracompact it is 
sufficient to prove that BII (U, €I) vanishes for q ~ 1 for any locally 
finite open covering U = {Ui}iO. We define for q ~ 1 a homomorphism 
(homotopy operator) 

kq : CII (U, €I) -+ 0-1 (U, €I) 

in the following way. Let IE CII (U, €I). The cochain kq I associates 
to each q-ple (io •.•. , iq-l) a section (kq I) (io, .. " iq-l) of €I over 
Uio n ... n Ui._ 1 • For each index i E I let t(i. io ....• iq-l) be the section 
of €I over Ui• n ... n U i._ 1 which is equal to hi(l(i, i o ••••• iq-l)) over 
the smaller set U i nUt. n ... n U i._ 1 and is zero outside this smaller 
set. The hi are homomorphisms with properties I) and II). We define 

(kq I) (io •.. '. iq-l) = I: t (i. i o •...• iq-l) . 
'EI 

The sum can be fonned because U is locally finite. Let (Jq be the co
boundary homomorphism O(U. €I) -+ CHI(U. €I). It is easy to prove 
that. for q ~ 1. the homomorphism kq+l {Jq + {J1l-I kll is equal to the 
identity. This completes the proof. 
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The above proof is a generalisation of the cone construction which is 
used to prove that the cohomology groups of a simplex (with constant 
coefficients) are trivial. 

Now consider the sheaf C, over a paracompact space X (see 2.5, 
Example 2). Let U be a locally finite open covering of X. By 2.8.4, 
U has an associated partition of unity {<PihEI' The functions <Pi can be 
used to define homomorphisms hi: C, ~ C, as follows. Let S u be the 
C-module of complex valued continuous functions defined on U. For 
1 E Su define hi(/) = <Pi I· This defines a homomorphism hi from the 
presheaf {Su} to itself and therefore also a homomorphism hi from C, to 
itself (see 2.2). The homomorphisms hi satisfy properties I) and II) of the 
definition of a fine sheaf. This proves 

Theorem 2.11.2. The sheal C, 01 germs 01 local complex valued 
continuous lunctions over a paracompact space X is fine. 

Exactly the same proof shows that the sheaf of germs of local real 
valued continuous functions over a paracompact space X is fine. Theorem 
2.11.2 should be regarded as a typical example of a whole class of similar 
theorems. 

Now let X be a differentiable manifold [see 2.5, Example 3)] and 
U = {UihEI an open covering of X. Then it is possible to find an as
sociated partition of unity {<pihE I in which the functions <Pi are dif
ferentiable (DE RHAM [1], § 2). With the help of such a differentiable 
partition of unity it is possible to prove that many sheaves over X are 
fine. For instance the sheaf Cb of germs of local complex valued dif
ferentiable functions is fine. Similarly the sheaf ~f> of germs of exterior 
differential forms of degree p with real (or complex) differentiable 
functions as coefficients is fine. The canonical presheaf of this sheaf is 
obtained by associating to each open set U of X the R-module (or 
C-module) of exterior differential forms of degree p defined on U (see 
DE RHAM [1], § 4). 

2.12. Resolutions of sheaves. Theorem of DE RHAM 

Consider an exact sequence 
h la' la' It' "P-l laP o ~ el -+ elo -+ ell -+ el2 -+ ••• -+ elf) -+ • • • (24) 

of sheaves over a paracompact space X. The sequence is called a resolution 
of the sheaf el if the cohomology groups Hq (X, elf» vanish for q;;;; 1 and 
p ;;;; O. By Theorem 2.11.1 this is the case if each elf) is a fine sheaf. 
An exact sequence (24) with elf> fine for all p ;;;; 0 is called a fine resolution 
of el. The exact sequence (24) defines a sequence 

" ,,0 ,,1 ,,'-1 10' o ~ r(X, el) .-!.,. r(x, elo) .-!.,. r(x, ell) .-!.,. ••• ~ r(x, elf» .-!.,. ••• 

(25) 
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which in general is exact only at r(X, 6) and r(X, 60)' Since h!+l h! = 0 
the groups r(X, 6 p), p ;;;;; 0, and the homomorphisms h! form an abstract 
cochain complex. 

Theorem 2.12.1. Consider a resolution (24) of a sheal 6 over a 
paracompact space X. The q-th cohomology group 01 the abstract complex 
{F(X, 6 p), p;;;;; O} is naturally isomorphic to the cohomology group H9{X, e) 
lor q ;;;;; O. In other words 

H9 (X, 6)~ kernel (h~)/image (h~ -1) lor q ;;;;; 1, 
HO(X. 6)~ kernel (h~). 
Proof: Clearly kernel (h~) = r(X, 6) which by Theorem 2.6.2 is 

the cohomology group HO(X. e). This proves the statement for q = O. 
Let ~p be the kernel of the homomorphism hP : 6 p -+ 6 p+l' The sequence 
(24) gives an exact sequence of sheaves over X 

(26) 

for each p ~ O. Since the cohomology groups H9 (X, 6 p) vanish for 
q;;;;; 1 the exact cohomology sequence of (26) gives natural isomorphisms 

H9- 1 (X. ~Hl) ~ HIl (X. ~p) for q ;;;;; 2 . 

Since ~o = e repeated application of (27) gives 

Hl(X. ~9-1) ~ H9(X. e) for q;;;;; 1. 

(27) 

(28) 

The exact cohomology sequence of (26). with p replaced by q - 1. 
contains the exact sequence 

".-1 
HO(X, e q - 1) ---!.-.,. HO(X, ~q) -+ Hl(X, ~q-l) -+ O. (29) 

Since HO(X, ~q) is the kernel of h~, and HO(X, 6 q-d = r(X, 6 q - 1) 

the theorem follows from (28) and (29). 
Let X be a differentiable manifold [see 2.5, Example 3)J and let ~p 

be the sheaf of germs of differentiable p-forms over X (see the end of 
2.11). If U is an open set of X then r( U. ~P) is the R-module of dif
ferentiable p-forms defined on U. The exterior derivative d is a homo
morphism from r(U, ~P) to r(u. ~P+l). In terms of local coordinates the 
derivative of a p-form 

w = 1: Ii, •. .. , i, dxi• II ••• II dXI, 
il< ... < i_ 

is the (P + I)-form 

dw= 1: dli" ... ,i,"dxi,"","dxi,. 
i,<'" <i, 

Let R be the constant sheaf of real numbers, h the embedding of R in 
the sheaf ~o of germs of real valued differentiable functions. and 
hP : ~P -+ ~Hl the homomorphism defined by the exterior derivative. 
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Theorem 2.12.2 (POINCARE Lemma). The sequence 

is exact. 
Proof: Since dd = 0 it follows that hl>+1 hI> = 0 for p;?: O. It is 

therefore sufficient to prove the following result. Let w be a p-form 
(p ;?: 1) defined on an open set U. If dw = 0 then there exists a (P - 1)
form IX defined on an open set V C U such that w = dlX on V. This is a 
local result, so we may assume that X i5 n-dimensional euclidean space. 
The required result is then the classical form of the POINCARE Lemma. 
It can for instance be proved by induction. 

Theorem 2.12.3 (DE RHAM). Let X be a differentiable manilold 
and let AI>, p ;?: 0, be the R-module 01 differentiable p-Iorms defined on ihe 
whole 01 X. Let ZI> denote the kernel of the R-homomorphism d: AI> -+ AI>+I. 
Then dAI>-I C ZI> lor p;?: 1. There are isomorphisms 

HO(X, R) = ZO and HI> (X, R) "" Zl>jdAI>-I, p;?: 1 . 

Proof: The exact sequence of Theorem 2.12.2 is a fine resolution 
of the constant sheaf R. The homomorphisms h: of Theorem 2.12.1 are 
in this case the exterior derivative of forms, so that the result follows 
from Theorem 2.12.1. 

Remark: Exactly the same proof gives the corresponding result for 
complex valued differentiable p-forms. Let AI> be the C-module of 
p-forms defined on the whole of X with local complex valued differentiable 
functions as coefficients. Let ZI> be the kernel of the C-homomorphism 
d: AI> -+ AI>+I. Then there are isomorphisms 

§ 3. Fibre bundles 
3.1. Let X be a topological space. A sheaf €i = (5, n, X) of (not 

necessarily abelian) groups over X is defined, as in 2.1, by properties I), 
II) together with property III) in the following slightly modified form: 

III) Every stalk has the structure 01 a group. The group operations 
associate, to points IX, pin 5"" the elements IX p, IX p-I in 5",. IX p-I depends 
continuously on IX and p. (It then follows that the identity I", of the group 
5", depends continuously on x and that IX p, IX-I fJ depend continuously 
on IX, p.) 

The definitions of presheaf, canonical presheaf, etc. carryover with 
similar modification. As in 2.3 the group r(U, €i) of sections of e over 
an open set U of X and the restriction homomorphisms r~ are defined. 
The identity of r(U, €i) is the section x --+ 1.,. [If U is empty then by 
definition r(U, €i) consists only of the identity element.] 
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Cohomology groups HII.(X, 6) cannot be defined in the non-abelian 
case. It is nevertheless possible, for q = I, to define a cohomology set 
HI(X, e) with a distinguished element 1. If 1$ is a sheaf of abelian 
groups then the cohomology set Hl (X, e) agrees with the cohomology 
groups defined in 2.6. The distinguished element then corresponds to the 
zero element of the cohomology group. The cohomology set can again be 
defined with coefficients in an arbitrary presheaf. For convenience we 
formulate the definition only for the canonical presheaf, i. e. for the 
sheaf.e itself. 

The cohomology set Hl (U, e). 

Let U = {UihEI be an open covering of X. A U-cocycle is a function I 
which associates, to each ordered pair i,j of elements in I, an element 
Iii E r(U i /\ UI , e) such that 

Iii Iii. = Iii. in Ui /\ Ui /\ U /0 lor all i, j, k E I . 

Equations of this type are always to be understood as holding between 
the restrictions of sections to a common domain of definition. It follows 
from the definition that Iii is equal to the identity element of r(ui , e) 
and that Iii = liil • 

The set of U-cocycles is denoted by Zl (U, e). Cocycles I, I' are said 
to be equivalent if for each i E I there exists an element go E r(ui , e) 
such that 

I;i = gil Iii gi in Ui /\ Ui lor all i,j (I. 

The cohomology set HI (U, e) is the set of equivalence classes of U-co
cycles. Let ~ = {VihEJ be a refinement of U and let .. be a map from] 
to I with Vr C UTr for all r E J. A U-cocycle I defines a ~-cocycle .. * I by 

( .. * I)r,s = l.r,TS in Vr /\ Vs lor all r, S E] . 

The map .. * induces a natural map 

t~ : Jil (U, e) -+ HI (~, e) 

with properties as in Lemma 2.6.1. If 'T is another map from] to I 
with Vr C U'n then the sections gr = ITr,'rr E r(Vr' e5) define an equi
valence 

(,T*/)r,.=g;I(T*/)r,.g. in Vr /\ V. lor all r,sE] 

between 'T* I and .. * I. Therefore the map t~ does not depend on the 
choice of the map T. 

The cohomology set HI (X, e) is the direct limit of the sets HI (U, e), 
with respect to the maps t~, as U runs through all proper open coverings 
of X (see 2.6 and the beginning of § 2). If ~ is a refinement of U it can be 
shown that the map tM is one-one, and so HI(U, e) can be regarded as a 
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subset of HI (~, €I). If U and ~ are cofine then HI (U, e) is identified with 
HI(~, e) in a natural way. It follows that HI(X, e) can be regarded as 
the union of all sets HI (U, 6), as U runs through all proper open cover
ings of X. The distinguished element 1 E HI {X, €i) is represented, for 
any open covering U = {Uihu, by the cocycle Iii = 1 E r(Ui (\ Ui' €i). 

We now consider the particular case in which G is a group and €i 
is a sheaf of germs of functions with values in G. The functions may be 
continuous, differentiable or holomorphic depending on the structure 
of X and G. These cases are distinguished by the symbols Ge, Gb , G", which 
agree with those used in 2.5. 

If X is a topological space and G is a topological group then Ge 
is the sheaf for which F(U, Ge) is the group of continuous functions 
from U to G. 

If X is a differentiable manifold (see 2.5) and G is a real LIE group 
then Gb is the sheaf for which r(U, Gb) is the group of differentiable 
(i. e. Coo-differentiable, see 2.5) functions from U to G. 

If X is a complex manifold (see 2.5) and G is a complex LIE group 
then Go> is the sheaf for which F(U, G",) is the group of holomorphic 
functions from U to G. 

Con ven tion: If the sheaf Gb over X is mentioned it will be assumed 
implicitly that X is a differentiable manifold and G is a LIE group. 
If the sheaf G." over X is mentioned it will be assumed implicitly that X 
is a complex manifold and G is a complex LIE group. 

The sheaf Gb over X is a subsheaf of the sheaf Gc over X. The sheaf G." 
over X is a subsheaf of the sheaf Gb over X. There are natural maps 

HI (X, Gb) -+ HI(X, Ge), HI (X, G.,,) -+ HI (X, Gb) (1) 

together with the composite map 

HI (X, G.,,) -+ HI (X, Gc} • 

If h: G' -+ G is a continuous (or differentiable, or holomorphic) trans
formation of topological groups (or LIE groups, or complex LIE groups) 
there are sheaf homomorphisms 

and natural maps 

Hl(X,G~) -+ HI (X, Gc), HI(X,Gj,) -+ HI (X, Gb), HI(X,G'",) -+ HI(X,G.,,) 

(2) 
If G' = G, and h is the inner automorphism 

h(g) = a-I g a (g E. G) determined by an element a E G 
then the natural maps (2) ar~ all equal to the identity. 

(2*) 
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3.2. a). Let X be a topological space, and let G be a topological 
group with identity element e E: G. Consider an effective continuous 
action of a group G on a topological space F. Here continuous action 
means a continuous map G X F -+ F which maps g X lEG X F to g I E F, 
such that gl (gs I) = (gl gl) I and e I = I for alII E F. EtJective means that 
if g I = I for some g, and all I EF, then g = e. 

Definition: A topological space W, together with a continuous 
map (projection) n: W -+ X, is called a fibre bundle over X with structure 
group G and (typical) fibre F if theIe exists a system of coordinate 
transformations, that is 

I) an open covering U = {Ui}iEI 01 X and homeomorphisms 
hi: n-I(Ui ) -+ UiX F which map the "fibre" n-l(u) onto UX F, and 

II) elements gii (r(Ui f\ Ui, Ge) lor all i,j E I such that 

(hi hill (u X I) = u X gii(U) I lor all u E Ui f\ Ui, I EF. (3) 

Remark: Since the action of G on F is effective, the element gil 
is determined uniquely by hi and hi. The gij clearly define a cocycle 
gEzt(U, Ge) and hence an element of the cohomology set Hl(U, Ge). 

For example consider the trivial fibre bundle with W = X X F and n 
the product projection. Any open covering U = {UihEI satisfies I), 
and the functions gil = 1 E r(U, f\ U;, Ge} satisfy II}. In this case g 
defines the distinguished element of the cohomology set HI (U, Ge) . 

The definition of a fibre bundle over X will be complete once we 
specify under what circumstances different systems of coordinate 
transformations define the same fibre bundle. A homeomorphism 
h U : 7(,-1 (U) -+ U X F, U open in X, is called an admissible chari for the 
system of coordinate transformations I), II) if there are elements 
gU,i E r(U f\ Ui, Ge) for each i E I such that 

(hu hi1) (u X f) = 14 X gU.i(U) f for all u E U f\ Ui • f EF. (3*) 

Definition: Two systems of coordinate transformations make W 
(together with the projection n) the same fibre bundle W over X with 
structure group G and fibre F if and only if every admissible chart for 
one system is an admissible chart for the other system. 

Definition: Let W (projection 7(,) and W' (projection n') be fibre 
bundles over X with structure group G and fibre F. An isomorphism k 
from W to W' is a homeomorphism k: W -+ W' such that, for each point 
xEX. 

I) the fibre 7(,-1 (x) maps onto the fibre 7(,'-1 (x), and 
II) there is an open neighbourhood U of x, an element gu E r( u, Ge), and 

admissible charts hu: 7(,-l(U) -+ Ux F for Wand hu: 7(,'-l(U) -+ U X F 
lor W' such that 

hu k hr} (u X f) = u X gu (u) I for all u E u, f E F . 
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Given an open covering U = {UihEI of X and a U-cocycle g = {gii} E 
EZI(U. Ge). a fibre bundle W. over X with structure group G and fibre F 
can be constructed. It is sufficient to form the disjoint union of the 
cartesian products Ui X F and to identify. for each u E Ui f\ Ui• the 
points u X 1 E Ui X F and u X gil (u) 1 E Ui X F. The identification space 
W. is a fibre bundle with projection induced by the product projections 
Uix F-+- Ui. If gEZ1(U. Ge) and hEZ1(~. Ge) then W. is isomorphic 
to W,. if and only if g and h represent the same element of the cohomology 
set JIl{X. Ge). Every fibre bundle over X with structure group G and 
fibre F is isomorphic to a fibre bundle W. for some g. We obtain 

Theorem 3.2.1. The isomorphism classes 01 fibre bundles over X 
with structure group G and fibre F (with a given etJective continuous action 
01 G on F) are in a natural one-one co"espondence with the elements 01 the 
cohomology set HI (X, Ge). The trivial fibre bundle W = Xx F co"esponds 
to the distinguished element 1 EHI(X, Ge). 

Fibre bundles in the isomorphism class corresponding to E E JIl (X. Ge) 

are said to be associated to E. If F = G and the action of G on itself is 
left translation, then fibre bundles with structure group and fibre G are 
called principal bundles. 

Convention: Elements of HI {X. Ge) will be referred to as G-buntlles. 
On the other hand the words fibre bundle, principal bundle will refer to a 
particular fibre bundle or principal bundle (as in the above definitions) 
and not to an isomorphism class. 

3.2. b). The definitions and result') of 3.2. a) carryover to the dif
ferentiable and holomorphic cases. Thus let X be a differentiable (com
plex) manifold and G a real (complex) LIE group. For turther details on 
LIE groups see, for instance, PONTRJAGIN [1]. Consider an effective 
differentiable (holomorphic) action G X F -+- F of G on a differentiable 
(complex) manifold F. In the remaining definitions it is only necessary 
to replace Ge throughout by the sheaf Gb (Go» over X. A fibre bundle W 
is then automatically a differentiable (complex) manifold. The projection 
n is a differentiable (holomorphic) map. An isomorphism between two 
fibre bundles is a differentiable (holomorphic) homeomorphism. 

We speak of continuous, or differentiable, or complex analytic, 
fibre bundles and G-bundles according as the sheaf Ge, or Gb, or Go>, 
is used in the definition. Let W be a continuous, or differentiable, or 
complex analytic, fibre bundle over X with projection n. A section of W 
over an open set U of X is a continuous. or differentiable, or holomorphic, 
function s: U -+- W for which n s is the identity. If a section over the 
whole of X exists, we also say simply that W has a section. 

Remark: The pattern of 3.2 a) can be used to define many other 
sorts of fibre bundle (e. g. real analytic, algebraic). One has only to 
replace Ge by another sheaf. In general one speaks of fibre bundles with 
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structure sheaf (see GROTHENDIECK [1] and HOLMANN [1]). The sheaves 
G" Gb and G", suffice for the purposes of the present work. 

3.2. c). Consider a continuous action of the topological group G 
on the topological space F which is not effective. The elements h of G 
which act trivially on F (that is hI = I for alII E F) form a closed normal 
subgroup N of G. There is an effective continuous action of the topological 
group GjN on F. 

If G is a real LIE group then so is any closed subgroup N of G. There
fore a differentiable action of G on the differentiable manifold F defines 
an effective differentiable action of the real LIE group GjN on F. 

If G is a complex LIE group then a closed subgroup of G need not 
be a complex LIE group. It is, however, easy to prove that the closed 
normal subgroup N, defined by a holomorphic action of G on a complex 
manifold F, is a complex LIE group. There is then an effective holo
morphic action of the complex LIE group GjN on F. 

There are natural maps [see 3.1 (2)] 

t; Hl(X, Ge) -+ HI(X, (GjN),), X a topological space, 

t; HI (X, Gb) -+ HI(X, (GjN)b)' X a differentiable manifold, 
t; HI (X, G .. ) -+ HI(X, (GjN) .. ), X a complex manifold. 
Let W be a fibre bundle with structure group GjN and fibre F which 

is associated to t E, E E HI (X, Ge). In this case we also speak of Was a 
fibre bundle with structure group G and fibre F associated to E. Similarly 
for Gb and G",. 

3.2. d). The following remarks apply to the continuous, differentiable, 
and also to the complex analytic, cases. 

Let E be a principal bundle over X with structure group and fibre G. 
There is an effective action of G on E defined by right translation on each 
fibre. With respect to the local product structure U X G of E (admissible 
chart) the action of an element a EGis given by (u X g) a = u X g a. 
This operation of a E G on E does not depend on the choice of admissible 
chart because the coordinate transformations (3), (3*) are defined by 
left translation. 

Consider an action (not necessarily effective) of G on F. We now 
show how to construct, from the principal bundle E, a fibre bundle 
W over X with fibre F. Form the cartesian product Ex F and identify 
e a X I with e X a I for each a E G, e E E, I E F. The identification space W 
can be regarded in a natural way as a fibre bundle over X with structure 
group G and fibre F. The fibre bundles Wand E are associated to the 
same G-bundle. 

3.3. Let Y, X be topological spaces, q; ; Y -+ X a continuous map, 
and G a topological group. There is a natural map 

q;*; HI (X, G,) -+ HI(Y, G,} . (4) 
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If E is represented with respect to an open covering U = {UihEI of X 
by a U-cocycle {gil}' then f/J* e is represented with respect to the open 
covering f/J-I U = {f/J-l UihEI of Y by the f/J-I U-cocycle {gil f/J}. f/J* e is 
called the G-bundle induced from the G-bundle E by the map f/J. 

Let W (projection n) be a fibre bundle over X with structure group G 
and fibre F which is associated to e. The following construction gives a 
fibre bundle f/J* W over Y which is associated to f/J* e. Let f/J* W be 
the subspace of Y X W consisting of all points y X w E Y X W with 
f/J (y) = n (w). The projection of the fibre bundle f/J* W is induced by the 
product projection Y X W -+ Y. 

Let f/J : Y -~ X be a differentiable, or holomorphic, map of differen
tiable, or complex, manifolds X, Y and let G be a real, or complex, 
LIE group. There is a natural map 

f/J*: HI (X, Gb) -+ HI(Y, Gb) or f/J*: HI (X, Gw) -+ Hl(Y, Gw). (4') 

The definition of f/J* and the construction of the fibre bundle f/J* W 
follows just as in the continuous case. 

3.4. a). Let G' be a closed subgroup of the topological group G. 
Consider the space GIG' of left cosets xG', x (G, and the map (/ from G 
to GIG'. Let e E G be the identity element. The statement 

u : G -+ GIG' admits a local section (5) 

means that there is an open neighbourhood U of u(e) in GIG' and a 
continuous map s : U -+ G for which us is the identity. 

Theorem 3.4.1 (see STEENROD [1], 7.4). II (5) holds then G can be 
regarded in a natural way as a principal bundle over GIG' with structure 
group and fibre G' and projection u. 

Theorem 3.4.2. Let G' be a closed suhgroup 01 the real LIE group G. 

Then G' is a real LIE group and G .!!....,. GIG' admits a local differentiable 
(in tact, real analytic) section. G can be regarded in a natural way as a 
differentiable principal bundle over GIG' with structure group and fibre G' 
and projection u. 

Theorem 3.4.3. Let G' be a closed complex LIE subgroup 01 the complex 

LIE group G. Then G .!!....,. GIG' admits a local holomorphic section. G can be 
regarded in a natural way as a complex analytic principal bundle over GIG' 
with structure group and fibre G' and projection u. 

The existence of the local differentiable (holomorphic) section s 
which is asserted in Theorem 3.4.2 (Theorem 3.4.3) can be proved by 
means of canonical coordinates in an open neighbourhood of e E G. 
In the special cases which arise in this book it is actually easy to construct 
s directly. 
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3.4. b). The following exposition is valid in the continuous, dif
ferentiable or complex analytic cases. X will denote a topological space, 
differentiable manifold or complex manifold and G a topological, real 
LIE, or complex LIE group according to the case considered. Let G' 
be a closed subgroup of G. In the continuous case it will be assumed that 
(5) holds. In the complex analytic case it will be assumed that G' is a 
complex LIE subgroup of G. 

Convention: Let W be a fibre bundle with structure group G and 
fibre F which is associated to a G-bundle e over X [see 3.2 a) and 3.2. c)]. 
Let h denote the natural embedding of the set of G' -bundles over X in 
the set of G-bundles over X induced by the embedding of G' in G (see 3.1). 
If there exists a G'-bundle i over X with hi = e we say "the structure 
group of W can be reduced to G"'. If such a G' -bundle arises naturally from 
the context we say that the structure group can be reduced to G' in a 
natural way. 

Let E (projection n) be a principal bundle with fibre G which is 
associated to a G-bundle E over X. Let EIG' be the identification space 
obtained by identifying, in each fibre of E, points which correspond 
under right multiplication by elements of G' [see 3.2. d)]. Consider the 
commutative diagram 

E~EIG' 

~/, 
X 

Theorem 3.4.4. E can be regarded in a natural way as a principal 

bundle over EIG' with structure group and fibre G' and projection (1. Let i 
denote the co"esponding G'-bundle over EIG'. 

E/G' can be regarded in a natural way as a fibre bundle over X with 
structure group G, fibre G/G' and projection (! (G acts on G/G' by lelt transla
tion; see 3.2. c)). E/G' is associated to the G-bundle E. 

Let ~ be the map from the set ot G'-bundles over E/G' to the set ot G
bundles over EIG'. Then 

(6) 

(Alter "lifting" by (! the structure group of E can be reduced to G' in a 
natural way.) 

The proof follows from Theorem 3.4.1, Theorem 3.4.2 or Theorem 
3.4.3 according to the case considered. We leave the first parts to the 
reader and show only how to obtain equation (6). Let W be the subspace 
of E/G' X E consisting of all points c X d in E/G' X E with (! (c) = n (d). 
By 3.3, W is a principal bundle over E/G' with fibre G which is associated 
to (!* E. By 3.2. d) there is a fibre bundle W over E/G' which is constructed 
from Ex G by the identifications d a X a-I g = d X g for all a E G', 
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dEE, g E G. jf has structure group G' and fibre G. The action of G' on G 
is left translation and therefore W can be regarded as a principal bundle 
over E/G' with structure group and fibre G which is associated to h l 
The rule k (d X g) = a(d) X dg for dEE, g E G gives a well defined map 
k: W -+ W which is an isomorphism of principal bundles. This completes 
the proof of (6). 

In the following theorem the notations of Theorem 3.4.4 are used to 
state conditions under which the structure group of E can be reduced 
to G'. We also use the terminology of 3.2. b), so that a section is assumed 
continuous, differentiable or holomorphic according to the case considered. 

Theorem 3.4.5. The structure group 01 E can be reduced to G' if and 
only if the fibre bundle EIG' over X has a section s. 

If a section s of E/G' is given, then the G'-bundle 

'TJ = s*(i) 

is mapped to E by the embedding G' -+ G. In this case there is an open 
covering U = {UjhEI of X and a system of admissible charts Ui-x G for E 
such that the coordinate transformations 

gil: Ui n Ui -+ G 

map Ui n Ui to the subgroup G' of G and such that, with respect to every 
chart Ui X G, the section s associates to u E Ui the point of EIG' represented 
by uX e (hefe e EGis the identity element). The cocycle {gii} represents the 
G-bundle E i/ the gii are regarded as maps to G, and represents the G'-bundle 
'TJ it the gii are regarded as maps to G'. 

Proofs of the theorems in this section can be found in STEENROD [1] 
and HOLMANN [1]. The essential fact in the continuous case is the 
assumption (5) that GIG' admits a local section. In the other two cases 
the analogous assumption is not necessary, because a local section 
always exists. 

3.5. The action of the complex LIE group G L (q, C) on the complex 
vector space C" (see 0.9) is continuous and effective. A vector bundle 
over X is a fibre bundle W over X with structure group G L (q, C) and 
fibre C", This defines continuous vector bundles over a topological 
space X, differentiable vector bundles over a differentiable manifold X, 
and complex analytic vector bundles over a complex manifold X [see 
3.2. b)]. If q = I, W is called a line bundle. 

The coordinate transformations between two admissible charts 
of W preserve the vector space structure on each fibre of W. Addition 
of points on a fibre, and multiplication of a point by a complex number, 
are therefore defined. Every fibre is a complex vector space. It follows 
that addition of sections over an open set U, and multiplication of a 
section over U by complex number, are defined. These operations remain 
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within the domain of continuous, differentiable or holomorphic sections 
over U according to the case considered [see 3.2. b)]. Therefore the 
following sheaves over X can be defined: 

I) cr(W) = sheal 01 germs 01 local continuous sections 01 a continuous 
vector bundle W otler a topological space X. 

The canonical presheaf of cr (W) associates to each open set U of X 
the C-module of all continuous sections of W over U. Similarly: 

II) Q{ (W) = sheaf 01 germs of local differentiable sections 01 a differen
tiable vector bundle W over a differentiable manifold X. 

III) .Q(W) = sheal 01 germs 01 local holomorphic sections 01 a complex 
analytic vector bundl~ W over a complex manifold X. 

The sheaf cr(W) is fine if X is paracompact. The sheaf Q{(W) is fine. 
In both cases local sections can be mUltiplied by the (continuous or 
differentiable) functions (jJi of a partition of unity to define sheaf homo
morphisms hi (see 2.11). 

Let W be a vector bundle associated to a (continuous, differentiable or 
complex analytic) G L(q, C)-bundle ~ over X. The following construction 
gives a principal bundle E over X with structure group and fibre G L (q, C) 
which is associated to L: 

The fibre of E over x E X is the set of all isomorphisms between the 
fixed vector space Cq and the fibre W" of W over x. 

Vector bundles W with GL(q, R) or GL+(q, R) as structure group 
and Rq as fibre (see 0.9) are defined similarly. The construction of a 
principal bundle E from W follows just as for vector bundles with fibre Cq • 

3.6. a). Let A, B be arbitrary finite dimensional vector spaces over 
a field K. The direct sum A ED B and the tensor product A ® Bare 
again vector spaces over K of dimension dim(A ED B) = dimA + dimB 
and dim (A ® B) = dim A dim B. Vectors a E A, bE B define vectors 
a ED b E A ED B and a ® b E A ® B. The product a ® b is linear in each 
factor, and the vector space A ® B is generated by the elements of the 
form a ® b. There is also a vector space Hom (A, B) over K, whose 
elements are the homomorphisms (linear maps) from A to B. For each 
finite dimensional vector space A over K the dual vector space A * of 
linear forms is defined. A* = Hom (A, K) by definition and dim(A*) 
= dim (A). The vector space AI' A of p-vectors is also defined. Vectors 
aI' as, ... , ap E A define a vector a l " as" ... " ap E AI' A, which depends 
linearly on each factor. A permutation of the factors av as, ... , ap 
multiplies a l " as " ... "ap by the sign of the permutation and 
al " as " ... " ap = 0 if two factors agree. The elements of the form 

al" as" ... "ap generate AP A. If dim (A) = q then dim (AP A) = (!). 
(For full details of these definitions from multilinear algebra see BOUR

BAKI, Algebre, Chap. II.) 
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3.6. b). Let W be a vector bundle over X. The fibre Ws over the 
point x E X is a complex vector space isomorphic to the typical fibre Cq' 
Let W' be another vector bundle over X with fibre W; and typical 
fibre Cq, (see 3.5). 

It is possible to define in a natural way the vector bundles WED W' 
(WHITNEY sum of Wand W'), W ® W' (tensor product), Hom(W, W'), 
W* (dual bundle) and ,Al'W (bundle of p-vectors) .. The fibres of these 
vector bundles over the point x E X are respectively the complex vector 
spaces Ws ED W;, Ws ® W;, Hom(Ws' W;), W: and A.I'Ws' The vector 
bundle .V' (W*) is called the bundle of p-forms of W. 

In terms of admissible charts U X Cq for Wand U X Cq, for W/ 
the product U X (Ca ® Ca,) is an admissible chart for W ® W'. Coordinate 
transformations of W, W' induce coordinate transformations of W ® W' 
in a natural way. Similarly in the other cases. This is a general principle 
formulated by MILNOR (compare LANG [1], Chap. III, § 4 or MILNOR, 
Der Ring der Vektorraumbiindel eines topologischen Raumes, Bonn 1959, 
lecture notes by P. DOMBROWSKI). 

If W and W' are both continuous, differentiable, or complex analytic 
then so are the new vector bundles defined above. The following theorem 
holds in the continuous, in the differentiable, and in the complex analytic 
case. 

Theorem 3.6.l. Let W, W', W" be vector bundles over X. There are 
isomorphisms 
(W ED W') ED w" ~ W ED (W' ED W") , W ED W'~ W' ED W , 
(W® W') ® W"~ W® (W' ® W"), W® W'~ W' ® w, 
(W ED W') ® W"~ (W ® W") ED (W' ® W") , 
(W ED W')* '" W* ED (W')* , (W ® W')* ~ W* ® (W')* , 
Hom(W, W')~ W* ® W', (W*)*~ W. 
II W has typical fibre Cn then lor aU 0 ~ p ~ n, 

(.V W)* ~ ,V' (W*) , An (W*) ® AI> W ~ An-I> (W*) . 

For the proof of Theorem 3.6.1 see the index of BOURBAKI, Algebre, 
Chap. III under the heading I somorphisme canonique. 

The operations of WHITNEY sum, tensor product, etc., defined in this 
section for vector bundles with a complex vector space as fibre, can be 
defined in exactly the same way for vector bundles with a real vector 
space as fibre. Theorem 3.6.1 holds similarly. 

3.6. c). Let ~ be a continuous, differentiable or complex analytic 
GL(q, C)-bundle over X and~' a corresponding GL(q', C)-bundle over X. 
We now define a G L (q + q', C)-bundle ~ ED ~' (WHITNEY sum of ~ and ~'), 
and a G L (q q', C)-bundle E ® E' (tensor product of E and E'). These 
bundles are again continuous, differentiable or complex analytic according 
to the case considered. 
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Let W, W' be vector bundles associated to E, E'. Then E. E' is 
defined as the G L (q + q', C)-bundle determined by W. W'. It depends 
only on E and E'. Let U = {U,her be an open covering of X for which E. 
E' can be represented by U-cocycles {gil}' {gil}' 

gil: Ui (\ Ur~ GL(q. C). gil: Ui (\ Ur~ GL(q'. C) . 

Then the G L (q + q'. C)-bundle E. E' is represented by a U-cocycle 
{hi/} where 

h'/(x) = (g~(X) gU~x))E GL(q + q', C) for xE U i (\ UI • 

Similarly E ® E' is defined as the G L (q q', C)-bundle determined by 
W ® W'. It is represented by a U-cocycle {hi/} where 

nil(x) = g'/(x) ® gil (x) E GL(q q'. C) for xE Ui (\ UI 

and where ® denotes KRONECKER product of matrices. 
For each continuous. differentiable or complex analytic G L (q. C)-

bundle E over X the dual G L (q, C)-bundle E· and the G L ( (;), C)-bundle 

,V' E are defined. These are again continuous. differentiable or complex 
analytic according to the case considered. Let W be a vector bundle 
associated to E. Then E· is defined as the GL(q. C)-bundle determined 
by W·. If E is represented by a U-cocycle {gil} then E· ic; represented by 
the U-cocycle {gli}. where 

gf;(x) = (gr;1 (x»t E G L (q, C) for x E Ui (\ UI 

is the transpose of the inverse of the matrix gil (x). 

Similarly APE is defined as the GL( (~), C)-bundle determined by APW. 
I t is represented by the U-cocycle {gW} where 

c1f)(x) = gil (x)(P) E GL( (;). C) for xE Ui (\ UI 

is the p-th compound matrix (matrix of p X P minors) of the matrix 
gil (x). 

A suitable U-cocycle can also be obtained as follows. Choose a definite 
isomorphism which identifies the vector space AP Cli with the vector 
space C(:)' [Which isomorphism is chosen will be immaterial by 3.1 (2·).] 

The group GL(q, C) operates on C" and hence on C(J)' giving a holo-

morphic homomorphism 'f/Jp from GL(q, C) to GL((;), C). Then AP E is 

represented by the cocycle 'f/Jp (gij)' 
We write C· = GL(l, C). Then AO E is the trivial C·-bundle. For a 

G L (q, C)-bundle E the C·-bundle All E is represented by the U-cocycle 
{g~1)} where c11) (x) is the determinant of gil (x) for all x E U i (\ UI. 
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The definitions in this section carry over immediately for G L (q. R)
and G L + (q. R )-bundles. 

3.7. In the case q = 1 the group GL(I. C) = C· is the multiplicative 
group of non-zero complex numbers. The tensor product E ® E' of two 
C·-bundles E. E' is again a C·-bundle. If E. E' are represented by U-co
cycles {gil}' {gil} then E ® E' is represented by the U-cocycle {gil gil}' 
(The complex valued never zero functions gil. g;l defined on U, II Ul are 
continuous. differentiable, or holomorphic according to the case con
sidered.) 

The group operation in /f1(X. ct). HI (X. c:") and /f1(X. C!) in the 
sense of sheaf theory (see 2.5 and 2.6) is therefore the tensor product. 
If E is represented by {gil} then the inverse E-1 is the C·-bundle re
presented by {gr;l}. In fact E-I = E· so that E ® E· = 1. 

3.S. We collect here some further remarks about the C·-bundles 
considered in 2.5. If X is paracompact there is an exact cohomology 
sequence 

4' 
•.. ~ /f1(X. C,) ~ /f1(X. ct) ....!. HI(X. Z) -+ HI (X; C,) -+ •••• 

By 2.11 the sheaf C, is fine and the groups /f1 (X. C,) and HI (X. C,) 
are zero. Therefore 15~ is an isomorphism between the group of continuous 
C·-bundles over X and the second integer cohomology group of X. 

If X is a differentiable manifold there is again an exact sequence 

,,' 
-+ HI (X. C.,) -+ /f1(X. C:) ....!. H8(X. Z) -+ HI(X. C.,) . 

By 2.11 the sheaf CII is fine and therefore 15~ is an isomorphism between 
the group of differentiable C·-bundles and HI (X. Z). It then follows that 
the natural homomorphism 

/f1 (X. q) -+ HI (X. ct) 
of 3.1 (1) is an isomorphism. 

If X is a complex manifold there is an exact sequence 

-+ HI (X. C"') -+ HI (X. C!) ~ H8(X. Z) -+ HI (X. C .. ) . 

This sequence is discussed further in 15.9. 

§ 4. Characteristic classes 

Important special cases of the reduction of the structure group of 
a fibre bundle are discussed in 4.1. The definition of CHERN classes of a 
continuous U (q)-bundle in 4.2 depends on a fundamental theorem of 
BOREL [2] on the cohomology of classifying spaces. The PONTRJAGIN 
classes of a continuous 0 (q)-bundle are defined in 4.5. 
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4.1. a). The following notations are used in addition to those of 0.9. 
Let Lr be the r-dimensionallinear subspace of C" defined (with respect 
to the coordinates %1' %.' ••• , %,,) by %r+1 = %r+ 8 = ... = %" = O. The 
invertible q X q matrices which map Lr to itself form a subgroup 
GL(r, q - r; C) of GL(q, C). Matrices A E GL(r, q - r; C) have the form 

(AI B) 
A = OA" 

where A' E GL(r, C), A" E GL(q - r, C) and B is an arbitrary complex 
matrix with r rows and q - r columns. 

The subgroup GL(r, q - r; R) of GL(q, R) is defined similarly. 
Matrices A E G L (r, q - r; R) have the above form with A 'EG L (r, R), 
A" E G L (q - r, R) and B an arbitrary real r X (q - r) matrix. Let 
GL+(r, q - r; R) be the subgroup of those A E GL(r, q - r; R) with 
A 'EG L + (r, R) and A" E G L + (q - r, R). 

~(r, q - r; C) = GL(q, C}/GL(r, q - r; C) = U(q)/U(r) X U(q - r) 

is the GRASSMANN manifold of r-dimensional linear subspaces of C", 
Similarly the real GRASSMANN manifolds 

~(r, q - r; R) = GL(q, R)/GL(r, q - r; R) = o (q)/O(r) X O(q - r) 

~+ (r, q - r; R) = GL+(q, R)/GL+(r, q - r; R) = SO (q)/SO (r) X SO(q- r) 

represent the r-dimensionallinear subspaces of Rq and the r-dimensional 
oriented linear subspaces of R" respectively. 

The invertible q X q complex matrices which map Lr to itself for 
each r form a subgroup LI(q, C) of GL(q, C). Clearly LI(q, C) is the sub
group of matrices in GL(q, C) which are triangular (all coefficients below 
the diagonal are zero). 

The group T" = LI (q, C) (\ U (q) of unitary diagonal matrices is a 
q-dimensional torus. F(q) = GL(q, C)/LI(q, C) = U(q)/Ta is the manifold 
of "flags" in Ca' Each such flag is a sequence 0 = EoC El C ••• C Ea = Ca 
of linear subspaces (dimE,. = k) of Ca' Note that these descriptions of the 
GRASSMANN manifolds and the flag manifold refer to linear subspaces 
(i. e. subspace through the origin of Ca). 

4.1. b). Certain results on fibre bundles over a topological sp,ace X 
depend on the assumption that X is paracompact (see 2.8). 

Let I denote the unit interval 0 ~ t ~ 1. Two continuous maps 
10,/1: X-+- Yare homotopic if there exists a continuous map F : X x I-+- Y 
such that F(x, 0) = lo(x) and F(x, 1) = 11 (x) for all xE X. A cell is a 
space homeomorphic to RN for some N. 

I) Let X be a paracompact space, W a continuous fibre bundle over a 
space Y, and 10' '1: X-+- Y homotopic maps. Then the induced bundles 
I~ W, It W (see 3.3) are isomorphic. 
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Proofs of I) can be found in DOLD [3J. 7.10; in HOLMANN [IJ. VI. 2.3; 
in CARTAN [IJ, Exp. VIII. for X locally compact and paracompact; 
in STEENROD [IJ. 11.5. for X locally compact with a countable basis; 
and in ATIYAH-BoTT [IJ. Prop. 1.3. for X compact and W a vector 
bundle. 

II) Let X be a paracompact space and A a closed subspace (possibly 
empty) 01 x. II W is a fibre bundle over X with fibre a cell then every 
section s 01 W over A can be extended to a section over X. 

If it is assumed that the section s can already be extended to an open 
neighbourhood of A (which is the case in most applications) then II) 
is a special case of a theorem of DOLD [3J. 2.8. Other proofs can be found 
in HOLMANN [IJ. VI. 3.1; in CARTAN [IJ. Exp. VIII. for X locally 
compact and paracompact; in STEENROD [IJ. 12.2. for X normal with a 
countable basis; and in ATiYAH-BoTT [IJ. Lemma 1.1. for Wa vector 
bundle. 

Now let G be a real LIE group and GO a closed (LIE) subgroup for 
which GIGo is a cell. The embedding GO C G induces [3.1 (2) J a map 

Hl(X. G~) -+ Hl(X. GJ . (I) 

III) II X is paracompact the map (I) is bijective. 
Proof (STEENROD [IJ. 12.7): By 3.4.2 and 3.4.5 the section extension 

property II) implies that every fibre bundle over X with structure 
group G is isomorphic to a fibre bundle W with structure group GO. 
Therefore (I) is surjective. Now suppose that W. W' are fibre bundles 
over X with structure group GO which are isomorphic as bundles with 
structure group G. There is an open covering {Ui}iEJ of X such that W. 
W' are given by coordinate transformations gij: Ut t\ Us -+ GO. 
g;j: Ui t\ Uj -+ GO and. for some continuous functions hi: Uj -+ G. 

g;j = hjl gij hj in Ut t\ Uj for all i.j E J . 

Now let I be the unit interval 0 ~ t ~ I. and U? U: the open sets in 
X X I defined by 

U?={(x.t)EXx I; xE Ui • 0 ~ t< I}. 

Ul = {(x. t) E Xx I; xE Ui • 0 < t ~ I}. 

Construct a fibre bundle tV over X X I with structure group G and 
coordinate transformations 

g?7: U? t\ U? -+ GO 

gn : Ul t\ U l -+ GO 

g?}: U?t\ Ul-+G 

byt;?(x. t) = g;j(x). g1! (x, t) = gij(X), g?l (x. t) = hi (x) g;s(x) = gij(X) hj(x). 
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Then W has structure group G, reduced to GO over the closed set 
A = Xx {O} v X x {I} of Xx I. By 3.4.5, and II) applied to the para
compact space X X I and the closed subspace A, the fibre bundle 'W is 
isomorphic to a fibre bundle with structure group GO whose restriction 
to Xx {O}, Xx {I} is W', W. Consider the maps 10' '1: X ~ Xx I 
with lo(x) = x x {O}, h (x) = x x {I}. By I), W is isomorphic to W'. There
fore (1) is injective and the proof of III) is complete. 

If X is a differentiable manifold then X is paracompact (2.8.2). 
Let G be a real LIE group and GO a closed (LIE) subgroup for which GIGO 
is a cell. There is [3.1 (1), (2)] a commutative diagram of maps 

1f1(X, Gg) ~ HI (X, Gil) 

! 1 (1*) 

HI (X, GrJ ~ 1f1(X, Ge} • 

IV) Each map in (1*) is bijective. 
Proof: The lower horizontal arrow is a bijective map by III). 

A direct proof that the vertical arrows are bijective maps is given in 
HOLMANN [1], VI. 1.1. 

When GO is a compact subgroup of G an alternative proof that the 
arrows are bijective map" can be given using the STEENROD approxima
tion theorem (every continuous section 01 a differentiable fibre bundle 
over X can be approximated arbitrarily closely by a differentiable section, 
STEENROD [1],6.7) and the classification theorem for fibre bundles with 
structure group GO (for references see the bibliographical note to Chapter 
One). The general case then follows by application of the theorem that 
the quotient space of a connected LIE group modulo a maximal compact 
subgroup is a cell (see STEENROD [1], 12.14). 

Properties III) and IV) allow the sets in (I) and (1 *) to be identified 
in a natural way. They can be applied in particular for 

GO = U(q) , G = GL(q, C) 
GO = U(r) x U(q - r), G = GL(r, q - r; C) or GL(r, C) X GL(q - r, C) 
GO = TI , G = LI (q, C) or G = C* x .•. X C* q times 
GO = O(q) , G = GL(q, R) 
GO = SO(q) , G = GL+(q, R) 
GO= O(r) X O(q-r), G=GL(r,q-r;R) or GL(r,R)xGL(q-r,R) 
GO = SO(r) x SO(q - r), G = GL+(r, q - r; R) 

or G L + (r, R) X G L + (q - r, R) . 

4.1. c). The following results hold in the continuous, differentiable 
and complex analytic cases. 

Let h: GL(r, q - r; C) -+ GL(r, C) X GL(q - r, C) be the homo
morphism defined by h(A) = A'x A" [see 4.1. a)]. The kernel of h 
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consists of matrices of the form (~ ~), where B is a matrix with r 

rows and q - r columns, and can therefore be identified with a complex 
vector space of dimension r(q - 1'). This gives an exact sequence 

" 0-+ Cr(r-r) -+ GL(1', q - 1'; C) -+ GL(1', C) X GL(q - 1', C) -+ O. (2) 

By 3.1 (2) the homomorphism h associates, to each G L (1', q - 1'; C)
bundle E a GL(r, C) X GL(q - 1', C)-bundle: that is, a pair W, E") 
where E' is a G L (1', C)-bundle, called a subbundle of E, and E" is a 
G L(q - r, C)-bundle, called a quotient bundle of E. 

Convention: The statement "the GL(q, C)-bundle E has subbundle E' 
and quotient bundle E"" means that there exists a GL(1', q - 1'; C)-bundle 
which is mapped to E by the embedding GL(1', q - 1'; C) c GL(q, C) and 
which has subbundle E' and quotient bundle E". 

Let ep,,: if (q, C) -+ C· be the homomorphism which picks out the 
k-th diagonal coefficient au of the triangular matrix A E if (q, C). 
By 3.1 (2) the homomorphism ep" associates to each LI (q, C)-bundle E 
a C·-bundle E". The ordered set EI , Ea, ••. , Eq is the set of diagonal 
C·-bundles of E. 

Convention: The statement "the GL(q, C)-bundle E has diagonal 
C·-bundles EI , .•. , Eq" means that there exists a LI (q, C)-bundle which is 
mapped to E by the embedding LI (q, C) c G L (q, C) and whose ordered set 
of diagonal C·-bundles is EI , ... , Eq • 

Theorem 4.1.1. Suppose that the GL(q, C)-bundle e has diagonal 
C·-bundles El> ... , Eq and that the GL(q', C)-bundle E' has diagonal 
C·-bundles E~, ... , E;'. Then 

E· "as q diagonal C·-bundles Eql, ... , Ell, 
E ED E' has q + q' diagonal C·-bundles El> ... , Eq , Ei, ... , E;', 
E ® f has q q' diagonal C·-bundles E. ® Ej, 
AI> E has (!) diagonal C·-bundles E' I ® •.. ® E._ (1 ~ i l < ... < il> ~ q). 

Proof: Apply 3.6. c) and 3.1 (2·). 
4.1. d). The following discussion is again valid in the continuous, 

differentiable and complex analytic cases. 
Let W be a vector bundle (fibre Cq ) over X and let E be the principal 

bundle [fibre GL(q, C)] of isomorphisms from CII to W constructed in 
3.5. By Theorem 3.4.4 there is a fibre bundle [r)W = EJGL(1', q - 1'; C) 
over X with fibre the GRASSMANN manifold (D(1', q - 1'; C). The fibre 
[r)Ws is the GRASSMANN manifold of 1'-dimensional subspaces of the 
complex vector space Ws. The fibre bundles W, E, [r)W are all associated 
to the same GL(q, C)-bundle E. 

Now suppose that [r)W has a section s. Then s associates to each 
xE X a r-dimensional linear subspace W; of Ws which depends con-
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tinuously (or differentiably. or complex analytically) on x. By Theorem 
3.4.5 the section s determines a G L (r. q - r; C)-bundle with subbundle E' 
and quotient bundle E". The union of all the W; is a vector bundle W' 
over X which is associated to the G L (r. C)-bundle E'. The union of all the 
W~ = W s/W; is a vector bundle W" over X which is associated to the 
G L (q - r. C)-bundle f'. 

Remark 1: Every point xE X has an open neighbourhood U over 
which W is isomorphic to the product U X C~. The isomorphism can be 
chosen so that W' is defined in U X C~ by the equations %r+l = ... = %~ = O. 
Here C~ is the vector space of q-ples %1' •••• %~ and the form of the iso
morphism follows from Theorem 3.4.5. 

Let W. W" be vector bundles over X. A homomorphism W ~ W" is a 
continuous (or differentiable, or holomorphic) map from W to W which 
maps each fibre W s linearly to W s' A sequence of vector bundles and 
homomorphisms 

o ~ W' -+ W -+ W" -+ 0 (3) 

is exact if for each x E X the corresponding sequence 

o ~ W; -> W s ~ W;' ~ 0 (3*) 

is exact. In this case we write W" .. W/W' and call W' a subbundle. 
W" a quotient bundle. of W. 

Let W be a vector bundle (fibre C~) over X. A section s of the fibre 
bundle [rjW defines in a natural wayan exact sequence (3) with a sub
bundle W' (fibre Cr) and a quotient bundle W" (fibre C~-r)' Conversely 
any such exact sequence determines a section of [rjW. If W', Wand W" 
are associated to the GL(r, C)-bundle E', the GL(q. C)-bundle E and the 
GL(q - r. C)-bundle ;" respectively then there exists an exact sequence 
(3) if and only if E has subbundle ;' and quotient bundle ;". 

Remark 2: By Remark 1 an exact sequence (3) satisfies the condition: 
every point x E X has an open neighbourhood U over which W', W and W" 
are isomorphic to U X Cr, U X C~ and U X C~-r respectively and over 
which the exact sequence (3) corresponds to the exact sequence 

o ~ C,. ~ C,. ED C~_,. ~ C<I-r -+ 0 . 

The proofs of the following theorems are left partly to the reader 
(see 3.6): 

Theorem 4.1.2. Consider an exact sequence 

o -+ W' -+ W -+ W" -+ 0 (3) 

01 vector bundles over X, and let W be another vector bundle over X. Then 
there are exact sequences 

o ~ Hom{W", W') -+ Hom{W", W) ~ Hom(W". W") -+ 0 (4) 

0-+ W' ® W" -> W ® W" -+ W" ® W" ~ 0 (5) 
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obtained in a natural way Irom (3). In addition there is an exact sequence 
obtained by "dualising" (3) 

0-'>- (W")* -'>- W* -'>- (W')* -'>- 0 . (6) 

Theorem 4.1.3. An exact sequence 

0-'>- F -'>- W -'>- W" -'>- 0 

01 vector bundles over X with F a line bundle determines in a natural way 
an exact sequence 

0-)- ).1>-1 W" ® F -'>- ).1> W -'>- ).1> W" -+ 0 . (7) 

Proof: There are natural homomorphisms .V W _)-).1> W" and 
AI>-1 W ® F -'>- ).1> W. The latter is zero on the kernel of the natural homo
morphism from A/-1 W ® F onto ).1>-1 W" ® F, and therefore induces a 
homomorphism ).1>-1 W" ® F -+ ).1> W. This defines the homomorphisms 
in (7) in a natural way. It is easy to check that (7) is exact. 

By dualising the above theorem one obtains 

Theorem 4.1.3*. An exact sequence 

o -'>- W' -+ W -+ F -+ 0 

01 vector bundles over X with F a line bundle determines in a natural way 
an exact sequence 

o -+ .V W' -+ AI> W -+ AI>-1 W' ® F -+ 0 . (7*) 

4.1. e). The following results are once again valid in the continuous, 
differentiable and complex analytic cases. 

We consider the situation discussed at the beginning of 4.1. d) 
and construct from the vector bundle W (fibre Cq) a fibre bundle 
... w = E/LJ (q, C) over X with structure group G L (q, C) and fibre the flag 
manifold 

F(q) = GL(q, C)/LJ(q, C). 

The fibre ... w,. is the manifold of flags in the complex vector space W,.. 
The fibre bundles Wand ... w are associated to the same G L (q, C)
bundle ~. 

Now suppose that .dW has a section s. Then s associates to each 
x E X a flag s (x) in W~ which depends continuously (or differentiably, or 
complex analytically) on x. The flag s (x) is an increasing sequence 
"Lo C "L1 C ... C "Lq = W" of subspaces of W" with dim "Lr = r [see 
4.1. a)]. For each r the union U "Lr is by 4.1. d) a vector bundle WI,) 

"EX 
over X with fibre Cr. There are exact sequences 

0-+ W(r) -'>- W(TH) -+ Ar+! -+ 0 



56 Chapter I. Preparatory material 

with Ar a line bundle and Al = W b ). We call Al, ... , Aq the diagonal 
line bundles determined by the section s. By 3.4.5 the section s determines 
a if (q, C)-bundle which is mapped to E by the embedding if (q, C) C 
C GL(q, C). The line bundles AI> ... , Aq are associated to the diagonal 
C·-bundles of this if (q, C)-bundle. 

Remar k: Every point x E X has an open neighbourhood U over which W 
is isomorphic to the product U X Cq and over which W(r) is defined in U X Cq 

by zr+l = ... = Zq = 0 [see 3.4.5 and 4.1. d)]. 
4.1. f). The following two theorems hold only in the continuous and 

differentiable cases. It is assumed that X is paracompact (in the dif
ferentiable case this is no restriction, since every differentiable manifold 
is paracompact by 2.8.2). 

Theorem 4.1.4. II the GL(q. C)-bundle E over X has the GL(r. C)
bundle f as subbundle and the GL(q - r. C)-bundle f' as quotient bundle 
then E is equal to the WHITNEY sum 01 E' and f': 

E = E' ED E" . 

Theorem 4.1.5. II the GL(q, C)-bundle E over X has diagonal 
C·-bundles E1, E2 • •••• Eq then 

E = El ED E2 ED ••• ED Eq . 

Proofs: Both theorems follow from properties III) and IV) of4.1 b). 
The set of GL(r. q - r; C)-bundles can be identified with the set of 
U (r) xU (q - r)-bundles. and hence with the set of G L(r. C) X G L(q - r, C)
bundles. This proves 4.1.4. The set of if (q. C)-bundles can be identified 
with the set of Tq-bundle<; and hence with the set of C· X C· X ••• X C·
bundles (q factors). This proves 4.1.5. 

Remark: The following alternative proof makes it clearer why 
Theorems 4.1.4 and 4.1.5 are false in the complex analytic case (ATIYAH 

[3]). Consider an exact sequence (3) of continuous, or differentiable, or 
complex analytic vector bundles over X. The exact sequence (4), with 
'W = W", defines a corresponding exact sequence of sheaves of germs of 
local sections (see 3.5 and 16.1). Denote the corresponding cohomology 
exact sequence by 

HO(X, Hom (W", W') -+ HO(X, Hom (W", W)-+ 

-+ HO(X, Hom (W", W,,»..1. Hl(X, Hom (W", W'). 

The identity homomorphism W" -+ W" defines an element IE HO(X, 
Hom (W", W"» and hence an element t5~(I)EHl(X,Hom(W", W')). 
The exactness shows that there is a splitting homomorphism W" - W 
of (3) if and only if t5~ (J) = O. Therefore W is isomorphic to W' ED W" if 
t5~ (J) = O. In the continuous and differentiable cases the sheaves 
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<t(Hom(W", W'» and ~(Hom(W", W'» defined in 3.5 are fine and 
therefore Hl(X, Hom (W", W'» = O. This proves 4.1.4. Repeated 
application of the same result proves Theorem 4.1.5. 

4.1. g). The result., of 4.1 d), together with Theorem 4.1.4, also hold 
in the real case and are summarised in 

Theorem 4.1.6. Let E be a GL(q, R)-bundle over X and W an as
sociated vector bundle with fibre Rq. Consider the principal bundle E (fibre 
GL(q, R») 01 isomorphisms from Rq to W. The fibre bundle [rlW = 
EIGL(r, q - r; R) has fibre [rlWs over xE X the GRASSMANN manilold 01 
(unoriented) linear subspaces 01 W s. II [rl W has a section s then the union 01 
subspaces s(x) 01 Ws is a vector bundle W' over X associated to a GL(r, R)
bundle E'. The union 01 the W sis (x) is a vector bundle WIt over X associated 
to a GL(q - r, R)-bundle E". Moreover E is equal to the WHITNEY sum 
E' ED E"; in other words W is isomorphic to W' ED W". 

The theorem remains true if throughout G L is replaced by G L + and 
unoriented is replaced by oriented. It is also true in the differentiable 
case. 

4.2. In this section we define the CHERN cohomology classes of a 
continuous U (q)-bundle over an "admissible" space. A space X will be 
called admissible if it is locally compact, the union of a countable number 
of compact subsets, and finite dimensional. The first two conditions 
imply (2.8.2) that X is paracompact. In the third condition we use the 
following definition of dimension: the space X is 01 dimension ;;:;;; n if 
every open covering U of X has a refinement ~ such that each point of X 
lies in at most n + 1 open sets of~. Under this definition a n-dimensional 
differentiable manifold (see 2.5) is of dimension n. In the sequel it will be 
assumed that all bundles considered are defined over admissible spaces. 

The CHERN classes will be defined as integral cohomology classes 
of X. Unless otherwise stated the cohomology groups of X with co
efficients in an additive group A are to be understood as the cohomology 
groups of X with coefficients in the constant sheaf A [see 2.5, Examplel)]. 
Then Hi (X, A) is the i-th CEeH cohomology group (with arbitrary 
supports) of X with coefficients in A. The direct sum H*(X, A) = 

E Hi (X, A) is a graded ring with respect to cup product if A is a com-
i 

mutative ring. The cohomology groups of X with coefficients in a sheaf e 
can also be defined by "alternating cochains" (SERRE [2]) and hence 
Hi (X, e) = 0 for i> n = dimX. In particular Hi (X, A) = 0 for i> n. 
For X a locally finite polyhedron, and in particular for X a differentiable 
manifold, Hi (X, A) is naturally isomorphic to the corresponding simpli
cial cohomology group (ElLENBERG-STEENROD [I], p. 250). 

The unitary group U (N) = 1 X U (N) is a normal subgroup of U (q) X 

X U (N). Therefore U (q + N)/U (N) is a principal bundle with structure 
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group U(q) over the GRASSMANN manifold ~(q. N; C). The homogeneous 
space U (q + N)/U (N) is the STIEFEL manifold of unitary-orthogonal 
q-frames at the origin of C.+N. The homotopy groups ni(U (q + N)/U (N» 
are zero for 1 ;:;;; i ;:;;; 2N (STEENROD [1]. 25.7). The fibre bundle 
U (q + N)/U (N) is associated to a U (q)-bundle over ~ (q. N; C) which 
is called the universal U (q)-bundle. 

Let X be an admissible space with dimX ;:;;; 2N. Then the classifica
tion theorem (STEENROD rl]. 19.4; CARTAN [1]. Expose VIII) implies 
that the U (q)-bundles over X are in one-one correspondence with homo
topy classes of continuous maps from X to ~(q. N; C). More precisely. 
every U (q)-bundle over X can be induced by such a map from the 
universal U (q)-bundle. and two such maps are homotopic if and only if 
they induce the same U (q)-bundle. In order to define the CHERN classes 
of a U (q)-bundle over X it is sufficient to define the CHERN classes of the 
universal U(q)-bundle over ~(q. N; C). We adopt a slightly different 
approach which gives "axioms" for the CHERN classes together with a 
proof of uniqueness and existence. This approach avoids any confusion 
over signs (a comparison with other definition'; of CHERN classes can be 
found in BOREL-HIRZEBRUCH [1). 

Axioms for the CHERN classes: 
Axiom I: Few every continuous U (q)-bundle E over an admissible 

space X anti every integer i ~ 0 there is a CHERN class cdE) E JPi(X. Z). 
The class Co (E) = 1 is the unit element. 

co 

We write c(E) = E cdE). Since X is finite dimensional this is a 
i =:II: 0 

finite sum. The element c(E) of the cohomology ring H*(X. Z) is called 
the (total) CHERN class of E. A continuous map': Y - X induces a map 
'* : IP(X. U (q)c) -IP(Y. U (q)c) and a homomorphism 

'*: H*(X. Z) _ H*(Y. Z). 

Axiom II (Naturality): cU* E) = '* c(E). 
Axiom III: I, EI ••..• E. are continuous U(I)-bundles over X then 

c(El (9 ••• (9 E.) = c(E1) ••• c(E.) . 

Let (zo:···: z .. ) be homogeneous coordinates for the complex 
projective space p .. (C). The open sets U i defined by Zi 9= 0 form an open 
covering of P .. (C). Let 'YI .. be the C*-bundle defined by the cocycle 
{gil} = {Zs Zil}. Then 'YI .. is complex analytic but can be regarded as a conti
nuous C*-bundle and hence as a U(I)-bundle over p .. (C). The hyperplane 
Zo = O. with the induced orientation. is a P .. -1 (C) and represents a (2n -2)
dimensional integral homology class of p .. (C). The corresponding co
homology class [with respect to the natural orientation of P .. (C)) is 
denoted by h ... The class h" is a generator of HZ (P .. (C). Z) = Z. 
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Axiom IV (Normalisation): c(7] .. ) = 1 + h ... 

Remarks: Letj:P"-I(C)~P,,(C) be the embedding of a hyper
plane. Then j* h .. = h"-1 and j* 7] .. = 7]"-1 in agreement with Axiom II. 
We give two geometrical interpretations of the U (I)-bundle 7]... Let 
P" (C) be embedded in P ,,+1 (C) as the hyperplane Z"+1 = 0 and let 
Xo E P"+1 (C) be the point (0:"': 0: 1). There is a continuous map 
n: P"+1 (C) - {xo} ~ P,,(C) defined by n(zo: •.• : Z,,: z"+1) = (zo: ••• : z,,). 
Define a homeomorphism h,: n-1 (Ui ) ~ U,x C by 

h,(zo: .•. : Z,,: Z,,+I) = (zo: ... : Z,,: 0) X Z,,+1 • z, 
Then hi hrl«(zo: ... : Z,,: 0) X w) = (zo: ... : Z,,: 0) X ..:t... w . z, 

Therefore P,,+dc) - {xo} is a vector bundle Hover P,,(C) with structure 
group C* and fibre C which is associated to the U(I)-bundle 7]". 

The second interpretation involves the continuous map n: C,,+1 -
- {OJ ~ P,,(C) defined by n(zo • ...• z,,) = (zo: ... : z .. ). Define a homeo
morphism hi: n-1 (U,) ~ Uix C* by h;(zo •...• z .. ) = (zo:"': z,,) X 'i' 

,\ z, Then hi hrl«(zo: •.. : z,,) X w, = (zo: ..• : z .. ) X - w. 
ZJ 

Therefore C"+1 - {OJ is a principal bundle E with structure group C* 
which is associated to the U(l)-bundle 7];1. It follows that the principal 
bundle U(n + l)fU(n) over the GRASSMANN manifold <»(1, n; C) = P,,(C) 
is associated to 7];1. Thus 7];1 is the universal bundle over P,,(C). 

Convention: By 4.1. b) (I) the continuous U(q)-bundles over X 
are in one-one correspondence with the continuous G L (q, C)-bundles. 
Differentiable U (q)- and G L (q, C)-bundles and complex analytic 
GL(q. C)-bundles can all be regarded as continuous bundles [see 3.1 (I)]. 
Therefore CHERN classes are defined in these cases also. If W is a vector 
bundle over X with fibre Cv associated to a G L (q. C)-bundle E. we call 
c(E) the (total) CHERN class of Wand write c(W) = c(E). 

Uniqueness of CHERN classes: 

a) If E E Hl(X. U (I)J there is. for n sufficiently large, a continuous 
map I: X ~ P,,(C) such that E = 1* 7] ... By A.xioms II and IV. c(E) 
= 1* (I + h,,) is determined uniquely. In particular Ci (E) = 0 for i > 1. 

b) Now let EE Hl(X. U(q)J. Construct a fibre bundle Y E..!" X with 
fibre F (q) = U (q)/TII which is associated to E. The space Y E is again 
admissible. By 3.4.4 and 4.1.5 the U (q)-bundle (}* E is equal to the 
WHITNEY sum of q diagonal U(I)-bundles E1 , ••.• Ev over Y E whose 
CHERN classes C(Ei) = 1 + 'Yi. where 'YiE HI(YE' Z), are determined 
uniquely by a). Axioms II and III imply 

'I 

(}* c(E) = c((}* E) = II(I + 'Yi)' (8) .-1 
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A spectral sequence argument shows that e*: H*(X, Z) -, H*(Ye, Z) 
is a monomorphism (BOREL [2]; see also ROTHENBERG-STEENROD [1]). 
Therefore c (E) is determined uniquely. In particular we have shown that if 
E is a U (q)-bundle c, (E) = 0 for i> q. 

Remark: By the induction argument used later in 18.3 it is actually 
sufficient to know that e* : H* (X, Z) ~ H* (Y, Z) is a monomorphism 
when e: Y ~ X is a fibre bundle with fibre P"-l(C) associated to a 
U(q)-bundle (see GROTHENDIECK [4]). 

Existence of CHERN classes: 
The proof follows the same pattern as the proof of uniqueness. 

The CHERN classes of a U (I)-bundle E are defined by a). It must be proved 
(from the classification theorem and the first of the remarks after 
Axiom IV) that c(E) = '*(1 + h .. ) depends only on E and not on the 
choice of, and n. It is clear that c (E) satisfies Axiom II for U (I)-bundles E. 
The definition of c (E) for a U (q)-bundle E follows with the help of (8): 

Let E be a principal bundle with U (q) as fibre which is associated 

to E and let Ye = EjT". By 3.4.4 there is a T"-bundle i over Ye which is 
mapped to e* E by the embedding T"(U(q). We denote the diagonal 
U(I)-bundles of [ by E1, ••• , E" and write c(E.) = 1+" •. Since 
e*: H*(X, Z) ~ H*(Ye, Z) is a- monomorphism, c(E) can be defined 
by (8) once it is shown that the elementary symmetric functions (/1 in 
the ". lie in the image of e*. 

Let N be the normaliser of T = TQ in U (q). Thus N = {a E U (q); 
a-I T a = T}. It is known that NjT is a finite group (/) isomorphic to the 
group of permutations of q objects. Each element IX E (/) (represented by 
a EN) defines a fibre preserving homeomorphism Ii: Y e ~ Yeo With 
respect to a chart Vx (U(q)jT), where V is an open set of X, Ii is given 
by right translation: 

Ii (v X g T) = v X gaT = v X g T a for v E V, g E U (q), g T E U (q)jT . 

Since Ii i.s fibre preserving it defines an automorphism Ii* of the ring 
H*(Y{, Z) whose restriction to e* H*(X, Z) is the identity. In addition 
there is an outer automorphism t -+ a-I t a of T which depends only on IX 

and induces an automorphism ac# of HI (Ye• Te) [see 3.1 (2)]. Since the 
outer automorphism is a permutation of the diagonal coefficients of the 
diagonal matrices tE T, the diagonal U(I)-bundles of ac# [ are obtained 

from Ell' . " Eq by the same permutation. It can be shown that ac# i 
= Ii* i (where Ii* is induced from Ii as in 3.3). Therefore Ii* permutes the 
diagonal U (I)-bundles E" and the cohomology automorphism Ii· permutes 
the "i [by Axiom II for U (I)-bundles which is already established]. In 
this way (/) acts as the full group of permutations of "1' ... , "q. A neces
sary condition for an element x E H* (Yel Z) to lie in e· H· (X, Z) is 
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that x remains invariant under all operations of tP. By a fundamental 
theorem of BOREL [2], which depends on a spectral sequence argument, 
the elementary symmetric functions (1/ in the 'Yi actually occur as images 
under e*. The above condition is therefore also sufficient. The CHERN 
classes of E can now be defined by (1/ = e* c;(E). Clearly they do not 
depend on the choice of E and do satisfy Axioms I, II and IV. 

It remains to prove Axiom III. Let E be a U (q)-bundle over X which 
is the WHITNEY sum of U (I)-bundles E:, ... , E; over X. Let Ei be the 
i-th diagonal U(I)-bundle of (. Then the fibre bundle Y e has a section 
s: X -+ Y e such that s· Ei = Ei for i = I, ... , q. Therefore 

f/ f/ 

c(E) = s· e* c(E) = s* II c(E,) = II c(Ei) . 
i= I i-I 

Remark: For the universal U(q)-bundle E the spaces X = G>(q, N; C) 
and Y e are triangulable. Therefore if classes c(E) are defined for conti
nuous U (q)-bundles over triangulable spaces X which satisfy Axioms 
I-IV these classes must agree with the CHERN classes. If X is triangul
able, characteristic classes Ci (E) E HI; (X, Z) can be defined for a U (q)
bundle E over X by obstruction theory (see STEENROD [I]). One con
structs a fibre bundle E/U (i - 1) associated to E with the STIEFEL 
manifold e"., = U (q)/U (i - I) of unitary (q - i + I)-frames in C" as 
fibre. The first non-zero homotopy group of e"., is n2i-de",i) which 
is infinite cyclic. This defines a first obstruction 

cdE) E H2i(X, nZi-l(e",i)) 

to the existence of a section of E/U (i - 1) over the 2i-dimensional 
skeleton of X. In order to represent ci(E) as an element of HSi(X, Z) it is 
necessary to choose an isomorphism between nSi-l (e". i) and Z. The 
generator of nZi-l (e". i) which will correspond to 1 E Z is defined as 
follows. Choose a fixed (q - i)-frame in C". The complementary subspace 
is a complex vector space Ci which is oriented. The sphere S·'-1 of unit 
vectors in Ci is therefore oriented. Each point of this sphere can be added 
to the fixed (q - i)-frame to define a (q - i + I)-frame in CII and hence 
a point of e".,. The map from the oriented S2/-1 to e",i defined in this 
way is the required generator of n ll i-l(e".,). This defines the charac
teristic classes of obstruction theory as elements of H2i (X. Z). A detailed 
discussion shows that they satisfy Axioms I-IV and hence agree with 
the CHERN classes. 

4.3. Axioms I. II. III determine the CHERN classes uniquely once 
c1 (E) is defined for E a U (1)- or C*-bundle (Axiom IV). In this section we 
assume that the base space X is admissible and give two alternative 
definitions for C1 (E). 
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Theorem 4.3.1. Let ~E W(X. ct) be a continuous C·-bundle over X. 
II «5~: HI (X. ct) -+ HI (X. Z) is the isomorphism defined in 3.8 then 
c1 (~) = «5~ (~). 

Proof: Since «5~ commutes with maps it is sufficient to prove the 
result «5~ (11,,) = h" for the bundle 11" of Axiom IV. For n ~ 2 the em
bedding j: P"-1 (C) -+ P,,(C) induces an isomorphism j.: H·(p .. (C). Z) ... 
... HI(P "-1 (C). Z). Since j* «5~ (11,,) = «5~ U· 1'/ .. ) and j* h" = h .. - 1 it is 
sufficient to prove that «5~ (1'/1) = ~ for the RIEMANN sphere SI = PI (C). 

The cohomology class hI is by definition dual to the homology class 
represented by a single point. In simplicial cohomology hI is therefore 
represented by a cochain which associates the value 1 to one 2-simplex 
(oriented by the natural orientation of SI) and the value 0 to all other 
2-simplexes. There is a natural identification between simplicial co
homology and CECH cohomology. S. can be regarded as a complex plane 
(closed by the point (0) parametrised by z = ZI/Z0' Triangulate S· as a 
tetrahedron so that z = 0 is a vertex and 00 is in the interior of the face 
opposite O. Name the other three vertices A. B. C in positive direction 
round the origin. The open stars So. SA. SB. Se of the vertices of the 
tetrahedron form an open covering of S· whose nerve is isomorphic to the 
tetrahedron. This isomorphism induces the natural identification between 
CECH and simplicial cohomology. The C·-bundle 111 can be defined by 
maps Irs from Sr (\ 5. to C·: 

lOA = lOB = loe = z; lAO = IBO = leo = Z-1; all other Ira = 1. 

,,~ (111) can by definition be represented by the cocycle 
I 

crst = 2ni (log/r.+ log/.t + logltr) 

where for each r. s we choose a branch log of the logarithm in the simply 
connected domain Sr (\ 55' For example choose 10gloA arbitrarily and 
choose log 'OB. logloo by analytic continuation of 10g/oA in a positive 
direction round the origin (loglAo = -log/GA •... ). For rand s both non
zero, log/rs = O. Therefore CoOA = 1. Crst = + 1. (- 1) for r. s, t an even, 
(odd) permutation of 0, C. A and Cr • t = 0 otherwise. But OCA is a 
positive ordering of a 2-simplex with respect to the natural orientation 
of SI. and therefore coOA represents the cohomology class ~. This com
pletes the proof of Theorem 4.3.1. 

Let ~ be a U(I)-bundle over an oriented compact manifold X. 
Consider an associated fibre bundle B ... X with fibre the unit disc 
Izl ~ 1, zE C. An element e'l.m~ E U(I) operates on B by z-+ e·"i~ z. 
The unit disc is oriented in a natural way. B is a manifold with boundary 
with an orientation induced from those of X and of the fibre. Let 5 
denote the boundary of B. Then S ... X is a fibre bundle with fibre 
SI which is associated to ~. Let s : X ... B - S be the embedding of the 
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manifold X as the zero section of B. Following THOM [1] consider the 
GYSIN homomorphism 

s.: H'{X, Z) ~ m:2{B - 5, Z), i 6; o. 
The second group is cohomology with compact supports. If Dx 

denotes the POINCARE isomorphism from the cohomology groups with 
compact supports to the homology groups of dual dimension in X, and 
D B-S denotes the corresponding isomorphism for cohomology and homo
logy with compact supports in B - 5, then s. (a) = DB~S(S. Dx{a)) for 
aE Hi {X, Z). Let IJ be the compact space obtained from B by collaps
ing 5 to a point. There is a natural isomorphism g. from Htp (B - 5, Z) 
to Hi{IJ, Z) forj > o. The bundle E over B is trivial over B - seX) and 
can therefore be regarded as a bundle (over IJ. In the above notations 
we have 

Theorem 4.3.2. Let 1 E HO{X, Z) be the unit element. Then, under 
the above assumptions, 

g. s. (l) = cl {() and s· s. (1) = Cl (E) . 

The second equation states that the CHERN class cl (~) is the restriction to s (X) 
of the cohomology class (compact supports) corresponding to the homology 
class (compact supports) of B - 5 given by the oriented submanifold seX). 

Proof: The second equation follows from the first. The definition 
given by THOM [1] shows immediately that s. commutes with maps. 
The first equation need therefore be proved only for the bundle 'YJ" over 
P,,(C). In this case (see the remarks after Axiom IV) IJ = P,,+dc), 
5 = sa"+1 and fi" = 'YJ"+1. The orientation of B induces the natural 
orientation on P"+l (C). Since X is the naturally oriented hyperplane 
P,,(C) of p .. +l(C) it follows that g·s.(I) = h"+l = cl('YJ,,+l) =cdfi .. ). 

Q.E.D. 
4.4. In this section we show how to calculate the CHERN classes of the 

bundles ~., ~ ED f, E ® E', Ai> E (see 3.6) from those of ~ and ~'. For this 
purpose we prove a lemma which allows all such calculations to be 
reduced to the case in which every bundle involved is a WHITNEY sum 
of U (I)-bundles. 

Lemma 4.4.1. Let ~i be a continuous U(qi)-bundle over an admissible 
space X (see 4.2) for a finite number of values i = 1, ... , N. There is an 
admissible space Y and a continuous map rp : Y ~ X such that 

I) rp.: H· (X, Z) ~ H* (Y, Z) is a monomorphism, 
II) p. ~i is a sum of U (I)-bundles for aU i = 1, ... , N. 
Proof: By repeated application of the construction in part b) 

of the proof of uniqueness of CHERN classes (4.2). 
Lemma 4.4.2. Let ~l' E. be two U (I)-bundles over an admissible 

space X. Then cl (El ® EI) = cl (~l) + cl (~II). 
Proof: By 3.7 and Theorem 4.3.1. 
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We adopt the following convention. Let ai. bi• Ci • ... (i = I. 2 •... ) 
be commutative indeterminates. We put a o = bo = Co = ... = 1 and 
consider formal factorisations 

k k ... m 

1: ai Xi = II (1 + ~i x). 1: b, Xi = II (1 + p; x). etc. 
<=0 ;=1 <=0 ;=1 

Every polynomial which is symmetric in each of the sets of variables 
~;. p;. Yi' ... can be written in a unique way as a polynomial in the 
elementary symmetric functions ai. bi• Ci• . .. . If particular values are 
substituted for ai' bi • Ci • ... then the polynomial takes a well defined 
value. In applications the particular values will always be even dimen
sional elements of a cohomology ring. 

Theorem 4.4.3. Let ~ be a U (q)-bundle and ~' a U (q')-bundle over an 
admissible space X. Consider formal factorisations 

q q q' q' 

1: Ci(~) Xi = II (1 + Yix). 1: Ci(~') Xi = II (1 + ~kX). 
<=0 i=1 <=0 k=1 

Then. subject to the above conventions. 

q q 

I) 1: Ci(~*) Xi = II (1 - Yi x). i. e. Ci(~*) = (_I)i c;(~). 
<=0 i= 1 

q+t q t 
II) 1: c;(~ E9 e') Xi = II (1 + Y; x) II (1 + ~k x). 

<=0 ;=1 k=1 
i. e. c(e E9 e') = cm c(f). 

qq' 

III)}; Ci(e®f)x'= II(I+(Y;+~k)~)' (I~j~q.I~k~q'). 
<=0 i.k 

IV) 1: Ci(A.P e) Xi = II(I + (Yi, + ... + Yip) x) 
< 

where the product is over all (;) combinations with 1 ~ jl < ... < j, ~ q. 

Proof: By Theorem 4.1.1. Lemma 4.4.2 and Axiom III of 4.2 the 
above formulae hold if e. f are sums of U (I)-bundles. Therefore by 
Lemma 4.4.1 they hold in the general case. 

Remark: Formula II) is the WHITNEY multiplication formula 
(also called the "duality formula"; see for instance CHERN [2]). Formula 
III) with q' = 1 implies a formula of KUNDERT (Ann. of Math. 54. 
215-246 (1951)). If e is a fixed U(q)-bundle over X. and f runs through 
the group of U (I)-bundles over X. then e ® e' runs through the set of all 
U (q)-bundles over X which are identical to e as PU (q)-bundles [PU (q) 
= projective unitary group]. Hence the CHERN classes of all these U (q)
bundles can be calculated. But this is precisely the content ot the formula 
of KUNDERT. 
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4.5. The PONTRJAGIN classes of a O(q) bundle ~ over an admissible 
space X (see 4.2) are defined in this section in terms of the CHERN classes 
of unitary bundles. By 4.1. b). IV) this defines also the PONTRJAGIN 
classes of G L (q. R)-bundles over X. If W is a vector bundle over X with 
fibre R" which is associated to E. the PONTRJAGIN classes of Ware by 
definition the PONTRJAGIN classes of E. 

We use the following commutative diagrams of embeddings 

U(q) _ O(2q) O(q) _ U(q) 

1 ! 1 1 (9) 
GL(q. C) - GL(2q. R). GL(q. R) - GL(q. C) . 

In the first diagram the horizontal arrows denote the embeddings 
obtained if every linear map of C(/ (coordinates Zl' •••• z(/) is regarded as a 
linear map of RIll (coordinates .%1' •••• .%21/) by writing z" = .%11/1-1 + i .%11/1. 

In the second diagram the horizontal arrows denote the embeddings 
obtained if every matrix with real coefficients is regarded as a matrix 
with complex coefficients. 

The second diagram of (9) defines a map VJ from If1(X. O(q)J to 
lf1(X. U(q)J [see 3.1 (2)]. If E is a o (q)-bundle over X we define 

00 

peE) = c(VJ(E)) = E ci(VJ(E))E H*(X. Z) and Pice) = (_I)i ca.(VJ(E)) • 
;=0 

It can be proved. by considering the classifying space of O(q). that 
2Cai+1(VJ(E» = 0 (BOREL [2]. ROTHENBERG-STEENROD [1]). The element 
Pi (E) E H"(X. Z) is called the i-th PONTRJAGIN class of E. The sum 

00 

pee) = E PiW is called the (total) PONTRJAGIN class of E. The proper
;-0 

ties of the CHERN classes imply immediately that 

I) Po(E) = 1. 
II) P (1* E) = /* p (E) lor any continuous map /: Y - X and 

o (q)-bundle E over X. 
III) P (E1 e E.) = P (E1) p (E.) for E1 E HI (X. 0 (q1)J and E. E 

If1(X. O(q.)J. where E1 e Ez is the WHITNEY sum of E1 and Ea. 
Remark: The PONTRJAGIN class peE) does not satisfy the multiplica

tion formula III). It is however true that 
peEl e E.) = P(E1) P(E.) modulo elements of order 2 in H*(X. Z) . 
The first diagram of (9) defines a map (! from Hl(X. U (q)J to 

If1(X. 0 (2q)J. If E is a U (q)-bundle over X then (! W is an 0 (2q)-bundle. 
Theorem 4.5.1. Let E be a U(q)-bundle over X. Then 

P«(!(E» = 1 - P1«(!CE) + Pa«(!(E» - Ps«(!CE) + ... 
= (1 + cdE) + c.(E) + ... ) (1 - cl(E) + clCE) - ••• ). 
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If the ci are regarded formally as elementary symmetric functions in the ri' 
then the Pi(e W) are the elementary symmetric functions in the 1'1 (see 1.3). 

Proof: Consider the composite embedding U(q) ~ O(2q) ~ U(2q). 
An element A E U (q) defines an element of U (2q) which, under a well 

known automorphism of U (2q) independent of A, is mapped to (~ ~). 
Since A is unitary the complex conjugate matrix A is equal to the 
transpose of the inverse of A. Therefore tp(eW) is equal to the WHITNEY 
sum of E and E* [see 3.1 (2*)]. The result now follows from the WHITNEY 
multiplicati~n formula (Theorem 4.4.3). 

Remark: If E is a O(q)-bundle the same argument implies that 
e(tp(E) = E $ E. If however E is oriented it is easy to check that the 
natural orientations on e(tp(E) and E $ E differ by a factor (-1)*0 (Q-l). 

4.6. Let X be a (not necessarily orientable) m-dimensional differen
tiable manifold [see 2.5, Example 3)]. Let 11 = {UihEI be an open 
covering of X such that each UI admits differentiable coordinates 
xii), ... , x~). The contravariant tangent G L (m, R)-bundle R() of X is the 
differentiable bundle represented by the 11-cocycle f = {f,;}, where 

( ih.(I)) Iii = ()~ll) : Ui (\ U j ~ GL(m, R) . (10) 

fii is the jacobian matrix of the coordinate transformation from U j to Ui' 
The bundle R() is an element of the cohomology set Hl(X, GL(m, R).,) 
and is called simply the tangent bundle of X. 

An admissible chart )t of X is a differentiable homeomorphism from 
an open set U" of X to an open set v.. of Rm. Differentiable coordinates 
are defined on U" by )t. In particular one can consider the open covering 
U = {U,,} .. E::K' where K is the set of all admissible charts of X, and the 
ll-cocycle I = {Iii} can be defined by (10). 

The cocycle I can be used to construct, by 3.2. a), a vector bundle R~ 
over X with structure group GL(m, R) and fibre Rm. R~ is the vector 
bundle of contravariant tangent vector'> of X. By 4.5 (9) the Iii can be 
regarded as maps from U i (\ Uj to GL(m, C). The cocycle t then defines 
a vector bundle R~C with fibre em called the complexification of R~' 

Definition: The PONTRJAGIN classes Pi (X) E H"(X, Z) of a dif
ferentiable manifold X are the PONTRJAGIN classes of the tangent bundle 
R() of X. 

An oriented m-dimensional differentiable manifold X can be covered 
by open sets Ui which admit a differentiable coordinate system xii), ... , 
x~) consistent with the orientation. (The orientation is associated with 
the ordering xii), ... , x~).) The maps Iii defined by (10) for such a covering 
give a cocycle 

Iii: Ui (\ U; ~ G L + (m, R) 

which represents the contravariant tangent G L + (m, R)-bundle of the 
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oriented manifold X. When regarded as a GL(m, R)-bundle this bundle 
coincides with R(J. 

Now assume that m = 2n is even and that X is again oriented. 
De fi nit ion: An almost complex structure on the oriented differentiable 

manifold X is a differentiable G L (n, C)-bundle (J over X which is mapped 
to the tangent GL+(m, R)-bundle over X by the embedding GL(1t, C)-+
-+- G L + (2 n, R). If an almost complex structure on the oriented manifold 
X exists and is specified then X is called an almost complex manifold with 
tangent GL(m, C)-bundle (J. The CHERN classes Ci(X) E B2i(X, Z) of X 
are defined to be the CHERN classes of (J. 

Note that an almost complex manifold is by definition oriented in 
a particular way. Definitions of almost complex structure in the literature 
vary slightly from that given here (e. g. STEENROD [1]). The above 
definition is sufficient for the purposes of the present work. Theorem 4.5.1 
implies immediately 

Theorem 4.6.1. The CHERN classes Ci of the almost complex manifold X 
are related to the PONTRJAGIN classes Pi of X (regarded as a differentiable 
manifold) by the equat£on 

00 00 00 

p= E (-I)iPi= ECi 1: (-1)ic;. 
i=O i=O ;=0 

4.7. Now let X be a complex manifold of complex dimension n 
[see 2.5, Example 4)]. An admissible chart" of X is a holomorphic 
homeomorphism from an open set U" of X to an open set V" of Cn • The 
chart" defines complex coordinates tt>, ... , z~,,> on U". Let Ii be the 
open covering {U,,}xEK' where K is the set of all admissible charts of X. 
The contravariant tangent G L (n, C)-bundle (J of X is the complex 
analytic bundle represented by the ll-cocycle f = {fill, where 

(aZUl) 
ft;= az~j) : Uill U;-+- GL(n,C). 

As in 4.6 (10), fi; is the jacobian matrix of the holomorphic coordinate 
transformation from U; to Ui . 

By 3.2. a) the cocycle f can be used to construct a vector bundle c:t 
over X with fibre Cn which is associated to (J. c:t is the (complex analytic) 
vector bundle of contravariant tangent vectors of X. Similarly the 
cocycle i = {id of conjugate matrices can be used to construct a (dif
ferentiable) vector bundle ~ over X with fibre Cn• The vector bundles 
dual to c:t and ~ [see 3.6. b)] are denoted by T and T. Here T is the 
(complex analytic) vector bundle of covariant tangent vectors of X. 
Note that?f and T are not complex analytic. 

The complex manifold X is oriented in a natural way (see the remark 
in 0.2). Therefore X can be regarded as an oriented differentiable manifold 
with an almost complex structure given by (J. 
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Definition: The CHERN classes Ci(X) E Hli(X, Z) of a complex 
manifold X are the CHERN classes of the tangent bundle 8 of X. 

For X regarded as a differentiable manifold the vector bundle R~C 
over X with fibre Can is defined as in 4.6. There are differentiable is0-
morphisms 

R~C =~$!£ 

R~t= T$ iF 
Ar R~t = E All T ® All T . 

fJ+,=r 

(11) 

(12) 

(13) 

Here All T is the (complex analytic) vector bundle of covariant p-vectors 
of X and A" iJi = liT. The sum in (13) is in the sense of WHITNEY sum. 

A differentiable section of the vector bundle A r R~t is a differential 
form of degree 'Y with differentiable complex valued coefficients. The 
WHITNEY sum (13) corresponds to the unique representation of such a 
form as a sum of forms of degree 'Y and type (P, q), where P, q $;; 0 and 
p + q = 'Y. 

Finally we mention the (complex analytic) principal tangent bundle 
of the complex manifold X. It is associated to the tangent GL(n, C)
bundle 8 of X and is constructed by the method of 3.5. The fibre of the 
principal tangent bundle at x E X is the set of all isomorphisms between 
the fixed vector space Cn and the complex vector space ~.¥ of contra
variant tangent vectors to X at x. 

4.8. Let X be a k-dimensional differentiable submanifold of an 
m-dimensional differentiable manifold Y. Then by definition X is a closed 
subset of Y with the property: each point xE X has an open neighbour
hood U in Y with differentiable coordinates "11 ".' •• '1 "m for which 
U r. X is given by the equations "HI = ... = "m = O. 

Let j: X -+ Y be the embedding and consider the contravariant 
tangent vector bundle R~ of Y. Let L be the associated fibre bundle 
over Y with fibre <»(k, m - k; R) constructed in 4.1. g). The field of 
tangent k-planes to X defines a differentiable section ofj* L. Therefore by 
Theorem 4.1.6 the restrictionj* R8(Y) to X of the tangent bundle R8(Y) 
of Y admits a subbundle and quotient bundle in a natural way. The 
subbundle is precisely the tangent bundle R8 (X) of X. The quotient 
bundle R" is called the normal bundle of X in Y. By Theorem 4.1.4 

(14) 

The corresponding result holds if X and Yare oriented. The normal 
bundle is then a G L + (m - k, R)-bundle. In the special case m - k = 2 
the normal bundle can be regarded as aU (I)-bundle by applying 4.1. b)IV) 
to the embedding U (I) = SO (2) C G L + (2, R) [see 4.5 (9)]. The CHERN 

class of the normal bundle R" is therefore defined. 
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Theorem 4.8.1. Letj: X ...... Y be the embedding of an oriented compact 
(m - 2)-dimensional ditferentiable manifold X in an oriented compact 
m-dimensional ditferentiable manifold Y. Let hE HI(Y, Z) be the cohomo
logy class defined, with respect to the given orientations, by the (m - 2)
dimensional homology class represented by X. Let R" be the normal bundle 
of X in Y. Then 

cdR") = j* h . (15) 
Proof: By4.1.b) IV) applied to the embeddingSO(m)cGL+(m, R), 

the tangent G L + (m, R)-bundle of Y can be regarded as a SO (m)-bundle. 
Hence Y admits a RIEMANN metric. This metric can be used to construct 
a closed tubular neighbourhood B of X in Y. B is a fibre bundle with 
fibre the unit disc Izl ~ 1, z E C, which is associated to the U (I)-bundle R" 

(THOM [2]). Let B be the compact space obtained from B by collapsing 
the boundary S of B to a point. Equivalently B is obtained from Y by 
collapsing the closed subset Y - (B - S) to a point. The map r: Y ...... B 
defines a cohomology homomorphism r* : H* (B, Z) ...... H* (Y, Z). Then, 
in the notation of Theorem 4.3.2. 

j* h = j* r* g* s* (1) = s* s* (1) = c1 (R") • 

4.9. Let X = X" be a complex submanifold of the complex manifold 
Y = Y" (k ~ n). Then by definition X is a closed subset of Y. Each point 
x E X has an open neighbourhood U in Y with complex coordinates 
Zl' z.' ... , z" for which U f"'I X is given by the equations z"+l = ..• 

= z" = O. Let j : X ...... Y be the embedding and consider the tangent 
GL(n. C)-bundle O(Y) of Y. As in 4.8 [see the discussion in 4.1. d)) the 
restrictionj* O(Y) of O(Y) to X admits a subbundle and quotient bundle. 
The subbundle is the tangent bundle 0 (X) of X. The quotient bundle 
" is the (complex analytic) normal bundle of X in Y. If all the bundles 
are regarded as differentiable bundles thenj* O(Y) is the WHITNEY sum 
of 0 (X) and ". 

Now consider the special case in which X = X"-l is a complex 
submanifold of Y = Y" of complex codimension 1. In this case X is 
called a non-singular divisor of Y. There is a covering of Y by open sets Ui· 

such that X f"'I Ui is given by an equation fi = O. Here fi is a holomorphic 
function defined on Ui with non-zero partial derivatives at each point 
y E Ui f"'I X. The functions fii = fi tTl are holomorphic and never zero 
on Ui 1\ U j • The cocycle {fii} determines a complex analytic C*-bundle 
[X] over Y which depends only on the divisor X. For example the bundle 
'YJ" of 4.2 is determined by the non-singular divisor P,,-dc) of P,,(C). 
Clearly j* [X] is the (complex analytic) normal bundle of X in Y. 

Theorem 4.9.1. Let X be a non-singular divisor of the compact 
complex manifold Y, and let h E HI (Y, Z) be the cohomology class represent
ed by the oriented (2n - 2)-cycle X. Then c1 ([X)) = h. 
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Proof: We use the notations of the proof of Theorem 4.8.1. The 
bundle [X] is trivial over Y - X and therefore there is a bundle (g] over 
f) such that [X] = r* [g]. As in Theorem 4.3.2. 

c1 ([X]) = r* c1 ([X]} = r*Cg* s*(I)) = h. 

Finally let X = X"" be an oriented differentiable submanifold of 
an almost complex manifold Y = Y" (2k < 2n) and suppose that an 
almost complex structure on X is given. Let j : X ->- Y be the embedding. 

De fi nit ion: X is an almost complex suhmanifold of Y if there 
exists a differentiable G L (n - k. C)-bundle v over X such that 

J) v is mapped to the normal bundle of X in Y (see 4.8) by the 
embedding GL(n - k. C) ->- GL+(2n - 2k R). 

II) j* O(Y) = o (X) E9 v. 
This definition of almost complex submanifold is somewhat crude 

but sufficient for our purposes. By 4.8. condition J) is always satisfied 
in the case n - k = 1. Clearly a complex submanifold X of a complex 
manifold Y is also an almost complex submanifold of Y. 

4.10. The definition of the CHERN classes by obstruction theory 
referred to at the end of 4.2 gives the following theorem (STEENRon(I]. 
39.7 and 41.8). Another proof is outlined in 4.11. 

Theorem 4.10.1. Let V" be a compact almost complex manifold and 
c"E H2n(V". Z) the n-th CHERN class of V". The natural orientation of V" 
defines an integer Cn (V .. ] (see 0.3) which is equal to the EULER-POINCARE 
characteristic of V". 

The EULER-POINCARE characteristic of P 11 (C) is equal to n + 1. 
This fact can be used to calculate the CHERN and PONTRJAGIN classes 
ofP,,(C). 

Theorem 4.10.2. Let h" E HII(P" (C). Z) be the generator defined in 4.2. 

The CHERN class of the complex manifold P,.. (C) is (I + h,,}n+1 = f (11 -: 1) h~. 
1= 0 t 

The PONTRJAGIN class of the ditferentiahle manifold P 11 (C) is (1 + h~)n+l. 
Proot: By Theorem 4.10.1 the formula for the CHERN class is correct 

for n = 1. Now suppose the formula is proved for P ,,-1 (C) and consider 
the embedding j:p .. - 1 (C}->-p .. (C). By Theorem 4.9.1. the WHITNEY 
multiplication formula. and the fact thatj* h" = h"'-1 (see 4.2}.j* c(P,,(C)) 
= c(P .. -dc)). j*(1 + h,,) =j*(1 + hn}n+1. But j*:H2i(P,,(C). Z)->
Hli(P .. _1 (C). Z) is an isomorphism for i ~ n - I, and therefore 

c(P" (C}) = (I + hn)n+1 modulo H2n(P .. (C). Z). 

By Theorem 4.10.1. cnCP,..(C)) = (n + I) h:. This completes the proof by 
induction of the formula for the CHERN class. The formula for the 
PONTRJAGIN class follows immediately from Theorem 4.6.1. 
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4.11. Let X be a compact oriented manifold and E a SO (q)-bundle 
over X. The construction of Theorem 4.3.2 can be used to define the 
EULER class e(E) E Hv(X, Z) of E. Let B -- X be a fibre bundle associated 

to E with the disc DV = {(Xl' ... , Xv) E RV; .1: xl ~ I} as fibre. B is a 
0=1 

manifold with boundary with an orientation induced from the orienta
tions of X and Rq. The boundary S of B is a fibre bundle over X with 
fibre SV-l. Let s: X ~ B - S be the embedding of X as the zero 
section of B. There is a GYSIN homomorphism 

s.: Hi (X, Z) __ H~;'1(B - 5, Z), i 60 

defined as in 4.3. Let X' be another compact oriented manifold and 
/ : X' -+- X a continuous map. Then B', 5', s' can be constructed as above 
from the SO(q)-bundle /. E and there is a natural map /: B' - S' -+

-+ B - S. With these notations we have 

Theorem 4.11.1 (THoM [1)). The GYSIN homomorphism s. is an 
isomorphism /or i ;;;. 0 and the diagram 

Hi(X, Z) .!:..... Hi(X', Z) 

1·· 1'~ 
Hi+'I(B - S Z) ~ ... H'+'I(B' - S' Z) cp , cp , 

is commutative. 

Let 1 E HO(X, Z) be the unit element. The EULER class e(E) 
of E is defined by e (E) = s· s. 1. By 4.1. b) the EULER class is defined also 
for any G L + (q, R)-bundle E over X. 

Theorem 4.11.2. Let X Y be compact oriented manifolds, /:Y -+- X 
a continuous map, E a SO (q)-bundle over X and E' a SO (q')-bundle over X. 
Then 

I) 2e(E) = 0 i/ q is odd, 
II) e(/· E) = /. e(E), 

III) e(E e E') = e(E) e(E'). 
IV) e(E) = cdE) i/ q = 2. 

Proof: The definition of s. implies that s.(s· b· c) = b· s. c for 
bE H!p(B - S. Z). cE Hi(X. Z). Therefore s.(2e(E)) = 2s.(s· 5.1) 
= 25. 1 . s. 1 = 0 for q odd since cup product is anticommutative. Since s. 
is an isomorphism, 2e(E) = 0 for q odd. This proves I). II) follows from 
Theorem 4.11.1. To prove III) let B, B' be the unit disc bundles of 
E. E' and C the unit disc bundle of E e ·E'. Let t: B -+ C, t': B' -+- C 
be the embeddings defined by the direct sum E e E' and u = t s = t' s' 
the embedding of X in C induced by the zero section. By Theorem 4.11.1. 
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s. s'· 1 = t· t~ 1 and therefore u. 1 = t. s. 1 = t. (5.5'· 1) = t. t· (t~ 1) 
= t~ 1 . t. 1. 

Hence u· u. 1 = s· t· (t~ 1) . s'· t'· (t. 1) 
= s· s.(s'· 1) . s'· s~(s· 1) by Theorem 4.11.1. 

Therefore e(E $ f) = e(E) e(E') as required. IV) follows from the iso
morphism SO(2) ~ U(I) and Theorem 4.3.2. 

Now let 1} be a U (q)-bundle over X. The embedding U (q) - SO (2q) 
of 4.5 (9) defines a SO (2q)-bundle e (1}) over X. It follows from properties 
II), III), IV) of 4.11.2 and from the splitting method (compare the proof 
of uniqueness of CHERN classes in 4.2) that 

(16) 

Theorem 4.11.3. Let j: X - Y be the embedding 0/ an oriented 
compact k-dimensional diflerentiable submani/old X in an oriented compact 
m-dimensional manifold Y. Let hE Hm-"(Y, Z) be the cohomology class 
which corresponds to the oriented cycle X and R" the normal G L + (m - k, R)
bundle 0/ X in Y. Then 

(17) 

Proof: The definition of the EULER class shows that the proof of 
Theorem 4.8.1 also applies to give (17). 

Consider the following particular case of Theorem 4.11.3. Y is the 
product manifold X X X,j: X _ X X X is the diagonal embedding and 
R" is equal to the tangent bundle RO of X. An algebraic calculation, due 
to LEFSCHETZ, shows that 

10 

(h v h) [X X X] = E (-I)i b;(X) 
<= 0 

is the alternating sum of the BETTI numbers of X. Theorem 4.11.3 
therefore implies that 

e(RO) [X] = j. h[X] = (h v h) [Xx X] = E(X) 

is the EULER-POINCARE characteristic of X. This proves 
Theorem 4.11.4. Let X be a compact oriented diflerentiable manifold 

with tangent bundle RO. Then e(RO) [X] is equal to the EULER-POINCARE 
characteristic E(X) 0/ X. 

Theorem 4.11.4, with (16), gives a proof of Theorem 4.10.1. Theorem 
4.11.3, with (16), gives the following generalisation of Theorem 4.9.1: 

Let j : X _ Y be the embedding 0/ a compact complex submani/old X 
in a compact complex manifold Y 0/ complex codimension q. Let hE 
Hill (Y, Z) be the cohomology class 1'ep1'esented by the oriented cycle X and 
v the complex normal bundle 0/ X in Y. Then 

cll(v) = j. h . (18) 
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Remarks: 1). The definition of the EULER class, Theorem 4.11.1, 
and Theorem 4.11.2, actually hold for a SO (q)-bundle ~ over an arbitrary 
admissible space X (see 4.2). Therefore (16) is valid in this case also. 

2). If E is a 0 (q)-bundle the definition of s* fails because the disc 
bundle B is no longer oriented in a natural way. If all cohomology groups 
are taken with coefficients ZII then Theorem 4.11.1 remains true in this 
case and s* s* 1 E HI1 (X, Z.) is the q-th WHITNEY class wl1 (~) of E. 

IJ 

The total WHITNEY class weE) = .E wi(E) can be defined. It satisfies 
Sa:: 0 

I) For every continuous o (q)-bundle ~ over an admissible space X and 
every integer i ~ 0 there is a WHITNEY class Wi(E) E Hi (X, Za). Wol~) = 1 
is the unit element. 

II) W (f* ~) = f* W (E). 
III) w(~ ED f) = w(~) weE'). 
IV) W (11,,) = 1 + h", where 11" is the 0 (I)-bundle over n-dimensional 

real projective space P"(R) defined similarly to the U(I)-bundle 11" of 4.2, 
and h" is the non-zero element of Hl(P"(R). Za). 

If X is a differentiable manifold with tangent bundle RfJ the WHITNEY 

class w(X) = W(RfJ) is sometimes called the STIEFEL-WHITNEY class. 
The proofs of existence and uniqueness of WHITNEY classes are 

precisely analogous to those for CHERN classes in 4.2. There is also a 
definition of WI like that of CI in Theorem 4.3.1. The exact sequence 

1-+ SO(q) -+ O(q) ..!... Za -+ 1 

defines a homomorphism e.: HI(X, 0 (q)J -+ HI (X, Za) such that 
e. (E) = WI (~). Hence a differentiable manifold X is orientable if and 
only if WI (X) = o. 

3). The embedding SO (q) -+ 0 (q) defines the WHITNEY class and 
PONTRJAGIN class for a SO (q)-bundle E. In this case wl1 (E) is e(E) reduced 
mod 2. If now E is a SO(2q)-bundle then (see 4.5j the SO(4q)-bundle 
e(1p(E)) differs from E ED E by a change in orientation (-1)11 and therefore 

PI1(E) = (-1)11 clll (1p(E)) = (-1)811 e(E ED E) = (e(E))II. 

Finally. if E is a U(q)-bundle over X then e(E) is a SO(2q)-bundle. 
In this case W11i(e(E)) is the reduction mod2 of 'iCE) and WIIi+I(e(E)) = O. 

Bibliographical note 

Proofs of Lemma 1.5.2 and Lemma 1.7.3. together with applications of multi
plicative sequences to cohomology operations can be found in ATIYAH-HIRZEBRUCH 
[4]. 

The treatment of sheaf cohomology in §2 is entirely in terms ofCEcH cohomology 
theory. and the exact cohomology sequence is established only for paracompact 
spaces X (Theorem 2.10.1). The first definition of sheaf cohomology groups which 
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satisfy the exact cohomology sequence for arbitrary spaces X was given by GROTHEN
DIECK [2]. These groups are defined by homological algebra or, equivalently, 
by flabby resolutions (GODEMENT [1]). For X paracompact the GROTHENDIBCK 
cohomology groups are isomorphic to the {:ECH groups. For general X the two 
cohomology theories are related by a spectral sequence (GoDEMENT [1], Chap. II, 
5.9.1). 

The books by STEENROD [1], HOLMANN [1] and HUSEMOLLER [1] give fuller 
accounts of the theory of fibre bundles. It is very convenient to replace all conditions 
on the base space (paracompact, admissible etc.) by suitable conditions on the bundle. 
Such an exposition, in terms of nu_able bundles, has been given by DOLD [3]; 
moreover fibre bundles are treated as a special case of more general (not necessarily 
locally trivial) fibrations. The results of § 3 have been generalised in other directions 
by GROTHENDIECK [1], FRENKEL [1], and HOLMANN [2]. 

Let G be a topologi~al group, E a principal bundle associated to a G-bundle '1 
over a paracompact space Y, and [X, Y] the set of homotopy classes [see 4.1. b)] of 
continuous maps X _ Y. Consider the property: 

(.) the map T: [X, Y)--+Hl(X,GC) given by TU) =/*'1 is a natural equi
valence. 

Then (.) holds for all paracompact spaces X if and only if E is contractible 
(DOLD [3],7.5). In this case Y is unique up to homotopy equivalence and called the 
classifying space B(G) of G. Such spaces always exist (MILNOR [1], DOLD [3],8.1). 
E is called the universal principal bundle. In general the classifying space 
has infinite dimension. For example 

B(U(q» = lim ~(q,N;C) and B(O(k»= lim ~(k,N;R). 
N_oo N_oo 

Suppose that E is arcwise connected and the homotopy groups n,(E) vanish 
for 1 ;:;;; i;:;;; n. In this case proofs that (.) holds for X have been given by DOLD [3], 
7.6, for X paracompact and locally the retract of a C W -complex of dimension;:;;; n; 
CARTAN [1], Exp. VIII, for X locally compact, paracompact and of dimension;:;;; n; 
and STEENROD [1], 19.4, for X a finite cell complex of dimension;:;;; n. The principal 
bundle E is then said to be n-universal. If G is a compact LIE group such bundles 
always exist with a finite dimensional differentiable manifold as base space (STEEN
ROD [1], 19.6). For example the bundle U(q + N)/U(N) over ~(q, N; C) is 2N
universal (see 4.2) and the bundle O(k + N)O/(N) over <»(k, N; R) is (N -1)
universal. 

The basic theorems on WHITNEY classes and CHERN classes are contained in 
STEENROD [1] and HUSEMOLLER [1]. The WHITNEY classes of a manifold can be 
defined, without reference to any differentiable structure, by means of STEENROD 
operations imd are therefore topological invariants (THOM [1]). The PONTR}AGIN 
classes are not topological invariants (MILNOR [6]). However NOVIKOV [1] has 
recently proved that the rational PONTR}AGIN classes in H* (X, Q) are topological 
invariants. Definitions of the rational PONTR}AGIN classes of a combinatorial (not 
necllssarily differentiable) manifold X have been given by THOM [3] and ROHLIN
SVARC [1]. For applications to algebraic geometry over more general fields it is 
important to avoid homotopy theory and classifying spaces as was done to some 
extent by the axiomatic approach in 4.2. The exposition by GROTHENDIECK [4] 
also defines c. (;) in terms of c1 (;) by means of splitting methods. A G L(q, C)
bundle ~ determines, in the notation of 13.1 c), a fibre bundle 'P: X -+X with fibre 
P q-I (C) and an exact sequence _ 

O-+1]-'P*E-E-O 

of bundles over X. Since 1]* ® ~ is a G L (q - I, C)-bundle we have 

0= c.('1* ®~) = c.('1* ® 'P* E) = ~ + ~l '11* Cl(~) + ... + 'P. c.W 
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where y = -C1 ('1). Since 'P. is a monomorphism this formula (the "formula of 
HIRSCH") may be taken as the definition of the c,(E) fo-c i > I. The same method 
applies to WHITNEY classes and to other characteristic classes which occur in 
algebraic geometry (GROTHENDIECK [4]). 

An excellent presentation of characteristic classes, which is formulated through
out in terms of singular cohomology theory and includes the combinatorial 
PONTR]AGlN classes has been given by MILNOR (Lectures on characteristic classes. 
Notes by J. STASHEFF. Princeton University 1957). 



Chapter Two 

The cobordism ring 
In this chapter all manifolds are compact, orientable and differen

tiable of class Coo. Several results from the cobordism theory of THOM [2] 
are stated. They are used to express the index of a manifold M'" as a 
polynomial in the PONTRJAGIN classes of M'" (Theorem 8.2.2). This 
result is needed in 19.5 to provide an essential step in the proof of the 
RIEMANN-RocH theorem. 

§ 5. PONTRJAGIN numbers 
5.1. Let Y" be an oriented compact differentiable manifold. The 

value of an n-dimensional cohomology class x on the fundamental 
cycle of Y" is denoted by x [V"]. If A is a (constant) additive group, 
and x E H" (V", A) then x [v"J EA. This definition extends naturally 
to give x [v"J E A ® B whenever xE H"(V", A) ® B for some additive 
group B. The value of x [V"] depends on x and on the orientation of Y"; 
if Y" is connected it is determined by x up to sign. 

Now let n = 4k be divisible by 4 and let PiE H4i(YUI, Z) be the 
PONTRJAGIN classes of yUI defined in 4.6. Every product PI! PI • ... PI, 
of weight k = A + j. + ... + jr defines an integer Pi. PI • ... Pi, [YU]. 
If n(k) is the number of distinct partitions of k, there are n(k) such 
integers; they are called the PONTRJAGIN numbers of yu. Consider the 
ring!,l3 of 1.1. The module!,l3" has a basis consisting of products of weight 
k. To each such basis element is associated a corresponding PONTRJAGIN 
number of YUI, and therefore yu defines a module homomorphism 
from !,l3" to the coefficient ring B under which a E ~" maps to a [YU] E B. 
If the dimension n of Y" is not divisible by 4 all PONTRJ AGIN numbers 
are defined to be zero. 

S.2. Let Y", Wm be two oriented manifolds, and let Y" X Wm be the 
product manifold oriented by the orientations on the ordered pair 
Y", wm. Then 

where I: Y" X Wm -+- Y" and g: Y" X Wm -+- Wm are projection maps 
and R(J (V") denotes the tangent G L (n, R)-bundle of Y" (see 4.6). If the 
PONTRJAGIN classes of Y", Wm, Y" X Wm are denoted by Pi' Pi, pi' then 
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by 4.5 the following equation holds modulo torsion in the cohomology 
ring of V" X W"': 

1 + P;' + p~' + ... = 1* (1 + PI + PI + ... ) g* (1 + P; + p~ + ... ). (1) 

By using an indeterminate z we can write (1) as a "polynomial equation" 
00 00 00 

E p~ zll = E 1* (Pi) Zi E g* (Pi) Zl mod torsion. (2) 
11-0 0=0 i=O 

In addition we have the equation 

(3) 

for all xE H"(V". Z) ® B andYE H"'(W"'. Z) ® B. 
If V"'. W',. are oriented manifolds with dimension divisible by 4. 

equations (2) and (3) can be used to calculate the PONTRJAGIN numbers 
of V'" X W'r in terms of the PONTRJAGIN numbers of V'" and W'r. 
The result is most easily expressed in terms of the m-sequences of § 1. 

Lemma 5.2.1. Let {Ki(Pl' . ". PI)} be an m-sequence (KiE ~i as 
in 1.2). Then 

K1I+r [V'" X Wf.r] = KII [V"'] • K,. [Wf.r] . 

Proof: Equation (2) and 1.2. (3) and (4). imply (mod torsion) 
A+, A ,. 

E Ki(P~' • ...• Pi') zl = E 1* (Ki (Pl' ...• Pi) zi . E g*(Ki(P~, .. .• pi) Zi. 
i=O 0=0 i-O 

Equating coefficients of z1l+r gives 

K1I+r(P;' • ...• Pi.'+,) = 1* (KII (Pl' ...• PII» • g* (Kr (P; • ...• P;» . 

The result now follows from (3). 

Definition: If {Ki(Pl' ...• Pi)} is an m-sequence let K(VU) 
= K II [VU]. If n is not divisible by 4 let K(VR) = O. Then K(V") is 
called the K-genus of the oriented manifold Y". 

By (2) and (3). the PONTRJAGIN numbers of V" X W'" vanish unless 
both nand m are divisible by 4. Therefore Lemma 5.2.1 can be restated as 

Lemma 5.2.2. The K-genus is multiplicative: 

K(VR X Wm) = K(VR). K(wm). 

Consider in particular the m-sequences {Li} and {Ai} defined in 1.5 
and 1.6. The L-genus and the A-genus of V" are rational numbers which 
are denoted by L (V") and A (V"). 

Remark: We wit] show (Theorem 8.2.2) that the L-genus of Y'" 
is equal to the "index" of Y'" and hence that L (YU) is an integer. 
It can also be proved that A (V"') is an integer. These integrality proper
ties are highly non-trivial: look at the denominators which occur in the 
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definitions of L" and A" in 1.5 and 1.61 The integrality of L implies 
that for every manifold V'" certain integral linear combinations (with 
coprime coefficients) of PONTRJAGIN numbers are divisible by the 
integer ",(Lit) defined in 1.5.2. As a consequence, there are conditions 
which a set of :n;(k) integers must satisfy in order to occur as the set of 
PONTRJAGIN numbers of a manifold V"'. 

§ 6. The ring Ii e Q 
6.1. If VA, WA are oriented manifolds of the same dimension, define 

the sum VA + WA to be the disjoint union of VA and WA. The sum is 
oriented in a natural way, because each connected component is oriented, 
either by the orientation of VA or by that of WA. There is also an oriented 
manifold - VA defined by reversing the orientation of VA. For each 
partition (jl' jz • ... , jr) of k we have 

Pi. PI, ... PI. [V'" + WU] = Pi. Pi. ... Pi. [VU] + PI, PI • ... Pi. [W411]. (1) 

Since PONTRJAGIN classes are independent of orientation (4.6), 

PI, PI •... PI. [-VU] = -Pi. PI • ... PI. [V"'] . (2) 

It follows that the K-genus defined by an tn-sequence {K1(PI" ..• PI)} 
satisfies 

K(VA + WA) = K(VA) + K(WA) 

K(- VA) = _K(VA) . 

(1*) 

(2*) 

6.2. We now introduce an equivalence relation between n-dimensional 
oriented manifolds: 

VA F>I WA if and only if each PONTRJ AGIN number of VA is equal to the 
corresponding PONTRJAGIN number of WA. (Note that. if n$ 0 modulo 4, 
there is only one equivalence class. since by definition all PONTRJAGIN 

numbers vanish.) 
By 6.1 the equivalence relation ~ is compatible with the operations 

+, -, and the equivalence classes form an additive group Dn. If n$ 0 
modulo 4 then Dn = O. Let D be the direct sum of all the groups Dn so 

oa 

that each element a E D is uniquely expressed in the form a = E a. 
.. =0 

with a. E D .. and a. = 0 for n sufficiently large. Then 
oa oa 

D = E D- = E D'" . (3) 
.. -0 11=0 

By 5.2 the equivalence relation F>I is compatible with cartesian 
product. This defines a product on D for which 

lJralJm C lJm+A • (4) 
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The direct sum decomposition (3) defines a grading on!J and we have 
Lemma 6.2.1. !J is a graded commutative torsion free ring. 
6.3. Recall that the total PONTRJAGIN class of VU may be written, 

using an indeterminate z as in 4.4, in the form 

" 1 + PI z + P2 Z2 + ... + p" z" = II (1 + fli z) . (5) .= I 
We then define the integer S(VH) for an oriented manifold VH by the 
formula 

S(VH) = (fl~ + fl~ + ... + fl~) [VH] . 

Defini tion: A sequence {VH} (k = 0, 1,2, ... ) of oriented manifolds 
is a basis sequence if s (V"') =l= 0 for all k. 

Theorem 6.3.1. Let {VU} be a basis :;equence of oriented manifolds 
and let B be a ring containing the ring of rational numbers. Then to each 
sequence a" 01 elements 01 B there corresponds one and only one m-sequence 
{Kj(PI" .. , Pi)} with coefficients in B for which K(V"') = a". 

Proof: The m-sequences are in one-one correspondence (see 1.2) 
with power series Q (z) = 1 + bi z + b2 Z2 + ... with coefficients in B. 
Therefore it is sufficient to show that there is exactly one power series 
Q(z) such that, for each V'" in the sequence with PONTRJAGIN classes 
written in the form (5), 

" a" = K" [V"'], where K" = coefficient of z" in II Q (fl; z) . 
i= 1 

This equation can be written 

a" = s (VU) b" + polynomial in bI> bl , •.. , b"-l of weight k . (6,,) 

The polynomial in (6,,) depends only on V'" and has integer coefficients. 
The coefficients bIt can now be determined uniquely by induction. 

Remark: The proof shows conversely that, if {V"'} is a sequence 
of oriented manifolds for which the conclusion of 6.3.1 holds, then {V"'} 
is a basis sequence. 

Theorem 6.3.2. The 2k-dimensional complex projective spaces Pu(C) 
lorm a basis sequence, because s(Pu(C)) = 2k + 1. 

Proof: Let hE H2(P2 ,,(C), Z) be a generator. By 4.10.2 the PONTR
JAGIN class of Pu(C) is (1 + h2)U+I. The m-sequence of the power 
series 1 + z" defines a "genus" (5.2) which for V'" has the value s(V"') 
and which clearly takes the value 2k + 1 on P2 ,,(C). 

6.4. In this section we determine the structure of the ring !J ® 2. 
Every oriented manifold VU determines an element (VU) of !Ju ® 2. 
The definition of tensor product implies that every element of !Ju ® 2 
can be written in the form ~ (VU) where m is an integer. The PONTR-

m 

J AGIN numbers, the K -genus, and the integer s (VU) are all defined in a 
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natural way for elements of D ® Q. (In the case of the K-genus it is 
necessary to assume that the coefficient ring B contains the ring of 
rational numbers.) The PONTRJAGIN numbers of an element of Du ® Q 
are in general non-integral rational numbers. Two elements of Du ® Q 
are equal if and only if their corresponding PONTRJ AGIN numbers are 
equal. 

Theorem 6.4.1. Let {yU} be a basis sequence 01 cwiented manilolds. 
For each partition (j) = (j1' j •• ...• jr) 01 k. let 

y(/) = yu, X Y4/. X ••• X yu,. 

Then every element ac E Dt" ® Q can be represented uniquely as a sum 

(7) 

over all partitions (j) 01 k. Moreover. to each system a(l) 01 rational numbers 
there co"esponds an element ac E Du ® Q whose PONTRJAGIN numbers 
satisly P(/) [ac] = a(/)· 

Proof: By elementary facts on linear simultaneous equations it is 
sufficient to prove that a sum 1: r{J) (V(I)) over all partitions (j) of k is 
zero if and only if 1'(/) = 0 for each (j). Suppose that 1: 1'(/) (Y {J») = O. 
Let ql' q". qa •... be a sequence of indeterminates. By 6.3.1 we can find 
for each integer t ;?; 0 an m-sequence which takes the value ~ on yu. 
This implies that 

1: 1'(1) ¢til = 0 • (8) 
(11 

where q(/) denotes the product ql, ql • ... ql. for (i) = (A. j •• ...• jr). 
Since the q{J) are pairwise distinct. (8) implies that each 1'(/) vanishes 
(VANDERMONDE determinant). Q. E. D. 

We also prove the following complement to Theorem 6.4.1. 
Theorem 6.4.2. Let {yti} be an arbitrary sequence 01 manilolds. 

Then I) the relation ac = 1: r{J) (V(J)). r{J) E Q. implies 

(7*) 

and II) il. lor all k. every element ac E lJu ® Q can be represented as a sum 
ac = 1: r{J) (Vw). r(J) E Q. then {yt/} is a basis sequence. 

Proof of I): Let {KI} be the m-sequence of the power series 1 + z". 
This m-sequence takes the value s (ac) on elements ac E Du ® Q and the 
value 0 on elements of D'l ® Q with 1 ~ j < k. This implies (7*). 

Proof of II): Suppose that. for some k. s (yU) = o. Then. by I). 
s(ac) = 0 for all acE Du ® Q. But s(Pu(C) = 2k + 1 by 6.3.2. Contra
diction. 

An immediate corollary to 6.3.2 and 6.4.1 is 
Theorem 6.4.3. The graded ring D ® Q is isomorphic to the graded 

ring Q [Zl' z •• ... J 01 polynomials in indeterminates Zi with rational coel-
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ficients. The group Du ® g is mapped onto the group 0/ products 0/ weight k. 
Any sequence 0/ elements a,E D" ® g with s(a,) *' 0 (i = 1, 2, ... ) 
defines by a, -+ Z, an isomorphism 0/ D ® g on to g [Zl' Za, .•• ], and every 
isomorphism 0/ D ® g on to g [%1' %.' ., .] can be obtained in this way. 

Remark: Theorem 6.4.1 implies in particular thatto each system of 
integers 4(1), where (j) runs through all partitions Ul' ... , jr) of k, there 
corresponds a positive integer N". which depends only on k, such that 
the system of integers N,,· a(J) occurs as the system of PONTRJ AGIN 
numbers of an oriented manifold VU. We have already noted in 5.2 
that not every system a(/) occurs in this way. This suggests the question: 
what is the smallest positive integer N" for which every system N" . a(/) 

with aU) integral occurs as the system of PONTRJAGIN numbers of a VU? 
It follows from work of MILNOR [3] that in fact N" is equal to the deno
minator p (L,,) of the polynomial L" (see Lemma 1.5.2). 

6.5. In this section we consider homomorphisms from the ring D ® g 
to the ring g of rational numbers. Let {KI(Pl' ... , PI)} be an m-sequence 
with rational coefficients, and let K (V") be the corresponding K-genus 
of an oriented manifold V". The K-genus K(a) is defined for any 
a E D ® g and 5.2.2 and 6.1 (I *). (2*) imply that there is a homomor
phism D ® g -+ g defined by a -+ K (a). 

Conversely, any homomorphism h: D ® g -+ g arises in this way. 
Let h(VU) be the values of h on a basis sequence {VU}. By 6.3.1 there 
is a unique m-sequence {KI} with K(VU) = h(VU). The elements (VU) 
generate the ring D ® g. and therefore K(a) = h(a) for every aE D ® g. 
This proves 

Theorem 6.5.1. The homomorphisms D ® g -+ g are in one-one 
correspondence with the m-sequences {K1(PI' ...• Pi)} with rational coe/
ficients, and are therefore also in one-one co"espondence with formal power 
series with rational coefficients starting with 1. 

§ 7. The cobordism ring D 
In § 6 we formed a ring from the set of all oriented manifolds by 

introducing an equivalence relation 1":1 compatible with the operations +. 
-, x. This equivalence relation is very artificial, and the results of § 6 
consist mostly of formal algebra. The only geometrical fact used in § 6 
is the existence of a basis sequence of oriented manifolds (Theorem 6.3.2). 
We now need a deep result from the cobordism theory of TROM which 
states that the equivalence relation 1":1 has a direct geometrical signifi
cance. 

7.t. Recall that the definition of oriented differentiable manifold (2.5) 
can be extended to include oriented differentiable manifolds with 
boundary. If X,,+l is a compact oriented differentiable manifold with 
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boundary a X"+1, then a X"+1 is a compact manifold with an orientation 
and differentiable structure induced from that of X"+1. 

Definition: An oriented differentiable manifold V" bounds if there 
exists a compact oriented differentiable manifold X .. +1 with oriented 
boundary ax .. +l = V". Two manifolds V", W" are cobMdant if 
V" + (-W") bounds. 

The relation V" is cobordant to W", V" '" W". is an equivalence 
relation compatible with the operations +. -. X defined in § 6.1. The 
equivalence classes of oriented n-dimensional manifolds form an additive 
group tr whose zero element is the class of manifolds which bound. As 
in 6.2 we can define the direct sum 

00 

In this case 

O"fJmctr+ ... and «. p = (-1) ..... p.« for «E tr, PE a... (1) 

and therefore n is a graded anti-commutative ring. called the cobordism 
ring. It is not necessary, for the present application. to know the precise 
structure of a. The original results of THoM are sufficient. and are quoted 
in the next section. 

7.2. We wish to construct an isomorphism n ® g - D ® g between 
the cobordism ring "modulo torsion" and the ring D ® g defined in §6. 
The first step is contained in the following theorem of PONTRJAGIN [2]. 

Theorem 7.2.1. 11 V" bounds then all the PONTRJAGIN numbe1's 01 V" 
Me zet'o. 

Proof: The PONTRJAGIN numbers of V" are hy definition zero unless 
n E! 0 modulo 4. Suppose that VU is the oriented boundary of XU+1, 
and that j: VU -+- X4l11+1 is the embedding. Let Pi E RH (XU+1, Z) be 
the PONTRJAGIN classes of the tangent bundle RO(XU+1) of XU+1. 
Note that this bundle is also defined over points of VU; in fact. if 1 
denotes the trivial line bundle. 

rRO (XU+1) = 1 ED RO (VU) 

where RO(VU) is the tangent bundle of VU. By 4.5 III) the PONTRJAGIN 
classes of VU are j* Pi and every PONTRJAGIN number of VU is the 
value of a 4 k-dimensional cocycle of XU+1 on the cycle V.,.. But VU 
bounds and therefore every PONTRJAGIN number of VU is zero. Q. E. D. 

The theorem of PONTRJAGIN states that the equivalence relation 
'" of 7.1 implies the equivalence relation ~ of 6.2. Therefore there is a 
ring epimorphism n -+- n which induces a ring epimorphism 

(2) 
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The central result of THOM. on which all subsequent work on the co
bordism ring is based. is contained in the following theorem. 

Theorem 7.2.2. (THOM [2]) The groups D" are finite lor i $= 0 modulo 
4. The group {J41f is the direct sum of :II (k) (= number of distinct partitions 
of k) groups Z and a finite group. 

We are not able to give the proof of this theorem here. but make the 
following remarks. THOM'S proof divides into two parts 

I) Construction of a complex M(SO(k) and an isomorphism between 
the group.Qi and the homotopy group :IIHi(M(SO (k)). i < k. 

II) Calculation of :IIH i( M(SO (k))) modulo finite groups by use of the 
C-theory of SERRE. 

The proofs in J) use isotopy and deformation arguments. Let B(SO(k) 
be the classifying space of the group SO (k) (see the bibliographical note 
to Chapter One). Associated to the universal SO (k)-bundle over B (SO (k» 
there is a bundle with fibre D". the k-dimensional disc in RIt defined by 

{ (Xl' •..• X,,) ; .f xl ~ I}. and bundle space A (SO (k». Let M (SO (k» 
0= 1 

be the complex obtained by identifying the boundary of A (SO (k» to a 
point. The homomorphism (Ji -+- :IIi+lf(M(SO(k») can now be defined. 
Let Vi be an oriented differentiable manifold. Since i < k there is an 
embedding of Vi in the (i + k)-dimensional sphere SHit. An isotopy 
argument shows that two such embeddings have isomorphic normal 
bundles. and hence that there is a map I : N -+- A (SO (k» of a tubular 
neighbourhood N of Vi in Si +It which maps Vi into the zero section of 
A (SO(k» and which maps the boundary aN of N into the boundary of 
A (SO (k». Now consider the composite map 

. S'+lO N A(SO(/i)) 
SoH-+- SH"-N =-aN"-+--aX(SO(/i)) = M(SO(k». 

This map defines an element of :IIiH(M(SO(k))) which actually depends 
only on the cobordism class of Vi. Deformation arguments are now used 
to show that the homomorphism .{)i -+- :IIi +If(M (SO (k))). i < k. is an 
isomorphism. 

The proofs in II) depend on a computation of the cohomology of 
M (SO (k) and use properties of EILENBERG-MACLANE complexes and the 
STEENROD algebra. 

Explicit results for i ~ 7 are: 

no = Z. [Jl = !JI = !.J3 = O. {J4 = Z. [J6 = Z •• !JI = [J7 = 0 . 

Theorem 7.2.2. together with the formal algebra of § 6, implies 
immediately 

Theorem 7.2.3 (THOM [2]). The homomorphism tp: [J e g -+-D e g 
is an isomorphism, and the structure 01 the ring D egis therefore deter-
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mined by Theorem 6.4.3. Two oriented manifolds V'" and W'" have the same 
PONTRJAGIN numbers if and only if some integral multiple of VU + (-WQ) 
bounds. 

We can also state Theorem 6.5.1 for the cobordism ring. This is 
important for subsequent applications and can be reformulated as 
follows: 

7.3. Let", be a function which associates a rational number ",(V") 
to each compact oriented differentiable manifold V". which is not identically 
zero and which has the properties: 

I) ",(Y." + W") = ",(V") + ",(W"). ",(-V") = -",(V") 
II) ",(V" X W") = ",(V") . ",(W") 

III) if V" bounds then ",(V") = o. 
Then ",(V") is zero unless n is divisible by 4. and there is one and only 

one m-sequence {Kj(Pl' ... , PI}} with rational coefficients such that, for aU 
oriented manifolds VU, 

",(VU) = K,,(Pl' ... , p,.) [V"'] , 

that is, '" coincides with the K-genus associated to the m-sequence {KI}' 
By § 1 the m-sequence {KI } corresponds to a uniquely determined 

power series Q (z) = 1 + b1 z + b2 Z2 + .. '. The coefficients bl of this 
power series can be calculated inductively using a basis sequence of 
oriented manifolds. For instance, the sequence of 2k-dimensional 
complex projective spaces Pu(C) can be chosen as a basis sequence 
(Theorem 6.3.2). 

Remark: Property II) is implied by I), III) and the following 
special case II·) of II): 

II·) There is a basis sequence {VU} such that. for each product of 
manifolds V4/, 

",(V4i, X V4i. X ••• X V4ir) = ",(V'I,) ",(V4/.) .•. ",(V4ir) . 

§ 8. The index of a 4k-dimensional manifold 
8.1. Let Q (x, y) be a real valued symmetric bilinear form on a finite 

dimensional real vector space. If p+ is the number of positive eigenvalues 
of Q (x, y), and P - is the number of negative eigenvalues. the difference 
p+ - P- is called the index of Q(x.y). 

8.2. It is well known that there is a symmetric bilinear form associated 
to every compact oriented 4 k-dimensional manifold: if x.yE HZII (Mu. R). 
the cup product x y defines a real number x y [MU] as in 5.1. The 
bilinear form x y [MU] is defined on the real vector space HZII (M"'. R) 
and is a topological invariant of the oriented manifold MU. The index 
of this form is called the index of MU and denoted by T (MU). The index 
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of a manifold whose dimension is not divisible by 4 is defined to be zero. 
We now prove that the function T satisfies the properties set out in 7.3. 

Theorem 8.2.1. 
I) T(Yn + Wn) = T(yn) + T(Wn), T(- yn) = -T(yn) 

II) T (Yn X wm) = T (Yn) • T (wm) 
III) il yn bounds then T(vn) = O. 
Proof: I) follows immediately from the definitions of yn + Wn 

and -Vn. 
II) is known (TROM [2]) but is given there without proof. We there

fore prove II) in full. Let MUI = yn X Wm. Then 
211 

HU(MUI, R) ::::: E H'(yn, R) ® Hu-·(wm, R) . (1) 
.=0 

Elements x, yE HU(MUI, R) are said to be orthogonal if x y [MUI] = O. 
Introduce bases {vn for H·(Vn, R) and {ro;} for H'(Wm, R) such that 

v: vr' [Vn] = "ij for s 9= ; and ~ wr-' [wm] = "ij for t 9= ; • 
" .. 

Now consider the group A = Hi (Yn, R) ® HT (wm, R), taking 
A = 0 if nand m are odd. Then A is orthogonal to the subgroup B of 
HU(MUI, R), which consists of all elements of the summation (1) in 
which no elements of A occur. As a basis for the group B we can take 

{v:® w1 i - S}, (0 ~ s ~ n, s 9= ;). Now 

(v: ® wr-') (v:: ® W1,i-.,) [MUI] = ± 1 if s + s' = n, i = i', j = j' . 
= 0 otherwise. 

It follows that, with respect to this basis, the restriction of the bilinear 

form x y [MUI] to B is represented by a matrix with blocks ± (~ ~) 
down the diagonal and zero elsewhere. Therefore the index of the restric
tion of x y [MUI) to B is O. Smce A and B are orthogonal, T(MUI) is equal 
to the index T (A) of the restriction of the bilinear form x y [MUI] to A. 
There are now two cases to consider. If nand m are not divisible by 4 
then T(A) = O. If nand m are divisible by 4 then T(A) = T(Yn) • T(wm). 
This completes the proof of II). A more detailed proof can be found in 
CRERN-HIRZEBRUCR-SERRE [1]. 

III) is proved by TROM [1]. The proof can be summarised briefly 
as follows. Suppose that yUl is the oriented boundary of XUl+1, and 
that j : yUl ~ XUI+1 is the embedding. TROM considers the diagram of 
homomorphisms 

HU(XUI+1, R) J.: HU(yUl, R) _ HU+1(XUI+1 mod YUl, R) 

! !i ! 
H.,,+l(XUI+1 mod yu, R) -+ H.,,(yUI, R) .J.!.. H.,,(XUI+1, R} 
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Here the rows are part of exact homology and cohomology sequences, 
and the vertical arrows are isomorphisms, defined by POINCARE duality 
for yu and Xu+!, which make the squares commutative. 

Let A U be the image of j. in Hili (y"', R) and let Kill be the kernel 
of j. in Hu(Y"', R). Then Alii is dual to Hu(Y"', R)/Ku under the 
duality between HIII(Y"', R) and Hu(Y"', R). On the other hand, the 
diagram implies that, for xE HIII(Y"', R), 

x E A III - i (x) E Ku . 

Therefore, if bu = dimHu(Yu, R) is the 2k-th BETrI number of Y, 

dimAU = dimKu = bu - dimKu 
and 

di Alii 1 b m =2 u· (2) 

If x = j. yEA 211, and v is the fundamental cycle of Y'" then x8 [YU] 
= (j.y8)[V] = (yll)[j.V) =0. Therefore the cone {xEHI1I(yu,R); 

Xl [YU] = o} contains the linear subspace A U of dimension ! bu. It 

follows that the bilinear form x y [YU] has p+ = P - (8.1) and hence that 
-r(y"') = o. This proves III) and completes the proof of Theorem 8.2.1. 

Theorem 7.2.3 and 7.3 now imply that the index -r can be identified 
with the K-genus of an m-sequence {Ki}. For complex projective space 
-r(Pu(C» = 1 for all k. The only m-sequence which takes the value 1 
on each Pu(C) is the sequence {Li(Pl' .. . ,Pi)} (Lemma 1.5.1 and Theorem 
4.10.2). 

Theorem 8.2.2. The index -r(MU) of a compact O1'iented differentiable 
manifold MU can be represented as a linear combination of PONTRJAGIN 

numbers. If {LI} is the m-sequence c01'1'esponding to the power series Yzy 
tanh z 

then -r(MU) = L,,(Pl' ... , P,,) [MU). (A list of the first few polynomials 
LI is given in 1.5:) 

Remark: By the remark at the end of 7.3 it is possible to prove 
property II) of 8.2.1 by using III) and the fact that the index of any 
product Pu,(C) X ···X P1i,(C) is 1. 

§ 9. The virtual index 
9.1. Let Mft be a compact oriented differentiable manifold and let 

j: Yft-" -+ Mft be the embedding of an oriented submanifold Yft-" of 
Mft. If R6(yft-"), R6(Mft) are the tangent bundles of Yft-", Mft respec
tivelyand "is the normal bundle of y.-" in Mft then, by 4.8, 

J"afJ(Mft) = .6(yft-ll) • .,. 
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Let PW,,-A), P(M") be the (total) PONTRJAGIN classes of V,,-A, M". 
Then by 4.5 II), III) we have 

j* P(M") = PW"-A) PC,,) modulo torsion. (1) 

Note that, in a commutative ring of cohomology classes whose odd 
dimensional components vanish, every element whose O-dimensional 
component is 1 has a uniquely determined inverse. This means that, if 
the PONTRJAGIN classes of M" and of the normal bundle" of V,,-A in M" 
are known, the PONTRJAGIN classes of V,,-A can be calculated. For 
instance, if k = I, since V,,-l and M" are both oriented, " is trivial and 
P,W"-l) = i* P,(M") (compare the proof of Theorem 7.2.1). 

9.2. For the applications the case k = 2 is particularly important. 
Let j: V,,-I ~ M" be as in 9.1 and let v E HI (M", Z) be the cohomology 
class dual to the homology class represented by V,,-I. In this case, 
by Theorem 4.8.1, 

and therefore 
PC,,) =j*(1 + Vi) 

PW"-I) =j*[{1 + VIl)-lP(M")]. 

Since {L; (PI' ... , Pi)} is the m-sequence which corresponds to the 

power series ~V z the definition of m-sequences in 1.2 implies that 

i~O L,(PI W"-I) , ... , P,W"-I» = j* [ta:hv ifo L,(PI (M") , ... , P.(M"»] • 

(2) 

We are now in a position to obtain a formula for T(VtI-I). We need 
the fact (POINCARt duality) that if xE HtI-I(MtI, A) 0 B, with A, B 
additive groups then 

j* (x) [VtI-I] = v x [M"] . (3) 

Theorem 8.2.2, together with (2) and (3), now gives 

T(V"-I) = K" [tanhV if/,(PtCMtI), ... , P.(M"»]. (4) 

In (4) we use the abbreviation ,," for the first time. It is used con
stantly from now on and is defined by the rule: .. 

Let u(,,) be the n-dimensional component 0/ an element u E 1: HII (MtI, 
A=O 

A) 0 B.De/ine"tI[u] = u(tI) [M"] . (5) 

If n:$ 2 modulo 4 formula (4) is trivial, since the left hand side is 
then zero by definition, while the right hand side is got by evaluating the 
n-dimensional component u(tI) of an expression u which contains no 
terms of dimension n, so that K" [u] = o. In the first few non-trivial 
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cases (4) gives: 

n = 2, T(V°) = V [MI] 

1 
n = 6, T(V4) ="3 (_VI + 1'1 V) [MI] 

1 
n = 10, T (VS) = 45 (6VIi - 51'1 VI + (71'. - PI) v) [MIa]. 

9.3. Let M" be a compact oriented differentiable manifold as in 9.1 
and let Vl, VI' ... , Vr be elements of the group HI(M", Z). It will be as
sumed that Vl represents a (compact oriented differentiable) submanifold 
V,,-I of M", that the restriction of VI to V,,-I represents a submanifold 
v,,-a of V"-I, ... , and finally that the restriction of Vr to V,,-2(r-l) 
represents a submanifold V,,-2r of V,,-I(r-l). In this case formula (3) 
of 9.2 can be generalised: if %E H"-lr(M", A) ® B with A, B additive 
groups and j: V,,-2r _ M" is the embedding then 

j* (%) [V,,-ar] = VI Va ... Vr % [M"] . (3') 

Successive applications of (2) and (3') give the following generalisation 
of (4): 

T(V,,-Ir) =",. [tanhVl tanhvl ••• tanhvr.£ L~(Pl(M"), ... ,pdM"»]' 
0-0 

(4') 

According to THOM [2], every 2·dimensional integral cohomology class 
of a compact oriented differentiable manifold M" can be represented 
by a submanifold V,,-z of M". Successive applications of this theorem 
show that the above assumptions are justified, so that (4') holds. As a 
corollary we see that T(V"-Ir) depends only on the (unordered) set of 
cohomology classes Vl , VI' ... , Vr• We denote the right hand side of (4') 
by T(Vl' ... , vr), the virtual index of the set (Vl' ... , vr). The theorem of 
THOM just quoted then implies that every virtual index occurs as the 
index of a submanifold of M" and is therefore an integer. 

We recall that tanh satisfies the functional equation tanh (u + v) 
= tanh(u) + tanh (v) - tanh(u) tanh(v) tanh(u + v) and deduce from 
(4') : 

Theorem 9.3.1. The virtual index is a function which associates 
an integer T(Vl' VI' .•. , vr) to each (unordered) ,-pIe (711' v.' ... , vr) of 
2-tlimensional integral cohomology classes of a compact oriented differentiable 
manifold M". The function T is zero if n - 2r =$: 0 modulo 4, if 2r > n, 
or if one of the classes V~ is zero. It satisfies the functional equation 

T(Vl' .•. , Vr, U + v) (6) 
= T(Vl' ... , Vr, u) + T(Vl' ... , Vr, v) - T(Vl' ... , Vr' U, v, U + v) . 
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In P(lrlicular. if n = 4k + 2. 

T(U + v) = T(U) + T(V) - T(U. V. U + v) • (6') 

9.4. Consider. as an example for Theorem 9.3.1. the product -MUH = FI X F. X ••• X F.HI 

of 2k + 1 compact oriented surfaces F i • Let xiE HI (MUH. Z) be the 
cohomology class which represents the submanifold 

FIXF.x···XPiX ···XF.HI 

of MUH (where Pi means that the factor F i is omitted). We can calculate 
'I' (fit XI + (I. x. + ... + (lu+! XU+I)' where the (Ii are integers. by using 
(4). Since all the PONTRJAGIN classes of MUH except for Po = 1 are zero. 

'1'«(11 Xl + (I. X. + ... + flalll+l XU+1) 

= xtAH [tanh (fit Xl + ... + (lU+1 XU+!)] 

tanhCU+lI(O) xtAH[( )U+I] 
= (211 + 1) I fit Xl + ... + (lu+! Xu+! 

= fit (I • ... (lu+! tanh (I 10+1) (0) . 

This proves that. if yu is (I comp(lct oriented dit/erenti(lble manifold 
embedded in the produce of (2k + 1) copies ot (In oriented2-spnere 51 which 
has intersection number 1 with each tactor. then T (Y' Ii) is the value at 0 ot the 
(2k + l)th derivative ot tanh (x). By the theorem of THON quoted in 9.3. 
such manifolds exist for all k. 

Bibliographical note 

The results on cobordism used in this chapter are all due to THOM [1]. [2]. 
Actually the differentiability assumptions of THOM are slightly difterent. but it can 
be shown that all his results (in particular Theorem 7.2.2) remain true when 
"difterentiable" is taken to mean "Cco-difterentiable". A oomplete exposition of 
cobordism theory from this point of view has been given in lectures of MILNOR 
(Difterential Topology. mimeographed notes. Princeton 1958). 

co 
THOM also defined the non-oriented cobordism ring 2t = E 21". Here 21" is 

11=0 
the group of compact non-oriented difterentiable manifolds of dimension II under 
the equivalence relation: V" "'2 W" if V" + W· bounds a compact non-oriented 
manifold XII+l. The STIEPEL-WHITNEY classes w,E H'(V". Za) define STIEPBL
WHITNEY numbers WI, wi,' .. Wir [V"] E Z •. THOM proved that V" "'2 W" if and 
only if V". W" have the same STIEPEL-WHITNEY numbers. that 2t is a polynomial 
ring Z. [x •• .1'4' x,. x,. x •• Xg • ••• ] over Z. with one generator x, for each i =F 2' - 1. 
and that the real projective spaces PI .. (R) give the even dimensional generators x ... 
(THOM [2]). An explicit construction for the other generators of 2t was given by 
DOLD [1] (see also MILNOR [7]). 

The complete structure of the cobordism ring D. and of the graded ring D 
defined in 6.2. is now known. MILNOR [3] proved the following more precise version 
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of Theorem 6.4.3: Ii is isomorphic to the graded ring Z[ZI' Z •••• • ]. and an iso
morphism Z [Zl' Z •• ••• ] _ fi is given by associating to z, a compact oriented 
differentiable manifold yll such that 

s(yU) = ± 1 

s(yU) = ±q 
if 2i + 1 is not a prime power. 

if 2i + 1 is a power of the prime q. 

The cobordism ring 0' a can be represented as a direct sum 

ou = fiu $ T'" 

where 1'1 is the group of elements of finite order in 0 1 (and 1'1 = 01 ifj =1= 0 mod4). 
MILNOR [3] proved that TI has no elements of odd order and gave explicit generators 
for fiu. Subsequently WALL [1] proved that Vcontains no elements of order 4 and 
found a complete set of generators for O. His results show that y .. ,., W" if and 
only if Y". W" have the same PONTR]AGIN and STIEFEL-WHITNEY numbers. For a 
survey of generalisations of the cobordism ring and further developments see ATIYAH 
[4]. CoNNER-FLOYD [1]. MILNOR [4] and WALL [2]. 

The index theorem (8.2.2) gives corollaries on the behaviour of the index of an 
oriented differentiable manifold Y. For example. let / : W _ Y be a differentiable 
covering map of degree n. Then P,(W) = /. p.(Y) and the index theorem implies 
that T(W) = nT(V). Does this result remain true if Y. Ware (non-differentiable) 
topological manifolds? Let E. B. F be compact connectetl oriented manifolds (not 
necessarily differentiable). Let E _ B be a fibre bundle with typical fibre F for 
which the fundamental group ~ (B) acts trivially on the cohomology ring H· (F. R). 
Then there is a direct topological proof that T(E) = T(B) T(F) (CHERN-HIRZB
BRUCH-SERRE [1]). Examples of ATIYAH [t2] show that for a general fibre bundle 
T(E)=I=r(B) reF). 

The index theorem implies that the L-genus of an oriented differentiable 
manifold M depends only on the oriented homotopy type of M. According to KAHN [1] 
the L-genus is. up to a rational multiple. the only rational linear combination of 
PoNTRJAGIN numbers that is an oriented homotopy type invariant. Far reaching 
generalizations of the index theorem (applying to differential operators and to 
finite groups acting on manifolds) have been obtained by ATIYAH and SINGBR. 
These are discussed in the appendix (§ 25). 



Chapter Three 

The TODD genus 

In this chapter Mn will be compact, differentiable of class Coo and, 
in addition, almost complex. The tangent GL(n, C)-bundle of Mn 
(see 4.6) is denoted by O{Mn). We investigate the "genus" associated with 
the m-sequence {Ti(cI , ••• , Cj)} of 1.7 as well as the "generalised genus" 
associated with the m-sequence {Ti(Y; CI ' ••• , ci )} of 1.8. 

§ 10. Definition of the TODD genus 
10.1. Let X be an admissible space (see 4.2) and let E be a continuous 

GL{q, C)-bundle over X with CHERN classes c. E H2I(X, Z). The (total) 
TODD class of E is defined by 

00 

td{E) = L: Tj(cI ,.·., Cj) 
;=0 

(1) 

where {T; (cI , •.• , Ci)} is the m-sequence of 1.7. If f is a continuous 
GL{q', C)-bundle over X then, by 1.2, the TODD class satisfies 

td(E e f) = td(E) td(E') . (2) 

If q = 1 and cl{E) = dE H2{X, Z) then 
d 

td(~) = l-e-" . 

Note that td(~) is a series starting with 1 and therefore, since X is 
finite dimensional, the inverse (td (~»-l exists. The total TODD class 
can also be defined by means of a formal factorisation: if 

'i 'I 'i 

.L: Cj Xl = .II (1 + r. x) then td(E) = .II l~: ,. .. 
1=0 1~1 I~I 

In a similar way the (total) CHERN character of ~ is defined by 

'i 
ch(~) = L: e" •. 

0-1 

By 4.4.3 the CHERN character satisfies 

ch(~ e e') = ch(~) + ch(f) , 

ch(e ® f) = ch(E) ch(~') . 

If q = 1 and 'IW = dE H'I.(X, Z) then ch(e) = ed• 

(3) 

(4) 
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co 

In general ch(E) = q + E ch,.(E) where 
A=1 

~ f _~ 
ch,.(E) = kI E HU(X. Z) e g and s" =.2: y. (k ~ 1) . 

1=1 

The symmetric functions s,. and C4 are related by NEWTON formulae 
[compare 1.4 (10)] 

s,. - C1 Sll-l + ... + (-I)" c,. k = 0 (k ~ 1) . 

The CHERN character is related to the TODD class td by 
Theorem 10.1.1. Let E be a continuous GL(q. C)-bundle over an 

admissible space X. Then 
f 

E (- W ch~.r E* = (td(E»-l c,,(E) • 
r=O 

f f 
Proof: If E cs(E) xi = II (1 + Yi x) then by 4.4.3 

;=0 .=1 

chAr E* = 2: e- C"" + ... + " ... 1 

where the sum is over all combinations ~. . ..• ir with 1 ~ i1 < ... < 
< ir ~ q. Therefore 

f f 

E (- W chAr E* = II (1 - e-1',) 
r=O .=1 

= (td(E}}-l c,,(E) • 

10.2. Let M" be an almost complex manifold (4.6). The almost com
plex structure defines a particular orientation of M". If u E H* (M,,) and 
u CI ,,) is the 2n-dimensional component of u we write ",,(u) = U Ch) [M,,]. 
Let c, E Hl4(M". Z) be the CHERN classes of 8 (M,,). Every product 
ci, c'l ... cj, of weight n = it + j. + ... + jr defines an integer 
c'a C'I ' •• cs,[M,,]. If n(n) is the number of distinct partitions of n there 
are n(n) such integers; they are called the CHERN numbers of M". For 
example (Theorem 4.10.1) the CHERN number c" [M,,] is precisely the 
EULER-POINcARt characteristic of M". Consider the ring~ = B [c1• ca •••. ] 
of 1.1 (see also 1.3). As in 5.1. each element b E~" determines an element 
b[M,,] E B. 

The cartesian product V" X W m of two almost complex manifolds is 
almost complex in a natural way: the tangent GL(n + m. C)-bundle 
of the product is the WHITNEY sum '*(8 (V,,» (9 C*(8(W m» where 
,: V" X W m -+- V" and g: V" X W m -+- W m are projection maps. As in 
5.2 we have 
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Lemma 10.2.1. Let {K1(cl • ...• C/)} be an tn-sequence (KI E$I. as in 
1.2. 1.3). Then 

K.+ .. [V.x Will] = K.[V.]· K.[W.] . 

K. [M,,] is called the K-genus of M •. Now consider the m-sequences 

{T1(CI • ••.• C/)}. {TI(Y; cl • ...• C/)} 

defined in 1.7. 1.8 and associated to the power series 

~ ~(y + I) 
Q(x) = I_exp(_~)' Q(y; x) = l-exp(-~(y + 1» - xy. 

The rational number T,,[M,,] is called the TODD genus (or T-genus) of 
M" and written T(M.). Thus 

T(M,,) = x,. [td(8(M,,))] . 

By 1.8. T,,(y; Cl' ...• c,,) [M.] is a polynomial of degree n in y with 
rational coefficients. It can therefore be written in the form 

" T,,(M,,) = E P(M,,) y~. 
~-o 

The polynomial T,,(M .. ) is called the generalised TODD genus (or T,,
genus) of M". By definition. T.(M,,) = TO(M,,) = T(M .. ). 

Lemma 10.2.1 implies that T"(V,, x W .. ) = T,,(V..} T,,(WIII) and in 
particular that T(V"x W",) = T(V,,) T(W",). By 1.8 (13) the rational 
numbers T~(M,,) satisfy the "duality formula" 

TII(M,,) = (-1)· Ttt-II(M.) . 

By 1.8 (16). together with Theorem 8.2.2. 
II 

T_1 (M.) = E (-1)~ T~(M..} = c,,[M.L 
~=O .. 

T1 (M.) = E Til (M,,) = T(M.). 
~-o 

(5) 

(6) 

Thus T -1 (M.) is the EULER-POINCARE characteristic of M .. while Tl (M .. ) 
is the index of M. [notice that the above "duality formula" shows that 
Tl (M,,) = 0 for n odd]. 

10.3. The (total) CHERN class of the complex projective space p. (C) 
is (1 + h .. )"+1 by Theorem 4.10.2. Lemma 1.7.1 and Lemma 1.8.1 there
fore imply 

Theorem 10.3.1. The T-genus is the only genus associated to an 
tn-sequence with rational coeDicients which takes the value 1 on every 
complex projective space P,,(C). The T,,-genus is the only one associated 
to an m-sequence with coeDicients in g [y] which takes the value 1 - Y + 
+ yI_ ... + (-I)· y. on p.(C). 
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§ 11. The virtual generalised TODD genus 
11.1. Let V"_lJ be a (compact) almost complex submanifold of the 

almost complex manifold M" andj: V,,_lJ -+ M" the embedding. By 4.9 
there is a normal GL(k, C)-bundle" over V"_,, such that j* o (M,,) 
= o (V,,-,,) e". By 4.4.3, II) 

j* c(M,.) = c(V,._,,) c(,,) . 

Consider the special case k = 1. Theorem 4.8.1 gives c(,,) = 1 + j* v 
where v E HI(M,.; Z) is the cohomology class determined by the fun
damental class of the oriented submanifold V,._l' Therefore 

1 + C1(VII-l) + Ca(VlI-l) + ... 
=j*[(1 + c1 (MII) + ca(MII) + ... ) (1 + V)-l]. 

(1) 

It is now possible to calculate the T,,-genus of VII-I' This genus is 

associated with the power series Q (y; x) = R (;; '*') where 

,*1>'+1)-1 
R (y; x) = e*IY+1) + Y 

R(I; x) = tanhx, R(-I; x) = x(1 + X)-l, R(O; x) = 1 - e-S • 

Then (1) implies 

(2) 

00 • (R(Y;II) 00 ) 

.1:'~(y;Cl(VII-l),.··,Ci(v,,-l»=J* II .1:'~(y;cl(MII)"") (3) .-0 I~O 

and hence, as in 9.2, 

T,,(v,,-l) = "" [R(Y; V)i~ 1I(y; c1(MII),···, CI(MII»] . (4) 

In the case y = 1 formula (4) is [in view of 1.8 (16)] exactly 9.2 (4). 
In the case y = - 1 it gives a formula for the EULER-POINCARE charac
teristic E (v,,-1) = CII_1 (VII-I) [VII-I]: 

.. -\ 
(_1)"-1 E (VII-I) = 1:' (-I)i V"- i cdM,,) [Mil]' (5) 

0=0 

Formula (5) can naturally be obtained directly from (1). In the case 
Y= 0 we have 

(6) 

11.2. We now come to the definition of the virtual T,,-genus. For 
VI' ••• , Vr E HI (Mil' Z) let 

T,,(VI' ... , Vr)M = ",. [R(Y; VI) ••• R(y; vr) .J; 1I(y; cl(MII), ... )]. (7) 
1=0 

Here the subscript M denotes the manifold in which the virtual genus is 
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defined; in subsequent paragraphs this subscript will be omitted if it is 
clear from the context which manifold is meant. 

By 1.8, T,.(vI, ... , Vr)M is a polynomial of degree n - r in y with 
rational coefficients. T,.(vI , ••• , V .. )M = 0 for r > n because R(y; x) is 
divisible by x. For r = n, T,,(VI' ... , V .. )M = VI V2 ••• v .. [M .. ]. We call 
T,.(vI, ... , Vr)M the (virtual) T,.-genus of the r-ple (VI' ••• , vr). It is 
independent of the ordering VI' ••• , Vr• An unordered r-ple of elements 
of H2(M .. , Z) is also called a virtual almost complex (n - r)-dimensional 
submanifold of M ... We write 

(8a) 

The rational number 

T(VI' ... , Vr)M = TO(VI' ... , Vr)M = TO(vv ... , Vr)M (8b) 

is called the virtual TODD genus of the virtual submanifold (VI' ••• , vr). 

The duality formula 

TJ>(VI' ... , Vr)M = (-I) .. -r T .. -r-p(vI, ... , Vr)M (9) 

holds, and Formula Il.l (3) implies immediately 
Theorem 11.2.1. Let V .. _I be an almost complex submanifold of M .. , 

V E H2(M .. , Z) the cohomology class determined by V .. - I and j: V .. - I -+ M" 
the embedding. Let Va, ... , Vr E H2(M .. , Z). Then T,.(j* vs, ... , j* vr)v 
= T,,(v, va, ... , Vr)M' In particular 

T,.(V .. -I) = T,,(V)M' 

11.3. The functional equation of the index [9.3 (6)] is a special case 
of a functional equation satisfied by the virtual T ,.-genus. If a, yare 

e- s - 1 
indeterminates and R (x) = e-s +:y then 

R(u+ v) = R(u) +R(v) + (y - I) R(u) R(v) - yR(u) R(v) R(u + v). (10) 

The substitution a = 1 + Y then yields a functional equation for R(y; x). 
For y = 1 this is the functional equation of tanhx, for y = 0 the functional 
equation of 1 - r%, and for y = -I the functional equation of 
x(1 + X)-I. As a corollary we have 

Theorem 11.3.1. The virtual T,.-genus satisfies the functional equation 

T,.(vI, ... , Vr, U + v) = T,.(vI, ... , Vr, u) + T,,(VI' ... , Vr , v) + 
+ (y - I) T,,(VI' ... , vr ' U, v) - Y T,,(VI' ... , Vr' U, V, U + v) 

where VI' ... , Vr, U, v are elements of H'(M .. , Z). In the special case r = 0 
the equation becomes 

T,.(u + v) = T,.{u) + T,.{v) - (y - I) T,.(u, v) - yT,.(u, v, u + v). 
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For Y = 1 this implies that the virtual index satisfies 

'f(u + v) = 'f(u) + T(V) - 'f(u, v, U + v) , 

/or y = 0 the virtual TODD genus satisfies 

T(u + v) = T(u) + T(v) - T(u, v) , 

and /or y = -1 the virtual EULER-POINCARE characteristic satisfies 

T_l (u + v) = T_l (u) + T_l (v) - 2 T_l (u, v) + T_l (u, v, U + v) 

§ 12. The T-characteristic of a GL(q, C)-bundle 

12.1. Let E be a continuous GL(q, C)-bundle over M". Any dif
ferentiable, or complex analytic, GL(q, C)-bundle over M" can also be 
regarded as a continuous G L (q, C)-bundle so that the results of this 
paragraph apply, in particular, to these cases. Let 

" f 
c(M,,) = E c" c(E) = E d, (1) 

i=O i=O 

where c" d, E HI' (M", Z) and Co = do = 1. 
The TODD class of 8(M,,) and the CHERN character of E (see 10.1) 

are used to define the rational number 

T(M", E) = ",,[ch(E) td(8(M,,»] . (2) 

T (M '" E) is called the T -characteristic of the G L lq, C)-bundle E over M fl' 
In the special case where E is a C·-bundle with CHERN class 1 + d, 
dE HI (M", Z), equation (2) becomes 

T(M", E) = "" [e4 td(8(M,,»] . (3) 

Now the C·-bundles over M,. are in one-one correspondence with 
elements d of HI (M", Z) by 3.8 and Theorem 4.3.1. Therefore we may 
write T(M", d) for T(M", E) in (3). The definitions imply 

T(M, d) = T(M) - T(-d)M' (4) 

If E is a GL(q, C)-bundle and E' is a GL(q', C)-bundle over M" then 
the first equation of 10.1 (4) gives 

T(M", E $ E') = T(M". E) + T(M". f) . (5) 

If E is a GL(q. C)-bundle over V" and "I is a GL(r. C)-bundle over 
Wm then 10.1 (2) and 10.1 (4) give 

T(V" X W m' f· (E) 0 g. ("I» = T(V". E) T(W m' "I) , (6) 

where / and g are projection maps as in 5.2. 
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12.2. In order to extend the results of 12.1 to apply to a T ,,-charac
teristic T" (M". E) it is necessary to consider the dual tangent G L (n. C)
bundle O· = 0 (M ,,). of M fl' Let AI> (0·) be the p-th exterior product (3.6) 
of 0·. Consider the formal factorisations [see 12.1 (1)] 

"" q q 
E C; xi = II (1 + Yi x) and E ds Xi = II (1 + di x) . 
;-0 i=1 ;=0 i-I 

Then the CHERN classes of O· are the elementary symmetric functions in 
the - Yi and. by 4.4.3, the CHERN classes of AI> (0·) are the elementary 
symmetric functions in the formal roots - (Yi, + Yi. + ... + y,,). 
Then 1.8 (15) implies that 

T(M", AI> (0.)) = TI>(M,,) . (7) 

Now consider the tensor product AI> (0.) ® E. We denote the rational 
number T(M", AI> (0.) ® E) also by P(M", E) and define 

" T"(M,,, E) = 1: P(M", E) yl> . (8) 
1>-0 

Equations (2) and 10.1 (4) imply that 

P(M", E) = ",,[ch(E) ch(AI> (0·)) td(O(M,,))]. (9) 

A trivial generalisation of the argument used to prove 1.8 (15) gives 

T"(M,,, E) = "" [C~ e(I+l1)"') (#0 l1(y; c1,···, C;))] . (10) 

Notice that, if y = -1, the number Ll (M", E) does not depend on the 
CHERN classes of E but only on the rank q of E. In this case T_l (M", E) 
= q E (M,,) where E (M,,) is the EULER-POINCARE characteristic of M". 

SUbstituting -.!. for y in (10) and multiplying both sides of the equa
y 

tion by (-Y)", we can rewrite the right hand side of (10) as 

"" [(.f e-(l+")"') (.i l1(y; C1, ... , C;))] .-1 1=0 

and obtain, applying Theorem 4.4.3, the duality formula 

y" T! (M", E) = (-I)" T"(M,,, E·) . 
~ 

Therefore 
T1>(M", E) = (-I)" T"-1>(M", E·) 

and, in particular, when p = 0 

(11) 

T(M", E) = (-I)" T(M", A"(O·) ® E·) . (12) 

In fact it is possible to deduce (11) from (12): replace E by E ® AI> (0·) 
in (12) and recall that, by Theorem 3.6.1, A"(O·) ® (E ® AI> (0.)). 
= E· ® A" (0·) ® AI> (0) = E· ® A"-I> (0·). 
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The bundle A" (0·) is a C·-bundle. and is called the canonical C·· 
bundle over M". By Theorem 4.4.3 it has (total) CHERN class 1 - c1 (M.). 

Let ch(,.) (E) E H·(M". Z) 8 g [y] be defined by the equation 

ch(,.) (E) = e(lH)" + ... + e(lH)" 

where the CHERN classes of E are the elementary symmetric functions 
in 61, •••• 6,. Then. as in 10.1 (4). 

ch,,.) (E ED E') = ch(,.) (E) + ch(,.) (E') and ch(,.) (E 8 E') = ch,,.) (E) ch(,.) (E') • 

These equations imply that 

T,.(M". E ED E') = T,.(M". E) + T,.(M". E') (13) 

and 

T,.(Y,. X W fIl' f·(E) 8 g·(fJ» = T,.(Y,.. E) T,.(W",.fJ) . (14) 

In equations (13) and (14) we use again without comment the notations 
of equations (5) and (6) of 12.1. 

12.3. Let E be a GL(q. C)-bundle over M". If "1' ...• "r are elements 
of HI(M". Z) then the virtual T,.-characteristic of E with respect to the 
"virtual submanifold" ("1' ...• "r) can be defined by the following 
generalisation of 11.2 (7): 

T,.("l.···. "rl. E)M = X. [Ch(,.) (E)ib.' R(y; "I)ito 1I(Y; cdM,,) •.. . )]. (15) 

As in 11.1. the subscript M will be dropped if it is clear which mani
fold is meant. If E is the trivial GL(q. C)-bundle then T"("l' ...• "rl. E) 
= q T,. ("1' ...• "r)' Naturally we write. when y = O. 

TO("l' ...• "rl. E) = T("l' ...• "rl. E) 

and call T("l' ...• flrl. E) the virtual T-characteristic. As a generalisation 
of Theorem 11.2.1 we have 

Theorem 12.3.1. Let V"_l be an almost complex submanifold of M". 
fI E HI (M". Z) the cohomology class determined by V"-l antl j: V"_l -+ M" 
the embedding. Let fli' .... fir E Ha(M". Z) antllet E be a GL(q. C)-buntlle 
OfJer M •. Then 

T,.(j· fla ... .. j. flrl.j· E)y = T,.('" " ••...• "rl. E)M' 

In particular 

The functional equation of Theorem 11.3.1 can also be extended 
to apply to the virtual T -characteristic. 
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Theorem 12.3.2. Let E be a GL(q. C)-bundle over M,.. The virtual 
T y-characteristic of E satisfies the functional equation 

Ty(vt •...• Vr, 14 + vi, E)M = Ty(Vl' ... , Vr, 141, E)M + 
+ Ty(vt •... , Vr' vi, E)M + (y - 1) Ty(Vl' ... , Vr, 14, vi, E)M

- Y T,. (VI' •••• Vr• U. V, 14 + vi. E)M 

where VI' ... , Vr' 14, v are elements· of HI (M .. , Z). 

The proof uses the functional equation 11.3 (10) and the remark that 
the expression inside the square brackets [ ] of (15), x,. of which is the 
T,.-characteristic, always contains the factor ch(y) (E). 

T,,(Vl' ... , vrl, E)M is a polynomial of degree n - l' in y with rational 
coefficients. It is identically zero for l' > n. If l' = n then 

Ty(v1, ••• , V,.I. E)M = q. (VI' .. V,. [M,.]) . 

The duality formula, in the case of "virtual submanifolds", becomes 

y,.-rT!(v1.···, vrl. E)M = (-I),.-rTy(v1,···, vrl, E*)M' (16) .. 
Theorem 12.3.3. Let 11 be a C'·bundle over M,. with total CHERN 

class 1 + v. v E HI (M", Z) and let E be a GL(q, C)-bundle over M,.. 
Let VI' ... , Vr be elements of HI (M", Z). Then 

T,.(v1, ••• , vrl. E)M = T,,(Vl' ... , Vr' vi. E)M + T,,(Vl' ... , vrl, E ® 11-1)M + 
+ Y T,.(Vl' ...• Vr, vi. E ® 11-1)M . 

Proof: In formula (15) for the T,.-characteristic the expression in 
<XI 

square brackets [] contains the factor E T1(y; c1 (M,.), . .. ). This 
;=0 

factor is the same for each of the four T ,.-characteristics which occur in 
the equation to be proved. Similarly, each of the four terms contains the 

r 
factor II R(y; v,) and, since ch(y) (E ® 11-1) = ch(y) (E) ch(,.) (11)-1, the 

i-I 

factor ch(,., (E). It is therefore sufficient to prove the equation 

1 = R (y; v) + ch(y) (11-1) + y R (y; v) ch(,.) (11-1) . 

But ch(y'(11-1) = e-(1H)" and therefore this equation follows from 11.1(2). 

Consider the special case of 12.3.3 in which l' = 0 and j: V,._1 -+ M,. 
is the embedding of an almost complex submanifold of M,.. Let 
v E HI (M,., Z) be the cohomology class determined by V,._1 and let 11 be 
the C*-bundle with CHERN class 1 + v. Then by Theorem 12.3.1, 

Ty(M,.. E) = T,. (Y..-l' j* E) + Ty(M,., E® 11-1) + yTY (Y..-l,j*(E® 11-1» (17) 
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and, equating coefficients, 

T'(M,., E) 
= T'(v,,-I,j* E) + T'(M,., E ® 11-1) + T,-I(Y,,_I,j* (E ® 11-1)). (18) 

In (18) it is understood that P (M,., E) = 0 for p < 0 and p > n, and that 
P(V"_I,j* E) = 0 for p < 0 and p > n - 1. Formula (4) of 12.1 is a 
special case of (18). 

§ 13. Split manifolds and splitting methods 

13.1. The discussion in this section is valid for continuous, differen
tiable or complex analytic bundles (cf. 3.1, 3.2). It is to be understood 
in these cases that X is respectively a topological space, differentiable 
manifold or complex manifold. 

Let E be a GL(q, C)-bundle ('ver X. We consider a principal bundle L 
over X associated to E with G L (q, C) as fibre and construct the fibre 
bundle 

E = L/~(q, C) [cf. 3.4. b) and 4.1. a)] 

with the flag manifold F(q) = GL(q, C)/~(q, C) as fibre: 

9': E -+ X, fibre F(q) . (1) 

The tangent principal bundle of the complex manifold F (q) will be 
denoted by T (q) : 

T(q) -+ F(q), fibre GL(m, C) . (2) 

Here m = q(q - 1)/2 is the complex dimension of F(q). 
The group GL(q, C) operates by left translation on F(q) and hence 

also in a natural way on T (q). The method of 3.2. d) therefore allows us to 
construct, from the action of GL(q, C) on the cartesian product L xT(q), 
a fibre bundle (f(q) associated to E: 

(f(q) -+ X, fibre T(q) . (3) 

(f (q) is a principal bundle over E with G L (m, C) as fibre. The result is 
the following commutative diagram in which each arrow is the projection 
map of a fibre bundle. 

(f (q) fibreGL( .... '\ E 

_~xl-F" (4) 

Over each point of X the situation is as in (2). 
The G L (m, C)-bundle over E which is associated to the principal 

bundle (f (q) will be denoted by Ed and called the "bundle along the 
fibres F (q) of E". 
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The bundle rp. E over E admits the group .l!f (q, C) as structure group 
in a natural way (Theorem 3.4.4). By 4.1. c) this defines an ordered 
sequence EI, E2, ••• , E" of q diagonal C·-bundles over E. 

Theorem 13.1.1. In terms of the above notations: The GL(m, C)
bundle Ed over E admits .l!f (m, C) as structure group in such a way that the 
m diagonal C·-bundles are the bundles Ei ® Erl (i > j) in the following 
order: Ei ® Erl is before Ei' ® EFI if either j > j' or (j = j' and i < i'l. 

The proof will be by induction on q. The theorem is trivial for q = 1. 
a) Construct the fibre bundle X = LjGL(I, q - 1; C). The fibre of X 

is the complex projective space P,,_dC), since by 4.1. a), 

~(1, q - 1; C) = P"-I(C) = GL(q, C)jGL(I, q - 1; C). (5) 

A matrix of GL(I, q - 1; C) has the form [see 4.1. a)] 

_ (II 1111' ... ' a..) 
A- . 

o A" 

The homomorphism h: GL(I, q - 1; C) -+ GL(q - I, C) which as
sociates to AEGL(I,q-l;C) the matrix A"EGL(q-l,C) maps 
.l!f(q, C) on to .l!f(q - I, C). Therefore 

GL(1. q - 1; C)j.l!f(q, C) = GL(q - I, C)j.l!f(q - I, C) = F(q - 1). (6) 

b) Clearly E is a fibre bundle over X with 

F(q - 1) = GL(I, q - 1; C)j.l!f(q, C) 

as fibre and G L (1, q - 1; C) as structure group [cf. 3.2. c)]. Since the 
kernel of the homomorphism h: G L (1, q - 1; C) -+ G L (q - 1. C) 
operates trivially on F(q - 1) it follows [cf. (6)] that E admits the group 
GL(q - I, C) as structure group in a natural way. 

If X is a point then E = F(q), X = P,,-dc). In this case the conclu
sion is that F(q) is a fibre bundle over P"_I(C) with F(q - 1) as fibre 
and GL(q - I, C) as structure group: 

:n: F(q) -+ P._1(C), fibre F(q - 1) . (7) 

There is a commutative diagram 

E fibreF(q-l) X
- ~ .. 

-~xl-PN~ 
Over each point of X the situation is as in (7). 

(8) 

c) The structure group of ,,* E can be reduced to GL(I, q - I, C) 
in a natural way; let 7J be the resulting C·-sub-bundle over X and let t 
be the G L (q - I, C)-quotient-bundle over X. The fibre bundles E and X 
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over X are both associated to ~. while the fibre bundle E over X is 
associated to ~. The bundle ;p. ~ over E admits d (q - 1. C) as structure 
group in a natural way. The corresponding diagonal C··bundles are 
given by the sequence ~t. ~3' •••• ~II' Moreover ip·fJ = ~1' 

d) Now consider the principal tangent bundle T of the complex 
manifold PII- 1 (C): 

T -+ PII-dC}. fibre GL(q - 1. C) . (9) 

The group G L (q. C) operates on PII- 1 (C) and hence also in a natural 
way on T. It can be shown that GL(q. C} operates transitively on T; 
that is. given any two points Yl' Yz of T there is an element of GL(q. C) 
which sends Yl to Y •. Therefore T can be represented as a quotient space 
GL(q. C)/H of GL(q. C). where H is the subgroup which leaves fixed 
a given point Yo of T. If an element of GL(q. C) leaves Yo fixed then it 
must also leave fixed the whole fibre of (9) through Yo' We represent 
PII- 1 (C) as a quotient space by (5) and choose as Yo a point which lies in 
the fibre of (9) over the point of PII- 1 (C) corresponding to the coset 
GL(I. q - 1; C). The required group H is then a subgroup of 
GL(I. q - 1; C) and it is now easy to show that H is actually the sub
group of matrices of the form 

( 
a all ..... all) 
o aI 

• I = identity matrix. 

H is a normal subgroup of G L (1. q - 1; C). and is the kernel of the 
homomorphism GL(I. q - 1; C) -+ GL(q - 1. C) which. in the nota
tion of a). maps A to a-I A". Now dividing the "numerator and de
nominator" of (5) by H we obtain 

(G L (q. C)/H)/(G L (1. q - 1; C}/H) = PII- 1 (C) . 

It follows that (9) is identical to the fibre bundle given by 

T = GL(q. C}/H -+ (GL(q. C}/H)/(GL(l. q - 1; C}/H). (9·) 

e) From the principal bundle L over X we can construct the space 
L/H. There is a commutative diagram 

L/H fibreGL(q-I,C) ) X 

fib~ /'ep._.(c) 

X 

Over each point of X the situation is as in (9). 
L/H is a principal bundle over X. By c) and d) it is associated to the 

bundle fJ- 1 ® ~ over X. We call fJ-1 ® ~ the "bundle along the fibres 
Pq - 1 (C) of X" [see (8)]. 
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f) We now carry out construction (1)-(4) for the GL(q - 1. C)
bundle E over X. marking everything which arises from E by adding 
a bar. Thus let in = (q - 1) (q - 2)/2. Then m = q(q - 1)/2 = in + 
+ (q - 1). It is easy to show that the structure group of the GL(m. C)
bundle E" [bundle along the fibres F (q) of E] can be reduced to the 
group G L (in. q - 1; C) so that E" [bundle along the fibres F (q - 1) of E] 
is the corresponding subhundle and ;p. (11-1 GD e) the corresponding 
quotient bundle. Here 11-1 GD e is the bundle along the fibres p.-l (C) 
ofX. 

We assume that the theorem is proved for q - 1. The diagonal C·
bundles of ;p. e are EI •...• E. in that order. Therefore E" admits the 
group Lt (in. C) as structure group in such a way that the diagonal 
C·-bundles Ei GD Erl (i > j ~ 2) are in the order given by the statement 
of the theorem. But 

;p. (11-1 GD E) = Ell GD ;p. e . 
Therefore ;p. (11-1 GD E) admits the group Lt (q - 1. C) as structure group 
with the diagonal C·-bundles 

E. ® Ell ••..• E. ® Ell. 

This completes the proof for q. Q. E. D. 

13.2. Theorem 13.1.1 holds in the complex analytic case. Since this 
fact will be particularly important in the sequel. we restate it as a 
separate theorem. 

Theorem 13.2.1. Let X be a complex manifold. E a complex analytic 
GL(q. C)-bundle over X. and L a complex analytic principal bundle 
over X associated to E. Consider the fibre bundle E = LILt (q. C) with the 
flag manifold F(q) = GL(q. C)/Lt(q. C) as fibre: 

qJ: E -+ X. fibre F(q) . 

E is a complex manifold and qJ is a holomorphic map of E on to X. The 
structure group of the complex analytic bundle qJ* E can be complex analyti
cally reduced to the group Lt(q. C) in a natural way. Let El • EI •.••• Eq (in 
that order) be the q diagonal complex analytic C·-bundles. The bundle E" 
along the fibres of (1*) is a complex analytic GL(m. C)-bundle 
[m = q (q - 1)/2]. whose structure group can be complex analyticaUy reduced 
to Lt (m. C); in this case the m diagonal complex analytic C·-bundles are 
the bundles Ei ® Erl (i > j) in the order specified in Theorem 13.1.1. 

Remark: The proof of Theorem 13.1.1 given in the previous section 
is direct. but left a number of details to the reader. It has been pointed 
out by A. BOREL that the fact that the structure group of the bundle E" 
can be reduced to Lt (m. C) follows immediately from a theorem of LIE. 
The statement of the theorem (see for instance C. CHEVALLEY: Theorie 
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des groupes de Lie, Tome III. Paris: Hermann 1955, especially p. 100 
and p. 104) is: 

Let H be a solvable connected complex LIE group and e : H _ G L (m, C) 
a holomorPhic homomorphism. Then 'here is an element a E G L (m, C) 
such ,hat a e(H) a-lc~(m, C). 

The statement about the structure group of EiJ is deduced as follows. 
Let eoEF(q) = GL(q, C)/~(q, C) be the point corresponding to the coset 
~(q, C). The group GL(q, C) operates on F(q), and ~(q, C) is the isotropy 
group of eo [i. e. the subgroup consisting of all elements of GL(q, C) 
which leave eo fixed]. ~ (q, C) operates on the contravariant tangent 
space C ... (eo) of eo E F(q) and this operation defines a holomorphic homo-

morphism ~(q, C) - GL(m, C), m = ! q(q - 1). Since if(q, C) is solvable 

the theorem of LIE implies that there is in Cm (eo) a flag of linear sub
spaces Lo C Ll C .•• C L .. = C .. (eo) such that each Ll is mapped into 
itself by every element of the group Lt (q, C), i. e. the flag is invariant 
under the operation of the group. Now GL(q, C) operates transitively on 
F(q) so that the flag can be transplanted to any point of F(q). This 
transplanting is unambiguous because the flag remains invariant under 
the operation of the isotropy group. The conclusion is that F (q) admits 
a tangential complex analytic field of flags which is left invariant, i. e. 
goes over into itself under the operations of GL(q, C). The required 
statement about EiJ now follows. For generalisations of Theorem 13.1.1 
and for its connection with the theory of roots of LIE groups we refer to 
BOREL-HIRZEBRUCH [1]. 

13.3. Let X be a (differentiable) almost complex manifold of complex 
dimension nand E a differentiable GL(q, C) bundle over X. The con
struction of 13.1 yields a differentiable manifold E which is a fibre bundle 
over X with fibre F (q) and differentiable projection map tp: E _ X. 
It is clear that E admits an almost complex structure, whose tangent 
GL(n + m, C) bundle 6(E), m = q(q - 1)/2, has the "bundle along the 
fibres" ,iJ as subbundle and the bundle tp. B (X) as the corresponding 
quotient bundle. Let Ei (i = I, ... , q) be the diagonal C·-bundles of 
tp. E over E, and let c(EI) = 1 + 'Yi' 'Yi E /fI(E, Z). Theorem 13.1.1 
implies that the total CHERN class of E is given by 

c(E) = tp. c(X) n (1 + 'Yl - 'YI) . (10) 
f01;i>i01;l 

If in particular E is chosen as the tangent bundle 6 (X) of X we denote 
the almost complex manifold E by XiJ. In this case tp. E = tp.6(X) 
admits the group ~ (n, C) as structure group, the corresponding n 
diagonal C·-bundles are El , ••• , E., and B(E) admits the group 
~ (n (n + 1)/2, C) as structure group with the n(n + 1)/2 diagonal bundles 
Ei. Erl, EI , ••. , E. (n ;E; i > j ;E; 1). The total CHERN class of XiJ is 
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therefore given by 
" 

C(Xd) = II (I + i'~) II (I + i'~ - iIi) . (11) 
i=1 "~'>i~1 

13.4. The discussion of the previous section can be carried over to the 
complex analytic case. Let X be a complex manifold of complex dimen
sion n with complex analytic tangent bundle () (X) and let ~ be a complex 
analytic G L (q. C)-bundle over X. Then E is in a natural way a complex 
manifold of dimension n + m, m = q(q - 1}/2. and cp: E -+ X is a 
holomorphic map. E is a complex analytic fibre bundle over X with 
fibre F (q) and projection map cp. The complex analytic tangent 
GL(n + m, C)-bundle O(E) admits GL(m, n; C) as structure group in a 
natural way, since E admits a complex analytic field of complex m
dimensional plane elements (the field tangent to the fibres of E). The 
complex analytic subbundle is the GL(m, C}-bundle ~d, and the 
corresponding complex analytic quotient bundle is the GL(n, C)
bundle cp* ()(X). The CHERN class of the complex manifold E is given 
by (10). In the special case in which ~ = o (X) we again write E = X.1. In 
this case both the subbundle ~.1 and the quotient bundle cp* ~ = cp* () (X) 
admit the corresponding group of triangular matrices as complex analytic 
structure group. This shows that the structure group of the complex 
analytic bundle O(X.1) can be reduced complex analytically to the 
group if (n(n + 1}/2, C), and that the corresponding n(n + 1}/2 diagonal 
C*-bundles are ~l @ ~rl, ~1' ••• , ~,. (n ~ i > j ~ I). If C(~l) = 1 + ill 
then the total CHERN class of X.1 is given by (11). 

13.5. a) An almost complex manifold X of complex dimension n is 
called a split manifold if the (differentiable) tangent G L (n. C)-bundle 
o (X) admits the group if (n, C) of triangular matrices as structure 
group. This defines n diagonal bundles ~1' •••• ~,. E HI (X, C:) and in fact 
o (X) is the WHITNEY sum of the bundles ~i' Ifc(~~} = 1 +ai. a, E HZ (X, Z) 
then 

" c (X) = II (1 + ai) . (12) 
i-I 

b) A complex manifold X of complex dimension n is called a complex 
analytic split manifold if the complex analytic G L (n, C)-bundle 0 (X) 
admits the group if (n. C) of triangular matrices as complex analytic 
structure group, i. e. () (X) is an element in the image of the map 

Hl(X, if(n, C) .. ) -+ H1(X, GL(n, C) .. ), 

This defines n diagonal bundles ~1' . , ., ~,. E H1(X, C!), In general O(X) 
is not the complex analytic WHITNEY sum of ~1' ' , " ~,., Nevertheless, 
if all bundles are regarded as continuous (or differentiable) bundles, 
then 0 (X) is the WHITNEY sum ~1 E9 ' . , E9 ~,., The CHERN class of X is 
therefore given by (12), 



106 Chapter III. The TODD genus 

The process described in sections 13.3 and 13.4 therefore associates to 
each almost complex manifold X an (almost complex) split manifold X". 
and to each complex manifold X a complex analytic split manifold X". 
This fact will be of decisive significance in the sequel. It will appear 
that certain theorems hold for X whenever they hold for X". and there
fore need to be proved only in the case that X is a split manifold. 

13.6. Let X be a compact almost complex split manifold of complex 
dimension n. We use the notations of 13.5 a) and derive a formula which 
will imply that the TODD genus T(X) can be expressed in terms of 
virtual indices: .. 

(1 + y)" T(X) = 1: yl 1: T,,(ai, • ... , ai.)X . (13) 
1=0 1;:;;"<"'<":;;;" 

For the proof we recall the definition of the virtual T,,-genus in 
11.2 (7). apply (12), and obtain for the right hand side of (13) 

"" L4; (I + yR(y; ai» .rt Q(y; ail] 

= "" [.n (Q(y; ail + aiY)] 
1= I 

[ " (I + ,,) 4, ] 

= "" l!1 I-exp(-(I +,,) 4,) 

= (I + y)" "" [.n I-e':;(-a,)] = (I + y)" T (X) . 
I-I 

For y = I the virtual T,,-genus becomes the virtual index: 
.. 

2"T(X) = 1: 1: T(ai" ... ,ai,)x. (13·) 
1=0 1;:;; .. <"'<";:;;" 

Since the virtual index is an integer (Theorem 9.3.1) a corollary is 
Theorem 13.6.1. The TODD genus of a compact almost complex split 

manifold multiplied by 2" is an integer. 
Formula (13) can be generalised to apply to the virtual T-genus. 

If bl , ••• , br E HI (X, Z), (r ~ n), then 

(1 + y),,-r T(bl , bl' ... , br)x (14) 

= "" L~ R (y; bi) {I + y R (y; bi»-l; if. (1 + Y R (y; ai »" i!,. Q (y; all)] 

This formula, and the definition of the virtual T,,-genus. imply that 
(1 + y)',,-r T(bl • ••.• br)x can be expressed as a sum of terms each of 
which is a virtual T,,-genus multiplied by a polynomial in y with integral 
coefficients. If y = 1 then 2,,-r T(b1 • ••• , br)x is expressed as a sum of 
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terms each of which is an integral multiple of a virtual index. This 
proves: 

Theorem 13.6.2. Let X be a compact almost complex split manifold, 
and let bl , ... , br be elements of HI (X, Z). The virtual TODD genus 
T(b1, ••• , br)x multiplied by 2,,-r is an integer. 

§ 14. Multiplicative properties of the TODD genus 

14.1. Some algebraic remarks: Let K be a field of characteristic 0, 
and let c1, ••• , c" be indeterminates. We consider the field K(c1, ••• , c,,) 
and an indeterminate x, and adjoin elements 1'1' .. " 1'" to K(cl , • , " c,,) 
such that 

1 + c1 X + ... + c" x" = (1 + Y1 x) .. , (1 + 1'" x) . 

The field K(cl , , .. , c,,) (Yv ... , y,,) is then an algebraic extension of 
K(c1, ... , c,,) of degree n!. The n! elements r~' r:- ... r:-.~1 (0 ~ at ~ 
~ n - i) form an additive basis for the extension field. It is easy to 
prove the following lemma: 

Lemma 14.1.1. Every formal power series P in Yl' ... , y" with 
coeDicients in K can be expressed uniquely in the form: 

(1) 

where the ell,a, .. . a._, are formal power series in cl , ••. , c" with coef
ficients in K. If P has integer coeDicients then each ea,a, .. . ~_, has integer 
coeDicients. 

We define the "indicator" e (P) by 

e(P) = (-1),,(,,-11/1 e"-l,"-I, ... ,l' 

If s: (Y1' I'll' ... , 1',,) ~ (ri" ri" ... , Yi .. ) is a permutation there is an 
expression corresponding to (1) 

P = ~ (s) .. ,... ~-, 
~ e .. , ...... ~_, 1';, ri, ... ri .. -, 

0:;;11.:1011-. 

and the s-indicator of P is defined by 

e(')(P) = (-I)'&(n-1)/1 e~~l'''-I'.'''l' 

(1, s) 

The nl elements 11.,.' ~" ... Y,~-' (0 ~ ai ~ n - i) form another 
\ I II-I 

basis for the extension field, and it is clear that all of these elements have 
indicator 0 with the exception of y;:-l r;.-a ... 1'1.-, which has indicator 
± 1. Therefore 

e(')(P) = e(s(P») = ±e(P) (2) 

where s(P) denotes the power series got by applying the permutation s 
to P. 
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Lemma 14.1.2. 11 P remains invariant under the interchange 01 1't 
and 1'110f' some i * j then the indicator e (P) 01 P is zero. 

Proof: It is sufficient to prove the lemma for P a polynomial. 
Suppose that P remains invariant under the interchange of 1't and 1'1' 
(i * j). By (2) we can assume, without loss of generality that i = n - 1, 
j = n. Now GALOIS theory implies that P is an element of the field 
extension of K (c1, cI ' ••• , clI) generated by 1'1' ... , 1'11_1' Therefore the 
indicator e (P) is zero. 

CorolJary: Let s be the permutation (1'1' 1'., ... , 1'11) -+ (1'1,' 1'1.' ... , 
1'1.)' Then 

e(1'r-1 1';-1 ... 1'11-1) = sign(s) • e(s(1'r-1 1';-1 ... 1'11-1»' (3) 

Proof: It is sufficient to prove (3) for the case where s is an inter
change (i,j). In this case 

1'r-1 1':-1 ... 1'11-1 + 1'r.-1 1'r.-1 ... 1'1.-, 

remains invariant under s, and the result follows from Lemma 14.1.2. 
It is now easy to give a formula for e(P). By (2) and (3) 

e (P) = sign (s) • e(l) (P) = sign (s) • e(s (P» . (2·) 
This implies 

nl e(P) = e(f sign(s)· s(P») (4) 

where the summation is over all n I permutations s. The expression 
E sign (s) • s (P) is clearly alternating. The quotient 
• 

q(P) = (E sign(s) . s(P»)/ .II (1't - 1'/) 
s t>f 

is therefore symmetric and hence a power series in C1, ••• , Cfl' This gives 

n! e(P) = e (.II.(1'i - 1'/»)' q(P). 
t>I 

(4·) 

If P = 1'r-1 1':-1 ... 1'11-1 then e(P) = (-1)11(11-11/1 and 

E sign(s) . s(P) = (-1)"("-1)/1 II (1't - 1'/) . 
s t>; 

Now (4) implies that e ( II (1't - 1'/») = n I and (4·) then gives the 
i>1 

required formula for an arbitrary power series P: 

e(P) = (E sign(s) • s(P»)/.II(1't - 1'/) . 
, '>1 

Lemma 14.1.3. Let P = II /,'-'1') l' Then n(p) = 1. 
t>; exp '1,-'1, - c:: 

Proof: Let 2a = E (1" - 1'/)' Then by 1.7 
i>i 

P - e8 II '1, - '11 
- i>i 2 sinh ('1'- '1/)/2) 

(5) 
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and by (5) 

e(P) = (l: sign(s) e.(G»)/.IJ:2sinh«(Yi - Y/)/2). 
• '>1 

Let Xi = exp(- Yi/2). Then 

eG(x x ) .. -1 - (XIl) .. -1(XI ) .. -1 x. l' .... - 1 • . .. n-1 
and 

2Xi XI sinh ((Yi - Y/)/2) = xJ - xf· 
The result now follows (VANDERMONDE determinants). 
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14.2. We now return to the flag manifold F(n) = GL(n. C)/LJ(n. C). 
Theorem 13.2.1. with X a point. shows that F(n) is a complex analytic 
split manifold. The (total) CHERN class of F (n) is 

c(F(n)) = II (1 + Yi - Y/) . (6) 
»; 

The elements Yi E H" (F (n). Z) satisfy c (~» = 1 + Yi (see 13.2) and 
.. 

II (1 + Yi) = 1 . (7) 
i -= 1 

According to BOREL [2] the cohomology ring H*(F(n). Z) is generated 
by the Yi with (7) as the only relation: 

H*(F(n). Z) = Z[Y1' ...• Yn]/I+(c1 • •••• cn) 

where Y1' ..•• Y .. are regarded as indeterminates and where J+ is the 
ideal generated by the elementary symmetric functions c1• •••• c .. 
in the Yi' Applying the results of 14.1 we see that the n I elements 
11''';' ... r:---i. 0 ~ ai ~ n - i. form an additive basis for the co
homology ring H*(F(n). Z). A polynomial P in the Yi with integer 
coefficients defines an element of the cohomology ring. To express this 
element in terms of the given basis use the expression (1) obtained in the 
previous section: the coefficients e in (1) are equal to their constant 
terms modulo the ideal J+. 

The EULER-POINCARt characteristic of F(n) is n! since H*(F(n). Z) 
contains only elements of even degree. Therefore (6) and Theorem 4.10.1 
imply that 

nl = II (Yi - Y/) [F(n)] . 
»i 

(8) 

In 14.1 it was shown that e (II (Yi - Yi)) = n I. Therefore 
»i 

(_I)n("-l)/1 yr-1 y:-s ... y .. -1 is the generator of H"'(F(n). Z). 
m = n(n - 1)/2. determined by the natural orientation of F(n). 

Finally Lemma 14.1.3 and (6) give the TODD genus of F (n) : 

T(F(n» = 1 . 
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14.3. We now return to the situation discussed in 13.3. 

Theorem 14.3.1. Let e be a differentiable G L (q, C)-bundle over a 
compact n-dimensional almost complex manifold X and let L be a principal 
bundle associated to e. The fibre bundle E = L/LJ (q, C) has the flag manifold 
F (q) as fibre and can be regarded in a natural way as an almost complex 

manifold of dimension n + ! q (q - 1). Let C be a G L (I, C)-bundle over X 

and let q; : E -+ X be the projection. Then the T-characteristic of C satisfies 

T(E, q;* C) = T(X, C) T(F(q» = T(X, C) . (9) 

Let bl , ... , b, E HI (X, Z). Then the virtual T-characteristic satisfies 

T(q;* bl , ... , q;* brl, q;* C)B = T(b l , ... , brl, Ch . (10) 

Proof: Since (9) is a special case it is sufficient to prove (10). Let 
q 

c(q;* e) = 1 + q;* CI + ... + q;* Cll = II (1 + Yi) and let m = q(q - 1)/2. 
i= 1 

Then the definition of the virtual T-characteristic, 12.3 (15), together 
with 13.3 (10) gives 

T(q;* bl , ... , q;* brl, q;* C)B 

= "n+m [q;* (ChC' ;, (1 - e-bl) • td (X)) II ( 1'1 - 1'i 1]' 
i=1 i>i exp 1'1-1'1 -

We denote the first factor q;* ( ) of the expression in [ ] by q;. A and 
the second factor II by P. Now apply the algebraic remarks of 14.1 

'>i 
with n replaced by q and the indeterminates cl , ••• , Cn replaced by 
q;* cl , ... , q;* cq • Then Pis ofthe form 14.1 (1). The coefficients ea,a, ... a,_, 
are polynomials in q;* cl , ••• , cp* cV' We have to take the terms of complex 
dimension n + m in cp*(A) • P and note that any term of the form cp* x 
with x E H* (X, Z) ® g is zero if it has complex dimension> n. Therefore 

"n+ m [q;* (A) . P]B = "n+m [( - l)m cp* (A) . l! (P) y~-I y~-a ... I'll-I] . 

Now by Lemma 14.1.3, l! (P) = I, and by 14.2 the restriction of 
(_I)m yi- I yg-2 ... YIl-I to a fibre F(q) is the natural generator of 
Hm(F(q), Z). Therefore "n+m [q;* (A) • P]B = ",,[AJx and the proof of 
(10) is complete. 

Formulae (9) and (10) imply respectively that the TODD genus of X 
is equal to that of E, and that the virtual TODD genus of (bl , ... , b,) in X 
is equal to that of (cp·-b1, ••• , q;* br ) in E. If X is an arbitrary compact 
almost complex manifold we can choose E to be the split manifold X,J 
(see 13.3). Therefore Theorems 13.6.1 and 13.6.2, together with Lemma 
1.7.3 imply 
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Theorem 14.3.2. The TODD genus of a compact almost complex mani
fold X muUiplied by 2" is an integer. More generally the virtual TODD genus 
of (bl •...• br). bi EH'(X. Z). muUiplied by 2"-r is an integer. 

14.4. Formula (10) of Theorem 14.3.1 can be generalized: 

T,,(tp* bl •••• tp* brl. tp* C)g = T,,(b l •• ..• brl. C) • T,,(F(q». (10*) 

In the proof of Theorem 14.3.1 it is sufficient to generalise Lemma 
14.1.3 as follows: 

Let Y be an indeterminate over the field of rationals. and replace the 
groundfield K of 14.1 by the ring of polynomials in Y over the rationals. 
If we let 

p= llQ(Y;'1i-'1/). 
t>; 

• ~(Y + 1) 
where Q(y. x) = l-exp(-~(y + 1» - xy. then 

1-(-I)"y· 1-(_1)·-1 y"-1 l-yl 
e(P) = 1 + y. 1 + y •.. T+"Y. (11) 

Therefore T,,(F(n) is precisely the formula given in (11). that is 

T,,(F(n» = T,,(p,,_,(C)' T,,(P,,_a(C» ... T,,(PI(C». 

More generally let {KI(cl • ...• cln be an m-sequence with charac
teristic power series B(x) = K(1 + x). Then the proof of Theorem 14.3.1 
can be used to prove the equation 

K(E) = K(X)· K(F(q» 

provided that e ( II B('1i - '1/)) is an element of the groundfield. 
90;:<>;0;:1 

and so independent of CI • •••• cll• It is then clear that this element is 
equal to K(F(q». (We are using the notations of 14.1. with n replaced 
by q.) 

The T,,-genus. as a genus in the sense of 10.2. has the property 

T,,(V X W) = T,,(V) T,,(W) . 

By (10*). if E is a fibre bundle over X with the flag manifold F(q) as 
fibre then the T,,-genus behaves multiplicatively 

T,,(E) = T,,(X) T,,(F(q» . 

This raises the question: for what fibre bundles E over X with a 
given fibre F is it true that T,,(E) = T,,(X) T,,(F)? It is naturally 
assumed that E. X. F are compact almost complex manifolds and that the 
fibration is "compatible with the almost complex structures". We give 
a special case in which the T,,-genus does behave multiplicatively: 
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Let E be a differentiable G L (q. C)-bundle 0fIe1' a compact almost complex 
manifold X. and let L be a princiPal bundle associated to E. E' = 
L/GL(I. q - I; C) is a fibre bundle 0fIe1' X 'With fibre P9-1(C) associated 
to L, and has a natural almost complex structure. Then T,,(E') = 
T,.(X) T" (P9-dC». 

Proof: E = L/tJ(q. C) is a fibre bundle over E' with F(q - I) as 
fibre [see 13.1 (8)]. Since T,. behaves multiplicatively for fibre bundles 
with ftag manifolds as fibre 

T,.(E) = T,.(X) T,.(F(q» and T,.(E) = T,.(E') T,.(F(q - I». 

But T,.(F(q»= T,,(F(q-l» T,.(P9-1 (C» and therefore [since T,,(F(q- I» 
starts with I] 

T,,(E') = T,,(X) T,,(P9- 1(C». (12) 

For further results on multiplicative properties of the T,.-genus we 
refer to BOREL-HIRZEBRUCH [I]. 

Bibliographical note 
The analogue for almost complex manifolds of the cobordism ring is due to 

MILNOR [3]. It can be defined using the concept of weak complex structure (BoRBL
HUWtBRUCH [1]. Part III). A weak complex structure of a real vector bundle E 
consists of a trivial bundle ex and a complex structure for E ED ex, i.'. a complex 
vector bundle 'I and a specific isomorphism e('1) = EED ex (see 4.5). A compact 
differentiable manifold X is weakly almost complex if its tangent bundle .0 has 
been endowed with a weak complex structure. In this case e('1) = pfJED ex and e('1) 
is called the total CHERN class of the weakly almost complex manifold X. The weak 
complex structure induces an orientation on X and the integers e,. e'l' .. c'" [X]. 
2(i,. + i l + . " + i,) = dimX are called the CHBRN numbers of X. 

The definition of weakly almost complex extends to manifolds with boundary 
and can be used to define an equivalence relation V ,.., W between weakly almost 
complex manifolds. The equivalence classes form the complex cobordism ring r. 
For a treatment which generalises immediately to other structures on manifolds see 
MILNOR [4]. Results of NOVIKOV and MILNOR [3] imply that V,.., W if and only 
if V. W have the same CHBRN numbers. In particular the TODD genus T(V) is an 
invariant of the complex cobordism class of V. 

MILNOR [3] proves that r is isomorphic to Z [}'1. }'I' ••• ]. An isomorphism 
Z [YI' }'I' ••• ] -+- r is given by associating to }'. a compact almost complex manifold 
Y. satisfying the following conditions: 

Y. has tangent GL(n. C)-bundle 0 and. in the notation of 10.1. 

s(Y.) = s.(O) [Y.] = ± 1 if n + 1 is not a prime power, 
s(Y.) = s.(O) [Y .. ] = ± IJ if n + 1 is a power of the prime IJ. 
In fact the manifolds Y .. can always be chosen to lie in a particular set generated 

by taking inverses. sums and products of manifolds of the following type (HIRZE
BRUCH [6]): complex projective spaces P,(C) for which s(P,(C) = f' + 1. and 
hypersurfaces Bt.." of degree (1.1) in P,(C) x P,(C). f' > 1.' > 1. for which S(Bt.,II) 

= - ('"!"). Thus it is possible to choose generators Y. of rwhich are linear combina-
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tions of algebraic manifolds. The manifolds Yu provide generators for the torsion
free part {) of the cobordism ring D (see the bibliographical note to Chapter Two). 

It is a corollary of Theorem 20.2.2 that the TODD genus is an integer for every 
algebraic manifold. and hence for every linear combination of algebraic manifolds. 
So the above results imply that T (X) is an integer for every compact almost 
complex manifold X. The second part of Theorem 14.3.2 holds similarly without 
reference to 2"-r. and can be generalised to include the T .. -characteristic of a 
continuous GL(q. C)-bundle ~ over X: the virtual T .. -characteristic T .. (b1 • •••• hrl.~). 
h, E HI (X. Z). is a polynomial in y with integer coefficients. For further integrality 
theorems. which can be deduced from the integrality of the TODD genus. see Parts II 
and III of BoREL-HIRZEBRUCH [1]. For another approach to the integrality theo
rems for arbitrary differentiable manifolds see ATIYAH-HIRZBBRUCH [1.2] and the 
appendix (§ 26). 



Chapter Four 

The RmMANN-RocH theorem for algebraic manifolds 
In this chapter V is a complex n-dimensional manifold. The proof of 

the RIEMANN-RocK theorem depends on results on compact complex 
manifolds which are due to CARTAN. DOLBEAULT. KODAIRA. SERRE and 
SPENCER. These results are summarised in § 15. At two points in the 
proof it becomes necessary to make additional assumptions on V: first 
that V is a KAHLER manifold (15.6-15.9) and then that V is algebraic. 

§ 15. Cohomology of compact complex manifolds 
15.1. Let W be a complex analytic vector bundle over V. and let 

.o(W) be the sheaf of germs of local holomorphic sections of W (see 3.5). 
The cohomology groups of V with coefficients in D (W) will be denoted 
more shortly by H'(V. W). The groups H'(V. W) are complex vector 
spaces. It will be shown that they are zero if i is greater than the complex 
dimension of V and that they are finite dimensional over C if V is 
compact. If W. W' are isomorphic vector bundles then D(W). D(W') 
are isomorphic sheaves and it follows that the cohomology groups 
H'(V. W). H'(V. W') are isomorphic. (For this reason isomorphic 
vector bundles will often be identified.) 

The trivial line bundle is denoted by 1. The sheaf D(I) is just the 
sheaf C .. (see 2.5 and 3.1) of germs of local holomorphic functions on V; 
it will also be denoted by D. 

H°(V. W) is the complex vector space of all global (i. e. defined on 
the whole of V) holomorphic sections of W. In particular. H°(V.l) 
is the vector space of all holomorphic functions defined on the whole of V. 
The dimension of H°(V. 1) is equal to the number of connected com
ponents of V if V is compact. 

15.2. Consider the sheaf C: of germs of local holomorphic never zero 
functions on the complex manifold V (see 2.5). The complex analytic 
C·-bundles over V form the abelian group H1 (V C:) in which the 
addition is given by tensor product of bundles (see 3.7). 

A divisor D of V is traditionally defined by a system {M of mero
morphic "place functions" on V: 

Let U = {U.}iEl be an open covering of V. For each i E I let f. be a 
tne1'omorphic (not identically zero) function defined on U, such that on 
U. f"\ Ul the function /,/11 has neit. zeros nor poles. 
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It is then necessary to state under what circumstances two such 
systems of meromorphic functions define the same divisor. This can of 
course be done in the usual way. Alternatively, the divisors of V can be 
defined by means of sheaves: 

Let ~ be the sheaf of germs of local meromorphic (not identically 
zero) functions. The sheaf multiplication in ~ is the usual multiplication 
of germs. C: is a subsheaf of ~ and so there is a sheaf!S> = ~/C! defined 
by the exact sequence 

(1) 

The divisors are the elements of the abelian group H°(V, !S». We 
write this group additively: if U = {U i }'E1 is an open covering and 
D, D' are divisors defined by meromorphic functions Ii. /; on U i then 
D + D' is the divisor defined by the meromorphic functions /i /i on U i • 

The exact cohomology sequence of (1) gives 

H°(V, ~) ~ H°(V,~) !t H1(V, C!) . (2) 

HO(V,~) is the multiplicative group of meromorphic functions on V 
which are not identically zero on any connected component of V. A 
meromorphic function / E H°(V, ~) defines a divisor (/) = h I which is 
called the divisor of the meromorphic function /. Two divisors are said 
to be linearly equivalent if their difference is the divisor of a mero
morphic function / E H°(V, ~). It follows that the divisor classes (with 
respect to linear equivalence) are represented by elements 0/ the abelian 
group HO(V, !S»/hH°(V, ~). By the exactness of (2), this group is iso
morPhic to a subgroup 0/ H1(V, C!). 

If D is a divisor we denote by [D] the complex analytic C·-bundle 
(6: D) -1. The complex analytic line bundle determined, up to iso
morphism, by [D] is denoted by {D}. If D is represented, with respect 
to some open covering U = {Ui }, by meromorphic place functions /i 
then [D] is given by the cocycle 

til = Ii/Ii (/H: Ui (\ Ui - C·) . (3) 

A divisor D is said to .be holomorphic if it can be represented by place 
functions Ii which are all holomorphic. Clearly this property depends 
only on the divisor D. 

Remark: In the literature holomorphic divisors are called "non
negative" or, if at least one place function has zeros, "positive". We 
avoid this terminology because the word "positive" is given a different 
meaning in IS. 1. 

A holomorphic divisor D is said to be non-singular if, with respect to 
some open covering U = {Ui }, it is represented by place functions Ii 
with the property: 
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Either f, &i 1 or U, admits a system of local complex coordinates for 
which f, is one of the coordinates. 

Let D be a non-singular divisor and dim V = n. The set of all points 
" E V such that M") = 0 for at least one i with" E U,. and hence for all i 
with" E U,. is a complex manifold of dimension n - 1. We denote this 
complex submanifold by the same symbol D. in agreement with the 
terminology used in 4.9. 

Now let D be an arbitrary divisor of V defined by place functions f,. 
Consider the set L (D) of all meromorphic functions g on V for which the 
functions g I, on U, are holomorphic. Note that we do not require that 
gEflO(V. <i). The set L(D) depends only on the divisor D. Addition of 
meromorphic functions defines the structure of a complex vector space 
on L(D). We can now state the 

RIEMANN-RocH problem: DeteYmine the dimension of L(D). 
Theorem 15.2.1. Let D be a divisor of a complex manifold V. The 

complex "ector spaces L (D) and H°(V. {D}) are isomorphic. 
Proof: H°(V. {D}) is the vector space of global holomorphic sections 

of the line bundle {D}. Let D be represented. with respect to an open 
covering U = {UII}' by place functions f,. Then by (3) and 3.2 a) the line 
bundle {D} is got from U(U, X C) by identifying u X k E U1 X C with 

u X ~;~:~ k E U, X C for u E u. ('\ U1• A section s of {D} is given by 

holomorphic functions s" on U,I such that S, = ~: slon U" ('\ U1. Associate 

to s the global meromorphic function 

h (s) = !! = !L E L (D) . 
I, h 

Then the map h :H°(V. {D}) -+ L(D) is an isomorphism. 
Remark: Let IDI be the complex projective space associated to the 

vector space H°(V. {D}). It is obtained by identifying c a and a for 
a E H°(V. {D}). a =F O. c E c. c =F o. Then dim IDI + 1 = dim flO (V. {D}). 
The proof shows that. if V is compact and connected. the points of IDI 
are in one-one correspondence with the holomorphic divisors contained 
in the divisor class of D. 

Theorem 15.2.1 suggests a generalisation of the RIEMANN-RocH 
problem. Let W be a complex analytic vector bundle over V and let 
HO (V. W) be the vector space of holomorphic sections of W introduced 
in 15.1. 

Generalised RIEMANN-RocH problem: DeteYmine the dimension of the 
vector space flO (V. W). 

15.3. a). Let dim V = n and let AP T be the complex analytic vector 
bundle of covariant tangent p-vectors (see 4.7). Then T = Al T is the 
vector bundle of covariant tangent vectors and AO T is the trivial line 
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bundle. ,t" T is also a line bundle; it is called the canonical line bundle 
of V and denoted by K. 

If V admits a meromorphic n-fonn with divisor E then K is associated 
with the complex analytic C·-bundle [EJ, so that K = {E}. 

If W is a complex analytic vector bundle over V we shall also denote 
the cohomology groups H'l(V, W 0 ,tp T) by HM(V, W). Thus 

HO,'l(V, W) = H'l(V, W). 

15.3. b). Given a complex vector bundle W over V, the conjugate 
vector bundle Wover V can be defined by the following construction. Let 

gil: U, (\ Us -+ GL(q, C) 

be coordinate transfonnations which define W by identifications on the 
disjoint union U (Ui X C.). Then W is defined by coordinate transfonna
tions 

gij: Ui (\ Us -+ GL(q, C) . 

Here gii(X) E GL(q, C) denotes the matrix obtained from gii(x) 
by the conjugation of every coefficient. 

If W is complex analytic then W is no longer complex analytic, but 
is regarded as a differentiable vector bundle. As differentiable vector 
bundles W, Ware "anti-isomorphic". That is, there is a differentiable 
homeomorphism x : W -+ W which maps fibres W. into fibres W. such 
that 

x(a + a') = x(a) + x(a'), x(ca) = cx(a) for a, a' E W., c E C. 

In tenns of the local product structure U i X C.' the anti-isomorphism 
x: W -+ W can be represented by conjugation. Clearly, if W, W' are 
isomorphic vector bundles then so are the vector bundles W, W'. 

15.3. c). Let W be a differentiable vector bundle over X given, for 
some open covering U = {U,}, by differentiable coordinate transfonna
tions 

Iii: Ui (\ Us -+ GL(q. C) . 

Then the structure groups can be reduced to U(q). That is [see 4.1. b)]. 
there are differentiable maps 

hi: Ui -+ GL(q. C) 
such that 

hdx) Iii (x) hi' (x) E U (q) for x E Ui (\ Us· 

Let t denote transposition of matrices and define 

gi = Ii! hi: Ui -+ GL(q. C) • 

The dual vector bundle W· can be defined by the coordinate trans
fonnations 
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In terms of the local product structure U~ X CQ we can define an anti
isomorphism 

by 
,,(u X t) = u X g~(u) • t, u E U~, t E CQ • 

We call " the "hermitian" anti-isomorphism defined by the above 
reduction of the structure groups. " defines a hermitian metric on each 
fibre W. of W. The corresponding (positive definite) hermitian form is 
given by ,,(a) • a. Here a E W. and ,,(a) • a is the value of the linear 
form ,,(a) on a. Similarly there is a hermitian anti-isomorphism 
,,-I: W. _ W. 

15.4. In this section we sketch results on the cohomology groups 
HJ>,Il(V, W) due to DOLBEAULT [1,2], KODAIRA [3] and SERRE [3J. 

Let ~J>, II be the sheaf of germs of local differentiable differential 
forms of type (P, q) on the complex manifold V. Then ~J>.Q is precisely 
(see 4.7) the sheaf of germs of local differentiable sections of the 
(differentiable) vector bundle l' T 8 A" T. Note that, by 15.3 b), 
A"T= ,tilT. 

The operator d on differential forms can be written as a sum 

d=a+~ 

where a = differentiation with respect to the z-variables, 
~ = differentiation with respect to the i-variables, 

and aa = ~~ = a~ + ~a = O. 
The operator ~ transforms forms of type (P, q) into forms of type 

(P, q + 1) and therefore induces sheaf homomorphisms 

~: ~J>.I1_ ~JI.ll+l. 

The kernel of ~: ~JI.o _ ~JI.l is the sheaf D(AJI T) of germs of local 
holomorphic p-forms. since for a form of type (P, 0) the statements 
,,(§ vanishes" and "holomorphic" are immediately equivalent. The 
embedding of D(AJI T) in ~JI.o, together with the homomorphisms ~. 
gives the following sequence of sheaves over V: 

O_O(lJl T) _~JI.'_~JI,I_ ••• _~JI.Il_.... (4) 

It has just been shown that the beginning of this sequence is exact. 
A "POINCARE lemma" first proved by GROTHENDIECK shows that the 
whole sequence (4) is exact (see CARTAN [4], DOLBEAULT [1]). 

Now let W be a complex analytic vector bundle over V with fibre Cr. 
We consider the differentiable vector bundle W 8 lJl T 8 A" T and 
denote the sheaf of germs of local differentiable sections of this vector 
bundle by ~P,I/(W). Thus ~'.Il(l) = ~P,I/. Sections of ~P,I/(W), that is 
differentiable sections of the vector bundle W 8 A' T 8 A" T are called 
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differentiable differential forms (or simply: forms) of type (P, q) with 
coefficients in W. We let 

AP,,(W) = r(V, ~P,!l(W») = C-module of global forms of type (P, q) 
with coefficients in W (5) 

= C-module of ordinary global forms of 
type (P, q). 

Let W be given, over some open set Ui , by a local product structure 
U i X Cr. A local form of type (P, q) with coefficients in W can be 
represented by an r-ple of ordinary local forms of type (P, q). The opera
tion a acts on this r-ple. The identifications between Ui X Cr and 
UI X Cr are given by holomorphic functions 

U i f\ UI 40 GL(r, C) . 

But a is zero on holomorphic functions, and therefore the action of a is 
independent of the choice of local product structure. Therefore a induces 
a sheaf homomorphism 

a: 2{p,'(W) 40 ~P,!l+1(W) . 

The exactness of (4) now implies that the following sequence is exact: 

040 D(W 8 A,P T) 40 ~p,O(W) 40 2{P,l(W) 40" • 40 2{M(W) 40' • • • (6) 

The sheaf of germs of local differentiable sections of a vector bundle 
over V is fine (see 3.5). Therefore (6) is a fine resolution of the sheaf 
D(W 8 A,P T), and Theorem 2.12.1 implies 

Theorem 15.4.1 (DOLBEAULT-SERRE). The complex vector space 
HP,!l(V, W) = H'(V, W 8 A,P T) is isomorphic to the q-th cohomology 
module 0/ the a-resolution (6). That is, 

HP,,(V, W) '" ZfI,,(W)/acAP.I-l(W» (7) 

where ZP"(W) is the module 0/ all those global/orms 0/ type (P. q) with 
coeDicients in W which vanish under a. 

An immediate corollary is the fact that Hp" (V, W) is zero if p or q 
is greater than the complex dimension of V. 

For the remainder 0/ this paragraph it will be assumed that V is compact. 
Let n = dim V. Consider the vector bundle W* dual to W. A product 

AP.'(W) X Ar,.(W*) 40 AHr, '+1(1) 

can be defined in a natural way. The product of IZ E AP,!l(W) and 
p E Ar,·(W*) is denoted by IZ 1\ p. For W = 1 it is the usual exterior 
product of forms. The product satisfies 

a(1Z 1\ P) = alZ 1\ p + (-I)H' IZ 1\ a p (8) 
IZ 1\ P = (-I)(PHI (r+ll p 1\ IZ • 
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If 'I = n - p and s = n - q then ex APE A"·" (1) and the integral 

,(ex. P) = J exA P 
v 

is well defined. If ex = ~r. r E A~.v-l(W). and ~ P = 0 then by (8) and 
STOKES' Theorem 

,(ex.P)= J~(rAP)= Jd(rAP)=O. 
v v 

Similarly ,(ex.P)=O if P=~r. rEAn-p.n-a-l(W*) and ~cx=O. 
Therefore by (7) the bilinear form, induces a pairing of HP.v(V. W) and 
Bn-p.n-a(V. W*) with values in C. Thus if a E HP.a(V. W). 
b EBn-p.n-a(V. W*) the complex number ,(a. b) is defined, depends 
only on (a. b). and is linear in a and b. 

KODAIRA has extended the theory of harmonic forms to apply to 
forms with coefficients in W. Introduce a fixed hermitian metric on V. 
This induces [15.3 c)) an isomorphism T ~ T*. 
Using this isomorphism and Theorem 3.6.1 we obtain isomorphisms 

;.~ T ® ;'a T,ow ;.~ T ® ;'n T* ® ;. .. T ® AaT* 
~ ;.,,-~ T* ® ;'n-v T 

~ ;'n-v T ® ;'n-~ T. 

The result is a duality operator 

* : A~ T ® ;'a T ~ ;'n-a T ® ;.,,-~ T . 

The isomorphism .. from A~ T ® ;'a T on to itself is multiplication by 
(_I)Ha. 

Now let the structure groups of the vector bundle W be reduced to 
the unitary group. By 15.3 c) there are hermitian anti-isomorphisms 

'" : W ~ W*. ",-I : W* ~ W . 

Let ~ (conjugation) be the anti-isomorphism from ;'r T ® A'T to 
;., T ® ;'r T. We define 

'* = '" ® (~*). i = ",-I ® (~*) 
and obtain anti-isomorphisms 

'* : W ® A~ T ® ,ta T ~ W* ® ;'n-~ T ® ;'''-fl T 

i: W* ® ;'r T ® ;., T ~ W ® ;'n-r T ® An -. T . 

For 'I = n - P. s = n - q the isomorphism i '* is multiplication by 
(_I)Ha. 

'* and i induce anti-isomorphisms of the corresponding sheaves 
'* : ~~.fl(W) ~ ~n-~ ... -a(w.) 
i: ~r.'(w.) ~ ~n-r.n-'(W) 
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Since Wand w· are complex analytic there are sheaf homomorphisms 

~: ~1i.'(W) _ ~1i.4I+l(W). ~: ~r •• (w.) _ ~r"+1(W.) . 

We define the homomorphism 

{}: ~1i.'(W) _ ~M-l(W) 
by 

(}=-i~:ft:. 

If ex. PE AIi.f/(W) are global forms of type (P. q) with coefficients in W. 
the scalar product 

(ex. P) = ,(ex. :ft: P) = J ex A :ft: P 
v 

can be introduced. Then (ex, ex) ~ 0, and (ex. ex) = 0 if and only if ex = o. 
With respect to this scalar product, {} and ~ are adjoint operations: 

(ex, {} P) = (~ex. P) for exE AIi,,(W). PE Ali. f/-l (W) . (9) 

Proof: (ex, {} P) = - J ex A :ft: i ~ :ft: P = (_1)1i+4I+l J ex A ~ :ft: p. 
v v 

Therefore (~ex, P) - (ex, {} P) = J (~ex A:ft: P + (-I)Ii+' ex A ~:ft: P) 
v 

= J ~(exA:ft: P) 
v 

= J d(ex A:ft: P) 
v 

= 0 by STOKES' theorem. 

We now define the complex LAPLACE-BELTRAMI operator 0: AIi,,(W) 
- AM(W) by 0 = {} ~ + ~ {}. The subspace of elements exE AIi,f/(W) 
for which 0 ex = 0 will be denoted by BIi.f/(W). This is the subspace of 
"complex harmonic" forms. As in the usual case, (9) implies: 0 ex = 0 
if and only if {} ex = ~ex = o. 

The methods of the theory of harmonic integrals now show that with 
respect to the scalar product AIi,,(W) can be represented as the direct 
sum of three mutually orthogonal components: 

AIi,f/(W) = ~AIi,'-I(W). (}AIi,,+1(W). BIi.,(V. W) . 

HenceZIi,f/(W) = ~AIi.f/-l(W). BM(V. W) and therefore, by Theorem 
15.4.1. 

HIi.,(V. W)~ ZM(W)/~AM-l(W)~ BIi,,(V, W) . 

From the fact that 0 is an elliptic partial differential operator over 
the compact manifold V, KODAIRA deduces that BIi,f/(V. W) is finite 
dimensional, and hence that HIi,f/(V, W) is finite dimensional [see also 
SPENCER [2]; a general definition of elliptic differential operator is given 
in the appendix (25.1) together with references to proofs of finite dimen
sionality (25.2)]. The operators {}. ~. 0 are defined equally for the 
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sheaves 2(1),,, (W*) and the operator induces an anti-isomorphism from 
BI>,,,(V, W) to Bft-I>,ft-Q(V, W*). 

We collect the results, of whose proofs we have given a bare outline, 
in two theorems. 

Theorem 15.4.2 (KODAIRA [3]). Let W be a complex analytic vector 
bundle over a compact complex manifold V. Then HI>,,,(V, W) is a finite 
dimensional vector space which (after the introduction of a hermitian 
metric on V and a unitary structure for W; see 15.3 c» is isomorphic 
to the vector space of "complex harmonic" forms of type (P, q) with coef
ficients in W. In particular HI> (V, W) = HO,I>(V. W) is finite dimensional. 
If p > n or q > n then HI>.,,(V, W) = o. 

Theorem 15.4.3 (SERRE [3]). Let V, Wbe as in the previous theorem. 
The bilinear form, is a dual pairing of the vector spaces HI>,,,(V. W) and 
Hft-I>,ft-,,(V. W*). In particular if K = lft T is the canonical line bundle 
then HI> (V, W) and Hft-,,(V. K ® W*) are dual vector spaces. 

WewritedimHI>,Q(V, W) = hl>,Q(V, W) anddimHI>,,,(V,1) = hM(V) 
[= the "number "of complex harmonic forms of type (P, q) on V]. 

Remarks: Counter-examples show that it is not true in general 
that hl>,,, (V) = h",1> (V). It will be shown in 15.6 that this is however true 
when V is a KXHLER manifold. This fact will be used in the proof of 
Theorem 15.8.2. There is a generalisation of Theorem 15.4.2. due to 
CARTAN-SERRE [1], which is mentioned in the appendix (23.1). 

15.5. Let W be a complex analytic vector bundle over a compact 
complex manifold V". Since the groups H'(V. W) are finite dimensional, 
and zero for i > n. the EULER-POINCARE characteristic 

~ .. 
X (V. W) = E (-1)' dimH' (V, W) = E (-1)' dimH'(V, W). 

<=0 <=0 

is defined (2.10). Define XI>(V. W) by .. 
XI>(V, W) = X(V, W ® ll> T) = E (- I)" hl>,,,(V, W). (10) 

9=0 
Then 

x'(V, W) = X(V. W) and XI>(V, W) = 0 for p < 0 and p > n. (11) 

For W = 1 we naturally write .. 
XI>(V, 1) = XI>(V) = E (-I)Q hl>,Q(V) 

By using an indeterminate y we can define 
.. .. 

XII (V, W) = E XI>(V, W)yl>, XII(V) = E XI>(V)yl>. (12) 
p-o p~o 

We call XII(V, W) the XII-characteristic of the vector bundle Wand 



§ 15. Cohomology of compact complex manifolds 

x.(V) the X.-genus of V. By definition 

Xo{V, W) = x'{V, W) = X(V, W) and Xo(V) = x'(V) = X(V) . .. 
X(V) = E (-1)- hO, -(V) is called the arithmetic genus of V. 

9-0 
The SERRE duality theorem (15.4.3) implies that 

XI>(V, W) = (-I)" X"-II(V, W*) 
X(V, W) = (-I)" x (V, K ~ W*) . 

123 

(13) 

(14) 

We emphasise that the arithmetic genus x(V) of a compact complex 
manifold V is tlefined as the EULER-POINCARE characteristic of the co
homology with coeDicients in the sheaf of germs of local Iwlomorphic func
tions on V. 

1S.6. Let V" be a compact complex manifold. A hermitian metric on V 
has the form 

(15) 

with respect to local coordinates z« (or: = 1, ... , n). To each hermitian 
metric tlsi is associated an exterior differential form 

ro = i E g.,(z, z) tlz« 1\ cUll (16) 

which can be written as a real differential form by using real coordinates 
x« (or: = I, ... , 2n) for which z« = xla - 1 + i xla• The hermitian metric 
tlsi is called a KAHLER metric if tiro = 0 (KAHLER [2]). The form ro then 
represents an element of the cohomology group HI(V, R) which is 
called the fundamental class of the KAHLER metric (here we are of 
course using the DE RHAM isomorphism). 

In the present work we adopt the following terminology: by a 
manifold with a KAHLER metric we mean a compact complex manifold 
with a particular choice of KAHLER metric; by a KAHLER manifold we 
mean a compact complex manifold which admits at least one KAHLER 
metric. We summarise briefly the properties of KAHLER manifolds 
needed for the present work. A fuller account can be found in WElL [2]. 

15.7. Let V be a manifold with a KAHLER metric. Then the h'l,,, (V) 
can be calculated with the help of the KAHLER metric by choosing 
W = 1 in 15.4. The following discussion is concerned with this case. 

For a KAHLER metric the complex LAPLACE-BELTRAMI operator 0 is 

equal to : ' where 6. is the real LAPLACE operator tl6 + 6 fl, (6 = - • fl*). 

The operator 0 therefore commutes with conjugation, and or: - if de
fines an anti-isomorphism from B'I, - [harmonic forms of type (P, q)) on 
to B",I> [harmonic forms of type (q, P)]. Therefore a (compact) KAHLER 
manifold V has 

(17) 
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The theory of DE RHAM and HODGE gives a natural isomorphism 

H'(V, C)~ E BP,,,. 
P+q-· 

Therefore the r-th BETTI number b, (V) satisfies 

b,(V) = E hP,"(V). 
P+q=· 

(IS) 

(IS*) 

Under the isomorphism (IS) the subspace BP," of HPH(V, C) is 
represented, in the sense of DE RHAM, by the subspace of forms oc of 
type (P, q) with doc = O. Elements of this subspace, which clearly does 
not depend on the particular choice of KAHLER metric, are said to be of 
type (P, q). 

An element of HPH(V, Z) or HPH(V, R) is said to be of type 
(P, q) if when regarded as an element of HH"(V, C) it is of type (P, q). 

Formulae (17), (IS*) are in general false for arbitrary compact 
complex manifolds. For a KAHLER manifold V, (17) gives hO,,, = hll,o. 
For an arbitrary compact complex manifold hll,O is by definition 
dimHO(V, .t" T), that is the dimension of the complex vector space of 
holomorphic q-forms on V. These are also called the forms of the first 
kind of degree q. Let g" = hll,o. Then we have proved 

Theorem 15.7.1. The arithmetic genus X(V .. ) 0/ a compact KAHLER 
II 

manifold V" is equal to E (-1)1 gl, where gi is the number o//orms 0/ the 
<-0 

first kind 0/ degree i on V .. linearly independent over C. 
15.S. We have associated (in 15.5) a polynomial X:v(V) to each 

compact complex manifold V. For y = 0 the value of this polynomial is 
the arithmetic genus of V. The next two theorems give an interpretation 
of the value of X:v (V) for y = - 1 and for y = 1. 

Theorem 15.S.1. 1/ V .. is a compact complex manifold then 
II 

X-I (V .. ) = E(-I)P xP(V .. ) = E(-I)P+'lhp,Il(V .. ) 
p-o ~q 

is equal to the (ordinary) EULER-POINCARE characteristic E(V,,). 
Proof (due to SERRE [3], p. 26): Let DP = D(.tP T) be the sheaf of 

germs of local holomorphic p-forms. The operator d defines an exact 
sequence 

0-+ C -+ no -+ fJl -+ ••• -+ !In -+ 0 . 

E (V .. ) is the EULER-POINCARE characteristic of cohomology with 
coefficients in the constant sheaf C. The result now follows from Theorem 
2.10.3. 

Remark: If V .. is a KAHLER manifold then Theorem 15.S.1 is an 
immediate consequence of (IS*). 
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Theorem 15.8.2 (see HODGE [4]). If V" is a (compact) KAHLER 
manifold then 

It 

XI (V .. ) = E XI>(V .. ) = E (-1)11 hl>,Il(V,,) 
fJ-O fJ,'I 

is equal to the index T(V .. ) aefinea in 8.2. 
Proof: If n is odd then by SERRE duality (Theorem 15.4.3) 

XI>(V .. ) = (-1)" X .. -I> (V,,) = - X"-I> (V .. ) 
.. 

and therefore E Xl> (V .. ) = O. On the other hand T(V,,) = 0 by definition. 
fJ-O 

Thus for n odd the theorem is true for arbitrary compact complex 
manifolds. 

Now suppose n is even. We shall use a number of facts on manifolds 
with a KAHLER metric. For these we refer to ECKMANN-GUGGENHEIMER 
[1,2], GUGGENHEIMER [1], HODGE [1] and WElL [2]. If zi = X 1 /_1 + 
+ i XII are local complex coordinates then ECKMANN-GUGGENHEIMER 
and HODGE use the orientation for V .. given by aX1 A aXa A ••• A aX."_1 A 

ax. A ax, A ••• A ax .... We use the orientation given by the natural order 
.. ( .. -I) 

aX1 A ax. A ••• A ax .... The two orientations differ by a sign (- 1)-2-. 

To simplify the subsequent formulae we assume that n = 2m. 
Let BI>,II be the complex vector space of harmonic forms of type 

(P, q). The fundamental form co defined in 15.6 is a particular harmonic 
form of type (I, 1) whose product with any other harmonic form is again 
harmonic. 

Define a homomorphism 
L: BI>,,, _ BI>+1,II+1 

by associating to each form exE BI>,II the form Lex = co exE BI>+1,'+1. 
Then, since co is real, Lex = L i. By 15.4 there is an anti-isomorphism 

# : BI>,II- B"-I>, .. -II 

for which # ex = * ex = * i. We consider the homomorphism 
A: BI>,II _ BI>-I, .-1 

defined by A = (_1)1>+. # L #. Then A = (-1)1>+. * L * andAex = Ai. 
The kernel of A is denoted by B~,II and called the subspace of ef

fective harmonic forms of type (P, q). 
(a) AP: BC- II,II-11 _ BI>-l,II-1 (P + q ~ n, k ~ 1) is (up to a 

non-zero scalar factor) equal to L"-l. 

(b) P: Be- II,.-II- BI>,. (P + q ~ n) is a monomorphism. 

For p + q ~ n there is a direct sum decomposition 
(c) BI>,II = B~". L~-l,'-l • •..• Lr B~-r,lI-r (1' = min(p, q». 
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We define Bt·9 = L" BC-""-". The elements of Bt· 9 are called harmonic 
forms of type (Po q) and class k. The following formula is then decisive for 
the proof: 

(d) * tp = (-1).+1: ip for tpE Bt· 9 and p + q = n. Note that ip is an 
element of Bl'#' 

The cohomology group H"(V". C) is a complex vector space [see 
15.7 (18)] 

(e) H"(V". C) = 1: Br··. 
11+9-" 

" :iii miDIM) 
We recall that the scalar product 

(<<. P) = f«" # P 
v .. 

is defined for harmonic forms «. P of the same total degree. 
(f) The summands in the di,ect sum decomposition (e) tUe mutually 

Dfthogonal with respect to the scala, product. 
Proof: The scalar product can be non-zero only if «" # P is of type 

(n. n). Therefore at. 9. Br:·( are orthogonal for (p. q) * (pt. q'). If 
«E at·9 and PE Btl9 for k > k' and p + q = n then 

(<<. P) = (L" «0. L '" Po) with «0. Po effective (A «0 = A Po = 0) . 

Since L and A are adjoint operators. (L«. tp) = (<<. Atp). and therefore. 
by (a). (<<. P) = (<<0. A" Lit.' Po) = O. 

The cohomology groups H"(V". R) can be identified with the real 
vector space of real harmonic forms. There is a direct sum decomposition 

(g) H"(V". R) = 1: Et·9 (P + q = n. k ~ P ~ q) 
where Et·9 is the real vector space of real harmonic forms « which can be 
written in the form «= tp + ip with tpE Bt· 9 (and hence ipE Bl·1I). 
Clearly T(V,,) is the index (see 8.1) of the quadratic form 

Q(<<.P) = /«"P (<<.PEH"(V".R». 
v" 

By (d) and (f) the real vector space summands in the sum (g) are mutually 
orthogonal with respect to this quadratic form. Now (d) implies that the 
quadratic form (-1)«+" Q(<<. P) is positive definite when restricted to 
Et·9• 

Therefore 
T(V,,) = 1: (-1)«+" dim. Et·9 

(the sum is over p + q = n. k ~ P ~ q). 
Clearly dim. Et· 9 = 2 dime Br· 9 for p < q. If n = 2m then dim.E;'·

= dime B';'-. 
Therefore 

(h) T(V,,) = 1: (-1)«+" dime Bt,9 (p + q = n. k ~ min(P, q». 
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Now let hP, q = dime Bt>,v as before. It follows from (b) and (c) that 
(i) hP-Ic,q-1c - hP- Ic - 1,q-Ic-1 = dime Bt,q for p + q;;:;; n. 
Since h',' = h',' = h"-',"-' we have 
(j) hP-Ic-1, q-Ic-l = hHlc+l, 'l+1c+1 for p + q = n. 
Finally (h). (i) and (j) imply 

T(v,,) = E (_I)Q- Ic hP- Ic,'l-1c + 1: (_I)!i+ Ic +lhHIc +l,'l+Ic+l 
~~o ~~o 

p+q_n p+q=n 

= E (-I)'lhP''l+ 1: (-I)'lht>,'l 
p+q~n p+q>n 

= E (-I)VhP''l. Q. E. D. 
p,q 

Theorem IS.8.2 is used in 19.5 to give an essential step in the proof 
of the RIEMANN-RoCH theorem. 

Problem: Find a direct proof of Theorem IS.8.2 which is valid for 
an arbitrary compact complex manifold V n' A somewhat indirect proof 
is sketched in the appendix (25.4). 

15.9. Let V be a KAHLER manifold (IS.6). The exact sequence 
0-+ Z -+ C ... -+ C: -+ 0 defines an exact cohomology sequence [see 
2.5 (11) and Theorem 2.10.1 ; by definition C", = .0]: 

el' 
HI (V. C:) ~ H2(V, Z} -+ H2(V, ~;n . (19) 

Now Ha(V,!J) = H8(V, 1)~ BO,2(V). Therefore (KODAIRA-SPENCER 
[2]): an element aE H2(V. Z} is mapped on to the zero element of 
Ha(V, .o} if and only if a is of type (I, I). 

By Theorem 4.3.1, if EE Hl(V, C:) is a complex analytic C·-bundle 
then d~ E = c1 {E}. If F is a complex line bundle over V and E is the 
associated C·-bundle then C1 (E) is called the cohomolugy class of F. The 
exactness of (19) then implies 

Theorem 15.9.1 (LEFSCHEl'Z-HoDGE, KODAIRA-SPENCER [2]). Let V 
be a compact KAHLER manifold. An element a E H2(V, Z} is the cohomology 
class of a cumplex analytic line bundle over V if and only il a is 0/ type 
(I, 1). 

Remark: This theorem has also been proved in the non-KAHLER 
case by DOLBEAULT ([2]. Theoreme 2.3). 

15.10. Let V be a KAHLER manifold with hP, v = 0 for p 9= q. Then 
X,. (V) is essentially equal to the POINCARE polynomial P (t; V) = 1: br tr 
of V (b, = r-th BETTI number of V). More precisely, 

XP(V) = 1: (-1)11 kP,fl = (-I)t> kP,P = (-I)P hzp . 
q 

The odd BETTI numbers of V are zero and so 

(20) 
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KAHLER manifolds with this property include the complex projective 
spaces and the flag manifolds F(n). For F(n) this can be seen as follows: 
the cohomology ring H* (F (n), Z) is generated by elements "i E HI(F (n), 
Z). By 14.2 there are complex analytic C*-bundles Ei over F(n) with 
c1 (Ei) = "i' By the "only if" of Theorem 15.9.1 the "i are of type (1, 1) 
and therefore any cohomology class of F(n) is of type (P, Pl. Notice in 
particular that for the complex projective spaces and for the flag mani
folds the polynomials X" and T" (see 14.4) agree, since both are essentially 
equal to the POINCARE polynomial. 

15.11. If V .. and V;" are KAHLER manifolds then 

ht,I(V .. X V;") = E hr,,(V .. ) hV,V(V;"). 
r+v-f> 
$+V-9 

(21) 

Let y, z be indeterminates and associate to each KAHLER manifold V 
the polynomial H",s (V) = E h~, tI y~ zI. Then (21) is equivalent to 

1>,9 

H",.(V .. X V;") = H",.(V .. ) • H",.(V;") . 

Let z = -1 in (22). Then H",_1 = X" and 

x" (V .. X V;") = X,,(V .. ) • x" (V;") , 

another property common to X" and T". 

§ 16. Further properties of the x,-characteristic 
In this paragraph V is always a complex manifold. 
16.1. Consider an exact sequence 

II' II 
0_ W' --+ W --+ W" - 0 

(22) 

(23) 

(1) 

of complex analytic vector bundles over V [see 4.1 d)]. The sequence of 
sheaves 

0- D(W') .!:.. D(W) ~ D(W") - 0, (2) 

obtained from (1) by taking sheaves of germs of local holomorphic 
sections, is also exact. 

Proof: Every germ 5' E D(W') of a local holomorphic section of W' 
is mapped to a germ h'(s') E D(W), every germ sE D(W) to a germ 
h(s) E D(W"). The sequence 0 - D(W') - D(W) - D(W") is clearly 
exact. so it remains to prove that every germ 5" E D(W") can be written 
in the form sIt = h(s), s E D(W). This is a consequence of Remark 2 
of 4.1 d). 

Theorem 16.1.1. Let 

0_ W'_ W_ W"-O (1) 
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be an exact sequence of complex analytic vector bundles over a compact 
complex manifold V. Then 

More generaUy 

so that 

x(V. W) = x (V. W') + X(V. W") . 

xP(V. W) = XP(V. W') + XP(V. W") • 

X,,(V. W) = X,,(V. W') + X,,(V. W") . 

(3) 

Proof: The sheaves which occur in (2) are of type (F) by Theorem 
15.4.2. and therefore (3) follows from Theorem 2.10.2. To obtain (3·) 
it is sufficient to replace (1) by the sequence 

o ~ W' QD A,P T ~ W QD A,P T ~ W" QD A,P T ~ 0 (1.) 

which is exact by Theorem 4.1.2. (3·) follows by applying (3) to (1·). 
Theorem 16.1.2. Let W be a complex analytic vector bundle (fibre C.) 

over a compact complex manifold V. and suppose that the structure group 
01 W can be complex analyticaUy reduced to the triangular group A (q. C). 
Let AI' AI' •••• A. be the corresponding diagonaZ line bundles fsee 4.1 e)]. 
Let W' be another complex anaZytic vector bundle over V. Then 

X(V. W' QD W) 
= X(V. W' QD AI) + X(V. W' QD AI) + ... + X(V. W' QD A.) . 

Proof by induction on q: The theorem is trivial for q = 1. Suppose it is 
proved for q - 1. There is an exact sequence 

O~AI ~ W ~ W/A I ~O 

in which the vector bundle W/A I admits A (q - 1. C) as structure 
group with AI' ••• , A. as diagonal line bundles. The induction hypothesis 
implies that 

X(V. W' QD W/A1) = X(V, W' QD AI) + ... + X (V, W' QD A.) . 

Now (3), applied to the exact sequence 

O~ W' QD'AI ~ W' QD W ~ W' QD W/AI ~O. 

implies that X(V. w' QD W) = X(V. W' QD AI) + X(V, W' QD W/A I ). This 
completes the proof. 

16.2. Let W be a vector bundle over the complex manifold V and 5 
a non-singular divisor of V (see 15.2). Let U = {U,} be an open covering 
of V for which 5 is given by holomorphic functions Si on U ,. The 
C·-bundle [5] is then represented by the cocycle {su} = {S,/Sl}' Let {5} 
be the associated line bundle constructed from the cocycle {Sll} by 
identifications on U (U, X C) [see 3.2. a) and 15.2]. The maps s,: Ui ~ C 
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define a global section s of {S} which is zero at points of S and non-zero 
elsewhere. Let (W ® {S})s be the restriction to S of the vector bundle 
W ® {S}, and let D«W ® {S})s) be the sheaf over S of germs of locally 
holomorphic sections of (W ® {S})s. The extension by zero of this sheaf 
from S to the whole of V will be denoted by .Q«W ® {S})s) as in Theorem 
2.4.3. 

Theorem 16.2.1. Let V be a complex manilold and let S be a non
singular divisor 0/ V. Let W be a complex analytic vector bundle over V. 
There is an exact sequence 

0-+ .Q(W) -+ .Q(W ® {S}) -+ .Q«W ® {S})s) -+ 0 (4) 

01 complex analytic sheaves on V. 

Proof: Associate to each local section s' of W the local section 
s' ® s of W ® {S}. Since s is a global section of {S}, which is not identically 
zero on any open set of V, this defines a monomorphism h': .Q(W)-+ 
-+ .Q(W ® {S}). Over the complement of S in V the section s is never zero 
and therefore h' is onto. Hence the quotient sheaf .Q(W ® {S})/.Q(W) 
is zero over the complement of S, and is uniquely defined by its restric
tion to S. It is therefore sufficient to prove the exactness of the sequence 

~. " 0-+ .Q(W) IS -.. .Q(W ® {S}) IS -+ .Q«W ® {S})s) -+ 0 (5) 

where ... IS denotes restriction of the sheaf ... to S, and where h is the 
homomorphism which restricts a section of W ® {S} over an open set U 
of V to the corresponding section of (W ® {S})s over the open set 
U II S of S. 

To prove the exactness of (5) associate to each point xES a neigh
bourhood Us in V over which W and {S} are represented as product 
bundles Us X C" and Us X C. Us can be chosen so small that UsC U, 
for some set U, of the covering. The section s is given by the holomorphic 
function Ss = silUs. Now W ® {S} is represented by the product 
bundle Us X (C" ® C). Consider the map C" ® C -+ C" defined by 
(ZI' ••. , z,,) ® Z -+ (ZI Z, ••• , z" z). This defines a product structure 
Us X C" for W ® {S}. With respect to these product structures local 
holomorphic sections of Wand W ® {S} are represented by q-ples 
(gl' ... , gil and (/1' ... , Ii) of local holomorphic functions. The homo
morphism h' is then defined by 

(/1' ... , I,,) = h' (gl' ... , gil = (ss gl' ... , Ss gil . 

The homomorphism h is the restriction of (11) ... , I,) to S and is onto, 
since the germ of a local holomorphic function on S is always the restric
tion of the germ of some local holomorphic function on V. This restriction 
is zero if and only if the local holomorphic functions /1' " " "' I" are each 
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divisible by sz, that is, if and only if (fl' ... , f.) lies in the image of 
h'. This proves the exactness of (5). 

If V is compact then the non-singular divisor S is itself a compact 
complex manifold, and Ws is a complex analytic vector bundle over S. 
In the sequel we write simply X(S, W) for X(S, ~~), and similarly for 
XP(S, W) and X,,(S, W). With these notations, if we replace W in (4) 
by W ® {S}-I and apply Theorems 2.6.3 and 2.10.2, we obtain (see 
KODAIRA-SPENCER [3]) 

Theorem 16.2.2. Let V be a compact complex manifold, S a non
singular divisor of V and Wa complex analytic vector bundle over V. Then 

X(V, W) = X(V, W ® {S}-l) + X(S, W) . (6) 

In particular, when W is the trivial line bundle 

x(V) = X(V, {S}-I) + X(S) . (6*) 

16.3. Let V. S be as in Theorem 16.2.2. For the rest of this paragraph 
it will be assumed that V is compact. Denote the complex analytic 
contravariant tangent bundles of V, S by !t(V). !t(S). Then the vector 
bundles A,P(!t(V)). A,P(!t(S)) are the complex analytic vector bundles of 
contravariant p-vectors on V. S. The corresponding bundles of covariant 
p-vectors are denoted by A,P(T(V) •• V(T(S) as in 4.7. There is an exact 
sequence (see 4.9) 

0-+ !t(S) -+ !t(V)s-+ {S}s-+ o. (7) 

By Theorem 4.1.3* there is a corresponding exact sequence for bundles of 
contravariant p-vectors 

0-+ A,P(!t(S)) -+ lP(!t(V)s) -+ A,P-l(!t(S» ® {S}s -+ O. (8) 

and. by dualising. for bundles of covariant p-vectors 

0-+ lP-l(T(S) ® {S}Sl-+ A,P(T(V)s) -+ A,P(T(S» -+ 0 . (8') 

Let W be a complex analytic vector bundle overoV. and consider the 
sequence obtained from (8') by tensoring each term by Ws. the restriction 
of W to S. By Theorem 16.1.1 the exact sequence obtained gives a 
formula 

X(S. W ® A,P(T(V)) = XP-l(S. W ® {S}-I) + xP(S. W) . (9) 

Now replace W in formula (6) by W ® lP(T(V». A comparison with (9) 
gives the important "four term formula" [KODAlRA-SPENCER [3], 
Formula (14)] 

XP(V. W) = XP(V. W ® {S}-l) + XP(S. W) + XP-I(S. W ® {S}-I). (10,) 

This formula holds for all p ~ 0 provided that if p = 0 the last term is 
interpreted as 0 [in this case we get (6)]. The term XP(S. W) is zero for 
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p = n = dim V, and for p > n all four terms are zero. If y is an indeter
minate, (10.) holds with each term multiplied by yt, and summing over 
all p ~ 0 gives 

X,.(V, W) = X,.(V, We {S}-I) + X,.(S, W) + y X,.(S, We {S}-I). (10*) 

16.4. By repeated application of equation (lOt), the integer X·(S, W) 
(p ~ 0) can be expressed as a linear combination of integers of the form 
t' (V, A) where each A is a certain complex analytic vector bundle over V. 
For example (100) = (6) gives 

t'(S, W) = t'(V, W) - t'(V, W S {S}-I) . (110) 

The last term t'(S, W e {S}-I) in formula (101) for t-(S, W) can be 
calculated by replacing Win (11.) by We {S}-I. Thus 

XI(S, W) = t(V, W) - XI(V, We {S}-I) -

- t'(V, We {S}-I) + t'(V, We {S}-I) . (111) 

A continuation of this method gives the formula 

• xt(S,W) = 1: (-1)1 [x.-I(Y, We {S}-') - xt-'(Y, We {S}-(HI)]. (11.) 
i-O 

This formula holds for all p ~ O. The left hand side of (11.) is zero for 
p ~ n because S has complex dimension n - I, but it is not immediate 
that the terms on the right hand side cancel for p ~ n. In other words, 
given a vector bundle Wand a non-singular divisor S, certain relations 
hold between the integers X~(V, We {SY). Do these relations still hold if 
{S} is replaced by an arbitrary line bundle F over V? We shall see that 
the answer is yes if V is an algebraic manifold. 

16.5. Let Z{y} be the integral domain of all formal power series 
tlo + tit Y + tJa yI + . . . with integers tI, as coefficients. The polynomial 
ring Z[y] is a subring of Z{y}. 

It is not possible to deduce from (11.) an expression of X,.(S, W) 
as a linear combination of a finite number of polynomials of type x,. (V,A). 
Nevertheless in the domain Z{y} of formal power series it is true that 

00 

X,.(S, W) = 1: (_y)1 [x,. (V, We {S}-I) - x,. (V, W e {S}-(HI))]. (11·) 
'-0 

The right hand side of (11·) is a formal power series which in fact 
terminates. The coefficient of y. in this power series is given by (11.) 
and is zero for p ~ n. 

§ 17. The virtual XI-characteristic 

17.1. The definition of the virtual X,.-genus and the virtual x,.-charac
teristic, as well as the associated calculations, are simplified by introduc
ing the following formalism. 
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Let E be an extension ring of the ring Z of rational integers, and let 
the integer 1 be the identity element of E. We consider the rings Z{y} 
and E {y} of formal power series with coefficients in Z and E respectively. 
Z{y} is then a subring of E{y}. We call a map 

h: E{y} -+ Z{y} 

an allowable additive homomorphism (or tl-homomorphism) if: 

I) h(u + v) = h(u) + h(v) for ·u, vE E{y}, 

II) h(u v) = 14 h(v) for uE Z{y}, vE E{y}. 

In other words: E{y} and Z{y} are regarded as Z{y}-modules. A tl
homomorphism is a homomorphism from the Z{y}-module E{y} to the 
Z{y}-module Z{y}. Condition II) implies that h (14) = 14 h (1) for 14 E Z{y}. 

Lemma 17.1.1. Let ho be an atltlitive homomorphism from E to Z{y}. 
Then there is one and only one tl-homomorphism h from E{y} to Z{y} 
which agrees with ho on E. 

Proof: If v = eo + elY + e.y· + ... with eiE E then we define 

h(v) = ho(eo) + hO(el ) y + ho(ell) y' + .... 
The hO(ei) are power series iny but, after multiplying out the right hand 
side, the coefficient of y' for each p ~ 0 is a finite sum. Therefore the 
right hand side is a power series in y and the homomorphism h is well 
defined. It is easy to see that h is a tl-homomorphism which extends ho. 
Conversely suppose that h' is a tl-homomorphism which extends ho• 
Then I) and II) imply that h and h' agree on any terminating power 
series of E{y} and hence that h = h'. Q. E. D. 

Given a tl-homomorphism h: E{y} -+ Z{y} and a fixed element 
tEE {y}, there is a tl-homomorphism h, defined by 

h,(u) = h(t 14) • 

An immediate corollary of Lemma 17.1.1 is 
Lemma 17.1.2. Let h and h' be tl-homomorphisms Irom E{y} to Z{y}. 

11 tEE {y} is an element such that 

h'(u) = h(t 14) lor aU uE E 

then h,=h', that is the equation h'(u)=h(tu) holds lor aU uEE{y}. 
In our applications the ring E will be of a particular form. Let 

11' •.. , Ir, w be indeterminates and let E be the ring generated over Z by 
these indeterminates together with Ill, ... , l;l. The products 
UJP ft' I: .. . 1:0 form an additive basis of E (here 1", AI' ... , Ar are integers, 
I" is non-negative, and the element 1 E Z is regarded as a product with 
I" = Al = ... = Ar = 0). Suppose that to each such product there is 
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associated an element of Z{y}. Then there is a unique additive homo
morphism E .... Z{y}, and hence by Lemma 17.1.1 a unique a-homo
morphism E{y} .... Z{y}, which takes the given values on the basis of E. 

Now let V be a compact complex manifold. W a complex analytic 
vector bundle over V and Fl' ... , Fr complex analytic line bundles over V. 
If E is defined as above there are two a-homomorphisms h and Ii from 
E{y} to Z{y} defined by associating the following values to the basis 
elements of E: 

h(w" ~I •• • 1:') = x(V, WI' ® F~' ® ••• ® F:-), h(l) = x(V) 
Ii(w" f!1 .. ·1:-) = x:v(V, WI' ® F~' ® ••• ® F:-). 1i(1) = x:v(V) . 

(1) 

On the right hand side powers of vector bundles are to be understood 
as tensor products. For line bundles negative powers are well defined. 

Let tiE E{y} be a power series with constant term uo' Then 

Ii(u) E Z{y} (2) 

is a power series with constant term h (uo). 
Convention: Let V be a compact complex manifold. If we are 

given a complex analytic vector bundle and a finite number of complex 
analytic line bundles over V, we denote the vector bundles by capital 
letters and associate to each vector bundle an indeterminate denoted by 
the corresponding lower case letter. If there is any possibility of confusion 
we write hy, liv for the homomorphisms h, Ii obtained in the above 
manner. If S is a non-singular divisor of V, the given vector bundles over 
V can be restricted to S. We denote these bundles over S (and the as
sociated indeterminates) by the same letters as the corresponding bundles 
over V. Applying (1) to the complex manifold S we obtain a-homo
morphisms hs• lis defined by 

hs(w" f!1 ... frr) = XeS, WI' ® F~' ® ••• ® F:-), 
lis(w" f!1 .. . 1:-) = x:v(S. WI' ® F~' ® ••• ® F:-). 

bs(l) = xeS) 
lis (1) = x:v(S) . 

(3) 

We associate to the line bundle {S} over V the indeterminate s in 
accordance with the convention. Then formula 16.5 (11*) can be written 

( l-S-l) 
X:v(S, W) = liv w 1 + ys-1 • (4) 

Note that in E{y} every element with constant term 1 has a unique 
multiplicative inverse. Particular cases of (4) are 

Ii (1-S-1) 
X:v(S) = v 1 + ys-l 

and, by 16.2 (6), (6'). 

XeS, W) = hv(w(1 - S-l», xeS) = hv(1 - S-l) . 
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17.2. We are now in a position to define the virtual %,,-characteristic. 
Let V be a compact complex manifold of complex dimension n. Let W 
be a complex analytic vector bundle over V and FI , •.. , Fr complex 
analytic line bundles over V. The r-ple (FI' ... , Fr) is called a virtual 
submanifold of V of (complex) dimension n - r. We allow the case 
r>n. 

Definition [compare 17.1 (4)]: 

%,,(FI' .. , Frl, W)v = 'v.(w n 
i -= I 

I-t.l ) 
1 + y r,l . 

%,,(Fl' ...• Fri. W)v is an infinite power series on y with integer co
efficients. It will be called the virtual %,,-characteristic of the"restriction 
to the virtual submanifold (Fl' ...• FrY' of the vector bundle W. Clearly 
it does not depend on the order in which the line bundles F, appear. 
If W is the trivial line bundle we denote the virtual %,,-characteristic by 
%,,(FI' ...• Fr)v and call it the virtual %,,-genus of the virtual submanifold 
(Fl' ...• Fr)· We write 

and 

00 

%,,(Fl'· ..• Fri. W)y = E %~(FI'···' Fri. W)V y~ 
1'=0 

00 

%,,(FI' ...• Fr)v = E %~(FI'···' Fr)v y~ . 
1'-0 

We shall always write % for t'. Then by 17.1 (2) 

% (Fl' ...• Fri. W)v = hv( w.f!. (1 -Jr l »). 
The integer %(FIJ ...• Fri. W)V is called the virtual x-characteristic 
of the restriction to the virtual submanifold (Fl' ...• Fr) of the vector 
bundle W. The integer %(FI' •.• J Fr)Y is called the virtual arithmetic 
genus of the virtual submanifold (Fl' ...• Fr). 

In particular. the virtual arithmetic genus X(F)v of a line bundle F 
over V is defined by 

X(F)v = X(V) - x (V. F-l) . 

Now let 5 be a non-singular divisor of V. Then %,,(5. W) is defined 
and is a polynomial of degree ~ n - 1. By 17.1 (4) 

%,,(5. W) = %,,({5}1. W)v . (4') 

In this case the virtual %,,-characteristic is a polynomial of finite degree. 
The fact that %,,(FI' ..• Fri. W)v is a polynomial of degree ~ n - r. 
and in particular that x" (Fl' .. .• Frl. W)v is identically zero for r > n. 
is proved in Theorem 19.2.1 for the case that V is an algebraic manifold. 
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We prove the following generalisation of (4') which justifies the above 
definitions. 

Theorem 17.2.1. Let V. W. Fl' ...• Fr be as at tits beginning 01 this 
section. Let S be /I non-singultw tlivisor 01 V /Inti {S} = Fl' Tltsn 

X,,(Fl •...• Fri. W)v = X,,«F.)s • ...• (Fr)sl. W 8)8 . 

Proof: We write 

Then by definition 

1-... -1 

R(x) = 1 + yrl • 

X,.«F.)8 • ...• (Fr)sl. W S)8 = 's('111 .n RU,»). 
0-2 

It follows from (1). (3) and (4) that 

'8 (fill' ft'··· 1:-) = 'v(fIII' I:'", I:- RUl»' 
Hence by Lemma 17.1.2 with t = RUl) 

(5) 

's('III.n R(/i») = 'v ('III.n R(/i») = X,.(Fl•···• Fri. W)y. Q.E.D • 
• -2 ,-I 

From the definition of the virtual X,.-characteristic we obtain 
Lemma 17.2.2. 11 some Fi is th8 t,ivi41line buntlle 1 th8n 

X,.(Fl •...• Fri. W)v = O. 

17.3. We now show that the functional equation. established in 11.3 
for the virtual T,.-characteristic. is also satisfied by the x,.-characteristic. 

Theorem 17.3.1. Let V be /I comp/ICt complex maniloltl. W /I complex 
analytic vector buntlle over V /Inti Fl •...• Fr. A. B complex /lnalytic line 
buntlles over V. Th8n 

X,.(Fl •...• Fr. A ~ BI. W)v 

= X,.(Fl ••••• Fr. AI. W)y + X,.(Fl•· ..• Fr. BI. W)v + (6) 
+ (y - 1) X,.(Fl ••••• Fr. A. BI. W)y - y x,. (Fl' ...• Fr. A. B.A ~ BI. W)y. 

r 
Proof: For brevity let u = 'III II RU.). Then by (5) it is necessary 

to prove the equation 

'(uR(a b» 

i-I 

= '(uR(/I)) + '(uR(b» + (y-l) '(uR(a) R(b» - y '(uR(/I)R(b)R(/lb)). 

Since' is a tl-homomorphism it is sufficient. using 17.11) and 17.1 II) 
to prove that 

R(/I b) = R(/I) + R(b) + (y - 1) R(a) R(b) - yR(/I) R(b) R(/I b) • 

But this is precisely the functional equa.tion which occurs in 11.3. 
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Remark: The functional equation (6) is a relation between five 
formal power series. It cannot be assumed that these power series 
terminate or converge, and therefore it is not permissible to substitute 
particular numerical values for y. It is however permissible to equate 
coefficients in (6). The result is a relation between the X~( . .. 1, W) of the 
five virtual manifolds involved. For 1! = X this gives 

X(F1, ••• , Fr, A ® BI, W)v (6') 
= X (Fl' .. . ,Fr,AI, W)v+ X (Fl' ... , F,., BI, W)v- X (Fl' ... , F,.,A,BI, W)v· 

This is an equation for the virtual genus well known in algebraic geo
metry. In our formalism it arises from the identity 

1 - (a b)-1 = (1 - a-I) + (1 - b-1) - (1 - a-I) (1 - b-1) . 

17.4. Let V", be a compact complex analytic split manifold [see 
13.5 b)]. By definition the group of the tangent GL(m, C)-bundle of V til 
can be complex analytically reduced to the group Lt (m, C) of triangular 
matrices. Let AI' ... , A", be the m diagonal complex analytic line bundles 
[see 4.1 en The complex analytic vector bundle A~ T of covariant 

p-vectors on V", admits the group Lt ((;), C) as structure group; the 

corresponding (;) diagonal complex analytic line bundles are (compare 
Theorem 4.1.1) 

Ar,1 ® Ar.1 ® ••• ® A.;1 (il < it < ... < i~) . 

Therefore, by Theorem 16.1.2 for p ~ 0, 

X~(V III' W) = X(V"" W ® A~ T) 

= E X(V"" W ® Ar.1 ® Ar.1 ® ••• ® A.;I) (7) 
',<'.<"'<'# 

and, applying the notation of 17.1, 

X"(V",, W) =h(w.ll(l+ y a;-I»). (8) 
0-\ 

We proved in 13.6 (13) a formula for the TODD genus of an almost 
complex split manifold, and will now obtain the corresponding formula 
for the arithmetic genus xCV III) of a complex analytic split manifold V",. 

Theorem 17.4.1. Let V", be a complex analytic split manifold with 
diagonal complex analytic line bundles AI' . . ., A til. Let W be a complex 
analytic vector bundle over V",. Then 

til 

(1 + y)m x (V"" W) = E y' E X"(A,,, ... , A'ii, W)V. (9) 
1-0 ;.<;.< ... <t, 
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Proof: Note that (9) is a relation between formal power series. 
In the notation of 17.1 the right hand side can be written .. 

1: y' 1: '(wR(a.,) ... R(aq» [Definition of R in (5)] 
1-0 i.<io<···<i, 

=, Cto Y';'<iof .. < .. ",R(ao,) ... R(ao,)) (17.1 II)) 

= , (w/i (1 + yR(ao») .-1 
= , (w /i (1 + y) (1 + yarl)-I) 

.=1 

= (1 + y)"" ("'i#a (1 + yarl)-l) . 

A straightforward application of (8) shows that 

'(wi" a~· a~ ... a:-) = h (wi" a~ a~ ... a:-ii (1 + yarl)) . 
• =1 

Now Lemma 17.1.2 with .. 
t = n (1 + yurl) 

i=J 

gives 

(1 + Y)"" (wiR (1 + yar1)-I) = (1 + y)'" h( Wi~ (1 + yarl)-l (1 + yar1») 

= (1 + y)'" h(w) = (1 + y)'" X(V, W). Q. E. D. 

§ 18. Some fundamental theorems of KODAIRA 

18.1. Let V be a KAHLER manifold. By definition (15.6) V is compact. 
Let HI. 1 (V, R) be the subgroup (see 15.7) of Ha(V, R) which consists of 
elements of type (1, 1), and let HI,1 (V, Z) be the corresponding subgroup 
of HI (V, Z). We introduce an "archimedean partial ordering" of 
HI,I(V, R): 

Definition: An element x E HI.I(V, R) is positive (x> 0) if x can 
be chosen as the fundamental class of a KAHLER metric on V. 

If x,y E HI,I(V, R) then the following rules hold: 
(0) At least one element of HI.l (V. R) is positive. 
(1) The zero element of HI·I (V, R) is not positive. 
(2) If x > 0 and y > 0 then x + y > o. 
(3) If x > 0 and 1 > 0 (1 E R) then 1 x > o. 
(4) If x.y E HI,I(V, R) and x> 0 then there is a positive integer g 

(which depends on x. y) such that g x - y > o. 
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Definition: An element x E 1f1.1(V, Z) is positive if it is positive 
when regarded as an element of 1f1.1(V, R). A complex analytic line 
bundle F over V is positive if Cl (F), which by Theorem 15.9.1 is an 
element of Hl.l(V, Z), is positive. 

A KAHLER manifold V is called a HODGE manifold (see HODGE [2]) 
if HI.l(V, Z) contains at least one positive element. that is, if V admits 
a KAHLER metric whose fundamental class is in the image of the natural 
homomorphism HI (V. Z) -+ HII(V. R). 

Examples are known of compact complex manifolds which are not 
KAHLER manifolds, and of KAHLER manifolds which are not HODGE 
manifolds. 

Complex projective space P,,(C) is a KAHLER manifold [and so 
automatically a HODGE manifold: Hl.l(p,,(C), Z) = HII(p" (C), Z)~ Z 
implies that if x E 1f1. l (p,,(C), R) = HI(P,,(C), R) there is a real number 
l' > 0 such that l' x lies in the image of the homomorphism HII(P,,(C), Z) 
-+ HI(P" (C), R»). The positive elements of HI(p" (C). Z) are the positive 
integral multiples of h" [= the cohomology class of the oriented hyper
plane P"-l (C) in the oriented manifold P,,(C); see 4.2]. 

An algebraic manifold V (see 0.1) is a HODGE manifold because V 
can be regarded as a submanifold of P",(C), In sufficiently large, and 
the restriction of hm E HI (Pm (C). Z) to V gives a positive element of 
1f1.1(V, Z). 

A complex analytic line bundle F over V is said to be projectively 
induced if. for some embedding of V in a projective space Pm(C). F is 
the restriction to V of the line bundle H with cohomology class hm• 

[H is associated to the C·-bundle 'l'/m of 4.2 with cl ('I'/m) = h"" and is 
determined by the hyperplane Pm_l(C) of Pm(C).] A projectively 
induced line bundle is positive, but in general there exist positive line 
bundles which are not projectively induced. The projectively induced 
line bundles can always be given by divisors (the hyperplane sections). 
More precisely we have 

Theorem 18.1.1 (BERTINI). Let F be a projectively induced line 
bundle over the algebraic manifold V. There is a non-singular divisor S 
of V with F = {S}. 

Remark: The theorem of BERTINI is often stated in the form: 
A "general" hyperplane section S of a connected non-singular algebraic 
manifold V" in P '" (C) is itself non-singular and, for n ~ 2, connected. 

For proofs see AKIZUKI [1] and ZARISKI [2,3]. It is easy to prove 
that S is non-singular; the fact that S is connected for n ~ 2 is not 
needed in the sequel. 

The following fundamental theorem is due to KODAIRA [6]. Another 
proof, which applies more generally to normal complex spaces, has been 
given by GRAUERT r3]. 
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Theorem 18.1.2. A compact complex manilold is algebraic il (and 
only if) it is a HODGE manilold. 

KODAIRA'S proof makes essential use of a theorem on the vanishing 
of certain cohomology groups which is itself of considerable importance 
and is described in the next section. We then summarise the applications 
of Theorem 18.1.2 which are important for the present work. 

18.2. In 15.2 we formulated the generalised RIEMANN-RocH problem. 
Examples show that HO (V, W) does not depend only on the continuous 
vector bundle W: it is possible to find an algebraic manifold V and two 
complex analytic vector bundles W, W' over V which are isomorphic as 
continuous vector bundles but for which dimH°(V, W) =1= dimHO(V, W'). 
Nevertheless it turns out that X(V, W) does depend only on the conti
nuous vector bundle W. In fact it depends only on the CHERN classes 
of W. In many important cases it is moreover possible to prove that the 
cohomology groups Hi (V, W) vanish for all i > O. In such cases 
dimH°(V, W) = x(V. W), and the calculation of X(V. W) by means 
of CHERN classes gives a solution of the RIEMANN-RoCH problem. 

Theorem 18.2.1. Let F be a complex analytic line bundle over the 
compact complex manilold V. II F-l is positive then the cohomology groups 
Hi (V. F) vanish lor all i =1= n. 

This theorem is proved by KODAIRA [4]. He uses a technique from 
differential geometry due to BOCHNER. Another proof has been given by 
AKIZUKI-NAKANO [1], who actually prove that if F-l is positive the 
groups H~,Il(V. F) [see 15.3 a)] vanish for p + q < n. 

The SERRE duality theorem 15.4.3 shows that Theorem 18.2.1 is 
equivalent to 

Theorem 18.2.2 (KODAIRA). II F ® K-l is positive then the cohomo
logy groups Hi (V, F) vanish lor aU i > O. In this case 

dimH°(V. F) = x (V, F). 

Of course these theorems are non-vacuous only if V is a HODGE 
manifold. Theorem 18.2.2 and rule (4) of 18.1 imply immediately (see 
also GRIFFITHS [3]) 

Theorem 18.2.3 (KODAIRA). Let F be a complex analytic line bundle 
over a HODGE manilold V, and let E be a Positive line bundle over V. 
Then the cohomology groups Hi(V. F ® E") vanish lor all i> 0 and k 
suDiciently large. 

Theorem 18.2.2 is an essential preliminary in KODAIRA'S proof of 
Theorem 18.1.2 (HODGE manifold -+ algebraic manifold). In the process 
KODAIRA (6) proves 

Theorem 18.2.4. Let V be a HODGE manilold. There is a positive 
element Xo E HI,l (V, Z) with the property: 
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Every complex analytic line bundle F with cl (F) - xo > 0 is pro
jectively induced. 

It is now possible to deduce 
Theorem IS.2.5. Let V be an algebraic manifold and F a complex 

analytic line bundle over V. There are projectively induced line bundles 
A, B withF = A ® B-1. 

As a corollary, F can be written in the form 

F = {S} ® {T}-1 

where Sand T are non-singular divisors of V. 
Proof: Let E be a projectively induced line bundle over V with 

cl (E) - xo > o. It is elementary that A = E" is projectively induced 
for k > O. For k sufficiently large k Cl (E) - Cl (F) - xo > 0, and by IS.2.4 
B = E" ® F-l is projectively induced. Then F = A ® B-1. The corollary 
follows from the theorem of BERTINI (IS.1.1) with A = {S} and B = {T}. 

Remarks: The corollary shows that F can be represented by a 
divisor. It follows that the group of divisor classes of V is naturally 
isomorphic to the cohomology group Jll(V, C!) (see 15.2 and KODAIRA
SPENCER [2]). The fact that every divisor D of an algebraic manifold is 
linearly equivalent (see 15.2) to a divisor of the form S - T, where S 
and T are non-singular, is elementary to prove (see for instance ZARISKI 
[4]). 

From now on we make no distinction between HODGE manifolds and 
algebraic manifolds. In many cases (for instance in the next section) it is 
possible to show that a given compact complex manifold V admits a 
HODGE metric. V is then automatically algebraic. 

18.3. Let L be a complex analytic fibre bundle over the algebraic 
manifold V with complex projective space Pr(C) as fibre and the pro
jective group PG L (r + 1, C) as structure group. Clearly L is a compact 
complex manifold. It is possible to construct a HODGE metric on L by 
using a HODGE metric on V and the usual HODGE metric on Pr(C). 
Hence 

Theorem IS.3.1 (KODAIRA). A complex analytic fibre bundle L 
over the algebraic manifold V with P r (C) as fibre and P G L (r + 1, C) 
as structure group is itself an algebraic manifold. 

The details of the proof can be found in KODAIRA [6], Theorem S. 
A. BOREL (also using Theorem IS.1.2 of KODAIRA) has generalised the 
above theorem as follows: 

Theorem IS.3.1* (A. BOREL). Let L be a complex analytic fibre 
bundle over the algebraic manifold V with an algebraic manifold as fibre 
and a connected structure group. Assume that the first BETTI number of F 
is zero. Then L is itself algebraic. 
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We shall apply the BOREL theorem only in the case where F is the 
flag manifold F(q) = GL(q, C)/LJ(q, C) andL is associated to a GL(q, C)
bundle E over V. In this case it is easy to prove that L is algebraic 
directly from Theorem 18.3.1 by induction over q: 

Consider the fibre bundle L' associated to L but with Pq - l (C) as 
fibre. Then L is a complex analytic fibre bundle over L' with F(q - 1) 
= G L (q - 1, C)/LJ (q - 1, C) as fibre. By Theorem 18.3.1 L' is algebraic. 
By the induction hypothesis L is algebraic. 

The fact that F (q) is an algebraic manifold was not used in this 
induction proof. It can be deduced by taking V as a point. In this case 
L = F(q). 

Remark: Theorem 18.3.1· remains true if "algebraic" is replaced by 
"KAHLER" throughout. It is then a special case of a theorem of BLAN
CHARD [2]. 

§ 19. The virtual Z.1-characteristic for algebraic manifolds 

In § 17 we defined the virtual x:v-characteristic X:v(FI' ... , Frl, W)v 
associated to a compact complex manifold V, a complex analytic vector 
bundle W over V and complex analytic line bundles FI , •.. , Fr over V. 
By definition X:v(FI' ... , Frl, W)v is a formal power series in the in
determinate y with integer coefficients. We omit the suffix V when there 
is no danger of ambiguity. If V is an algebraic manifold, it is possible to 
obtain more detailed information about the x:v-characteristic with the 
help of Theorem 18.2.5. 

19.1. A O-dimensional compact complex manifold is a finite number 
of isolated points. 

Lemma 19.1.1. Let V be a O-dimensional complex manifold consisting 
01 k points. Let W be a vector bundle over V with fibre Cq and F I , ... , Fr 
line bundles over V. 

Then I) X:v(V, W) = q k 
II) X:v(FI' ... ' Frl, W) = 0 for r ~ 1. 

Proof: 
I) X:v(V, W) = x (V, W) = dimH°(V, W) = q k. 

II) Every line bundle over V is trivial. Apply Lemma 17.2.2. 

19.2. By definition X:v(V, W) is a polynomial (terminating power 
series) with integer coefficients. We now prove by induction on the 
dimension n of V that the virtual x:v-characteristic is also a polynomial 
in the case that V is an algebraic manifold. 

Theorem 19.2.1. Let V be an algebraic manifold 01 complex dimension 
n. Let W be a complex analytic vector bundle over V with fibre Cq and let 
FI> ... , Fr (r ~ 1) be complex analytic line bundles over V. Then 



§ 19. The virtual x,-characteristic for algebraic manifolds 143 

a) the virtual 'ly-characteristic 'ly(Fl' ... , Frl, W) is zero lor l' > n. 
For l' :;;; n it is a polynomial 01 degree:;;; n - l' in y with integer coeDicients. 

b) il l' = n ;;;; 1 the virtual 'ly-characteristic 'ly(Fl' ... , F .. I, W) 
= 'l(Fl, ... , F .. I, W) is the integer q '/1/1 .. . 1 .. [V], where Ii E HI(V, Z) 
is the cohomology class 01 F i • 

Proof of a): Lemma 19.1.1 shows that a) is true for dim V = O. 
Now suppose that a) is proved for dim V < n. By Theorem 18.2.5 there 
are non-singular divisors Sand T of V such that {S} = Fl ® {T}. The 
functional equation (6) in Theorem 17.3.1 then becomes 

'1." ({S}, F I , ••• , Frl, W) 
= 'ly(Fl' ... , Frl, W) + 'ly({T}, F Il, ••• , Frl, W) (*) 

+ (y - 1) Xy({T}, Fl , ... , Fri. W) - Y 'ly({S}, {T}, Fl , ... , Frl, W) . 

The functional equation contains five terms, and we have to prove 
that term 2 has degree:;;; n - r. The induction hypothesis, together with 
Theorem 17.2.1 shows that terms 1, 3, 4, 5 all have degree:;;; n - l' 

and vanish for l' > n. [If l' = 1 then term 1 is just 'ly (S, W 8) and term 3 
is 'ly(T, W T); these terms are polynomials of degree :;;; n - 1 by the 
definition of the (non-virtual) 'ly-characteristic.] Therefore term 2 is a 
polynomial of degree:;;; n - l' and zero for l' > n. Q. E. D. 

Proof of b): Again by Theorem 18.2.5 there are non-singular divisors 
Sand T of V such that {S} = Fl ® {T}. 

Then a) gives, for n ;;;; 2, 

'1. ({S}, F I , ••• , F .. I, W) 

= 'l(Fl' Fa, ... , F .. I, W) + '1. ({T}, F I , .•• , F .. I, W) (1) 
and for n = 1 

'l({S}I, W) = 'l(F11, W) + 'l({T}I, W) . (2) 

By (2) and Lemma 19.1.1 the case n = 1 gives 

'l(F11, W) = q s - q t = q /1 [Vl] 

where s, t are the number of points of S, T. Therefore b) is true for 
dim V = 1. Now suppose that b) is proved for 1 :;;; dim V < n. We now 
apply the induction hypothesis to (1), and use Theorem 17.2.1, Theorem 
4.9.1 and 9.2 (3) to obtain 

X(Fl' Fa' ... , F .. I, W) = q' (fa· • ·1 .. )8[S] - q' (/a· • ·I .. )T[T] 
= q' cl({S}) I •. .. I .. [V] - q' cl({T}) I •. .. I .. [V] 
= q • Ilia· . . 1 .. [V]. 

Remark: The case n = 1 of Theorem 19.2.1 b) implies the RIEMANN
RocH theorem for (connected) algebraic curves (see 0.5). Let F be a 
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complex analytic line bundle over the algebraic curve V with cohomology 
class IE HI(V, Z). Choose W to be the trivial line bundle. Then the 
virtual x-genus of F-l is given by 

X(F-l) = -/[V] . 

But, by 17.2, X(F) = xCV) - x (V, F-l) and therefore, SUbstituting F-l 
forF, 

x (V, F) = xCV) + f(V] . (3) 

By Theorem 15.7.1, xCV) = 1 - gl = 1 - P where p = half first Betti 
number = genus of V. The integer f [V] is called the degree of F. If F 
is represented by a divisor, which is always possible, then deg(F) is the 
algebraic number of points (number of zeros minus number of poles) 
of the divisor. The duality theorem 15.4.3 implies that 

x(V, F) = dimH°(V, F) - dimH1(V, F) 
= dimHo(V,F) - dimHo(V, K ® F-l) 

and therefore (3) becomes 

dim HO (V, F) - dimHO(V, K ® F-l) = 1 - P + deg(F) . 

19.3. Let (Fl , ... , Frl, W)V denote a set consisting of an algebraic 
manifold V, a complex analytic vector bundle W over V and complex 
analytic line bundles Fl, ... , F rover V. We allow the case r = 0, but in 
this case we also write (V, W) for ( .. ·1, W)y. 

Theorem 19.3.1. Let G be a function which associates to each set 
(Fl, ... , Frl, W)V a power series in the indeterminate y with ,ational 
coefficients. Suppose that G(F1, ••• , Frl, W)y is independent of the orm 
in which the F, appea, and that 

I) G(V, W) = Xy(V, W). 

II) G satisfies the functional equation 
G(Fl , ... ,Fr, A ® BI, W)V = G(FI'·· .,Fr• AI. W)v + 
+ G(F1, ••• , Fr. BI, W)V + (y - 1) G(F1, ••• , Fr, A, BI. W)v -
- G(F1, •••• Fr, A. B. A ® BI, W)v. 

III) II S is a non-singula, di'llisor of V and FI = {S} then 

G(FI' ... , Frl, W)V = G«F.}s • ...• (Fr)sl, Ws)s 
(for' = 1 this means that G(Fll, W)V = G(S. Ws)). II Fl = {O} = 1 
then G(FI' ...• Fri. W)V = O. 

Conclusion: For all (FI' ... ,Frl, W)V with, ~ 1 

Xy(FI, ...• Fri. W)" = G(FI' ... , Frl, W)V . 

Proof: Xy has properties II) and Ill) and therefore the function 
Xy - G has properties II) and III). It is therefore sufficient to show that 
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any function G' which satisfies II}, III} and 

I'} G'(V, W) = 0 

is identically zero. This will be proved by induction on the dimension n 
of V. 

By Theorem 18.2.5 there are non-singular divisors S and T of V 
such that {S} = FI 0) {T}. Then II} implies equation (*) of the proof of 
Theorem 19.2.1 a} with X,. replaced by G'. This equation has five terms, 
and we have to prove that the second term is zero. The induction hypo
thesis and III} imply that terms 1, 3, 4, 5 are zero. [For r = 1 it is 
necessary to use I'} to prove that terms 1,3 are zero.] Therefore term 2 
is zero. Q. E. D. 

In the next theorem we consider only the virtual x,.-genus, that is, 
the vector bundle W is always the trivial line bundle. A virtual sub-
manifold (see 17.2) of V is denoted by (FI' ... , Fr}Y' We allow the case 
r = 0 and in this case also write V for ( .. . )v. By Theorem 19.2.1 the 
power series x,. (FI' .. . ,Fr}y is actually a polynomial in y with integral 
coefficients. It is therefore permissible to substitute a particular number 
Yo for the indeterminate y. If Yo is a rational number then X,.. (FI' ... , Fr}v 
is a rational number; if Yo is an integer then so is X,.. (FI' ... , Fr}Y' 

Theorem 19.3.2. Let G be a function which associates to each 
(FI' .. . ,Fr}y a rational number which is independent of the order in which 
the Fi appear. Suppose that, for some fixed rational number Yo. 

I) G(V} = X,..(V}. 

II} G satisfies the functional equation 

G(FI' ... , Fr, A 0) B}y = G(FI" .. , Fr, A}y + G(FI, .•. , Fr, B}y + 
+ (Yo - I) G(FI' ... , Fr, A, B}y - Yo G(FI' ... , Fr, A, B, A 0) B}y. 

III) If S is a non-singular divisor of V and FI = {S} then 

G(FI' ... , Fr}Y = G«(Fs}s, ... , (Fr}S)S 

(for r = 1 this means that G(FI}Y = G(S». If FI = {O} = 1 then 
G(FI' ••. , Fr}Y = O. 

Conclusion: For all (FI' ... , Fr}y with r ~ 1 

X,.. (FI' ... , Fr}Y = G (FI' ... , Fr)Y . 

Proof: Exactly as for Theorem 19.3.1. 
Remark: The reason for choosing W to be the trivial line bundle is 

simply that we apply Theorem 19.3.2 in the above form. The same proof 
gives a formulation of Theorem 19.3.2 for arbitrary (FI, . .. , Frl, W)y. 
This is not more general, however, because the hypothesis is strengthened 
as well as the conclusion. The induction method of the proofs of Theorems 
19.2.1. 19.3.1 and 19.3.2 is used frequently in algebraic geometry. 
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Certain results need only be proved for algebraic manifolds (in the non
virtual case) and then Theorem 18.2.5 allows them to be extended to 
apply to virtual manifolds. We have stated this induction principle only 
in the generality needed for the results in the present work. but at the 
cost of some repetition in statements of theorems and proofs. 

19.4. Let (Fl' ...• Fri. W)V be as at the beginning of this section. 
and let Ii E HI (V. Z) be the cohomology class of F i' The complex analytic 
vector bundle W is associated to a complex analytic G L (q. C)-bundle 
which can be regarded as a continuous GL(q. C)-bundle E. Then the 
virtual (TODD) T,,-characteristic T"Ul' ...• /rl. E)v was defined in 12.3. 
We write 

T,,(Fl' - ..• Fri. W)V = T"Ul' .. .• 1 .. 1. E)v 

T,,(V. W) = T,,(V. E) . 
(4) 

By Theorems 12.3.1 and 12.3.2 the T ,,-characteristic has all the properties 
required of the function G in Theorem 19.3.1 except for the property 

I) T,,(V. W) = X,,(V. W) 

which is not yet proved. We note already. however. that it is only 
necessary to pove I) lor all V. W in order to pove that x" and T" agree 
on all (Fl' .. -. Fri. W)v· 

19.5. The virtual T,,-genus is a polynomial in y with rational co
efficients. and so it is permissible to substitute a particular value Y. 
for y. If Y. is an arbitrary (but fixed) rational number then. by Theorems 
11.2.1 and 11.3.1. T".(FI' ...• Fr)v has all the properties required of the 
function G in Theorem 19.3.2 except for the property 

I) T".(V) = X".(V) 

which is not yet proved. Note. however. that it is only necessary to 
prove I) for all algebraic manifolds V in order to prove that X". and T". 
agree on all (Fl' ...• Fr)v. 

We now show that I) does hold for Yo = 1 and Yo = -1. The index 
theorem 8.2.2 implies [see 10.2 (6)] that for Yo = 1 

Tl (V) = 'f(V) = index of V. 

Theorem 4.10.1 implies [see 10.2 (5)] that for Y. = -1 

T_l(V) = E(V) = EULER-POINCARE characteristic of V. 

Theorem 15.8.1 and the HODGE index theorem 15.8.2 imply the corres
ponding results for the x,,-genus: 

XI(V) = 'f(V) 
and 

X-l(V) = E(V). 
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For Yo = 1 or Yo = -1 the function T". satisfies all the properties 
required of the function G in Theorem 19.3.2 and therefore 

Theorem 19.5.1. The virtual T,,-genus and the virtual X,,-genus agree 
lor Yo = 1 and Yo = - 1 : 

Let V be an algebraic manilold and let 1';, •••.• Fr. be complex analytic 
line bundles over V with cohomology classes 11' .•.• IrE HI(V. Z). Then 

Xl (Fl' ... , Fr)v = Tl (Fl' ... , Fr)v = T(h, .. ·,/r)V , 
and 

§ 20. The RmMANN-ROCH theorem for algebraic manifolds and 
complex analytic line bundles 

We are now in a position to prove that if V is an algebraic manifold 
then the TODD genus T(V) and the arithmetic genus X(V) agree. This 
will then imply the RIEMANN-RoCH theorem for a complex analytic line 
bundle over V. 

20.1. The first step is to prove that T(V) and X(V) agree if the 
algebraic manifold V is also a complex analytic split manifold [see 
l3.5.b)). 

Theorem 20.1.1. Let V be an algebraic manifold which is also a 
complex analytic split manilold. Then X(V) = T(V). 

Proof. Let m = dim V and let AI' ...• Am be the complex analytic 
diagonal line bundles defined over V. By 13.6 (13) and Theorem 17.4.1 
with W = I, ... 

(1 + y)m T(V) = LY' L T,,(A i,,··., Ai,) V , 
1-0 .,<"'<0, 

... 
(1 + y)m X(V) = E y' E X,,(A i ,.· •• , Ai,)v. 

1=0 ',<"'<" 
The T ~ are polynomials. Since V is algebraic the Xy are also polynomials 
(Theorem 19.2.1). The two equations show that T(V) = X(V) provided 
that, for some Yo =1= -I, T~. and X~. agree for algebraic manifolds V and 
their virtual submanifolds (Ai" ... , Ai,)v. Theorem 19.5.1 shows that 
T y• and XYo agree in this sense for Yo = 1. This completes the proof. 

Remark: It is interesting to note that the agreement of XYo and Ty• 

for Yo = - 1 is not sufficient to prove the above theorem. The proof that 
XY. and T Yo agree for Yo = 1 is based on the fact that the index of a 
differentiable manifold can be represented as a "polynomial in the 
PONTRJAGIN classes" (Theorem 8.2.2). This theorem was proved with the 
help of the cobordism theory of THoM. 

20.2. The construction of 13.4 associates, to each compact complex 
manifold V"' a compact complex split manifold V..s which is a complex 
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analytic fibre bundle over V with the flag manifold GL(n, C)/Lf(n, C) 
as fibre. This construction makes it possible to reduce the proof that 
X(V) = T(V) for arbitrary algebraic manifolds V to the case considered 
in Theorem 20.1.1. By Theorem 14.3.1 T(V) = T(VA). The corresponding 
result for the arithmetic genus is contained in 

Theorem 20.2.1. Let E be a complex analytic GL(g, C)-bundle over 
the algebraic manifold V. Let V' be the fibre bundle associated to E with the 
flag manifold F(g) = GL(g, C)/Lf(g, C) as fibre. Then V'is an algebraic 
manifold and x(V/) = X(V). 

Proof: Theorem 18.3.1· implies that V'is algebraic. Let tp be the 
projection from V' on to V. The bundle tp. E over V' admits the group 
Lf (g, C) of diagonal matrices as structure group. Let El , ••• , Ell be the 
corresponding diagonal C·-bundles and let ,,~ be the image of cl (E~) 

under the natural homomorphism ][1 (V', Z) -+ HI (V', C). The bundles E~ 
are complex analytic and therefore by Theorem 15.9.1 the cohomology 
classes ,,~ are of type (I, 1). The cohomology homomorphism tp. maps 
H·(V, C) monomorphically into H·(V', C) (BOREL [2]). Since tp is a 
complex analytic map, tp. maps cohomology classes of type (P, g) to 
cohomology classes of type (P, g). It is known that H· (V', C) is generated 
by tp. H·(V, C) and the ,,~ (BOREL [2]). Since each ", is of type (I, I), 
all cohomology classes of type (0, P) in H· (V', C) must lie in tp. H· (V, C). 
Therefore hO,-(V') = hO,-(V) and hence X(V) = X(V/). 

Theorem 20.2.2. Let V be an algebraic manifold. The arithmetic 
genus xCV) and the TODD genus T(V) agree. 

Proof: Let VA be the split manifold constructed from V. The previous 
theorem shows that VA is an algebraic manifold and that 

By Theorem 14.3.1 

By Theorem 20.1.1 

x(V) = X(VA) . 

T(V) = T(VA) . 

X(VA) = T(VA) . 

The conclusion follows from (1)-(3). 

(1) 

(2) 

(3) 

20.3. Theorem 20.2.2 states that the X",-genus and the T ",-genus 
agree for algebraic manifolds when y = O. The argument of 19.5 then 
implies 

Theorem 20.3.1. Let V be an algebraic manifold, and let Fl , ••• , F, 
be complex analytic line bundles over V. Then 

X(Fl' ... , Fr)v = T(Fl' ... , F,)v . 

The theorem states for, = 1 

X(F)v = T(F)v 
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The virtual genus of a line bundle can be expressed in terms of the 
(non-virtual) genus of V. By 17.2 and 12.1 (4) 

X(F)y = X(V) - x (V, F-1) , 
and 

T(F)y = T(V) - T(V, F-1) . 

Therefore, replacing F by F-1, Theorems 20.2.2 and 20.3.1 imply the 
formula: 

x(V, F) = T(V, F) . (4) 

Formula (4) is the RIEMANN-RoCH theorem for an algebraic manifold V 
and a complex analytic line bundle F over V. 

Recall (15.9) that the cohomology class of F is the first CHERN class 
of the C*-bundle associated to F. The definitions of X and T and the 
result just obtained can be collected together as 

Theorem 20.3.2. Let V be an algebraic manilold 01 dimension n 
and let F be a complex analytic line bundle over V with cohomology class 
IE H2 (V, Z). The cohomology groups Hi (V, F) 01 V with coelficients in the 
skeaf of germs of local kolomorphic sections 01 F are finite dimensional 
complex vector spaces which vanish lor i > n. The EULER-POINCARE 
characteristic .. 

X(V, F) = E (_I)i dimHi(V, F) 

can be expressed as a "polynomial" T(V, F) in the cohomology class f 
and the CHERN classes Ci of V: 

X(V, F) = " .. [el.I} l.!:-Y']' (4*) 

Formula (4*) is to be understood as follows: 

ci E H2 i (V, Z) and there is a lormal factorisation 

1 + C1 X + ... + c .. x" = (1 + Y] x) ... (1 + Y .. x) . (5) 

Consider tke term of degree n in f and the Yi of tke expression in square 
brackets. It is a symmetric lunction in the Yi and is therefore a polynomial 
in I and the ci with rational coefficients. II the muUiplication is interpreted 
as the cup product in H* (V, Z), this polynomial defines an element of 
H21I(V, Z) ® g. The value of this element on the 2 n-dimensional cycle 01 V 
determined by the natural orientation is equal to X(V, F). 

If F = I, so that f is 0, the above theorem gives Theorem 20.2.2. 

Formula (4*) can also be written in the form (see 1.7): 

x (V, F) = " .. [el + t·, II . ~/2J2] . 
'=lSlnY 

(6) 
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The power series sin~:¥ is a power series in Xl. The elementary symmetric 

functions of the 1'1 are the PONTRJAGIN classes Pl' P2' ••• , of V, which 
depend only on the differentiable structure of V, not on the almost 
complex structure (see 4.6). Therefore 

X (11; F) is a polynomial in 1 + ! cl and the PONTRJ AGIN classes 01 V. 

In tenns of the polynomials At defined in 1.6 we deduce from (6) that 

1 ( 1)' X (V, F) = 1: 2" ,.1 1 + "2 cl A.(Pl'·.·' P.) [V] , (6*) 

where the summation is over all r, s with r + 2s = n = dim V. 
The equation X(V, F) = T(V, F) has an immediate corollary which 

was first proved by SERRE and KODAIRA-SPENCER [4]: 
Let V be an algebraic manilold. The integer X (V, F) depends only on 

the cohomology class 1 01 F. 

20.4. In the remaining sections of this paragraph we make some 
remarks on the connection between the present results and the classical 
theory (see 0.1-0.5). Let F and G be two fixed complex analytic line 
bundles over the algebraic manifold V. Then X(V, F ® Gil) is an integer 
which depends on k. By Theorem 20.3.2 

X (V, F ® Gil) = T (V, F ® Gil) . 

It is then clear from the definition of T that X(V, F ® Gil) is a poly
nomial in k of degree ~ n = dim V. If I, g are the cohomology classes of 

F, G respectively, the coefficient of k" in this polynomial is ~g" [V]. n. 
The constant term of the polynomial is of course x (V, F). Collecting 
these facts together we have 

X (V, F ® Gil) = ao + a1 k + ... + a" k" 
(7) 

with ao = X(V, F) and n! a" = g" [V]. 

The ai are rational numbers which by (4*) can be expressed as 
"polynomials" in I, g and the CHERN classes of V. 

Remark: The fact that x (V, F ® Gil) is a polynomial in k, and the 
fonnula for a", can easily be deduced from Theorem 19.2.1, so that it is 
not necessary to use (4*). On the other hand we obtain in this way very 
precise infonnation about all the coefficients at. Another proof that 
X (V, F ® Gil) is a polynomial in k was found by J.-P. SERRE who deduced, 
with the help of the PICARD manifold of V, that X(V, F) depends only 
on the cohomology class 1 (see the end of the previous section). 

Now let G be a positive line bundle (see 18.1). Then there is an 
integer ko, depending onF and G, such that the line bundleF ® Gil ® K-l 
is positive for k ~ ko. [K is the canonical line bundle defined in 15.3. a).] 
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Therefore by Theorem 18.2.2 

dimHO(V, F ® G/c) = x (V, F ® G/c) for k ~ ko . 

It follows that for any line bundle F and any positive line bundle G 

(8) 

for sufficiently large k, and that the coefficient ao = x (V, F) is in
dependent of G. 

In the case in which G is projectively induced (that is, associated to a 
hyperplane section of some embedding of V in a complex projective 
space) these are known features of the classical theory (HILBERT charac
teristic function, postulation formula). It is then well known that ao 
in (8) does not depend on G. If we write ao = ao(F) we can define x (V, F) 
in terms of the classical theory by 

x(V, F) = ao(F) . 

By SERRE duality [15.5 (14)) or, alternatively, by 12.2 (12), 

ao(F) = (-I)" ao(K ® F-l) . 

(9) 

(10) 

In the classical theory the arithmetic genus is defined in two alter
native ways 

P .. (V) = (-1)"(-1 + ao(l» and Pa(V) = - (-I)" + ao(K). (11) 

The conjecture that Pa (V) = P a (V) was a long outstanding problem. 
SEVERI conjectured (see for instance SEVERI [1]) that for connected 
algebraic manifolds V 

P .. (V) = p .. (V) = g,. - g,.-l + ... + (_1),,-1 gl , 
that is, 

(12) 

This equation follows from (10) for F = 1. Equations (12) state the 
equivalence of three definitions of the arithmetic genus of an algebraic 
manifold, all of which appear in the classical theory. This result was 
obtained by KODAIRA-SPENCER [1] in the manner described. For further 
information on the history of the arithmetic genus we refer to the work 
of KODAIRA [1,2,5]. Theorem 20.2.2 can be interpreted as stating that a 
fourth possible definition, namely the TODD genus, agrees with the three 
definitions just given (see 0.2). 

20.5. Let V be a n-dimensional algebraic manifold and K the 
canonical line bundle of V. If c1 is the first CHERN class of V then by 
Theorem 4.4.3 (see also 12.2 and 15.9) K has cohomology class -Cl. 

The i-th plurigenus of V is defined by 

pi = dimH0(V, Ki) 
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where K' denotes the i-fold tensor product of the line bundle K. (The 
i in pi is a suffix, not a power.) Then 

PI = dimH°(V, K) = dimH"(V, 1) = g" = geometric genus of V. 

There is an interesting case in which the pi can be calculated by 
means of the RIEMANN-RocH theorem (20.3.2) and Theorem 18.2.2: 

Suppose that K is positive. Then 

X(V, K') = P' for i ~ 2, 

r(V, K') = "" [exp (- ! (2i - 1) c1) /1 Si:t~/2]' (13) 

1. 1" 1 ) 
.1m -:;0 = -I {-c1 "[V] ... O. 
0-+00 , n 

The above hypothesis is for instance satisfied if V is the quotient 
space defined by a discontinuous group of automorphisms acting freely 
(i. e. no element other than the identity has fixed points) on a bounded 
domain of C" (KODAIRA [6], p. 41). In this case the plurigenus pi is 
equal to the number of linearly independent (over C) automorphic forms 
of weight i. 

20.6. Let F be a complex analytic line bundle over the n-dimensional 
algebraic variety V with cohomology class t E HI (V, Z). Then X (V, F) 
can be calculated by formula (4*) of 20.3. In (4*) there is a "multiplier" 

II 

eI in front of the product II. The identity 
i-I 

'" el = (1 - (1 - e-I)-l = 1: (1 - e-I)I 
;-0 

in the cohomology ring of V now implies (by the definition of the virtual 
TODD genus and the fact that the virtual T-genus and X-genus agree) 
the following formula which was conjectured by SEVERI [1]: 

X(V, F) = X(V) + X{F)v + X(F, F)v + ... + X{F, ... , F)v . (14) 
(n times) 

Associate to the n-dimensional algebraic manifold V the integers 

'l'i = X{K, ... , K)v, '1'0 = X(V) . 
(j times) 

These are given in terms of the classical invariants D, by the relations 

'1'" = Do = (-C1)" [V] , '1'1 = (-I)"-i D"_I + 1 . 

Formula (14), with F replaced by K, becomes 
II 

(-1)" '1'0 = 1: '1'1 (SEVERI) 
;=0 

(14') 
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MAXWELL-ToDD [1] obtained all other general relations between the 
integers "Pi' All such relations are easily proved by using the virtual TODD 
genus and we give another example: 

The definition of the virtual TODD genus shows that, if Cl E H2(V, Z) 
is the first CHERN class of V, 

"Pi = " .. [(1 - eel); .iII ~:_",] . 
$= 1 

This expression for "Pi contains the "multiplier" (1 - eel);, and so the .. 
corresponding expression for E 2,,-1 "Pi contains the multiplier 

;=0 

Therefore 

.. 
E 2"-; (1 - eel); = 2"+1/(1 + eel) . 

;-0 

.. [eel'." ",/2 ] .E 2,,-1 "Pi = "" 2"+1 I + e'" II sinh",/2 
1=0 $=1 

Since 1 :'~, is an even function of Cl , the expression in [] contains 

no terms of odd degree in Cl and the y,. Therefore 
.. 

E 2"-1 "PI = 0 for n odd. 
;=0 

(15) 

Remark: The calculations of this section can be carried out without 
using the fact that the T-genus and the X-genus agree. It is then neces
sary to use the formalism of § 17 together with Theorem 19.2.1 and the 
duality formula 15.5 (14). All the relations of MAXWELL-ToDD can be 
obtained in this way. Nevertheless once T and X are identified it is 
much easier to work with the T-genus. The calculations in the formalism 
of § 17 are precisely analogous to those using the T-genus. The reader 
will notice that the power series of § 17 correspond to the multipliers .. 
which occur in front of II 1 ", " in the calculations with the T-genus 

i_I -e , 

" (and, similarly, to the multipliers which occur in front of II Q(y; y,) 
i= I 

for the T:v-genus; see 1.8). If for instance a complex analytic line bundle 
F with cohomology class I is involved. the formalism of § 17 will contain 
an indeterminate I and the calculations with the T-genus will contain a 
multiplier ef 

20.7. We conclude this paragraph with some remarks on the RIEMANN
ROCH theorem for algebraic surfaces. Let V be an algebraic manifold of 
complex dimension two and F a complex analytic line bundle over V 
with cohomology class IE H2(V, Z). Then formula (4*) of 20.3 and SERRE 
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duality give 

dim HO (V. F) - dimJl1(V. F) + dimH°(V. K ® F-l) 

= ! (/2 + I e1) [V] + -k- (ef + c.) [V] . (16) 

To express this in the classical notation we assume that V is connect
ed. The superabundance (see ZARISKI [1]. p. 68) of F is defined by 

dimJl1(V. F) = sup(F) . 

The integer I' [V] is called the virtual degree g (F) of F. It is now 
easy to express (16) in the usual form of the RIEMANN-RocH theorem. 
Alternatively it is possible to use formula 20.6 (14) and obtain 

dimHO(V, F) + dimHO(V, K ® F-l) = X (V) + X(F)v + g(F) + sup (F) . 

(17) 

In the classical terminology X (F) = 1 - n (F). where n (F) = "virtual 
genus of F". and X(V) = 1 + Pa(V). Recall that. by the remark following 
Theorem 15.2.1, 

dimlFI + 1 = dim HO (V. F) • dimIK®F-ll + 1 = dimH°(V.K®F-l). 

so that (17) can be written in the classical form 

dim IFI + dim IK ® F-li = P .. (V) - n(F) + g(F) + sup(F) . (18) 

Unlike formula (16). formula (18) does not contain the fact that 
X(V) = T(V). This equation arises in the classical theory in the following 
form: 

Define the linear genus 

P(l) = g (K) + 1 = e~ [V] + 1 . 

Formula (18). with F replaced by K. gives an alternative definition 

1- n(K) = 1- P(1) = X(K). 

The ZEUTHEN-SEGRE invariant I of V is given bye, [V] = I + 4. 
and the arithmetic genus Pa(V) by X(V) = 1 + P .. (V). Therefore the 
equation 

1 
X(V) = 12 (ef + c.) [V] = T(V) 

becomes 
12Pa + 9 = P(1) + I . (19) 

This relation is due to M. NOETHER (see ZARISKI [IJ. p. 62). 
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§ 21. The RmMANN-ROCH theorem for algebraic manifolds and 
complex analytic vector bundles 

21.1. In this section we prove the main theorem 

x(V, W) = T(V, W) (1) 

for an algebraic manifold V and a complex analytic vector bundle W 
over V. This theorem will be called the RIEMANN-RoCH theorem for 
vector bundles (or simply R-R). We recall the definitions of X and 
T and summarise the situation in 

Theorem 21.1.1. Let V be an algebraic manifold of dimension n 
and let W be a complex analytic vector bundle over V with fibre Cq • Let 
co' cl , ... , c,. be the CHERN classes of V and do, dl , •.• , dq the CHERN classes 
of W (co = do = 1; Ci' diE Hli(V, Z)). The cohomology groups Hi(V, W) 
are finite dimensional vector spaces which vanish for i > n. The EULER
POINCARE characteristic 

II 

X(V, W) = 1: (-I)i dim Hi (V, W) 
1=0 

can be expressed as a "polynomial" T (V, W) in the CHERN classes Ci and di : 

X(V, W) = " .. [(e'" + ... + e"o).i!,. l.!:-Y, ] 

= ",. [eC,/8(e'" + ... + e"o) iI . ,),,/2 ] = T(V, W) . 
1= I smh:y,/2 

(1*) 

Equation (1 *) is to be understood as follows: there are formal factorisations 
.. II q q 

E Ci Xi = II (1 + 'Yi x) and E di Xi = II (1 + ". x) 
0=0 .=1 .=0 .=1 

and the term of degree n of the expression in square brackets is a polynomial 
in the Co and die This term determines an element of HIto(V, Z) ® g 
which is to be evaluated on the fundamental 2n-dimensional cycle of V. 

Before giving the proof we make some remarks and discuss a special 
case. Of course R-R contains Theorem 20.3.2. R-R also implies that, 
for fixed V, the integer x (V, W) depends only on the CHERN classes of W 
and therefore only on the continuous vector bundle W. This fact does 
not seem to have been proved without using R-R, except in the case 
that W is a line bundJe (see the remark in 20.4). This may be connected 
with the fact that there is in general no algebraic manifold whose points 
represent (for fixed V and q> 1) the complex analytic GL(q, C)-bundles 
over V which are trivial as continuous bundles. For q = 1 such an 
algebraic manifold does exist; it is called the PICARD manifold of V 
(see SERRE [1], KODAIRA-SPENCER [2]). 

Theorem 21.1.1 is known for n = 1; in this case V is an algebraic 
curve and WElL proved 
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Theorem 21.1.2 (WElL [1], p. 63). Let V be a connected algebraic 
curoe and let W, W' be complex analytic vector bundles with Cr, Cr' as 
typical fibres. Let ~ E IP(V, Z) be the first CHERN class 0/ W and di the 
first CHERN class 0/ W'. Then 

X(V, W ® W'*) = dimH°(V, W ® W'*) - dimHO(V, K ® w* ® W') 

= r' ~ [V] - l' d~ [V] + l' r' (1 - p) 

where p is the genus of V. 
Proof with help of R-R: Let di , d; denote the formal roots of W, W'. 

Then by Theorem 4.4.3 or formula 10.1 (4) 

X(V, W ® W'*) = "l[eC,/I(e'" + ... + e~) (e-"; + ... + e-~>l 
= "1 [(1 + c1/2) (1' + dl ) (1" - dm . Q. E. D. 

We now come to the proof of R-R. Let E be the complex analytic 
G L (q, C)-bundle over V associated to W. Consider a fibre bundle E 
associated to E with the flag manifold F(q) = GL(q, C)/Lf(q, C) as fibre 
and denote the projection of E on to V by fIJ. By Theorem 14.3.1 

T(V, W) = T(E, fIJ* W) , 

and, by the theorem of BOREL stated in the next section, 

x(V, W) = X(E, fIJ* W) X(F(q». 

Since the arithmetic genus XCF(q») is 1 (see 15.10) 

X(V, W) = X(E, fIJ* W) . 

(2) 

(3) 

The group of the bundle reduces complex analytically to the group 
Lf (q, C). Therefore there are q diagonal complex analytic line bundles 
Al , •• "AI over E and by 12.1 (5) and Theorem 16.1.2 

, , 
T(E, fIJ* W) = 1: T(E, Ai) and X(E, fIJ* W) = 1: X(E, Ai). (4) 

.-1 i-I 

E is an algebraic manifold (Theorem 18.3.1*), and so by Theorem 20.3.2, 

X(E, Ai) = T(E, Ai) (1 ~ i ~ q) . (5) 

Equations (2), (3), (4) and (5) now give 

x(V, W) = T(V, W) . Q.E.D, 

21.2. The following previously unpUblished theorem of BOREL was 
used in the proof of Theorem 21.1.1 (R-R). 

Theorem 21.2.1. Let E be a complex analytic fibre bundle over a 
compac, complex manifold V with a (compact) connected KAHLER mani
fold F as fibre and with a connected structure group. E is then automatically 
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a compact complex manilold. Let qJ be the projection Irom E on to V, and 
let W be a complex analytic vector bundle over V. Then 

X,,(E, qJ* W) = X,,(V, W) X,,(F) . (6) 

In particular, when y = 0, 

X(E, qJ* W) = X(V, W) X (F) , X(E) = X(V) X (F) . (7) 

Corollary: II E, V and Fare KXHLER manilolds then the index T 

satisfies 
T(E) = T(V) T(F) . (8) 

By Theorem 15.8.2, the corollary is the case y = 1, W trivial. The 
proof of Theorem 21.2.1 due to BOREL uses the spectral sequence for 
the d-cohomology of a complex analytic fibre bundle, and is included 
in Appendix Two. 

Remarks: (1) When F is a flag manifold, (6) implies formulae (to), 
(10*) of 14.S, 14.4. It is shown in CHERN-HIRZEBRUCH-SERRE [1] that (8) 
is true when E, V, F are compact connected oriented manifolds, provided 
that the orientation of E is induced by those of V and F and that the 
fundamental group :lEI (V) acts trivially on the cohomology ring H* (F) 
ofF. 

(2) Theorem 20.2.1 is a special case of Theorem 21.2.1. In 20.2.1 
we proved only as much as was necessary for the application to Theorem 
20.2.2. 

(S) For the proof of R-R in the previous section it is enough to 
know formula (7) for F a flag manifold. The induction method used at 
the end of 18.S shows that it is sufficient to know (7) for F a complex 
projective space. In this case X (F) = 1 and it is possible to prove that 

(9) 

which implies the equation X(V, W) = X(E, qJ* W). A direct proof of 
(9) is given in the appendix [2S.2 (2)]. 

21.3. Theorem 21.1.1 (R-R) makes possible the complete iden
tification of the x-theory and the T-theory. By R-R 

X(V, W ® A' T) = T(V, W ® A' T) 
and therefore 

x'(V, W) = T'(V, W) • 

Since X', T' are the coefficients of y' in the polynomials X,,, T" this 
implies that 

x,,(V, W) = T,,(V, W) . 

Note that X'(V, W) depends only on the continuous vector bundle W. 
If W is a line bundle then this fact can be proved directly (KODAIRA
SPENCER [4]). 
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The explicit formula in the case W = 1 is [see 12.2 (9)]: 

(10) 

(The summation in the last line is over all combinations of signs which 
contain exactly p minus signs.) 

It now follows from 19.4 that x,. and T y also agree in the virtual case. 
We therefore obtain 

Theorem 21.3.1. Let V be an algebraic manifold, W a complex 
analytic vector bundle over V and FI , ... , Fr complex analytic line bundles 
over V. Then 

Xy(Fl' ... , Frl, W)v = Ty(F1 • ••• , Fri. W)v. (11) 

Remark: The case r = 0 (see 19.3) and y = 0 of this formula is 
just R-R. Although formula (11) is the most general result of this 
chapter, it is not an essential generalisation. R-R is the central theorem. 

Bibliographical note 
At least four other proofs of the RIEMANN-RoCH theorem are now available. 

A proof that X(V, W) = T(V, W) for a complex analytic vector bundle W over an 
arbitrary compact complex manifold V has been given by ATIYAH-SINGER [1]. 
Their method is based partly on the proof of the index theorem (8.2.2) in Chapter 
Two and is described in § 25. The argument of 21.3 then implies that the x-theory 
and the T-theory agree on compact complex manifolds i. 8. Theorem 21.3.1 holds 
for Va compact complex manifold. In particular Xl(V) = TdV) = T(V) so that 
the HODGE index theorem (15.8.2) is true for Va compact complex manifold. 

A direct proof that X(V) = T(V) which avoids the index theorem is due to 
WASHNITZER. The proof holds for V an algebraic manifold and more generally for V 
a non-singular projective variety defined over an algebraically closed field K. By 
results of CHOW and SERRE, X (V) and T (V) can still be defined in this case (SERRE 
[2,4], BOREL-SERRE [2], GROTHENDIECK [4]). The published version (WASHNITZER 
[2]) contains an axiomatic characterisation of the arithmetic genus X(V) but 
unfortunately omits the proof that T (V) satisfies the axioJns. 

The GROTHENDIECK-RIEMANN-RoCH theorem for a proper map I: V ~ X of 
algebraic varieties (BOREL-SERRE [2]) is described in § 23. When X is a point the 
theorem becomes R-R for an algebraic vector bundle W over a non-singular 
projective variety V (both defined over an algebraically closed field K). By results 
of SERRE [4] on the relation between analytic and algebraic sheaves when K = C, 
this implies R-R for a complex analytic vector bundle W over an algebraic 
manifold V. 

Another proof of the GROTHENDIECK-RIEMANN-RoCH theorem when K = C 
is due to ATIYAH-HIRZEBRUCH [8]. For I: V -+ X an embedding the proof includes 
the case that V, X are arbitrary compact complex manifolds. For general I it is 
necessary to assume that V, X are algebraic manifolds. This approach yields the 
shortest available proof of R-R but, as in this book, only for V a (complex) 
algebraic manifold. 



Appendix One 
by R. L. E. SCHWARZENBERGER 

§ 22. Applications of the RIEMANN-RocH theorem 
Three typical applications of the RIEMANN-RoCH theorem are sum

marised. The first uses the theorem to calculate invariants of complete 
intersections in projective space (22.1). The second uses the theorem to 
calculate invariants of algebraic manifolds which arise from the bounded 
homogeneous symmetric domains of E. CARTAN (22.2.-22.3). The third 
application of R-R is to the study of complex vector bundles over 
complex projective space (22.4). 

22.1. Consider r non-singular hypersurfaces F(as), ... , F(a,) of degrees 
tit, ... , ar in complex projective space P"+r(C). The intersection V~ .. ····a,) 

= F(as) (\ ••• (\ F(a,) is an algebraic manifold of dimension n if the hyper
surfaces F(as), ... , F(a.) are in general position. The problem is to calculate 
the x,,-characteristic of the algebraic manifold v~a ...... a,). It will appear 
that this depends only on the integers ai' ... , ar , n and not on the parti
cular choice of hypersurfaces F(as), ...• F(a,). 

Let H be a line bundle over P "H (C) associated to the C*-bundle 'YJ"+r 
(see 4.2). Then H corresponds to the divisor class of a hyperplane 
Pur- 1 (C) and has cohomology class C1('YJ"H) = hE H2(P,,+r(C)' Z). 
The line bundle Hal corresponds to the divisor class of the hyper
surface F(tJI). If j: V~ .. ····a,) -+ P"H(C) is the embedding we write Ii for 
j* hand 11 for j* H. 

Consider the case r = 1. By 4.8.1 there is an exact sequence of vector 
bundles over F(as) 

0-+ <t(F) -+ j* <t(P) -+ j* Has -+ 0 

where <t (F) and <t (P) are the tangent bundles of F(as) and P ,,+1 (C). 
Therefore 

c(<t(F)) = j*(c(<t(P))' c(Has)-I) = (1 + Ji)"+2 (1 + a1 Ji)-I. 

Theorem 4.8.1 can be applied r times to give the total CHERN class 
of the algebraic manifold V~ .. ·· .. a,): 

c(<t(V,,)) = (1 + Ji)"H+1(1 + a1 Ji)-I ... (1 + ar Ji)-I. (1) 

Theorem 22.1.1. Let V" be a complete intersection 01 r hypersurlaces 
01 degrees al' ...• ar in general position in P"H(C)' and let z be an in-
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determinate. The Xy-characteristic 01 the line bundle 1111 over V" is given by 

co (1 + .ry)l-l r (1 +.1' y).,- (1 - .1')'" 
II~ Xy(V".I1I1)z"+r= (1_.1').+1 t~ (I +.ry)"I+y(I-.r).'· (2) 

Proof (HIRZEBRUCH [3]. § 2.1): By the RIEMANN-RoCH theorem (21.3.1) 

Xy{V ... I1I1) = Ty(V". 11") . 
Let R{x) = [(1- e-%(Y+!)-I{y + 1) - y]-I. Then (1) implies 

Ty(V".I1") = "" [e(l+Y) II i (Ii R(Ii) -I),,+r+l .n (a, Ii) -I R (a, Ii)] 
0-1 

= "" [e(l+Y) IIi Ii"+! R(Ii)-,,-r-l .n ar1 R(a, A)]. 
0-1 

The term of degree n is a multiple of A" and 1i"[V,,] = a1 a l ••. ar• 

Therefore Ty(V". /JII) is the coefficient of X-I in 
r 

e(I+Y)h R(x)-,,-r-l n R(a, x) . 
• =1 

This coefficient can be computed as a residue at x = o. The substitution 
z = R (x) gives 

e(l+y)% = \~:. dz = (1 + zy) (1- z) dx 

(1 +.1' y). - (1 - .1')-
R(a x) = (I + .ry). + y(I-.r)- • 

Therefore T y (V". 11") is the residue at z = 0 of 

as required. 

z-ft-r-1 (1 +.ry)H-l nr (1 +.ry)·'-(I-.r)"I 
(I - .r)l+1 t= 1 (I + .ry)8, + y(I-.r)"I 

Corollary: When y = 0. equation (2) becomes 
co r 

E X (V". 1111) z"+r = (1 - Z)-1I-1 n (1 - (1 - z)"') . 
11-0 .-1 

Similarly the cases y = - 1. Y = + 1 give equations for the EULER
POINCARE characteristic and index of v~ah."''''')' 

Remark: Theorem 22.1.1 can be proved directly from the "four 
tenn formula" [16.3 (10)] and this proof preceded the proof of the 
RIEMANN-RoCH theorem. It can be shown easily that the theorem holds 
also for,. = O. The corollary gives for,. = 0 and ,. = 1 respectively the 
well known formulae for X(P,,(C). H") and X (V!.2). 11") which were used 
for example in HIRZEBRUCH-KoDAIRA [1] and BRIESKORN [1]. 

Theorem 22.1.1 can be used to calculate the integers hl'.fl for V" 
(see 15.4). This is possible because of 
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Theorem 22.1.2. Let V .. = V!:' .. ···· .... l be a complete intersection. Then 
hP.q(V .. ) = lJp•q lor P + q =1= nand 

XP(V .. ) = (-I)"-P hP, .. -P(V .. ) + (-I)P lor 2P =1= n, 

Xm(V .. ) = (-1)'" hm,m(V .. ) lor 2m = n. 

The proof can be found in HIRZEBRUCH [3]. § 2.2. It is by induction on r 
and uses the theorem of LEFSCHETZ on hyperplane sections (BaTT [4]). 

22.2. Let M be a bounded domain in C .. endowed with the BERGMANN 
hermitian metric (KODAIRA [6]. p. 42). This is a KAHLER metric which is 
invariant under complex analytic homeomorphisms of M. Let I (M) be 
the group of all such homeomorphisms and Y = MjLJ the quotient space 
defined by the action of a subgroup LJ of I (M). The identification map 
p : M -'>- Y is a complex analytic covering map of a compact complex 
manifold Y if 

(a) LJ is properly discontinuous. i. e. any compact set in M intersects 
only a finite number oj its images under LJ. 

(b) MjLJ is compact. 
(c) LJ acts freely, i. e. only the identity element 01 LJ has fixed points. 
Properties (a) • (b) , (c) imply (see KODAIRA [6]. p. 41) that the 

canonical line bundle Ky is a positive line bundle over Y (see 18.1). 
Therefore Theorem 18.1.2 implies that Y is an algebraic manifold. 
A holomorphic function I on M is an automorphic lorm 01 weight r with 
respect to LJ if for all xE M. yE LJ, 

I(y x) = ];;r(x) j(x) 

where }y(x) is the jacobian of y at the point x. The complex vector 
space of all automorphic forms of weight l' is isomorphic to HO(Y. KY). 
The dimension of this vector space, i. e. the "number" of linearly in
dependent automorphic forms of weight r with respect to LJ, is denoted 
by IIr(M, LJ). Since Ky is positive. Theorems 18.2.1 and 18.2.2 imply 
that the cohomology groups of Y with coefficients in the sheaf of germs 
of holomorphic sections of Ky are zero in all dimensions =1= 0 if r ~ 2 
and in all dimensions =l=n if r ~ -1. Therefore (see 20.5 (13)] 

IIr(M, LJ) = 0 for r ~ -1, 

IIo(M, LJ) = 1 . 
(3) 

II1(M, LJ) = g ... 

IIr(M, LJ) = X(Y. Ky) for r ~ 2. 

Here g .. is the "number" of holomorphic forms of degree n over Y = M j LJ. 
Now suppose that the bounded domain M is homogeneous. i. e. M 

admits a transitive group of complex analytic homeomorphisms. The 
CHERN classes c, of Y can be represented by differential forms so that each 
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partition n = (jl' ... , j,) of n defines a differential form P (n) of degree 
2n and type (n, n) which represents the cohomology class ci, · .. ci •. 
Since M is homogeneous P* P (n) = s (n). V where s (n) is a real number 
which depends only on M and the partition :re, and V is the invariant 
volume element of M with respect to the BERGMANN metric (see HIRZE
BRUCH [5], § 2). 

Theorem 22.2.1. Let .11' .12 be two subgroups 01 J (M) which satisly 
(a), (b), (c). Let Vi be the volume 01 Y i = MIL1i with respect to the BERG
MANN metric on the bounded homogeneous domain M and c = v1/v'l' Then 

X,,(Y1) = c X,. (Y2) , Ilr(M, .11) = cIlr(M • .12) lor r ~ 2. 

Proof: Let s;(n) be the CHERN number ci, ... ci. [Yi ] of Yi which 
corresponds to the partition n. Then SI (n) = s (n) VI' S2 (n) = s (n) V2 and 

sdn) = c s2(n) for all n = (jl' .. . ,j,) . (4) 

Therefore (4) holds also for any linear combination of CHERN numbers. 
In particular (3) and the RIEMANN-RoCH theorem imply that (4) holds 
for x,. (Yi ) and for Ilr(M, L1 i ). r ~ 2. 

Now suppose that the bounded homogeneous domain M is in addition 
symmetric, i. e. for each point x E M there is a complex analytic homeo
morphism lIz: M - M which has x as isolated fixed point and is an 
involution (lI~ = identity). The. following special case of a theorem of 
BOREL shows that there always exist algebraic manifolds MIL1. 

Theorem 22.2.2 (BOREL [4]). Let M be a bounded homogeneous sym
metric domain, and J (M) the group 01 complex analytic homeomorphisms 
01 M. Then 

I) J(M) contains a subgroup .1 which satisfies (a), (b) and (c). 

II) it .1 is a subgroup 01 J (M) which satisfies (a) and (b), and which 
does not consist only 01 the identity element. then .1 has a proper normal 
subgroup 01 finite index which satisfies (a). (b) and (c). 

Remark: In the case considered, (a) holds if and only if .1 is a 
discrete subgroup of J (M); property (b) holds if and only if I (M)/Lf 
is compact (BOREL [4], p. 112). 

22.3. Let M be a bounded homogeneous symmetric domain in en. Then 
M is a product M = Nl X ... X N, of irreducible bounded homogeneous 
symmetric domains N". Each N" is a quotient space N = GJH with 
G a simple non-compact LIE group with centre the identity and H a 
maximal compact connected subgroup of G with centre of (real) dimension 
one. It is possible to associate to G a compact LIE group G' which also 
contains H. The quotient space N' = G'/H is a compact irreducible 
homogeneous hermitian symmetric complex manifold which contains an 
open subset complex analytically homeomorphic to N (BOREL [1]). 
Full details of this construction can be found in HELGASON [I), p. 321. 
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It is shown in BOREL-HIRZEBRUCH [1]. Part I. p. 520 that the canonical 
line bundle of N' is negative in the sense of KODAIRA (and hence that 
N' is an algebraic manifold). Let e ENe N' be the base point cor
responding to the identity of G. G'. By a formula of E. CARTAN the 
curvature tensor at e associated to an invariant metric on N' is a negative 
multiple of the curvature tensor at e associated to an invariant metric 
on N (see HIRZEBRUCH [5]). 

Let M' = N~ X ••• X N~ and e = (Bt ••.•• e.) E M. Then M can be 
regarded as an open subset of M' and the invariant differential forms 
which represent given CHERN numbers on M. M' differ at e by a positive 
factor multiplied by (-1)". This is a consequence of the above-mentioned 
property of the curvature tensors. As in Theorem 22.2.1 an application 
of the RIEMANN-RoCH theorem gives 

Theorem 22.3.1. Let M be a bounded homogeneous symmetric domain 
in e". and I (M) the group 01 complex analytic homeomorphisms 01 M. 
Let Y = M/LJ be the quotient space defined by the action 01 a subgroup LJ 01 
I(M) which satisfies (aJ. (bJ and (cJ 0/22.2. and M' the compact sym
metric manilold co"esponding to M. Then there is a real number c such that 

X:v(Y) = c X:v(M'). ll,(M, LJ) = c X(M'. (KM,)r) lor l' ~ 2. 

II n is even c > O. II n is odd c < O. 
In fact the manifolds M' have been classified directly (see HELGASON 

[1]. p. 354). M' = N~ X ••• X N; where each N' is one of the manifolds 
in the following list: 

I) U(p + q)/U(P) X U(q), II) SO (2P)/U(P) , 
III) Sp(P)/U(P) , IV) SO(P + 2)/SO(P) X SO(2), P =1= 2 , 

V) EalSpin(lO) X 'fl VI) E7/E. X 'fl. (4) 

The fact that each such N' yields a bounded homogeneous symmetric 
domain N was proved by E. CARTAN by means of an explicit construction 
in each case. The first general proof is due to HARISH-CHANDRA [1]. p. 591 
(see HELGASON [1]. p. 312). The BETTI numbers br(N') of N' can be 
calculated by the formula of HIRSCH and it can be shown that the 
numbers hP,'l(N') defined in 15.4 are zero for p =1= q (see 15.10. BOREL [2] 
and BOREL-HIRZEBRUCH [1], § 14). It follows that X (N') = 1 (in fact N' 
is a rational algebraic manifold). Thus we see that the constant c in 
Theorem 22.3.1 equals X(Y). It also follows that the index T = T(N') 
= 1: (-1)1 bl/(N') is zero except in the following cases: 

I) il P = 2s and q = 2t. or il p = 2s + 1 and q = 2t. or if p = 2t 
(s+I)1 

and q = 2s + 1. then T = STiI" (5) 

IV) il P = 4 s then T = 2, 

V) T= 3. 
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Let Lt be a subgroup of I(M) which satisfies (a), (b) and (c) of 22.2. 
Such a subgroup exists by Theorem 22.2.2. Also by this theorem there 
exists a proper normal subgroup r of index I-' in Lt with I-' arbitrarily 
large such that r acts freely on M. Then M/r is a finite covering of 
Y = M/Lt with I-' sheets and the RIEMANN-RocH theorem implies that 
X,,(M/r) = I-' x" (Y). By Theorem 22.3.1 and the equations X(M') = 1, 
c = X(Y) mentioned above 

X,,(M/r) = I-' X,,(Y) = I-' x(Y) x,,(M') 

where X(Y.) > 0 if n is even and X(Y) < 0 if n is odd. In particular 
if M' is a product of manifolds of the type listed in (5) then n is even and 
T(M/F) = I-' x(Y) T(M'), x(Y) > 0, T(M') > O. In this way algebraic 
manifolds M/r can be constructed with arbitrarily large index. 

The first example is the case M' = U(3)/U(2) X U(I) = PI(C). 
Then X (M') = 1 and M is the open unit disc BI C C •. Thus there exist 
algebraic surfaces M/r with arbitrarily large index. This contradicts 
a conjecture of ZAPPA [I]. Further details can be found in BOREL [4]. 

Theorem 22.3.1 can also be applied to calculate the integersllr(M, Lt). 
Because of (3) we suppose r ~ 2. For simplicity let M be an irreducible 
bounded symmetric homogeneous domain. Then M' is one of the mani
folds listed in (4). The values of llr(M, Lt) were calculated by HIRZE
BRUCH [4], [5] using the values for X(M', (KM.)r). The latter can be 
calculated by R-R and are related to formulae of H. WEYL on degrees 
of representations (BOREL-HIRZEBRUCH [1], § 22). The results in each 
case are: 

I) llr(M, Lt) = (_I)~11 X (M/Lt) n ¥~p ++qq~-/~ J ' where the product 
is over all 0 ;;;; i ~ P - 1, 1 ;;;; j ;;;; q. 

II) llr(M,Lt) = (-I)l~(I>-l) X (M/Lt) II 2(¥-1) (~~~) +i +j, where 
$ J 

the product is over all 0 ;;;; i < j ;;;; p - 1. 

III) llr(M,Lt) = (_I)t~(Hl) X (M/Lt) II 2(¥- 1)(::' 1) +i +i, where the 

product is over all 0 ;;;; i ;;;; j ;;;; p. 

IV) llr(M, Lt) = (-1)~ X (M/Lt) ((¥P; 1) + (¥/)) . 
V) llr(M, Lt) = X (M/Lt) II 12(¥ - 1) + I'a , where the product is over 

I'a 
k = 1, .. "' 16 and the corresponding values 011-'" are 1, 2, 3, 4, 4, 5, 5, 6, 
6,7,7,8,8,9, 10, 11. 

VI) llr(M, A) = - X(M/Lt) II 18(¥ - 1) + I'a, where the product is 
I'a 

over k = 1, ... , 27 and the corresponding values 011-'" are 1, 2, 3, 4, 5, 5, 
6, 6. 7, 7, 8. 8, 9, 9, 9, 10, 10, 11. 11, 12. 12, 13, 13, 14, 15, 16. 17. 
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Remark: Another method of calculating the numbers ilr(M, Lt), 
including also the case in which condition (c) is omitted, is due to 
SELBERG (Seminars on analytic functions, Vol. 2, p. 152-161. Institute 
for Advanced Study, Princeton 1957). Formulae I)-VI) have been 
generalised to a more general type of automorphic form by 15E [2]. He 
also uses the proportionality principle. LANGLAND5 [1] has obtained these 
formulae, and corresponding formulae when condition (c) is omitted, 
using SELBERG'S trace formula and HARI5H-CHANDRA'S work. 

22.4. In this section the RIEMANN-RocH theorem x (V, W) = T(V, W) 
is applied with V = P,,(C). For each n we regard P"-l (C) as a hyperplane 
in P,,(C). The corresponding divisor class defines a line bundle Hover 
P .. (C) and a cohomology class hE HlII(P,,(C), Z). 

Let W be a continuous complex vector bundle over P,,(C) with fibre 
Cq and CHERN class 1 + d1 h + ... + dsh', (diE Z, s ~ q, s ~ n). In 
H*(p .. (C), C) = H*(P .. (C), Z) ® C there is a factorisation 

1 + d1 h + ... + dB h' = (1 + «51 h) ... (1 + «5s h) 

with «5J E C and therefore by 10.1 and 4.4.3 

T(P .. (C), W ® Hr) = u" L~ e(.lj+r) A L :" II r+ 1] 
q 1 f ,,(a,+.'A 

_t"'_ dh 
-.~ 2n i (1 - .,-A)-+1 

1= 1 

where «51+1 = .•. = 15" = 0 and integration is over a small circle round 
the origin. The substitution z = 1 - e-" gives 

T(P .. (C), W ® Hr) = i (n + ", +") . 
;= 1 n 

If W is a complex analytic vector bundle the RIEMANN-RoCH theorem 

. Ii th t. (n + ." + ") h' h .. . . I b 'th Imp es at ~ , w IC a pnon IS a rabona num er WI 
;=1 n 

denominator nt, is an integer for all integers ,. The same conclusion 
holds for W a continuous vector bundle by the integrality theorem of 
26.1. This completes the proof of 

Theorem 22.4.1. Let W be a continuous complex vector bundle over 
p .. (C) with CHERN class 

1 + d1 h + ... + ds h' = (1 + 151 h) ... (1 + «5s h) 

where dt E Z, c5i E C and s ~ n. Let , be an integer. Then the symmet,ic 
function 

(n +: + "1) + ... + (n +: + d.) 
in the «5J is an integer. 
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Examples: Consider the case q= 2. Then r! 15,.) + (n! 151) is an 

integer. This implies the following restrictions on the integers dl = 151 +152, 

d2 = 151 152 : 

n = 2 no restriction 
n = 3 dl d'l. == 0 modulo 2 

n = 4 d.(dz + 1 - 3dl - 2~) == 0 modulo 12. 

Let W be the tangent bundle of P2 (C). Then s = 2. dl = dz = 3 and 
~ dB is odd. Therefore W is not the restriction to PB(C) of any continuous 
vector bundle over Ps(C). It can be shown similarly that for all n ~ 3 
the tangent bundle of P"-l (C) is not the restriction of any vector bundle 
over P,,(C). An example of a continuous vector bundle W over Pa(C) 
with fibre C2• which is not the restriction to Pa(C) of any vector bundle 
over P,(C). is given by the following classical construction. Consider a 
linear complex in Ps(C). i. e. the set of lines satisfying an equation 
E aH PH = 0 where POl' POI' P03' P2a. Pal> P12 are PLUCKER coordinates. 
The lines of the linear complex which pass throut;h a point xE Pa(C) 
form a plane pencil. This defines an algebraic fibre bundle B over Ps(C) 
with fibre Pl(C). There is an associated vector bundle Wover P3 (C) with 
fibre C2 and dl = dz = 2. Thus dB (ds + 1 - 3dl - 2d~) == 2 modulo 12 and 
W is not the restriction of any vector bundle over P,(C). 

In general Theorem 22.4.1 gives necessary conditions for integers 
dl •...• dB to appear as CHERN classes of a continuous complex vector 
bundle over P" (C) with fibre C«. These are hard to calculate for particular 
q. n but for fixed q they clearly become more restrictive as n -+ 00. In fact 
a lemma in algebraic number theory (which the author owes to J. W. S. 

CASSELS) implies that if 1: (n + di ) is an integer for all n then each ()i is an 
i=1 n 

integer. This implies 
Theorem 22.4.2. Let W be a continuous vector bundle over P,,(C) with 

fibre C« and suppose that W is the restriction to P,,(C) 01 a continuous vector 
bundle over PlI'(C) lor arbitrarily large N. Then there are integers r1 • •••• r« 
such that c(W) = c(H" ED' •• ED H',). 

Further results on complex vector bundles over p .. (C) can be found 
in HORROCKS [1]. [2] and SCHWARZENBERGER [1]. For the classification of 
complex analytic vector bundles over algebraic curves. which also makes 
use of R-R. see ATIYAH [1]. [2]. GROTHENDIECK [3], NARASIMHAN
SESHADRI [1]. [2J. and TURIN [IJ, [2J. 

§ 23. The RIEMANN-RocH theorem of GROTHENDIECK 

The generalisation of R-R due to GROTHENDIECK depends on 
properties of coherent analytic sheaves over complex manifolds. These 
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properties are summarised in 23.1-23.3 and are used to obtain an 
alternative proof of equation 21.2 (9). The GROTHENDIECK-RIEMANN
ROCH theorem itself is described in 23.4-23.6. Throughout this paragraph 
we shall for convenience assume that all algebraic manifolds are connected. 

23.1. Let X .. be a complex manifold of dimension n. and D the sheaf 
over X .. of germs of local holomorphic functions (15.1). Each stalk D% 
of D is a ring with identity 1 E D%. 

Definition: A sheaf e = (5. n. Xn) of abelian groups is an analytic 
sheaf over X .. if: 

I) Every stalk 5% of e is a module over the corresponding stalk D % 

of D (the unit element 1 E Dr operates as the identity). 
II) The map from U D % X 5 x (regarded as a subspace of D X 5) 

xEX 

to 5 defined by the module multiplication is continuous. 
An essential role is played by the coherent analytic sheaves. Let Dp 

denote the sum D ED ... ED D of p copies of D. 
Definition: An analytic sheaf e over X .. is coherent if for each 

point xE X .. there is an open neighbourhood U of x and an exact sequence 
of sheaves over U 

Dp!U --+- Dq!U --+- elu --+- O. 
For the basic properties of coherent analytic sheaves we refer to 

GRAUERT-REMMERT [1]. The definition given there is apparently more 
restrictive than the above definition. The theorem of OKA on the sheaf 
of relations determined by a system of holomorphic functions (see 
CARTAN [3]. Expose XIV) implies that D is coherent in the sense of 
GRAUERT-REMMERT [1]. It can then be deduced that the two definitions 
of coherence are equivalent (see SERRE [2]. Chap. I. Prop. 7). Note 
that coherence is a purely local property. 

The sheaf D(W) of germs of local holomorphic sections of a complex 
analytic vector bundle W over X .. with fibre Cq is locally isomorphic 
to Dq. Therefore D(W) is a coherent analytic sheaf. 

If e is an arbitrary sheaf over X .. the cohomology groups of X .. 
with coefficients in e can be defined by "alternating" cochains (SERRE 
[3]). It follows from general considerations of dimension theory that 
Hq(X ... e) = 0 for q > 2n. For coherent analytic sheaves a more precise 
result has been proved by MALGRANGE [Bull. Soc. Math. France 85. 
231-237 (1957)]: 

Theorem 23.1.1. Let e be a coherent analytic sheaf over an n-dimen
sional complex manifold X ... Then Hq (X ... e) = 0 for q > n. 

The corresponding finiteness condition is due to CARTAN-SERRE [1] 
(see also CARTAN [4]): 

Theorem 23.1.2. Let e be a coherent analytic sheaf over a compact 
complex manifold X. Then for all q ~ 0 the complex vector space Hq (X. e) 
is finite dimensional. 



168 Appendix I 

Theorems 23.1.1 and 23.1.2 generalise the results obtained, for the 
particular case e = D(W), in Theorem 15.4.2. The proof of Theorem 
23.1.2 makes use of the theory of holomorphically complete manifolds 
(STEIN manifolds). Theorem B (SERRE [1] and CARTAN [3], Expose XIX) 
implies that if e is a coherent analytic sheaf over a holomorphic
ally complete manifold X then Ha(X, e) = 0 for q> O. If now X is a 
compact complex manifold there is a finite covering U = {Uiho of X 
such that each intersection UtI f\ •.. f\ Ui~ is holomorphically complete. 
This is for instance automatically the case if each Ui is a unit disc with 
respect to some complex analytic chart on X. The LERAY spectral 
sequence (GODEMENT [I), Chap. II, 5.2.4) can then be used to prove that 
Ha(X, e) = Ha(U, e) for q G O. This is one of the basic facts required 
for the proof of CARTAN-SERRE. 

23.2. Let f: X - Y be a holomorphic map of complex manifolds 
and e an analytic sheaf over X. The q-th direct image of e is an analytic 
sheaf f. e over Y which is defined by means of a presheaf. For any 
open set U of Y the cohomology group H'l (1-1 (U), e) is a module over 
the ring of holomorphic functions defined on l-l(U). A holomorphic 
function g: U _ C can be lifted to a holomorphic function g I : 1-1 (U) - C 
and so H'l (1-1 (U), e) can also be regarded as a module over the ring of 
holomorphic functions defined on U. These modules define a presheaf 
for f'1. e. The definition implies that I~ e is an analytic sheaf over Y. 

Consider an exact sequence of analytic sheaves over X 

0- e'- e-e"-o. 
By Theorem 2.8.2 the open set 1-1 (U) is paracompact for every open 
set U of Y. By Theorem 2.10.1 there is an exact sequence 

O-H°(t-l(U) , e')-H°(f-l(U), e)_H°(f-l(U), e")-W(t-l (U), e') - ... 

. . . - H'l(t-l(U), e') - Ha(t-l(U), e) - Ha(t-l(U), e")-
_ Ha +1 (/-1 (U), e') -+ ••• 

and hence an exact sequence of analytic sheaves over Y 

0- r. e' - r. e - I~ e" - I~ e' - ... 
... - I~ e' - f. e - f'1. e" - f. +1 e' - .... 

(1) 

Theorem 23.2.1. Let I: X - Y be a holomorphic map 01 complex 
martilolds and e an analytic skeaf over X. Suppose that I~ e = 0 lor all 
i> O. Then the complex vector spaces Ha(y, f~ e) and Ha(X, e) are 
isomorphic lor aU q G O. 

The direct image sheaves figure already in the fundamental work of 
LERAY [I), [2]. The exact sequence (1) and Theorem 23.2.1 are reformula
tions, for holomorphic maps and analytic sheaves, of results of LERAY on 
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continuous maps. Theorem 23.2.1 follows immediately from the LERA Y 

spectral sequence (see CARTAN [2] and GODEMENT [1]. Chap. II. 4.17.1). 
A direct proof can be found in GRAUERT-REMMERT [1] (p. 417. Satz 6). 

The proof of the RIEMANN-RoCH theorem in 21.1 depends on a result 
of BOREL (Theorem 21.2.1). As remarked in 21.2. in order to complete the 
proof of R-R directly it is sufficient to establish equation 21.2 (9). 
We tirst prove 

Lemma 23.2.2. Let X be a comptex analytic fibre bundle over the 
complex manifold Y with fibre p .. (C) and projection map f. Let W be a 
comptex analytic vector bundle over Y. There is a 1,atural isomorphism 
between the analytic sheaves D(W) and I~ !J(f. W). The analytic sheaf 
t. D (1* W) is zero for i > O. 

Proof: Let U be an open set of Y. A holomorphic section s of W 
over U determines a holomorphic section sl of f*W over 1-1 (U). Since 
each fibre P II (C) is compact and connected. this defines an isomorphism 
HO(U. D(W» - H°(f-l(U). D(I* W)) and proves the first part of the 
lemma. The second part is purely local. so we may choose U to be a 
holomorphically complete open set over which both W and X are trivial. 
We wish to prove that H'(f-l(U). D(f* W» = 0 for i> O. Since 
1* WII- 1 (U) is a sum of trivial bundles it is sufficient to prove that 
H'(/-l(U). 1) = 0 for i> O. Now Hr(U. 1) = 0 for r> 0 (23.1) and 
H'(Pn(C). 1) = 0 for s > 0 (15.10). Therefore (KAUP [1]. § 7. Satz 1) the 
KUNNETH formula for analytic sheaves can be applied in this case to give 

H'(/-l(U). 1) = H'(U X Pn(C). 1) = 

E Hr(U.l) ® H'(P .. (C), 1) = 0 for i > O. 
,+.-t 

Remar.k: The KUNNETH formula for sheaves is due originally to 
GROTHENDlECK (see BOTT [1] and BOREL-SERRE [2]). A proof of 
the fonnula for algebraic coherent sheaves was given by SAMPSON
WASHNITZER [3]. The formula for analytic coherent sheaves used here 
depends on finiteness assumptlons on the higher dimensional cohomology 
groups involved; in the present case these groups are zero. For full de
tails see KAUP [1]. 

Lemma 23.2.2 and Theorem 23.2.1 (with e = D (f* W)) together 
imply 

Theorem 23.2.3. Let X be a complex analytic fibre bundle over the 
comptex manifold Y with fibre p .. (C) and projectiun map I. Let W be a 
complex analytic vector bundle over Y. Then the complex vector spaces 
HIl(Y. W) and HI (X. 1* W) are isomorphic tor all q ~ O. 

As a corollary we obtain the equation 21.2 (9) required to complete 
the proof of the RIEMANN-RoCH theorem: 

dimH"(Y. W) = dimH" (X. 1* W) . (2) 



170 Appendix I 

The direct image sheaves f1. 6 have special properties when 6 
is coherent. Let X be a complex manifold of dimension n and 6 a coherent 
analytic sheaf over X. Let I: X - Y be a holomorphic map of complex 
manifolds. The following theorems reduce to 23.1.1 and 23.1.2 when Y 
is a point. 

Theorem 23.2.4. Under the above hypotheses f1. 6 = 0 lor q > n. 
Theorem 23.2.5. Under the above hypotheses, il I is a proper map 

the~ f~ 6 is coherent lor aU q ~ o. 
Theorem 23.2.4 is an immediate consequence of 23.1.1. Theorem 

23.2.5 is a deep theorem of GRAUERT [2]. If X and Yare both algebraic 
manifolds then Theorem 23.2.5 can be proved algebraically (BOREL

SERRE [2], Theoreme 1) by using the correspondence between coherent 
analytic sheaves and coherent algebraic sheaves (SERRE [4]). 

23.3. Let X be a complex manifold, C (X) the set of isomorphism 
classes of coherent analytic sheaves over X and F (X) the free abelian 
group generated by C(X). An element of F(X) is a finite linear combina
tion 1: ni 6 i , niE Z, 6 i a coherent analytic sheaf over X. Let R(X) 

• be the subgroup generated by all elements 6 - 6' - 6" where 

0_ 6'-6-6"-0 

is an exact sequence of coherent analytic sheaves over X. The GROTHEN

DIECK group "of coherent analytic sheaves over X" is the quotient group 
K",(X) = F (X)/R (X). 

Let X be a compact complex manifold and bE K",(X) an element 
represented by a linear combination 1: ni 6. of coherent analytic sheaves 

• 6 i on X. Theorems 23.1.1 and 23.1.2 show that 6, is of type (F) and 
therefore the integer x (X. 6 i ) is defined (see 2.10). The integer 

x{X. b) = 1: ni x (X. 6 i ) 
i 

depends only on the element bE K",(X). 
Let I: X - Y be a holomorphic map of complex manifolds which 

is also proper. If 6E C(X) then. by 23.2.4 and 23.2.5. I, 6E C(Y) 
for q ~ 0 and f1. 6 = 0 for q> dimeX. Consider the homomorphism 
,,: F(X) _F{Y) defined on generators of F{X) by 

.. 
Me) = 1: (- W I~ e. n = dime X . 

9=0 

The exact sequence (1) shows that II maps the subgroup R(X) to R(Y). 
Therefore" induces a homomorphism 
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The LERAY spectral sequence can be used (BOREL-SERRE [2], p. 111) 
to prove that if I: X -+ Y and g: Y -+ Z are proper holomorphic maps 
of complex manifolds X, Y, Z then 

(3) 

Consider the special case in which Y is a point and I : X -+ Y is the 
constant map. Then I is proper if and only if X is compact. A coherent 
analytic sheaf over Y is a finite dimensional complex vector space and 
therefore K",(Y) = Z. In this case 

I, (b) = X(X, b) . (4) 

The homomorphism f! is analogous to the GYSIN homomorphism f. 
for cohomology. If X, Yare compact connected oriented manifolds 
(not necessarily complex), and f: X -+ Y is a continuous map, there is 
a homomorphism of H* (Y, Z)-modules 

f*: H*(X, Z) -+ H*(Y, Z) 

which maps classes of codimension q to classes of codimension q. As in 
4.3, 1* (x) = Dyl(l* Dx(x)) for xE H*(X, Z) where Dx , Dy denote the 
duality isomorphism from cohomology to homology. The homomorphism 
1* : H* (X, 0) -+ H* (Y, 0) is defined in the same way. If g: Y -+ Z is 
another continuous map of compact connected oriented manifolds then 

(g 1)* = g* 1* . (5) 

Consider the special case in which Y is a point, I is the constant 
map and X is a compact connected oriented manifold of (real) dimension 
m. In this case 

1* (v) = ~m[v]· 1, vE H*(X) (6) 

where 1 E HO (Y) is the identity element and ~m [ ] is defined as in 9.2. 

23.4. Let X be a complex manifold, C' (X) the set of isomorphism 
classes of complex analytic vector bundles over X and F' (X) the free 
abelian group generated by C' (X). Exactly as in 23.3 we can define the 
GROTHENDIECK group K~(X) "of complex analytic vector bundles 
over X". There is a natural homomorphism h: K~(X) -+ K",(X) induced 
by h(W) = Q(W). 

Theorem 23.4.1. Let X be an algebraic manifold. Then h: K~(X)-+ 
-+ K", (X) is an isomorphism. 

The main step in the proof of Theorem 23.4.1 is 

Lemma 23.4.2. Let E5 be a coherent analytic sheal over an n-dimen
sional algebraic manilold X. Then there are complex analytic vector b1mdles 
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WO' WI' ... , W" OVm' X and an exact sequence 

0-+ .D(W,,) -+ .D(W"_I) -+ ••• -+ .D(WO) -+ 0 -+ 0 (7) 

01 analytic sheaves ovm' X. 
Lemma 23.4.2 shows that the homomorphism h is surjective. It must 

" 
then be shown that the element 1: (-I)' Wi of K~(X) determined by .-0 
(7) depends only on 0. Proofs for 0 a coherent algebraic sheaf over X 
are given in BOREL-SERRE [2]. The above statements then follow from 
the correspondence between coherent analytic sheaves and coherent 
algebraic sheaves over an algebraic manifold (SERRE [4]). A similar 
remark applies to all the other results mentioned in this section including 
the RIEMANN-RoCH theorem of GROTHENDIECK (23.4.3). The proofs are 
purely algebraic and apply to non-singular irreducible projective varieties 
defined over an arbitrary algebraically closed field K. They are formulated 
in terms of the ZARISKI topology, coherent algebraic sheaves and algebraic 
fibre bundles with fibre K q • The cohomology ring H* (X, Z) is replaced 
by the CHOW ring A (X) of rational equivalence classes of algebraic 
cycles on X. When K = C the results of SERRE mentioned above allow 
algebraic statements to be reformulated in the complex analytic ter
minology used in this book. 

Let 0 be a coherent analytic sheaf over X with a "resolution by 
vector bundles" as in (7). Then the CHERN character of E5 can be defined 

" by ch(E5) = 1: (-1)1 ch(Wi ). By 23.4.1 this is independent of the 
i=O 

choice of resolution. If 

is an exact sequence of coherent analytic sheaves then (see 10.1) 

ch(E5) = ch(0') + ch(0") . 

Therefore the CHERN character defines a homomorphism 

ch: K",(X) -+ H*(X, g) 
for every algebraic manifold X. 

Let td (X) , td(Y) be the total TODD class of the tangent bundle 
of X, Y defined in 10.1. The RIEMANN-RoCH theorem of GROTHENDIECK 
can now be stated. 

Theorem 23.4.3 (G-R-R). Let X. Y be a/.gebraic manilolds and 
I: X -+ Y a holomorphic map. Then the equation 

ch(fl b)· td(Y) = I.(ch(b) . td(X) 

holds in H*(Y, g) lor aU bE Kw(X). 

(8) 
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Let I : X -.. Y, g: Y -.. Z be holomorphic maps of algebraic manifolds. 
It follows from (3) and (5) that if G-R-R is true for both / and g 
then it is true for g I : X -.. Z. Since X is an algebraic manifold there is a 
holomorphic embedding X -.. P,N (C) for some integer N. The map/:X -.. Y 
is then the composition of an embedding X -.. Y X P,N(C) and a pro
duct projection Y X P,N(C) -.. Y. It is therefore sufficient to prove 
G-R-R in the two cases: 

I) /: X -.. Y is an embedding. There is an algebraic proof in BOREL
SERRE [2] and a complex analytic proof in ATIYAH-HIRZEBRUCH [8]. 
The special case in which X is a non-singular divisor of Y and bE K", (X) 
arises from the restriction to X of a vector bundle over Y is proved 
in 23.5. 

II) I: Y X P,N(C) -.. Y is a product projection. An algebraic proof 
is given in BOREL-SERRE [2]. 

We have formulated the RIEMANN-RocH theorem of GROTHENDIECK 
only for algebraic manifolds. It is possible to formulate it for a proper 
holomorphic map /: X -.. Y of complex manifolds: the problem is to 
define ch (E5) for an arbitrary analytic coherent sheaf E5 over a compact 
complex manifold X, and this can be done by considering resolutions by 
real analytic, and by differentiable, vector bundles. At the time of writing 
this version of G-R-R has been proved only for / an embedding 
(ATIYAH-HIRZEBRUCH [8]). Two special cases of G-R-R are discussed in 
23.5; two applications are described in 23.6. 

23.5. Suppose first that Y is an algebraic manifold with complex 
analytic tangent bundle 8 and that j : X -.. Y is an embedding of X 
as a submanifold of Y. Then j* 8 has the tangent bundle of X as sub
bundle and the complex analytic normal bundle " as quotient bundle 
(4.9). Thus td(X) = (td(,,))-l.j* td(Y) by 10.1 and (8) becomes 

ch(jl b) • td(Y) = j* (ch (b) • (td(,,»-l . j* td(Y)). 

Now j* is a H*(Y, D)-module homomorphism and td(Y) is invertible 
in H*(Y, D). Therefore G-R-R implies the RIEMANN-RoCH theorem for 
an embedding: 

ch (jl b) = j* ch (b) • (td (,,»-1 lor aU bE K", (X) . (9) 

We prove the following special case of (9). Let X be a non-singular 
divisor S of Y and {S} the corresponding line bundle (15.2). Let W be a 
complex analytic vector bundle over Y and bE K.,(S) the element 
represented by the coherent analytic sheaf D(j* (W ® {S})) over S. 
Let U be an open set on Y such that V = U (\ S is holomorphically 
complete. Then, in the notation of 16.2, 

j~ D(j* (W ® {S})) (U) = HIl(V,j* (W ® {S})) = 0 for q > 0 
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and so 11 b is represented by the trivial extension j~ DU* (W ® {S})) 
= .o«(W ® {S})s) of DU* (W ® {S}) from S to Y. By 16.2 (4) there is a 
resolution of .o«(W ® {S})s) by vector bundles over Y 

o ~ D(W) ~ D(W ® {S}) ~ .o«(W ® {S})s) ~ 0 

and therefore ch(jl b) = ch(W ® {S}) - clt(W) = (ell - 1) ch(W) where 
hE H2(Y, Z) is the cohomology class of S. 

On the other hand c1 (,,) = j* h by 4.S.1 and j* 1 = h by 4.9.1. There
fore the right hand side of (9) is 

j*(1* ch(W ® {S}) . (td(,,)-l) = j*j* (Ch(W) . ell • C : e-A r 1) 

= (ell - 1) ch(W) . 

This proves (9) in the special case and helps to explain why the TODD 
class arises in G-R -R. 

Now consider the special case of G-R-R in which Y is a point and 
t is the constant map. Let bE K..,(X) be the element represented by 
the coherent analytic sheaf D(W) of germs of local holomorphic sections 
of a complex analytic vector bundle W over X. By (4) the left hand side 
of (S) becomes X(X, W). By (6) the right hand side of (S) becomes 
x,,[ch(W) td(X)) = T(X, W). Therefore the RIEMANN-RoCH theorem 
of GROTHENDIECK implies Theorem 21.1.1 (R - R): 

x(X, W) = T(X, W) . 

23.6. Let E, F, V be algebraic manifolds and let fP: E ~ V be a 
holomorphic fibre bundle with fibre F and connected structure group 
(see Theorem IS.3.1*), As in 23.2.2 let U be a holomorphically complete 
open set of V over which E is trivial. Then, by the KUNNETH theorem for 
coherent analytic sheaves used in the proof of 23.2.2, 

Hi (fP- 1 (U), 1) = HO(U, 1) ® Hi(F, 1) . 

Therefore fP~ D(I) = D(Wi ) for some complex analytic vector bundle 
Wi over V with fibre dimension dimHi(F, 1). The fact that the structure 
group of E is connected implies that Wi is trivial. Hence 

cho(fPl D(I) = E (-1)' dimHi(F, 1) = X (F) = T(F) , 
• (10) 

Chj(fPl D(I) = 0 for j> 0 

On the other hand G-R-R applied to the mapfP: E -+ V and the 
sheaf D(I) over E gives 

ch(fP1D(I»· td(V) = fP* td(E) = fP* td(O) . td(V) 

where () is the bundle over E of tangent vectors "along the fibres", 
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Therefore (10) implies 

T(F) . td(V) = cp* td(E) , (11) 

T(F) . 1 = cp* td(O) , (11*) 

where 1 E HO(V, 2) denotes the unit element. Formula (11*) is the 
strict multiplicative property of BOREL-HIRZEBRUCH [1], § 21. If C is a 
continuous GL(q, C)-bundle over V then multiplication of both sides 
of (11) by ch (C) gives 

T(F) . (ch(C) • td(V» = cp*(ch(cp* C) • td(E» . 

Equating terms of top dimension we obtain the multiplicative property 
of the TODD genus (compare Theorem 14.3.1): 

Theorem 23.6.1 (BOREL-SERRE [2], Prop. 16). Let E, F, V be 
algebraic manilolds and cp : E -+ V a holomorphic fibre bundle with fibre F 
and connected structure group. Let C be a continuous GL(q, C)-bundle. 
over V. Then T(F) . T(V, C) = T(E, cp* C). 

A second application of G-R-R is to monoidal transformations. 
Let X be a submanifold of codimension q of an algebraic manifold Y, 
i: X -+ Y the embedding, 'lithe complex analytic normal GL(q, C)-bundle 
of X, and I: X' -+ X the associated bundle over X with fibre Pq - 1 (C). 
There is an algebraic manifold Y', called the monoidal transform of Y 
along X, an embedding j: X' -+ Y' and a map g: Y' -+ Y such that the 
diagram 

X' • Y' 

(12) 

X ,Y 

is commutative. Let U be an open set of Y which admits local analytic 
coordinates. If U does not meet X then g-l(U) is biholomorphically 
equivalent to U. If U meets X there are holomorphic functions 11' ... , Iq 
on Usuch that U (\ Xis the submanifold {uE U;/l(U) ='" = Ig(u) =o} 
of U and such that the differentials dll , ••• , dig are linearly independ
ent at each point of U (\ X. In terms of homogeneous coordinates 
Z = (ZI:" .: ZIl) for Pg-dC), the open set g-I(U) is biholomorphically 
equivalent to the submanifold {(u, z) E U X PIl - 1 (C); zdi(u) = Zi Mu), 
1 ~ i < j ~ q} of U X PIl - 1 (C). 

Let ~, ~' be the complex analytic tangent vector bundles of Y, }" 
and m the normal vector bundle of X in Y associated to'll. Let H be the 
line bundle over Y' determined by the non-singular divisor X' of Y'. 
A lemma of PORTEOUS [1] implies that in Kw(Y') there is an equation 

D(g* ~) - D(~') = jl(D(/* m) - D(j* H» . 
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By the RIEMANN-RocH theorem for an embedding (9) the CHERN 
character of the right hand side is 

j* «f* ch(,,) - j* ell) .j* C -h,-I)) 
where hE HI(Y', Z) is the cohomology class of H. We obtain 

Theorem 23.6.2 (PORTEOUS [1]). Let X be a submanifold of an 
algebraic manifold Y. Let (12) be the diagram obtained from a monoidal 
transformation of Y along X, " the normal bundle of X in Y, and 
hE H"(Y', Z) the class represented by the cycle X'. Let 0, 0' be the tangent 
bundles of Y, Y'. Then 

(1-,-1) g* ch(Ol- ch(O') = -h- . j* (1* ch(,,) - j* e") . (13) 

The CHERN character of Y' can be calculated in terms of the CHERN 
character of Y by (13). A refinement of the RIEMANN-RocH theo
rem (involving integer cohomology; see PORTEOUS [1] and ATIYAH
HIRZEBRUCH [8]) gives the corresponding formula for the CHERN classes 
of Y and Y' which had been conjectured by TODD [5] and SEGRE [1]. 
The RIEMANN-RocH theorem for an embedding is proved in ATIYAH
HIRZEBRUCH [8] for arbitrary compact complex manifolds. Therefore (13), 
and also the TODD-SEGRE formula, is true for a monoidal transformation 
of a compact complex manifold Y along a submanifold X. In certain 
cases this had been proved by VAN DE VEN [1]. A calculation due to 
HIRZEBRUCH (unpublished) shows that the TODD-SEGRE formula implies 
T(Y') = T(Y), that is, the TODD genus is invariant under monoidal 
transformations. In the special case when X is a point (quadratic trans
form, HOPF a-process) this can also be proved directly with the help of 
Lemma 1.7.2. 

If Y is algebraic the invariance of the TODD genus can be obtained 
more easily either from the birational invariance of the arithmetic 
genus (see 0.1 and SAMPSON-WASHNITZER [2]) or by applying G-R-R 
to the map g: Y' -+ Y. Then g:, D(I) = 0 for q> 0 and G-R-R gives 
g* td(Y') = td(Y); the equation T(Y') = T(Y) follows by equating 
coefficients of the top dimension. 

§ 24. The GROTHENDIECX ring of continuous vector bundles 

The definition of the group K~(X) "of complex analytic vector 
bundles over a complex manifold X" in 23.4 is due to GROTHENDIECK. 
His construction can be inlitated in the continuous case to give a 
"GROTHENDIECK ring of continuous vector bundles" (ATIYAH
HIRZEBRUCH [1], [3]). Although the vector bundles themselves are not 
elements of the GROTHENDIECK ring, this abuse of language may be 
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permitted. There is one slight simplification: by Theorem 4.1.4 a sequence 

0- W'- W- W"-O 

of continuous complex vector bundles over a paracompact space X is 
exact if and only if W = W' • W". Throughout this paragraph we 
shall for convenience suppose that X is a compact space. This implies. 
if X is finite dimensional. that X is admissible in the sense of 4.2. 

24.1. Let X be a compact space and C (X) the set of isomorphism 
classes of continuous complex vector bundles over X (see 3.5). The 
WHITNEY sum. makes C (X) a semi-group. Let F (X) be the free abelian 
group generated by C(X). and R(X) the subgroup generated by all 
elements of the form W - W' - WIt where W = W' • W". Define 
K(X) = F(X)/R(X). The tensor product of vector bundles defines a 
ring structure on K(X). This is the GROTHENDIECK ring of continuous 
complex vector bundles over X. If X is a point. then K(X) = Z. If 
X is a complex manifold there is a homomorphism K:"(X) _ K(X) 
obtained by ignoring the complex analytic structure. 

The natural map C (X) -+- F (X) defines a homomorphism of semi
groups i : C (X) -+- K (X). Let G be an additive group and f: C (X) -+ G 
a homomorphism of semi-groups. Then there is a unique homomorphism 
I: K (X) -+- G such that f = I i. This universal property allows homo
morphisms defined on C (X) to be extended to K (X). If X is finite 
dimensional the CHERN class and TODD class give homomorphisms 

c: K(X) -+- G(X. Z) 

td: K(X) -+- G(X. Q) 

where G(X. A) denotes the set of all sums 1 + h.. + hi + ... with 
h. E HU(X. A) and with group operation defined by cup product. 
Similarly the CHERN character defines a ring homomorphism 

ch: K(X) -+- H*(X. Q) 

and a map I : X -+- X' defines a ring homomorphism 

1': K(X') -+- K(X) 

(1) 

which depends only on the homotopy class of f. By 4.2 there is a com
mutative diagram 

II 
K(X') • K(X) 

chI Ich (2) 

H*(X'. g) ~ H*(X. g). 
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If X is infinite dimensional, H*(X, g) must be replaced by the direct 
product (infinite sums allowed) H** (X, g). 

The GROTHENDIECK ring can also be defined for pairs (X, Y) where X 
is a compact space and Y is a closed subspace. If Y is empty define 
K(X,e) = K(X). If Y consists of a single point define K(X, {xo}) to be 
the kernel of the homomorphism i l : K (X) -+ K ({xo}) = Z induced by the 
embedding i: {xo} -+ X. In general let X v TY be the space obtained 
by attaching a cone on Y with vertex 210 and define K (X, Y) = 

K(X v TY, {zo}). There is a canonical map X v TY -+ X/Y which col
lapses the cone T Y to a point Yo and induces an isomorphism 

K (X/Y, {yo}) -+ K (X, Y). 

The CHERN character can be defined in the relative case. It is a ring 
homomorphism ch : K (X, Y) -+ H* (X, Y; g). A map of compact pairs 
/: (X, Y) -+ (X', Y') defines a ring homomorphism 

1': K(X', Y') -+ K(X, Y) 

which depends only on the homotopy class of /. In particular the embed
dings i: (Y,lJ) -+ (X, e) and j: (X, e) -+ (X, Y) define a sequence 

·1 ·1 
K(X, y)..!.... K(X) ~ K(Y) (3) 

which is an exact sequence of K (X)-modules. If Y is a retract of X, 
i. e. if there exists a map I : X -+ Y such that Ii (y) = y for all y E Y, 
then it can be shown that one has a short exact sequence 

·1 ,I 
0-+ K(X, Y) ..!.... K(X) ~ K(Y) -+ 0 

/1 

which splits by means of 1'. 
The definition of the relative GROTHENDIECK ring K (X, Y) is the 

first step in the construction of an "extraordinary cohomology theory" 
K* (X, Y) which satisfies all the axioms of ElLENBERG-STEENROD except 
for the dimension axiom. Further details can be found in ATIYAH

HIRZEBRUCH [3]. 
24.2. Let X be a compact space, Y a closed subspace, E and F 

continuous complex vector bundles over X and IX: ElY -+ FlY an iso
morphism between the restrictions of E and F to Y. In this section we 
construct an element d(E, F, IX) of K(X, Y) which can be regarded as a 
first obstruction to extending the isomorphism IX to the whole of X. 
For the original (and slightly different) construction see ATIYAH

HIRZEBRUCH [7]. 
Let 1 be the unit interval and form the subspace Z = X X 0 V 

V X X 1 v Y X 1 of X X 1. On Z define a complex vector bundle L by 
putting E over X X I, putting F over X X 0 and using IX to "join" 
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them along Y X I. More precisely let 

10 = I - {O}. 

Zo = X X 0 u Y X II • 

Eo=F. 

II = I - {I}. 

Zl = X X 1 u Y X 10 • 

El=E. 

and let 10: Zo 4- X. 11: Zl 4- X. I: Z 4- X be induced by the product 
projection X X 1-+ X. Then If (Ei) is a bundle over the open set Zi 
for i = O. 1 and IX induces an isomorphism It (El ) 4- It (Eo) on the open 
set Zo n Zl = Y X (10 n II)' This gives the required bundle Lover Z. 
The element L - 1* F of K (Z) is trivial when restricted to X X O. Since 
I: Z 4- X = X X 0 is a retraction map. we get a short exact sequence 

04- K(Z, X X 0) 4- K(Z) <=::!. K(X X 0) -+ 0 
/' 

which splits. Thus L - 1* F and this splitting define an element 
d(E, F, IX) in K(Z, X X 0) = K(X, Y). The element d(E,F, IX) is called the 
difference bundle of the triple (E, F, IX). The following properties of the 
difference bundle are easily checked (ATIYAH-HIRZEBRUCH [7], Prop. 3.3). 

Theorem 24.2.1. I) II I: (X, Y) 4- (X', Y') is a map then 
d(f* E', 1* F', 1* IX') = I' d(E', F', IX'). 

II) d(E, F, IX) depends only on the homotopy class 01 IX. 

III) II Y = fJ then d(E, F. IX) = E - F. 
IV) II j': K(X, Y) 4- K(X) is as in (3) then j' d(E. F, IX) = E - F. 

V) d(E, F, IX) = 0 il and only il there is a vector bundle G over X such 
that IX E9 1 extends to an isomorphism E $ G 4- F $ G over the whole 01 X. 

VI) d(El E9 E a, Fl $ Fa. 1X1 E9 IXI) = d(El' Fl , 1X1) + d(Ea, Fa' IXI). 
VII) d(E, F, IX) + d(F, E, IX-I) = O. 

VIII) II p: FlY 4- GIY is an isomorphism over Y then d(E, G, PIX) 
= d(E,F, IX) + d(F, G, P). 

24.3. There is an important special case in which the CHERN character 
of the difference bundle d (E, F, IX) can be computed by 24.2.1 IV). 

Let W be a real vector bundle with fibre Rh and group SO (2q) 
over a compact space X. Let B (W). 5 (W) denote the unit disc and unit 
sphere bundles of Wand n: B (W) 4- X the projection map. We shall 
consider difference bundles d(n* E, n* F, IX) where E, F are continuous 
complex vector bundles over X and IX is an isomorphism 

n* EIS(W) 4- n* FIS(W). 

The CHERN character of the difference bundle is then a relative class 

chd(n* E, n* F, IX) E H* (B(W), S(W); U) . (4) 
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The cohomology ring H*(B(W), SeW); g) has been described 
by THOM [1]. It is a free module over H*(B(W), g) = H*(X, g) generat
ed by a class 

UE ]Pf(B(W), SeW); g). 

The THoM isomorphism 91*:H'(X,g)-+-HHlf(B(W), SeW); g) is 
defined by 91* (x) = (31* x) . U and is an isomorphism for all i. Let j 
be the embedding (B(W),~) -+- (B(W), S(W». A comparison with 4.11 
shows that the EULER class e (W) of W can be defined (since 31* is an 
isomorphism) by 

j* U = 31* e(W) . (5) 
It follows that 

j* 91* (x) = 31* (x • e(W» for xE H*(X, g) . (6) 

Theorem 24.3.1. Let E, F be complex vector bundles over X, and W 
a real orienterl vector bundle over X. Let B (W) and S (W) be the unit rlisc 
and unit sphere bundles 01 W, 31: B (W) -+- X the projection map and 
IX: 31* EIS(w) -+- 31* FIS(w) an isomorphism. Then 

e(W) • 91.1 chrl(n* E, 31* F, IX) = chE - chF . 

Proof: j* chrl(n* E, 31* F, IX) = chj1 rl(n* E, 31* F, IX) 
= chn* E - chn* F 

by 24.2.1 IV), and therefore 

j* 91* 91.1 chrl (31* E, 31* F, IX) = 31* (chE - chF) . 

By (6) this gives 

n*(e(W) . 91.1 chrl(n· E, 31* F, IX»~ = 31* (chE - chF) 

and the result follows from the fact that 31* is an isomorphism. 
We consider a case in which 24.3.1 gives an explicit formula for 

91.1 chrl(n* E, 31* F, IX). Suppose that W is induced by a map 
I: X-+- (f,+(2q, N; R) from the standard vector bundle W' with fibre 
Rlf over (f,+ (2q, N; R) [see 4.1 a)). Then 1 induces a map 

g: (B(W), S(W»-(B(W'). S(W'». 

Suppose that E', F' are complex vector bundles over (f,+(2q, N; R) 
such that E = /* E', F = '* F' and that «': E'IS(W) -F'IS{W') is an 
isomorphism such that «= g* «'. 
Then by 24.2.1 I) 

91.1 chrl(n* E, 31* F, IX) = '* 91~-1 chrl (31' * E', 31'* F', IX') • 

If N is sufficiently large the ring H*«f,+(2q. N; R), g) has no divisors 
of zero in dimensions ~ dimX (BOREL [2]) and therefore Theorem 24.3.1 
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implies that 
1 hd( *E *F ) f* chE'-chF' 9'. c n , n ,« = .(W') (7) 

where the right hand side is uniquely defined. Note that (7) implies 
that, under the above assumptions, 9'.1 chd(n* E, n* F, «) does not 
depend on the particular isomorphism «. 

24.4. An example of a difference bundle which satisfies the assump
tions made in 24.3 is given by the following construction of KOSZUL. 

Let A be a complex vector space· of dimension q and Ar A the r-th 
exterior power of A. For each 91 E A there is a linear map 

(8) 

defined by Pr(U111'" II ur_l ) = 91 II 91111 •• '11 ur-1. Since the exterior 
product does not depend on any choice of basis for A it is also defined for 
vector bundles and (8) gives 

Theorem 24.4.1. Let E be a continuous complex vector bundle with 
fibre C. over a topological space X, and let s be a never zero section of E. 
There is an exact sequence 

0-+ AO E ..4 Al E -+ ••. -+ A,,-1 E .!!.. A" E -+ 0 

where Pr is given by exterior product with s. 
Now let X be a compact space, B(E) and SeE) the unit disc and 

unit sphere bundles of the real vector bundle underlying E and 
n : B (E) -+ X the projection map. There is a canonical never zero sec
tion of n· E over S (E) and hence an exact sequence 

0-+ FoIS(E) ~ FilS (E) -+ ..• -+F._1IS(E).!!.. F"IS(E) -+ 0 

where Fr = n* Ar E. Hermitian metrics for each Fr define adjoint 
homomorphisms P~: FrIS(E) -+Fr_lIS(E). The homomorphism 

p: E F.sIS(E) -+ E FU+lIS(E) 
s s 

defined by PUo, f., f., ... ) = (PI fo - P: f., Pa I" - P: I., ... ) is an 
isomorphism whose homotopy class does not depend on the choice of 
hermitian metrics for Fr. By 24.2.1 there is a unique element 

deE) = d(.f Fu,~ F .. +1, P) EK(B(E), S(E» 

which behaves functorially with respect to maps I : X -+ X'. 

Theorem 24.4.2. Let 'I be a continu~ U (q)-bundle over a compact 
space X and E a vector bundle associated to 'I. Let 

9'* : H* (X, g) -+ H*(B (E), S (E); g) 
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be the THOM isomorphism. Then 

91.1 chd(E) = (-1)11 (td1}*)-1. 

Proof (compare ATlYAH-HIRZEBRUCH [7], Prop. 3.5): Let 1} be 
induced from the universal U (q)-bundle E over <» (q, N; C) by a map 
I: X ~ <» (q, N; C). The argument of 24.3 shows that 

II 
E (-Weh).· E 

91. 1 chd (E) = 1* _r =_o-c-.(;";:E)'---

where the right hand side is well defined provided that N is large enough. 
The result then follows from Theorem 10.1.1. 

24.5. The element d (E) can be used to define a homomorphism 
911: K(X) ~ K(B(E)', S(E») of K(X)-modules. Let 

91!a=(-I)lld(E)*'n l a for aEK(X). 
Then ch911 a = 91. ((td1})-1 . cha). In fact 91! is an isomorphism analo
gous to the THOM isomorphism for cohomology. The proof depends on 
the special case when X is a point, which in tum depends on the BOTT 
periodicity theorem: 

Theorem 24.5.1 (BOTT [2], [5]). Let X be a compact space. There is a 
commutative diagram 

K(X) ® K(SI) /I 'K(X X 52) 

~®~l l~ 
H* (X, g) ® H* (52, g) ~ H* (X X S', g) 

where fJ is induced by tensor product 01 bundles, ex by cup product, and 
both are isomorphisms. 

An elementary proof of Theorem 24.5.1 has been given by ATlYAH
BOTT [I]. For the corresponding periodicity theorem for the GROTHEN
DIECK ring of real vector bundles see WOOD [I]. 

Theorem 24.5.2. Let 1} be a continuous U (q)-bundle over the 2n
dimensional sphere 5'71. Then (chn "I) [52"] is an integer. Equivalently 
(c" ("I» [5271] is divisible by (n - I)!. 

Proof: Let h EK(SZ) correspond to the U (I)-bundle 1}1 over S'= P1(C) 
defined in 4.2. Then I and h are generators for K (52) and hence 
(chiC) [S2] is an integer for all g E K (51). Theorem 24.5.1 implies that 
(ch"/) [52 X ••• X 51] is an integer for all 1 E K (51 X ••• X SI). Represent 
52ft as the reduced product of n copies of S· and consider the identification 
map p : S2 X •.• X sa ~ Sin. Then (ch" pI b) [SI X ••• X S2], and hence 
(ch"b) [S2"], is an integer for all bE K(SIn). The final statement follows 
from the NEWTON formula (10.1) 

n! ch"b = (- I)-I n c,,(b) + products of lower degree terms. 
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Theorem 24.5.2 is also due to BOTT who originally gave a direct proof 
using MORsE theory (BOTT [3]). It implies that SI7I does not admit an 
almost complex structure for n ~ 4 (if 0 were a tangent GL(n, C)-bundle 
then 4.11 (16) would imply that (c" (0)) [SI7I] = 2). KERVAIRE and MILNOR 
deduced from Theorem 24.5.2 that SI7I-1 is parallelisable if and only if 
n = 1, 2 or 4 (KERVAIRE [1], MILNOR [2]; see also BOREL-HIRZEBRUCH 
[1], § 26.11 and ATIYAH-HIRZEBRUCH [5]). 

Consider the homomorphism fIJI :.K(X) -+ K(B(E), S(E) when X is 
a point. Then K(B(E), S(E) = K(Sh,yo) for some base point Yo E S2" 
and fIJI: Z -+ K (SI", Yo) is a homomorphism with (ch" fIJI 1) [SI,,] = 1. 
In this case it can be shown that pi: K (Sh) -+ K (SI X •.• X SI) is 
a monomorphism and that fIJ!: Z -+ K (Sh, Yo) is an isomorphism. It 
is often convenient to introduce the element h = 1 + fIJI 1 E K(SI,,). 
For q = 1 this coincides with the element used in the proof of Theorem 
24.5.2. The same argument involving reduced products implies that 
Theorem 24.5.1 holds with SI replaced by Sill for any q > O. 

The BOTT periodicity theorem is the basic tool for the definition 
of the complete "extraordinary cohomology theory" K* (X, Y) (see 24.1) 
and henc;e also for the proof of the THOM isomorphism theorem mentioned 
above. We give one further application: to the proof of differentiable 
analogues of the RIEMANN-RoCH theorem. 

Let j: X -+ Y be an embedding of compact connected oriented 
differentiable manifolds such that the normal bundle E of X in Y 
admits a complex structure, i. e. E is associated to a U (q)-bundle 'YJ 
as in 24.4.2. There is a map 1': Y -+ B (E)/S (E) under which all points 
outside B (E) C Yare collapsed to the base point and hence a homo
morphism 1'1: K(B(E), S(E) -+ K(Y). Define jl: K(X) -+ K(Y) by 
j I a = 1'1 fIJI a so that 

chjl a = 1'* fIJ*«(td'YJ)-1. cha) 
= j.«(td'YJ)-1. cha) 

where j. : H* (X, Q) -+ H* (Y, g) is the GYSIN homomorphism. This is a 
differentiable analogue of the RIEMANN-RoCH theorem for an embedding 
[23.5 (9)]. We give two corollaries for the case when X is an almost 
complex manifold. 

Theorem 24.5.3. Let X be a connected almost complex manifold. There 
exists an embedding j : X -+ SIN and a homomorphism j I : K (X) -+ K (SIN) 
such that chjl a = j*(td(X) . cha). 

Proof: Let 0 be the tangent U(n)-bundle of X. For q sufficiently 
large there is a U (q)-bundle 'YJ over X such that 0 E9 'YJ is a trivial 
U (n + q)-bundle and such that 'YJ is the normal bundle of a differentiable 
embedding X ... C,,+II' We regard SIN as the one point compactification of 
CN where N = n + q. The result follows from the equation tdO . td'YJ = 1. 
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Theorem 24.5.4. Let X be an almost complex manilold and "I a 
U (q)-bundle over X. Then T (X, "I) is an integer. 

Corollary: The TODD genus 01 X is an integer. 
Proof: Let j: X --.. SIN be the embedding constructed in 24.5.3. 

Then "I determines an element a E K (X) and 

T(X, "I) = "N[j.(td(X)· cha)] 

= "N [Chjl a] 

is an integer by Theorem 24.5.2. 
Theorem 24.5.3 is due to ATIYAH-HIRZEBRUCH [1], [8]. It is a special 

case of a theorem on continuous maps of differentiable manifolds which 
is described in 26.5. Similarly Theorem 24.5.4 is a special case of more 
general integrality theorems on differentiable manifolds (26.1-26.2). 

§ 25. The ATIYAH-SINGER index theorem 

25.1. Let Xl' ..• , X" be coordinates for R" and define, for each n-ple 
t = (t1, ••• , t,,) of non-negative integers, 

It I = t1 + ... + t" 
alII 

D' = (-i)111 axl' ... ax/:,' il = -1. (1) 

Let A, B be finite dimensional complex vector spaces and Coo (U, A) 
the space of differentiable functions 1 from an open set U C R" to A. 
The linear map 

D: Coo (U, A) --.. Coo (U, B) 

is a linear ditJerential operator 01 order r if there exist functions 
g, E Coo (U, Hom (A, B» such that 

D 1 = E g, Dt I· 
~I :;0' 

The differential operator D of order r defines a linear map 
O',(D) (v) E Hom (A, B) for each v = (u, (Y1' ... , y,,)) E U X R" by 

O',(D)(v) = 1: g,(u)~'" . y.:. (2) 
1'1-' 

D is elliptic of order r if, for all u E U and all non-zero 

Y = (Y1> ••• , y,,) E R", v = (u, y), 

the homomorphism O',(D) (v) is invertible. The homomorphism 0', (D) is 
called the symbol of D. Note that the symbol depends on the choice of 
r: if D is regarded as a differential operator of order r + 1 then the 
symbol O'r+dD) is zero. 

Now let X be a differentiable manifold, RO· the dual tangent bundle 
of X (see 4.6), B(X) and S(X) the disc and sphere bundles associated 
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to RO*. and 1/', : B (X) -+ X the projection map. Let E. F be differentiable 
complex vector bundles over X and r(E). r(F) the corresponding vector 
spaces of (global) differentiable sections. A linear map 

D : r(E) -+ r(F) 

is a differential operator 01 order l' if there is an open covering of X by 
coordinate neighbourhoods UI such that. over each UI • we have 
E = UI X A and F = UI X Band D is given by a differential operator 
D/ : Coo (U/. A) -+ Coo (UI • B) of order 1'. 

Regard 1/',* E.1/',* F as subspaces of B (X) X E. B (X) X F respectively 
and define a homomorphism 

(1, (D) : 1/',* E -+ 1/',* F . 

called the symbol of D by 

(1,(D) (v. s(xo)) = (v. :~ Dar s) (Xo)) (3) 

where Xo E x. v E B(X). 1/',(v) = xO' s E r(E) and I is a differentiable 
function with I (xo) = 0 and d I = v. In terms of local coordinates Xl' •••• X" 

at the point Xo we have De (I' s)s. = 0 for Itl< l' and 

Dew s)s. = (-i)' (a at )" .... (a at )'" 1'1 S(Xo) 
Xl S. x. s. 

for It I = 1'. Therefore (1,(D) (v. s(xo)) depends only on the coordinates 
at at -a •...• -a - of d f and on the value s (xo) of S. 
Xl X. 

This proves that the bundle homomorphism (1, (D) is well defined and 
that it agrees at Xo with the homomorphism defined by (2). 

If E. F. G are complex vector bundles over X. and if DI : r(E) -+ r(F) 
and D.: r(F) -+ r(G) are differential operators of orders 1'1 and 1' •• 

then D. D1 is a differential operator of order 1'1 + 1'. and 

(1" +'. (D. D1) = (1,. (D.) (1" (D1) • 

Definition: The differential operator D is eUiptic of order l' if 
(1 = (1, (D) IS (X) is an isomorphism. 

Remark: If D is elliptic then E. F have the same fibre dimension. 
A monomorphism between vector bundles of the same fibre dimension 
must be an isomorphism. Therefore D is elliptic provided that E. F 
have the same fibre dimension and that. if s E r(E) is a section with 
s (x) =1= 0 and I is a differentiable function with I (x) = 0, d I (x) =1= O. 
then Dar s) (x) =1= O. 

25.2. Now suppose that X is compact with a RIEMANN metric. The 
volume element makes it possible to define integration over X. Suppose 
that the complex vector bundles E, F are given hermitian metrics 
H(.). A differential operator D*: r(F) -+ r(E) is called a formal 
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adjoint for D if for all s E r(E), t E r(F) 

J H(D s, t) = J H(s, D* t) . 
x x 

The hermitian metrics on E, F define metrics on ~* E, ~* F. Therefore 
the symbol O'r(D): ~* E -+- ~* F defines an adjoint homomorphism 
O'r(D)*: ~* F -+- ~* E. 

Theorem 25.2.1. Let X be a compact dilferentiable manifold 'With a 
RIEMANN metric, and E, F dilferentiable complex vector bundles over X 
'With hermitian metrics. There exists a unique formal adjoint D* for D and 
O'r(D*) = O'r(D)*. 

For the proof see PALAIS [1]. If D is a differential operator of order r 
then D* D : r(E) -+-. r(E) is a differential operator of order 21' by 25.1. 
With respect to the hermitian metrics in E, F 

H(e, O'sr(D* D) e) = H(O'r(D) e, O'r(D) e) 

for all e =1= 0 in ~* E. Therefore if D is elliptic, D* D is strongly elliptic, 
i. e. H (e, O'sr(D* D) e) > 0 for all e =1= 0 in ~* E. Conversely suppose 
that E, F have the same fibre dimension and that D* D is strongly 
elliptic. Then O'r(D)/S(X) is a monomorphism and hence D is elliptic. 

Let ker D and coker D be the kernel and cokernel of the differential 
operator D. If D is elliptic then D* is elliptic, ker D is finite dimensional 
and dim ker D* = dim coker D (PALAIS [I], GELFAND [1]). The index, 
or analytic index, T (D) of D is defined by 

T(D) = dim kerD - dim coker D = dim ker D - dim ker D*. (4) 

VEKUA and GELFAND [1] conjectured that the integer -r(D) could be 
expressed in terms of topological invariants. This conjecture was checked 
in special cases by AGRANOVIC [I], DYNIN rl], VOLPERT [I], [2] and 
others. 

25.3. Let X be a compact differentiable m-dimensional manifold, 
which need not be orientable, and RO the tangent GL(m, R)-bundle of X. 
Let T* be the total space of the covariant tangent vector bundle R~· 
of X and ~ : T* -+ X the projection map. Then T* is a 2m-dimensional 
manifold with tangent GL(2m, R)-bundle ~* RO ED n* RO*. A RIEMANN 

metric on X defines an isomorphism RO ~ RO* and hence (in the notation 
of 4.5) an isomorphism 

~\O ED ~*RO* ::::::: n\O ED ~\(J ::::::: (l(~* tp(RO» . 

Therefore the G L (m, C)-bundle 'f/ = n* tp (R(J) gives an almost complex 
structure for the manifold T*. For a detailed study of the almost complex 
structure on T* see DOMBROWSKI [1]. 



§ 25. The ATIYAH-SINGER index theorem 187 

In terms of local coordinates xl> ..• , xm an element v in the fibre of T· 
III 

over (0, ... ,0) has the form E Vi dx/. The ordering of coordinates 
;=1 

(Xl' v1' ••• , Xm , vm ) defines the orientation of T· induced by 'TJ. This 
orientation induces orientations of the unit disc bundle B(X) and the 
unit sphere bundle S (X) and hence a fundamental cycle in 

Ham(B(X), S(X); Q). 

The value of a cohomology class u E H· (B (X), S (X) ; Q) on the funda
mental class is denoted by ,,1m [u ]. 

Let D: r(E) - r(F) be an elliptic differential operator of order r 
with symbol a, (D). By 24.2 the restriction a = a, (D)lS(X) defines a 
difference bundle d(n· E, n· F, a) in K(B(X), S(X)) with CHERN 
character 

chD EH·(B(X), S(X); Q). 

The relative cohomology group H· (B (X), S (X) ; Q) can be regarded, 
using the relative cup product, as a module over H·(B(X), Q). The 
topological index r(D) of D is then defined by 

(5) 

Theorem 25.3.1 (ATIYAH-SINGER [1]). Let E, F be dilferentiable 
complex vector bundles over a compact dilferentiable manifold X and 
D: r(E) - r(F) an eUiptic dilferential operator. Then 'f(D) = r(D). 

Corollary: r(D) is an integer. 
The ATIYAH-SINGER index theorem 'f(D) = r(D) implies Theorem 

21.1.1 (R-R) for an arbitrary compact complex manifold V. In addition 
it implies the index theorem of Chapter Two (Theorem 8.2.2). These 
implications are proved in 25.4. The proof of Theorem 25.3.1 is discussed 
very briefly in 25.5. In certain cases it can be proved directly that 
r(D) = O. Theorem 25.3.1 then implies that 'f(D) = o. For example 

Lemma 25.3.2. Let D be an eUiptic dilferential operator on a compact 
dilferentiable manifold 0/ odd dimension. Then r (D) = o. 

Proof: Let D: r(E) - r(F) be elliptic of order r. If v E S (X), 
n(v) = x, then the symbol a, (D)(x, v): Es-Fs is defined by a homo
geneous polynomial of degree r in the local fibre coordinates v1, ••• , Vm 

for B (X). Therefore 

a,(D) (x, -v) = (-I)"' a, (D) (x, v) . (6) 

Let / : B (X), S (X) - B eX). S (X) be the antipodal map and {J : n· F - n· F 
scalar mUltiplication by (-1)'. Then (6) gives 

{J a, (D) = /. a, (D) : /. n· E -I· n· F . 



188 Appendix I 

Therefore, since" / == " and /. ". = "., 

d(~ E, ". F, /.0') = d(,,· E, ". F, (J 0') • 

It follows from Theorem 24.2.1 that since (J is homotopic to the identity 

lU· ". E, /. ". F, /. 0') = d(,,· E, ". F, 0') , 
/·chD = chD. 

On the other hand td'l is a class in H·(B(X), Q) = H*(X, Q) and so 
/. td'l = td'l. If X is odd dimensional the map / is orientation reversing 
and therefore -,,(D) = " (D). 

If X is orientable, R~ is associated to the SO(m)-bundle R(J. There 
is a THOM isomorphism 

rp.: H·(X, Q) -+ H*CB(X), S(X); Q) (7) 

defined by the orientation of X, and the orientation of B (X) given by 
the ordering of coordinates (Xl' ••• , Xm • fll' ••• , flm). This orientation 
difters from that used above by a factor (_I)tm(m-l). Therefore 

,,(D) = rp.l«_I)lm(.tlt-l) chD· td'l) [X] 
= If" [rp.l«_I)lm(m-l) chD)· td"(RO)]. (8) 

The TODD class td"(R(J) can be expressed as a polynomial in the 
PONTRJAGIN classes PI (X) = (-1)1 cuC" (a(J» of X: if 

P(X) = II (I + yf) E H· (X, Q) 
; 

then (see 4.5) 
CC"(RO» = II (I - y1) = II (I + Y/) (1 - Y/) 

; ; 
and so 

( ~, ) ( -~J ) (b,)-td" (aO) = IJ 1 - e-71 1 - e71 = IJ sinh t ~I • , , (9) 

The right hand side is a symmetric function of the yf and is therefore 
expressible as a polynomial in the PI(X) (compare the corresponding 
formula h\ 1.7). 

25.4. In this section we outline two important applications of the 
ATIYAH-SINGER index theorem. Further details can be found in PALAIS 
[I], CARTAN-SCHWARTZ [I]. 

a) Let V" be a compact complex manifold of dimension nand W a 
complex analytic vector bundle over V" with fibre C •. We wish to 
show that Theorem 25.3.1 implies the RIEMANN-RocH theorem 
X(V". W) = T(Y,., W). Let T be the complex covariant tangent vector 
bundleofY,.. In the notations of 15.4, r(W 8 A~ T) = A.0.~(W). The 
difterential operator 

a + f: r(fW8 A~T) -+ r(f W 8 A~ T) 
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is self adjoint [15.4 (9)]. Since a is of degree + 1, and D is of degree - 1, 
the differential operator a + D maps odd degree forms into even degree 
forms and conversely. Let 

E = 1: W ® Ah T, F = 1: W ® A'S+! T , 
• • 

D = a + D : r(E) - reF) . 

Then D is a differential operator of order 1. The decomposition 

AO.I>(W) = a AO,I>-l(W). D AO.I>+!(W). ,Bl1,I>(V, W) 

of 15.4 shows that if a 1% + D fJ = 0, 1% E AO.I>-l (W), P E AO,I> +1 (W), 
then a 1% = D P = O. Therefore 

ker D = 1: BO.h(V, W) , 
• 

ker D* = 1: BO.h+1(V. W) . 
• 

By Theorem 15.4.1 

T (D) = dim ker D - dim ker D* 
= 1: (-1)1> dim HI> (V. W) = X(V. W) . (10) 

fJ 

Let .CJ:l be the complexification of the real dual tangent bundle 
.CJ:* of X. The isomorphism .CJ:t = T. 'f' [see 4.7 (12)] defines a projec
tion map p: .CJ:t - T. The induced map .CJ:* - T can be used to 
identify the disc bundle B(X) = B(.CJ:*) with B(T}. We assume this 
identification when calculating the symbol of the differential operator D. 
By (3) the symbol of a: r(Ar- 1 1') - reAr T) is defined at tl/ E B(.CJ:~). 
"1 A "I A ••• A "r-1 E Ar - 1 T by 

O'I(a) (tl/, "IA'" A "r-I) = ia/ A"I'" A "r-I 

and at P(tl/) = a/ E B(T) by 

O'I(a) (a/'"I A ••• A "r-1) = i a/ A u. A .•• A "r-I' 

The isomorphism Ar 7J' _ Ar T* [see 15.3 c)] induces hermitian metrics 
for each At '1' such that D, defined by 15.4 (9). is a formal adjoint for a 
in the sense of 25.2. Therefore, in the notation of 24.4. 

O'I(a) = i Pr 
0'1 (D) IS (X) = iP:,,*1: W® AhTIS(x) -,,*1: W® AIHI'T IS(x). 

• • 
By 24.4. P is an isomorphism and therefore D is elliptic. Alternatively 
an explicit calculation shows that D* D = 0 is strongly elliptic and 
hence that D is elliptic. 
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As in 24.4.2 we have 

9'.1 ch(D) = 9'.1 chd(n* -F W SAl. '1', n* -F W SAII+!"ft, P) 
= (-1)" ch W' (tdO*)-1 

where 0 is the tangent U(n)-bundle of V". Then 

,,(D) = x" [(-1)'" ch W' (tdO*)-1 . tdO . tdO] 

= x,,[chW' tdO] = T(V", W). (11) 

Equations (10) and (11) show that Theorem 25.3.1 implies R-R 

for an arbitrary compact complex manifold V". The same theorem 
applied to the vector bundle W S A' T gives 

X'(V", W) = P(V", W) and X"(V,,, W) = T"(V,,, W) . 

In particular the case y = 1 shows that the HODGE index theorem 
(15.8.2) is valid for an arbitrary compact complex manifold. 

b) Now let X be a compact oriented differentiable manifold of 
dimension 2n. We wish to show that Theorem 4.11.4 and Theorem 8.2.2 
are both consequences of Theorem 25.3.1. 

Let R~t be the complexification of the real vector bundle of covariant 
tangent vectors (see 4.6) and define 

W=E ArR~t· 
r 

A section of W is a complex valued differential form on X. The exterior 
derivative 

d: r(W) -+ r(w) 

is a differential operator of degree 1 (see 2.12). Equation (3) shows 
that if v = dl, n(v) = x, I(x) = 0 and co E r(W) then the symbol of d 
is defined by 

0'1 (d) (v, co(x» = (v, i v A co(x» . 

A RIEMANN metric on X defines a homomorphism 

* : Ar R~t -+ AII,,-r R~t 

and hence a homomorphism *: r(w) -+ r(W). Since X is even dimen
sional the formal adjoint 8 for d in the sense of 25.2 is defined by 
8 = -* d*. As in 15.4 we have dd = 88 = 0 and (d + 8) (d + 8) = 

d8 + 8d = /:l. A form co E r(w) is called harmonic if/:lco = O. co is har
monic if and only if d co = 8 co = O. If Br (X) denotes the vector space of 
harmonic forms of degree r there is a natural isomorphism (DE RHAM [1]. 
HODGE [1]; compare 15.7) 

Hr(x, C) = Br(x) 

and therefore dim Br (X) = br (X) is the r-th BETTI number of X. 
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The differential operator d + IS: r(w) -+ r(w) is self adjoint. 
We therefore seek decompositions W = E E& P such that 

D = d + IS : r(E) -+ r(p) 

is elliptic. Consider the endomorphisms of W defined by * and 
(X = i r (r+1) -n * : Ar R<tt -+ ABn - r R<tt. Since X is even dimensional 
** = (-IY and (X2 = (_I)r" ** = 1. The eigenspaces of the involutions 
** and (X provide decompositions of W of the required type. 

1) Define E = E All R<tl. P = E Ah+1 R<tt and 
s s 

D = d + IS : r(E) -+ r(p) . 

In the notation of 24.4 the symbol of D is iP and therefore D is elliptic. 
Alternatively an explicit calculation shows that D* D =!:::. is strongly 
elliptic and hence that D is elliptic. As in a) 

reD) = dim kerD - dim kerD* = E (- W dim Br(x) . 
r 

Therefore reD) is the EULER-POINCARE characteristic E(X) of X. 
By Theorem 10.1.1. if x() is the tangent SO(2n)-bundle of X. 

chE - chP = can (1p(x())) • (td1p(R()))-1 
= (-I)n(e(x()))2 (td1p(xO)-1 . 

By 24.3 (7) and 25.3 (8). reD) = e(xO) [X]. Therefore Theorem 25.3.1 
implies Theorem 4.11.4 for even dimensional X. The case of odd dimen
sional X is covered by Theorem 25.3.2. 

2) Now let E. P be the eigenspaces corresponding to the eigenvci.lues 
+ 1. -1 of (x. The argument of 1) shows that the differential operator 
d + IS: r(w) -+ r(w) is elliptic. Now (X(d + IS) = - (d + IS) (X and there
fore there is a differential operator 

D = d + IS : r(E) -+ reF) . 

The symbols of D and d + IS form a commutative diagram 

n*E 
a,(D) 

• n*P 

1 1 
n*W 

a,(d+c!) , n*W 

in which vertical arrows denote inclusions. Since (11 (d + IS) is an iso
morphism over S (X) the symbol (11 (D) is a monomorphism. The same 
argument shows that (11 (D*) is a monomorphism and hence (see 25.2.1) 
that (11 (D) is an epimorphism. Therefore D is elliptic. 

The kernel of D is the space of harmonic forms w such that (X w = w. 
The kernel of D* is the space of harmonic forms w such that (X w = - w. 
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Thus (compare the proof of Theorem 15.8.2) 

T(D) = dim kerD - dim kerD· = dimB+ (X) - dim~ (X) 

where B± (X) is the subspace {ru E B- (X); ex ru = ± ru} of B" (X). The 
homomorphism ex: A" .~c: -.. A" .~c: is defined by ex = i • for n odd and 
ex =. for n even. If n is odd the map ru -.. iii is an isomorphism 
B+ (X) -.. B"_ (X) and therefore T (D) = O. The direct sum 

H" (X, C) = B+ (X) • ~ (X) 

induces a corresponding direct sum, when n is even, 

H"(X, R) = B+,.(X). B~,.(X) 

where B± .• (X) is the subspace {ru E B'± (X); ru = w} of B'± (X). The 
inner product (ru1, ru.) = f rul A • ru. on B~(X) = H"(X, R) is positive 

x 
definite and B+ •• (X), ~ •• (X) are orthogonal with respect to this 
inner product if n is even. The quadratic form Q(rul' ru.) = f ~ A ru. 

x 
is positive definite on B~ .• (X) and negative definite on ~,.(X). 
Therefore if n is even, dim B+ (X), dim ~ (X) is the number p+. p_ of 
positive, negative eigenvalues of Q. Hence T(D) = p+ - p_ is the 
index of X as defined in 8.2. 

A calculation on the classifying space Ci+ (2n, N; R) which is similar 
to 1) and which is given with full details in PAUlS [1], shows that, in 
terms of the factorisation 

" " P(X) = n (1 + yf), e(.O·) = n YI, 
i=1 i=1 

" chE - chF = n (e-YJ - e"1) 
i-I 

and therefore by 24.3 (7) and 24.4 (7) 
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Therefore Theorem 25.3.1 implies Theorem 8.2.2. The case of odd 
dimensional X is again covered by 25.3.2. 

25.5. There are two proofs of theATIYAH-SINGER index theorem. The 
first proof, which is modelled on that of Theorem 8.2.2, was outlined in 
ATIYAH-SINGER [1]. Details can be found in PALAIS [1] and CARTAN
SCHWARTZ [1]. The second proof appears in ATIYAH-SINGER [2]. 

The starting point for both proofs is the fact that formula (8) defines 
the index y(b) for any element bE K(B(X), S(X)). We wish to extend 
the analytic index t' (D) similarly so that it becomes a function 
T : K (B (X), S (X)) -+ 2. It is known that homotopic operators have the 
same analytic index and that symbols which determine the same differ
ence bundle are homotopic. Thus the index will depend only on the 
difference bundle if (i) a homotopy between symbols can be raised to a 
homotopy between operators. The function t' will be defined if (ii) every 
bE K (B (X), S (X)) is the difference bundle determined by some elliptic 
operator. In general neither (i) nor (ii) is true for elliptic differential 
operators. It is necessary to introduce the elliptic integral operators 
of SEELEY [1]. This class includes the elliptic differential operators 
but is large enough for (i) and (ii) to hold. In this way the analytic 
index defines a homomorphism T: K (B (X), S (X)) -+ 2 which always 
takes integral values. 

The remainder of the proof is devoted to showing that the two 
homomorphisms 

y: K(B(X), 5 (X)) -+ 2, 
T: K(B(X), S(X)) -+ 2, 

coincide. We summarise both methods very briefly. In the first it is 
assumed that X is oriented and even dimensional. 

a) By 25.4 b) there is a differential operator Do over X whose topo
logical index is the L-genus of X. Let bo E K (B (XL S (X)) be the 
corresponding difference bundle. The ring K(B(X), S(X)) is a 
K(X)-module (24.5) and the function y is determined completely by its 
values on the subgroup K (X) • bo of finite index. Define a function 
y(X, ): K(X) -+ 2 by y(X, b) = y(b· bo). In fact y(X, b) is none other 
than the T ,.-characteristic of b with Y = 1 (this is defined also for dif
ferentiable manifolds and by 12.2 (13) the definition can be extended 
to elements bE K (X)). The homomorphism has the properties 

I) y(X + Y, b + c) = y(X, b) + y(Y, c) where on the left hand 
side + denotes disjoint union (not direct sum); 

II) y{X X Y, b 0 c} = y{X, b} y(Y, c} where 0 denotes tensor 
product; this follows from 12.2 (14) with Y = 1; 



194 Appendix I 

III) " (X, b) = 0 ifthere exists a manifold X' with boundary ax' = X 
and an element b' E K (X') whose restriction to X is b; this is proved by a 
more complicated version of Theorem 7.2.1; 

IV) " (Sin, h) = 21l where hE K (Sin) is the element with "In [ch h] = 1 
defined in 24.5; by 12.2 (10) we have, if ch h = I:~, 

" (Sin, h) = "In [I: ell",] = 2" "In [ch h] = 2"; 

V) " (P." ( C), 1) = 1; this follows from 1.5.1. 

The next, and most difficult step in the proof is to show that the 
analytic index T also satisfies properties I)-V). Finally it is shown that a 
function K (X) -+ Q is uniquely determined by properties I) - V). As 
in 7.1 we consider a cobordism group DIl. For each n ~ 0, D" is obtained 
by considering pairs (X, b) with X a compact oriented n-dimensional 
differentiable manifold and bE K (X). A pair (X, b) bounds if there 
exists a manifold X' and element b' E K(X') such that X = ax' and 
b = b'IX. The groups DIl ® Q are determined as in 7.2.3: elements of 
D" ® Q are determined uniquely by mixed PONTRJAGIN-CHERN numbers 

Pit (X) ... Pi. (X) • chA, (b) ... ch", (b) [X] . 
00 

Properties I)-III) show that " gives a function D = I: .0,,-+ Q . 
.. -0 

Properties IV), V) are sufficient to determine" on the generators of 
D ® Q and hence to determine" uniquely. A general theory of such 
cobordism groups of pairs can be found in CONNER-FLOYD [1]. 

The theorem for X odd dimensional follows by considering X X SI. 
b) The second proof that the homomorphisms" and T coincide does 

not depend on cobordism theory. By 25.3 the unit disc bundle B (X) is an 
almost complex manifold with boundary S (X). For convenience we write 
T* X for B(X) - S(X) andK(T* X) for K(B(X), S(X). Let V = RN so 
that K(T*V) = K(SIN,yo) = Z. An embedding xc V defines an 
embedding j: T* X -+ T* V. Now Theorem 24.5.3, suitably modified 
to apply to manifolds with boundary, implies that there is a homo
morphism 

jJ: K(T* X) -+ K(T*V) = Z 

such that jJ a = ,,1m [ch a' td11] where m is the dimension of X and 11 
is the tangent GL(m, C)-bundle of T* X. By 25.3 (5) thehomomorphismjJ 
coincides with the homomorphism" : K (T* X) -+ Q. Note in particular 
that" always takes integer values, so that for applications of the ATIYAH
SINGER index theorem to integrality theorems (26.2; MAYER [1]) the full 
proof is not needed. 

It remains to prove that the homomorphism j J coincides with the 
analytic index T: K (T* X) -+ Z. The first part of the proof consists in 
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extending the definition of T to apply to operators on non-compact 
manifolds U, V. This is done by SEELEY [1]. The result is a diagram 
of homomorphisms 

K (T* X) ~ K (T* U) ~ K (T* V) ..!.!.... K (yo) 

~l ~l l~ l~ 
i4 i4 i4 

Z I Z • Z • Z 
in which U is a tubular neighbourhood of X in V, the 9'1 are THOM 
isomorphisms (see 24.5) and ,.1 is induced by the map T* V -+- T* U which 
collapses everything outside T U to a point. The second and difficult 
part of the proof consists in proving that each of the squares in this 
diagram is commutative. 

The techniques involved in this proof have been extended by ATIYAH 
to give generalisations of the ATIY AH-SINGER index theorem which apply 
to manifolds with boundary (ATIYAH-BoTT [2]), to families of elliptic 
operators (SHIH [2]), and to actions of compact LIE groups on differ
entiable manifolds (ATIYAH-SINGER [2], [5]). 

25.6. The latter development can be described briefly as follows. 
Let X be a compact space, and G a compact LIE group which acts on X. 
Then a G-vecttw bundle over X consists of a complex vector bundle E 
over X together with a G-action on E, commuting with the projection 
E ~ X, given by linear maps g: E" ~ E." for all g E G, x EX. The 
definitions of 24.1 can be imitated in this case to give a GROTHENDIECK 
ring KG(X) "of G-vector bundles over X". In the special case when G 
consists only of the identity element, KG (X) coincides with K (X). When X 
is a point, KG(X) is the representation ring R(G) of G. If Y is a G-stable 
closed subspace of X then the relative group KQ(X. Y) is defined. Note 
that the groups KQ(X), KQ(X, Y) depend not only on G, X, Y but also 
on the particular action of G on X. The results in K-theory mentioned 
in § 24 all have analogues (due to ATIYAH and SEGAL) in K(Ttheory. 

Now suppose that X is a compact differentiable manifold, and that 
G acts differentiably on X. If E is a diOerentiable G-vector bundle over X 
(that is, both E and the action of G on E are differentiable) there is an 
action of G on the space r(E) of differentiable sections of E defined by 

(gs) (x) = g. S(g-lX), g E G, s E r(E), x EX. 
Let E, F be differentiable G-vector bundles over X and 

D: r(E) ~ r(F) 

an elliptic differential operator compatible with the action of G. Then 
G acts linearly on the finite dimensional vector spaces ker D and coker D. 
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The analytic index of D is the element T (D) of the representation ring 
R(G) of G defined by 

T(D) = kerD - cokerD. 

When G consists of the identity element, R (G) = Z and this definition 
coincides with 25.2 (4). 

On the other hand it is possible to define a topological index y (D) ER (G) 
which reduces to that defined in 25.3 when G is the identity. The defini
tion involves, not only the symbol of D and the PONTRJAGIN classes of X, 
but also the fixed point sets X, of elements g E G. 

The second proof of the ATIYAH-SINGER index theorem (25.5) can 
be given in terms of K(Ttheory, and then shows that T(D) = y(D) for 
every elliptic differential operator D compatible with the action of G. 
There is a. G-invariant metric on X, and hence a G-action on the disc 
bundle B (X) for which 5 (X) is a G-stable subspace. The elliptic integral, 
or "pseudo-differential", operators of SEELEY are used to define homo
morphisms 

T: KG(B (X), 5 (X)) - R (G) , 

y: KG(B(X), 5 (X» - R(G) , 

which are then proved to coincide. 
Consider the special case in which G is a cyclic group, and in which the 

generator g : X - X has only simple fixed points [a fixed point x E X is 
simple if det(1 - dC)C) =1= 0, where dg)C is the induced map on the tangent 
space to X at x; this implies that x is an isolated fixed point]. In this 
special case the formula T (D) = y (D) is also given by a "LEFSCHETZ 
fixed point formula" (ATIYAH-BoTT [4]). The latter theorem, which 
is proved by quite different methods, applies to more general maps 
I: X - X (again with only simple fixed points, but not necessarily the 
generator of a cyclic group acting on X). As in 25.4, applications follow 
by considering particular differential operators D. Thus the operator of 
25.4a) gives a theorem, on the fixed points of a holomorphic map 
I: V - V of a compact complex manifold V, which is analogous to 
R-R. The operator of 25.4 b) gives I) a theorem analogous to the 
HIRZEBRUCH index theorem, and 2) the original LEFSCHETZ fixed point 
formula, for a compact oriented differentiable manifold. Full details of 
these results, with a sketch of the proof of the general formula, can be 
found in ATIYAH-BoTT [4]. 

§ 26. Integrality theorems for differentiable manifolds 

26.1. The ATIYAH-SINGER index theorem implies in particular 
[25.4 a)] that the T-characteristic T(V",1]) of a complex analytic 
GL(q, C)-bundle 1] over a compact complex manifold V" is an integer. 
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This is a special case of a more general theorem for continuous 
GL(q, C)-bundles over compact oriented differentiable manifolds. 

Let {A,,(P1"'" P,,)} be the multiplicative sequence with characteristic 

power series Q (z) = 2 Vi"" defined in 1.6. The power series t VZ 
sinh2Vz sinhtyz 

defines a multiplicative sequence {AI (P1' ... , p/)} with AI = 24/ A/. 
Throughout this paragraph we assume that X is a compact oriented 

differentiable manifold of dimension m with PONTRJAGIN classes P" 
Theorem 26.1.1. Let d be an element 0/ HI(X, Z) whose reduction 

mod2 is the WHITNEY class w.(X), and '1/ a continuous GL(q, C)-bundle 
over X. Then 

A (X, ! d, '1/) = ~ [etcl • ch'l/'.£ A/(p1,···, Pi)] 
1-0 

is an integer. 
Remark: Since X is oriented, WS i+1(X) is the reduction modulo 2 

of an integral STIEFEL-WHITNEY class WI i+1(X), The exact sequence 
o _ Z - Z - ZI - 0 defines a cohomology coboundary homomorphism 
~ such that ~W.i (X) = WS i+1 (X). Hence there is an element dE Hli (X, Z) 
whose restriction modulo 2 is w.dX) if and only if WaHl (X) = O. In 
particular Theorem 26.1.1 can be applied only if W3(X) = O. 

If m is odd then A (X, ! d, '1/) = O. It is therefore sufficient to 

prove Theorem 26.1.1 when m is even. In 26.3-26.5 we give references 
to three proofs of 26.1.1. We first note two important special cases which 
have been proved already in 24.5. 

1) Let X be an almost complex manifold with tangent GL(n, C)
bundle 0 and '1/ a continuous U (q)-bundle over X. Let d = c1 (0) and 
Pi = Pi<e(O)). Then equation 1.7 (12) shows that 

co 

tdO = etcl E A/(P1' ... , PI) 
;-0 

and therefore A (X, ! d, '1/) = T(X, '1/). Since the reduction of c1 (0) 

modulo 2 is w.(X), Theorem 26.1.1 implies Theorem 24.5.4: the TODD 
characteristic T(X, '1/) is an integer. 

2) Let '1/ be a continuous U (q)-bundle over the 2n-dimensional sphere 
.SlrI. The PONTRJAGIN classes Pi(SIfI) are zero for i> 0 (see 7.2.1) and 
therefore A (SIfI, 0, '1/) = ,,1fI [ch'l/] = (cbn'l/) [SIfI]. Thus 26.1.1 implies 
Theorem 24.5.2: (cbn'l/) [SIfI] is an integer. 

26.2. The integrality theorem (26.1.1) is itself a special case of a 
"non-stable" integrality theorem due to MAYER [1]. Let E be a 
SO(k)-bundle over X with k = 2s or 2s + 1 and consider a formal fac-

s 
torisation P (E) = II (1 + y1)· 

i-I 
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Theorem 26.2.1 (MAYER [1]). Let tl be an element 01 lfI(X. Z) 
",hose retluction mod2 is w. (X) + WI (E). antl fJ a continuous G L (q. C)-buntlle 
over X. Then 

2' H'I' [et. 'chfJ ,.Ii cosh (! y_) '.f AI {Pl' ' ..• PI)] .-1 ,-0 
is an integer. 

In certain cases Theorem 26.2.1 can be improved by a factor of two 
(MAYER [1]). The corollaries of 26.2.1 include 

I) if E is the zero bundle. Theorem 26.1.1; 
II) if k = m and E is the tangent bundle of X. the integrality of 

the L-genus (see 1.5 and 8.2); 
III) if e is the normal bundle of an embedding or immersion of X 

in SmH. the non-embedding theorems of ATIYAH-HIRZEBRUCH [2] 
and the non-immersion theorems of SANDERSON-ScHWARZENBERGER [1]. 

The proof of 26.2.1 is by an application of the ATIYAH-SINGER index 
theorem and is outlined in 26.3. 

26,3, Let X be a compact oriented differentiable manifold of dimen
sion m = 2n. and W a complex vector bundle over X associated to a 
U(q)-bundle fJ. If Spin(2n) is the universal covering group of SO(2n) 
there is an exact sequence 

1 ~ Z. ~ Spin (2n) 2. SO (2n) ~ 1 . 

The tangent bundle of X is an element R8 E lf1(X. SO (2n)J. It can be 
shown that there is an exact sequence of cohomology sets with distinguish
ed elements with coboundary map lJ: lf1(X. SO (2n)c) ~ HI (X. Z.} such 
that lJ(a8) = w.(X). Therefore R8 is associated to a Spin(2n)-bundle 
if and only if ",.(X) = 0 (BOREL-HIRZEBRUCH [1]. § 26.3). 

Suppose that WI (X) = O. Then it is possible. using the two irreducible 
spinor representations of Spin(2n). to construct complex vector bundles 
W+. W- and an elliptic differential operator (the DIRAC operator; see 
PALAIS [1]) D: r(w+) ~ r(Jr) such that ,,(D) = A(X. o. ,,). By the 
ATIYAH-SINGER index theorem" (D) is an integer. This gives the following 
special case of Theorem 26.1.1. 

Theorem 26.3.1. Let X be a compact orientetl tlillerentiable maniloU 01 
tlimension 2n with "'a (X) = O. Let fJ be a continuous U (q)-buntlle over X 
antl tlE lfI(X. Z). Then A (X. tl. fJ) is an integer. 

Proof: There is a U(l)-bundle E with ~(E) = tl (see 3.8). Then 
A (X. tl. ,,) = A (X. o. E ® fJ) is an integer by the above argument. 

Corollary: II w.(X) = 0 then the A-genus 01 X is an integer. 
The proofs of 26.1.1 and 26.2.1 are similar. Let;"': Spin(2n + 2) ~ 

~ SO(2n + 2) and Aa.H: Spin(2n + k + 2) ~ SO(2n + k + 2) be the 
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2-fold covering maps and put 

Ga .. = Ai!(SO(2n) X SO(2)), GZ,..lc = 4!H(SO(2n) X SO(k) X SO (2)) . 

Then GIR is isomorphic to the complex spinor group Spine (2n) defined in 
ATIYAH-BoTT-SHAPIRO [1] (see also HIRZEBRUCH. A RIEMANN-RoCH 
theorem for differentiable manifolds, 5eminaire BOURBAKI, 11 (1958/59) 
and MAYER [1]). There is an exact sequence 

1-+ U(I) -+ GI .. -+ SO(2n) -+ 1 

and the tangent bundle R() of X is associated to a Gin-bundle if and only if 
wz(X) is the reduction mod2 of an integral class dE HI (X. Z). The proof 
of Theorem 26.1.1 now proceeds similarly to that of 26.3.1 but using the 
irreducible representations of Gil'" Similarly R() ED e is associated to a 
Ga,..lt-bundle if and only if wa(X) + WI (e) is the reduction mod2 of an 
integral class. and the proof of Theorem 26.2.1 proceeds using the 
irreducible representations of G.,..lt. 

Alternatively, 26.1.1 and 26.2.1 can be proved by a direct application 
of 26.3.1 to a certain fibre bundle over X (ROBERTS [1]). 

In certain cases Theorems 26.2.1 and 26.3.1 can be improved by 
a factor of two. The following theorem. due originally to ATIYAH
HIRZEBRUCH [1], generalises a theorem of ROHLIN [1]. A proof using 
complex spinor representations and the ATIYAH-SINGER index theorem 
has been given by MAYER [1] (see also PALAIS [1]). 

Theorem 26.3.2. Let X be a compact oriented di/lerentiable manifold 
with dimX 55 4 mod8 and WI (X) = O. Let e be a continuous 0 (k)-bundle 
over X. Then A(X, o. ,,(e)) is an even integer. 

26.4. A second proof of Theorem 26.1.1 can be found in Parts II 
and III of BOREL-HIRZEBRUCH [1]. In this approach Theorem 26.1.1 is 
deduced from the integrality of the TODD genus (Theorem 24.5.4). 
A proof of the integrality of the TODD genus except for powers of two 
is given in 14.3; it depends essentially on the index theorem (8.2.2) and 
hence on cobordism theory. Another direct proof of the integrality of the 
TODD genus has been given by MILNOR [3]: it involves the complete 
determination of the complex cobordism ring (see the bibliographical 
note to Chapter Three) showing that for each almost complex manifold 
we can find an algebraic manifold with the same CHERN numbers. By 
R-R the TODD genus is then an integer also for almost complex 
manifolds. 

26.S. A more direct proof of the integrality theorems is due to 
ATIYAH-HIRZEBRUCH [1]. As was remarked in 25.5 it is not necessary 
to apply the full ATIY AH-SINGER theorem; the method of 24.5 is sufficient. 
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Every m-dimensional difierentiable manifold can be embedded 
in S''''. Theorem 24.5.2 implies that (ch", b) [SIm] is an integer for all 
bE K(SIm). Therefore 26.1.1 is a consequence of 24.5.2 and the following 
generalisation of 24.5.3: 

Theorem 26.5.1. Let X, Y be compact connecterl oriented diflerentiable 
manifolds with dim Y - dimX = 2N and let j : X -+ Y be an embedding. 
Let dE HI(Y,Z) be an element whose reduction mod2 is w.(X) -j·w,(y). 
Then for each element a E K (X) there exists an element j 1 a such that 

ebjla' f A,cPl(Y)'" ·,P,(Y) =j. (cha. etd f A,cPl(X)'" .,P,(X») 
i-O .-0 

(1) 
where j. : H· (X, g) -+ H· (Y, g) is the GYSIN homomorphism. 

Let v be the normal SO (2N)-bundle of X in Y. The reduction mod2 
of d is w.(v) and (1) can be written 

chjl a = j. (cha. (e-td i.t: A,cPdv), ... , P,(v»t 1
) • (1·) 

Let B and S be the unit disc and unit sphere bundles associated to v 
and identify B with a tubular neighbourhood of X in Y. There is a 
map r: Y -+ BIS obtained by collapsing the complement of B - S in Y 
to a point, and hence a homomorphism rl: K(B, S) -+ K(Y). To con
struct an element jl aE K(Y) which satisfies (1·) it is sufficient to 
construct an element bE K(B, S) such that 

ebb = rp. ((e-tdi#o A.cPl(V), .. "Pf(V»t1) 
where rp.: H' (X, g) -+ Hi+8N (Y, g) is the THOM isomorphism (24.3). 
The existence of b is proved by means of the representations of Spine (2N) 
mentioned already in 26.3. 

The same method applied to the GROTHENDIECK ring of real vector 
bundles yields the original proof of Theorem 26.3.2. Theorem 26.5.1 can 
also be generalised to give: 

Theorem 26.5.2 (ATIYAH-HIRZEBRUCH [1]). Let X, Y be compact 
connected oriented diflerentiable manifolds with dimX = dim Y mod2. Let 
f: X -+ Y be a continuous map, and dE HI (X, Z) an element whose 
reduction mod2 is w.(X) - f· w.(Y). Then for each element aE K(X) 
there exists an element f 1 a E K (X) such that 

cht.a·i~o A,cPl(Y)" .. ,P,(Y) = f. (cha.etd •i£ A,cPl(X), ... , P.(X») 

where f.: H·(X, (I) -+ H·(Y. g) is the GYSIN homomorphism. 
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Proof: Factorise I as the composition of an embedding X -+ Y X SIN 
and a product projection Y X SIN -+ Y. The theorem is true for the 
embedding (26.5.1) and for the projection (24.5.1). Hence it is true for I. 

In the special case in which X. Y are connected almost complex 
manifolds and it = c1 (X) -I· c1 (Y). Theorem 26.5.2 gives the following 
differentiable analogue of G-R-R: lor each element a E K (X) there 
exists an element II a E K (Y) such that 

chll a' td(Y) = I. (cha . td(X). 
Bibliograpbical note 

Where no other reference is given the material in this appendix is based either 
on the appendix to the second German edition or on one of the following mimeo
graphed lecture notes: Lectures on characteristic classes, Princeton 1957, by J. 
MILNOR; Lectures on K(X), Harvard 1962, by R. BOTT; Topology seminar, Harvard 
1962, lectures by M. F. ATIVAH, R. BoTT and 1. M. SINGER; Seminar, Bonn 1963, 
lectures by F. HIRZEBRUCH, E. BRIESKORN, K. LAMOTKE and K. H. MAVER; 
Seminar on tM ATIVAH-SINGER index tMorem, Institute for Advanced Study, 
Princeton 1964, lectures by A. BOREL, R. PALAtS and R. SoLOVAV; Lectures on 
K-tMory, Harvard 1965, by M. F. ATIVAH; Equivariant K-theory, Oxford 1965, 
by M. F. ATIVAH and G. B. SEGAL. An excellent survey of much of the work describ
ed in this appendix is given in a series of reviews by BoTT [especially Math. Rev. 22, 
171-174 (1961); 22, 1153-1155 (1961) and 28, 129-130 (1964)]. 

The ATIVAH-SINGER index theorem for actions of a compact LIE group G, and 
the ATIVAH-BoTT fixed point formula, have been mentioned briefly in 25.6. Until 
complete published versions become available, the follOwing temporary references 
will be found useful: ATIVAH-BoTT [3] and a lecture by BoTT in the S6minaire 
BoURBAKI, 18 (1965/66). In addition the notes Equivariant K-theory give the 
explicit construction of the topological index ,,(D) in the case that G is a torus 
or cyclic group, with remarks on the definition for an arbitrary compact LIE RI'0up. 
A survey lecture by HIRZEBRUCH (Elliptische Differentialoperatoren auf Mannig
faltigkeiten, WEIERSTRASS Festband, WestdeutBCher Verlag, Opladen 1966) states 
the theorems for differentiable maps I: X -+ X in the two cases: I has only simple 
fixed points (fixed point formula; see 25.6) and I has finite order (index theorem for G 
cyclic). The main part of the lecture contains applications when V. is a compact 
complex manifold, I : V -+ V is a holomorphic map, K is the canonical line bundle, and 
fo": H'(V, Kr) -+ H'(V, Kr) is the homomorphism induced by I. The above theo
rems then give an explicit formula, in terms of the characteristic classes of V and the 
fixed point set of I, for the complex number 

n 
xCV, /(r, I) = I (-1)' trace II" 

i-O 

which reduces to the RIEMANN-RoCH theorem x (V, Kr) = T(V, J{r) when I is 
the identity. An application, due jointly to ATIVAH, BOTT and HIRZEBRUCH, is 
sketched in which M is a bounded homogeneous symmetric domain, and .£I is a 
group satisfying properties (a), (b) of 22.2. The formula for xCV, Kr, I) is applied 
with V = M/r where r is a subgroup of .£I given by Theorem 22.2.2. The method 
of 22.3 is then used to compute the dimension IIr (M, .£I) of the space of automorphic 
forms of weight r. The results agree with those originally proved by LANGLANDS [1). 
and reduce to those given in 22.3 whenLi acts freely on M; for this see ATIVAH
BOTT [4], ATIVAH-SEGAL [1], ATIVAH-SINGER [2], (5). HIRZEBRUCH [7]. 



Appendix Two 

A spectral sequence for complex analytic bundles 
by ARMAND BOREL 

The spectral sequence to be discussed here relates the a-cohomology 
of the total space, the base space and the typical fibre of a complex fibre 
bundle with compact connected fibres. In addition to the usual fibre- and 
base-degrees, it carries a bigrading stemming from the type of differential 
forms. The precise statement is given in 2.1, the proof in Sections 3 to 6. 
The latter proceeds along more or less expected lines, albeit in a rather 
cumbersome notation, one point of interest however being the exactness 
of the sequence 3.7 (4), which is essentially a consequence of smoothness 
properties of a GREEN operator. The main applications of 2.1 given here 
concern the multiplicative behaviour of the x,,-genus (8.1) and the 
a-cohomology of the CALABI-EcKMANN manifolds (9.5). 

Familiarity with spectral sequences of fibre bundles is assumed. As 
to the rest, we follow the notation and conventions of this book, with 
some minor deviations to be mentioned explicitly. References to sections 
of this paper are in ordinary type; those to other sections of this book in 
boldface. 

This is a revised version of a paper written in 1953, quoted in the 
bibliography of the first edition of this book, but not published. 

§ 1. Preliminaries 
1.1. Manifolds are HAUSDORFF and paracompact; smooth means 

differentiable of class ex>. The sheaves on a manifold M are always 
Cb(M) modules, [where ~(M) is the sheaf of germs of smooth complex 
valued functions on M), and tensor products of sheaves are over Cb (M). 

1.2. Let M be a complex manifold, W a complex vector bundle over 
M, and ~ the sheaf of germs of smooth sections of W. Then A~'(W) 
denotes the space of smooth exterior differential forms on M, of type 
(P, f), with coefficients in W (see IS.4), and ~~'(W) is the sheaf of 
germs of such forms. If W = 1 is the trivial bundle M x C, then we 
omit (W) in the preceding notation. We have 

~~'(W) ~ ~ 8 ~~', A~'(W) ~ r(~~'(W). (1) 

A~(W) denotes the sum of the A~'(W), where P + f = i, AJI(W) the 
sum of the A~(W), and similarly for the corresponding sheaves. 
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Let U be an open subset of M over which W may be (and has been) 
identified with the trivial bundle U x Cd' We recall that A~'(Wlu) is 
canonically identified to the set of d-ples of ordinary exterior differential 
(P, q)-forms on U. If O)E A~'(Wlu) corresponds to (WI' ••• , Wd), then 
~O) corresponds to (~O)l' .•• , ~O)d)' Assume moreover that U is a co
ordinate neighbourh09d, with local coordinates ZI' •••• z.. For a subset 
I = {~, ... , ill} of {I, ... , n}, we put 

dz, = dz,. " •.• " dz,", di, = di,. " ••• " di,To . 

Then the above form 0), may be written uniquely 

w, = E I""J' dz,,, diJ , 
1.1 

(2) 

where I (resp. ]) runs through the subsets of p (resp. q) elements of 
{I, ... , n}, and I',',J is a smooth complex valued function on U. 

1.3. The direct sum of the spaces H#>"(M) [resp. Ht>.f(M, W), see 
15.4] is denoted HJ(M) [resp. H-;(M, W)], and Js#>.f or Js#>.f(M) [resp. 
Js#>.f(W) or Js#>.f(M, W)) is the dimension of H#>·f(M) [resp. H#>·f(M, W)]. 
The space HJ (M) is in a natural way an anticommutative bigraded 
algebra. If W = M x F is a trivial bundle, then HJ (M, W) :::: Hg (M) GD F, 
as follows directly from the definitions. 

1.4. Let now M be compact. The spaces Ht>.f (M, W) are then finite 
dimensional (15.4.2). Let further G be a LIE group operating continuously 
on M. by means of bi-holomorphic transformations. and let fJ : G -+ AutM 
be the map defined by this action. Then fJ induces a continuous representa
tion qP of G into Ht>.f(M). 1/ Mis kiihlerian, then qP is constant on each 
connected component 01 G; in fact, in this case, H;(M) may be canonically 
identified with the usual cohomology algebra H* (M, C) of M (see e. g. 
WElL [2], Chap. IV), by an isomorphism which clearly commutes with 
the natural representations of G in H,(M) and H* (M,C) ; our assertion 
is then a consequence of the homotopy axiom. In the non-kahlerian case 
however, this need not be true, as is shown by an example of KODAlRA 
[cf. GUGENHEIM and SPENCER, Proc. A. M. S. 7 (1956), 144-152]. 

1.5. Let E = (E, B, F, n) be a complex analytic bundle (3.2), where 
E is the total space, B the base space. F the standard fibre and n : E -+ B 
the projection map. We assume F to be compact connected. By defini
tion (loc. cit.) the structure group G of E is a complex LIE group. acting 
on F by means of a holomorphic map 11' : G x F -:+ F. Let E be defined 
by means of the transition functions 1./1: U. n Ur '" G, where (U.).E:,., 
is a suitable covering of B. It is clear that U Ht>.f(FII), (FII = n-1(b), 

IIEB 

bE B), is in a natUlal way the total space of a smooth vector bundle 
over B. whose transition functions f./I are obtained by composing the 
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1._ with the given representation flJo of G in GL(HM(F». This bundle is 
denoted BM (F), and B! (F) is the direct sum of the BM (F). 

11 fP'is constant on the connected components 01 G, in particular if F 
is kiihlerian, then H, (F) is a Iwlomorphic complex vector bundle over B 
(with locally constant transition lunctions). 

In fact, the 1:_ are then locally constant functions, hence may be 
viewed as holomorphic maps of U. n Up into GL(H!(F». 

§ 2. The spectral sequence 
2.1. Theorem. Let E = (E, B, F, n) be a comPlex analytic fibre bundle, 

where E, B, F are connected and F is compact. Let W be a complex vector 
bundle on B, and Jt = n* W its inverse image on E. Assume that every 
connected component 01 the structure group G 01 E acts trivially on HJ(F). 
Then there exists a spectral sequence (Er' dr), (r ~ 0). with the lollowing 
properties: 

(i) Er is 4-gradea. by the fibre-aegree. the base-aegree and the type. 
Let ME:" be the subspace 01 elements 01 Er of type (P. q). fibre-aegree s. 
base aegree I. We have ME;" = 0 ii p + q =1= s + t. or if one 01 p. q. s. t 
is <0. The aifferential ar maps ME;" into M+1E;+r.,-r+1. 

(ii)JI p + q = s + t. we have 
ME~' ~ 1: Hi .• -i(B. W ® Hf>-i.f-'+l(F» . 

i;;:O 

(iii) The spect,aZ sequence converges to H-g(E. Jt). For all P. q ~ O. 
we have 

GrHf>·f(E, Jt) = 1: ME:;"', 
'+''''I>+f 

tor a suitable fiUration of HM(E, Jt). 
(iv) II W = 1, then (Er , ar ) consists of aifferentiaZ anticommutative 

algebras, ana the isomorphism 01 (iii) is compatibZe with the proaucts. 
2.2. Remarks. (1) Under our assumption on G, the bundle Bjj(F) is 

holomorphic so that (ii) makes sense. This condition is automatically 
fulfilled if F is kiihlerian (1.4). 

(2) 2.1 (ii) shows that E. has a 4-grading which is finer than the 
one mentioned in 2.1 (i), namely the 4-grading given by the type of 
differential forms on B and on F. The proof will show that this 4-grading 
is also present in Eo, E1• 

Since ME;" = 0 unless p + q = s + t. the superscript t is in fact 
redundant and it would be more correct to say that the spectral sequence 
is trigraded by the type (p. q) and s, where s will tum out to be the degree 
associated to the filtration underlying the spectral sequence. The total 
degree is of course P + q. The degree t has been added however to bring 
closer the analogy with the usual spectral sequence of fibre bundles, 
but it will be omitted in §§ 4, 5, 6. 
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§ 3. Auxiliary sheaves and exact sequences 

3.1. Until § 6 inclusive, E, W, .t, G are as in 2.1, W is the sheaf 
of germs of smooth sections of W, and Cb stands for Cb (B). We re
mark however that no assumption about the action of G on Ha (F) is 
needed before 6.1. 

dlJ = (U"')"'E~ is a locally finite open covering of B by coordinate 
neighbourhoods over which Wand E are trivial. We let 

91",:WluOt-+U",xCm and tp",:n-1(U",)-+U",xF, (acEd) 

be allowable trivialisations and 

91",p: u",n Up-+ GL(m, C) and tp""p: U'" n U,,-+ G. (ac. PE d). 

be the corresponding transition functions. 

For every zE u .. n Up. the map 'P",,,(z) induces an automorphism of 
Ap. to be denoted sometimes by 'P~p (z). 

(z~, ... , z:) is a set of local coordinates on U ... and 7J«p is the change 
of local coordinates in U .. n U,,(ac. PE d). 

3.2. Let 91 be the complex tangent vector bundle along the fibres of E 
(BOREL-HIRZEBRUCH [1]. § 7.4). We let 910 • 11 be the bundle of (a. b)
forms associated to 91. Thus 91",,11 = ()'OI91) A ().II95) , where 95 is the 
conjugate bundle to 91. Let ,01,11 be the space of smooth sections of 
9101 • 11. For every zE B. the restriction Xz of an element xE '01 •• to the 
fibre F. = n-1 (z) is an (a, b)-form on Fa. and thus x may be viewed as a 
family of (a. b)-forms on the fibres, parametrized by B, and smooth in an 
obvious sense. x is called a fibre (a. b)-form (on B). There is a Cb-linear 
map ~p :,,,,.11-+ '01,.+1 characterised by rz(~px) = ~ (rax). (zEB,xE,M) 
(for all this, see KODAIRA-SPENCER [5]. I. § 2). 

Let {y0I.1I be the sheaf of germs on B of fibre (a. b)-forms. We have 
r({Y°'·) ='01 .•• and ~F is the map of sections induced by a homo
morphism of CII-modules of {yOI,. into {yOI.Hl, also denoted by ~F' Let 
801 •• C {yOI,. be its kernel. By definition. the sequence 

(1) 

where i is the inclusion map, is exact. 

3.3. More generally we shall consider the fibre It-(a, b)-forms on B. 
They may be defined first as the smooth sections of W ® 9101• 11 (see 
KODAlRA-SPENCER [5], I, § 2); for this. It could of course be any complex 
vector bundle on E. If x is such a form. then ra(x) is a (a. b)-form on Fa. 
with coefficients in the trivial bundle V z X Fa. where Vz is the fibre over 
z of W. Clearly. we may identify these forms with the sections of the sheaf 
W®ij=OI·II. 
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3.4. Let 

MII,II,II,' = r(W ® irll,lI ® ~~"), (a, b, e, dE Z; a, b, e, d ~ 0) . 

Its elements are to be thought of as "(c, d)-forms on B with coefficients 
in the fibre It-(a, b)-forms". In the notation of 3.1, an element 
A E Mil, II, e, • is given by its restrictions A .. to the open subsets U .. , and A .. 
is an array of differential m-forms A .. " which may be written 

A ... i = 1: A"".l,J dzj 1\ dij, 
I,J 

where I and J run respectively through the subsets of c and d elements 
of {I, ... , n}, and where A .. ,i,I,JE ~s,II(U,,), is a fibre (a, b)-form on U ... 

Thus A .. is identified with a It-(a + c, b + d) differential form on 
,,;-l(U .. ). But of course, this identification depends essentially on the 
local trivialisations, and A itself cannot be viewed as a differential form. 
To be more precise, A .. and All are related by the transformations defined 
by fjJ"II' "'''fI' and 'I7 .. fI· However, if we want to describe the differential 
form A .. in U fI n U .. by means of the local coordinates (zf) and the local 
trivialisations over UII, then we have also to take into account the 
derivatives of the "'''11 with respect to z. This implies that in these new 
coordinates, A .. will be equal to the sum of Afl and of differential forms of 
base-degree > c + d. 

3.S. Although this is not needed in the sequel, we remark here, 
without going into details, that if we allow vector bundles to have infinite 
dimensional fibres, we may also view the elements· of Ms,II,e,. as 
(e, d)-forms on B with coefficients in a vector bundle. 

In fact, A;:b is a FRECHET space in a natural way (SERRE [3]), and any 
automorphism of F induces a homeomorphism of A;:b. Thus the transi
tion functions "'~,fI: u .. n UfI-+AutA;:b allow one to define over B an 
associated bundle 1-'11,11, with standard fibre A;:b. Furthermore, the 
transition functions are smooth in the sense that if e: u .. n UfI-+ A;:& 
is smooth, then "'''11 0 (! is also smooth. Thus it makes sense to speak of 
the smooth sections of 1-'11, ". It may then be seen that the elements of 
Mil, II, e,. are just the (c, d)-forms on B, with coefficients in W ® I-'s,". 

3.6. The sheaf W ® ~~. is locally free over ell' therefore the sequence 

0-+ W ® 8",b ® ~i" -+ w ® iY",b ® ~~" -+ W ® ~F (iY"'b) ®~~" -+ 0, (2) 

obtained by tensoring 3.2 (1) by W ® ~~" is also exact. Moreover, since 
~~" is fine (3.5), the sequence 

0-+ r(W ® 8",b ® ~i") -+ r(W ® iY"'b ® ~j") -+ 
-+ r(W ® ~F{iY",b) ® ~j") -+ 0 • 

(3) 

derived from (2). is exact (2.10.1,2.11.1). 
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3.7. Let a be the map which sends a ~-closed form on F into its 
~-cohomology class. This map defines a Cb-homomorphism, also to be 
denoted a, of SCI, & into the sheaf ~CI, & (F) of germs of smooth sections 
of the bundle HCI, & (F) defined in 1.5. We claim that the sequence 

j tI o -+ ~F(5'CI,&-l) -+ SCI,& -+ ~CI.II(F) -+ 0, (a ~ 0, b ~ 1) , (4) 

is exact. 
That a oi = 0 is clear. Furthermore, since HCI,II(F) is finite dimen

sional, it is readily seen that a is surjective. There remains to prove that 
imi)kera. This amounts to the following assertion: 

Let zE Band U an open neighbourhood of z in B, w a fibre (a, b)
form over U, i. e. a map assigning to xE U an (a, b)-form w(x) on F 
depending smoothly on x. Assume that for each x, there exists an 
(a, b - I)-form 'lis on F such that w(x) = ~"s' Then there exists a neigh
bourhood V of z in U and a fibre (a, b - I)-form T on V such that 
w(x) = ~T(X) for all xE V. 

In other words, we may choose 'lis so as to depend smoothly on x. 
This assertion is contained in Theorems 7, 8 of KODAlRA-SPENCER [7]. 

3.S. In the same way as the exactness of (3) was deduced from that 
of (I), it follows from 3.7 that the sequence 

o -+ r(~ e ~F(~,b-l} e ~~")-+ 

-+ r(~ e S··b e ~~d) .!.... r(~ e ~ •. b(F) e ~~") -+ 0 (5) 

is exact. On the other hand, there is a natural isomorphism 

(6) 

where 0(We HCI.II(F» is the sheaf of germs of smooth sections of the 
tensor product bundle We HCI.&(F}. Therefore, we also have 

r(~e ~CI.b(F) e ~~") ~ Aj"(We H··b(F» ~ r(0(We H··b(F» e ~j"). 
(7) 

§ 4. The filtration. Proof of 2.1 (i), (ill), (iv) 

4.1. Let us say that an open subset U C E is small if E and Ware 
trivial over x(U} and if an allowable trivialisation of E over x(U) carries 
U into the product of coordinate neighbourhoods of B andF. For every 
small open set U and positive integer k. let L,. (U) be the set of elements 
of Au(Jtl u} which. when expressed in terms of local coordinates (z,) 
on Band (Y/) on F, are sums of monomials dZI A dZJ A dYI' A dYJ" 
in which III + III ~ k, where IA I denotes the number of elements in a 
finite set A. It is clear that L,.(U) is invariant under change of coordi
nates (but the set of elements for which III + IJI = k is not, and conse-
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quently the filtration introduced below is not associated to a grading). 
Let 

L" = {co E AB(Jt); colu E LII(U) for every small open subset U of E}. (1) 

It is of course enough to check this condition when U runs through the 
elements of one open covering of E by small sets. We have 

Lo = As(lt). LII = O(k > dimRB}; L,,::>LII+1' a-(LII) (L" (k ~ 0), (2) 

which shows that the LII define a bounded decreasing filtration of the 
differential C-module (AB(lt). a) by submodules stable under a-. The 
corresponding spectral sequence is by definition the spectral sequence 
(Er• dr) of 2.1. We have clearly 

L" = E ML II • (MLII = L" n A~9 (It)) • 
~.9 

which means that the filtration is compatible with the bigrading provided 
by the type. hence also with the total degree. Moreover. a- is homo
geneous of degree 1 inq. of degree 0 in P. hence this bigrading is also 
present in the spectral sequence. We denote by ME~" or ME; [see 
2.2 (2)] the space of elements of Er of type (P. 'I). total degree s + t. and 
degree s in the grading defined by the filtration. As is usual. s and t 
will be called respectively base-degree and fibre-degree. Of course. 
ME~" = 0 if P + q =!= s + t. 

The assertions 2.1 (i). (iii) then follow from standard general facts 
about convergent spectral sequences of filtered-graded differential 
modules. 

If now It = 1 is the trivial bundle with fibre C. then As(Jt) is 
an anticommutative differential algebra. Again from general principles. 
this product shows up in the spectral sequence. and we have 2.1 (iv). 
There remains to prove 2.1 (il). 

4.2. We give here a slight reformulation of the definition of the 
filtration which will be useful below. 

Let V .. = ,.1 (U .. ). and identify V.. to U .. X F by means of VI ... 
We denote by M:·b.e,4 the space of W-(c. d)-forms on B with coefficients 
in the (a. b)-forms of the fibre (DE RHAM [1]. Chap. II. § 7). Using VI ... 
we see that 

M~b,e,4 ~ ru«(W 8 ff",b 8 ~ii") . 
Av. (ltllT.) = E M4,b,e,4. 

« « .. b.e.4 « 

Then 

where 

(3) 

(4) 

(5) 

(6) 
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We remark that the isomorphism (3) and the direct sum decomposition 
(4) depend on the trivialisation 11' .. but. as before. the condition colv. E L .... 
does not. 

§ 5. The terms Eo, Bl 

5.1. Lemma. There exists a canonical isotn<Wphism 

f>·qlfo: f>·qE~ ~ 1:: r(~ ® ffl>-I.I-HI ® ~~S_i) (p. q. S ;;;:; 0) . 
i 

The sum ko 01 the maps Mlfo carries 40 onto OF' 
We keep the previous notation. Let co E 1>.ILs and co. be its restriction 

to n-1(U .. ) (ac E d). We may write (4.2): 

co = 1:: cof>-I.I-sH,i,s-i modL + 
« , IX S 1,.' (1) 

where 
(2) 

We claim that, for each i. the forms CO:-I,I-.H,I,.-i (acEd) match 
so as to define a section COI>-I,I-.H,I,.-I of ~ ® ffl>-I,I-HI ® ~};S-i. 
In fact, let ac, {J Ed be such that U .. {\ U, *' 6. The elements co .. and co, 
represent the same differential form on U .. {\ U,. hence are related by 
a transformation I .. , associated to the coordinate transformations 
11'.". ({J •• ,. 1].". Now I., also involves the derivatives of the 11' ... , with 
respect to the local coordinates on B. However. as was already pointed 
out (3.4). each term in which such a derivative occurs has a strictly 
bigger total base-degree. hence belongs to Ls+ 1,.' Thus to go from 
CO:-I.I-'+I,i,S-i to CO;-I,I-.+I,I,.-I. one may neglect these derivatives 
and just apply the transformation defined by 11' •• ,. ({J.", 1] •• ,; but this is 
precisely how sections of the sheaf ~ ® ffl>-I,I-a+1 ® ~};S-i over U. 
and U, have to match in order to define a section over U. v U" 

We now associate to co the sum of the COI>-i,I-Hi,i,s-i. This defines 
a map 

I>,"k': I>,"L. ~ 1:: r(~ ® ffl>-i,l-sH ® ~};'-I) , 
i 

which is obviously linear, with kernel ',"L.+ 1, whence an injective linear 
map 

',(I~: ',(lE~ ~ "(lL./,,IL.+t ~ 1:: r(~ ® ff,-I.(I-'+I ® ~};S-I) , 
i 

To compute 40(iii), (iii p,IE:,), we have to apply 0 to a representative 
co of iii in L s' and reduce modL.+t. In local coordinates, this means that 
we may disregard differentiation with respect to local coordinates on B, 
and take into account only the coordinates on the fibres. But this is 
how OF is defined, whence 

,,(l1to(40 iii) = op("IIto(iii» . 
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There remains to show that ;,!llfo is surjective. Let "E M., t, ,I, •• 

Put P = II + c, fJ = b + tl, s = C + tl. We have to find w E ;,!lL. such that 
,,!lk-(w) = ". 

There exists a countable locally finite covering -r = (VI) (i = 1,2, ... ) 
of E by small open subsets (see 4.1) such that for each i there exists 
or: = or:(j) Ed for which n(V/) CU •. Since E is paracompact, we may 
further find a sequence of open coverings 1'"<') = (f1I» (I = I, 2, ... ) 
such that 

Let us put 
Vjl) = VI' VJI) C Yj'-l) (i, 1 ~ 1) . 

yjco) = n TX') (J' ~ 1) • , '~Irj _ 

Since -r is locally finite, it is clear that the YjCO) also form a covering of 
E (not necessarily open of course). Therefore, if (n/) is a sequence of 
strictly positive integers, the union of the Yj"J) is also an open covering. 
The form w will be defined by means of its restrictions to the elements 
of such a covering. 

In each VI we choose local coordinates once and for all. The restric
tion "I of" to VI may then be identified with a difterential form, with 
coefficients in the typical fibre of W, also denoted "I' By definition 
w(1) = "t on VI' If VI ('\ 111) = 8, we put w(l) = "Ion VI' wCI) = "Ion 111). 
Suppose now VI (\ 111) =F 8. In that intersection, we have w(1) = "I + (1, 

where (1 is a form whose base-degree (i. e. degree in the differentials of 
local coordinates on B) is >c + d. We can find a form T on 111) which 
coincides with (1 on viI) ('\ V~I) (this is a trivial extension problem, since (1 

is already defined in an open neighbourhood of Vii) ('\ 111~. We then let 
w(l) be the differential form on vii) V 111) which is equal to "t on ViI), 

to "I + T on 111). 
Let now 1 ~ 2. Assume that there is a sequence of I strictly positive 

integers nl,,(j = I, .. . ,1) and a differential form WCI) defined on 

such that 
(WCI) - "/)lvl".IoI) ELs+I(Vj"J·d) (1 ~ i ~ I) • 

Let now I be the set of integers i between 1 and I for which 

Vl+l ('\ V~"J.I) 9= 8 . 
In the intersection 

Vl+l ('\ VCll = VH1 ('\ Uti V~"I.I»), 

(3) 

the difference (1 = WCI) - "1+1 belongs to L,+1' As before, we may find 
a form T on Vl+l which coincides with (1 on 

V}I) (\ (U 171"1.1 + 1») • 
+1 ;EI j 



§ 6. The term E. 211 

Let us define a sequence (111,1+1) of I + 1 integers by 

"/,1+1="1,1+ I, UEl); "1,1+1=111," (l;;;j;;; l,jEI); 111+1,1+1=2. 

We let then ruCHI) be the form on 

VCI+-' = U V("IoI+') 
u 1:0;;:1;1+1' , 

which is equal to ruCI) on V~""I+I) for j ;;; I and to "'+1 + 'f on Vi~ l' 
Then it satisfies the condition (3) with I replaced by I + 1. 

In order to go from the domain of definition of ru CI) to that of ruCHI) 
we may have to shrink some of the V~"IoI), but not if VI A V I+1 = 6. 
Our covering being locally finite, given m ~ I, there exists I (m) such that 
V", A V, = 6 for all I ~ I(m). As a consequence, for fixedj, the sequence 
"1,' becomes stationary and there exists an integer "1 such that V}"J) 
belongs to the domain of definition of ruCI) for all I ~ 1. By construction, 
we have then ru CI) = ruCI') on V}"I) for I, I' ~ "1' There exists therefore a 
differential form ru on E such that ru = ruC"I) on V:J) for all j. It follows 
then from (3) that ~,Ik-(ru) = ". 

5.2. Lemma. The map ~,IV. 0/ 5.1 induces an isotnoYPhism ~,rk;. 

0/ ~,·E~ onto E A~·-·(W 8 B~-·,r-.+'(F» . 
• This follows from 5.1, from the exactness of the sequences (3), (5) 

of § 3, and from the isomorphisms 3.8 (7). 

§ 6. The term.Hz. Proof of 2.1 (U) 
We let ko (resp. k.) be the direct sum of the maps ~,r~ (resp. ~'.k;.). 

In view of our assumption on the structure group of E, the image space 
of k. is the space of forms on B with coefficients in a holomorphic vector 
bundle (1.5), therefore it is a differential module under a. The assertion 
2.1 (ii) will then be a consequence of the 

6.1. Lemma. The map kl carries It onto a. For all p, q, s, it induces 
a1l isomorphism 

Mk;: ~,rE~ =. E Hi,S-i(B, W 8 H~-i,r-sH(F» . 
i 

The second assertion follows directly from the first one, which we 
prove now. 

Let x~ be the map of the space Z (E.) of d.-cocycles of E. onto EI • 

In view of 5.1, 5.2, we have the following commutative diagram 

E r(~ 8 8 8 ~~d) ~ E r(~ 8 ~(F) 8 ~~~ 
t+"~s t+"Oi:' 

l~ l~l (1) 

Z(E~) E' I 
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where 
8 = E 811,", E~ = E *,qE~ (i = 0, I, ... ), (2) 

~,Il 

and a is as in 3.8 (5). We denote p", the projection of L", onto E: = L",IL",+! 
(u = 0, 1, •.. ). 

Let a, b. c. d be positive integers. and set p = a + c, q = b + d. 
s = c + d. Let u E r(!ID ® ~II,,, (F) ® ~;;.) and u' an element of 
r(!ID ® 811," ® ~;;") such that a(u' ) = u, which exists by 3.8. Let 
v = kl1(u) and Vi = kOl(U' ). We have to prove: 

k.(d1 v) = au . (3) 

By definition, Vi EZ(E~). There exists therefore v" EL. such that 
a (v") E L.+! and P. (v") = Vi. By the above, we have then 

u = kl • ~. P.(v") = a' ko ' P.(v") . (4) 

On the other hand, the definition of d1 gives d1 v = ,,~ . P.+! (a v") hence, 
also, by (1), 

kl(d1 v) = a' ko ' p,+!(a v") . (5) 

Therefore, (3) is equivalent to 

a • ko ' p.+! (d v") = au . (6) 

It is enough to prove this for the restriction of v" to p-l(U,.), for all 
(X E d. We may write (4.2): 

v" = vll,".c," + VII-I,". 0+1,' + VIl."-I,c •• +1 modL.+ 1.,.. 

where ve.f,i'~Eru .. (!ID®5e.f®~~~); by construction, vll,".c,' may 
be identified with u' . We have then 

Since we compute modL.+t .... we may neglect all terms of base degree 
> c + d + 1; this means that we also have: 

dV" = dU' + ap (vll - 1.".C+l •• + VIl."-I,c,.+I) modL.+ 2.,.. 

kOP.+l a (v") = dU' + d,(vll - 1.".c+l •• + VIl•II - 1•c,.+1) . 

The second term on the right hand side. being a drcoboundary, is 
annihilated by (I, hence 

a ko P.+l d (v") = a dU' . 
But it is clear that 

a' d(U') = d(a(u'» = dU, 

whence the equality (6). 
Remark. A similar proof yields a construction by means of differen

tial forms of the spectral sequence in real cohomology of a differentiable 
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fibre bundle. The differential algebra is the space of real valued dif
ferential forms on E, filtered by the degree in base coordinates, as in 4.1. 
The proof is basically the same, simpler in notation since we dispense 
with Wand the type. If F is compact, the exactness of the sequence 
corresponding to 3.7 (4) follows again from the smoothness properties of 
the GREEN operator (DE RHAM [1], p. 157). In the general case, it is a 
consequence of a result of VAN EST [Proc. Konikl. Neder. Ak. van Wet. 
Series A, 61 (1958),399-413, Cor. 1 to Thm. 1]. 

§ 7. Elementary properties and applications of the spectral 
sequence 

We keep the notation and assumptions of 2.1. 

7.1. II the bundle Ha(F) is trivial, in particular il the structure group 
01 E is connected, then 

1>,'1E;.' ~ .E Hi,.-i(B, W) ® HI>-i,'l-Hi(F) . 
• 

This follows from 2.1 (ii) and 1.3. 
7.2. The space 1>,'lEf+'l,O is a quotient 01 1>,9Ef.!l'1,O (r ~ 3). The 

composition 01 the natural maps 

HI>,'l(B, W) ~ l>,qE:+'I,o-+l>,qE~+q,o c HI>,'1(E, Jt), 

is X·. It is injective il q = O. 
The first assertion follows in the usual way from the construction 

of the spectral sequence and from standard facts about "edge homo
morphisms". Since no element of type (P, 0) can be a dr-coboundary 
(r;?; 0), the second one is then obvious. 

7.3. By our assumption on G, the bundle Ha(F) has the discrete 
structure group GIGO, where GO is the identity component of G. There 
is then, in the usual manner, a homomorphism of the fundamental group 
Xl (B) of B into AutHa(F), and HJ(F) may be viewed as a local system of 
coefficients. From this it is easily seen that if B is compact, then 
HO,O(B, HI>,'1(F) is isomorphic to the space HI>,'1(F)lI of fixed points of 
xdB) under the above action. Thus 

1>,'1E~.I>H ~ HI>,q(F)". 

7.4. The space l>,qE~.I>+'I may be identified with the space 01 dr - l -

cocycles oll>·'lE~~+'I (1' ~ 3). II W = 1 and B is compact, the composition 
0/ the natural maps 

HI>,Il(E) -+ 1>,'1£:;1>+'1 c 1>,IlE~.H'1 = HI>.Il(F)lI C HI>.'1(F) , 

is induced by the homomorphism associated to the inclusion map 0/ a fibre. 
This follows again from elementary facts about spectral sequences. 
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7.5. If the structure gt'oup of E is connected. then 

~."(E. It);a; E hC.II(B. W) • hO.I/(F) • 
• +~-t> 6+"-, 

This is a consequence of 7.1 and of the relations 

h-."(E It) = dim~."E ~ dim~·"E .. 
, 00 - .' 

where we have put 
~."E - ~ ~·"Es.t r- ~ ,. 

$,101;0 

7.6. Finally we note that if G is connected, and if i* : Ha(E) -+ Hj{F) 
is surjective, then HI (E) is additively isomorphic to HI(B) 8 Hj(F). 

In fact, E. may then be identified as an algebra with the tensor 
product of the algebras H'j (F) 8 1 and 1 8 H'j(B), which consist of 
permanent cocycles. 

§ 8. The multiplicative property of the X,-genU8 

B.t. Theorem. Let E = (E. B. F, n) be a complex analytic fibre 
bundle with connected s"ucture group, where E, B, F are compact, con
nected, and F is klihkrian. Let W be a complex analytic vector bundle on B. 
Then X,.(E, n*W) = X,.(B, W). x,. (F). 

For the notation X,. and x-, see 15.5. Since G is connected and F 
is kahlerian. G acts trivially on the a-cohomology of the standard fibre 
(1.4), therefore we may apply 2.1; we have moreover (7.1): 

E" ~ Hi{B, W) 8 HI(F) . 

Let us put, in the notation of 7.4, 

X-(Er) = E (-1)" dimMEr, , 
l.,.(Er) = E X-(Er) • y~ . 

t> 
It follows from 2.1 (iii) that 

X,.(E. n*W) = X,.(E",,) . 

A simple calculation. using (1), yields 

X,.(E.) = X,.(B. W) • x,. (F) . 

(1) 

(2) 

(3) 

Let (~)Er = E " "Er (r ~ 2). This is a graded space, whose EULER 

" characteristic X «~> Er) is equal to X, (Er); it is stable under dr' and its 
derived group is (->Er+!. By a well-known and elementary fact. we 
have then X{('>Er) = x «'>Er+1)' hence X'(Er} = x, (Er+1)' r ~ 2, which, 
together with (2) and (3). ends the proof. 
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§ 9. The a-cohomology of the CALABI-EcDIANN manifolds 
9.1. We shall denote by AO(X) the identity component of the group 

A (X) of complex analytic homeomorphisms of a compact connected 
complex manifold X. Although this is not really needed below, we recall 
that, by a well-known result of BOCHNER-MoNTGOMERY, A (X) is a 
complex LIE group. If X is the total space of a complex analytic fibering 
(X, Y, F, n), then every element of AO(X) commutes with n, whence a 
natural homomorphism n': AO(X) -+ AO(Y) (BLANCHARD [3], Prop. I. 1, 
p. 160). In particular, if M and N are connected complex analytic 
compact manifolds, then AO(M X N) = AO(M) X AO(N) (BLANCHARD 
[3], p. 161). 

9.2. We let M",;" (u, v E Z; u, v ~ 0) be the product S·,,+1 X SIt>+1 
endowed with one of the complex structures of CALABI-EcKMANN [1]. 
It is the total space of a principal complex analytic fibre bundle E",., 
over B",., = P,,(C) X P.,(C), with standard fibre and structure group a 
complex torus T of complex dimension one. We have 

AO(M.".,) = (GL(u + 1, C) X GL(v + 1, C»/r, 
where r is an infinite cyclic discrete central subgroup (BLANCHARD [1]), 
and the map 

"",.,: AO(M.".,) -+ AO(B",.,) = PGL(u + 1, C) X PGL(v + 1, C) , 

associated to the projection n",11 of M."" onto B", .. (9.1) is the obvious 
homomorphism. 

For u = 0 or v = 0, M",., is a HOPF manifold. Let 0'", .. be the projec
tion nu,., followed by the projection of B", .. on its first factor. Then 0'", .. 
is the projection of a complex analytic fibering 1/", v with typical fibre 
Mo, ... To see this, one may for instance use the fact (BLANCHARD [1]) 
that M." v is the base space of a complex analytic principal bundle with 
total space M."o X Mo,." structure group a complex I-dimensional torus, 
and projection map II, such that 

9.3. Lemma. The group AO(M."v) acts trivially on Hj(M",v). 
The fibre bundle has a connected structure group and a kahlerian 

fibre, namely T, and 2.1 applies. By 9.1, the group AO(M", .. ) is an auto
morphism group of the fibred structure, hence it operates on the spectral 
sequence. This action is trivial on E2 = H,(B", .. ) e Hj(T), since both 
B",vand Tare kahlerian (1.4), hence also on Eoc. But E"" = Gr(Hj(M." .. ». 
By full reducibility, any compact subgroup of AO(M." .. ) acts trivially 
on H,(M", .. ). The kernel of the action of AO(M .. , .. ) on H,(M .. , .. ) is then a 
normal subgroup which contains all compact subgroups, hence is equal 
to the whole group. 
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9.4. Lemma. We have W.O(Mo • .,) = O. (v ~ 1). 
This lemma is known. We recall a proof for the sake of completeness. 

Mo • ., may be defined as the quotient of C"+l - {O} by the discrete group 
generated by a homothetic transformation y: z ~ c • z (c =1= 1). Let 
00 be a holomorphic differential on Mo • .,. Its inverse image 00* in 
C.,+l - {O} may be written as 00* = gl • dZl + ... + g"+l • dz.,+l where 
the z/s are coordinates and the g/s are holomorphic in C,,+! - {O}. 
The form 00* is invariant under y; this implies 

gi(C" • z) = C-.. • g.(z) (n E Z. i = 1 •...• v + 1) • 

and shows that if gi :$ O. then gi is not bounded near the origin. in 
contradiction with HARTOG'S theorem. 

The ~-cohomology of Mu • ., will be generated by pure elements. 
and subscripts will indicate the type. 

9.S. Theorem. Let u ;;;; fl. Then 

Ha(Mu • .,) ~ C [Xl.1]/(X~.tl) ® A (X.,+l.". X O•1) • 

We consider first the case where u = O. In the spectral sequence of 
the fibering Eo • ., we have 

E. ~ C[Xl.l]/(X~.tl) ® A (x1 •0 • XO•1) • 

where the first factor on the right hand side represents the cohomology of 
the base P,,(C). and the second one the cohomology of the fibre T. The 
element XO•1 generates o.lE:.l and is mapped by da into o.IE:.o. which is 
zero. hence d.(xO•1) = o. If d.(x1•0) = 0, then x1•0 would be a permanent 
cocycle and would show up in Eoo (see 7.4), which would contradict 9.4. 
We may therefore assume that da(x1•0) = X1•1' A routine computation 
then yields: 

where 
Y,,+t.v = ;e1(x~.~l ® x1 • 0) E Hl,"Ef,,·I. 

Y.,+l • ., and XO•1 have fibre degree one. hence are dr-cocycles for all r ~ 3. 
whence Ea ~ E ex:' Since E 00 is a free anticommutative graded algebra. we 
have Eoc ~ H~(Mu • .,) also multiplicatively. 

If now 0 < u ;;;; v. consider the fibering ''lu • ., of Mu ... over Pu(C). 
with fibre Mo . ., (9.2). Its structure group is connected. since the base 
is simply connected. and it acts trivially on the ~-cohomology of the 
standard fibre (9.3). We may therefore apply 2.1. and we have 

Ea = C[Xl.1]/(X~.tl) ® A (x,,+l.tI. XO•1) . 

As before. it is seen that XO•1 is a d2-cocycle. hence a permanent cocycle. 
Since u ;;;; v, there is no element of type (v + 1, v + 1) with a strictly 
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positive base degree in the spectral sequence, hence %.,+1,. is a per
manent cocycle too. The base terms being always permanent cocycles, 
it follows that d,. = 0, (,.;;;:; 2), and that E. ~ E"". We have therefore 
Eoo~Hii(M,.,.,) at least additively. But representatives of %.+1 • .,. %0.1 in 
Hjj(M,. • .,) are always of square zero. and there is a representative Yl.l of 
%1.1' namely n: .• (%I.I)' such that y~.~1 = o. From this it follows imme
diately that Eao and Hii(M. • .,) are also isomorphic as algebras. which 
proves the theorem. 

Remark. The a-cohomology of the HOPF manifold Mo • ., is computed 
in KODAlRA-SPENCER [5]. § 15 for v = 1. in ISE [1] for any v. Theorem 4 
of ISE [1] also describes the a-cohomology of a HOPF manifold with 
coefficients in a line bundle. 
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