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INTRODUCTION

These notes are based on the course of lectures I gave at
Harvard in the fall of 1964. They constitute a self-contained account
of vector bundles and K-theory assuming only the rudiments of point-~
set topology and linear algebra. One of the features of the treatment
is that no use is made of ordinary homology or cohomology theory. In
fact rational cohomology is defined in terms of K-theory.

The theory is taken as far as the solution of the Hopf invariant
problem and a start is made on the J-homomorphism. In addition to
the lecture notes proper two papers of mine published since 1964 have
been reproduced at the end. The first, dealing with operations, is a
natural supplement to the material in Chapter III. It provides an
alternative approach to operations which is less slick but more funda-
mental than the Grothendieck method of Chapter III and it relates
operations and filtration. Actually the lectures deal with compact
spaces not cell-complexes and so the skeleton-filtration does not figure
in the notes. The second paper provides a new approach to real K~theory

and so fills an obvious gap in the lecture notes.



CHAPTER I, Vector Bundles

§1.1. Basic definitions, We shall develop the theory of

complex vector bundles only, though much of the elementary
theory is the same for real and symplectic bundles. Therefore,

by vector space, we shall always understand complex vector
space unless otherwise specified.

Let X be a topological space, A family of vector spaces

over X is a topological space E , together with:
(i) a continuous map p: E ~X

(ii) a finite dimensional vector space structure on each
E, = p-'l(x) for x€X ,
compatible with the topology on E, induced from E,

The map p is called the projection map, the space E is called
the total space of the family, the space X is called the base space
of the family, and if x€X , Ex is called the fiber over x ,

A section of a family p: E X is a continuous map -
8 : X ~E such that ps(x) =x forall x€X,

A homomorphism from one family p: E —+X to another'

family q : F - X is a continuous map ¢: E ~ F' such that:

(i) qe=p
(ii) for each xG X, ¢: E_-F_ isa linear map of

vector spaces,



We say that ¢ is an isomorphism if ¢ is bijective and ¢.l

is continuous. If there exists an isomorphism between E and

F , we say that they are isomorphic,

Example 1. Let V be a vector space, and let E=X XV,
p: E 7 X be the projection onto the first factor, E is called the
product family with fiber V, If F is any family which is
isomorphic to some product family, F is said to be a trivial
family,

If Y is a subspace of X, and if E is a family of vector
spaces over X with projection p, p: p-l(Y) - Y is clearly a
family over Y, We call it the restrictionof E to Y, and
denote it by E|Y. More generally, if Y is any space, and
f:Y ~X is a continuous map, then we define the induced family
£*(p) : £*(E) ~ Y as follows:

£*(E) is the subspace of Y X E consisting of all points
(y, e) such that f(y) = p(e), together with the obvious projection
maps and vector space structures on the fibers, If g:Z~ Y,
then there is a natural isomorphism g*f*(E) = (fg)* (E) given
by sending each point of the form (z,e) into the point (z, g(z), e),
where z €2, e€E, If f: Y ~X is an inclusion map, clearly
there is an isomorphism E|Y £ f*(E) given by sending each

e €EE into the corresponding (p(e), e).
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A family E of vector spaces over X is said to be
locally trivial if every x € X posesses a neighborhood U such
that E|U is trivial, A locally trivial family will also be called
a vector bundle, A trivial family will be called a trivial bundle.
If f:Y~»X, and if E is a vector bundle over X, it is easy
to see that f*(E) is a vector bundle over Y. We shall call

£*(E) the induced bundle in this case.

Example 2, Let V be a vector space, and let X be its
associated projective space, We define ECX xV to be the set
of all (x, v) suchthat x€X, v €V, and v lies in the line
determining x. We leave it to the reader to show that E is

actually a vector bundle,

Notice that if E is a vector bundle over X , then dim(Ex)
is a locally constant function on X , and hence is a constant on
each connected component of X . K dim(Ex) is a constant on
the whole of X , then E is said to have a dimension, and the
dimension of E is the common number dim(Ex) for all x.
(Caution: the dimension of E so defined is usually different from

the dimension of E as a topological space. )

Since a vector bundle is locally trivial, any section of a
vector bundle is locally described by a vector yelaued function on
the base space. If E is a vector bundle, we denote by I'(E) the

set of all sections of E, Since the set of functions on a space



with values in a fixed vector space is itself a vector space,

we see that I'(E) is a vector si:ace in a natural way,

Suppose that V, W are vector spaces, and that
E=XXxV, F =X xW are the corresponding product bundles,
Then any homomorphism ¢ : E #F determines a map
$: X ~ Hom(V, W) by the formula ¢(x, v) = (x, ®(x)v). Moreover,
if we give Hom(V, W) its usual topology, then & is continuous;
conversely, any such continuous map ®: X - Hom(V, W) determines
a homomorphism ¢ :E -+ F , (This is most easily seen by taking
bases {e i} and {fi} for V and W respectively, Then each

& (x) is represented by a matrix @ (x), i where
2,

®(x)e, = ). o) f;
j

The continuity of either ¢@ or & is equivalent to the continuity

of the functions ®, ..)
1,)

Let Iso(V,W) cHom(V, W) be the subspace of all
isomorphisms between V and W . Clearly, Iso(V, W) isan
open set in Hom(V, W) . Further, the inverse map T - !
gives us a continuous map Iso(V,W) ~ Iso(W,V), Suppose that
¢:E ~ F is such that @t Ex ~F, isan isomorphism for all
x €X ., This is equivalent to the statement that ®(X) < Iso(V,W).
The mp{-o ¢(x)"1 defines V¥: X - Iso(W, V), which is continuous,

Thus the corresponding map ¥ : F - E is continuous, Thus



¢:E - F is an isomorphism if and only if it is bijective or,
equivalently, ¢ is an isomorphism if and only if each @, is

an isomorphism, Further, since Iso(V,W) is open in Hom(V,W),
we see that for any homomorphism ¢, the set of those points

x € X for which @, is an isomorphism form an open subset of

X , All of these assertions are local in nature, and therefore

are valid for vector bundles as well as for trivial families,

Remark: The finite dimensionality of V is basic to the
previous argument, If one wants to consider infinite dimensional
vector bundles, then one must distinguish between the different

operator topologies on Hom (V,W),
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81,2, Operations on vector bundles, Natural operations

on vector spaces, such as direct sum and tensor product, can

be extended to vector bundles, The only troublesome question

is how one should topologize the resulting spaces. We shall

give a general method for extending operations from vector spaces

to vector bundles which will handle all of these problems uniformly,

Let T be a functor which carries finite dimensional
vector spaces into finite dimensional vector spaces, For
simplicity, we assume that T is a covariant functor of one
variable, Thus, to every vector space V , we have an associated
vector space T(V). We shall say that T is a continuous
functor if for all V and W, the map T : Hom (V,W) = Hom(T(V),T(W))

is continuous,

If E is a vector bundle, we define the set T(E) to be the
union

U rey .
x€X

and, if ¢:E~F, we define T(p): T(E) ~ T(F)
by the maps T(cp’):T(Ex) - T(Fx) o What we must show is that T(E)
has a natural topology, and that, in this topology, T(¢) is

continuous,

We begin by defining T(E) in the case that E is a product

bundle, ¥ E= X xV, we define T(E) tobe X x T(V) in the



product topology. Suppose that F =X x W, and that

¢:E ~F is a homomorphism, Let ®:X ~ Hom(V, W) be

the corresponding map., Since, by hypothesis, T : Hom(V,W)

-~ Hom(T(V), T(W)) is continuous, T®:X - Hom(T(V), T(W)) is
continuous, Thus T{p): X x T(V) » X x T(W) is also continuous,
If ¢ is an isomorphism, then T¢ will be an isomorphism since

it is continuous and an isomorphism on each fiber,

Now suppose that E is trivial, but has no preferred
product structure, Choose an isomorphism a:E ~X xV , and
topologize T(E) by requiring T(e) : T(E) ~X x T(V) tobe a
homeomorphism, ¥ B:E - X x W is any other isomorphism,
by letting ¢ = ﬁa-l above, we see that T(®) and T(B) induce
the same topology on T(E), since T(¢p) = 'I’([B)T(c)t)“l is a
homeomorphism, Thus, the topology on E does not depend on
the choice of &, Further, if Y <X, it is clear that the topology
on T(E)|Y is the same as that on T(E|Y), Finally, if ¢:E~F
is a homomorphism of trivial bundles, we see that T{(¢) : T(E) ~ T(F)

is continuous, and therefore is a homomorphism,

Now suppose that E is any vector bundle, Then if
U cX is suchthat E|U is trivial, we topologize T(E|U) as
above, We topologize T(E) by taking for the open sets, those
subsets V c T(E) such that V N (T(E)|U) is openin T(E|U)
for all open UcX for which E|U is trivial, The reader can
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now easily verify that if Y cX, the topology on T(E|Y)
is the same as that on T(E)|Y, and that, if @: E =F is

any homomorphism, T(¢) : T(E) » T(F) is also a homomorphism,

If £:Y~X isa continuous map and E is a vector
bundle over X then, for any continuous functor T , we have

a natural isomorphism
f*T(E) & T*E) .

The case when T has several variables both covariant
and contravariant, proceeds similarly, Therefore we can define

for vector bundles E , F corresponding bundles:

(i) E®F , their direct sum
(ii) E®F , their tensor product
(iii) Hom(E, F)
(iv) E*, the dual bundle of E
(v) xi(E) , where xi is the i'® exterior power,

We also obtain natural isomorphisms

(i) E®@F= FOE
(3i) EQFE FQE
(iii) E@(F'OoF")S(E@F')0® (E®F")
(iv) Hom(E,F) & E* ®F

w Eer) = @ ol erwE) .
itj=k
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Finglly, notice that sections of Hom(E, F) correspond
ina 1 ~1 fashion with homomorphisms ¢:E~F, We
therefore define HOM(E,F) to be the vector space of all
homomorphisms from E to F , and make the identification

HOM(E, F) = I'(Hom(E, F)) .
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§1,3. Sub-bundles and quotient bundles, Let E be

a vector bundle, A sub~bundle of E is a subset of E which

is a bundle in the induced structure,

A homomorphism ¢@:F - E is called a monomorphism

(respectively epimorphism) if each @ ¢ F - Ex is a

monomorphism (respectively epimorphism), Notice that

¢t F #E is a monomorphism if and only if ¢* ¢ E¥ - F¥ is
an epimorphism, H F is a sub-bundle of E, andif ¢:F ~E

is the inclusion map, then ¢ is a monomorphism,

LEMMA 1,3,1, If ¢:F ~E is a monomorphism, then

©(F) is a sub-bundle of E, and ¢:F ~ ¢(F) is an isomorphism,

Proof: ¢:F = ¢(F) is a bijection, so if ¢(F) is a sub-
bundle, ¢ is an isomorphism, Thus we need only show that

¢(F) is a sub-bundle,

The problem is local, so it suffices to consider the case
when E and F are productbundles, Let E=X xV ard
let x €X; choose Wx cV to be a subspace complementary to
(p(Fx) . G =X xW_ isa sub-bundle of E,
Define 8 : F@®G ~E by 0(a ®b) = ¢fa) + i(b), where i:G ~E
is the inclusion, By construction, Qx is an isomorphism, Thus,
there exists an open neighborhood U of x suchthat 8|U is an
isomorphism, F is a sub-bundle of F @G, so 8(F) = ¢(F)

is a sub~bundle of 6(F @®G)=E on U,
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Notice that in our argument, we have shown more than
we have stated, We have shown that if @ : F -~ E , then the
set of points for which Py is a monomorphism form an open
set, Also, we have shown that, locally, a sub-bundle is a

direct summand, This second fact allows us to define quotient

bundles,

DEFINITION 1, 3,1, If F is a sub-bundle of E , the
quotient bundle E/F is the union of all the vector spaces E x/Fx

given the quotient topology,

Since F is locally a direct summand in E , we see that
E/F is locally trivial, and thus is a bundle, This justifies the
terminology,

If o+ F ~E is an arbiirary homomorphism, the function
dimension(kernel (tpx)) need not be constant, or even locally

constant,

DEFINITION 1,3,2, ¢:F ~E is said to be a strict

homomorphism if dimension(kernel(tpx)) is locally constant,

PROPOSITION 1,3,2, X ¢:F ~E is strict, then:

(i) kernel{p) = 9‘ kernel((ox) is a sub-bundle of F

(ii) image (@) = Y imge(¢x) is a sub-bundle of E

(iii) cokernel(¢) = U cokernel(tpx) is a bundle in the
x

quotient structure,
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Proof: Notice that (ii) implies (iii) . We first prove
(ii)y The problem is local, so we can assume F =X XV for
some V, Given x €X , we choose Wx cV complementary
to ker(tpx) in V, Put G=X XxW_;then ¢ induces, by
composition with the inclusion, a homomorphism ¥ : G ~E ,
such that P % is a monomorphism, Thus, ) is a monomorphism
in some neighborhood U of x., Therefore, ¥ (G)|U isa
sub-bundle of E|U., However, $(G)< ¢(F), and since dim(qo(Fy))
is constant for all y , and dim(&((}v) = dim(p (Gx)) = dim(¢(Fx))
= dim((p(Fy)) for all ye U, $(G)|U - o(F)|U. Thus o@(F) is
a sub-bundle of E,

Finally, we must prove (i). Clearly, ¢* :E* ~F* is

strict, Since F* ~coker(¢*) is an epimorphism, (coker(y*))*

~F** jsa monomorphism, However, for each x we have a

natural commautative diagram

. ker (¢x) —> F_

(coker (o’:‘)* -———->F: *

in which the vertical arrows are isomorphisms, Thus

ker(p) = (coker(¢* ))* and so, by {1, 3,1), is a sub-bundle of F,

Again, we have proved something more than we have stated,

Our argument shows that for any x € X, dim (ox(Fx) < dim (oy(Fy)
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for all y €U, U some neighborhood of x, Thus, rank

(tpx) is an upper semi-~continuous function of x.

DEFINITION 1 3,3, A projection operator P: E ~E

is a homomorphism such that Pz =P,

Notice that rank (Px) + rank (1 - Px) =dim E_ so
that, since both rank (P,) and rank (1 - Px) are upper semi-
continuous functions of x , they are locally constant, Thus
both P and 1 - P are strict homomorphisms, Since ker(P)
=(lL- P)E, E is the direct sum of the two sub-bundles PE
and (1 - P)E, Thus any projection operator P : E ~ E determines

a direct sum decomposition E = (PE) @ ((1 - P)E) .

We now consider metrics on vector bundles. We define
a functor Herm which assigns to each vector space V the
vector space Herm(V) of all Hermitian forms on V. By
the techniques of §1,2, this sllows us to define a vector bundle

Herm(E) for every bundle E,

DEFINITION 1,3,4, A metric ona bundle E is any
section h : X » Herm(E) such that h(x) is positive definite
for all x € X, A bundle with a specified metric is called a

Hermitian bundle,

Suppose that E is a bundle, F is a sub-bundle of E ,
and that h is a Hermitian metric on E, Then for each x €X
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we consider the orthogonal projection Px tE ~F defined
by the metric. This defines a map P : E = F which we shall
now check is continuous, The problem being local we may
assume F is trivial, so that we have sections fl’ see fn

of F giving a basis in each fiber. Then for .v €F_ we have

P(v) = ) h(v, f;()(x) .
i
Since h is continuous this implies that P is continuous, Thus
P is a projection operator on E, If Fi- is the subspace of
E, which is orthogonal to F_ under h, we see that F"L = L;‘Fi‘
is the kernel of P, and thus is a sub-bundle of E, and that

~ L
E=F®F ., Thus, a metric provides any sub-bundle with a

definite complementary sub-bundle,

Remark: So far, most of our arguments have been of
a very general nature, and we could have replaced ""continuous"
with "algebraic’”, ''differentiable’’, "analytic'', etc, without any

trouble, In the next section, our arguments become less general,
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§ 1.4, Vector bundles on compact spaces, In order to

proceed further, we must make some restriction on the sort of base
spaces which we consider, We shall assume from now on that our

base spaces are compact Hausdorff, We leave it to the reader to notice

which results hold for more general base spaces,

Recall that if f : X -V is a continuous vector-valued function,

the support of f (written supp, f ) is the closure of f-l(V - {o}).

We need the following results from point set topology. We

state them in vector forms which are clearly equivalent to the usual forms

Tietze Extension Theorem, Let X be a normal space, Y cX

a closed subspace, V a real vector space, and f: Y ~V a continuous

map. Then there exists a continuous map g : X =V such that gIY =1,

Existence of Partitions of Unity, Let X be a compact

Hausdorff space, {Ui} a finite open covering, ‘lThen there exist

continuous maps f; : X - R such that:
(i) fi(x) >0 all x€X

(ii) supp (fi) cy,

(i) S £ =1 all x€X .
1

Such a collection {fi} is called a partition of unity,
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We first give a bundle form of the Tietze extension theorem.

LEMMA 14,1, Let X be compact Hausdorff, YcX a

closed subspace, and E a bundle over X ., Then any section

s:Y~E|Y canbe extended to X,

Proof: Let s €T(E|Y). Since, locally, s is a vector-
valued function, we can apply the Tietze extension theorem to show that
for each x €X , there exists an open set U containing x and
t €T (E|U) suchthat t{UNY =s|UNY. Since X is compact, we
can find a finite subcover {Ua} by such open sets, Let t, er(E| v,
be the corresponding sections and let {pa} be a partition of unity

with supp (pa) €U, . Wedefine 5, €T1(E) by

sa(x) = pa(x) ta(x) if x€U,

= 0 otherwise .

Then ESa is a section of E and its restrictionto Y is clearly s,

LEMMA 1.4.2. Let Y be a closed subspace of a compact

Hausdorff space X, and let E,F be two vector bundles over X .

df £ E[Y — FIY is an isomorphism, then there exists an opet set U

containing Y and an extension f: Elu—F |U which is an isomorphism
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Proof: f is a section of Hom(E|Y, F|Y), and thus,
extends to a section of Hom(E, F), Let U be the set of those
points for which this map is an isomorphism, Then U is open and

contains Y ,

LEMMA 1,4,3, Let Y bea compact Hausdorff space,
fi:Y-X (0 <t<1) ahomotopy and E a vector bundle over X,
Then

*p o
fiE = £ E .

*

1
Proof: 1f I denotes the unit interval let £: Y x I -+X be the

homotopy, so that f(y, t) = t(y), andlet #: Y xI~Y denote

the projection. Now apply (1.4, 2) to the bundles f*E, ,,*ffE and

the subspace Y x {t} of Y x1 , on which the re is an obvious iso~

morphism s, By the compaciness of Y we deduce that f*E and

n*f’:E are isomorphic in some strip Y x §t where §t denotes a

neighborhood of {t} in I, Hence the isomorphism class of f:E

is a locally constant function of t, Since I is connected this implies

it is constant, whence

~ %
* =
f " E ={{E .
We shall use Vect(X) to denote the set of isomorphism classes
of vector bundles on X, and Vectn(X) to denote the subset of Vect(X)

given by bundles of dimension n, Vect(X) is an abelian semi~group
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under the operation @ , In Vectn(x) we have one naturally

distinguished element ~ the class of the trivial bundle of dimension n.

LEMMA 1, 4.4,

(1) If £f:X - Y is a homotopy equivalence,

¥ : Vect(Y) - Vect(X) is bijective .

(2) If X is contractible, every bundle over X is

trivial and Vect(X) is isomorphic to the non-

negative integers

LEMMA 1,4,5, If E is a bundle over X x I, and

X xI-X x {0} is the projection, E is isomorphic to 7*(E|X x{O} )

Both of these lemmas are immediate consequences of (1. 4. 3) .

Suppose now Y is closed in X , E is a vector bundle over

X and o0t E{Y ~Y xV is an isomorphism. We refer to a as a

trivialization of E over Y, Let # : Y XV ~V denote the projection

and define an equivalence relation on E|Y by
e~el <=> wale)=Trygle') .

We extend this by the identity on E|X - Y and we let E/a denote the
quotient space of E given by this equivalence relation, I has a
natural structure of a family of vector spaces over X/Y . We assert

that E/a is in fact a vector bundle, To see this we have only to verify
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the local trivality at the base point Y/Y of X/Y. Now by (L 4. 2)
we can extend o to an isomorphism @: E|U~U xV for some

open set U containing Y. Then @ induces an isomorphism
E|lv)/a £ @/Y)xV

which establishes the local triviality of E/o .

Suppose 0y, o) are homotopic trivializations of E over Y,
This means that we have a trivialization B of E xI over Y xIcX x1
inducing &, and o at the two end points of I. Let f: (X/Y)xI
+ (X x I})/(Y x I) be the natural map. Then f* (E x I/g) is a bundle on
(i=0, 1). Hence,

(X/Y) x I whose restriction to (X/Y) x {i}is E/ai
by (1- 4, 3):

~
To summarize we have established

LEMMA 1,4,7, A trivialization « of a bundle E over

Y ¢ X defines a bundle E/o over X/Y. The isomorphism class

of E/ « depends only on the homotopy class of a .

Using this we shall now prove

Let Yc X be a closed contractible subspace.

LEMMA 1,4.8,
Then f: X -=X/Y induces a bijection £¥ : Vect (X/Y) » Vect(X) .
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Proof: Let E be a bundle on X thenby (l.4.4) E|Y is
trivial, Thus trivializations a:E|Y =Y x V exist, Moreover,
two such trivializations differ by an automorphism of Y xV , i,e,,
bya map Y -GL(V)., But GL(V) = GL(n,C) is connected and V
is contractible, Thus ¢ is unique up to homotopy and so the
isomorphism class of Ela is uniquely determined by that of E .

Thus we have constructed a map
Vect (X) —> Vect(X/Y)

and this is clearly a two-sided inverse for £* . Hence % is bijective

as asserted,

Vector bundles are frequently constructed by a glueing or

clutching construction which we shall now describe, Let
X=X UX,, A=X NX, ,

all the spaces being compact, Assume that E; is a vector bundle
over X, and that ¢: E;|A ~E,|A is an isomorphism, Then we
define the vector bundle El U‘PEZ on X as follows., As a topolegical
space El U ® E, is the quotient of the disjoint sum E; + .li:z by the
equivalence relation which identifies e, GEIIA with (o(el) € EZIA .
Identifying X with the corresponding quotient of Xl t+X, we obtain
a natural projection p : El. Ucp Ez ~+X, and p-l(x) has a natural

vector space structure. It remains to show that E1 Uq: EZ is locally
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trivial, Since E, U, E,|X - A = (E[X; -A) + (E,|X, - A) the
local triviality at points x ¢A follows from that of E1 and E, .
Therefore, let a €A and let Vl be a closed neighborhood of a
in Xl over which El is trivial, so that we have an isomorphism

o tE |V, -V, xC .
Restricting to A we get an isomorphism
ot E |V, nA- (v, nA)xa&®
Let 62 : E,[V, nA ~ (v, nA) x &

be the isomorphism corresponding to Of under ¢ , By (1.4.2) this

can be extended to an isomorphism

9, :E,[V, -V, x@"

where V, is a neighborhood of a in X,. The pair 91, 6, then

defines in an obvious way an isomorphism

) Elu‘pEzlvluvz——leuvz)xc“ .

1U<p°z’

establishing the local triviality of E; U, E;, . ‘

Elementary properties of this construction are the following:
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(i) I E is abundle over X and E; = Elxi, then
the identily defines an isomorphism I, : EIIA - E2|A , and

E. U E,=E,
171, 2

(1) If B :E; ~ E'i are isomorphisms on X, and ¢'Bl =B,0,
then

= g !
E1U¢Ez" EIU(,,"E2 .

(iii) ¥ (E;, ¢)and (E; » ¢) are two "clutching data' on the
Xi s then

1 "o ! '
(E1 U(pEZ) 5] (E1 U‘P' EZ)— E,®eE, U E,9F

0@ ¢ 2!
t by ~ 1 '
(E1 U(pEZ) ® (E1 U(p' Ez)_ E ®E wgd E, ®E, ,

A % £ .
(E1 U<p EZ) = IIE:1 U((p*)’l Ez .
Moreover, we also have

LEMMA 1,4.6, The isomorphism class of El Uga Ez depends

only on the homotopy class of the isomorphism ¢ : EIIA ~E, A .

Proof: A homotopy of isomorphisms EllA - EzIA means

an isomorphism

@:n*E |A xI+n*E,|A xI,
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where I is the unit intervaland 7 : X x I ~ X is the projection,

Let
ft:X--—>xXI

be defined by f,(x) = x x {t} and denote by
@ :E|A—>E,|A
the isomorphism induced from & by £, ., Then

= ok *
__.ft(n' ElunEz).

E, U‘pth ®

Since f 0 and f , are homotopic it follows from (1. 4. 3) that

El l.l‘ooEZ = E1 qu E,

as required,

Remark: The 'collapsing' and "clutching' constructions
for bundles (on X/Y and Xl uXx, respectively) are both special
cases of a general process of forming bundles over quotient spaces
We leave it as an exercise to the reader to give a precise general
formulation,

We shall denote by [X, Y] the set of homotopy classes of

maps X =Y,
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LEMMA 1,4.9. For any X, there is a natural

isomorphism Vect (S(X)) £ [X,GL(,C)] .

Proof: Write S(X) as CT(X) UC™(X), where C¥(X)
= [0, 1/2] xX/{0} xx, c"(X) =[1/2, 1] xX/{1} xX. Then
c*X)nCc (X) =X . If E is any n-dimensional bundle over S(X),
E|c*(X) and E|C”(X) are trivial, Let o : E|cH(X) Zci(x) x v
be such isomorphisms, Then (a+lx)(a-lx)-1 tXXV~XXV isa
bundle map, and thus defines a map a of X into GL(n,€) = Iso(V),
Since both C+(X) and C7(X) are contractible, the homotopy classes
of both a+ and & are well defined, and thus the homotopy class
of & is well defined, Thus we have a natural map 6 : Vectn(S(X))
- [X, GL(n, ©)] . The clutching construction on the other hand

defines by (1,4, 6) a map
0 : [X, GL(n, Q)] —> Vect (S(X)) .

It is clear that 6 and ¢ are inverses of each other and so are
bijections,

We have just seen that Vectn(S(X)) has a homotopy theoretic
interpretation, We now give a similar interpretation to Vectn(X) .

First we must establish some simple facts about quotient bundles,

LEMMA 1,4,10, Let E be any bundle over X, Then

there exists a (Hermitian) metric on E .

-~
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Proof: A metric on a vector space V defines a metric
on the product bundle X XV, Hence metrics exist on trivial
bundles, Let {U a} be a finite open covering of X such that
E|U, is trivial and let h  be a metric for E|U, . Let {pa}

be a partition of unity with supp. p o« © Ua and define

k o‘(x) = pa(x) h oz(x) for x €U,

0 otherwise,

Then ka is a section of Herm(E) and is positive semi-~definite,
But for any x €X there exists a such that p oz(x) >0 (since

b Py =1 ) and so x € Ua . Hence, for this o, ka(x) is positive
definite., Hence X o ka(x) is positive definite for all x €X and

so k = Eka is a metric for E,

A sequence of vector bundle homomorphismsg

—> E —=—>F —> oo

is called exact if for each x € X the sequence of vector space

homomorphisms

—> E —>F —>

is exact.

' 1 "
COROLLARY 1.4.1l. Suppose that 0 —> E' £2>E - >p1_—

it an exact sequence of bundles over X . Then there exists an

isomorphism E = E' @ E" .
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~ L
Proof: Give E a metric. Then E= E' e (E') .

However, (E')'L = EV,
A subspace V c I(E) is said to be ample if

©:XXV—E

is a surjection, where ¢(x, s) = s(x) .

LEMMA 1,4,12, ¥ E is any bundle over a compact

Hausdorff space X , then TI'(E) contains a finite dimensional

ample subspace,

Proof; Let {Ua} be a finite open covering of X so that
Ean is trivial for each a , and let {p Ot} be a partition of unity
with supp Py C Um o Since El U o is trivial we c;an find a finite-
dimensional ample subspace V «C I"(EIUa) . Now define

0,:V,—> I'(E)

by

8, va(x) = pa(x) . va(x) if x€ Ua

= 0 otherwise ,
The ea define a homomorphism
6: T v, — IN(E)
o ©

and the image of @ is a finite dimensional subspace of T(E) ;

in fact, for each x €X there exists « with p a(x) >0 and
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and so the map
e oz(v a) —> E_
is surjective,

COROLLARY 1,4.13, If E is any bundle, there exists

an epimorphism ¢: X x C™ —> E for some integer m,

COROLLARY 1. 4,14, If E js any bundle, there exists a
bundle F such that E @ F is trivial,

We are now in a position to prove the existence of a
homotopy theoretic definition for Vect n(x) . We first introduce
Grassmann manifolds. If V is any vector space, and n any
integer, the set Gn(V) is the set of all subspaces of V of
codimension n, I V is given some Hermitian metric, each
subspace of V determines a projection operator, This defines
a map Gn(V) ~ End(V) , where End(V) is the set of endomorphisms

of V., We give Gn(V) the topology induced by this map .

Suppose that E is a bundle over a space X, V isa
vector space, and ¢:X XV -~ E is an epimorphism, If we map
X into Gn(V) by assigining to x the subspace ker(tpx) , this
map is continuous for any metric on V (here n =dim(E)), We

call the map X -~ Gn(V) the map induced by ¢ .
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Let V be a vector space, and let F c:Gn(V) XV be
the sub~bundle consisting of all points (g, v) such that v€g,
Then, if E = (Gn(V) x V)/F is the quotient bundle, E is called

the classifying bundle over Gn(V) .

Notice that if E' is a bundle over X, and @ : X xV = E!
is an epimorphism, thenif £ : X - Gn(V) is the map induced by
¢, we have E! = {*(E), where E is the classifying bundle,
Suppose that h is a metric on V, We denote by Gn(vh)
the set G (V) with the topology induced by h, If h' is another
metric on V, then the epimorphism Gn(vh) XV - E (where E
is the classifying bundle) induces the identity map G (V) -~ Gn(vh')
Thus the identity map is continuous., Thus, the topology on
G,(V) does not depend on the metric,

Now consider the natural projections

cm 5 Cm-l

given by (zl' vee, zm) - (zl, see, zm_l) . These induce

continuous maps
-1 m
-1 f Gp(€T ) —> G (€T)
If B ) denotes the classifying bundle over Gn(Cm) it is

immediate that

G E,) E E(m-1) ¢
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THEOREM 1,4,15, The map

Lo [X, G, (C™)] —> Vect_(X)

m
induced by f -~ f¥ (E(m)) for £:X ~ G,(C ), is an isomorphism

for all compact Hausdorff spaces X,

Proof: We shall construct an inverse map., If E isa
bundle over X , there exists (by (l. 4.13)) an epimorphism
@:X XCT wE, Let £:X ~ G,(C™) be the rr;ap induced by ¢ .

If we can show that the homotopy class of f (in Gn(Vm') for m!
sufficiently large does not depend on the choice of ¢ , then we
construct our inverse map Vectn(X) - -l-'-lr-%né [x, Gn(Vm)] by
sending E to the homotopy class of £,

Suppose th§t XX c™i 4 E are two epimorphisms
(i=0,1), Let g X~ Gn(Cmi) be the map induced by ¢ .
Define $, : X x C70 x C™L > E by #,(x,vgs vy) = (1 = t) @y, vy)
+t@(x, v;) . This is an epimorphism, Let f, : X —’Gn(cmo @ c™,)
be the map induced by $, . If we identify c™0 @ c™ with
cmotmi by (zl, veeo, zmo) (] (ul, see, uml) — (zl,' oo zmd- . -,uml)
then

fo = Jo8p » = Theg

where j, : Gn(Cmi) -~ Gn(Cm°+m1) is the natural inclusion and
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T : G (C™0™1) —> G _(c™0*™)
is the map induced by a permutation of coordinates in Cm0+m1 R

and so is homotopic to the identity., Hence jlg1 is homotopic

to f1 and hence to jogo as required,

Remark, It is possible to interpret vector bundles as
modules in the following way. Let C(X) denote the ring of
continuous complex~valued functions on X, If E is a vector bundle
over X then I'(E) is a C(X) - module under point-wise

multiplication, i.e.,
fs(x) = f(x)s(x) feCc(X), ser().
Moreover a homomorphism ¢ : E ~F determines a C(X)~-module
homomorphism
To: T'(E) — T'(F) .
Thus T is a functor from the category VU of vector bundles
over X to the category M of C(X)-modules, If E is trivial

of dimension n, then I'(E} is freeof rank n. If F is also

trivial then

T : HOM(E, F) —> Hom¢ y(T'(E), T (F))

is bijective. In fact, choosing isomorphisms E=X xV ,



31

F = X xW we have

X~

HOM(E, F) = Hom(V, W) C(X) ® Hom(V, W)

= Homc(x)( T(E), T(F)) .

Thus T induces an equivalence between the category J of
trivial vector bundles to the category ¥ of free C(X)-modules
of finite rank, Let Proj (J) denote the sub~category of U
whose objects are images of projection operators in 3 , and
lat Proj (¥) ch be defined similarly, Then it follows at once

that T’ induces an equivalence of categories

Proj (3 ) —> Proj (3) .

But, by (1. 4.14), Proj () =V ., By definition Proj (¥) is the
category of finitely-generated projective C(X)-modules, Thus

we have established the following:

PROPOSITION, T’ induces an equivalence between the

vategory of vector bundles over X and the category of finitely~-

penerated projective modules over C(X) .
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§1.5, Additional structures, In linear algebra one frequently

considers vector spaces with some additional structure, and we

can do the same for vector bundles. For example we have already
discussed hermitian metrics. The next most obvious example is to
consider non-degenerate bilinear forms, Thus if V isa vector
bundle a non-degenerate bilinear form on vV means an element T

of HOM(V OV, 1) which induces 2 non-degenerate element of
Hom(vx eV, ., C) for all x €X . Equivalently T may be
regarded as an element of ISO(V, v¥). The vector bundle V
together with this jsomorphism T will be called a self-dual bundle .

i1f T is symmetric, je., if Ty is symmetric for all
x €X , we shall call (v, T)an orthogonal bundle. If T is skew-

symm etric, ie., if T, is skew-sym metric for all x €X, we

shall call (V, T) a symplectic bundle,

Alternatively we may consider pairs (V, T) with
T €1S0(V, V), where ¥ denotes the complex conjugate bundle
of V (obtained by applying the “complex conjugate functor" to V).

Sucha (V, T) may be called a self-conjugate pundle. The

jsomorphism T may also be thought of as an anti-linear isomorphism
Vv -V . As such we may form 'l'.'z P 4 'Il‘2 = identity
we may call (V, T) a real bundle, In fact the subspace weVv
consisting of all v €V with Tv=v has the structure of a real

vector bundle and V may be identified with W @ C, the
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complexification of W, If T2 = -identity then we may call (V,T)

a quaternion bundle, In fact, we can define a quaternion vector

space structure on each V_ by putting j¥) = Tv

the quaternions are generated over R by i, j with ij = -ji, iz =jz= -1
Now if V has a hermitian metric h then this gives an

isomorphism V = V#* and hence turns a self-conjugate bundle into

n self-dual one. We leave it as an exercise to the reader to examine

in detail the symmetric‘r and skew-symmetric cases and to show

that, up to homotopy, the notions of self-conjugate, orthogonal,

nymplectic, are essentially equivalent to self-dual, real, quaternion.

‘I'hus we may pick which ever alternative is more convenient at any

particular stage. For example, the result of the preceeding sections

eoxtend immediately to real and quaternion vector bundles although the

rxlension of (1. 4. 3) for example to orthogonal or sympletic bundles is

not so immediate, On the other hand the properties of tensor products

nr'e more conveniently dealt with in the framework of bilinear forms.

I'hus the tensor product of (V,T) and (W, S) is (V®W, T®S) and the

Hymmetry properties of T®S follow at once from those of T and

‘i . Note in particular that the tensor product of two sympletic

hundles is orthogonal.

f

The point is that GL(n, R) and O(n, C) have the same maximal compact

nubgroup O(n,R). Similar remarks apply in the skew case.
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A self-conjugate bundle is a special case of a much more
general notion, Let F, G be two continuous functors on vector
spaces, Thenby an F -+ G bundle we will mean a pair (V, T)
where V is a vector bundle and T € ISO(F(V), G(V)). Obviously
a self-conjugate bundle arises by taking F = identity, G = *.,
Another example of some importance is to take F and G to be

multiplication by a fixed integer m, i,e.,

F(V) = G(V) = V ©V @+e- @V (m times) .

Thus an m ~ m bundle (or more briefly an m-bundle) is a pair
(V, T) where T €Aut(mV), The m-bundle (V, T) is trivial if
there exists S €Aut(V) sothat T =mS,

In general for F =G bundles the analogue of (1. 4. 3) does
not hold, i.e,, homotopy does not imply isomorphism. Thus the
good notion of equivalence must incorporate homotopy. For
example, two m-bundles (Vo, To) and (Vl, Tl) will be called

equivalent if there is an m-bundle (W, S) on X XxI so that

(vi" Ti) = (w, S)IXX{i}, i=0,1.

Remark: An m-bundle over K should be thought of as

a "mod m vector bundle" over S(X).
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§ 1.6, G-bundles over G-spaces. Suppose that G is a

topological group. Then by a G-space we mean a topological space
X together with a given continuous actionof G on X, i,e., G
acts on X and the map G x X ~X is continuous., A G-map
between G-spaces is a map commuting with the action of G .

A G-space E is a G-vector bundle over the G-space X if

(i) E is a vector bundle over X,
(ii) the projection E ~X is a G-map,
(iii) for each g €G the map E - Eg(x) is a vector

space homomorphism,

If G is the group of one element then of course every space
is a G-space and every vector bundle is a G-vector bundle, At
the other extreme if X is a point then X is a G-space for all G
and a G-vector bundle over X is just a (finite-dimensional)
representation space of G, Thus G-vector bundles form a natural
generalization including both ordinary vector bundles and G-modules,
Much of the theory of vector bundles over compact spaces generalizes
to G-vector bundles provided G is also compact., This however,
presupposes the basic facts about representations of compact groups.
For the present, therefore we restrict ourselves to finite groups

where no questions of analysis are involved,

There are two extreme kinds of G-space:
(1) X is a free G-space if g #1 => g(x) #x,
(ii) X is a trivial G-space if g(x) =x for all x€X, g€G,
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We shall examine the structure of G-vector bundles in these two

extreme cases,

Suppose then that X is a free G-space and let X/G be
the orbit space, Then T: X - X/G is a finite covering map.
Let E be a G-vector bundle over X. Then E is necessarily 2
free G-space. The orbit space E/G has a natural vector bundle
structure over X/G @ in fact E/G ~ X/G is locally isomorphic to

E ~ X and hence the local triviality of E implies that of E/G.

Conversely, supposé vV is a vector bundle over X/G- Then «*V
is a G-vector bundle over X ; in fact, ¥ *ycXxV and G actson '_
x x V by glx v) = (gx), v). Itisclear that E - E/G and

v - ¥V are inverse functors, Thus we have

PROPOSITION L 6.1, 1f X 12 G-free G-yector bundles

____.——-——-—'—_

over X correspond bijectively to vector bundles over X|G by

E~E/G.

Before discussing trivial G-spaces let us recall the basic
fact about representations of finite groups,' namely that there exists
a finite set Vl, oo, Vk of irreducibie representations of G so
that any representation v of G is jsomorphic to 2 unique direct
sum El;l niVi . Now for any two G-modules (i.e.» representation
spaces) V, W we can define the vector space HomG(V,W) of .

G-homomorphisms. Then we have
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HomG(Vi, Vj) =0 ifj
Zc i=j .

Hence for any V it follows that the natural map
z v, @ HomG(Vi, V)—V

is a G- isomorphism, In this form we can extend the result to
G-bundles over a trivial G-space, In fact, if E is any G-bundle
over the trivial G-space X we can define the homo-

morphism AvE€END E by

Av(e) = - }: gle) e €E
lal geaG

where IGI denotes the order of G (This depends on the fact
that, X being G-trivial, each g €G defines an endomorphism
of E). Itis immediate that Av is a projection operator for E
and so its image, the invariant subspace of E , is a vector bundle.
We denote this by EC and call it the invariant sub-bundle of E .
Thus if E, F are two G-bundles then HomG(E, F) = (Hom(E, F))G
s again a vector bundle, In particular taking E to be the trivial

bundle V; = X )('Vi with its natural G-action we can consider

the natural bundle map

i V; ® Hom (¥, F)—>F ,

i=1
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We have already observed that for 2 G-module F thisis 2
G-isomorphism. in other words for any G-bundle F over X
this is 2 G-isomorphism for all x ¢X ., Hence it is an ;jsomorphism 3

of G-bundles. Thus every G-bundle F is jsomorphic toa

G-bundle of the form =V, @ E; where E; is a vector pundle
with trivial G-action. Moreover the E; are unique up to ;somorphisy
In fact we have \

k

HomG(Vi , F) = 2 HomG(Vi, v; @Ej)
=l

k .
= ¥ Homg(Vs v;) ®F;
j=t

Thus we have established

PROPOSITION 1, 6. 2. Let X bea trivial G-spaces
YV, *°% Vv, acor lete set of irreducible G-modules, v.=XxV, 1
1 k M o 1 i

F over X

the corresponding G-bundles, Thus every G-bundle

is isomorphic to a direct sum Z.R_ v. ® E, where the E. are
______,__E_——-—-'—/ =1 1 j —— i —

MoreoVez ——

up to jsomorphism and are given by E, = HomG(Vi, F).

vector pundles with trivial G-action. Moreover the Ei are unique ;

We return now to the case of 2 general (compact) G-space

X and we shall show how to extend the results of §l.4 to G-bundl
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Observe first that, if E is a G-bundle, G acts naturally on

T'(E) by
-1
(gs)x) = glslg (=) s €T(E) .
A section s is invariant if gs = g forall g €G. The set of

all invariant sections forms a subspace I‘(E)G of T(E). The

averaging operator

= 1
T e 8

defines as usual a homomorphism I'(E) — I‘(E)G which is the

Identity on I‘(E)G .

LEMMA 1,6,3, Let X be a compact G-space Y c X

# closed sub G-space (i.e,, invariant by G)and let E be a

ti-bundle over X . Then any invariant section s : Y ~ E|Y extends

lo an invariant section over X.

Proof: By (l.4.1) we can extend s to some section t of
i over X, Then Av(t) is an invariant section of E over X,

while over Y we have
Av(t) = Av(s) = s

since s is invariant, Thus Av(t) is the required extension.



if E, F aretwo G-bundles then Hom(E, F) is alsoa

G-bundle and we have
G ~
I'(Hom(E,F)) = HOMG(E, F) .

Hence the G-analogues of (1,4, 2)and (1. 4. 3) follow at once from

(1, 6. 3) » Thus we have

LEMMA 1,6.4. Let Y bea compact G-space, X a
G-space, fi: y-X (0<tL 1) 2 G-homotopy and E a G-vector

bundle over X, Then f’:’E and f:‘E are isomor hic G-bundles.

A G-homotopy means of course a G-map F:YxI~-X
where 1 is the unit interval with trivial G-action, A G-space is
G-contractible if it is G-homotopy equivalent to a point. In
particular, the cone over 2 G-space is always G-contractible. By

a trivial G-bundle we shall mean 2 G-bundle jsomorphic to 2 product

X xV where V is2 G-module. With these definitions (1.4.4) —
(1. 4.11) extend without change to G-bundles, We have only to observe |

that if h isa metric for E then Av(h) is an jnvariant metric .
To extend (L. 4. 12) we observe thatif V< (E) is ample
then EgeG gV cT(E) is ample and invariant. This leads at oncé
to the appropriate extension of (1. 4.14)
In extending (1. 4. 15) we have to consider Grassmannians

of G-subspaces of mE:;l v for m =, where as before
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Vl’ vee, Vk denote a complete set of irreducible G-modules,

We leave the formulation to the reader.

Finally,consider the module interpretation of vector bundles,
Write A = C(X). Thenif X isa G-space G actson A asa
group of algebra automorphisms, If E is a G-vector bundle over
X then I'(E) is a projective A-module and G acts on I'(E),
the relation between the A - and G- actions being

glas) = gla)g(s) a €A, g€G, s €ET(E),

We can look at this another way if we introduce the 'twisted group
algebra'" B of G over A, namely elements of B are linear

combinations 2g€G a_g with ag €A and the product is defined

g
by

(ag)a'g") = (agla')lge' .
In fact, I'(E) is then just a B-module, We leave it as an exercise
to the reader to show that the category of G-vector bundles over

X is equivalent to the category of B-modules which are finitely

generated and projective over A,
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CHAPTER II. K-Theory

§ 2.1. Definitions. If X is any space, the set Vect(X)
has the structure of an abelian semigroup, where the additive structure
is defined by direct sum. If A is any abelian semigroup, we can
associate to A an abelian group K(A) with the following property:
there is a semigroup homomorphism @ : A -~ K(A) such that if G
is any group, ¥ : A -G any semigroup homomorphism, there is a
unique homomorphism x : K(A) =G such that ¥y = ux. If sucha

K(A) exists, it must be unique.

The group K(A) is defined in the usual fashion. Let F(A)
be the free abelian group generated by the elements of A, let E(A)
be the subgroup of F(A) generated by those elements of the form
a+a'-(a®a'), where @ is the additionin A, a, a' €A . Then
K(A) = F(A)/E(A) has the universal property described above,

with o : A »~ K(A) being the obvious map.

A slightly different construction of K(A) which is sometimes
convenient is the following, Let A: A —~ A X A be the diagonal
homomorphism of semi-groups, and let K(A) denote the set of -
cosets of A(A) in A X A. It is a quotient semi-group, but the
interchange of factors in A x A induces an inverse in K(A) so that
K(A) is a group. We then define o, ¢ A ~K(A) to be the composition

~of a - (a, 0) with the natural projection A x A ~K(A) (we assume
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A has a zero for simplicity). The pair (K(A), @,) is a functor
of A sothatif y: A ~B is a semi-group homomorphism we

have a commutative diagram

> K(A)

a
A
l K(y)
B

__..__._.__> K(B)

If B is a group ap is an isomorphism, That shows K(A) has the
required universal property.

If A isalsoa semi-ring (thatis, A possesses a
ftltiplication which is distributative over the addition of A ) then

K(A) is clearly a ring.

If X is a space, we write K(X) for the ring K(Vect(X)).
No confusion should result from this notation. If E € Vect (X) , we
ghall write [E] for the image of E in K(X). Eventually, to avoid
envexsive notation, we may simply write E instead of [E] when
there is no danger of confusion.b

Using our second construction of K it follows that, if X

I8 n npace, every element of K(X) is of the form [E] - [F], where
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E, F are bundles over X, Let G be a bundle suchthat F @ G
is trivial., We write n for the trivial bundle of dimension n . :
Let F@G=n. Then [E]-[F]=[E]+[G] - ([F]+[G]) =[E@®@G]- [a

Thus, every element of K(X) is of the form [H] - [n].

Suppose that E, F are such that [E]= [F], then again
from our second construction of K it follows that there is a bundle
G suchthat E@G= F@®G. Let G' be a bundle such that
GOG' = n. Then E@GOG £ F@GO®G', so E@n=F@n,.
If two bundles become equivalent when a suitable trivial bundle is

added to each of them, the bundles are said to be stably equivalent.

Thus, [E] = [F] if and only if E and F are stably equivalent.

Suppose f : X - Y is a continuous map. Then £* . Vect(Y)
- Vect(X) induces a ring homomorphism £ . K(Y) ~K(X). By

(1. 4. 3) this homomorphism depends only on the homotopy class of f.

§ 2.2, The periodicity theorem, The fundamental theorem

for K-theory is the periodicity theorem. In its simplest form, it ‘
states that for any X, there is an isomorphism between K(X) ® K(Sz) t
4

and K(X x Sz) . This is a special case of a more general theorem

which we shall prove,

If E is a vector bundle over a space X, and if EO =E - X,

where X is considered to lie in E as the zero section, the non-zero

e A

' complex numbers act on Eo as a group of fiber preserving auto-

morphisms. Let P(E) be the quotient space obtained from E, by
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dividing by the action of the complex number. P(E) is called
the projective bundle associatedto E. If p : P(E) ~ X is the
projection map, p'l(x) is a complex projective space for all
x€X. If V is a vector space, and W isa vector space of
dimension one, V and V ® W are isomorphic, but not naturally
isomorphic. For any non-zero element w€W themap v~ve@ w
defines an isomorphism between V and V ® W, and thus defines
an isomorphism P(w): P(V) -~ P(V ® W). However, if ' is any
other non-zero element of W, w = Aw for some non-zero
complex number ). Thus P(w) = P(w'), so the isomorphism
between P(V) and P(V ® W) is natural. Thus, if E is any
vector bundle, and L is a line bundle, there is a natural isomorphism
PE)=P(E®L).

If E is a vector bundle over X then each point a € P(E)x
" P(Ex) represents a one-dimensional subspace H#;{ CE, . The
union of all these defines a subspace H* ¢ p*E » Where
p : P(E) X is the projection. It is easy to check that H* is a
sub-bundle of p¥*E . In fact, the problem being local we may
assume E is a product and then we are reduced to a special case
of the Grassmannian already discussed in § 1, 4. We have denoted
our line- bundle by H* because we want its dual H (the choice
of convention here is dictated by algebro-geometric considerations

which we do not discuss here).
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We can now state the periodicity theorem.

THEOREM 2.2.1, Let L be a line bundle over X,

Then, as a K(X)-algebra, K(P(L @ 1)) is generated by [H],
and is subject to the single relation ([H] - I([L][H] - [1})=0 .

Before we proceed to the proof of this theorem, we would

like to point out two corollaries. Notice that P(1®1) = X x s?

COROLLARY 2,2, 2, K(Sz) is generated by [H] as a

K (point) module, and [H] is subject to the only single relation

(-0l =o0.

COROLLARY 2,2.3. If X is any space, and if

Bt K(X) ®K(s%) ~ K(X x 5%) is defined by p(a ®b) = (n¥a)(v}b),

where ™, T, are the projections onto the two factors, then

¢ is an isomorphism of rings.

The proof of the theorem will be broken down into a

series of lemmas.

To begin, we notice that for any x € X, there is a natural
embedding L _ - P(L O 1)x given by the map y - (y, 1). This
map extends to the one point compactification of Lx , and gives
us a homeomorphism of the one point compactification of Lx onto
P(L@ l)x . Ifwemap X - P(L@1) by sending x to the image

of the "point at infinity" of the one point compactification of Lx .
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we obtain a section of P(L @ 1) which we call the "'section at
Infinity", Similarly, the zero section of L gives us a section

of P(L @ 1), which we call the zero section of P(L @1).

We choose a metric on L, and we let S c L be the
unit circle bundle. We write Po for the part of L consisting
of vectors of length <1, and P® for that part of P(L @ 1)
consisting of the section at infinity, together with all the vectors
of length >1, We denote the projections S ~ X, Po X, P®ax

hy @, To s and LI respectively.

Since To and T 2Te homotopy equivalences, every
hundle on P° is of the form rr”a(Eo) and every bundle on P®
In of the form ﬂ”;o(Eoo) , where E° and E® are bundles on X.
Thus, any bundle E on P(L @ 1) is isomorphic to one of the form
("f)(Eo). £, n* (E®)), where f€ISO(n*(E%), = *(E®)) isa

vlutching function. Moreover, if we insist that the isomorphism

* _0
E —> (noE , £, w’zoEm)

¢oincide with the obvious ones over the zero and infinite sections,

it follows that the homotopy class of f is uniquely determined by

the isomorphism class of E. This again uses the fact that the

) -section is a deformation retract of Po and the oco-section a
deformation retract of P® . We shall simplify our notation

sk
»lightly by writing (E0, £, E®) for (vg (E0), £, n* (E®)).
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Our proof will now be devoted to showing that the bundles

EO

and E® and the clutching function f can be taken to have a
particularly simple form. In the special case that L is trivial,

S is just X x S1 , the projection S - Sl is a complex-valued
function on S which we denote by z (here Sl is identified with
the complex numbers of unit modulus). This allows us to consider
functions on S which are finite Laurent series in z whose

coefficients are functions on X :

n

z ak(x):zk

k=-n

These finite Laurent series can be used to approximate functions

on S in a uniform manner.

If L is not trivial, we have an analogue to finite Laurent
series. Here z becomes a section in a bundle rather than a
function. Since w*(L) is a subset of S x L., the diagonal map
§-+SxScS x L gives us a section of w¥(L). We denote this
section by z. Taking tensor products we obtain, for k>0, a
section zk of (nv* (L))k , and a section 2% of (m*(L* ))k .

- A '
k for (L"’)k . Then, for any k, k', Lk ® Lk = Lk"'k

We write L
-k

Suppose that ay €(L ). Then m*(a;) 82X €T(r™(1)), and

thus 'n'*(ak) ®zX is a function on §. We write akzk for this

- function. By a finite Laurent series, we shall understand a sum

of functions on S of the form
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n
Z akzk
k=-n

where a, € !‘(L-k) for all k.

0

More generally, if E°, E® are two vector bundles on

0

X, and a, GJFI-Iom(Lk ®@E" , E®), then if we write akzk for

a, ® zk , we see that any finite sum of the form
n
f = z a zk
k =-n

is an element of T(r*(E?), v *(E®)). If f €150(n*(E?), n*(E)),

we call f a Laurent clutching function for (Eo, E°°) .

The function z is a clutching function for (I, L). Further,
(1, z, L) is just the bundle H* which we defined earlier, To
asece this, we first recall that H* was defined as a sub-bundle of
n*(L@1). Foreach yEP(LOI) , H’; is a subspace of

(LO 1)x , and

Thus, the composition

H* —> ¥ (L@ 1) — n¥(1)



50.

induced by the projection L @1 -1 defines an isomorphism:
t 3
£y : H* |P0 —> T30 .

Likewise, the composition

H* —> ¥ (L@ 1) — =¥ (L)

induced by the projection L @ 1 —> L defines an isomorphism:

. 1% p® *
£, HY PP —> (L) .

Hence f= foof(;l : w¥(1) —> w¥(L) is a clutching function for H
Clearly, if yGS_, f(y) is the isomorphism whose graph is H’; .
Since H: is the subspace of Lx @ lx spanned by y @1

(v €Sx c Lx , 1€C), we see that f is exactly our section z .

Thus

H* = (, 2, L)
Therefore, for any integer k,

HS 2 @, 2%, vk

The next step in our classification of the bundles over P
is to show that every clutching function can be taken to be a Laurent
clutching function. Suppose that f GI'Hom(rr*Eo, 7*E®) is

any section, We define its Fourier coefficients
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a, € T' Hom( Lk ® E0 ,E®)

by
o k-1
alx) = 271 .[ ez A2, -
S
x

Here fx 0 2y denote the restrictions of £, z to Sx , and clzx
is therefore a differential on Sx with coefficients in Lx . Let

Sn be the partial sum

Then the proof of Fejer's theorem on the (C, 1) summability of
Fourier series extends immediately to the present more general

case and gives

LEMMA 2,2.4. Let f be any clutching function for

0

(E°, E°°), and let fn be the sequence of Cesaro means of the

Fourier series of £, Then fn converges uniformly to f .

Thus, for all large n, f is a clutching function for (Eo, E®)

and (2°, 1, ) = (&, 1, E®).
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Proof: Since ISO(EO, E°°) is an open subset of the
vector space HOM(EO,EOD), there exists an ¢ > 0 such that
g €150(E®, E®) whenever |f - g] <€, where | | denotes the
usual sup, norm with respect to fixed metrics in Eo, E®.
Since the f converge uniformly to f we have |f - f.l<e
for large n. Thus, for 0<t<1, [tf+(1-0f € ISO(E®, E®)
£ and f_are homotopic in ISO(E’, E®), so (£, £, E®)
= (&% ¢, E®).

Next, consider a polynomial clutching function; that is,

one of the form

Consider the homomorphism

n
) s w* Z L 0E)-——>n* E°e ) L*eE’
k=1

given by the matrix

) = .. .
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It is clear that £™(p) is linear in z . Now, define

the sequence pr(z) inductively by

P, =P 2Ppy(z) = p.(z) - p,(0) .

Then we have the following matrix identity:

1 pl pz s pn P 1

—
—

or, more briefly
£2(p) = (L+N)p O 1 +N,)

where N, and N, are nilpotent. If N is nilpotent, 1 +tN

is nonsingular for 0 <t<1, so we obtain

PROPOSITION 2.2.5. £™p) and p @1 define

{somorphic bundles on P, i.e.,

n n
&% p e 0 [ ) Yo% 1, ) L¥eE’
k=l k=1

n n
2[Y ke £’ p), E® 0 Y LkeEr’
k=0 k=1
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Remark: The definition of £°(p) is, of course,
modelled on the way one passes from an ordinary differential

equation of order n to a system of first order equations.

For brevity, we write S.n(EO, P Eoo) for the bundle

n
i Lk ®E, £n(p), E® g z Lk ® EO
k=0 k=1

LEMMA 2,2,6. Let p be a polynomial clutching

function of degree < n for (Eo, E®). Then

@ Ep,E®) = 0, E®) e P ek, 1, LM o)

Gi) MLl eE?, 2p, E®) = sNEY, p,E®) @ (L' @ EC, 2, EY)

Proof: We have

£%(p) 0

n+l
£ 00°°° -z 1 ‘
Multiplying the z on the bottom row by t gives us a homotopy

between .Cnﬂ(p) and £%(p) @ 1. This establishes the first part.

Similarly,
0 a, a, e a,
-z 1
v H(zp) = -z 1
-z

-~z 1
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We multiply the 1 on the second row by t and obtain a

n+l

homotopy between £ (zp) and £n(p) @ (-z). Since -z is

the composition of z with the map -1, and since -1 extends

0, z, Eo) . The second

to E°, (L1@E?, -2, E) 2 LleE
part is therefore proved.
We shall now establish a simple algebraic formula in

K(P). We write [EC, p, E®] for [(€®, p, E®)].

PROPOSITION 2,2.7. For any polynomial clutching

function p for (Eo, E®), we have the identity

(=% p, E®7- [E°, 1, EOD(LIH]- 1)) = o .

Proof: From the second part of the last lemma, together

with the last proposition, we see that

n n
L'eE? 2p,E®) @ 2 keE’ 1, ) ko
k=0 k=0

n n
= (Eo.p.E°°) e Z Lk@Eo,l,z 1tk g °

k=1 k=1

o (L ler? 2, EY)

Thus, in K(P),

0

(Ll wE?, 2p, E®) 0 [E°,1,E%] = [E®,p, E®] @ [L7! @ E®, 2, E?]
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Since [l, z, L]} = [H“l]'
L e e, 5, E® @ [£°,1,£%) = [E%, p, E®Y @ L7 MiE?, 1, £°)

In particular, if we put Eo =l, p=z2, E® =1L , we

obtain the formula
((H] - D(LYE] - 1)) = o

which is part of our main theorem.

We now turn our attention to linear clutching functions.
First, suppose that T is an endomorphism of a finite dimensional
vector space E, and let S be a circle in the complex plane which

does not pass through any eigenvalue of T . Then

Q= — | @-1taa
LE T

is a projection operator in E which commutes with T, The
decomposition E=E,  @E_, E =QE, E_ =(1-Q)E is therefore
invariant under T, so that T can be writtenas T = T, @ T_.
Then T, has all of its eigenvélues inside S , while T_ has all
of its eigenvalues outside S. This is, of course, just the spectral
decomposition of T corresponding to the two components of the

complement of S .
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We shall now extend these results to vector bundles, but
first we make a remark on notation, So far z and hence p(z)
have been sections over S. However, they extend in a natural
way to sections over the whole of L, I will also be convenient
to include the oo-section of P in certain statements. Thus, if
we assert that p(z) = az +b is an isomorphism outside S, we shall

take this to include the statement that a is an isomorphism,

PROPOSITION 2,2.8, Let p be a linear clutching

function for (Eo, E®), and define endomorphisms Qo, Q® of

1, E® by putting

o _ 1 -1 o _ 1 -1
Qx T 2w J Py dp, Qy = 7= j dp, p,

sx Sx

Then Q0 and Q% are projection operators, and

e’ = 0%p .

Write B} =Q'E', E! = (1-Q)E', i=0, o, sothat E‘'=E, @E! .

Then p is compatible with these decompositions, so that p=p + @p_.

Moreover, Py is an isomorphism outside S, and p_ is an isomorph-

ism inside S

Proof: It suffices to verify these statements at each point

x €X . In other words, we may assume that X is a point, L =C,
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and z is just a complex number. Since p(z) is an isomorphism
for |z| =1, we can find a real number ¢ with &> 1 such that

plo) : E0 —> E® g an isomorphism. For simplicity of computation,
we identify E0 with E® by this isomorphism. Next, we consider

the conformal transformation

1 - qz

w = zZ - o

which preserves the unit circle and its inside. Substituting for z ,

we find (since we have taken p(a) =1)

- T
Pl@) = o
where T €End(E’). Hence
0 1 -1
Q" = = [ e
[z]=1
1 e -1
i ‘[ (-w+a) dw+(w-T) “dw).
[w]=1

since Ial >1.

= w - T) law
i Iw ’Ll

Similarly,

L | @ -1t =,

|w|=1

so our assertions follow from the corresponding statements concerning

a linear transformation T .
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COROLLARY 2.2.9. Let p be as in (2. 2.8), and

write

P, = a,z+b,, p_=az+b, .

Then, if p(t) =p +(t) @ p_(t), where

p,(t) = az+tb _, p.(t) = ta_z+b_, 0<t<1,

we obtain a homotopy of linear clutching functions connectizg p

with a,z2@b_ . Thus

®) = ),z Leed)e &, 1, EY) .

0
(E”, p, E

Proof: The last part of the last iemma implies that p+(t)
and p_(t) are isomorphisms on § for 0<t<1l. Thus, p(t) is

a clutching function for 0<t<1. Thus,

&, p, E®) = (€% p(1), E®)

(E), a2 DO E, b, E®) .

2

Since a,: Le Eg - Eof y b_: E(_) - Efo are necessarily

isomorphisms, we see that

n

0 00 -0 0
(E,,a,.z E+) (E+,z,L®E+)

€2, 1, %)

.

G
o

o

1
8
I
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Again, consider a polynomial clutching function p of

degree <n. Then Sn(p) is a linear clutching function for (Vo, Vm)

where
[o0] n
vo = Z tkgr? | ve - Emoi ke E°
k=0 ' k=1

Hence, it defines a decomposition

VO -viev?

as above. To express the dependence of Vg on p and n, we write

0
v, = V (E, p, E®) .

Note that this is a vector bundleon X, If Pt is a homotopy of
polynomial clutching functions of degree < n, it follows by

constructing V  over X xI that
0 ~ w0
Vn(E » Por Ew) = Vn(E » Pyr Em) .

Hence, from the homotopies used in proving the two parts of (2. 2, 6),

we obtain

~s

0 0
V,uE, p E®) TV (E, p, EF),

v (£°, p, E®) 0 (L e E?)

'R

-1 .0
V,y (L @E , zp, E®)

or, equivalently
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0 ~ 0 0
V. a(E, zp, LOE®) £ LoV (E', p, E¥)@E

Combining this with the above corollary and (2, 2. 5),

we obtain the following formula in K(P):

[£%p,E®] +1) (L@ E°jp 0] = [v,(E°, p, E®)H")
k=1 .
+{Y [LeE%) - [V (%, p, EM (1]
k=0

and hence the formula
(£%p,E®] = (v (% p, E®))(H Y - (1)) + (£ .

This shows that [v;] €K(X) completely determines [E°,p, E°]EK(P).
We can now prove our theorem.

Let t be an indeterminant over the ring K(X). Then

the map t - [H] induces a K(X)-algebra homomorphism (since

((H] - DN(LYH] - (1)) = 0)

w KOE)/(( - (L) - 1)) —> K(P) .

To prove that i is an isomorphism, we explicitly construct an

inverse,

First, suppose that f is a clutching function for (EO, E®).
Let fn be the sequence of Cesaro means of its Fourier series,

and put P, = z" fn . Then, if n is sufficiently large, | is a
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polynomial clutching function (of degree < 2n) for (Eo, L" @ E®),

We define
v, (f) € KXt/ ((t - (L]t - 1))
by the formula
y (0 = [V, (E% p, LP@E®)™" - ) + [E°)® .

Now, for sufficiently large n, the linear segment joining
Pnil and zp, provides a homotopy of polynomial clutching functions

of degree < 2(n +1). Hence, by the formulae following (2. 2. 9),

0 n+l 0oy ~ 0 n+l oo
Vont2lE s Ppyp L7 ®ET) =V, H(E", 2p,, L7 ET)

n

Ln+l oo)

0
VZn-l-l(E 1 ZPpo ®E

0 0
= LoV, (E,p, L"eE®) 0 E" .

Hence

0 0 n+l 0., n+l

Vo = {[LIV,,(E", p , L @ E®)] + [E°T}t" - ") + [ET}t
= (0

since (t - 1)((L}t -1)=0 . Thus, "n(f) is independent of n if
n is sufficiently large, and thus depends only on f., We write it

as y(f). If g is sufficiently closeto f, and n is sufficiently

large, the linear segment joining f and g, provides a homotopy
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of pc;lynomial_clutching functions of degree < 2n, and hence

vlf) =y, (f) = un(g) = y(g) . Thus, y(f) is a locally constant
function of f, and hence depends only on the homotopy class of f£.
However, if E is any bundle on P, and f a clutching function
defining E, we define v(E) = p(f) , and y(E) will be well defined
and depend only on the isomorphism class of E. Since u(E) is

clearly additive for +, it induces a group homomorphism

v K(P) —> K(X)[t)/((t - (L}t - 1)) .

From our definition, it is clear that this is a K(X)-module
homomorphism.
First, we check that py is the identity., With our

notation as above,

p(E) = p{lv,, (E°, p,, LR @ EXN( - ) + [E°1¢7}

(v, (E%p_, L® @ E®)J(H]""! - (7)) + [EO)(H]"

0
[E°, p,» L" @ EXJH]"

(£% £, E®)

Since K(P) is additively generated by elements of the form [E],

this proves that @y is the identity.



Finally, we show that yp is the identity. Since yp
is a2 homomorphism of K(X)-modules, it suffices to show that

Vp(tn) =t" forall n > 0. However,

i

vi(t™) y(H")
J1, 27 %, L7

[Vt 1, DI - €% + 1Je°

", since Vzn(l, ,1)=0.
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§ 2,3, KG(X) . Suppose that G is a finite group and

that X is a G-space. Let VectG(X) denote the set of isomerphisra
classes of G-vector bundles over X, This is an abelian semi-
group under @ . We form the associated abelian group and denote
it by KG(X) . K G =1 is the trivial group then KG(X} = K(X) .

If on the other hand X is a point then KG(X) £ R(G) the

character ring of G,

If E is a Gevector bundle over X then P(E) iz a G-space
f E=L®1 when L isa G-bundie then the zero and infinite
sections X - P(E) are both G-sections. Alsc the bundle H over
P(E) is a G- lire bundle, If we now examine the proof of the
periodicity theorem which we have just given we see that we could
have assumed a G~action on everything, Thus we get the periodicity

theorem for KG .

THEOREM 2,3,1, If X is a G-space, andif L isa

G-line bundle over X , the map t ~[H] induces an isomorphism

of K (X) - modules:

Ko (X)[t)/¢[L] - 1)t - ) — Kg(P(L@1)) .
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§2.4, Cohomology theory properties of K. We next

define K(X, Y) for a compact pair (X, Y). We shall then be able
to establish, in a purely formal fashion, certain properties of K,
Since the proofs are formal, the theorems are equally valid for

any ''cohomology theory" satisfying certain axioms, We leave this

formalization to the reader,

Let C denote the category of compact spaces, c+ the
category of compact spaces with distinguished basepoint, and ('3z
the category of compact pairs, We define functors:

Cz—-——> ct

¢ —s ¢

by sending a pair (X, Y) to X/Y with basepoint Y/Y (if Y #¢,
the empty set, X/Y is understood to be the disjoint union of X
with a point,) We send a space X to the pair (X, ). The

composite C~¢C' is givenby X ~X', where X' denotes X/¢ .

I X isin G, we define K(X) to be the kernel of the
map i¥* : K(X) ~ K(xo) where i:x, ~ X is the inclusion of the base-~
point, If c:X —Xq is the collapsing map then c* induces a
splitting K(X) £ R(X) @ K(xo) . This splitting is clearly natural
for maps in c* . Thus K is a functor on c+ . Also, it is clear
that K(X) £ K(X*). We define K(X, Y) by K(X,Y) = R(X/Y).

In particular K(X, ¢) ¥ K(X), Since K is a functor on ¢t ot

follows that K(X 3 Y) is a contravariant functor of (X, Y) in c? .
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We now introduce the ""smash product' operation in C+ .

¥ X,Yect weput
XAY = XXY/XVvY

where X vY =X X Yo Uxo XY, X0 Yo being the base-points of X, Y
respectively, For any three spaces X,Y, Z € c+ we have a

natural homeomorphism
XAa(YAZ)2(XAY)AZ

and we shall identify these spaces by the hcmeomorphism,

Let I denote the unit interval [0, 1] and let 3I = {0} U {1}
be its boundary, We take 1/31€ C+ as our standard model of the
circle .‘Sl . Similarly if I® denotes the unit cube in R™ we take
I"/3I" as our model of the n-sphere S® . Then we have a natural

homeomorphism

1,41

sPn stast aese as! (o factors) .

For X € c+ the space S1 AX € c+ is called the reduced suspension

of X , and often written as SX, The n~th iterated suspension
SS +s+ SX (ntimes) is naturaily homeomorphic to S A X and is

written briefly as s,
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DEFINITION 2.4.1, For n>0

E®x) = K(°X) for Xe¢
KX, ¥Y) = R °X/Y) = RE™X/Y) for (X,¥)ec?
K" (x) = KX, @ = R(*x") for xec .

‘ It is clear that all these are contravariant functors on the

appropriate categories,

Before proceeding further we define the cone on X by

cx = Ixx/{o} xx .

Thus C is a functor C : ¢ ~ C+ . We identify X with the subspace
{1} xX of CX. The space CX/X =1 xX/3l xX is called the

unreduced suspension of X, Note that this is a functor C - C+

whereas the reduced suspension S is a functor c+ - C+ . K

Xe c+ with base-point xo then we have a natural inclusion map
I~ Gxo/xo —> CX/X

and the quotient space obtained by collapsing I in CX/X is just

SX ., Thus by (L.4,8) p : CX/X +SX induces an isomorphism
K(SX) £ K(CX/X) and hence also an isomorphism K(SX) £ K(CX » X)
Thus the use of SX for both the reduced and unreduced suspensicxis

leads to no problems .
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If(X,Y) €CZ we define X UCY to be the space
obtained from X and CY by identifying the subspaces Y ¢ X
and {1} x YcCY, Taking the base-point of CY as base-point

of X UCY we have

xucyech .

We note that X is a subspace of X UCY and that there

is a natural homeomorphism

X UCY/X ~ CY/Y .

Thus, if YEC ,

K(XUucCy, X) = K(CY, Y)
K(sY)
Kly) .

N

Now we begin with a simple lemma

LEMMA 2,4,2, For (X, Y) €¢® we have an exact

sequence

K(X, ¥) 5> K(x) —2> k(v)

where i:Y~X and j:(X,¥) ~ (X, Y) are the inclusions.
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Proof: The composition i*j* is induced by the
composition ji : (Y, ¢) - (X, Y), and so factors through the
zero group K(Y,Y). Thus i*j¥ =0, Suppose now that
¢ €Ker i* , We may represent § inthe form [E] - [n] where
E is a vector bundle over X . Since i*¢{ =0 it follows that
[E|Y] =[n] in K(Y). This implies that for some integer m

we have

(E®m)|Y=n®m

- i,e., we have a trivialization @ of (E @ m)|Y. This defines a

bundle E @ m/a on X/Y and so an element
n=[E®@m/a]-[n @ m]€K(X/Y) = KX, Y) .

Then
[E @ m] =« [n ® m]

[E]l-[n]=¢ .

i*(n)

1

‘Thus Ker i* = Im j* and the exaciness is established.

COROLLARY 2.4.3, ¥ (X, Y)€c? and Yec'

(so that, taking the same base-point of X , we have X € ct also),

then the sequence

K(X, Y) —> K(X) —> K(Y)

is exact ,
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Proof: This is immediate from (2, 4. 2) and the

natural isomorphisms

n

K(x) = K(X) @ K(y,)

n

K(Y) ’R(Y)@K(yo) .

We are now ready for our main proposition:

PROPOSITION 2,4,4, For (X,Y)€cC' thereisa

natural exact sequence (infinite to the left)

- - 3 - o3 -
cor k" 3(y)8s khx, v kN x) 4 k"l(v) -2 kO(x, ¥)

_1*4 Ko(x) —5‘:——> KO(Y) .

Proof: First we observe that it is sufficient to show that,

for (X,Y)€ ¢ and Yec , we have an exact sequence of five terms
- sk ~ ® *
*)  Bx) L K l(y) & ROx, v) -1 ROx) 1 RO(v)

In fact, if this has been established then, replacing (X, Y) by (s x, s™y)
for n=1, 2, «s+» we obtain an infinite sequence continuing (*), Then
replacing (X, Y) by (X+ , Y+) where (X,Y) is any pair in (.‘.2 we

get the infinite sequence of the enunciation, Now (2. 4. 3) gives the

exactness of the last three terms of (*), To get exactness at the
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remaining places we shall apply (2.4, 3) inturn to-: the pairs
(X UCY, X) and ((X UCY) UCX, X UCY). First, taking the
pair (X UCY,X) we gei an exact sequence (where k,m are the

natural inclusions)
m* k¥ ~
K (XucCYy, X) —> EX UCY)——> K(X) .
Since CY is contractible 1,4, 8) implies that
p* : R(X/Y) — K(X UCY)
is an isomorphism where
p:XUCY——>XUCY/CY = X/Y

is the collapsing map, Also the composition k*p* coincides with

J¥ . Let
8 : K(X UCY, X) —> K™ 1Y)
be the isomorphism introduced earlier, Then defining
6 : K'Y(Y) —— K(X,Y)

1

by 6§ =m*0 we obtain the exact sequence

Kl y) =8 x(x, v) —5s ®(x)
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which is the middle part of (*),

B

Finally, we apply (2.4, 3) to the pair

i

(xu t‘ai"Y UC,X, X UCY)

where we have labelled the cones Cl and C2 in order to

distinguish between them, (see figure),

AN

Thus we obtain an exact sequence
K(X UC,Y UC,X, X UCY) —> K(X UC,YUC,X) —> K(X ucY)
It will be sﬁfﬁcient to show that this sequence is isomorphic to the

sequence obtained from ihe first three terms of (*), In view of the

definition of § it will be sufficient to show that the diagram
K(X UC,Y UC,X, X UCY) ——> Kxucyueex)
I I
(D) R(c,x/X) K(q/Y)

I Il

K™ (x) 4 > xy
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commutes up to sign, WWY lies, of course, in the fact
that i* is induced bythe inciusion

CZY —— sz

and that in the above diagram we have C,Y and not C 2Y. To
deal with this situation we introduce

the double cone on Y namely CIY uc 2Y . Cc.Y

This fits into the commutative diagram

of maps

XUCIY U%X b CIY/Y ===, SY

Ny yoer?

(E) C,YUC,Y

CX/X <« CZY/Y === S§Y

where all double arrows ==> induce isomorphism in K. Using
this diagram we see that diagram (D) will commute up to sign
provided the diagram induced by (E)

K(C,¥/Y) S K(5Y)
K(C,Y UC,Y) “

\~ K(C,Y/Y) <—— K(SY)

commutes up to sign, This will follow at once from the following
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lemma which is in any case of independent interest and will be

needed later

LEMMA 2,4,5. Let T :S! - S be defined by T(t)
=1-t, t€I (we recall that S' =1/3I) andlet T Al:SY -SY be
the map induced by T on s! and the identity on Y (for Y€cCt),

Then (T A l)*y = -y for y€g(sX) .

This lemma in turn is an easy corollary of the following:

LEMMA 2,4,6, Foranymap f£:Y ~GL(n,C) let E;
denote the corresponding vector bundle over SY. Then f [Ef] - [n]

induces a group isomorphism

lim [Y,GL(n,C)] = K (sY)
n-co

where the group structure on the left is induced from that of GL(n,C).

In fact, the operation (T A1)* on K (SY) corresponds by
the isomorphism of (2,4, 6) to the operation of replacing the map
y ~£(y) by y-£y)", 1. e., it corresponds to the inverse in the group.
Thus (2,4, 6) implies (2.4,5) and hence (2.4.4) . It remains therefore
to establish (2.4.6). Now (L 4. 9)> implies that f - [Efj - [n] induces

a bijection of sets

lim [Y, GL(n, C)] —> K(sY) .
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The fact that this is in fact a group homomorphism follows from
the homotopy connecting the two maps GL(n) x GL(n) -~ GL{(2n)
given by

AXB —> (3 g)
and AB 0
AXB w———> (0 l) .

This homotopy is given explicitly by

A cost sint\/1 ON\/cost sint
p (A xB) = (g (D<-sint cos t) 0 B)(sint cos
where 0<t<w/2 ,

From (2,4,4) we deduce at once:

COROLLARY 2,4.7 If Y is a retract of X, then

for all n> 0, the sequence KX, Y) ~K?X) -K™(Y) is a
split short exact sequence, and

K*X) = KX, Y)oK™(Y) .

COROLLARY 2.,4.8. If X,Y are two spaces with

basepoints, the projection maps T d X XY -X, wY: XXY-Y

induce an isomorphism for all n> 0

E2x xY) = KX Av)0 KX)o K™™(Y) .
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Proof: X is a retractof X x Y, and Y is a retract

of (X X Y)/X . The result follows by two applications of (2.4.7) .

since RO(X A Y) is the kernel of i ®i% : K'(X x ¥)
- KO(X) @ KO(Y), the usual tensor product KO(X) ® KO(Y) - KO(X x Y)
induces a pairing ﬁ°(x) ® RO(Y) - RO(X AY). Thus, we have a

pairing
EPX) e B™™(Y) — K™ A Y),
since SX ASTY =S ASTAXAY =5""™AX AY. Replacing
X by X, ¥ by Y, we bave
KX)o K™™(Y) —> K X x ¥)

.

Using this pairing, we can restate the periodicity theorem as follows:

THEOREM 2,4,9, For any séace X and any n<0,

the map K-z(point) ® K (X) - K""z(x) induces an isomorphism

B:K™(X) - K™ 2(x) ,

Proof: K-z(point) = ﬁ(Sz) is the free abelian group
generated by [H] - [1]. X (X,Y) € c? the maps in the exact
sequence (2, 4.4) all commute with the periodicity isomorphism f.,
This is immediate for i* and j* and is also true for § since this
was also induced by a map of spaces. In other words B shifts the

whole sequence to the left by six terms, Hence if we define
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K*(X,Y) for n>0 inductively by K " = K2 we can extend
(2. 4, 4) to an exact sequence infinite in both directions. Alternatively
using the periodicity B we can define an exact sequence of six

terms

KX, ¥) —> K°(x) ——> K%(¥)

T

kl(y) < k(%) +—— K}(X, ¥) .

Except when otherwise stated we shall now always identify K"

and K"2 . We introduce
K*(x) = KOx) ok (x) .

We define K*(X) tobe K°(X)®KMX). Then, for any pair (X, Y),

we have an exact sequence

K%, Y) > kK0(x) > k%(y)

|

KNY) «— K'(x) «— K}x,Y) .

The form of the periodicity theorem given in (2.4.9) is
a special case of 2 more general "Thom isomorphism theorem' ,
If X is a compact space, and E is a real vector bundle over X,

the Thom complex XE of E is the one point compactification
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of the total space of E ., Alternatively, if E is a complex
bundle, XE = P(E®1)/P(E) . Thus, we see that K (X*) is
a module over K(X), The Thom isomorphism theorem for

complex line bundles can now be stated.

THEOREM 2,4,10. If L is a complex line bundle,

K(XL) is a free K(X)-module on one generator u(L), and the

image of p(L) in K(P(L®1)) is [H] - [L*] .

Proof: This is immediate from our main theorem
determining K(P(L @1)) and the exact sequence of the pair
P(L®1), P(L) (note that P(L) =X) .,

We conclude this section by giving the following extension

of (2.4.5) which will be needed later,

LEMMA 2.4.1L Let T_ : "X ~S"X be the map

induced by a permutation ¢ of the n factors in s = Sl A Sl Aeee A .’:‘ol

Then (To)*x = sgn(o)x for x € K(S"X) .

Proof: Considering S™ as the one-point compactification
of R" we can make GL(n, R) act on it and hence on ﬁ(s"x) .
This extends the permutation actions To . Since GL(n,R) has
Just two components characterized by sgn det it is sufficient to

check the formula T*x = =x for one T €GL(n,R) with det T = -1,

Mut (2, 4,5) gives this formula for

-1
T-—-( 1, ) )
"l
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§2.5. Computations of K*(X) for some X,

From the periodicity theorem, we see that K(S® =0 if n

is odd, and K(S™) = Z if n is even., This allows us to prove the

Brouwer fixed point theorem .

THEOREM 2,5.1, Let D" be the unit disc in

Euclidean n-space, If f: D™ - D" is continuous , then for some

x€D?, fx)=x,

Proof: Since K*(Dn) =0, and ﬁ*(sn-l) £0, shl

is not a retract of D", If f(x) # x for every x €D", define

g:D" - sl by g(x) = (1 - afx))(x) + afx)x , where afx) is

the unique function such that afx) >0, |g(x)| =1. I f(x)#x
n=-1

for all x, clearly such a function a(x) exists. If x€S N

afx) =1, and g(x) =x, Thus g is a retraction of D" onto

Sn-l

We will say that a space X is a cell complex if there
is a filtration by closed sets X_;cXjcX,cees cX =X such
that each X, - xk-l is a disjoint union of open k-cells, and
X, =¢.

PROPOSITION 2,5,2, If X is a cell complex such

that ka = ka+l for all k,

K (x) = 0

K0 (X) is a free abelian group with generators in a

one-one correspondence with the cells of X.
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Proof: We proceed by induction on n. Since

X, n/xZn-Z is a union of 2n~-spheres with a point in common
we have:

KX, , X, ,) =0

2n? “2n-2
0 . ok

K (XZn’ xZn-Z) = %
where k is the number of 2n-cells in X . The result for in
now follows from the inductive hypothesis and the exact sequence
of the pair (in, in_z) . As examples of spaces to which this
proposition applies, we may take X to be 2 complex Grassmam
manifold, a flag manifold, a ‘complex quadric (a space whose
homogeneous defining equatiéﬁ is of the form X Zi2 =0), We
shall return to the Grassmann and flag manifolds in more detail

Inter,

PROPOSITION 2.5,3. Let Ly, **+, L be line bundles

over X , and let H be the standard bundle over P(J..l Doese @ Ln) .

Then, the map t - [H] induces an isomorphism of K(X) -modules

K(X)[t] k] (¢ ~[L]]) —> K(P(L, ®--+@L)) .

Proof: - First. we shall show that we may take Ln =1.

In fact for any vector bundle E and line bundle L over X we
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have P(E ® L) = P(E) and the standard line bundles G,H over

P(E ® L*), P(E) are relatedby G* =H* ®L , i,e., G=H®L¥*
i = LN ] = *

Taking E = L1 @ @ Ln and L=1L n We see that the

propositions for Ll @eee @ Ln and for Ml Dees @ Mn with

Mi = Li ® L’:'1 are equivalent, We shall suppose therefore that

L, =1 and for brevity write

P, = P(Ly@-- @Lm) for 1<m<n

so that we have inclusions X = P1 ~- Pz Sree o Pn R 3 Hm

denotes the standard line bundle over Pm then Hmle_.1 = Hm-l

Now we observe that we have a commutative diagram

p_, —t—s pE%_ 01

n-l
-1 a
in
P1 > Pn

(w n-1 1s the projection onto X = Py, i  is the inclusion, 5 is

the zero section) which induces a homeomorphism

£
P(H

-1 @l)/s(Pn_l) — Pn/Pl .

Moreover q*(H ) = G, the standard line bundle over P(H}_,©1)

Now K(P(H’;_l @1)) is a free K(Pn_l)-module on two generators
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[1] and [G],and [G] satisfies the equation ([G] - [1]}([G] - [Hn_l])
%

Since s*[G] = [1] it follows that K(P(H__; ®1), s(P__)) is

the submodule generated freely by [G] - [1] and that, on this

submodule, multiplication by [G] and [Hn-l] coincide., Hence

K(Pn, Pl) is a free K(P n-l)-module generated freely by ([Hn] ~ 1)

and this module structure is such that, for any x € K(Pn, Pl) ,
[Hn-'l]x = [Hn] X .

Now assume the proposition established for n -1, so that
- n-1 "
K(P, ) = KX)E/TT ¢ - [L%)
n-1 i=1 i

with t corresponding to [H n-l.] . Then it follows that t —~ [Hn]

induces an isomorphism of the ideal (t - 1) in

K(X)[t]/(t -l - L)
onto K(Pn, Pl). Since

K(P,) & K(P,, P))®K(X)

and since Ln =1 this gives the required result for K(Pn)

cstablishing the induction and completing the proof.
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COROLLARY 2,5,4, K(P(CY) £ z[t)/(t - 1)® under
the map t ~[H].
Proof: Take X to be a point,

We could again have assumed that a finite group acted

on everything, and we would have obtained

n
g0t/ TT (6 - 14D = g (p(ty 00 1,))
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§2. 6, Multiplication in K*(X,Y). We first observe

that the multiplication in K(X) can be defined ''externally' as
follows, Let E, F be two bundles over X, andlet E®F
be u’{(E)en";_(F) over X XX, If A:X ~X xX is the diagonal

then EQF = A*(E @ F),
If E isabundleon X, F abundleon Y, let EAF
=mL(E)® ’;(F) on X xY, This defines a pairing

K(X)®K(Y) —> K(X xY) .

If X,Y have basepoints, K(X A Y) is the kernel of K(X x Y)
—> K(X) @ R(Y). Thus, we have K(X) ®@K(Y) ~K(X AY).

Suppose that (X, A), (Y, B) are pairs, Then we have
K(x/a) @ K(Y/B) —> R((X/A) A (Y/B)) .
That is,
K(X,A) ®K(Y,B) ——> K(X xY, (X xB)U(A xY)).

We define (X,A) x (Y,B) tobe (X xY, (X xB)U(A xY)) .

In the special case that X = Y , we have a diagonal map
A: (X, AUB)~ (X, A) x (X, B), This gives us K(X,A) ® K(X, B)
—> K(X, A UB), Inparticular, taking B = ¢ , we see that
K(X,A) is a K(X)-module, Further, it is easy to see that
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K(X,A) —> K(X) —> K(A)

is an exact sequence of K(X)-modules,

More generally, we can define products
K™(X,A) ® K"™(Y,B) —> K ((X,4) x (Y, B))

‘for m, n<0 as follows;

K™x,A) = K(S" A (X/A))

K™™(Y,B) = K™ A (Y/B)) .

Thus, we have

K™(X,A)@K ™(Y, B) — K(S™ A (X/A) AS™ A(Y/B))

K(S® AS™ A (X/A) A (Y/B))

= K™"™(x,A) x (Y, B)) .

Thus, if we define xy €K 7 ™(X, A UB) for x €K (X,A),
y €EK"™(X,B) tobe A*(x®y), where A: (X, A UB) +(X,A) x (X,B)

is the diagonal, then (2, 4, 11) shows that xy = (-1)""yx .

We define K*(X,A) to be

[o ]
z K™(X, A) .
n=0
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Then K#(X) is a graded ring, and K#(X, A) is a graded
K#(X)-module. If Be K'z(point) is the generator, multiplication
by B induces an isomorphism K 'YX, A) ~ K'n'Z(X,A) for all n.
We define K*(X, A) to be K'(X, A)/(1 - B) . Then K%(X) is
a ring graded by Z, , and K*X, A) isa Z,-graded module
over K*(X) .

For any pair (X, A), each of the maps in the-exact triangle

K¥(X) > K'(a)

K*(X, A)

isa K*(X)-module map. Only the coboundary § causes any

difficulty and so we need to prove

LEMMA 2.6.0. &:K XY)-K%X, ¥) is a K(X)-module

homomorphism.,

Proof: By definition § is induced by the inclusion of pairs
i x{fuyx, vyx{oh~xx{fuy xL v x{o}ux x{1})

(see figure)
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Hence § = j* is & module homomorphism over the absolute group

~

KX x{iuy xI)= K(X) .

It remains only to observe that the K(X)-module structures of the
two groups involved are the standard ones. For K'I(Y) this is
immediate and for K(X, Y) we have only to observe that the

projection I-{1} induces the isomorphisms

KX, Y) KX x{i}uy x1, Y x{0})
KX)~ KX x{iuy x1) .

We shall now digress for some time to give an alternative and often
illuminating description of K(X, A) which has particular relevance
for products.

If n>1, we define cn(x, A) to be a category as follows:
An object of 'cn(x, A) is a collection En’ En-l' s, EO of bundles
over X, together with maps @ : Ei}A - Ei_llA such that

* %

0—>E [A——E o ——E)|a—=0

is exact. The morphisms ¢: E ~F, where E = (Ei’ a;)

F = (Fi' ﬂi) , are collections of maps @, : E; = F, such that

et e St Wtk n A" n

[T,

SUREENN
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Bio, = ¢ % - In particular, Cl(X,A) consists of pairs of

bundles E;, E; over X and isomorphisms oz:El|A -'-:EOIA .

An elementary sequence in cn(x »A) is a sequence of

the form 0, 0, *°**, 0, Ep’ Ep-l

o = identity map. We define E ~F if for some set of elementary

9y 0y eee, 0 where Ep= o=l

objects Ql, vee, Qn’ Pl’ e, Pm,

~

E@QIQ"o @Qn= F@PIQHO QPm .

The set of such equivalence classes is denoted by S’,n(X sA) .

It is clear that .s:n(x,A) is a semigroup for each n,

There is a natural inclusion cn(x JA)c C, ﬂ(x, A) which
induces a homomorphism :,n(x, A) - £, ﬂ(x ;A) . We denote by
Cw(X,A) the union of all of the cn(x, A), and by Sm(X,A)
the direct limit of the :.n(x, A),

The main theorem of this section is the following:

THEOREM 2,6.1, For all n> 1, the maps ,:n(X,A)
* £,41(X,A) are isomorphisms, and £ (X, A) = K(X,A),

We shall break up the proof of this theorem into a number
of lemmas,

Consider first the special case A=¢, n=1, Then

¢,(X, #) consists of all pairs E,, E; of bundles. We see
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that (El’ Eo) ~ (Fl’ Fo) if and only if there are

bundles Q, P such that E, ®Q = F,®P, E,00Q QFO ®P,
Then the map &, (X, #) - K(X) given by (Epr Ep) - [Ey] - [El]
is an isomorphism, In fact sl(X, #) coincides with one of

our definitions of K(X),

DEFINITION 2,6,2, An Euler characteristic Xn

for ‘S:n is a transformation of funciors

Xyt £,(Xy A) —> K(X,A)

such that whenever A=¢, x(E , E ;) ***) Ej) =2 (’I)IIE,-_] .

To begin we need a simple lemma,

LEMMA 2,6,3, Let AcX, andlet E, F be bundles
over X, Let p:E|A-F|A, :E+F be monomorphisms

(resp. isomorphisms) and assume p|A is bomotopic to ¢.

Then ¢ extends to X as a monomorphism (resp, isomorphism).

Proof: Let Y = (A x[0, 1]) U(X x[0]) . Then, if E', F!
are the inverse images of E, F under the projection Y -»X,
we can define @ : E' ~ F' which is a monomorphism (resp.
isomorphism) such that ®JA x[l]=¢, &|x x [0] = p. We
can extend & to (U x [0,‘ 1]) U (X x [0]) for some neighborhood
U of A, Let £f:X [0, 1] be such that f(A) =1, £(X-U)=0
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Let @ = @4 g(x))- Then this extends ¢ to X,
"LEMMA 2,6,4, If A is a point,
0 — 5(X, A) —> .cl(x) —_ sl(A)

is exact, Thus, if X is an Euler characteristic for &1 ’

Xt .cl(x, A) - K(X,A) is an isomorphism when A is a point,

Proof: I (E;, Eo) represents an element of SI(X)
whose image in gl(A) is zero, E, and E, have the same
dimension over A, Thus there is an isomorphism ¢:E,|A-E,
Thus we have exactness for £(X, A) - £(X) ~£,(A).

If (El’ Ej» ¢) has image zero in £1(X) , there is a
trivial P and an isomorphism § :E, ® P = E,®P, Plo® 1)-1
is an automorphism of EO @ PlA . Since A is a point any such
automorphism must be homotopic to the identity and hence by
(2,6.3) it extends to «a: E,®P = E,®P. Thus, we have a

commuting diagram:

&, 0P —28l (5 or)a

vla ala

(E,@P)a ——L >, 0P)a .
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Thus (El' Eq» ¢) represents 0 in SI(X, A), Thus sl(X,A)

— :,l(x) is an injection,

LEMMA 2,6,5, sl(x/A, A/A) ~ £,(X,A) is an isomorphism
for all (X,A). Thus, if X is an Euler characteristic, y, :£l(x,’A)

- K(X,A) is an isomorphism for all (X, A).

Proof: Since the isomorphism .cl(x/A, A/A) - K(X,A)
factors through .tl(X,A), the map SI(X/A, A/A) ~5(X,4) is
injective,

Suppose that E,;, E, are bundles on X, «: EllA -oEolA
is an isomorphism, Let P be 2 bundle on X such that there is an
isomorphism B: E/®P~F, where F istrivial. Then (El, Eqs o)
is equivalent to (F, E) ® P, y) where y = (a®1) ﬁ.l . Then,

(F, E),®P, y) is the image of (F, (Eq® P)/y, v/y) . Thus,
£(X/A, A/A) - £(X,4) is onto,

LEMMA 2,6.6, If x;, x; are two Euler characteristics

for £, % =%

Proof: x; x.ll is a transformation of functors from K to
itself which is the identity on each K(X). Since K(X,A) = K(X/A)
is injected into K(X/A), it is the identity on all K(X,A) .,
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LEMMA 2,6.7. There exists an Euler characteristic

x for & .

Proof: Suppose (El’ Eg a) represents an element of
SI(X,A) . Let Xo, Xl be two copies of X, and let Y =X, UA Xl
be the space which results from identifying corresponding points
of A, Then [E;, o, Eg] €K(Y). Let m, :Y X, be the obvious
retraction, Then K(Y) = K(Y,X;) ®K(X;). The map (Xg0 A)
— (Y, Xl) induces an isomorphism K(Y, xl) ~K(Xqs A) 4 Let
xl(El' Eqy» ¢) be the image of the component of [El’ o EO] which
lies in K(Y,X;). ¥ A= @ , then X(E;» Egs 0) = [Ey] - [E;]. One
can easily verify that this definition is independent of the choices

made,

COROLLARY 2,6,8, The class of (E;, Ey, a) in
.tl(x, A) only depends on the homotopy class of a .

Proof: Let Y =X x[0, 1], B=A x [0, 1]. Then, if o
is a homotopy with a, = @, o, defines B: n*(El)lB = u*(Eo)lB .
Let ij : (X,A) » (X x[j], A x[j]). From the commuting diagram

% *
i i
£,(X,A) <2— g,(¥,B) ——> ¢(x,A)
X %
1 % 1 2%

i i
K(X,A) <—9 _K(Y,B) ——L—> K(X,A)
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we see that since every map is an isomorphism, and since

%* -1 . N .
i o(i"i) i is the identity, (El’ Eq» ao) = (El’ Ejs ctl) .

LEMMA 2,6.9, Themap £ (X,A)-S . (X,A) is

onto for n>1,

Proof: If (En+l’ cery Egi o 0ty ozl) represents an

element of sn_H(X,A), so does

(B B O ) B 1 O 1 et 0BGy 0, @1, 000, o)

The two maps an+1®0 :Enﬂ"En@En-l-l and 01 :Enﬂ"En@Enﬂ

are (linearly) homotopic as monomorphisms. 0 ®1 extends to X,
and thus by (2. 6. 3) 041 ® 0 extends to a monomorphism

B: En+1 - En @Enﬂ on all of X . Thus we can write E,®E ,
as ﬁ(En-H.) ®Q , Then we see that, if y:Q - E 1 ®E_ , isthe
resulting map, (En-l-l' vy Bprais oty o)) is equivalent to
(0, Q, Ea®E 10 s Egi 0, ¥, oo, al) . Thus £n(X,A)

-_> £

n+1(x’A) is onto,

LEMMA 2,6,10, The map £ (X,A)-£, . (X,A) isan

isomorphism for all n >1.

Proof: It suffices to produce a map £n+l(X,A) - .sl(X,A)

which is a left inverse of the map SI(X,A) - Snﬂ(X,A) .

BT

L g
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Let (En’ oo, Eo; Cur **°s al) represent an element of
£,(X,A) . Choose a Hermitian metric on each E;. Let
o) tE;_ |A ~E;|A be the Hermitian adjoint of o .

Put FO =2E2i » Fy =2E2i+1 , and define B: F,+F,
by B=Z 0y, +Zc, . Then (F), Fy, f) €5,(X, A). This
gives us a map &n(X.A) - sl(X,A) « To see that it is well defined,
we need only see that it does not depend on the choice of metrics,
But all choices of metric are homotopic to one another, so that a
change of metrics only changes the homotopy class of 8. Thus
this map is well defined, It clearly is a left inverse to .tl(X,A)

g sn(x’ A) L]

COROLLARY .2,6,11, For each n there exists exactly

one Euler characteristic x : & (X, A) -~ K(X,A), and it is always

an isomorphism, Thus, there exists x: .COO(X,A) -+ K(X,A)

isomorphically,
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We next want to construct pairings

5%, Y) @ £ (X', ¥) —> g, (X, ¥) x (X', ¥'))
compatible with the pairings
K(X, Y)® K(X', Y') —> K((X, Y) x (X', Y')) .

To do this, we must consider complexes of vector bundles,

i.e., sequences

0~ E c."”\E "n-ls."__»E — 0
n n-l 0

where 050541 = 0 forall i.

LEMMA 2.6.12. Let EO’ LN En be vector bundles on
X, andlet o : E|]Y—E,_ |Y be such that
o
0-->En..2._.> En- ;”_‘:L.» e Eo__>o

1

is exact on Y . Then the o; can be extended to g : E, —> Ei-l

on X suchthat p.a , =0 forall i.

Proof: We shall show that there is some open neighborhood
U of Y in X and an extension T of o to U forall i such

that
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Th-1

n n_l \ovo.._>Eo_>o

is exact on U . The extension to the whole of X is then achieved
by replacing 7 by p 7 where p is a continuous function on X

such that p =1 on Y and supp pcU.

Suppose that on some closed neighborhood U, of Y in X,

we could extend optttiop to [, e, T such that on Ui'

™
Ei.—‘_.oEi_ —> s —>Eyj—> 0

1

is exact. Let Ki be the kernel of T; on Ui . Then Gis1 defines

a section of I-Iom(Ei 1

can be extended to a neighborhood of Y in U, ., and thus

Ki) defined on Y . Thus, this section

Gy1 't Ei+1 "Ki can be extended to Tis 't Ei+l "Ki on this
neighborhood. %41 is a surjectionon Y, so Tisl will be a
surjection on some closed neighborhood Ui +1 of Y in Ui .

Thus, the lemma follows by induction on i .

We introduce the set on(x, Y) of complexes of length n
on X which are acyclic (i.e., exact)on Y. We say that two
such complexes are homotopic if they are isomorphic to the
restrictions to X x{0} andto X % {1} of an element in

8,(X xI, Y xI). There is a natural map
&z ﬂn(x: Y) —>£n(xv Y)

given by restriction of homomorphisms.
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LEMMA 2.6.13. & induces a bijection of homotopy

classes.

_i_!’;riof: The last lemma shows that ¢ is surjective.
To show that @ is injective we have to show that any complex
over X x {0} uUX x {1} UY x1 which is acyclic over Y x1 can be
extended to a complex on the whole of X xI. We carry out this
extension in three steps. First we make the obvious extensions
to X x [0, 1/4] and X X [3/4, 1] . Next we apply the preceding
lemma to the pair X X [1/4, 3/4], Y x [1/4, 3/4) UV x {t /4}u Vv x{3/4}
where V is a closed neighborhood of Y in X over which the given
complexes are still acyclic. This gives a complex on X X [1/4, 3/4]
which agrees with that already defined at the two thickened ends
along the strips V x{1/4} and V x{3/4}. Thus if we now

multiply everything by a function P such that

(i) p=1 on Xx{o}uxx{i}uyx1
(i) p=0 on (X-V)x{1/4}u(x-Vv)x{3/4} ,

we obtain the desired extension (see figure: the dotted line

indicates the support of p) .

1
" ............................
3/a—+
;
1 "
i
i
1/4 ;
v& -------- R L e s
0 , b'e



98,

¥ E€S (X, Y), FES (X', Y') then EOF isa
complex on X X X' which is acyclicon (X X Y')U(YXX'),

Thus we have a natural pairing

5,(X, ) ® 8 (X1, ¥)~— 8 (X, V) x (X, ¥))

which is compatible with homotopies. Thus, by means of &,

it induces a pairing

sn(x, Y)@.cm(x'. Y') —> .\:Mm((x. Y) x (X', ¥)) .

LEMMA 2.6.14. For any classes x e.s:n(x, Y),

x €5_(X1, ),

X(x ®x') = x(x)x(x') .

Proof: This is clearly true when Y = Y' = ¢ . However,
the pairing K(X, Y) ® K(X', Y') ~> K((X, Y) x (X', Y')) which
we defined earlier was the only natural pairing compatible with

the pairings defined for the case Y=Y'=¢J.

With this lemma we now have a very convenient description
of the relative product. As a simple application we shall give a

new construction for the generator of K(Szn) .

Let V be a complex vector space and consider the exterior

algebra A*(V). We can regard this in a natural way as a complex
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of vector bundles over V., Thus we put E; =V X Ai(V ), and
define

v x ) —> v x attl(y)

by
(v, w) —> (v, v AW) .

-Mf dim V =1 the complex has just one map and this is an isomorphism
for v #0, Thus it defines an element of K(B(V), S(V)) = ;((Sz)
where B(V), S(V) denote the unit ball and unit sphere of V with
respect to some metric, Moreover this element is, from its
definition, the canonical generator of f((Sz) except for a sign -1,

Since

A¥ (VO W) 2 A*(V)e A*(W)

it follows that for any V, A*(V) defines a complex over V
acyclicon V - {0} » and that this gives the canonical generator of
K(B(V), 5(V)) = R(Szn) except for a factor (~1)® (where n = dim V),

More generally the same construction applies to a vector
bundle V over a space X, Let us introduce the Thom space
Xv defined as the one~point compactification of V or equivalently
as B(V)/S(V). Then K(B(V, 5(V)) £R(x") and the exterior algebra
of V defines an element of R(xv) which we denete by Ay. It has the

two preperties
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(A) Ay Testricts to a generator of R(Pv) for each

point P €X.

(B) Zew = Ay My o where this product is from
®xY) x Kx¥) to RxVOW).

A very similar discussion can be carried out for projective
spaces, Thus if V is a vector bundle over X let P=P(V®1)
and let H be the standard line-bundle over P . By definition we

have a monomorphism
HY —> r¥(ve)l)

when w: P ~+X is the projection, Hence tensoring with H we
get a sectionof H® w*(V@®1), Projecting onto the first factor

gives therefore a natural section

sETHOT*V) ,

Consider the exterior aigebra A*(H® m*V). Each component is

a vector bundle over P and exterior multiplication by s gives us
a complex of vector bundles acyclic outside the subspace where

s =0, But this is just the image of the natural cross-section

X - P, If we restrict to the complement of P(V) in P(V@1)

then H becomes isomorphic to 1 and we recover the element
which defines )\, (identifying P(V @1) - P(V) with V in the usual
way), This shows that the image of Ay under the homomorphism
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®xY) = KBV o1), P(V)) —> K((P(V ©1))
is the alternating sum
(- HFN .

We conclude this section by remarking that everything
we have been saying works equally well for G-spaces, G being
a finite group. We have only used the basic facts about extensions
of homomorphisms etc, which hold equally well for G-bundles,
Thus elements of KG(X, Y) may be represented by G-complexes
of vector bundles over X acyclic over Y, In particular the

exterior algebra of a G-vector bundle V defines an element
Ay €Kg(XT)

as above,
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§2.7. The Thom isomorphism. If E=ZL; isa

decomposable vector bundle over X (i.e., a sum of line~bundles)
then we have (2.5, 3) determined the structure of K(P(E)) as a

K(X)~-algebra, Now for any space X we have a canonical isomorphism

K*x) £ KX xsY) .
Also, if m: X x 5l - X is the projection, we have
P(E) x 8! = P(r*E)

and so

K*(P(E)) = K(P(r*E)) .
Thus replacing X by X xS! in (2.5, 3) gives at once

PROPOSITION 2,7.1. Let E=X Li be a decomposable

vector bundle over X, Then K*(P(E)), as a K*(X)-algebra,

is generated by [H] subject to the single relation

l'l([Li][H] -1) =0 .

Remark: As with (2,5, 3) this extends at once to G-spaces
glving KZ(P(E» as a K”&(X)-algebra.
Now the Thom space X may be identified with P(E ® 1)/P(E),

and at the end of § 2, 6 we saw that the image of Mg in K(P(E@1))
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is
= (-0 HPIE] = mo - (LD .
Since this element generates (as an ideal) the kernel of
K*(P(E®1) —> K’ (P(E))
we deduce

PROPOSITION 2,72, Let E be a decomposable
vector bundle over X, Then K* (XE) is a free K* (X) ~module

on AE as generator,

Remark: This "Thom isomorphism theorem' for the
decomposable case also holds as before for G-spaces. We now

show how this fact can be put to use,

COROLLARY 2,7.3. Let X be a G-space such that

Kcl;(x) =0 and let E be a decomposable G=-vector bundle., Then,

if S(E) denotes the sphere bundle, we have an exact sequence
0 —> KIG(S(E)) — Kg;(x) L Kg(x) — Kg(s(E» —0

where ¢ is multiplication by

AyE] = =0 \E]
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Proof: This follows at once by applying (2. 7, 2) in the

tbi———

exact sequence of the pair (B(E), S(E)).

In order to apply this corollary when X = point we

need to verify
LEMMA 2.7.4, Kg (point) =0,
Proof: It is sufficient to show that
KG(sl) —> K (point)

is an isomorphism, But, since G is acting trivially on S1 , We

have

H

K. (5Y) = k') e r(G)

4

K (point) ® R(G)

Thus we can take X = point in (2, 7.3) . Moreover if we
take G abelian then E is necessarily decomposable, Thus we
obtain °

COROLLARY 2,7,5, Let G be an abelian group, E a

G-module, Then we have an exact sequence

0 —> KL(S(E)) — R(G) —£—> R(G) —> KL (S(E)) —> 0
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where ¢ is multiplication by

A [E] = 21} NIE] .

Suppose in particular that G acts freely on S(E)

(it is then necessarily cyclic), so that
* ~ *
kEsE) = k*6E/G .

Thus we deduce

COROLLARY 2,7,6, Let G bea cyclic group, E a

G-module with S(E) G-free. Then we have an exact sequence

0 —> K!(s(E)/G) —> R(G) —2> R(G) —> K'(5(E)/G) —> 0

where ¢ is multiplication by A_I[E] .

Remark: A similar result will hold for other groups
acting freely on spheres once the Thom isomorphism for KG has
been extended to bundles which are not decomposable, However,
this will not be done in these notes,

As a special case of (2, 7, 6) take G = Z,, E= c” with

the (~1) action, Then

S(E)/G = PZn-I(R)
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. is real projective space of odd dimension ,

R(z,) = zlpl/p® - 1

-o" .

A,IE]

Putting 0 =p -1 so that ol = ~20 and )‘-IIE] = (-0)® we see

. . -1 . 1
that ﬁo(Pzn_l(R)) is cyclic of order 2*" while K (PZn-l(R”
is infinite cyclic, If we compare the sequences for n and n+1

we get a commutative diagram

+1
1 -g)"
0 —> K'(P, .,) —> R(Z)) Lo R(Z,)
-0 1

0 ——> Kl(Pzn_l) — R(2,) B C) i R(2,)

But in R(Zz) the kernel of (~0)" (for n>1) is (2- 0) and so

coincides with the kernel of =g . Hence the map

1 1
K (Poniy) —> K'(Pppy)
is zero, From the exact sequences of the pairs (Pzn +1? PZn)'

(Pzn, pZn-l) we deduce that

1 1
K{Pons)) —> K'(Py)
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is surjective, while
ki(p, ) —> K'P,__)
2n 2n-1
is injective, Hence
K(P,) = 0
2n’ - ¢
The exact sequence of the pair (Pz ntl? PZn) then shows that

0 0,
K (Pypyy) —> K(Py,)

is an isomorphism, Summarizing we have established

PROPOSITION 2,7, 7. The strucutre of K* (P A(R)) s

as follows

1

K(Pyy) = 2

kP, ) =0
2n

0,; 0
4 Pyt = ® (Py) = Zpn .

We leave it as an exercise to the reader to apply (2. 7. 6) to

other spaces,
We propose now to proceed to the general Thom igomosphism

theorem, It should be emphasized at this point that the methods

to be used do not extend to G~bundles. Entirely different methods

R

SRR G s e, -
S i e e %, e
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are needed for G-bundles and we do not discuss them here.

We start with the following general result

THEOREM 2.7.8. Let w:B - X be a map of compact

spaces, and let Bps 200 By be homogeneous elements of K* (B).

Let M* be the free (Z,) graded group generated by Hy,-<<, l

Suppose that every point x € X has a neiihborhood U such that

for all V c U, the natural map
K*v) e M* —> k¥ (v "))

is an isomorphism, Then, for any YcX , the map

K*(X,Y) e M —> K" (B, 7 "}(¥))

is an isomorphism,

Proof: If UcX has the property that, for all VcU,

K* (V) 8 Mx & K (7 (V) (1)

we shall say that U is good. If U is good then, using exact
sequences and the fact that ® M* preserves exactness (M* being

torsion free) we deduce



109.

K«U, V) emMx & kx(="lu,vlv) (2
Here we use of course the compatibility of ¢ with products
(Lemma 2. 6.0). What we have to show therefore is

X locally good & X good.
Since X is compact it will be enough to show that

U;, Uy good éUl U Uy good.
Now any Ve Uy U Ug is of the form V =V,U Vy with V; < U;

(and so V; is also good). Since
% =%
Yy 1nV2
it follows that (2) holds for the pair (V, V2 ). Since (1)

holds for V2 the exact sequence of (V, V2 ) shows that (1)

holds for V. Thus U1 U U2 is good and the proof is complete.

COROLLARY 2,7,9., Let 7:E -»X be a vector bundle,
and let H be the usual line bundle over P(E). Then K*(P(E))

is a free K*(X)-module on the generators 1, [H], [H]z,- oo ,[H]n

[H] satisfies the equation E(-1)*[HJIXE]=0.
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Proof: Since E is locally trivial it is in particular
locally decomposable. * Hence, by (2.7.1), each point x € X
has a neighborhood U so that for all Vc U, K*(P(EIV)) is
a free K*(V)-module on generators 1, [H], **-, [I-I]n’1 . Now
apply (2.7.8). The equation for [H] has already been established

at the end of §2.6.

COROLLARY 2.7.10. If w:E~X is a vector bundle,

and if F(E) is the flag bundle of E with projection map p:F(E)-X

then p* : K¥X) ~ K¥F(E)) is injective.

Proof: F(E) is the flag bundle over P(E) of a bundle
of dimension one less than dim (E) . We proceed inductively

on dim(E) using (2.7.9).

COROLLARY 2.7.11. (The Splitting Principle). _If

El' oo, En are vector bundles on X, then there exist a space

F and a map w: F # X such that

1) a* : K¥(X) -~ K¥(F) is_injective

2) Each w*(Ei) is a sum of line bundles.

Proof: We take F to be the flag bundle of @ Ei .

The importance of the Splitting Principle is clear. It enables

' 3
Remark: This is the argument which does not generalize

to G-spaces.
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us to reduce many problems to the decomposable case.

(The Thom Isomorphism Theorem).

COROLLARY 2. 7.12.

_I_f_. g:E~X isa vector bundle

e: K'(X)— %*(xF)

phism.

@(x) = Ag* is an isomor

defined by

Proof: This follows from (2.7.9) in the same way as

(2.7.2) followed from (2.7.1).

We leave the following propositions a8 exercises for the

reader

-+ X is a vector bundle,

PROPOSITION 2.7.13. If ®: E
Ly = L the usual line bundles over F(E), then the map

defined by t, = [Li] defines an isomorphism of K*(X) modules

KXty oo I K*(F(E))

where 1 is the jideal generated by elements

oy, cemty) - B oz(tl.m. t)- xz(E).-oo.o“(t,.'“.tn)-xn(E)

j-th elementary symmetric function.

4:!1 being the
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PROPOSITION 2,7.14. Let v#:E~X bean

n-dimensional vector bundle and let Gk(E) be the Grassmann

bundle (of k-dimensional subspaces) of E. Let F be the

induced k-dimensional bundle over Gk(E), F' thequotient

bundle p*(E)/F . Then the map defined by t - )Li(F),

s, - xi(F') defines an isomorphism of K¥(X)-modules

K*(’x)[tl: “*% tk' ’l’ s, ’n-k]/l - K*(Gk(E» ’

where I is the ideal generated by the elements

Z ti’j - xl(E) for all 2 .
i+j=1

(Hint: Compare Gk(E) with the flag bundle of E) . -

In particular, we see that if G n, k is the Grassmann
manifold of k-dimensional subspaces of an n-dimensional vector
space, K*(Gn, k) is torsion free. This also follows from its
cell decomposition. By induction we deduce K* is torsion free

for a product of Grassmannians.

THEOREM 2.7.15. Let X be a space such that K'(X)

is torsion free, and let Y be a (finite) cell complex, Y'CY a

subcomplex. Then the map

K®X) ® K¥(Y, Y') —> K¥X x Y, X x ')

is an isomorphism.
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Proof: The theorem holds for Y a ball, Y' its
boundary as a consequence of 2.7.2. It thus holds for any

(Y, Y') by induction on the number of cells in Y.

COROLLARY 2.7.15. (The Klinneth Theorem).

Let X be a space such that K*(X) is a finitely generated

abelian group, and let Y be a cell complex. Then there is a

natural exact sequence

0 —> Ki(X) @ Ki(x) —> KN(X x Y)
i+ ftk

— Z Tor(K(X), KI(Y)) — 0
i+j=k+l

where all suffixes are in Z2 .

Proof: Suppose we can find a2 space Z and a map
f:X~2Z such that K¥(Z) is torsion free, and f* : K¥(2) - K¥*(X)
is surjective. Then from the exact sequence K¥*(Z/X) is torsion
free. From the last theorem, K¥Z x Y) = K*(2) @ K¥(Y),
K*(z/X) x Y) = K¥2/X) ® K¥(Y) . The result will then follow

from the exact sequence for the pair (Z x Y, X X Y) .

We now construct suchamap g: SX~Z . Let a,tttay

generate KO(X) » and let b,**+,b  generate K'I(x) = K(SX) .

Then each a, determines a map o x—°Gr s for T 8
i’ i

1
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suitable, and each b, amap A, : SX -G . Let
i i u, v
: - X oee = ' Q, X oo X a d
a: X Grl' 31 XGrn. sn G be 1 a0 an
ﬁ:SX*'Gul'le”_xGuh’vm.—. G" be plx...x5m,

Then
a*: KO(G') —_— KO(X) is surjective

p* : KO(G") _— KO(SX) is surjective.

Thus, if f:(Sa) xB:8X~(SG') xG"=G
£*: K¥(G) —> K*(SX) is surjective,

and K*(G) is torsion free as required. This proves the formula for

SX and this is equivalent to the formula for X .

We next compute the rings K*(U(n)), where U(n) is
the unitary group on n variables. Now for any compact Lie
group G we can consider representations p: G ~ GL(m,C) as
defining elements [p] € K"(G) : we simply regard p as a map
and disregard its multiplicative properties. Suppose now that
@, B are two representations G - GL(m, C) which agree on the

closed subgroup H. Then we can define a map
v:G/H - GL(m,C)
¢

by ¥(gH) = a(z)ﬁ(g)'l . This is well-defined because of the

multiplicative properties of &, 8. The map ¥ defines an element
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[y] € Kl(G/H) whose image in Kl(G) is just [a] - [B] . As
a particular case of this we take

G=Uln), H=U(-1), G/H =s™1

For a, B we take the representations of G on the even and
odd parts of the exterior algebra A*(C™), and we identify these
two parts by exterior multiplication with the n-th basic vector
e, of C®. Since U(n - 1) keeps e, fixed this identification

is compatible with the action of U(n - 1). We are thus in the

situation being considered and so we obtain an element
1/ .2n-
) e x'(s**h) .

If we pass to the isomorphic group R(Szn) we see from its

definition that [y] is just the basic element

Acn € K(s%7)

constructed earlier from the exterior algebra. Thus [y] isa
generator of Kl(Szn'l), and its image in Kl(U(n)) is E(-l)i[xi]
where the Ai are the exterior power representations. With

this preliminary discussion we are now ready to prove:
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THEOREM 2.7.17. K"(U(n)) is the exterior algebra

generated by [xll, ess, [A%], where Ai is the i-th exterior

power representation of U(n) .

Proof: We proceed by induction on n. Consider the

mapping
U(n) —> U(n)/U(n - 1) = s?®1 |
i s i i-1 i

Since the restrictionof A\ to Uln-1) is 4 ®p ~, where pu
denotes the i-th exterior power representation of U(n - 1), the
inductive hypothesis together with (2. 7. 8) imply that K*(U(n))
is a free K*(Szn'l)~module generated by the monomials in
[)tI]. see, [xn'll . But K*(Szn'l) is an exterior algebra on one

generator [y] whose image in K#* (U (n)) is

n s :
Y oy,
i=0

as shown above. Hence K{U(n)) is the exterior algebra on

[Xl]. eee, [A"] as required.
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CHAPTER IN, Operations,

§1 . Exterior Powers, By an operation F in K-theory,

we shall mean a natural transformation Fy : K(X) ~K(X). That
is, for every space X , there is a (set) map Fy : K(X) -~ K(X),
and if £:X - Y is any continuous map, Fyf* = f*FY .
Suppose that F and G are two operations which have
the property that F([E] -~ n) = G([E] » n) whenever E is a sum
of line bundles and n is an integer, Then F(x) = G(x) for all
x € K(X), as we see immediately from the splitting principle of
the last chapter,
There are various ways in which one can define operations
using exterior power operations, The first of these which we shall

discuss is due to Grothendieck ,

If V is a vector bundle over a space X , we define

)‘t[v] € K(X)[[t]] to be the power series

Y e .

i=0
The isomorphism

Nvew) =Y i) erw)
itj=k
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gives us the formula
aVew] = AVIN[W]

for any two bundles v, W. Forany W the power series )‘t[W]

js a unit in K(xX)[[t]]), bec

e have a homomorphism

ause it has constant leading term 1.

Thus W

g ¢ Vect(X) —> 1+ KN

semi-group Vect(X) into the
r K(X) with constant term 1.

multiplicative group

of the additive
By the universal

of power series ove

property of K(X) this extends uniquely to 2 homomorphism

A KK 214 ke’ .

Thus, taking the coefficient of ti we have operations

3 Kx) = KX)

Explicitly therefore

AlV] - WD) = XV L I

In a very similar way we can treat the smmetric powers

Si(V ). Since

skvew) = ) si(v) @ sI(w)
i+j=k

S r R

EEPRU P

 SHEER AR

> e

Lt Sy e i B €
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we obtain a homomorphism

s, : K(X) —> 1+ KX)[[e]"
whose coefficients define the operations
st KX) — K(X) .

Notice that if L is a line bundle,

"-t(L) 1+tL

1+tL+t2L +ees

S,(L)

(‘. - tL)-l .

"

Thus
ALISL) = 1 .

Thus, if V is a sum of line bundles, x.t[V]St[V] =1 , Therefore,
for any x € K(X), )‘-t(")st(x) =1, and so

AV] = [W]) = AJVIS_ W]

that is,

(V] - [w)) = ; (-ivisiow) .
J

i+i=

This gives us an explicit formula for the operations xi in terms

of operations on bundles,
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Now recall that, for any bundle E, dimE % is a
locally constant function of X . Since X is assumed compact

dim E = Sup dim E
x€X

~

is finite, The exterior powers have the basic property that

NE = 0 4 i> aimE .

Let us call an element of K(X) positive (written x 2 0) if it is
represented by 2 genuine bundle, i. e., if it is in the image of

Vect (X). Then

x> 0 =% )t(x) € K(X)t] .

For many problems it is not dim E which is important
but another integer defined as follows, First let us denote by rank E
the bundle whose fibre at x is Cd(x) where d(x) =dimE_ : if
X is connected then rank E is just the trivial bundle of dimension
equalto dim E . Then E -rank E induces an (idempotent) ring

endomorphism

rank: K(X) —> K(X)

which is frequently referred to as the augmentation. The kernel of
this endomorphism is an jdeal denoted by Kl(X) . For a connected

space with base-point we clearly have
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K@) = Kx) .

For any x € K(X) we have

x - rank x € KI(X) .

Now define dimyx, for any x € K(X), to be the least integer n

for which

x~-rank x+n>0

since every element of K(X) can be represented in the form [V] - n
for some bundle V it follows that dimyx is finite for all x € K(X).

For a vector bundle E we clearly have

dimy[E] ¢ dimE ,

Notice that

dimK e x = clime1
where X =x- rank x , so that dimK is essentially a function on
the quotient K.l(x) of K(X).

It is now convenient to introduce operations 'y1 which
have the same relation to dimK as the )\1 have to the dimension

of bundles, Again following Grothendieck we define

V) = Nyypox) € KOOI
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Thus for each i we have an

sothat ¥x+v) = v, ) -
operation
P K(X) ~B(X) .
The y‘ are linear combinations of the )Lj for j<i and vice=
versa, in view of the formula

A ) = Vg /H,(x)

obtained by putting & = t/1-t t= s/1+s . Note that

) = @-97

and for a line-bundle L

yt([x..] -1) = 1+ gLy -1 . |

PROPOSITION 3,11 Let x € K;(X) , then v, ) is.

a polynomial of degree < dimgx . ‘
)

Thus x +1n

Let n =dimgX, sothat x +n>0.

Proof:
undle E . Moreover dim £ =n and 8O

= [E] for some vector b
for i>n .

M(E) = 0

omial of degree <n. Now

Thus )gt(x +n) is a polyn
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Y%x) =y + )y,

= Yt/l-t(x +n)(1 - t)°

n
=) A+ mpie -y
1=0

and so is a polynomial of degree < n as stated.
We now define dimyx to be the largest integer n such

that 9™(x - rank x) #0 , and we put

dim, X = sup dimgx
K x€K(X) ©

dim X = sup dim .
4 xGK?X) 7x
By (3.1.1) we have
dimyx <dimpx , dimyx <dim X .

We shall show that, under mild restrictions, dimKX
is finite, For this we shall need some preliminary lemmas on
symmetric functions,

LEMMA 3.1.2, Let Xp 000y X, be indeterminates,

Then any homogeneous polynomial in Z[xl, sevy x ] of degree
> n(n - 1) lies in the ideal generated by the symmetric functions of

(xl’ veo, xn) of positive degree .
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Proof: Let oi(xl, cevy xn) be the i-th elementary

symmetric function, Then the equation

x> - O'lxn"l + o'zxn"z poeet (A1) o, = 0

has reots x = X; . Thus x‘i1 is in the ideal generated by Oy *°* Opn :
of degree > n(n - 1) is divisible :

But any monomial in X, ** > X

s ideal.

n s s s .
by x; for some i and so1is also in thi

ooo’ym tlg-

LEMMA 3.L3. Let % ety X 0 Yp

jndeterminates and let

ai = O'i(xlo LA ] xn) bi = oi(yl’ ey Ym)

be the elementary symmetric functions. Let I be any jdeal in

z[a,b], J its extension in Z[x,y). Then

snzfa,nb) =I.

Proof: It is well-known that Z[x] 3s a free z[a]-module

with basis the monomials

e
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Hence Z[x,y] = Z[x] ® Z[y] is a free module over Z[a,b] = Z[a] ® Z[b]
with basis the monomials x=y2 . Then the ideal Jc Z[x,y]

consists of all elements f of the form
= r s .
f-ZfE'-s.x v with £ €I,

Since the x=y2 are a free basis f belongs to Z[a,b] if and only if

f. =0 for r,s # (0,0) in which case
r,s

f = fO,OGI .

Thus J N Z[a,b] =1 as stated.

Remark: This lemma is essentially an algebraic form
of the splitting principle since it asserts that we can embed Z[a,b]/I
in Z[x,y)/3. Itis of course purely formal in character and it
seems preferable to use this rather than the topological splitting
principle whenever we are dealing with formal algebraic results,
The topological splittiﬁg principle depends of course on the periodicity
theorem and should only be used when we are dealing with properties

that lie at that depth,

LEMMA 3,1.4. Let K be a commutative ring (with 1)

and suppose

2 n
l+alt+a2t +---+ant

a(t)

n

2 m
b(t) L+bt +byt"+eee +b ¢
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are elements of K[t] such that

a(t)b(t) = 1 .

Then there exists an integer N = N(n, m) so that any monomial

1‘1 r rn
a) 83 e 3,

of weight X jrj > N vanishes .

Proof: Passing to the universal situation it is sufficient

bl' ees, bm are indeterminates,

to prove that if al, ceey a,

then any monomial « inthe a; of weight > N lies in the ideal

1 generated by the elements

¢ = z aibj k=1, ooo,mn(au=bo=l)
itj=k

By (3.1, 3), introducing indeterminates Xpp co0s Xp s Yo 000 Yo
it is sufficient to prove that «a belongs to the extended ideal J.
But Sx is just the k-th elementary symmetric function of the
(m + n) variables PRTITR S TR A The result now
follows by applying (3.1.2) with N=(m +n)im+n-1) ,

Remark: The value for N(m,n) obtained in the above proof

is not best possible, It can be shown by more detailed arguments

\



127,

that the best possible value is mn .,

We now apply these algebraic results:

PROPOSITION 3,1.5, Let x€ Kl(x) . _Then there

exists an integer N, depending on x, such that any monomial

yilx) y12(x) « + o yk(x)

of weight E;;l ij > N is equal to zero.

Proof: We apply (3. 1. 4) to the polynomials AN yt(-x) R

Note therefore, that N depends on dim’;c R dimy(-x) .

Since yl(x) =x we deduce:
COROLLARY 3,1,6, Any x € KI(X) is nilpotent,

If we define the degree of each 'y1 to be one, then for

any monomial in the 'yi we have

weight > degree .

In view of (3.1.5), therefore, all monomials in yi (x) of sufficiently
high degree are zero if x € KI(X) « Thus we can apply a formal

power series® in the yi to any x € KI(X) . Let us denote by

* As usual a formal power series means a sum f =X fn where fn

is a homogeneous polynomial of degree n (and so involves only a finite
number of the variables),
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OP(KI' K)the set of all operations K, K. This has a ring
structure induced by the ring structure of K (addition and
multiplication of values). Then by what we have said we obtain

a ring homomorphism

01 2lly', oeey ¥ oo ]l —> Op(K,K) .

THEOREM 3,1 7,

@zl ey PP er 11— OB(K, K)

is an isomorphism,

Proof: Let Yn,m be the product of n copies of Pm(C) .
Using the base point P,(C) of Pm(C) the Yn, m form a direct

system of spaces with inclusions

— ' 1
Yn,m Yn',m' for n'>n, m'>m,

Then K(Yn m) is an inverse system of groups with
td

+1 it
K(Yn' m) = z[xlo ctey xn_]/(x;n PR ’?‘;:) )

lim K(Y ) = Z[[xl, e, xn]]
[ A—

n,m
m
lim K(Yn'm) == 1(;:1 Z[lxp, ceen x 1

m,n n



129.

Any operation will induce an operation on the inverse limits,

Hence we can define a map

b : Op(K,, K) —> E_? Zllxyp oo s x]]

by M(f) = 141:1 f(xl tx, beeet xn) . Since, in K(Yn, m) we have

n
‘yt(xl +x, +---+xn) = I{' {l +xit)
it follows that
'W(‘Yl) = lim “i(xl' tcey xn)
n

where o; denotes the i-th elementary symmetric function. In
particular, therefore ¢ is injective and so ¢ is injective, Moreover

the image of P is

z[[clo tee, O'n‘]]

which is the same as
. Sn
lim Z[[xl, vee, xn]]
n

where [ ]Sn denotes the subring of invariants under the symmetric

group S . But, forall f € Op(Kl, K),
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bE) = lm flx +eoc + x,) .

G ;

lies in this group. In other words . :
Impo = Imp .

To complete the proof it remains now to show that § is injective, ,:
Suppose then that P(f) = 0 . Since any line bundle over a space X i
is induced by a map into some Pn(C) it follows that Z
([E] - n) = 0 :

whenever E is a sum of n line ~bundles, By the splitting principle 'j
this implies that ;:
£(x) = 0 forall x €K, ,

i.e,, f is the zero operation, as required, v

Let us define H(X, Z) to be the ring of all continuous :

maps X -» Z, Then we have a direct sum decomposition of groups :

K(X) = K (xX) o H(X, 2)

determined by the rank homomorphism, It is easy to see that there

are no non-zero natural homomorphisms

HO(X, 2) —> K (X)
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and so Op(K) = Op(K,K) differs from Op(K,,K) only by Op(H’(2))
which is the ring of all maps Z —+ Z, Thus (3,L 7) gives essentially

a complete description of Op(K) .

We turn now to a discussion of finiteness conditions on K(X).

First we deal with HO(X, Z) .

PROPOSITION 3.1, 8. The following are equivalent

() H%X,z)  is a Noetherian ring

(8)  HY%X,Z)  is a finite Z-module .

Proof: (B) implies (A) trivially. Suppose therefore that
HO(X +Z) is Noetherian, Assume if possible that we can find a
strictly decreasing infinite chain of components (open and closed

sets) of X

x=xo:xl:.--:xn:xn“:ou .
Then for each n we can find a continuous map fn: X =+ Z so that

fn(xn+1)

fn(xn - xn-l-l)

1
—
.

lonsider the ideal I of HO(X, Z) consistingof maps f:X ~ Z
uch that f(Xn) =0 for some n, Since HO(X, Z) is Noetherian

is finitely generated and hence there exists N so that
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f(XN) = 0 forall f€1I,
But this is a contradiction because
fNGI . fN(XN);!O .

Thus X has only a finite number of components, so that

with X, connected. Hence HO(X, Z) is isomorphic to z",

Passing now to K(X) we have

PROPCSITION 3.1.9. The following are equivalent

(A) K(X) is a Noetherian ring

{B) K(X) is a finite Z- module .

Proof: Again assume (A), then H'(X,Z) which is a quotient
ring of K(X) is also Noetherian. Hence by (3, L 8), HO(X, Z) isa
finite Z-module, Now KI(X) is an ideal of K(X) consisting of
nilpotent elements (3.1.6). Since K(X) is Noetherian it follows
that KI(X) is a nilpotent ideal, For brevity put I = Kl(X) . Then
I" =0 for some n and the Im/Im“, m=0,1, oo, n-1 are

all finite modules over K/I = HO(X,Z). Hence K(X) is a finite
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HO(X » Z)~module and so also a finite Z~-module,

Examples of spaces X for which K(X) is a finite Z-module

are cell-complexes,

.

Let us now define a filtration of K(X) by the subgroups

K;’:(X) generated by all monomials

YUx) ¥'2x,) oo+ y'kexy)

with z,k_l ij2n and x; €K\(X). Since ¥'x) = x,

we have K’l' =K. If x€ KK(X) we say that x has y-filtration > n

and write F‘y(x) >n.

PROPOSITION 3,1,10, Assume K(X) is a finite Z-module.

Then for some n

KY(x) =

Proof: Let Xip *%0y X be generators of KI(X) and let

s
Nj = N(xj) be the integers given by (3.1.5). Because of the formula

yt(a +b) = Yt(a) 'yt(b)

it will be sufficient to show that there exists N so that all mnonomnials

in the ‘yl(x ) of total weight > N are zero. Bui taking N = ) > 1 J

we see that any sucl * -aet, for some j, have weight > Nj
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in the y"(xj) . Hence by (3.1, 5) this monomial is zero,

COROLLARY 3,1,1l. Assume K(X) is a finite Z-module,

Then dimyX is finite,

We call the reader's attention to certain further properties of

the operations 'yi .

PROPOSITION 3.1.12, If V is abundle of dimension n,
A_l[V] = (-1)"y*([V] - n). Thus K *(XV) is a free K*(X) module

generated by Y[v] - n).

PROPOSITION 3,1,13, There exist polynomials Pi' Qij

such that for all x, y

Yoy) = P ), ¥ ¥, ¥ 4 ores ¥R, YO

PO = 00 ), s ¥

We leave these proofs to the reader, who may verify them easily

by use of the splitting principle,
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§2, The Adams Operations, We shall now separate

out for special attention some operations with particularly pleasing
properties, These were introduced by J.F, Adams, We define
$%(x) = rank (x) . In the ring K(X)[[t]] we define Pi(x) = L o t'y'(x)

by
5,0 = 4200 - t —S(log A_,(x)) .

Notice that since all of the coefficients of this power series are

integers, this definition makes sense.

PROPOSITION 3,2,1. For any x, y € K(X)

D %6+ y) = 656) + pN(y) for all k

2) If x is a line bundle, (x)=x".

3) Properties 1 and 2 uniquely determine the operations

P,

Proof: ;bt(x +y) => gpt(x) + ¢t(y), so that ,pk(x +y)= ¢k(x) 4 ?Pk(y)
for each k,

I x is a line bundle, A_t(x) =1 - tx, so that

o (logll - &) =

R L
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Thus $,(x) = Lttx +E2xs Heee o

The last part follows from the splitting principle.

PROPOSITION 3.2,2. Foraay X, ¥ € K(X)

k k k
1) oKGey) =9 () ¥ 1) for all k
2) PRl = Pl forall Kt
3) If pis prime , :pp(x) = xP mod p
4) € ue R, PN =x"u forall X.
Proof: The first two assertions follow jm mediately from

and the splitting principle. Also, from the

$PGx) =P + pfOL), <+ A0(), where £
fficients. Finally, if h is

the last proposition
splitting principle,
is some polynomial with integral coe

the generator of 'ii(sz), ¢k(h) =kh,
y h@ah®-** ®h , the last assertion

Since 52 =8° AeerASE,

and 'R(SZn) is generated b

follows from the first,

We next give an application of the Adams operations z])k .

Suppose that f : gin-l o208 jg any map. We define the Hopf

jnvariant H(f) as follows, Let X, be the mapping cone of f.

Let i:82% =X, be the inclusion,
of 'IZ(S‘}n) . From the exact

and let j@ Xf - S4n collapse

Szn . Let u be the generator

g

P s
¥ NI T W B TR

sequence we see that there is an element x € K(Xf) such that ¥ (x)
generates k*(sZn). ?{(Xf) is the free abelian group generated by
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x and y = j*(u). Since (i* (x))z =0, x% = Hy for some H.
This integer H we define as the Hopf invariant of f, Clearly,
up to a minus sign, H(f) is well defined, The following theorem

was first established by J. F. Adams by cohomological methods,
THEOREM 3,2.3, If H(f) is odd, then n=1, 2, or 4.

Proof: Let zbz(x) = 2% +ay, zp3(x) = 3% + by, Since :pz(x)
2 x? mod 2, a is odd, apk(y) = j* (c/;k(u)) = kzny . Thus,we see
that

6% + (2" + 32%a)y

286 = $3w3x)

%')G(X) = lbz(¢3(x)) 6"x + (zan +3%)y.

n

Thus 2% +3%%a = 22" + 3%, or 27(2" - 1)b =373 - 1)a.
Since a is odd, 2" divides 3" - 1, which by elementary number
theory can happen only if n=1, 2, or 4,

I n=1, 2, or 4, the Hopf maps determined by considering

S4n-1

as a subspace of the non~zero vectors in 2-dimensional
complex, quaternionic, or Cayley space, and SZn as the complex,
quaternionic, or Cayley projective line all have Hopf invariant

one, We leave the verification to the reader.

PROPOSITION 3,2,4, Let x € K(X) be such that F y(x) >n,

Then for any k we have

F () - Kix)zn+1
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Proof: If n=0 we have
k k k
b (x) = @ (rankx +x) =rankx +§ %, .
Here x; and so $kx1 are in K,(X). Thus
k k
px-x = $x-x € K(X) = K/(X) .

Consider now n> 0, Since z,bk is a ring homomorphism it is
sufficient to prove that the composition ¢k e ‘yn - nyn (where
t])k € Op(K), y" € Op(K,, K)) is equal to a polynomial

in the yi in which each term has weight >n+1., Asin(3.L7)

we have isomorphisms

z[ly', -+« 11 = Op(K, K) T lim 2Z[x), +++, x P
m

in which 'yi corresponds to i-th elementary symmetric function

o; of the x, ., Now
J

P56) = (@ +x) -1

and so

Po by oer ) = o (L) -1, 0e0)

n
K o'n(x) +f

where f is a polynomial in the o; of weight >n +1. Since
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gbk o 9® corresponds to epk(on) by the above isomorphisms the

proposition is established.

Iterating (3, 2, 4) we obtain:

]}
o
-

COROLLARY 3,25, If KY  (X)

[ Qb m (km)“il

for any sequence of non-negative integers ko ’ kl' tee, kn .

n
(=]

By (3.1.10) we can apply 3,2.5 in particular whenever K(X) is
a finite Z-module,

Notice that ¢k acis as a linear transformation on the vector
space K(X)®Q . Taking k,, =k forall m in(3,2.5) we see

that

n .
TT @ =™ = o on K(X)®Q .
m=0

Thus the eigenvaiues of each abk are powers of k not exceeding ",
Let V) ; denote the eigenspace of y:k corresponding to the
eigenvalue K (we may have Vk’ i = 0). Then if k>1, we have

an orthogonal decomposition of the identity operator 1 of K(X)®Q :



140,

u

1 = z l'!i ’ l'!i .r};‘ ("’k'km)/(ki’km) .

mgEl

Thus K(X)® Q is the direct sum of the Vi i + Nowputin
t

(3.2.5),

k, =1, km=k for my7i

and we see that
) i -
" - ll)Vk,i = 0

andso V. .cV, ., Hence we deduce
k,i 4,i

PROPOSITION 3,2,6, Assume K(X) has finite y-filtration
and let vk,i denote the eigenspace of qbk on K(X)® Q correspond-

ing to the eigenvalue Kt . Thenif k, £>1 we have

Vi =V

£,i °
Since the subspace Vk i does not depend on k (for k> 1) we
¢
may denote it by a symbol independent of k, We shall denote it by
H24(X; Q) and call it the 2i-th Betti group of X. From (3.2.4)
it follows that the eigenvalue ko =1 occurs only in HO(X, z)eqQ.

Thus our notation is consistent in that
0 0
H'(X,z) @ Q = H(X;Q) .

We define the odd Betti groups by
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where xt=x U point and S denotes reduced suspension, If

the spaces involved are finite-dimensional we put

B, = dim. HYX;Q)

k el ;
and the Euler characteristic E(X) is defined by
E(X) = Z(-)*B, = aim,(K(X) ®Q) - dim ., (K}(X) @ Q)

k Q ™0 .

Note that the Kunneth formula (when applicable) implies
EX xY) = E(X)E(Y) .

The following proposition is merely a reformulation of (3. 2. 4)

in terms of the notation just introduced:

PROPOSITION 3,2, 7,

KX e =) H™EX;0Q)
m>n

and so

{Kz(x) /K2, } e = HP(X;0).
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Since gbku = ku for the generator u of ﬁ(Sz) it follows

that
W5Be) = KBy (x)

where g8: K(X) ~ K-z(X) is the periodicity isomorphism. Thus

B induces an isomorphism
B™(x ;) & w2kt o) |

From the way the odd Beiti groups were defined it follows that,

for all k
(3.2.8) Hx ;) = #sxt ) .

If we now take the exact K-sequence of the pair X, A, tensor

with Q, decompose under t,bk and use (3.2.8) we obtain:

PROPOSITION 3,2.9. If A cX, and if both K*(X), K*(A)

are finite Z-modules the exact sequence

e —> KAy 85 Ki(x,4) — Kix) — K'(a) 2> ..

induces an exact sequence

oo —> H A 0) 85 Hix,A;0) — Hi(X:0)—> H(A0)0> -
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We next give a second application of the operations tbk .
Since Pn(C)/Pn_l(C) is the sphere sén » we have an inclusion
of $°® into P_ #x(C)/P__|(C) forall k. We should Like to
know for which values of n and k,Szn is a retract of P +k(C)/Pn-1(C)’
That is, we should like to know when can there exist 2 map
£: P, (C)/2 _(C) ~S?® which is the identity on S°®, We shall
obtain certain necessary conditions on n and k for suchan f

to exist,

THEOREM 3.2,10, Assume a retraction

f: PV 2 a-1(C) —> P_(C)/P__/(C) = g2n

n
exists, Then the coefficients of xi for i<k in l_og_i%t}_)
are all integers,
Proof: Let { be the usual line-bundle over P4 and
let x=§=~1, Then K(Pn +k) is a free abelian group on generators
x%, 0<s<n+k, andwe may identify K(P . P ) with the
subgroup generated by x° with n <s<n+k. In K(P, +k) ®Q

put y =log (1 + x), so that £=ey. Then

ery = gr = wr(eY) = e¢r(Y)

so that $*(y) =ry. Thus st(Pn+k/Pn_1;Q), for n<s<n+k
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is a one~-dimensional space generated by ys . Now let u
generate i(sz“), and let

n+k
% _ i
o = ) apt .
i=n
. . ) . k _.n £
Since f is a retract we have a =1, Since pu=k'u, f (u)

must be a multiple of y", so that

n+k
z a.xl = kyn .

i=n
Restricting to sZn we see that X =1, and so

Y = (log(l + x))”

has all coefficients from x" to xn+k integral as required,
Remark: It has been shown by Adams and Grant-Walker
(Proc., Camb, Phil. Soc. 61(1965), 81-103) that (3. 2, 10) gives a

sufficient condition for the existence of a retraction,

Suppose once more that we have a map f : gZmiZn-l_ g2

Then we can attach to f an invariant e(f) € Q/Z in the following

fashion,
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Let X be the mapping cone of £, i= S?™ L X the
" inclusion, j:X = sZn+Zm the map which collapses sZm . Let
u generate §0(82n+2m)’ v generate Ko(Szm), and let x € KO(X)

be suchthat i*(x) =v. Let y = j*(u). Then for any k,

¢k(x) =k % + ay .
As before, we know that ),bkz,')‘ = :,blzbk , so that

n, m = pNy,m _
K™ - 1)a, = (2™ - 1)a .

Thus
2y

—_ €
™ - 1)

e(f) =
is well defined once x is chosen, If x is changed by a multiple
of y, e(f) is changed by an integer, so that e(f) € Q/Z is well
defined, We leave to the reader the elernentary exercise that
e:M,, +zm_]'(Szm) -+ Q/Z is a group homomorphism, I turns

out that this is a very powerful invariant.,
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§3, _The Groups J(X). In this section we assume,
for simplicity, that X is connected, One can introduce a notion
of equivalence beiween vector bundles, known as fibre homotopy
equivalence, which is of much interest in homotopy theory, Let
E, E' be two bundles over a space X , and suppose that both E,
E! have been given Hermitian metrics. Then E and E' are said
to be fibre homotopy equivalent if there exist maps f : S(E) -~ S(E!),
g : S(E') » S(E), commuting with the projection onto X , and such
that gf and fg are homotopic to the identity through fibre-preserving
maps. Clearly this is an equivalence relation defined on the set

of equivalence classes of vector bundles over X,

Fibre homotopy equivalence is additive; that is, if E, E!
are fibre homotopy equivalent to F, F! respectively, then E ® E!
is fibre~-homotopy equivalent to F @ F' , This follows from the fact
that S(E @ E') may be viewed as the fibre-join of the two fibre
spaces S(E), S(E') : in general the fibre-joinof 7:Y ~X ,
m!:Y!' +X is defined as the space of triples (y, t, y') where

t€l, w(y)=n'(y') and we impose the equivalence relations
(v, O, Y'l) ~ (v, 0, Y'z)

(th 1, Y') ~ (}'2: 1, Y') .

We say that two bundles E, E' are stably fibre-homotopy
equivalent if there exist irivial bundles V, V! suchthat E®V is
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fibre~-homotopy equivalent to E! ® V', The set of all stable
fibre~homotopy equivalence classes over X forms a semi-group
which we denote by J(X). Since every vector bundle E has a
complementary bundle F so that E®F is trivial it follows that

J(X) is a group and hence the map

Vect(X) —> J(X)

extends to an epimorphism

K(X) —> J(X)

which we also denote by J.

If we have two bundles E, E' and if = : S(E) -~ X,
7wt :S(E') » X are the projection maps of the respective sphere
bundles, the Thom complexes XE » XE. are just the mapping
cones of the maps w, m'! respectively. Thus, we see that if E
and E' are fibre homotopy equivalent, XE and XE' have the
same homotopy type. However, if E is a trivial bundle of
dimension n, X© =52%(x*). Thus, to show that J(E) £0, it
suffices to show that XE does not have the same stable homotopy

type as a suspension of xt .

We shall now show how to use the operations d)k of §2
to give necessary conditions for J(E) =0, By the Thom isomorphism

(2. 7.12) we know that fﬁ(}r{E ) is a free K(X)-module generated by
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Ag - Hence, for any k, thereisa unique element pk(E) € K(X)

such that

Fog) = Ag @) .

The multiplicative property of the fundamental class >“E » established

in §2, together with the fact that abk preserves products, shows that
PEOEY) = pE). pME") .

Also, taking E =1, and recalling that

e = kpoyt

where B is the periodicity isomorphism, we see that

K = x .

Now let Q, = Z[1/k] be the subring of Q consisting of fractions

with denominators a power of k., Then if we put
k -n .
o (E) = k pk(E) n=dimE

we obtain a homomorphism
ot K(X) ~ G,

where Gk is the multiplicative group of units of K(X) ®Qk .

Suppose now E is fibre-homotopically trivial, then there exists
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u € R(xT) sothat yu=k". Putting u=)ga we find that
k k. n

and so
x K
c(E)- p(a) = a .

Moreover, restricting to a point, we see that a has augmentation

1 sothat a and z{)k(a) are both elements of Gk' Hence we may

write

ok(E) =

pk (@ * 7

Since Ok(E) depends only on the stable class of E , we have

established the following

PROPOSITION 3,3.1, Let Hk ch be the subgroup

generated by all elements of the form a/qbk(a) with a 2 unit of

K(X). Then

ok : K(X) —> Gy

maps the kernel of J into Hk , and so induces a homomorphism

J(X) —> c;k/Hk .
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In order to apply (3. 3.1) it is necessary to be able to

compute ok or equivalently pk . Now
k
P € OpK

is an operation, Its augmentation is known so it remains to determine
its value on combinations of line-bundles, Because of its
multiplicative property, it is only necessary to determine pk(L)

for a line-bundle L .

LEMMA 3.3,2, For a line-bundle L, we have

k-1
oL = ) [P .
j=0

Proof: By (2. 7.1) and (2, 7. 2) we have a description of
B(x") as the K(X) sub-module of K(P(L ®1)) generated by
n=1=[L][H]. The structure of K(P(L ®1)) is of course given

by our main theorem (2. 2,1), Hence

1- [LN[EY
=
a- [L][H]){‘i (L }
j=0

k-1
=u) (L], since (- [LYHDA-[H)=0 .
j=0

)
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Thus

kel
‘~°ka = >~L{Z [LJ]}

j=0

proving that
k-1
L) = ) [Lh
j=0

as required,

As an example we take X = Pzn(R), real projective
2n-space, As shown in (2.7, 7) R(X) is cyclic of order 2" with
generator x = [L] -1, where L is the standard line-bundle.
The multiplicative structure follows from the relation [L]

(since L is associated to the group Zz) . Now take k = 3, then

) = (-1 = x,

and so the group H, defined above is reduced to the identity.,

Using (3, 3. 2) we find

pPmx) = (3™ = (L™ - 37

o (mx)

37 4 [L] + [L]D)™

= (1+x/3)™
= 1+ z (- l)i-1 Z (m)x (since x2z ~2x)
i=l

G D
Cresm.
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Thus if J(mx) = 0 we must have 3™ -1 divisible by it .
This bappens if and only if .‘*!n'l divides m . Thus the kernel of

3 : R(P,,(R) ~ 3(Pp, (R))

is at most of order 2. This result can in fact be improved by
use of real K-theory and is the basis of the solution of the vector-

field problem for spheres.

The problem considered in (3. 2, 10) is in fact a special
case of the more general problem we are considering now, In fact,
the space P -j-k(c)/Pn-l(C) is easily seen to be the Thom space of
the bundle nH over Pk(C) . The conclusion of (3. 2.10) may
therefore be interpreted as a statement about the order of
J[H] € J(Pk(C)) . The method of proof in (3. 2, 10) is essentially
the same as that used in this section. The point is that we are now
considering not just a single space but a whole class, namely Thom
spaces, and describing a uniform method for dealing with all spaces
of this class,

For further details of J(X) on the preceding lines we

refer the reader to the series of papers "On the groups J(X)" by
J. F, Adams (Topology 1964~).
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APPENDIX

The space of Fredholm operators. In this appendix we shall

give a Hilbert space interpretation{' of K(X). This is of interest

in connection with the theory of the index for elliptic operators.

Let H denote a separable complex Hilbert space, and
let G(H) be the algebra of all bounded operators on H. We
give G the norm topology. It is well-known that this makes G
into a Banach algebra. In particular the group of units G* of @
forms an open set. We recall also that, by the closed graph theorem,
any T € G which is an algebraic isomorphism H -+ H is alsoa

topological isomorphism, i.e., T} existsin G andso T €G* .

DEFINITION: An operator T € G(H) is a Fredholm operator

if Ker T and Coker T are finite dimensional. The integer

dim Ker T - dim Coker T

is called the index of T . )

We first observe that, for a Fredholm operator T, the
image T(H) is closed. In fact, since T(H) is of finite codimension
in H we can find a finite dimensional algebraic coi'nplement P.

Then T®j: H® P » H (where j: P+ H is the inclusion) is

| These results have been obtained independently by K. Janich
(Bonn dissertation 1964).
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surjective, and so by the closed graph theorem the image of
any closed set is closed. In particular T(H)=T®j(H® 0)

is closed.

Let ¥ < G be the subspace of all Fredholm operators.

If T, S are two Fredholm operators we have

dim Ker TS < dim Ker T + dim Ker S

dimm Coker TS < dim Coker T + dim Coker S

and so TS is again a Fredholm operator. Thus & is a
topological space with an associative product & x § - ¥, Hence
for any space X the set [X, ] of homotopy classes of mappings
X »3F is a semi-group. Our main aim will be to indicate the

proof of the following:

THEOREM Al. For any compact space we have a natural

is omorphisin

index : [X, &) - K(X) .

Note: If X is a point this means that the connected components
of F are determined by an integer: this is in fact the index which
explains our use of the word in the more general context of

Theorem Al .
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Theorem Al asserts that 3 is a classifying or representing
space for K-theory. Another closely related classifying space
may be obtained as follows. Let Xc G denote 21l the compact
operators, This is a closed 2-sided ideal and the quotient
®= G/X is therefore again a Banach algebra. Let & be the
group of units of @. It is a topological group and so, for any

X, [X, ®] is a group. Then our second theorem is:

THEOREM A2. @&* is a classifying space for K-theory,

i, e., we have a natural group-isomorphism

X, 8% = K(X) .

We begin with the following lemma which is essentially

the generalization to infinite dimensions of Proposition 1. 3.2,

LEMMA A3, Let T€J¥ andlet V be a closed subspace

of H of finite codimension suchthat VN Ker T=0. Then there

exists a neighborhood U of T in G such that, forall SeU,

we have

(i) VNnKersS=0

(ii) U H/S(V) topologized as a quotient space of U x H
Seu

is a trivial vector bundle over U.
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Proof: Let W = T(V)* (the orthogonal complement of T(V)
in H,) Since T € & and dim H/V is finite it follows that dim W

is finite. Now define, for S€ G,

qu:V@W-H

by (ps(V @®W)=8(V)+ W . Then S~ ¢g gives a continuous linear

map

p:G~g(Ve w,H)

where § stands for the space of all continuous linear maps with

the norm topology. Now o is an isomorphism and the isomorphisms
in £ form an open set (like G*in G). Hence there exists a
neighborhood U of T in G sothat ¢g isan isomorphism for

all S€ U. This clearly implies (i) and (ii).
COROLLARY A4, 7 is openin G.
Proof: Take V = (Ker T)"' in (A3).

PROPOSITION AS5. Let T: X - & be a continuous map,

with X compact. Then there exists V c H, closed and of

finite codimension so that

(i) VNKerT =0 forall x€X.

Moreover, for any such. V we have

(ii) v H/Tx(V) » topologized as a quotient space of
x€X

X x H, is a vector bundle over X .
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Proof: For each x € X take V_= (Ker ‘Tx)* and let
U, be the inverse image under T of the open set given by (A3).
Let Ki = Uxi be a finite sub-cover of this family of open sets.
Then V=, in satisfies (i) . To prove (ii) we apply (A3) to
each T, , and deduce that UY H/Ty(V) is locally trivial near

x , and hence is a vector bundle.

For brevity we shall denote the bundle Ugex H/Tx(V) ’
occurring in (A4), by H/T(V). Just as in the finite-dimensional
case we can split the map p : X x H = H/T(V) ; more precisely we

can find a continuous map

@: H/T(V) > X xH

commuting with projection on X and such that

b = identity

One way to construct ¢ is to use the metric in H and map H/T(V) onto
the orthogonal complement T(V)* of T(V). This is technically in-
convenient since we then have to verify that T(V)* is a vector bundle.
Instead we observe that, by definition, 4 splits locally and so we can
choose splittings ¢; over Ui » where Ui is a finite open covering

of X. Then @ - ¢ =8;; is essentially a map H/T(V)IUi nu;

- Ui n Uj xV. If P; is a partition of unity subordinate to the
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covering we put, in the usual way

8; = Zp;0;

80 that 91 is defined over all Ui » and then = @ - 6i is

independent of i and gives the required splitting.

We can now define index T for anymap T:X - 3F (X being

compact)., We choose V as in (A5) and put

index T = [H/V] - [H/T(V)] € K(X) ,

where H/V stands for the trivial bundle X x H/V . We must
show that this is independent of the choiceof V. If W is
another choice so is V N W, so it is sufficient to assume Wc V.

But then we have the exact sequences of vector bundles

0-— V/W—>H/W—>H/V—>0

0 —> V/W —> H/T(W) —> H/T(V) —> 0 .

Hence

[w/v] - [H/W] = [v/w] = [H/T(V)] - [B/T(W)]

as required,

It is clear that our definition of index T is functorial.

Thus if f: Y » X is a continuous map then
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index Tf = f* index T .

This follows from the fact that a choice of the subspace V for

T is also a choice for Tf,

If T:XxI-3F is a homotopy between T0 and Tl then
index T € K(X xI) restricts to index T, €K(X x {i}), i=0, 1,

Since we know that

K(X xI) = KX x {i}) £ K(X)

is an isomorphism, it follows that
index 'I'o = index 'I’l .

Thus
index : [X, 3] — K(X)

is well-defined.

Next we must show that "index" is a homomorphism. Let
S:X 2%, T:X -3 be two continuous maps. Let WCH be a choice
for T. Replacing S by the homotopic map WS (11'W denoting projection
onto W) we can assume S (H)CW. Ndw let VCH be a choice for S
then it is also a choice for TS and we have an exact sequence of vector

bundles over X

0 —> W/SV —2-> H/TSV —> H/TW —> 0,
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Hence

index TS

[B/V] - [H/TSV]
[H/V] - [w/sV] - [H/TW]
[(B/v] - [B/sv] + [H/W] - [H/TW]

i

index S + index T

as required.

Having now established that
index : [X, ] —> K(X)

is a homomorphism the next step in the proof of Theorem (Al) is

PROPOSITION A6, We have an exact sequence of semi~

groups

(X, ¢*] —> [x, 3] —deX 5 g(x) —>0 .

Proof: Consider firsta map T : X = F of index zero. This

means that
[H/v] - [H/TV] =0 in K(X) .
Hence adding a trivial bundle P to both factors we have

H/VO@P = H/TV @ P,
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Equivalently replacing V by a closed subspace W with

dim V/W =dim P,

~

H/W = H/TW ,
If we now split X x H - H/TW as explained earlier we obtain a
continuous map

0:XXH/W—> X xH

commuting with projection on X , linear on the fibres, If

&: X —> £(H/W, H)

is the map associated to ¢, it follows from the construction

of ¢ that

x—->cI=x+Tx

gives a continuous map
X —> a* ,
Butif 0<t<1l, T +t® provides a homotopy of maps X - &

connecting T with T + &, This proves exaciness in the middle.

It remains to show that the index is surjective, Let E
be a vector bundle over X and let F be a complement so that

I ® F is isomorphic to the trivial bundle X xV , Let T €EndV
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denote projection onto the subspace corresponding to Ex .
Let Tk € ¥ denote the standard operator of index k , defined

relative to an orthonormal basis {ei} (i=1, 2, ¢ss) by

Tk(ei) =

|
(]

-k if i-k>1

= 0 otherwise .

Then define 2 map
S:X-3HQV) = F(H)

by S, =T_j@w _+Tye(l- 'n'x). We have Ker S_ =0 for all x
and H®V/S(H®V) = E, Hence

index S = ~[E] ,

The constant map Ty :X + 3 givenby Ty (x) =T, has indexk

and so

index TkS = k - [E].

Since every element of K(X) is of the form k - [E] this shows

that the index is surjective and completes the proof of the proposit

‘Theorem (Al) now follows from (A6) and the following:

PROPOSITION A7, [X, 6¥]=1 .
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This proposition is due to Kuiper and we shall not
reproduce the proof here (full details are in Kuiper's paper:
Topology 3 (1964) 19-30). In fact, Kuiper actually shows that

G* is contractible,

We turn now to discuss the proof of (A2). We recall first

that

1+¥c3F .

This is a standard result in the theory of compact operators: the

proof is easy,

PROPOSITION A8, Let m :(G-®= G/¥ be the natural

map, Then

¥ = w-l(m*) .

Proof: (a) Let T €3 and let P, Q denote orthogonal
projection onto Ker T, Ker T* respectively., Then T*T + P
and TT* +Q are bothin G* , and so their images by ® are
in @8, But P, Q€¥ andso = (T¥.n (T) € 8%, #(T)n(T*) c @
This implies that w(T)€ & , |

(b) Let TE€ 'rr-l((B*), i.e., there exists S € G with
ST and TS €1+ Hc&. Since dim Ker T < dim Ker ST

dim Coker T < dim Coker TS

it follows that T € &,
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Theorem (A2) will now follow from (Al) and the following

general lemma (applied with L=G, M=@, U=@8%) ,

LEMMA A9, Let w : L - M be a continuous linear

map of Banach spaces with 7 (L) dense in M and let U be an

open set in M, Then, for any compact X

[x, = Y1 — [x,u]

is bijective,

Proof: First we shall show that if
T :L—>M

satisfies the hypotheses of the lemma, then for any compact X,

the induced map
wx : LX — M

also satisfies the same hypotheses. Since Lx, l\/Ix are Banach
spaces the only thing to prove is that wx(Lx) is dense in Mx .
Thus, let f: X » M be given, We have to construct g: X - L
sothat ||wg(x) - £(x)|] <€ forall x €X, Choose a;, *++, a,
in £(X) so that their 5 -neighborhoods {U;} cover £(X) and
choose b, so that Iln(bi) -2, |l <€/3 . Let u,(x) be a partition

of unity of X subordinate to the covering {f-lUi} and define
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g:X~L by

glx) = Z ui(x) b; .

This is the required map,
H . X X s
ence replacing # by 7#* and U by U (which is
open in Mx) we see that it is only necessary to prove the lemma

when X is a point, i.e,, to prove that
-1
T (U)~—>U

induces a bijection of path~components, Cleafly this map of
path-componenis is surjective: if P € U then there exists

Q € (L) N U such that the segment PQ is entirely in U, To
see that it is injective let Pj, P, € 7"W(U) and suppose f:1-U
is a path with £(0) = ‘l\'(Po) ., f(1) = w(Pl) . By what we proved at

the beginning there exists g : I~ tr-l(U) such that
=gtt) - £ < ¢ forall t€I .

If ¢ is sufficiently small the segments joining wg(i) to £(i),
for i =0, 1, will lie entirely in U, This implies that the
segment joining g(i) to P;, for i=0, 1, lies in ‘l'l'-l( u) .
Thus P, can be joined to P, by a path in w-l(U) (see figure)

and this completes the proof,
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? 0 g(l) .‘Pl 1
;‘/"\—3‘ ™ {(0)
U

£(1)
x"""_—_-"\‘\~..________.——""::z;’l)
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POWER OPERATIONS IN K-THEORY
By M. F. ATIYAH (Oxford)
[Received 10 January 1966]

Introduction

For any finite CW-complex X we can define the Grothendieck group
K(X). It is constructed from the set of complex vector bundles over X
[see (8) for precise definitions]. It has many formal similarities to the
cohomology of X, but there is one striking difference. Whereas co-
homology is graded, by dimension, K(X) has only a filtration: the sub-
group K (X) is defined as the kernel of the restriction homomorphism

K(X) > K(X,,),

where X _, is the (g—1)-skeleton of X. Now K(X) has a ring structure,
induced by the tensor produet of vector bundles, and this is compatible
with the filtration, so that K(X) becomes a filtered ring. There are also
natural operations in K(X), induced by the exterior powers, and one of
the main purposes of this paper is to examine the relation between
operations and filtration (Theorem 4.3).

Besides the formal analogy between K(X) and cohomology there is a
more precise relationship. If X has no torsion this takes a particularly
simple form, namely the even-dimensional part of the integral co-

homology ring H(X;Z) =3 H*(X;Z)
q

is na,turally isomorphic to the graded ring
GK(X) = ;%(X)/qu-l(X )-

Since this isomorphism preserves the ring structures, it is natural to
ask about the operations. Can we relate the operations in K-theory to
the Steenrod operations in cohomology ?

If we consider the way the operations arise in the two theories, we see
that in both cases a key role is played by the symmetric group. It is
well known [cf. (10)] that one way of introducing the Steenrod operations
is via the cohomology of the symmetric group (and its subgroups). On
the other hand, the operations on vector bundles come essentially from
representations of the general linear group and the role of the symmetric
group in constructing the irreducible representations of GL(n) is of
course classical [cf. (11)]. A closer examination of the two cases shows
Quart. J. Math, Oxford (2), 17 (1966), 165-93,
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that the symmetric group enters in essentially the same way in both
theories. The operations arise from the interplay of the kth power map
and the action of the symmetric group S,

We shall develop this point of view and, following Steenrod, we shall
introduce operations in K-theory corresponding to any subgroup G
of 8,. Taking k = p (a prime) and G = Z, to be the eyclic group of
order p we find that the only non-trivial operation defined by Z, is
the Adams operation ». This shows that §? is analogous to the total
Steenrod power operation 3 P* and, for spaces without torsion, we obtain
the precise relationship between ? and the P? (Theorem 6.5). Inciden-
tally we give a rather simple geometrical description (2.7) of the opera-
tion P.

It is not difficult to translate Theorem 6.5 into rational cohomology
by use of the Chern character, and (for spaces without torsion) we
recover a theorem of Adams (1). In fact this paper originated in an
attempt to obtain Adams’s results by more direct and elementary
methods.

Although the only essentially new results are concerned with the
relation between operations and filtration, it seems appropriate to give
a new self-contained account of the theory of operations in K-theory.
We assume known the standard facts about K-theory [cf. (8)] and the
theory of representations of finife groups. We do not assume anything
about representations of compact Lie groups.

In § 1 we present what is relevant from the classical theory of the
symmetric group and tensor products. We follow essentially an idea of
Schur [see (11) 215], which puts the emphasis on the symmetric group
8 rather than the general linear group G'L(n). This seems particularly
appropriate for K-theory where the dimension = is rather a nuisance
(it can even be negative!). Thus we introduce a graded ring

R, = % Homg(R(S,), Z),

where R(S,,)is the character ring of S, and we study this in considerable *

detail. Among the formulae we obtain, at least one (Proposition 1.9) is
probably not well known. In§ 2, by considering the tensor powers of a
graded vector bundle, we show how to define a ring homomorphism

- J: By > Op(K),

where Op(K) stands for the operations in K-theory. The detailed

information about B, obtained in § 1 is then applied to yield results in :

K-theory.



ON POWER OPERATIONS IN K-THEORY

§ 3 is concerned with ‘externalizing’ and ‘relativizing’ the tensor
powers defined in § 2. Then in § 4 we study the relation of operations
and filtration. § 5 is devoted to the eyclic group of prime order and its
related operations. In § 6 we investigate briefly our operations in
connexion with the spectral sequence H¥(X,Z) = K*(X) and obtain
in particular the relation with the Steenrod powers mentioned earlier.
Finally in § 7 we translate things into rational eohomology and derive
Adams’s result.

The general exposition is considerably simplified by introducing the
functor Ky(X) for a G-space X (§ 2). We establish some of its elementary
properties but for a fuller treatment we refer to (4) and (9).

The key idea that one should consider the symmetric group acting on
the kth power of a complex of vector bundles is due originally to Grothen-
dieck, and there is a considerable overlap between our presentation of
operations in K-theory and some of his unpublished work.

Tam indebted to P. Cartier and B. Kostant for some very enlightening
discussions.

1. Tensor products and the symmetric group

For any finite group G we denote by R(Q®) the free abelian group
generated by the (isomorphism classes of) irreducible complex represen-
tations of @. Itis a ring with respect to the tensor product. By assigning
to each irreducible representation its character we obtain an embedding
of R(@) in the ring of all complex-valued class functions on G. We shall
frequently identify R(@G) with this subring and refer to it as the character
ring of G. For any two finite groups G, H we have a natural isomorphism

R(G) @ R(H) > R(G X H).

Now let S;, be the symmetric group and let {V,} be a complete set of
irreducible complex S,-modules. Here = may be regarded as a partition
of k, but no use will be made of this fact. Let E be a complex vector
space, E®¥ its kth tensor power. The group S acts on this in a natural
way, and we consider the classical decomposition

E® ~ 3V, Qn(E),
where n(E) = Homg(V,, E®*). We note in particular the two extreme
cases: if V, is the trivial one-dimensional representation, then =(F) is
the kth symmetric power o*(E); if V, is the sign representation, then
w(E) is the kth exterior power A*(E). Any endomorphism 7 of E induces
an S,-endomorphism 7'®* of E®*, and hence an endomorphism =(T') of
m(E). Taking T € GL(E), we see that =(E) becomes a representation
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space of GL(E), and this is of course the classical construction for the
irreducible representations of the general linear group. For our pur-
poses, however, this is not relevant. All we are interested in are the
character formulae. We therefore proceed as follows.

Let £ = C™ and let 7' be the diagonal matrix (¢,,...,%,). Since the
eigenvalues of 7'® are all monomials of degree % in ¢,,...,¢,, it follows
that, for each =, Trace #(7) is a homogeneous polynomial in ¢,,...,¢,
with integer coefficients. Moreover, Trace 7(T") = Trace(n(S-11'S)) for
any permutation matrix S and so Tracen(7') is symmetric in ¢,,...,,.
We define

A, ; = Traceg,(T®) = ¥ Tracen(T) ® [V,] € Symy[t,,...,t,] @ R(S),

where [V} € R(S,) is the class of V. and Sym,[¢,,...,¢,] denotes the
symmetric polynomials of degree k. If we regard E(S,) as the character
ring, then A, is just the function of ¢,,...,¢, and g € §; given by
Trace(g7'®). There are a number of other ways of writing this basic
element, the simplest being the following proposition:

ProrosiTioN 1.1. For any partition o = (oy,..., o) of k let p, € R(S})
be the representation induced from the trivial representation of
By == 8y X8y X oot X8y
then A= My ®Pa’

O,
where m, is the monomial symmetric function generated by 33 ...1% and
the summation is over all partitions of k.

Proof. Let E* be the eigenspace of 7'®* corresponding to the eigen-
value 31#3*... 1. This has as a basis the orbit under S, of the vector

ey = ePM Qef™ ... Q@ e,
where e,,..., ¢, are the standard base of C*. Since the stabilizer of e is

just the subgroup 8,, it follows that E=is the induced representation p,,.
Since 8, and Sg are conjugate if « and B are the same partition of k, it

follows that A = ; B Rpy= D My ®Pos
lef =% ok

where the first summation is over all sequences «y, ay,... with
o] = oy = k.
Now let us introduce the dual group
R, (S,) = Homg(R(S,),Z).
Then A, ;, defines (and is defined by) a homomorphism
;z,k: B (Sy) - Symyft,,..., ¢, ]
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From the inclusions S X8 = Sy
we obtain homomorphisms
R(S,) > RS, X8) =2 R(S,) ® R(S)
and hence by duality
R.(8r) ® By(S) - By (Sp)-
Putting R, = 3 R,(S,) we see that the above pairings turn R, into
x>0
a commutative graded ring. This follows from the fact, already used in

Proposition 1.1, that S, and Sg are conjugate if « and 8 are the same
partition. Moreover, if we define

AL: R, — Syml[t,,..., t,]
by A, = 3 A, we see that A;, is a ring homomorphism. This follows
from the multiplicative property of the trace:
Trace(g, 9, T®%+) = Trace(g, T'®*)Trace(g, T'),
where g, € 8;, g, € S;. Finally we observe that we have a commutative
diagram

Ania

.R* —_ Sym[tl, ree ,tn]

Ay

Sym [tlﬁ veey tn]
where the vertical arrow is given by putting £,,, = 0. Hence passing
to the limit we can define
A’: R, — lim Symlt,,...,£,].
n
Here the inverse limit is taken in the category of graded rings, so that

li-E Symlt,,...,8,] = kZo lgll Symy[¢y,..., tal
n - n

is the direct sum (and not the direct product) of its homogeneous parts.
ProrpostTioN 1.2. A’: Ry - lim Syml[t,,...,¢,]

n
s an isomorphism.

Proof. Let o* € R,(S;) denote the homomorphism R(S,)—>Z
defined by Hl)=1, o*F)=0 ifV, #1,
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where 1 denotes the trivial representation. Since #(E) is the kth sym-
metric power of £ when ¥, = 1, it follows from the definition of A}, ,, that
A;t,k(o'k) = hk(tl’""tn)
is the kth homogeneous symmetric function (i.e. the coefficient of 2* in
TT(1—=zt,)1). Since the &, are a polynomial basis for the symmetrio
functions, it follows that A, is an epimorphism for all n. Now the rank
of R(S,) is equal to the number of conjugacy classes of S;, that is the
number of partitions of %, and hence is also equal to the rank of
Symy[ty,...,£,] provided that n > k. Hence
;,,k: R*(Sk) id Symk[tl,..., t.n]
is an epimorphism of free abelian groups of the same rank (for » > k)
and hence is an isomorphism. Since
Symk[tl,..., tﬂ+l] - Symk[tl,\.., t,n]

is also an isomorphism for n > %, this completes the proof.

CoroLLARY 1.3. R, is a polynomial ring on generators ol,o?,....

Instead of using the elements o* € R,(S,) we could equally well have
used the elements A* defined by

N(V) =1 if V, is the sign representation.
AE(V.) = 0 otherwise.
Since n(E) is the kth exterior power when = is the sign representation
it foll ’

of 8,, it follows that V) = eltyennr )
is the kth elementary symmetric function. Thus R, is equally well a
polynomial ring on generators A%, A%,....

CorOLLARY 1.4. Let A,; =3 a; @b; with a; e Symylt,,...,t,] and
b; € R(8,), and suppose n = k. Then the a, form a base if and only if the
b, form a base. When this is so the a; determine the b; and conversely, i.e.
they are ‘dual bases’.

Proof. This is an immediate reinterpretation of the fact that A, ; is
an isomorphism.
CorROLLARY 1.5. The representations p, form a base for R(S,).

Proof. Apply Corollary 1.4 to the expression for A, given in Pro-
position 1.1. Since the m, are a basis for the symmetric functions, it
follows that the p, are a basis for R(S,).

CoROLLARY 1.6. The characters of S, take integer values on all conjugacy
classes.
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Proof. The characters of all p, are integer-valued and so Corollary 1.6
follows from Corollary 1.5.

Note. Corollary 1.6 can of course be deduced fairly easily from other
considerations.

Let C(8,) denote the group of integer-valued class functions on ;.
By Corollary 1.6 we have a natural homomorphism

R(S,) = C(Sy)-

‘This has zero kernel and finite cokernel, and the same is therefore true
for the dual homomorphism

CalSi) > By (S).
The direct sum C, = > C,(S;) has a natural ring structure, and
k50
C,—~ R,

is a ring homomorphism. We shall identify C, with the image subring
of R,. From its definition, C,(S;) is the free abelian group on the
conjugacy classes of S;. Let y* denote the class of a k-cycle. Then O, is
a polynomial ring on y!,y2,.... The next result identifies the subring
A’(C,) of symmetric functions:

PROPOSITION 1.7. AL(J¥) = mylty,....t,) = 3 8§ so that A'(C}) is the
i=1

1=

subring generated by the power sums my,.
Proof. By definition we have

A, (§*) = Trace(gT®¥),
where g € S, is a k-cycle. Now use Proposition 1.1 to evaluate this trace

and we get Ay g = agk Mo po(9)-

But, if H c @, any character of @ induced from H is zero on all elements of
G not conjugate to elements of H. Hence, taking H = 8, G = §;, we
see that p(g9) = 0 unless « = k (i.e. « is the single partition ). Since

= 1, d d ( ’
Pi(9) we deduce AL = my,
as required.
CorOLLARY 1.8. Let Q, be the Newton polynomial expressing the power
sum my, in terms of the elementary symmetric functions e,,..., e, i.e.

my, = Qrleys---> x)s
then Y = @(A%,...,A¥) e R,.
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Remark. Let us tensor with the rationals Q, so that we can introduce
e € B(S) ® Q,

the characteristic function of the conjugacy class defined by the partition

a. Then Proposition 1.7 is essentially equivalent to the following
expression [cf. (11) VII (7.6)] for A, ,,

An,k = agk.pa(t) Rey € Symk[tls"" tn] ® R(Sk) ®Q,

where p,, is the monomial in the power sums

2
Py = ];[1 (mg)%, o= 1920,
Since A’(A;) = ¢, it follows that we can write A, ; in the form

An,k = a%c Qa(t) ®bw

where g, is the monomial in the elementary symmetric functions
k
qa = ]_-I (e;)“‘, a = 1 ¢ very
i=1

and the b, are certain uniquely defined elements in R(S,). We shall not
attempt to find b, in general, but the following proposition gives the
‘leading coefficient’ b,.

PropositioN 1.9. Let M denote the (k—1)-dimensional representation
k
of 8, given by the subspace; 2; = 0 of the standard k-dimensional represen-
=1
tation. Let AY(M) denote the ith exterior power of M, and put

A_(M) = 3 (—1)AYM) € B(S).
Then we have

A, = (—1)k-le(t) ® A_;(M)+-composite terms,
where ‘composite’ means involving a product of at least two e(t).
Proof. In the formula
An,k = a|2-;4 qa(t) ®bw
the b, are the basis of R(S,) dual to the basis of R,(S,) consisting of
monomials in the A!, Thus b, is defined by the conditions
<bks ’\k> =1,
g, u) =0

if » is composite in the X’. Since the ! are related to the X! by the
equations of Corollary 1.8

P* = Qu(A,..., A¥) = (—1)*-1kA,4-composite terms,
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we can equally well define b, by the conditions
(bk’ ‘/’k> = (_ l)k-lk>
<bk’ u> =0
if u is composite in the *. To prove that b, = (—1)*-1A_,(M), it remains
therefore to check that the character A_,(M) vanishes on all composite
classes and has value k on a k-cycle. Now, if g € S, is composite, i.e. not a

k-cycle,it has an eigenvalue 1 when actingon M ;if g = (1...r)(r+-1,...8)...
is the cycle decomposition, the fixed vector is given by

1 , 1 .
Ry = ; (1 <1 < 7‘), 2 _E (.7 > T).

Since A_;(M)(g) = det(1—g,,), where g,, is the linear transformation
of M defined by g, the existence of an eigenvalue 1 of g, implies
A_(M)(g) = 0. Finally take g = (1 2... k) and consider the k-dimen=
sional representation N = M @ 1. Then g, is given by the following
matrix 0 1

gy =

1
and so det(1—tgy) = 1—tk. Hence

det(1—tgy) = det(l—tgy).(1—¢)~*

1 2 k-1
= = L,
and so A_(M)(g) = det(l—gy) = &,

which completes the proof.
If G c 8, is any subgroup, then we can consider the element

A, (@) € Symy[ty,....t,] @ B(G)
obtained from A, ;. by the restriction : RB(Sy) - R(G). Similarly
AL x(@): R (G) - Symyft,..., £,]
is the composition of A, ; and
N5 By(G) > By (Sy).

Consider in particular the special case when k = p is prime and G = Z,
is the eyclic group of order p. The image of

n: R(8,) - R(Z,)
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is generated by the trivial representation 1 and the regular representation
N of Z, (this latter being the restriction of the standard p-dimensional
representation of §,). Hence we must have

An,p(z:p) = a(t) ® 1+b(t) RN
for suitable symmetric functions a(f), b(t). Evaluating R(S,) on the
identity element we get

‘ef = a+pb.
Evaluating on a generator of Z, and using Proposition 1.7 we get
my = a.
ef—m . . . .
Hence b = 1—2 which has, of course, integer coefficients since
' (Zt)p =37 modp.
Thus we have established the proposition:

ProrosITION 1.10. Let p be a prime. Then restricting A, ,, from the sym-
metric group to the cyclic group we get

My

App(Z,) = m,, ®l+ ®N,

where N is the regular representation of Z,.
Let 67 € R,(S,) be the element corresponding to

ef 9"y o Sym,[t,,...,t,]

by the isomorphism of Proposmon 1.2 (for n = p), i.e.
g — ef— g—my
& P
Then Proposition 1.10 asserts that 6 is that homomorphism R(S,)—~Z

which gives the multiplicity of the regular representation N when we
restrict to Z,. Thus, for p € R(S,), '

7(p) = YP(p)1+67(p)N, (L.11)
where 7: R(S,) - R(Z,) is the restriction.

2. Operations in K-theory

Let X be a compact Hausdorff space and let @ be a finite group. We
shall say that X is a G-space if G acts on X. Let E be a complex vector
bundle over X. We shall say that Z is a G-vector bundle over the G-
space X if ¥ is a G-space such that

(i) the projection £ - X commutes with the action of @,

(ii) for each g € G the map E, — E, is linear.
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The Grothendieck group of all G-vector bundles over the G-space X is
denoted by K (X). Note that the action of & on X is supposed given:
it is part of the structure of X. Since we can always construct an in-
variant metric in a G-vector bundle by averaging over G, the usual
arguments show that a short exact sequence splits compatibly with G.

Hence, if 0O>E >E,>..>E,—~>0

is a long exact sequence of G-vector bundles, the Euler characteristic
> (—1){E;] is zero in K4(X). For a fuller treatment of these and other
points about & ;(X) we refer the reader to (4) and (9).

In this section we shall be concerned only with a trivial G-space X,
ie. g(x) = z for all x € X and g € G. In this case a G-vector bundle is
just a vector bundle E over X with a given homomorphism

G—> Aut E,

where Aut ¥ is the group of vector bundle automorphisms of E. We
proceed to examine such a G-vector bundle.

The subspace of E left fixed by & forms a subvector bundle E¢ of E:
in fact it is the image of the projection operator

1
I—GTI;;Q,

and the image of any projection operator is always a sub-bundle (4). If
E, F are two G-vector bundles, then the subspace of Hom(Z, F) con-
sisting of all ¢ : B, - F, commuting with the action of @ forms a sub-
vector bundle Homg(Z, F): in fact Homy(E, F) = (Hom(E, F))¢. In
particular let ¥ be a representation space of @, and let V denote the
corresponding G-vector bundle X XV over X. Then, for any G-vector
bundle E over X, Hom4(V, E) is a vector bundle, and we have a natural
homomorphism V ® Hom(V, E) - E.

Now let {V,}... be a complete set of irreducible representations of ¢
and consider the bundle homomorphism

a: >{V, @ Hom(V,, E)} > E.

For each x € X, «, is an isomorphism. Hence « is an isomorphism. This
establishes the following proposition:

ProposrrioN 2.1. If X is a trivial G-space, we have a natural iso-
morphism K(X) ® R(G) -~ Ky(X).

In particular we can apply the preceding discussion to the natural
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action of S, on the k-fold tensor product £® of a vector bundle E. Thus
we have a canonical decomposition compatible with the action of S,

E® ~ 3 {V, ® Homg(V,, E®¥)}.

We put w(B) = Homg,(V,,, E®k),

Thus 7 is an operation on vector bundles. In fact #(Z) is the vector
bundle associated to E by the irreducible representation of GL(n)
(n = dim E) associated to the partition =, but this fact will play no
special role in what follows.

Our next step is to extend these operations on vector bundles to
operations on K(X). For this purpose it will be convenient to represent
K(X) as the quotient of a set ¥(X) by an equivalence relation (elements
of €(X) will play the role of ‘cochains’). An element of ¥(X) is a graded
vector bundle F = 3 E;, where E; = 0 for all but a finite number of

1€,
values of i. We have a natural surjection

¢(X) - K(X)
given by taking the Euler characteristic [E]= > (—1){[E;]. The
equivalence relation on €(X) which gives K(X) is clearly generated by
isomorphism and the addition of elementary objects, i.e. one of the form
> P, with
B=PF,, (forsomej), PB=0 (i#j,j+1).

Similarly for a G-space X we can represent K;(X) as a quotient of
%(X), where an element of €5(X) is a graded G-vector bundle.

Suppose now that E € €(X) is a graded vector bundle. Then E®* is
also a graded vector bundle, the grading being defined in the usual way
as the sum of the degrees of the & factors. We consider S, as acting on
E®k by permuting factors and with the appropriate sign change. Thus a
transposition of two terms ¢, ® ¢, (where ¢,, € E,, ¢, € E) carries with it
the sign (—1)?¢, The Euler characteristic [ E®*] of £®* is then an element
of .Ksk(X ).

ProrosITION 2.2. The element [E®*] € Kg(X) depends only on the
element [E] € K(X). Thus we have an operation:
®k: K(X) -» Kg(X) = K(X) ® R(S,). |
Proof. We have to show that, if P is an elementary object of €(X),
then [(B@ P)o¥] = [E%] € Kg(X).
But we have an S;-decomposition:

(E® P)® ~ E®*® Q.
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We have to show therefore that [@] = 0in K, (X). To do this we regard
E as a complex of vector bundles with all maps zero and P as a complex
with the identity map P; > P;,;. Then (E @ P)®* is a complex of vector
bundles, and S, acts on it as a group of complex automorphisms (because
of our choice of signs). The same is true for E®* and Q. Now @ contains
P as a factor, and so @ is certainly acyclic. Hence, by the remark at the
beginning of this section, we have [@] = 0 in K, (X) as required.

Remark. 1f we decompose E®* under S,
E® ~ 3 V, @=(E),

where #(E) = Homg,(V,, E®*), Proposition 2.2 asserts that K+ n(E)
induces an operation = K(X) > K(X).

Let Op(K) denote the set of all natural transformations of the functor
K into itself. In other words, an element 7' € Op(K) defines for each
X a map T(X): K(X) - K(X),
which is natural. We define addition and multiplication in Op(K) by
adding and multiplying values. Thus, for a € K(X),

(T+8)(X)a) = T(X)(@)+8(X)a,
T8(X)a) = T(X)a.S(X)a.
If we follow the operation
ok:K(X) > K(X) ® R(S,)
by a homomorphism ¢: R(S;) - Z we obtain a natural map
Ty: K(X) -~ K(X).
This procedure defines a map
Ji: B4(S) ~ Op(K)
which is a group homomorphism. Extending this additively we obtain
a ring homomorphism j:R,— Op(K).
We have now achieved our aim of showing how the symmetric group
defines a ring of operations in K-theory. The structure of the ring R,
has moreover been completely determined in § 1. We conclude this
section by examining certain particular operations and connecting up
our definitions of them with those given by Grothendieck [cf (5); § 12]

and Adams (2).
To avoid unwieldy formulae we shall usually omit the symbol j and
just think of elements of R, as operations. In fact it is not difficult to

3606.2.17 N
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show that j is a monomorphism (although we do not really need this
fact), so that R, may be thought of as a subring of Op(K).

All the particular elements that we have described in § 1, namely
ok, X¢, ¥ 8P, can now be regarded as operations in K-theory. From the
way they were defined it is clear that, if £ is vector bundle, then A*[ E]
is the class of the kth exterior power of E, and o*( E) is the class of the kth
symmetric power of E. A general element of K(X) can always be re-
presented in the form [ E,] —[£,], where E,, E, are vector bundles. Taking
(E, ® E,)®* as an S;-complex and picking out the symmetric and skew-
symmetric components, we find

HUB—TB)) = 3, (—1Pot BV, (1)
M{(B—[B) = 3, (—1YNEJol( ). 2

Putting formally A, = Y Mu*, o, = Y o*u¥, where u is an indeterminate,
and taking E, = E, in (1), we get

o B\ [E] = L (3)
This identity could of course have been deduced from the corresponding

relation between the generating functions of ¢, and &, by using the iso-
morphism of (1.2). Now from (2) we get

A((Eol—Ey]) = Al Eo)o [ By
= ALE BT by (3).

This is the formula by which Grothendieck originally extended the A*
from vector bundles to K. Thus our definition of the operations A*
coincides with that of Grothendieck. Essentially the use of graded tensor
products has provided us with a general procedure for extending opera-
tions which can be regarded as a generalization of the Grothendieck
method for the exterior powers.{

Adams defines his operations y* in terms of the Grothendieck A* by
use of the Newton polynomials

. ¢k = Qk(Alr"’Ak)'
Corollary 1.8 shows that our definition of * therefore agrees with that
of Adams. An important property of the y* is that they are additive.
We shall therefore show how to prove this directly from our definition.

ProrositioN 2.3. Let E, F be vector bundles, then
YH[EVLIF]) = *[E]Ly*(F].

1 This fact was certainly known to Grothendicck.
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Proof. Construct a graded vector bundle D with D, = E, D, = F and
consider D®., The same reasoning as used in Proposition 1.1 shows

that % |
[D]ek =120 (—1)yind,[E®*~ @ F®] e K(X) ® R(S;),

where ind;:K(X) @ R(S;,_;X8)) > K(X) ® R(S,) is given by the
induced representation. Here E®*-/ is an §_;-vector bundle via the
standard permutation, while S; acts on F®/ via permutation and signs.
To obtain ¢*[D] we have to evaluate R(S,) on a k-cycle. As in Proposi-
tion 1.1 all terms except j = 0, k give zero; since the sign of a k-cycle is
(—1)*-1 we get
M E]—[F]) = YHE1H-(—1)(— 1)t F]
= Y E]—y*[F].

For [E]+4[F] the argument is similar but easier.

The multiplicative property

YHE @ F] = Y EWYHMF]
follows at once from the isomorphism
(E @ F)®k o E®k @ Fok

and the multiplicative property of the trace.

Suppose now that we have any expansion, as in Corollary 1.4, of the
basic element A, ;, in the form

An,k = z a; ® bis
where the a; € Sym,[t,,...,#,] are a basis and the b, € R(S,) are therefore
a dual basis (assuming » > k). Then, for any x € K(X), we obtain a
corresponding expansion for z®*:
z®* = o)(z) ®b; € K(X) ® R(Sy),

where a; = (A")"1a; € R,. This follows at once from the definition of A’
and the way we have made R, operate on K(X).

Taking the a; to be the monomials in the elementary symmetrio
functions the «, are then the corresponding monomials in the exterior
powers X°. Proposition 1.9 therefore gives the following proposition:}

ProrosrTioN 2.4. For any x € K(X) we have
Z®k = (—1)k-1Ak(z) @ A_;(M)+composite terms,
where ‘composite’ means involving a product of at least two X(x) and M is
the (k—1)-dimensional representation of Sj.

+ Now that we have identified the A% of § 1 with the exterior powers we revert
to the usual notation and write A¥(M) instead of A%(M), and correspondingly
M_(M) instead of A_y(M).

N2
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Now let us restrict ourselves to the cyclic group Z,. The image of
z®% in K(X) ® R(Z,) will be denoted by P*x) and called the cyclic
kth power. In the particular case when k& = p (a prime), (1.11) leads to
the following proposition:

ProPOSITION 2.5. Let p be a prime and let x € K(X). Then the cyclic

pth power PP(x) is given by the formula
Pr(x) = ¢*(z) @ 1+67(x) @ N € K(X) ® R(Z,),

where N s the regular representation of Z,,.

Now ¢? and 67 correspond, under the isomorphism

A":R, —~ liin Syml[t,,..., t,],
n
to the polynomials > # and w respectively. Hence they are
related by the formula z
PP = (PP —pb?,
so that, for any x € K(X), we have
PP (@) = 2P —pfP(x).

Substituting this in (2.5) we get the formula

Pr(z) = 27 Q@ 14-07(x) Q (N—p). (2.6)
This is a better way of writing (2.5) since it corresponds to the decomposi-
tion R(Z,) = Z©1(Z,),

where I(Z,) is the augmentation ideal. Thus
0?(x) @ (N—p) € K(X) @ I(Z,)
represents the difference between the pth cyclic power P?(x) and the
‘ordinary’ pth power 2?2 ® 1.
Proposition 2.5 leads to a simple geometrical description for y*[V],
where V is a vector bundle. Let 7' be the automorphism of V®? which

permutes the factors cyclically and V; be the eigenspace of I' corre-
sponding to the eigenvalue exp(2mij/p). Then

YP[V] = [Kl—hl 2.7)
In fact from Proposition 2.5 we see that
Vol = y*[V1+-07[V],
Wl=6°[V] (j=1,.,p—1).



ON POWER OPERATIONS IN K-THEORY

3. External tensor powers

For a further study of the properties of the operation ® k it is neces-
sary both to ‘relativize’ it and to ‘externalize’ it.

First consider the relative group K4(X,Y), where X is a G-space,
Y a sub G-space. As with the absolute case we can consider K,(X,Y) as
the quotient of a set €4(X, Y) by an equivalence relation. An object £
of €4(X,Y) is a G-complex of vector bundles over X acyclic over Y,
i.e. F consists of G-vector bundles E; (with E; = 0 for all but a finite

number) and homomorphisms

d d
- B> By~

commuting with the action of G, so that d2 = 0 and over each point of
Y the sequence is exact. An elementary object P is one in which P, =0
(¢ #3, j+1), F,= P, and d:F;— P, is the identity. The equi-
valence relation imposed on €(X, Y) is that generated by isomorphism
and addition (direct sum) of elementary objects. Then, if £ e €y«(X,Y),
its equivalence class [E] € K4(X,Y). For the details we refer to (4).
For the analogous results in the case when there is no group, i.e. for the
definition of K(X,Y) as a quotient of ¥(X,Y), we refer to (7) [Part II].

Consider next the external tensor power. If E is a vector bundle over
X, we define E®Bk 40 be the vector bundle over the Cartesian product:
X* (k factors of X) whose fibre at the point (x,Xx,X...X%) is
E,QFE,Q..RHE,. Thus ERk js an §,-vector bundle over the Sy
space X%, the symmetric group S, acting in the usual way on X* by
permuting the factors. Clearly, if

| d:X > Xk
is the diagonal map, we have a natural S;-isomorphism
d*(E¥k) ~ gek. (3.1)

If E is a complex of vector bundles over X, then we can define in an
obvious way ER_ which will be a complex of vector bundles over X*.
Moreover BB will be an S,-complex of vector bundles, X* being an S -

space as above. If F is acyclic over Y c X, then ERk will be acyclic over
the subspace of X consisting of points (z, X%y X... X#;) with z; € Y for
at least one value of s. We denote this subspace by X*-1Y and we write
(X, Y)* for the pair (X*, X¥-1¥). Thus we have defined an operation

Rk:€(X,Y) > G (X, V)%
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The proof of (2.2) generalizes at once to this situation and establishes

ProposiTiON 3.2. The operation E > E®E snduces an operation
Rk:K(X,Y) > Ky (X, Y).
COROLLARY 3.3. If x is in the kernel of K(X) — K(Y), then z8* is in
the Rernel of K (X¥) > Ko (X-1Y).

Proof. This follows at once from (3.2) and the naturality of the
operation X .
From (3.1) we obtain the commutative diagram

Xk
K(X) > (x¥)
s,
Sk a* (3.4)
K (x)

S
*

4. Operations and filtrations

From now we assume that the spaces X, Y,... are finite CW-complexes.
Then K(X) is filtered by the subgroups K,(X) defined by

K(X) = Ker{K(X) > K(X, )},
where X, denotes the (g—1)-skeleton of X. Thus Ky(X) = K(X) and
K,(X) = 0if dim X < n. Moreover, as shown in (8), we have
qu(x) = qu—l(x )

for all . Since any map ¥ — X is homotopic to a cellular map, it follows
that the filtration is natural.

In [8] it is shown that K(X) is a filtered ring, i.e. that K, K, c K, .,.
In particular it follows that

z € K(X) = o* € Kp,,(X).

We propose to generalize this result to the tensor power Qk.

We start by recalling (5) that, for any finite group, there is a natural

homomorphism a: R(Q) -~ K(Bg),
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where By is the classifying space of G. This homomorphism arises as
follows. Let 4 be the universal covering of B and V be any G-module.
Then A X 4V is a vector bundle over Bg. The construction V> A X oV
induces the homomorphism

a: R(G) — K(By).
This construction can be generalized as follows. Let X be a G-space and
denote by X ; the space 4 X ; X. If V is a G-vector bundle over X, then

Vi=A4XgV
is a vector bundle over X ;. The construction V +—> ¥ then induces a
homomorphism ax: Kg(X) > K(Xg).

A couple of remarks are needed here. In the first place there is a clash of
notation concerning B, To fit in with our general notation we should
agree that ‘B’ is a point space. Secondly X, like By, is not a finite
complex. Now Bg; can be taken as an infinite complex in which the
g-skeleton B, is finite for each ¢, and K(B) can be defined by
K(B) = lim K(B,,).
q

If we suppose that G acts cellularly on X, then we can put
Xgg= A4, XgX, where 4, is the universal covering of Bg, and X,
will be a finite complex. We then define

K(X () = lim K(X ;).

In fact, as will become apparent, there is no need for us to proceed to the
limit. All our results will essentially be concerned with finite skeletons,
We have introduced the infinite spaces B, X ; because it is a little tidier
than always dealing with finite approximations.
Applying the above to the group S, and the spaces X (trivial action)
and X* (permutation action) we obtain a commutative diagram
Ko (X—2 L K(X%,)
a* a*
(4.1)

K (X)——2— > K(Xg,)

K(X) ® R(S;}——K(X X Bg,),
where d* is induced by the diagonal map d: X — X*.
PropositioN 4.2. Let x € K (X), then
o s(#8%) € Kipy( XE,).
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Proof. By hypothesis z is in the kernel of
K(X)—~> K(X,,).

Hence applying (3.3) with ¥ = X,_, we deduce that 28 ig in the kernel
of p in the following diagram

Kg(XH—"—>K(X},)
P
Y
Kg(X¥1X, 1) —— K((X*1X 1))
The required result now follows from this diagram, provided that we

verify that (XEDig € (X*1X, 1),

But any cell ¢ of the (kg—1)-skeleton of X% = X* X4 A arises from
a product of k cells of X and a cell of A. Hence at least one of the cells
of X occurring must have dimension less than ¢, and so o is contained in
(Xk—l'Xq—l)S;, = 'Xk—IXq—l XS;‘A’
as required.
Since the filtration in K is natural, Proposition 4.2 together with the
diagram (4.1) and Corollary 3.3 gives our main result:

THEOREM 4.3. Let ®k:K(X) > K(X) ® R(S;) be the tensor power -
operation, and let
o: K(X) @ R(S;) -~ K(X X Bg,)

be the natural homomorphism. Then
X e Kq(X) = a($®k) € qu(x X‘BSk)'

CorOLLARY 4.4. Let dim X < n and let x € K (X). Then the image of
2% in K(X) @ K(Bg, yg—n-1) 18 zero.
Proof. By Theorem 4.3 2®* has zero image in K(X X Bg, yg—n-1)- But
for any two spaces A, B the map
K(4) ® K(B) > K(A X B)
isinjective (6). Hence x®*giveszeroin K(X) ® K(Bg, 3,—n-1) asTequired.
Remark. Theorem 4.3 suggests that for any finite group ¢ and G-
space X we should define a filtration on K (X) by putting
K(X)g = ax*K(X X Bg).
With this notation Theorem 4.3 would read simply
z € K(X) = 2% € Kg (X)y,.
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To exploit Theorem 4.3 we really need to know the filtration on
K(Bg,) as is shown by the following theorem:

THEOREM 4.5. Assume that K(X) 18 torsion-free and let diim X < n. Let
x € K (X) and assume that all products X{(x)N(x) with i, j > 0,i+j < k
vanish. Then X¥(x) is divisible by the least integer m for which

maA—l('M) € qu-n(BSk)’
M being as in Proposition 2.4. In particular this holds in the stable range
n < 2q.

Proof. The hypotheses and Proposition 2.4 imply that
28 = (—1)-2%@) @ A;(M) € K(X) ® R(S).

Let A = K(Bg,)/K;,-n(Bs,), so that 4 is a subgroup of K(Bg, 3, ,-1)-
From Corollary 4.4 and the fact that K(X) is free it follows that the
image of x®* in K(X) ® A must be zero. Hence A*(x) must be divisible by
the order of the image of A_;(M) in 4, i.e. by the least integer m for which

mod_y(M) € Ky,_n(Bg,)-

Remark. In the proof of Proposition 1.9 we saw that the character
of A_,(M) vanishes on all composite cycles of S;. Thus, if k£ is not a
prime-power, the character of A_,(M) vanishes on all elements of S, of
prime-power order and so by (5) [(6.10)] A_,(M) is in the kernel of the

homomorphism P

Hence od_;(M) =0 and so Theorem 4.5 becomes vacuous. Thus
Theorem 4.5 is of interest only when k is a prime-power.

In order to obtain explicit results it is necessary to restrict from S
to the cyelic group Z,. In this case the calculations are simple. First we
need the lemma:

LeMMA 4.6. Let Y = By, then

K (Yzq—l) == R(Z(c)/ I (Zk)q~

Proof. Since Y has no odd integer cohomology, it follows that

KY(Y,Y,, ;) = 0, and so from the exact sequence of this pair we deduce
E(Yyyy) 2 K(Y)/Kyy(¥).
But we know [(5) (8.1)] that
N
K(Y) =< R(Zy),

and K, (Y) is the ideal generated by I(Z;)?. Hence

K(Y)|Kao(Y) 2= R(Z;)[1(Z)5,
and the lemma is established.
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Remark. The results quoted from (5) are quite simple, and we could
easily have applied the calculations used there directly to Yy, ;.
Combining Corollary 4.4 and Lemma 4.6 we deduce the proposition:

ProrosiTION 4.7. Let dim X < 2m and let € Ky)(X). Then the kth
cyclic power P¥(x) € K(X) ® R(Z,) ts in the image of K(X) @ I(Z;)am.

The case when ¥ = p, a prime, is of particular interest because Z, is
then the p-Sylow subgroup of S,,. This means that, as far as p-primary
results go, nothing is lost on passing from S, to Z,,. In the next section
therefore we shall study this case in detail.

5. The prime cyclic case

LemMa 5.1. Let p e R(Z,) denote the canonical one-dimensional

representation of Z,, p—1
N=2p
i=0

the regular representation and n = p—1.
N
Then in R(Z,) we have
PYN —p) = (—1)ky*+DP-D L higher terms.

Proof. Since p? = 1, we have (14-5)? = 1. Thus #? = —pne, where
¢ = 1 mod 7 and so is a unit in B. Hence

(—=p)p ~ 77, (1)

where we write a ~ b if a = €b with ¢ = 1 mod . Now the identity

=1 —

M:Z (142) = (iﬂt)_’;_l = p+t*-1 modpt

=0

with ¢ replaced by 5 shows that
N—p = 7?1 modpy
= 7?1 mody? by (1).

Hence we have (N—p) ~ 521, )
From (1) we have (—pYey ~ pk@-1)p,
and so (—pYeqp—1 ~ yl+DXo-D), (3)

The lemma now follows from (2) and (3).

CorOLLARY 5.2. The order of the image of (N—p) in R(Z,)[I(Z,)" is
p* where k is the least integer such that k41 > —17'—1- .

Proof. 1(Z,) is the ideal (7).
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We can now state the explicit result for the prime case:

THEOREM 5.3. Suppose that dim X < 2(q-+t) with ¢ < g(p—1) and
let x € Kp((X). Then 6°(x) is divisible by p?—-1, where

-5t

Proof. Since dim X < 2¢gp, we have «? = 0. Hence by Proposition
2.5 we have
Pr(z) = 67(x) ® (N—p) € K(X) ® R(Z,).
By Proposition 4.7 it follows that 67(z) is divisible by the order of the
image of (N—p) in R(Z,)/1(Z,)", where
n = pq—q—t.
From Theorem 5.3 it follows that 87(x) is divisible by p*, where k is the

least integer for which

t
(b+1) > g——=,

namely k =q_['§i_i]—l'

CorOLLARY 5.4. Let the hypotheses be the same as in Theorem 5.3.
Then J*(x) is divisible by p?~", where r = [p ¢ 1].

Proof. 4P and 67 are related by the formula
Yr(x) = 2P —phP(x).
Since z? = 0 in our case, we have

¢p(x) = —pap(x),
and so the result follows at once from Corollary 5.2.

Remark. Taking ¢t = 0 we find that () is divisible by p? on the
sphere S2¢. Note that this result was not fed in explicitly anywhere. It
is of course a consequence of the periodicity theorem, and the computa-
tion we have used for K(B;,) naturally depended on the periodicity
theorem.

The preceding results take a rather interesting form if X has no
torsion. First we need a lemma;:

Lemma 5.5. Suppose that X has no torsion (i.e. H¥(X, Z) has no torsion)
and let x € K(X). Suppose that the image of « in K(X,) is divisible by d.
Then x is divisible by dmodulo K, ,(X), i.e.

z=dy+z, yeK(X), zeK;,(X)
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Proof. Let A, B denote the image and cokernel of
J*: K(X) - K(X,).

From the exact sequence of the pair (X, X,) we see that B is isomorphio
to a subgroup of KX, X ). But, since X is torsion-free, so is X/X,.
Hence K*(X, X ) is free and therefore also B. Hence, if a € 4 is divisible
by d in K(X), it is also divisible by d in A. Taking a = j*(x) therefore
we have J*(x) = dj*(y) for some y € K(X),
and so x = dy+-z, for some z € Kerj* = K ,,(X).

Using this lemma we now show how Corollary 5.4 leads to the following
proposition:

ProrositioN 5.6. Suppose that X has no torsion and let x € K, (X).

Then there exist elements
Z; € K2q+2i(p—1)(X) (t=0,1,.,9)

such that P@) = 3 prin,
i=0
Moreover we can choose x, = xP.

Proof. By Theorem 5.3 the restriction of $(x) to the 2(g--¢)-skeleton,
with ¢ = i(p—1)—1, is divisible by p?-i+1. By Corollary 5.4 it follows
that yP(x) is divisible by p?-i+! modulo K, 4:,-1(X). The required
result now follows by induction on z. Since YP(z) = 2?modp and
a? € Ky, (X), it follows that 27 is a choice for ,.

The elements «; occurring in Lemma 5.6 are not uniquely defined by x.
If, however, we pass to the associated graded group GK*(X) and then
reduce mod p, we see that the element

&, € Quo-VK(X) @ Z,
defined by z; is uniquely determined from the relation

Py — a—iy .
o= £y
If we multiply « by p or add to it anything in Ky,.y(X), we see from
Lemma 5.5 that &; is unchanged. Hence Z; depends only on
7 € GUK(X) ® Z,,.

Now we recall [(8)§2] that, since X has no torsion, we have an
isomorphism of graded rings

H*(X,Z) >~ GK*(X),
~ and hence H*(X,Z,) >~ G*K(X) ® Z,.
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By this isomorphism the operation # - #; must correspond to some
cohomology operation. In the next section we shall show that this is
precisely the Steenrod power P5,.

6. Relation with cohomology operations
In the proof of Proposition 4.2 we verified that there was an inclusion
Ji( Xk, X;ckq—l) - (X, qu—l)k'
Hence we can consider the map
K(X,X 2q-1) - K (Xgp (ng)qu—l)

given by z > o * 8k If we follow this by a cellular approximation to
the diagonal map Xg, - X¥%,, we obtain a map

pK(X, Xp ) > K(Xg, (Xsi)akg-1)-
From its definition this is compatible with the operation
2 > d* xRk — op®k
for the absolute groups, i.e. we have a commutative diagram
K(X, Xy, 1) —> K(Xjg,, (Xsk)zlcq—l)
(6.1)

K(X) K(Xg,)

On the other hand, by restricting X to X,, and X g, to (X g,)arg We obtain
another commutative diagram

K(X, Xgy) ——— K(Xg,, (X5,)21g-1)

K( 2¢> qu—l) K((XSg)qur (XSE)%Q"I) (6°2)
0%(X) —— > CP4(Xy,)

where v is the map of cochains given by
vic) = d¥(c®c Q... ®c) Qrll. (6.3)
Here we have made the identification
C*(X%) = (C*(X) ®z... ®2 C*(X)) ® C*(4),
where A — Bg, is the universal S;-bundle and I" is the integral group
ring of 8, and similarly we identify
C*(Xg,) = C*(X) ®r C*(4).
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The commutativity of Diagram €.2 depends of course on the fact that
the isomorphism K(Xy, Xapq) o CH(X)
is compatible with (external) products.
The map » defined by (6.3) induces a map of cohomology (denoted
also by ») v H%(X,Z) > H¥%(X,, 7).
The diagrams (6.1) and (6.2) then establish the following

ProrosiTioN 6.4. Let & € K, (X) be represented by a € H*(X,Z) in the
speciral sequence H*(X,Z)= K*(X). Then o(x®*)c Ky, (Xg) 18
represented by v(a) € H*4(Xg,, Z) in the spectral sequence

H*(Xs,,Z) = K*(Xg,),
where v 18 induced by the formula (6.3).

Remarks. (1) It seems plausible that one could in fact define a tensor-
power operation mapping the spectral sequence of X into the spectral
sequence of X . Proposition 6.4 concerns itself only with the extreme
members E, and E,, (and only for even dimensions).

(2) The map v is essentially the parent of all the Steenrod operations,
while & +— x®% i the parent of all the operations in K-theory introduced
in § 2. Proposition 6.4 contains therefore, in principle, all the relations
between operations in the two theories. We proceed to make this explicit
in the simplest case:

THEOREM 6.5. Suppose that X has no torsion so that we may identify
H*(X, Z,) with GK*(X) ® Z,. If z € K,,(X)we denote the corresponding
element of H*(X, Z,) by %. Let

4 .
Dy — 3
PP ‘go P,
be the decomposition of Yz given by (5.6). Then we have
&; = Pi(@),
where Pi:H%(X, Z,) > H*+*0- X, Z,)
i8 the Steenrod power (for p = 2 we put Pt = Sqg?).

Proof. By Proposition 6.4 the map
P:K(X)~> K(X) @ R(Z,)
‘induces P:H~X,Z,)> H%X, Z,) @ H¥Z,, Z,,), (1)
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where P is v reduced mod p. Now by (2.6) and Lemma 5.5 (choosing
x, = «P) we have the following expression for P(z),

P(z) = 2, ®1— 3. % @p**- (N —p). @)
By definition of the Steenrod powers [(10) 112] we have
P@#) = f (— 1) Pi(F) @ nla-ixe-D);
i=0

where 7 is the canonical generator of H*(Z,; Z,,).
Comparing (1) and (2) and using Lemma 5.1 we have the result.

Remark. Proposition 6.5, together with the kind of calculations made
in (3), leads to a very simple proof of the non-existence of elements of
Hopf invariant 1 mod p (including the case p = 2).

7. Relation with Chern characters

If the space X has no torsion, it is possible to replace the operations
J* by the Chern character

ch: K*(X) » H*(X; Q).
In fact ch is a monomorphism and y* can be computed from the formulae
chz = ) chy(x), xeK(X), chy(x) e H4(X; Q)
q
chy*x = 3 kech,(x).
q
Conversely one can define H*(X; Q) and ch purely in terms of the
J¥ (3). It is reasonable therefore to try to express Theorems 5.6 and
6.5 in terms of Chern characters. We shall see that we recover the
results of Adams (1), at least for spaces without torsion.

If X is without torsion, we identify H*(X;Z) with its image in
H¥X; Q). If a € H¥X; Q), we can write a = b/d for b e H¥(X; Z)
and some integer d. If d can be chosen prime to p, we shall say that a is
p-integral.

TrEOREM 7.1. Let X be a spacewithouttorsion,x € Ky (X)andp aprime.
Then 2 ehg.(2)

18 p-integral, where t = [}zﬁ_i]

Proof. We proceed by induction on n. For n = 0 (and all ¢) the result
is a consequence of the periodicity theorem (8). We suppose therefore
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that n > 0 and the result established for all » << n—1. By Proposition
5.6 we have a .
Yo = > pix, ;€ Kypuap-1(X),

=0

and so chyPx = i pr-tcha,.
=
Taking components in dimension 2(¢+n) we get
¢ . n
P obyale) = 3 g b, t= 2] M
In particular, for n = 0, we have
ch,(x) = ch,(x,). (2)

Since X has no torsion, this implies that
y = 2—2 € Kpguo(X).
Replacing z, by z+y in (1) and multiplying by p'-? we get

PP —1ohgin@) = Pobyrny+ 3 Pichn@.  (3)

But by the inductive hypothesis (with ¢ replaced by ¢+1 and g+i(p—1)
(¢ > 1)) we see that all terms on the right-hand side of (3) are p-integral.
Hence pfch,,,(x) is p-integral and so the induction is established.
For any € K, ,(X) we denote by % € H*(X, Z,) the corresponding
element obtained from the isomorphism
GHK(X) ® Z, ~ H*¥(X; Z,).

Now, by Theorem 7.1, pfch, 4,y  is p-integral. We may therefore
reduce it mod p and obtain an element of H2+#®-1)(X; Z ). It follows
from Theorem 7.1 that this depends only on £. We denote it therefore
by T%), so that 7" is an operation

H>(X; Z,) ~ H?+¥e-)(X; Z,).
We now identify this operation.
THEOREM 7.2. The opemtiontz T is the inverse of the ‘total’ Steenrod
>0
power‘z P,
>0
i.e. (S T%) o (3 Pty = identity.

Proof. Asin Theorem 7.1 we have

[']
oo = 3 pria,,
=0
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Now in equation (1) above take n = ¢ (p—1) and multiply by p*-¢. Then

reducing mod p we get '
0=23 T-4&;) (t>0),
i=0

& = TO%,).

But by Theorem 6.5 we have &; = Pi#, and so we deduce

¢
0= (3 TPz, &= TOP%.

=0

In other words, the composition
ETHo (X P
is the identity operator as required.
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Introduction

THE K-theory of complex vector bundles (2, 5) has many variants and
refinements. Thus there are:

(1) K-theory of real vector bundles, denoted by KO,
(2) K-theory of self-conjugate bundles, denoted by KC (1)or KSC (7),
(3) K-theory of G-vector bundles over G-spaces (6), denoted by K.

In this paper we introduce a new K-theory denoted by K R which is,
in a sense, a mixture of these three. Our definition is motivated partly by
analogy with real algebraic geometry and partly by the theory of real
elliptic operators. In fact, for a thorough treatment of the index problem
for real elliptic operators, our K R-theory is essential. On the other hand,
from the purely topological point of view, K R-theory has a number
of advantages and there is a strong case for regarding it as the primary
theory and obtaining all the others from it. One of the main purposes of
this paper is in fact to show how K R-theory leads to an elegant proof of
the periodicity theorem for KO-theory, starting essentially from the
periodicity theorem for K-theory as proved in (3). On the way we also
encounter, in a natural manner, the self-conjugate theory and various
exact sequences between the different theories. There is here a consider-
able overlap with the thesis of Anderson (1) but, from our new vantage
point, the relationship between the various theories is much easier to see.

Recently Karoubi (8) has developed an abstract K-theory for suitable
categories with involution. Our theory isincluded in this abstraction but
its particular properties are not developed in (8), nor is it exploited to
simplify the KO-periodicity.

The definition and elementary properties of K R are givenin § 1. The
periodicity theorem and general cohomology properties for KR are
discussed in § 2. Then in § 3 we introduce various derived theories—
K R with coefficients in certain spaces—ending up with the periodicity
theorem for KO. In §4 we discuss briefly the relation of KR with
Clifford algebras on the lines of (4), and in particular we establish a
lemma which is used in § 3. The significance of K R-theory for the
topological study of real elliptic operators is then briefly discussed in § 5.
Quart. J. Math. Oxford (2), 17 (1966), 367-86.
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This paper is essentially a by-product of the author’s joint work with
I. M. Singer on the index theorem. Since the results are of independent
topological interest it seemed better to publish them on their own.

1. The real category

By a space with involution we mean a topological space X together
with a homeomorphism 7: X — X of period 2 (i.e. 72 = Identity). The
involution ~ is regarded as part of the structure of X and is frequently
omitted if there is no possibility of confusion. A space with involution
is just a Z,-space in the sense of (6), where Z, is the group of order 2. An
alternative terminology which is more suggestive is to call a space with
involution a real space. This is in analogy with algebraic geometry. In
fact if X is the set of complex points of a real algebraic variety it has a
natural structure of real space in our sense, the involution being given
by complex conjugation. Note that the fixed points are just the real
points of the variety X. In conformity with this example we shall
frequently write the involution 7 as complex conjugation:

7(x) = &.

By a real vector bundle over the real space X we mean a complex vector
bundle £ over X which is also a real space and such that

(i) the projection E — X is real (i.e. commutes with the involutions

on B, X);
(ii) the map E, - E; is anti-linear, i.e. the diagram
CXE,—~»E,
v Y
C X E@ —> Ej

commutes, where the vertical arrows denote the involution and
C is given its standard real structure (r(z) = Z).

It is important to notice the difference between a vector bundle in the
category of real spaces (as defined above) and a complex vector bundle
in the category of Z,-spaces. In the definition of the latter the map

Ex i EM)

is assumed to be complex-linear. On the other hand note that if E is a
real vector bundle in the category of Z,-spaces its complexification can
be given two different structures, depending on whether

Ex -> E‘r(z)
is extended linearly or anti-linearly. In the first it would be a bundle in
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the real category, while in the second it would be a complex bundle in
the Z,-category.

At a fixed point of the involution on X (also called a real point of X)
the involution on E gives an anti-linear map

7 B, > E,

with 72 = 1. This means that E, is in a natural way the complexification
of a real vector space, namely the +-1-eigenspace of 7, (the real points of
E,). In particular if the involution on X is trivial, so that all points of X
are real, there is a natural equivalence between the category &(X) of
real vector bundles over X (as space) and the category Z#(X) of real
vector bundles over X (as real space): define &(X)-—> % (X) by
E — E ®g C (Cbeing given its standard real structure) and # (X ) - &(X)
by F +> Fy (Fy, being the set of real points of F). This justifies our use of
‘real vector bundle’ in the category of real spaces: it may be regarded as
a natural extension of the notion of real vector bundle in the category
of spaces.

If E is a real vector bundle over the real space X then the space I'(E)
of cross-sections is a complex vector space with an anti-linear involution:
if s e I'(E), § is defined by
' 5(x) = s().

Thus I'(E) has a real structure, i.e. I'(#) is the complexification of the
real vector space I'(E)g.

If B, F are real vector bundles over the real space X a morphism
¢: E - F will be a homomorphism of complex vector bundles com-
muting with the involutions, i.e.

$(2) = ¢(e) (e € E).

E®cF and Homg(E, F) have natural structures of real vector
bundles. For example if ¢, € Homc(E,, F,) we define ¢, € Homc(E;, Fy)
by ) = B0 (uek).

It is then clear that a morphism ¢: £ — F is just a real section of
Homc(E, F), i.e. an element of (I'Homg(Z, F))g.

If now X is compact then exactly as in (3) [§ 1] we deduce the homo-
topy property of real vector bundles. The only point to note is that a real
section s over a real subspace ¥ of X can always be extended to a real
section over X; in fact if ¢ is any section extending s then }(¢+7) is a real
extension.

t+ The morphisms in #(X) will be defined below.
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Suppose now that X is a real algebraic space (i.e. the complex points of
a real algebraic variety) then, as we have already remarked, it defines in
a natural way a real topological space X, > Xy,,. A real algebraic
vector bundle can, for our purposes, be taken as a complex algebraic
vector bundle #: E — X where X, E, =, and the scalar multiplication
C X E — E are all defined over R (i.e. they are given by equations with
real coefficients). Passing to the underlying topological structure it is
then clear that E,,, is a real vector bundle over the real space X,,,,.

Consider as a particular example X = P(C»), (n—1)-dimensional
complex projective space. The standard line-bundle H over P(C") is
a real algebraic bundle. In fact H is defined by the exact sequence of

vector bundles 0> E-—>XxCr-sH-0,
where E c X X C* consists of all pairs ((z),u) € X X C" satisfying
z ui zi = 0.

Since this equation has real coefficients ¥ is a real bundle and this then
implies that H is also real. Hence H defines a real bundle over the real

space P(C").
As another example consider the affine quadric
Z 2+1=0.
i=1

Since this is affine a real vector bundle may be defined by projective
modules over the affine ring 4, = R[z,,...,2,]/( 3 23+1). Now the
intersection of the quadric with the imaginary plane is the sphere

n
§%=L

the involution being just the anti-podal map y > —y. Thus projective
modules over the ring 4, define real vector bundles over 8”1 with the
anti-podal involution. If instead we had considered the quadric

S2—-1=0
then its intersection with the real plane would have been the sphere with
trivial involution, so that projective modules over

— Rz 2]
=3y
define real vector bundles over S*»-1 with the trivial involution (and so
these are real vector bundles in the usual sense). The significance of S»-1
in this example is that it is a deformation retract of the quadric in our
~ category (i.e. the retraction preserving the involution).
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The Grothendieck group of the category of real vector bundles over a
real space X is denoted by K R(X). Restricting to the real points of X we
obtain a homomorphism.

KR(X) > KR(Xg) >~ KO(Xpg).
In particular if X = X;, we have
KR(X) ~ KO(X).

For example taking X = P(C") we have X, = P(R") and hence a
restriction homomorphism

K R(P(C")) > KR(P(R") = KO(P(R™)).

Note that the image of [H] in this homomorphism is just the standard real
Hopf bundle over P(R").

The tensor product turns K B(X) into a ring in the usual way.

If we ignore the involution on X we obtain a natural homomorphism

¢: KR(X) - K(X).

If X = X then this is just complexification. On the other hand if E is
a complex vector bundle over X, @ 7*E has a natural real structure
and so we obtain a homomorphism

r: K(X) > KR(X).

If X = X then this is just ‘realization’, i.e. taking the underlying real
space.

2. The periodicity theorem

We come now to the periodicity theorem. Here we shall follow care-
fully the proof in (3) [§ 2] and point out the modifications needed for our
present theory.

If E is a real vector bundle over the real space X then P(Z), the projec-
tive bundle of E, is also a real space. Moreover the standard line-bundle H
over P(E) is a real line-bundle. Then the periodicity theorem for KR
asserts:

THEOREM 2.1. Let L be a real line-bundle over the real compact space X,
H the standard real line-bundle over the real space P(L @1). Then, as
a KR(X)-algebra, KR(P(L @ 1)) is generated by H, subject to the single

3605.2.17 Bb
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First of all we choose a metric in L invariant under the involution. The
unit circle bundle S is then a real space. The section z of #*(L) defined
by the inclusion S — L is a real section. Hence so are its powers z¥. The

isomorphism HE o (L%, L) [(3) 2.5
is an isomorphism of real bundles. Finally we assert that, if f is a real

section of Hom(#*E®, »*E>) then its Fourier coefficients a;, are real
sections of Hom(L* @ E° E>). In fact we have

- — 1
(%) = az(%) = ~3m jfizgk_l dz;
Sz

1 l‘ Fim) 1 dz; (since the involution reverses the
T om ) IEE % orientation of 8)

Sz

= %’ f fezz*1dz, (since fand z are real)
(s
Sz

= a;(x).
It may be helpful to consider what happens at a real point of X. The
condition that f, is real then becomes

fx(e—w) = fz(ew)
which implies at once that the Fourier coefficients are real.

Since the linearization procedure of (3) [§ 3] involves only the a; and
and the 2% it follows that the isomorphisms obtained there are all real
isomorphisms.

The projection operators @° and @ of (3) [§ 4] are also real, provided
p is real. In fact

~ — 1
Q= Q3= -—%—,fpgldpi
Sz
1 [y
=2_m° (p2)tdps
Sz

= %@ f pz;ldp,, since p is real.
Sz

Similarly for @®. The bundle V,(E°, p, E*) is therefore real and (4.6) is
an equation in K R(P). The proof in § 5 now applies quite formally.
We are now in a position to develop the usual cohomology-type theory,
using relative groups and suspensions. There is, however, one new feature
here which is important. Besides the usual suspension, based on R with
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trivial involution, we can also consider R with the involution z +> —z.
It is often convenient to regard the first case as the real axis R c C and
the second as the imaginary axis ¢R c G, the complex numbers C always
having the standard real structure given by complex conjugation. We
use the following notation:

Rre = R2DiRP,

BP9 = unit ball in R4,

872 = unit sphere in R?4.
Note that RP? ~ CP. Note also that, with this notation, 8?7 has
dimension p-+g—1.

The relative group K R(X,Y) is defined in the usual way as If(\IJ?(X 1Y)

where K R is the kernel of the restriction to base point. We then define
the (p, ) suspension groups
KRryX,Y) = KR(X X BP9, X x SP2U Y X Br4),
Thus the usual suspension groups K E~¢ are given by
KR-?= KR%.
As in (2) one then obtains the exact sequence for a real pair (X,Y)
..>KRYX)>KRYY)—> KR(X,Y)> KR(X)—> KR(Y). (2.2)

Similarly one has the exact sequence of a real triple (X,Y, Z). Taking
the triple (X x BP?, X x 8»0U Y X BP9, X x 87) one then obtains an
exact sequence

...—> KReYX) > KRPYY) > KRP(X,Y)—> KRP(X) > KRr(Y)
for each integer p = 0. '

The ring structure of K B(X) extends in a natural way to give external
products

KRre(X,Y) ® KRP9(X'Y') > KRr+0a+d(X" Y"),

where X" = XX X', Y"=XxY' UX'XY. By restriction to the
diagonal these define internal products.

We can reformulate Theorem 2.1 in the usual way. Thus let

b = [H]—1 € KRY(point) = K R(B, §11) = K R(P(C?))
and denote by B the homomorphism
KRr1(X,Y) > KRr+:4+1(XY)

given by « > b.xz. Then we have

THEOREM 2.3. B: KR?4X, Y) > KRr+e+Y(X, Y) is an isomorphism.

Note also that the exact sequence of a real pair is compatible with the

periodicity isomorphism. Hence if we define
KR»(X,Y) = KRPYX,Y) forp >0
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it follows that the exact sequence (2.2) for (X,Y) can be extended to
infinity in both directions. Moreover we have natural isomorphisms
KRrt ~ KRP-9,

We consider now the general Thom isomorphism theorem as proved
for K-theory in (2) [§ 2.7]. We recall that the main steps in the proof
proceed as follows:

(i) for a line-bundle we use (2.1),
(ii) for a decomposable vector bundle we proceed by induction using
(2.1),
(iii) for a general vector bundle we use the splitting principle.

An examination of the proof in (2) [§ 2.7] shows that the only point
requiring essential modification is the assertion that a vector bundle is
locally trivial and hence locally decomposable. Now a real vector bundle
has been defined as a vector bundle with a real structure. Thus it has
been assumed locally trivial as a vector bundle in the category of spaces.
What we have to show is that it is also locally trivial in the category of real
spaces. To do this we have to consider two cases.

(i) z € X areal point. Then E, ~ C" in our category. Hence by the
extension lemma there exists a real neighbourhood U of z such
that E|U =~ U x C" in the category.

(ii)  # £. Take a comp'ex isomorphism E, ~ G*. This induces an
isomorphism Ez; ~ C*. Hence we have a real isomorphism

B|lY ~Y xC~,
where ¥ = {r,#}. By the extension lemma there exists a real
neighbourhood U of Y so that E|U o~ U xC".

Thus we have

THEOREM 2.4 (Thom Isomorphism Theorem). Let E be a real vector
bundle over the real compact space X. Then
é: KR(X) > KR(XF)

8 an 1somorphism where $(x) = Ag.x and Ay is the element of KNR(XE)
defined by the exterior algebra of E.
Among other results of (2) [§ 2.7] we note the following :

KR(X x P(C") =~ KR(X)[t]/t—1
=~ KR(X) ®, K(P(Cm).
We leave the computation of K R for Grassmannians and Flag mani-
folds as exercises for the reader. The determination of K R for quadrics
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is a more interesting problem, since the answer will depend on the
signature of the quadratic form. '
We conclude with the following observation. Consider the inclusion
R —R5C= R
This induces a homomorphism

K1i(point) > Ko(point)

~ i ~ |l
K R(P(C?) - KR(P(R?).
Since ¢*[H] is the real Hopf bundle over P(R?) it follows that
n = 1*(b) = i*([H]—1) is the reduced Hopf bundle over P(R2).

3. Coefficient theories

If Y is a fixed real space then the functor X + K R(X X ¥) gives a new
cohomology theory on the category of real spaces which may be called
K R-theory with coefficients in Y. We shall take for ¥ the spheres S».0
(where the involution is the anti-podal map). A theory F will be said to
have period q if we have a natural isomorphism F ~ F-¢. Then we have

ProrosrTioN 3.1. K R-theory with coefficients in SP° has period

2ifp=1,
4ifp=2,
8ifp=4.

Proof. Consider R? as one of the threefields R, C,orH (p = 1, 2,0r4).
Then for any real space X the map

Pp: X X 8POX ROP —» X X 8POx RpO

given by u,(x,s,u) = (x,s,su), where su is the product in the field, is a
real isomorphism. Hence it induces an isomorphism

pp: KRPY(X x 8P%) - K RO (X x Sro).
Replacing X by a suspension gives an isomorphism
ph: KRPYX X 8P0) — K RoP+¢(X x SP9).
Taking ¢ = p and using the isomorphism
pr: KR — K Rr»
given by Theorem 2.1, we obtain finally an isomorphism
pp BP: KR(X X 8P9) — K RO?2(X x SP.0)

[
K R-2(X x §v9).
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Remark. p* is clearly a K R(X)-module homomorphism. Since the
same is true of B this implies that the periodicity isomorphism

yp = pp P KR(X X 879 - K R-?P(X X Sp)
is multiplication by the image c,, of 1 in the isomorphism
K R(8P9) —» K R-2P(SP.9),
This element c,, is given by
Cp = vp(1) = p*(b?.1), 1 e KR(8?9).
For any Y the projection X XY — X will give rise to an exact coeffi-

cient sequence involving KR and KR with coefficients in Y. When ¥
is a sphere we get a type of Gysin sequence:

ProrosiTiON 3.2. The projection : 870 — point induces the following
exact sequence

... > KR?-94X) X KR-X) - KR-9X x Sro) _8,

where x ts the product with (—n)?, and n € K B-1(point) ~ I?II?,( P(R?) i
the reduced real Hopf bundle.

Proof. We replace = by the equivalent inclusion S§P0 - BP0, The
relative group is then K R?4(X). To compute y we use the commutative
diagram :
KRZI(X) X kro(x)

~
S

~
~

~
KR2#*9(X) X TKRePY(X)

Let 68 be the automorphism of K?7»+¢(X) obtained by interchanging the
two factors RP° which occur. Then the composition x68” is just multi-
plication by the image of b? in
K Rr-?(point) — K R%P(point).

But this is just y?. It remains then to calculate §. But the usual proof
given in (2) [§ 2.4] shows that § = (—1)?' = (—1)2. :

We proceed to consider in more detail each of the theories in (3.1).
For p = 1, 870 is just a pair of conjugate points {41, —1}. Areal vector
bundle F over X x{+1,—1} is entirely determined by the complex
vector bundle E, which is its restriction to X X {4-1}. Thus we have.

ProrosiTioN 3.3. There is a natural isomorphism
KR(X x 8%%) ~ K(X).
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Note in particular that this does not depend on the real structure of X
but just on the underlying space. The period 2 given by (3.1) confirms
 what we know about K(X). The exact sequence of (3.2) becomes now

o> KRX) % KRYX) S K4X) > KR X)—>... (3.4)
where y is multiplication by —# and #* = ¢ is complexification. We
leave the identification of 8 as an exercise for the reader. This exact
sequence is well-known (when the involution on X is trivial) but it is
always deduced from the periodicity theorem for the orthogonal group.
Our procedure has been-different and we could in fact use (3.4) to prove-
the orthogonal periodicity. Instead we shall deduce this more easily
later from the case p = 4 of (3.1).

Next we consider p = 2 in (3.1). Then K R-4(X x §2°) has period 4.
We propose to identify this with a self-conjugate theory. If X is a real
space with involution 7 a self-conjugate bundle over X will mean a
complex vector bundle E together with an isomorphism «: E — 7*E.
Consider now the space X X 82° and decompose 8% into two halves
8%° and §2° with intersection {4-1}.

+1 -1

It is clear that to give a real vector bundle F over X x 820 is equivalent
to giving a complex vector bundle F, over X x 8%° (the restriction of F')
together with an isomorphism
¢: FIX x{+1} » 7*(F | X x{—1}).
But X X {+1} is a deformation retract of X x S%° and so [cf. (3) 2.3] we
have an isomorphism
0: F,| X xX{—1} » F | Xx{+1}

unique up to homotopy. Thus to give ¢ is equivalent, up to homotopy, to
giving an isomorphism =y

where E is the bundle over X induced from F, by z + (x,1) and

ay = g1 b0-
In other words isomorphism classes of real bundles over X X 8% corre-
spond bijectively to homotopy classes of self-conjugate bundles over X.
Moreover this correspondence is clearly compatible with tensor products.
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Now let KSC(X) denote the Grothendieck group of homotopy classes of
self-conjugate bundles over X. If 7 is trivial this agrees with the defini-
tions of (1) and (7). Then we have established
ProrosriTioN 3.5. There is a natural isomorphism of rings
KSC(X) - KR(X x 829).
The exact sequence of (3.2), with » = 2, then gives an exact sequence

o> KR4(X) % KRYX) > KSC-9X) > KR*4(X)—>... (3.6)

where y is multiplication by »? and #* is the map which assigns to any
real bundle the associated self-conjugate bundle (take o = 7). The
periodicity in KSC is given by multiplication by a generator of
K SC-4point).

Finally we come to the case p = 4. For this we need

Lrmma 3.7. Let n € KR-(point) be the element defined in § 2. Then
7% = 0.

Proof. This can be proved by linear algebra. In fact we recall [(4)
§ 11] the existence of a homomorphism «: 4, - K R-*(point) where the
A, are the groups defined by use of Clifford algebras. Then 7 is the
image of the generator of 4, ~ Z, and A4; = 0. Since the homo-
morphisms oy, are multiplicative [(4) § 11.4] this implies that »* = 0.

COROLLARY 3.8. Forany p > 3 we have short exact sequences

0 > KR-4(X) ™ KR-YX x §9) 3 KRp+1-9(X) > 0.
Proof. This follows from (3.7) and (3.2).

According to the remark following (3.1) the periodicity for
KR(X x 849) is given by multiplication with the element

¢y, = pi(bt.1) € K R-8(8%9).
Now recall [(4) Table 2] that Ag ~ Z, generated by an element A

(representing one of the irreducible graded modules for the Clifford
algebra C;). Applying the homomorphism

a: Ag - K R-%(point)
we obtain an element «a(A) € K R-%(point). The connexion between c,
and «(A) is then given by the following lemma :
Lemma 3.9. Let 1 denote the identity of K R(S*°). Then
¢y = a(A).1 € KR-8(849),
The proof of (3.9) involves a careful consideration of Clifford algebras and
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is therefore postponed until § 4 where we shall be discussing Clifford
algebras in more detail.
Using (3.9) we are now ready to establish

THEOREM 3.10. Let A€ 4, «d) € KR-8(point) be as above. Then
multiplication by «(A) induces an isomorphism
KR(X)—~> KR8X)
Proof. Multiplying the exact sequence of (3.8) by () we get a commu-
tative diagram of exact sequences

0> KR-%X) - KR-Xx8%0) - KRs—«(X) >0

{%q Ve Vb5
0> KR-98%X) > KR 73X x 8% - K R-a—q(X ) —>0.

By (3.9) we know that ¢, coincides with the periodicity isomorphism y,.
Hence ¢, is a monomorphism for all g. Hence ¢;_, in the above diagram
is a monomorphism, and this, together with the fact that ¢, is an iso-
morphism, implies that ¢, is an epimorphism. Thus ¢, is an isomorphism
as required.

Remark. If the involution on X is trivial, so that K R(X) = KO(X),
this is the usual ‘real periodicity theorem’.

By considering the various inclusions 8% — 879 we obtain interesting
exact sequences. For the identification of the relative group we need

Lemma 3.11. The real space (with base point) SP°[8%0 is isomorphic to
8p~20 x B29[8r-20 x §29,
Proof. 870— 820 js isomorphic to $7-20x B9, Now compactify.

CorOLLARY 3.12. We have natural isomorphisms:
KR(X x 870, X x 849) ~ K R%(X x 8p-29),
In view of (3.8) the only interesting cases are for low values of p, gq.

Of particular interest is the case p = 2, ¢ = 1. This gives the exact
sequence [cf. (1)]

w. > KYX) > KSC(X) > K(X) > K(X)—~
The exact sequence of (3.8) does in fact split canonically, so that

(for p > 3)
KR-9(X x 879 ~ KR-9(X) @ K Rp+1-9(X). (3.13)

To prove this it is sufficient to consider the case p = 3, because the
general case then follows from the commutative diagram (p > 4)

0> KR(X) - KR(X x 879
v
0 > KR(X) > KR(X x 8%9)
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obtained by restriction. Now 830 is the 2-sphere with the anti-podal
involution and this may be regarded as the conic g 22 = 0 in P(C3).
In§ 5 we shall give, without proof, a general proposition which will imply
that, when Y is a quadric,
KR(X)—~> KR(XXY)

has a canonical left inverse. This will establish (3.13).

4. Relation with Clifford algebras
Let Cliff(R?¢) denote the Clifford algebra (over R) of the quadratic

form » q.

—( 2yt a3)
on R74. The involution (y,z) + (—y,z) of RP? induces an involutory
automorphism of Cliff(R?7) denoted byt a - a.

Let M = M° @ M* be a complex Z,-graded Cliff(R?¢)-module. We
shall say that M is a real Z,-graded Cliff( B?9)-module if M has a real
structure (i.e. an anti-linear involution m > m) such that

(i) the Z,-grading is compatible with the real structure, i.e.
Mi= M: (i=0,1),
(ii) am = am for a € Cliff(R?4) and m € M.
Note that if p = 0, so that the involution on Cliff(B?9) is trivial, then
Mp =M% DM}, ={me Miim =m}
is a real Z,-graded module for the Clifford algebra in the usual sense
[a C;-module in the notation of (4)].

The basic construction of (4) carries over to this new situation. Thus
a real graded Cliff(RP2)-module M = M°PM! defines a triple
(M°, M, o) where o: 872 x M°— 872X M*is areal isomorphism given by

_ a(s, m) = (s,sm).
In this way we obtain a homomorphism
h: M(p,q) - K RP4(point)

where M(p,q) is the Grothendieck group of real graded Cliff(R»9)-
modules. If M is the restriction of a Cliff( R?¢+1)-module then ¢ extends
over SP4+1, Since the projection

82+l > Bra

+ This notation diverges from that of (4) [§ 1] where (for ¢ = 0) this involution
is called « and ‘bar’ is reserved for an anti-automorphism.



ON K-THEORY AND REALITY
is an isomorphism of real spaces (S, denotes the upper hemisphere with
respect to the last coordinate) it follows that M defines the zero element
of K R*4(point). Hence, defining A(p, q) as the cokernel of the restriction
M(p,q+1) > M(p,q),
we see that & induces a homomorphism
a: A(p,q) - K RP4(point).
Moreover, as in (4), « is multiplicative. Note that for p = 0 this «
coincides essentially with that deﬁned in (4), since
A(0,9) = A,
K R%(point) ~ K O-¢(point).
The exterior algebra A*(Cl) defines in a natural way a ClLff(R)-

module by 2(1) = ze, z(e) = —7%1

where 1€ A%C!) and e € A}Y(C!) are the standard generators. Let
A; € A(1,1) denote the element defined by this module. In view of the
definition of b € K R!(point) we see that

a(A) = —b
and hence, since « is multiplicative,

a(A}) = bL
Let M be a graded Cliff( R%%)-module representing Af (in fact as shown
in (4) [§ 11], we can construct M out of the exterior algebra A*(C*%)), and
let w = e, e5e5¢, € CLff(R%4) where e,, €,, €5, ¢, are the standard basis of
R%9, Then we have W =1, %=mw,
wz =zZw forze Ct = R4,

Hence we may define a new anti-linear involution m > % on M by

m = —wm
~ — — —
and we have 2M = —WIM = —WZM = —2WiN
= 2.

Thus M with this new involution (or real structure) is a real graded
Cliff( R%8)-module, a Cy-module in the notation of (4): as such we denote
it by N. From dimensional considerations [cf. (4) Table 2], we see that it
must be one of the two irreducible Cy-modules. But on complexification
(i.e. ignoring involutions) it gives the same as M and hence IV represents
the element of 44 denoted in (4) by A.
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After these preliminaries we can now proceed to the proof of Lemma
3.9. What we have to show is that under the map
gt 8% X R8 — 840 x G4
the element of K R44(S%0) defined by M lifts to the element of K R-8(§%9)

defined by N. To do this it is clearly sufficient to exhibit a commutative
diagram of real isomorphisms

SO REXN 5 §40x Cix M
v y
880X REX N > §%0x CAx M (4.1)
where v is compatible with y, (i.e. v(s, 2, y,n) = (s, z+isy, m) for somem)
and the vertical arrows are given by the module structures (i.e.
(8, z,9,m) > (s, 2,9, (,y)n).

Consider now the algebra Clff(R4%) = C,. The even part C9 is
isomorphic to H @ H [(4) Table 1]. Moreover its centre is generated by
1 and w = e, e,e5¢,, the two projections being (14+w). To be quite
specific let us define the embedding

£: H — Cliffo(R40)

& () =112,
&) =1 e,
£ = esen,
€)=~ erey,

Then we can define an embedding
n: S(H) - Spin(4) c I}
by n(s) = é(s)+%4(1—w), where I} is the Clifford group [(4) 3.1] and
S(H) denotes the quaternions of norm 1. It can now be verified that the
composite homomorphism
S(H) - Spin(4) - SO(4)

defines the natural action of S(H) on R* = H given by left multiplica-
tion. In other words

nslyn(s)t =sy  (seSH), yeRY). (4.2)
If we give S(H) the anti-podal involution then 7 is not compatible with
involutions, since the involution on the even part C} is trivial.

t We identify 1, ¢, 7, k with the standard base ¢,, e,, €3, ¢, in that order.
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Regarding Cliff(R*°) as embedded in Cliff(R%%) in the natural way
we now define the required map v by

v(s, x,y,n) = (8, 41y, n(s)n).
From the definition of w it follows that
n(8)w = —n(—s)
and so 7(—8)t = n(—s}{—wity = 7(s)&8 = n(s)n,
showing that v is a real map. Equation (4.2) implies that
)@, y)n = (x+isy)n(s)n,

showing that v is compatible with the module structures. Thus we have
established the existence of the diagram (4.1) and this completes the
proof of Lemma 3.9.

The definitions of M (p, ¢) and A(p, q) given were the natural ones from
our present point of view. However, it may be worth pointing out what
they correspond to in more concrete or classical terms. To see this we
observe that if M is a real C(R??)-module we can define a new action [ ]
of RP+2 on M by [, y]m = zm—iym.

Then [z, y1Pm = {— |2 +|y[*}m.
Moreover for the involutions we have

[z, ylm = am~+iym
= gm-+iym (since § = —y)
= [z, y]m.
Thus My, is now a real module in the usual sense for the Clifford algebra
C, , of the quadratic form
2, a
Ap.g) =2 yi— 2 .

It is easy to see that we can reverse the process. Thus M(p, q) can equally
well be defined as the Grothendieck group of real graded C,, ,-modules. From
this it is not difficult to compute the groups 4, , on the lines of (4)
[§ 4, 5] and to see that they depend only on p—g (mod 8) [cf. also (8)].
Using the result of (4) [11.4] one can then deduce that

a: A(p,q) - K RP4(point)

is always an isomorphism. The details are left to the reader. We should
perhaps point out at this stage that our double index notation was
suggested by the work of Karoubi (8).
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The map « can be defined more generally for principal spin bundles as
in (4) and we obtain a Thom isomorphism theorem for spin bundles on
the lines of (4) [12.3]. We leave the formulation to the reader.

5. Relation with the index
If ¢ denotes the Fourier transform of a function ¢ then we have

$(@) = §(—a).
Since the symbol o(P) of an elliptic differential operator P is defined by
Fourier transforms (9) it follows that
o(P)(@,¢) = o P)(@, —§)
where P is the operator defined by
P$ = P3.

Here we have assumed that P acts on functions so that ﬁ is defined.
More generally if X is a real differentiable manifold, i.e. a differentiable
manifold with -a differentiable involution x — %, and if E, F are real
differentiable vector bundles over X, then the spaces I'(E), I'(F) of
smooth sections have a real structure and for any linear operator

P:T(E)—TI'(F)
we can define P: I'(E) - ['(F) by

P(¢) = P§.
If P is an elliptic differential operator then
o(P)(x,£) = o( P)(&, —7*(@)). (5.1)

It is natural to define P to be a real operator if P = P. If the involution
on X is trivial this means that P is a differential operator with real
coefficients with respect to real local bases of £, F. In any case it follows
from (5.1) that the symbol o(P) of a real elliptic operator gives an iso-
morphism of real vector bundles

7*E - n*F,
where 7: §(X) — X is the projection of the cotangent sphere bundle and
we define the involution on S(X) by

(x, é') - (i’ '—T*(f))
Note that if = is the identity involution on X the involution on S(X) is
not the identity but is the anti-podal map on each fibre. This is the basic
reason why our K B-theory is needed here. In fact the triple

(v*E, =*F, o(P))
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defines in the usual way an element
[o(P)] € KR(B(X), 8(X))
where B(X), the unit ball bundle of S(X), has the associated real
structure.t
The kernel and cokernel of a real elliptic operator have natural real
structures. Thus the index is naturally an element of K R(point). Of

course since K R(point) - K (point)

is an isomorphism there is no immediate advantage in defining this
apparently refined real index. However, the situation alters if we con-
sider instead a family of real elliptic operators with parameter or base
space Y. In this case a real index can be defined as an element of K R(Y)
and KR(Y)—> K(Y)

is not in general injective.

All these matters admit a natural extension to real elliptic complexes
(9). Of particular interest is the Dolbeault complex on a real algebraic
manifold. This is a real elliptic complex because the holomorphic map
7: X - X maps the Dolbeault complex of X into the Dolbeault complex
of X. If X is such that the sheaf cohomology groups H4(X, ) = 0 for
q = 1, HY(X, 0) ~ C, the index, or Euler characteristic, of the Dolbeault
complex is 1. Based on this fact one can prove the following result:

ProrosrTioN. Let f: X — Y be a fibering by real algebraic manifolds,
where the fibre F is such that
HYF,0)=0 (¢=1, H(F,0) =),
then there is a homomorphism
' fy+: KR(X) > KR(Y)
which is a left inverse of
f*: KR(Y) - KR(X).
The proof cannot be given here but we observe that a special case is given
by taking X = Y X F where F is a (compact) homogeneous space of a real
algebraic linear group. For example we can take F to be a complex
_ quadric, as required to prove (3.13). We can also take F = SO(2n)]U(n),
or 8O(2n)/T™, the flag manifold of SO(2r). These spaces can be used to
establish the splitting principle for orthogonal bundles. It is then
significant to observe that the real space

{80(2n)/U(n)} x Ron

1 All this extonds of course to integral (or pseudo-differential) operators.
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has the structure of a real vector bundle. A point of SO(2r)/U(n)
defines a complex structure of R*" and conjugate points give conjugate
structures. For » = 2 this is essentiallyt what we used in § 3 to deduce
the orthogonal periodicity from Theorem 2.1.

1 In (3.1) we used the 3-sphere S%°. We could just as well have used the 2-
sphere §%°. This coincides with S0(4)/U(2).
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