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Introduction

Aims and Intended Readership

The aim of this book is to be an accessible introduction to stable homotopy
theory that novices, particularly graduate students, can use to learn the fun-
damentals of the subject. For the experts, we hope to have provided a useful
compendium of results across the main areas of stable homotopy theory.

This book is not intended to replace any specific part of the existing litera-
ture, but instead to give a smoother, more coherent introduction to stable ho-
motopy theory. We use modern techniques to give a streamlined development
that avoids a number of outdated, and often over-complicated, constructions
of a suitable stable homotopy category. We cover the most pressing topics for
a novice and give a narrative to motivate the development. This narrative is
missing from much of the current literature, which often assumes the reader
already knows stable homotopy theory and hence understands why any given
definition or result is important.

The majority of sections have been written to (hopefully) contain all details
required for a graduate student. The remaining sections are intended to give an
overview of more specialised or advanced topics, with references to the central
texts for those areas. It is hoped that once the reader has read the chapters
relevant to their research, they will be well prepared to dive into the rest of the
literature and to know what to read next.

Prerequisites

Rather than rewrite many pages on model categories, category theory and un-
stable homotopy theory, we depend upon several excellent, and quite standard,
references. As such, the reader should know a fair amount of point-set topology
and algebraic topology. The standard texts are Gray [Gra75], Hatcher [Hat02],
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2 Introduction

May [May99a] and May and Ponto [MP12]. The reader should also know the
basics of model categories. The best introductions are Dwyer and Spaliński
[DS95] and the first chapters of Hovey [Hov99].

A certain amount of category theory is used throughout, the standard text
is Mac Lane [Mac71]. For the chapters on the monoidal smash product, the
reader will need some enriched category theory, easily obtained from Kelly
[Kel05]. They may also like to have access to Borceaux [Bor94]. The chap-
ter on localisations refers to Hirschhorn [Hir03] for some proofs and technical
results, but the reader will not need to have read the book to follow the devel-
opment.

A Historical Narrative

The book [Jam99] gives a treatment of the history of topology, while the chap-
ter of May [May99b] (50 pages) covers stable homotopy theory from 1945 to
1966. Since then, the pace of development and publication has only quickened,
a thorough history of stable homotopy theory would be a book by itself.

A basic problem in homotopy theory is the calculation of the homotopy
groups of spheres. This problem is well known to be hopelessly difficult, but
certain patterns in the homotopy groups were noticed. The Freudenthal Sus-
pension Theorem gives a clear statement of a major pattern: the group πn(S k+n)
is independent of n for n > k + 1. This and the suspension isomorphisms of
homology and cohomology were a starting point of stable homotopy theory.

Calculations continued and the Spanier–Whitehead category was developed
to study duality statements. It was also a useful category for the study of
spaces under equivalences of stable homotopy groups. However, the Spanier–
Whitehead category has some substantial drawbacks, in particular, it does not
contain representatives for all reduced cohomology theories.

Several solutions to this were constructed, including Boardman’s stable ho-
motopy category, Lima’s notion of spectra, Kan’s semisimplicial spectra and
Whitehead’s developments of the notions of spectra. None of these categories
were entirely satisfactory, so we jump ahead to Adams’s construction of the
stable homotopy category [Ada74], which was based on ideas of Boardman.
This category contained the Spanier–Whitehead category, represented all co-
homology theories and had a commutative smash product.

Having a good construction with sensible axioms allowed for further devel-
opment of stable homotopy theory. A good notion of “categories of fractions”,
now known as Bousfield localisations at homology theories, greatly improved
the ability to calculate stable homotopy groups via the Adams spectral se-
quence. Through work of Bousfield, these localisations were further developed
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([Bou75], [Bou79]), and vast amounts of calculations were now possible. This
led to the introduction of chromatic homotopy theory, which gives a framework
for major structural results about the stable homotopy category (see [Rav84]
and [Rav92a]), as well as techniques for even further calculations of stable
homotopy groups of spheres [Rav86].

The lack of a good commutative monoidal point-set model for the stable
homotopy category still held the subject area back. Brown representability
posited the existence of function spectra and allowed for some homotopical
calculations, but direct constructions were often impossible to give. The study
of (commutative) ring spectra up to homotopy was difficult – keeping track of
the homotopies and their coherence was particularly burdensome. Moreover,
constructions up to homotopy prevented geometric constructions such as bun-
dles of spectra or diagrams of spectra.

The development of coordinate–free spectra by May and others offered sev-
eral improvements to the area. The use of operads to manage commutative
multiplications up to homotopy allowed for serious study of derived algebra
in spectra, the so-called “brave new algebra”, see the work of May, Quinn and
Ray [May77].

Coordinate–free spectra also led to the development of “spectrification” func-
tors, which simplified the construction of maps between spectra. These func-
tors played a central role in work of Lewis, May and Steinberger [LMSM86],
which gave a construction of G-equivariant spectra and the G-equivariant sta-
ble homotopy category for G a compact Lie group.

While this technology did allow for a useful definition of an internal function
object for spectra, the smash product was still only commutative and associa-
tive up to homotopy. The work of Lewis [Lew91] even suggested that there
may be no commutative monoidal point-set model for the stable homotopy
category, but this pessimism turned out to be unfounded.

Two independent solutions to the problem of commutative smash products
came about in surprisingly quick succession: the S –modules of Elmendorff,
Kriz, Mandell and May [EKMM97] and the symmetric spectra of Hovey, Ship-
ley and Smith [HSS00]. These references gave closed symmetric monoidal
model categories of spectra and model categories of (commutative) ring spec-
tra. By using model categories, one had point-set level smash products and
function objects which would have the correct homotopical properties after
passing to the homotopy categories.

This reinvigorated the area and allowed for a great deal of further develop-
ment in “brave new algebra”, namely, the importing of statements from alge-
bra into stable homotopy theory. For example, Hovey, Palmieri and Strickland
[HPS97] were able to give an axiomatisation of stable homotopy theories.
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Schwede [Sch01a] showed that the model categories of symmetric spectra
and S –modules were Quillen equivalent. Yet more symmetric monoidal cat-
egories of spectra were constructed by Mandell, May, Schwede and Shipley
[MMSS01]. These were all shown to be Quillen equivalent, and a particular
highlight is the category of orthogonal spectra. Categories of spectra in cate-
gories other than simplicial sets or spaces were given in Schwede [Sch97] and
Hovey [Hov01b].

All of these model categories are amenable to the theory of localisations as
developed by Hirschhorn [Hir03], giving many point-set models for localisa-
tions of spectra and, in particular, those from chromatic homotopy theory.

We are now in the modern era of stable homotopy theory, with current topics
such as topological modular forms and its variants, motivic stable homotopy
theory, the study of commutative ring spectra and their localisations, Galois
extensions of ring spectra and equivariant versions of most of those topics.

Explanation of Contents

We start with a study of stable phenomena, namely, the Freudenthal Suspen-
sion Theorem and the suspension isomorphisms of homology and cohomology.
We discuss how this leads to the notion of a stable homotopy category and what
axioms it should satisfy. We introduce the Spanier–Whitehead category and ba-
sic categories of spectra and show how these fail to satisfy those axioms. Using
the benefit of hindsight, we then define the stable homotopy category to be the
homotopy category of the stable model structure on sequential spectra. This
approach avoids the difficulties of extending the Spanier–Whitehead category
and the complicated constructions of maps and functions in Adams’s category
of spectra.

The category of sequential spectra evidently satisfies enough of the axioms
to be worth studying further, but it will not be possible to give a category that
satisfies all the axioms until after we have introduced the symmetric monoidal
categories of symmetric and orthogonal spectra.

We digress from the further development of categories of spectra to ask
about a formal framework in which those categories of spectra can be studied.
The starting place is a suspension functor on general model categories and
how it gives rise to cofibre and fibre sequences, leading to a notion of a stable
model category. When the model category is stable, one can extend cofibre
and fibre sequences in either direction and prove the fundamental statement:
the homotopy category of a stable model category is triangulated. Working in
this generality shows clear benefits of stability and simplifies the later work,
where we can appeal to the triangulated arguments of these chapters.
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The next task is to examine the generalisation of the smash product of the
Spanier–Whitehead category to the stable homotopy category. Again, we want
an approachable method, so we first show that the homotopy categories of sym-
metric spectra and orthogonal spectra are equivalent to the stable homotopy
category. We then define the smash product and the internal function object of
the stable homotopy category as coming from the smash products on orthog-
onal spectra and symmetric spectra. At this point, we have encountered three
models for the stable homotopy category. Each has its own advantages. We
have:

Sequential spectra: These are the simplest to define and can be motivated
from a discussion of Brown representability. However, they do not have a
commutative smash product. The weak equivalences are defined in terms of
homotopy groups of spectra, a natural extension of the idea of stable homo-
topy groups.

Orthogonal spectra: These are slightly more complicated than sequential
spectra and can be thought of as sequential spectra with extra structure. Their
weak equivalences are defined by the forgetful functor to sequential spectra
and, hence, are defined in terms of homotopy groups of spectra. The extra
structure allows one to define a symmetric monoidal smash product and an
internal function object.

Symmetric spectra: The final model is symmetric spectra (in either
pointed topological spaces or pointed simplicial sets). This model is inter-
mediate in its complexity, but the weak equivalences are harder to define.
These spectra also have good monoidal properties. Their simplicity allows
them to be described as “initial amongst stable model categories” in the sense
of Sections 6.8 and 6.9.

The symmetric monoidal versions of spectra lead to the next important topic:
spectra with (commutative) ring structures and Spanier–Whitehead duality for
spectra, which is essentially a study of duality in the stable homotopy category.

We take the opportunity to consider framings and stable framings. This al-
lows us to construct mapping spaces for an arbitrary model category and map-
ping spectra for an arbitrary stable model category.

We end the book with a chapter on Bousfield localisation, introducing and
motivating the concept and proving a simple existence result for stable model
categories. As an application, we discuss p-localisation, p-completion and lo-
calisation at complex topological K-theory.

Along the way, we furthermore include important results on stable homo-
topy theory and suggest further directions. The results include: rigidity and
uniqueness of the monoidal structure, a description in terms of modules over
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spectrally enriched categories, the Adams spectral sequence and chromatic ho-
motopy theory.

An appendix listing the results on model categories that are needed is in-
cluded for easy reference. Some proofs are given, otherwise clear references
are provided.

Omissions

An exhaustive treatment of stable homotopy theory would require several books
and be impractical for the needs of many graduate students. Hence, certain top-
ics have been omitted, a list is below. Reasons for the omission vary, from be-
ing somewhat outside the scope (stable infinity categories), being a topic that
builds upon stable homotopy theory (equivariant or motivic stable homotopy
theory), or having good textbooks already, albeit ones that assume a familiarity
with stable homotopy theory.

• Infinite loop space machines and operads.
• Right Bousfield localisations.
• Comprehensive treatment of spectral sequences.
• Equivariant stable homotopy theory.
• Motivic stable homotopy theory.
• Stable infinity categories.
• In-depth treatment of K-theory, cobordism and formal group laws.
• The S –modules of Elmendorf, Kriz, Mandell and May.

Convention

Throughout the book we use the convention that the set of natural numbers N
contains 0.
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1

Basics of Stable Homotopy Theory

In the crudest sense, stable homotopy theory is the study of those homotopy-
invariant constructions of spaces which are preserved by suspension. In this
chapter we show how there are naturally occurring situations which exhibit
stable behaviour. We will discuss several historic attempts at constructing a
“stable homotopy category” where this stable behaviour can be studied, and
we relate these to the more developed notions of spectra and the Bousfield–
Friedlander model structure.

Of course, if one wants to perform calculations of stable homotopy groups
using spectral sequences, then one does not need much of the formalism of
model categories of spectra. But as soon as one wishes to move away from
those tasks and consider other stable homotopy theories (such as G-equivariant
stable homotopy theory for some group G) or to make serious use of a sym-
metric monoidal smash product in the context of “Brave New Algebra”, then
the advantages of the more formal setup become overwhelming.

A more accurate title for the chapter might be along the lines of “First
Encounters with Stability”, as a detailed look at even the first question of sta-
ble homotopy theory – calculating the stable homotopy groups of spheres – is
a book by itself.

1.1 Stable Phenomena

We introduce two standard results which exhibit stability, namely the Freuden-
thal Suspension Theorem and the interaction of homology with suspension.
The proof of each result comes from an excision theorem and a long exact se-
quence. Our starting point is a quick introduction to the category of spaces that
we use throughout the book.

7



8 Basics of Stable Homotopy Theory

1.1.1 Topological Spaces

We want to work in a closed monoidal category of topological spaces. We must
therefore equip the set of continuous maps Top(A, B) with a topology such that
there is a natural isomorphism

Top(A × B,C) � Top(A,Top(B,C))

for all spaces A, B and C in the category. As is well known, we cannot use
the standard category of all topological spaces equipped with the Cartesian
product and compact-open topology on the set of continuous maps. Instead we
follow the standard pattern and work with compactly generated weak Haus-
dorff spaces. Recall that a space X is said to be compactly generated if a set
A ⊆ X is closed if and only if A ∩ K is closed in K for each compact subset
K of X. A space X is said to be weak Hausdorff if for any compact space M
and continuous map f : M −→ X, the image f (M) is closed in X. More details
can be found in Steenrod [Ste67], Hovey [Hov99, Sections 2.4 and 4.2], May
[May99a, Chapter 5] and Schwede [Sch18, Appendix].

Definition 1.1.1 The category of topological spaces is the category of com-
pactly generated weak Hausdorff topological spaces and continuous maps. We
denote this by Top.

The category Top is a closed monoidal category with all small limits and
colimits. We can also consider pointed spaces, which is also a closed monoidal
category with all small limits and colimits.

Definition 1.1.2 The category of pointed topological spaces is the category
of pointed, compactly generated weak Hausdorff spaces and continuous maps
that preserve the basepoints. We denote this by Top∗.

We denote a pointed space as (X, x0) or just X with an implicit basepoint.
For topological spaces X and Y , we denote the set of homotopy classes of
maps from X to Y by [X,Y]. If X and Y are pointed, we interpret [X,Y] as the
set of pointed homotopy classes of pointed maps from X to Y .

Monoidal products, function objects, limits and colimits can be a little mys-
terious in the categories Top and Top∗, but are mostly given by the expected
constructions. For example, if X is Hausdorff, the monoidal product with X is
the Cartesian product with the product topology, or the smash product in the
pointed case. If X is compact and Hausdorff, then the topology on Top(X,Y) is
the compact-open topology (similarly for Top∗(X,Y)). A colimit of a sequen-
tial diagram of injections or a pushout of closed inclusions is given by the usual
colimit of (pointed) spaces.
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For general topological spaces, the monoidal product is the Cartesian prod-
uct with the Kelly product topology (and the corresponding smash product for
the pointed case). The topology on the set of maps from X to Y is given by the
modified compact-open topology, which we now define. Let a : K → X be a
continuous map from a compact Hausdorff space K to X. For U an open set
of Y , let C(a,U) be the set of continuous maps f from X to Y such that the
image of f ◦ a : K → Y lies in U. These sets C(a,U) define a sub-basis for the
modified compact-open topology on the set of continuous maps from X to Y .

Recall the Serre and Hurewicz model structures on Top from [DS95] or
[MP12], see also Example A.1.5. The weak equivalences in the Serre model
structure are the weak homotopy equivalences, and its fibrations are those maps
with the right lifting property with respect to the inclusions

A × {0} −→ A × [0, 1]

for each CW-complex A. The cofibrations are called the q-cofibrations or Serre
cofibrations.

The weak equivalences of the Hurewicz model structure are the homotopy
equivalences, and its fibrations are those maps with the right lifting property
with respect to the inclusions

A × {0} −→ A × [0, 1]

for each space A. The cofibrations are called the h-cofibrations or Hurewicz
cofibrations. We see that every q-cofibration is a h-cofibration.

Both model structures extend to the category of pointed spaces, with weak
equivalences, cofibrations and fibrations defined by forgetting the basepoint.
Thus, a h-cofibration of pointed spaces means a basepoint-preserving map
which is a h-cofibration in Top.

Every object of Top is cofibrant in the Hurewicz model structure, but this
fails for Top∗. For pointed spaces, the homotopical behaviour of the inclusion
of the basepoint into a space is a technical issue we will encounter several
times.

Definition 1.1.3 We say that a pointed space (X, x0) has a non-degenerate
basepoint if the map x0 −→ X is a h-cofibration in Top. We say that a pointed
space (X, x0) is a pointed CW-complex if (X, x0) is a CW-pair.

Many results about pointed spaces require the assumption of non-degenerate
basepoints so that we can move to the simpler setting of unpointed spaces.
For example, if X has a non-degenerate basepoint, then the map from the
unreduced suspension of X to the reduced suspension of X is a homotopy
equivalence. Hence statements about unreduced suspensions will extend to
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reduced suspensions in this case. Many spaces are easily seen to have non-
degenerate basepoints, for example, the basepoint of any pointed CW-complex
is non-degenerate. Any pointed space can be replaced by a space with a non-
degenerate basepoint as follows. For a pointed space X, consider the space

wX = (X � [0, 1])/(x0 ∼ 0)

with the basepoint taken to be 1 ∈ [0, 1]. This space wX has a non-degenerate
basepoint, and we may consider the construction w(−) as a functor. Moreover,
the contraction map wX → X is an (unpointed) homotopy equivalence and
hence is a weak homotopy equivalence of pointed spaces.

1.1.2 The Freudenthal Suspension Theorem

The purpose of this subsection is to exhibit a pattern that occurs across many
homotopy groups, namely that for a pointed CW-complex X, the homotopy
groups of X and ΣX agree, up to a shift, over a range that depends on the
connectivity of X. The precise statement is Theorem 1.1.10.

The starting point for this section is connectivity and its relation to suspen-
sions. To prove our results we shall need a rather substantial ingredient: the
homotopy excision theorem.

We follow the development of [May99a, Section 11]. Let us recall the no-
tions of k-connected spaces, k-connected pairs of spaces and k-equivalences.
Note that we will avoid defining or using π0(X, A) for spaces A ⊆ X. For a
definition of πn(X, A), see [Hat02].

Definition 1.1.4 A pointed topological space (X, x0) is k-connected if it is
path-connected and πn(X, x0) = 0 for 1 � n � k.

A pair A ⊆ X is said to be k-connected if every path component of X inter-
sects with A and πn(X, A) = 0 for each 1 � n � k.

A pointed map f : X −→ Y is a k-equivalence of topological spaces if for all
x0 ∈ X, the map πn( f , x0) is an isomorphism for 0 � n < k and surjective for
n = k.

By convention, every pointed topological space is (−1)-connected.
It follows from the long exact Puppe sequence that a k-equivalence of

pointed spaces has a (k − 1)-connected homotopy fibre. We can also relate
k-equivalences to the dimension of a CW-complex.

The following can be found in [Hat02].
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Proposition 1.1.5 Let f : X −→ Y be a k-equivalence of pointed spaces and
A be a pointed CW-complex. Then composition with f induces an isomorphism

f∗ : [A, X] −→ [A,Y]

if the dimension of A is less than k and a surjection if the dimension is equal
to k.

Theorem 1.1.6 (Homotopy Excision) Let X be a topological space with sub-
sets A and B such that A ∩ B is non-empty and X is the union of the interiors
of A and B.

Assume that (A, A ∩ B) is m-connected for some m � 1, and that (B, A ∩ B)
is n-connected for some n ∈ N. Then the map induced by inclusion

πa(A, A ∩ B) −→ πa(X, B)

is an isomorphism for a < m + n and a surjection when a = m + n. Moreover,
the square

π0(A ∩ B) π0(A)

π0(B) π0(X)

of maps induced by the inclusions is a pullback.

We can use homotopy excision to calculate some of the homotopy groups of
the homotopy cofibre (mapping cone) of a map in terms of relative homotopy
groups.

Definition 1.1.7 Let f : X −→ Y be a map in Top. Then the mapping cylinder
M f of f is the topological space defined as the pushout

X
i0

f

X × [0, 1]

Y M f .

The mapping cone C f of f is the quotient M f /(X × {1}).
Proposition 1.1.8 Let f : X −→ Y be a k-equivalence in Top between (k−1)-
connected spaces for k � 1. Then the projection map

(M f , X) −→ (C f , ∗)
induces an isomorphism on πn for n < 2k and a surjection on πn when n = 2k.
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Proof Identifying X ⊂ M f as the collection of points (x, 1) ∈ M f for x ∈ X,
we define two subsets of C f

A = Y ∪ (X × [0, 2/3]) B = (X × [1/3, 1])/X.

Their intersection is a cylinder on X and the union of their interiors is C f . We
also see that

(A, A ∩ B) � (M f , X), (C f , B) � (C f , ∗) and (B, A ∩ B) � (C f , X).

Moreover, the quotient map

(M f , X) −→ (C f , ∗)
is homotopic to the inclusion

(A, A ∩ B) −→ (C f , B).

The long exact sequence of the homotopy groups of a pair implies that
(A, A ∩ B) is k-connected and that (B, A ∩ B) is k-connected. The result then
follows from homotopy excision. �

We may extend this result to the general case of a quotient map.

Corollary 1.1.9 Let i : A −→ X be a h-cofibration of (k−1)-connected spaces
in Top that is a k-equivalence, k � 1. Then the quotient map

(X, A) −→ (X/A, ∗)
induces an isomorphism on πn for n < 2k and a surjection on π2k. The result
also holds in Top∗ if, in addition, A and X have non-degenerate basepoints.

Proof Since the map i is a h-cofibration, Ci � X/A by Lemma A.5.6. The
result follows from the commutative diagram

(Mi, A)

�

(Ci, ∗)
�

(X, A) (X/A, ∗).
For the last statement we use the reduced mapping cylinder and reduced
cofibre. Since the basepoints are non-degenerate, the quotient maps from the
unreduced to reduced versions are homotopy equivalences, hence the pointed
version follows from the unpointed version. �

We are now ready to prove the Freudenthal Suspension Theorem. Our
method is to apply Corollary 1.1.9 to the map (CX, X) −→ (ΣX, ∗) and carefully
examine the relative homotopy groups. As the spaces involved are connected
by assumption, we do not specify a basepoint.
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Theorem 1.1.10 (Freudenthal Suspension Theorem) Let k ∈ N and let X be
a k-connected space with a non-degenerate basepoint. The map

πn(X) = [S n, X] Σ
[ΣS n,ΣX] � [S n+1,ΣX] = πn+1(ΣX)

[ f ] [Σ f ]

is an isomorphism if n < 2k + 1 and a surjection if n = 2k + 1.

Proof In order to be consistent with the standard definition of relative homo-
topy groups, we let C′X = X ∧ I, with the basepoint of I = [0, 1] taken to be 0.
Thus

C′X = (X × I)/(X × {0} ∪ {x0} × I).

Consider a map f : (In, ∂In) −→ (X, x0) representing some element of πn(X, x0).
Then f × Id induces a map of triples

(In+1, ∂In+1, Jq) −→ (C′X, X, x0)

whose restriction to In × {1} is f . Taking the quotient by X × {1}, we obtain Σ f .
It follows that the diagram below commutes, where ∂ is the connecting map
and ρ : C′X −→ ΣX is the quotient.

πn+1(C′X, X, x0)
∂ ρ∗

πn(X, x0) πn+1(ΣX, [x0])

The inclusion X −→ C′X is a h-cofibration and a (k + 1)-equivalence of k-
connected spaces, so Corollary 1.1.9 tells us that ρ∗ is an isomorphism for
n + 1 < 2k + 2 and a surjection for n + 1 = 2k + 2. As C′X is contractible, ∂ is
an isomorphism and the result follows. �

The map Σ could also be defined via the composite

[S n, X] −→ [S n,Ω(ΣX)] � [S n+1,ΣX],

where the first map is the unit of the (Σ,Ω)-adjunction on pointed spaces.
Checking that this definition agrees with [ f ] �→ [Σ f ] is an exercise in relat-
ing the counit of an adjunction to the action of the functor on sets of maps.
A similar exercise shows that the composite of suspension followed by the
counit

[S n−1,ΩX] −→ [S n,Σ(ΩX)] −→ [S n, X]

is given by the adjunction isomorphism.
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We see that suspension increases connectivity of pointed spaces and that the
unit of the (Σ,Ω)-adjunction induces isomorphisms on a range of homotopy
groups.

Corollary 1.1.11 Let k � 1, and let X be a k-connected pointed topological
space with a non-degenerate basepoint. Then ΣX is (k + 1)-connected and the
unit map

η : X −→ ΩΣX

is a (2k + 1)-equivalence. Furthermore, the counit map

ε : ΣΩX −→ X

is a 2k-equivalence.

Proof Given the above discussion, we only need to consider the counit ε.
We want to know that the basepoint of ΩX (the constant path at x0) is non-
degenerate. This follows from a more general statement: if A −→ B is the
inclusion of a closed subset and a h-cofibration, then ΩA → ΩB is a h-
cofibration.

By [May99a, Section 6.4], if A −→ B is the inclusion of closed subset, then
it is a h-cofibration if and only if it is an NDR pair (neighbourhood deformation
retract pair). One can show that a presentation of A −→ B as an NDR pair can
be extended to give a presentation of ΩA→ ΩB as an NDR pair.

As X is k-connected and has a non-degenerate basepoint, it follows that ΩX
is (k−1)-connected and has a non-degenerate basepoint. Using the Freudenthal
Suspension Theorem on ΩX and the commutative diagram

πn−1(ΩX) Σ

�

πn(ΣΩX)

ε

πn(X),

we see that ε is a 2k-equivalence. �

The Freudenthal Suspension Theorem can be used to calculate some homo-
topy groups of spheres. For example, we can prove that

πn(S n) � Z

for each n � 1. We know the cases of n = 1 and n = 2 by the long exact
sequence of the Hopf fibration. For n > 2 the result follows directly from the
suspension theorem, as the suspension maps

πn(S n) −→ πn+1(S n+1)
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are isomorphisms. In fact, this isomorphism also holds for n = 1, as the only
surjections Z −→ Z are isomorphisms.

The ranges for the suspension theorem are usually sharp. Consider the sus-
pension maps

π2(S 1) π3(S 2) π4(S 3)

0 Z Z/2.

The first cannot be surjective and the second cannot be an isomorphism.
We restate the Freudenthal Suspension Theorem in terms of iterated suspen-

sions.

Corollary 1.1.12 Let X be a topological space with non-degenerate base-
point and let a and b be natural numbers with b < a − 1. Then the suspen-
sion map

πa+b(ΣaX) −→ πa+b+1(Σa+1X)

is an isomorphism. �

If we fix b in the above corollary and allow a to increase, we see that
πa+b(ΣaX) can take many different values until a > b + 1. Then, for larger
a each homotopy group in the sequence is the same up to isomorphism. It is
natural to study the eventual behaviour of these homotopy groups. We restrict
our attention to pointed CW-complexes, as these are the spaces of primary
interest.

Definition 1.1.13 For a pointed CW-complex X and n ∈ N, the nth stable
homotopy group of X is

πstable
n (X) � colima πn+a(ΣaX) = π2n+2(Σn+2X).

We could define these groups for all n ∈ Z by simply ignoring those terms
in the colimit where n + a < 0. However, we see that these groups are all zero.
We also see that stable homotopy groups are stable under suspension, that is,

πstable
n (X) � πstable

n+1 (ΣX).

There is no need to mention basepoints when using stable homotopy groups,
as, aside from the first term, the spaces ΣaX will all be path-connected.

We can relate stable homotopy groups of spaces to ordinary homotopy
groups by a sequential homotopy colimit construction, see Example A.7.9.
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Definition 1.1.14 We define a functor Q from the category of pointed CW-
complexes to pointed topological spaces by

QX = hocolimnΩ
nΣnX.

The maps of the diagram are given by the unit of the (Ω,Σ)-adjunction.

To form the homotopy colimit, we may either replace each map by a (weakly
equivalent) h-cofibration or take the union of the mapping cylinders.

We see that

π∗(QX) = πstable
∗ (X),

as the homotopy groups of a sequential homotopy colimit are the colimit of the
homotopy groups. Equally, if f : X −→ Y is a map that induces isomorphisms
on all stable homotopy groups, then

Q f : QX −→ QY

is a weak homotopy equivalence.
As a first example of extra structure on stable homotopy groups, we will

now discuss the ring structure on the stable homotopy groups of spheres. Let

πstable
∗ (S 0) =

⊕

n�0

πstable
n (S 0).

We may construct a product ∗ making πstable∗ (S 0) into a commutative graded
ring, satisfying

α ∗ β = (−1)mnβ ∗ α, α ∈ πstable
m (S 0), β ∈ πstable

n (S 0).

Recall the notion of homological degree of a map f : S n → S n. Choos-
ing a generator a ∈ Hn(S n), we say that f has homological degree k ∈ Z if
f∗(a) = ka. The homological degree of a map is independent of the choice of
generator. We will see that the (−1)mn of the formula above originates from the
twist isomorphism

τp,q : S p ∧ S q −→ S q ∧ S p,

which has homological degree (−1)pq.
To define ∗, we choose representatives f : S a+m −→ S a and g : S a+n −→ S a.

Then we set

α ∗ β = [g ◦ Σn f ].

This operation is well-defined and associative.
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We must prove that it is distributive, and that the commutativity condition
holds. For the rest of this section, we specify ΣpX = X∧S p. Hence, Σp applied
to f : X −→ Y is given by

f ∧ Idp : ΣpX −→ ΣpY.

Let f , g : S m+n+a −→ S n+a and h : S n+a −→ S a. Addition [ f ] + [g] is repre-
sented by the map

f + g : S m+n+a −→ S n+a,

which is f on the upper hemisphere of S n+m+a and g on the lower hemisphere.
Thus,

[h] ∗ ([ f ] + [g]) = [h ◦ ( f + g)] = [h ◦ f ] + [h ◦ g] = [h] ∗ [ f ] + [h] ∗ [g].

This is one of the equations for distributivity, the other one will follow from
the first one plus commutativity, which we will show now.

To prove the commutativity statement, we show that the composition prod-
uct ∗ can be defined in terms of the smash product. Let f : S a+m −→ S a and
g : S a+n −→ S a with a even. Then

g ◦ Σn f : S n+m+a −→ S a and Σag ◦ Σa+n f : S n+m+2a −→ S 2a

represent the same class in the stable homotopy group πstable
n+m (S 0). The second

representative is the top map in the following diagram.

S a+m ∧ S n ∧ S a f∧Idn+a

Σag◦Σn+a f

S a ∧ S n ∧ S a g∧Ida

τa+n,a

S a ∧ S a

τa,a

S a ∧ S a ∧ S n Ida∧g
S a ∧ S a

As a is even, each of the twist maps have homological degree 1 and so are
homotopic to the identity. The composite along the lower path is therefore

( f ∧ Idn+a) ◦ τa+n,a ◦ (Ida ∧ g) � f ∧ g.

Hence

[g ∗ f ] = [Σag ∗ Σa f ] = [ f ∧ g].

To complete the proof of commutativity, we prove that

[ f ∧ g] = (−1)mn[g ∧ f ].
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This follows from the commutativity of the diagram

S a+m ∧ S a+n f∧g

τa+m,a+n

S a ∧ S a

τa,a

S a+n ∧ S a+m g∧ f
S a ∧ S a

and the fact that for even a, τa+m,a+n is of homological degree (−1)mn. Hence

[g ∗ f ] = [ f ∧ g] = (−1)mn[g ∧ f ] = (−1)mn[ f ∗ g].

We can use our understanding of stable homotopy groups of spheres to prove
a more general version of the Freudenthal Suspension Theorem.

Theorem 1.1.15 Suppose X and Y are pointed CW-complexes with Y k-
connected. Then the suspension map

Σ : [X,Y] −→ [ΣX,ΣY]

is surjective if X is of dimension 2k + 1 and a bijection if X has dimension less
than 2k + 1.

Proof By Corollary 1.1.11, the map Y −→ ΩΣY is a (2k + 1)-equivalence,
hence the result follows by Proposition 1.1.5. �

Let X and Y be finite CW-complexes and a � 2. As with stable homotopy
groups, after enough suspensions (a > dim X), the collection of abelian groups
[ΣaX,ΣaY] are all isomorphic under the suspension map. Following the pattern
of stable homotopy groups when X and Y are not finite, we take a colimit over
suspensions.

Definition 1.1.16 Let X and Y be pointed CW-complexes. The set of stable
homotopy classes of pointed maps from X to Y is

[X,Y]s � colima[ΣaX,ΣaY].

When X is also compact,

[X,QY]∗ = [X, hocolimnΩ
nΣnY]∗ � [X,Y]s

∗

by the same argument as for homotopy groups.
This leads to the natural question: Can we make a category with objects

given by the class of pointed topological spaces and morphisms given by the
class of stable homotopy classes of pointed maps? We will see that this is
possible in Section 1.2 but that the resulting category has some serious failings.



1.1 Stable Phenomena 19

1.1.3 Homology and Cohomology

Homology and cohomology theories are closely linked to stable homotopy the-
ory. We show that reduced (co)homology theories lead to a key idea for stable
homotopy theory: spectra. We begin with a set of axioms for homology that
are equivalent to the Eilenberg–Steenrod axioms.

Recall that a CW-pair (X, A) is a CW-complex X with a subcomplex A. In
particular, there is an open neighbourhood of A in X which is a deformation
retract of A.

Definition 1.1.17 A reduced homology theory is a functor Ẽ∗ from pointed
CW-complexes to graded abelian groups Ab∗ satisfying the list of axioms be-
low. For a map f : X −→ Y of pointed CW-complexes, we write

f∗ = Ẽ∗( f ) : Ẽ∗(X) −→ Ẽ∗(Y).

Let fn be the nth level of this map of graded abelian groups.

1. If f � g, then f∗ = g∗.
2. For each CW-pair (X, A) there is a boundary map ∂∗ : Ẽ∗(X/A) −→ Ẽ∗−1(A),

which is natural in pointed CW-pairs.
3. If (X, A) is a CW-pair, then the inclusion map i : A −→ X, the quotient map

q : X −→ X/A and the boundary map ∂∗ give a natural long exact sequence

· · · ∂n+1−→ Ẽn(A)
in−→ Ẽn(X)

qn−→ Ẽn(X/A)
∂n−→ Ẽn−1(A)

in−1−→ · · · .
4. For a set of spaces {Xα}α the maps iα : Xα −→ ∨

α Xα induce isomorphisms
⊕

α

(iα)∗ :
⊕

α

Ẽ∗(Xα) −→ Ẽ∗(
∨

α

Xα).

The functoriality of a reduced homology theory Ẽ∗ along with the long exact
sequence forces Ẽ∗(∗) = 0. Since Ẽ∗ sends homotopic maps to equal maps, it
follows that Ẽ∗(Z) = 0 for any Z � ∗. These simple consequences of the
axioms allow us to prove that reduced homology theories are “stable under
suspension” in the sense of the following lemma.

Lemma 1.1.18 Let Ẽ∗ denote a reduced homology theory, then for any
pointed CW-complex X there is a natural isomorphism

Ẽ∗+1(ΣX) � Ẽ∗(X).

Proof Consider the CW-pair (CX, X) and the induced natural long exact
sequence

· · · ∂n+1−→ Ẽn(X)
in−→ Ẽn(CX)

qn−→ Ẽn(CX/X)
∂n−→ Ẽn−1(X)

in−1−→ Ẽn−1(CX) −→ · · · .
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Since X has a non-degenerate basepoint, the reduced and unreduced suspen-
sions are naturally homotopy equivalent. The unreduced suspension of X is
naturally isomorphic to CX/X, and Ẽ∗(CX) = 0 for all n. Thus we have the
desired natural isomorphism

Ẽ∗+1(ΣX) � Ẽ∗+1(CX/X)
�−→ Ẽ∗(X). �

The standard example of a reduced homology theory is reduced singular
homology (or reduced cellular homology), which is defined as

H̃∗(X) = ker(H∗(X) −→ H∗(∗)).
We have another example linking homology theories to stable homotopy
theory.

Example 1.1.19 Stable homotopy groups define a reduced homology theory.
The key point of attention is proving that the long exact sequence of stable
homotopy groups of a CW-pair (X, A) is of the same form as in the long exact
sequence axiom for reduced homology theories. Corollary 1.1.9 applied to the
stable setting proves that πstable∗ (X, A) � πstable∗ (X/A). This result combined with
the isomorphism between Σ(X/A) and ΣX/ΣA gives the boundary maps and the
long exact sequence.

Unstable homotopy groups do not form a homology theory. In general, π1(X)
is not an abelian group. More substantially, the long exact sequence of a CW-
pair cannot be used to define boundary maps. For example,

π3(D2, S 1) = 0 but π3(D2/S 1) = π3(S 2) = Z.

A related idea is that of reduced cohomology theories. The axioms are dual
to that of reduced homology theories.

Definition 1.1.20 A reduced cohomology theory is a contravariant functor
Ẽ∗ from pointed CW-complexes to graded abelian groups Ab∗ satisfying the
list of axioms that follow. For a map f : X −→ Y of pointed CW-complexes,
we write

f ∗ = Ẽ∗( f ) : Ẽ∗(Y) −→ Ẽ∗(X)

and let f n be the nth level of this map of graded abelian groups.

1. If f � g, then f ∗ = g∗.
2. For each CW-pair (X, A) there is a coboundary map ∂∗: Ẽ∗(A)−→Ẽ∗+1(X/A),

which is natural in pointed CW-pairs.
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3. If (X, A) is a CW-pair, then the inclusion map i : A −→ X, the quotient
map q : X −→ X/A and the coboundary map ∂∗ give a natural long exact
sequence

· · · ∂
n−1

−→ Ẽn(X/A)
qn

−→ Ẽn(X)
in−→ Ẽn(A)

∂n

−→ Ẽn+1(X/A)
in+1

−→ · · · .
4. For a set of spaces {Xα}α, the maps iα : Xα −→ ∨

α Xα induce isomorphisms
∏

α

(iα)∗ : Ẽ∗(
∨

α

Xα) −→
∏

α

Ẽ∗(Xα).

We have an analogous result showing how cohomology and suspension in-
teract.

Lemma 1.1.21 Let Ẽ∗ denote a reduced cohomology theory, then for any
pointed CW-complex X there is a natural isomorphism

Ẽ∗(X) −→ Ẽ∗+1(ΣX)

induced by the coboundary map. �

Remark 1.1.22 We say that two cohomology theories Ẽ∗ and Ê∗ are isomor-
phic if there is a bijective natural transformation Ẽ∗ −→ Ê∗ which is compati-
ble with the coboundary maps.

This extra requirement is to ensure that we have commutative diagrams

Ẽn(A)
∂n

Ẽn+1(X/A)

Ên(A)
∂n

Ên+1(X/A),

which we would not obtain from just a natural transformation, as the boundary
maps ∂n are not induced by morphisms of spaces.

A major result about reduced cohomology theories of pointed spaces is that
each level of a reduced cohomology theory Ẽ∗ can be represented by a con-
nected pointed CW-complex. The proof constructs a CW-complex with the
correct property by adding cells according to the data of Ẽn(S k) for varying
k. The assumption of connectedness is necessary for uniqueness. For example,
if X is a connected pointed space, Z is a pointed space, and Z � ∗ is the dis-
joint union of Z with a point, then in the homotopy category of pointed spaces
we have

[X,Z] � [X,Z � ∗].
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Theorem 1.1.23 (Brown Representability) Let Ẽ∗ be a reduced cohomology
theory. Then for each n ∈ Z there is a connected pointed CW-complex Kn such
that for each connected pointed CW-complex X there is a natural isomorphism

Ẽn(X) � [X,Kn],

where the right hand side denotes maps in the homotopy category of pointed
topological spaces. Moreover, the spaces Kn are unique up to homotopy equiv-
alence.

However, the sequence of spaces {Kn}n∈Z does not determine Ẽn. That is, a
collection of pointed CW-complexes does not determine a reduced cohomol-
ogy theory, as there is no good way to construct coboundary maps. Thus, we
need to add some more structure to the sequence of spaces in order to recover
cohomology theories.

Combining the above theorem with our lemma on suspensions, we have the
following.

Corollary 1.1.24 Let Ẽ∗ be a reduced cohomology theory represented by
the connected pointed CW-complexes {Kn}n∈Z. Then for any pointed connected
CW-complex A we have isomorphisms

[A,Kn] � Ẽn(A) � Ẽn+1(ΣA) � [ΣA,Kn+1] � [A,ΩKn+1],

which are natural in maps of pointed CW-complexes A. �

If we let A = Kn, then the image of the identity map of Kn gives us maps

αn : Kn −→ ΩKn+1

for each n, which we call the structure maps. Naturality then implies that the
image of some f : A −→ Kn under the isomorphism

[A,Kn] � Ẽn(A) � Ẽn+1(ΣA) � [ΣA,Kn+1] � [A,ΩKn+1]

is αn ◦ f . The CW-complexes Kn are connected, so they are path-connected.
Hence, if we let A = S k for varying k ∈ N, we see that αn is a weak homotopy
equivalence. We now prove that the spaces Kn and the maps αn are sufficient
to determine a reduced cohomology theory.

Proposition 1.1.25 A sequence of pointed CW-complexes {Kn}n∈Z with weak
homotopy equivalences αn : Kn −→ ΩKn+1 for each n ∈ Z determines a re-
duced cohomology theory Ẽ∗ by

Ẽn(X) = [X,Kn],
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with coboundary maps induced by

αn : Kn −→ ΩKn+1.

Let {K′n, α′n}n∈Z be another collection of pointed CW-complexes and weak ho-
motopy equivalences determining a reduced cohomology theory Ê∗. For each
n ∈ Z, let fn : Kn −→ K′n be a pointed weak homotopy equivalence such that
the square

Kn
αn

fn

ΩKn+1

Ω fn+1

K′n
α′n
ΩK′n+1

commutes for all n. Then the maps fn induce a natural isomorphism of coho-
mology theories Ẽ∗ −→ Ê∗.

Proof We prove that the data of the spaces Kn together with the maps αn de-
fine a reduced cohomology theory. The functoriality axiom, homotopy axiom
and the wedge axiom all follow immediately from the definition. All that is
left is to define the coboundary maps and show they form part of a long exact
sequence.

For a CW-pair (X, A), consider the cofibration or Puppe sequence (using
reduced mapping cones and reduced suspensions)

A
i−→ X

q−→ X/A
d−→ ΣA

Σi−→ ΣX
Σq−→ Σ(X/A) −→ · · ·

given by iterating the mapping cone construction. Since Kn � Ω2Kn+2, apply-
ing the functor [−,Kn] gives an exact sequence of abelian groups

[A,Kn]←− [X,Kn]←− [X/A,Kn]←− [ΣA,Kn]←− [ΣX,Kn]←− · · · .
This works for each n ∈ Z. As

[ΣA,Kn] � [A,Kn−1],

the collection of exact sequences for varying n can be patched together using
the maps αn to give an exact sequence

· · · ←− [A,Kn]←− [X,Kn]←− [X/A,Kn]←− [A,Kn+1]←− [X,Kn+1]←− · · ·
and the first statement is complete.

The second statement follows straight from the construction. The commut-
ing squares involving the structure maps αn and α′n ensure that one obtains an
isomorphism of cohomology theories rather than simply an isomorphism of
each level. �
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We may call a sequence of spaces {Kn}n∈Z with structure maps

αn : Kn −→ ΩKn+1

that are weak homotopy equivalences a “spectrum” (we discuss these objects
further in Section 1.3). The following result is a formal statement of the slogan
“spectra represent cohomology theories”.

Corollary 1.1.26 A reduced cohomology theory Ẽ∗ determines, and is deter-
mined by, a sequence of connected pointed CW-complexes {Kn}n∈Z with pointed
weak homotopy equivalences αn : Kn −→ ΩKn+1. The spaces Kn and the maps
αn are unique up to homotopy equivalence.

Proof One direction is given by Proposition 1.1.25. For the converse, let

{Kn, αn}n∈Z and {K′n, α′n}n∈Z
be two collections of connected pointed CW-complexes and weak homotopy
equivalences that represent Ẽ∗ on connected pointed CW-complexes from
Theorem 1.1.23.

We first show that for any pointed CW-complex A, Ẽn(A) � [A,Kn] (and
similarly for K′n). That is, we may now remove the connectedness assumption
on the input space A. Using Corollary 1.1.24, we have isomorphisms

Ẽn(A) � Ẽn+1(ΣA) � [ΣA,Kn+1] � [A,ΩKn+1] � [A,Kn].

Secondly, we compare the spaces Kn and K′n, and the maps αn and α′n.
Theorem 1.1.23 gives us homotopy equivalences pn : Kn → K′n. Since the αn

are constructed from the suspension isomorphisms of the cohomology theory
Ẽ∗, the square

[A,Kn]
(αn)∗

(pn)∗

[A,ΩKn+1]

(Ωpn+1)∗

[A,K′n]
(α′n)∗

[A,ΩK′n+1]

commutes for any pointed CW-complex A. If we set A = Kn, then the identity
map in the top left corner is sent to

α′n ◦ pn � Ωpn+1 ◦ αn



1.1 Stable Phenomena 25

in the bottom right corner. Hence the square that follows commutes up to
homotopy.

Kn
αn

pn

ΩKn

Ωpn+1

K′n
α′n
ΩK′n

The map pn is a homotopy equivalence, and Ωpn+1 is a weak homotopy equiv-
alence between spaces of the homotopy type of a CW-complex, hence it is
also a homotopy equivalence. Hence αn and α′n are unique up to homotopy
equivalence. �

Example 1.1.27 The spaces that correspond to reduced singular cohomology
with coefficients in the abelian group G are the Eilenberg–Mac Lane spaces
K(G, n) for n � 0 and ∗ for negative n.

The structure maps come from the universal properties of the spaces. That
is, ΩK(G, n) is an Eilenberg–Mac Lane space for G of level n − 1 and hence is
weakly homotopy equivalent to K(G, n − 1).

Example 1.1.28 The spaces that correspond to reduced complex K-theory
are BU×Z in even degrees and U in odd degrees. This periodicity reflects Bott
periodicity. We will introduce K-theory in more detail in Subsection 7.4.2.

A sequence of CW-complexes together with structure maps behaves very
well with respect to stable homotopy groups. Consider a sequence of connected
pointed CW-complexes {Kn}n∈Z with pointed weak homotopy equivalences

αn : Kn −→ ΩKn+1.

It follows that we have maps σn : ΣKn −→ Kn+1 and a commuting diagram

[S k+a,Ka] Σ

(αa)∗

[S k+a+1,ΣKa]
(σa)∗

[S k+a+1,Ka+1]

�

[S k+a,ΩKa+1].

As the αn are weak homotopy equivalences, we obtain that the nth stable ho-
motopy group of K0 is

πstable
n (K0) = colim

(
πn(K0)

(α0)∗−→ πn(ΩK1)
(α1)∗−→ πn(Ω2K2)

(α2)∗−→ · · · ) = πn(K0).
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Hence the stable homotopy groups of K0 are simply the homotopy groups
of K0. A similar calculation for stable homotopy classes of maps (Definition
1.1.16) shows that

[X,Kn]s = [X,Kn] = Ẽn(X).

The results of this subsection lead to a natural question: Can we make a
category with objects given by “spectra”, sequences of connected pointed CW-
complexes {Kn}n∈Z together with maps

αn : Kn −→ ΩKn+1

that are pointed weak homotopy equivalences? The morphisms would be se-
quences of maps compatible with the structure maps up to some notion of
homotopy. We would then hope that this category would be strongly related to
the category of reduced cohomology theories. If we are able to construct such a
category, we would then want to know how it relates to the (theorised) category
of CW-complexes described the end of Subsection 1.1.2, whose morphisms are
the stable homotopy classes of maps.

We will see in Section 1.3 that we can make a category of “spectra”. Un-
fortunately, the most straightforward notion of homotopy equivalence in this
category is poorly behaved. Example 1.3.6 gives two spectra which will repre-
sent the same cohomology theory but are not homotopy equivalent.

1.1.4 Properties of a Stable Homotopy Category

Having seen some instances of stability, we would like to have a category in
which to study those phenomena. More precisely, we would like to have a
category satisfying the following list of properties. We will call this category
the stable homotopy category, SHC, and use [−,−] to denote maps in this
category.

We would like the stable homotopy category to satisfy the following list of
conditions and properties.

1. There is an adjunction

Σ∞ : Ho(Top∗) SHC :Ω∞.

2. Let A and B be pointed CW-complexes. If A has only finitely many cells,
there is a natural isomorphism

[Σ∞A,Σ∞B] � [A, B]s

where [A, B]s is the set of stable homotopy classes of maps of spaces from
Definition 1.1.16.
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3. The sets of maps in SHC can be equipped with the structure of graded
abelian groups, and composition is bilinear. We will use [−,−]∗ for the
graded set of maps.

4. The stable homotopy category has arbitrary (small) products and coprod-
ucts. Finite products and coproducts coincide.

5. For A a pointed CW-complex and X,Y ∈ SHC, there are objects X∧A and
F(A,Y) in SHC such that

[X ∧ A,Y] � [X, F(A,Y)],

and for any pointed CW-complex B, there is an isomorphism in SHC

(Σ∞B) ∧ A � Σ∞(B ∧ A).

6. The functor

(−) ∧ S 1 : SHC −→ SHC

is an equivalence of categories.
7. Given a reduced cohomology theory Ẽ∗, there is an object E ∈ SHC such

that

Ẽ∗(A) = [Σ∞A, E]−∗

for any pointed CW-complex A. Moreover, the object E is unique up to
isomorphism. We say that E represents Ẽ∗.

8. Every E ∈ SHC defines a reduced cohomology theory on pointed CW-
complexes by

A �→ [Σ∞A, E]∗ = Ẽ∗(A).

9. A map E1 −→ E2 in SHC induces a map of cohomology theories

Ẽ∗1(X) −→ Ẽ∗2(X).

10. There is a monoidal product ∧ on SHC with

Σ∞A ∧ Σ∞B � Σ∞(A ∧ B)

for all pointed CW-complexes A and B.
11. There is an internal function object F(−,−) on SHC so that for

X,Y,Z ∈ SHC

[X ∧ Y,Z] � [X, F(Y,Z)].

12. Every E ∈ SHC defines a reduced homology theory via

En(X) = πn(E ∧ X).
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In Sections 1.2 and 1.3, we will construct some categories that satisfy a few
of these properties to indicate the difficulty of achieving all properties at once.
We will see our first construction of the stable homotopy category in Chapter 2,
however, the proof that SHC satisfies the last three points will require modern
categories of spectra as in Chapter 5. In Section 5.7 we will justify calling it
the stable homotopy category by giving a uniqueness result.

Once we have a monoidal product on SHC, we can define the homology of
objects X ∈ SHC as

E∗(X) = π∗(E ∧ X).

We will show in Proposition 5.1.7 that this generalises the characterisation of
homology of spaces given in the preceding list.

1.2 The Spanier–Whitehead Category

We introduce the Spanier–Whitehead category as a first attempt at making the
stable homotopy category. The original intention for this construction was to
have a good place to study Spanier–Whitehead duality [SW55].

As a candidate for SHC, this category has a bilinear addition on its sets of
maps and the suspension functor is an equivalence, but the Spanier–Whitehead
category does not satisfy all items of Subsection 1.1.4. For example, it does
not have countable coproducts, and there are reduced cohomology theories
that it cannot represent. We can think of this as the category not having enough
objects.

Definition 1.2.1 The Spanier–Whitehead category SW is defined as follows.
Its objects are the pointed finite CW-complexes, and morphisms are given by

[X,Y]s � colima[ΣaX,ΣaY].

We may further define the set of graded maps in the Spanier–Whitehead
category.

[X,Y]s
q �

⎧⎪⎪⎨⎪⎪⎩
colima[Σa+qX,ΣaY] if q � 0

colima[ΣaX,Σa−qY] if q < 0

The composite of maps f ∈ [X,Y]s and g ∈ [Y,Z]s is given by choosing
representatives fa : ΣaX −→ ΣaY and gb : ΣbY −→ ΣbZ and defining

g ◦ f = Σagb ◦ Σb fa.

One can check that this composition is well-defined, associative, unital and
extends to graded maps.
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A minor issue with the Spanier–Whitehead category is that defining Ω on
SW is more complicated, as the loop functor does not preserve CW-complexes.
Hence, for X a pointed CW-complex, we interpret ΩX ∈ SW to be a CW-
approximation to the loop space of X. On the positive side, this category has
many useful properties related to stable homotopy theory. Firstly, we can nat-
urally define an addition on the sets of maps. This result does not need our
CW-complexes to be finite.

Lemma 1.2.2 For pointed CW-complexes A and B, [A, B]s is naturally a
(graded) abelian group and composition is bilinear.

Proof For pointed CW-complexes A and B, the set of pointed homotopy
classes of maps [Σ2A, B] is an abelian group in a natural manner compatible
with composition of maps. It follows that

[A, B]s = colima[ΣaA,ΣaB]

has the same properties, and this extends to graded maps. �

The second useful property is that suspension is an equivalence on SW. This
property requires that the CW-complexes are finite.

Proposition 1.2.3 If f : X −→ Y is a map of finite pointed CW-complexes
that induces an isomorphism on stable homotopy groups, then [ f ] ∈ [X,Y]s is
an isomorphism.

The suspension functor Σ : SW −→ SW induces isomorphisms on sets of
maps, that is, it is a full and faithful functor.

Proof The last statement follows from the definition of sets, of maps in terms
of colimits.

Consider a map f : X −→ Y that induces isomorphisms on all stable ho-
motopy groups, then Q f : QX −→ QY (Definition 1.1.14) is a weak homotopy
equivalence of pointed spaces. If A is a finite pointed CW-complex, it is a com-
pact space, and so a map from A into a sequential homotopy colimit is given
by a map from A into some term of that colimit. Thus we have isomorphisms

[A,QX]∗ = [A, hocolimaΩ
aΣaX]∗ � colima[A,ΩaΣaX]∗ � [A, X]s

∗,

and it follows that we have an isomorphism

[ f ]∗ : [A, X]s
∗ −→ [A,Y]s

∗.

When A = Y , we use the surjectivity of [ f ]∗ to obtain a right homotopy inverse
g to f . When A = X, the injectivity of [ f ]∗ shows that [g] and [ f ] are inverse
isomorphisms in SW. �
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We give a similar construction to SW that is also referred to as the Spanier–
Whitehead category. This category has no finiteness assumptions on the CW-
complexes.

Definition 1.2.4 The category ŜW is defined as follows. Its objects are pairs
(X,m) for X a CW-complex and m ∈ Z, and morphisms are given by

{(X,m), (Y, n)} = colima[Σm+aX,Σn+aY].

Similarly, graded maps are given by the extension

{(X,m), (Y, n)}b = {(X,m + b), (Y, n)},
where b ∈ Z. We may define a shift suspension functor s by s(X, n) = (X, n+1)
on objects. If α : (X,m) −→ (Y, n) is represented by

f : Σa+mX → Σa+nY,

then sα is defined to be the equivalence class of Σ f in the colimit.
One can check that the shift suspension is naturally equivalent to the topo-

logical suspension (ΣX, n) and that each object (X, n) has an obvious desuspen-
sion, namely (X, n − 1). Hence we have the following.

Lemma 1.2.5 The suspension functor is an equivalence on ŜW. �

The category ŜW is richly structured by Margolis [Mar83, Chapter 1, Theo-
rem 7], ŜW is an example of a triangulated category, the subject of Chapter 4.

There is a full and faithful functor from SW to ŜW given by sending a finite
CW-complex X to (X, 0) and acting as the identity on sets of maps. As noted
in [Mar83, Remark, Page 9], this is not an equivalence, as SW is not closed
under desuspension.

We may relate the categories SW and ŜW to stable homotopy groups and
cohomology theories.

Theorem 1.2.6 For X a finite pointed CW-complex, the functor

X̃∗ = [−, X]s
−∗ = {(−, 0), (X, 0)}−∗

from pointed CW-complexes to graded abelian groups defines a reduced coho-
mology theory, except for the wedge axiom.

There is a natural isomorphism of graded abelian groups

[S 0, X]s
∗ � π

stable
∗ (X).

Proof By Lemma 1.2.2, we know that the functor X̃∗ takes values in graded
abelian groups. If f and g are homotopic maps of CW-complexes, then f ∗ = g∗.
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We construct the coboundary map and long exact sequence together. Con-
sider a CW-pair (B, A). Applying X̃n to the Puppe sequence (cofibration se-
quence)

A −→ B −→ B/A −→ ΣA −→ · · ·
gives an exact sequence

· · · −→ X̃n(ΣA) −→ X̃n(B/A) −→ X̃n(B) −→ X̃n(A)

for each integer n. We want to patch these exact sequences together similarly to
the proof of Proposition 1.1.25. To that end, for n � 0 we have isomorphisms

X̃n(ΣA) = [ΣA, X]s−n = colima[Σ1+aA,Σa+nX]s

� colimb[ΣbA,Σb+n−1X]s

= [A, X]s
−n+1

= X̃n−1(A).

Similar statements apply to negative n. Define the coboundary to be the com-
posite of this isomorphism with the map induced by B/A→ ΣA:

X̃n−1(A) � X̃n(ΣA) −→ X̃n(B/A).

The exactness of the sequences for X̃n and these coboundary maps give the
desired long exact sequence

· · · −→ X̃n−1(A) −→ X̃n(B/A) −→ X̃n(B) −→ X̃n(A) −→ · · · .
The statement about stable homotopy groups is immediate. �

For a finite wedge
∨n

i=1 Ai of pointed CW-complexes, we have a natural
isomorphism

n⊕

i=1

[Ai, X]s −→ [
n∨

i=1

Ai, X]s.

It follows that X̃∗ will send finite coproducts to finite direct sums. However,
countable coproducts do not exist in SW or ŜW in general. For the first, this
is simply that countable coproducts of finite CW-complexes will usually not
be finite CW-complexes. For the second, the natural definition to attempt is to
extend the countable coproduct of pointed spaces. This construction will not
be the categorical coproduct, as the next example shows.

Example 1.2.7 The abelian group
∏

i�0

{
(S i, 0), (S 0, 0)

}
=

∏

i�0

[S i, S 0]s =
∏

i�0

πstable
i (S 0)
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is not equal to
⎧⎪⎪⎨⎪⎪⎩
(∨

i�0

S i, 0
)
, (S 0, 0)

⎫⎪⎪⎬⎪⎪⎭ = colima

⎡⎢⎢⎢⎢⎢⎢⎣
∨

i�0

S a+i, S a

⎤⎥⎥⎥⎥⎥⎥⎦

� colima

∏
i�0

[S a+i, S a]

= colima

∏
i�0
πa+i(S

a).

In the last group, an element is an equivalence class of a sequence of homotopy
class of maps fi : S a+i −→ S a. Hence infinitely many terms fi will be outside
the stable range altogether.

A further major problem with SW and ŜW is that the cohomology theories
of the form

X̃∗(−) = [−, X]s
−∗ = {(−, 0), (X, 0)}−∗

are by our convention bounded above on finite CW-complexes. Unpicking the
definition, for n ∈ N and A a finite CW-complex, we have

X̃n(A) = [A, X]s
−n = [A,ΣnX]s,

which is zero for n larger than the highest dimension cell of A. Hence we
cannot represent, for example, K-theory in terms of SW or ŜW, as it is periodic
and therefore has cohomology groups in negative dimensions. This is expected,
as we have already seen in Subsection 1.1.3 that more information is needed
to represent a cohomology theory than simply a single topological space (and
an integer).

Boardman gave a solution to this problem, see the lecture notes written by
Vogt [Vog70]. The method is to formally add directed colimits to the Spanier–
Whitehead category. This gives one of the first constructions of the stable ho-
motopy category, but it is not a convenient category to work in. We find it
preferable to construct the stable homotopy category using spectra.

We will relate SW and ŜW to stable homotopy category in Lemmas 5.1.2
and 5.1.3.

1.3 A First Attempt at Spectra

We give a second attempt at constructing the stable homotopy category. Given
that the Spanier–Whitehead category does not have enough objects to represent
all reduced cohomology theories, we try to make a homotopy category based
on spectra.
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Lima [Lim59] was the first to define spectra, and the definition has been re-
vised many times. For this section we take our definition from G. Whitehead,
[Whi62]. We will see that the most straightforward definition of homotopy on
this category does not give a good candidate for SHC. In particular, there will
be spectra that represent the same reduced cohomology theory but are not ho-
motopy equivalent. We can think of this as the category not having enough
maps.

Definition 1.3.1 A spectrum X is a collection of pointed topological spaces
Xn for n ∈ N, with maps

σX
n : ΣXn −→ Xn+1

called the structure maps of X. An Ω-spectrum Z is a spectrum such that the
adjoint structure maps

σ̃Z
n : Zn −→ ΩZn+1

are weak homotopy equivalences.
A map of spectra f : X −→ Y is a collection of continuous maps of pointed

topological spaces fn : Xn −→ Yn, such that the square that follows commutes,
up to homotopy, for each n ∈ N.

ΣXn
Σ fn

σX
n

ΣYn

σY
n

Xn+1
fn+1

Yn+1

This definition is rather natural, given the earlier results on representing
cohomology theories by sequences of spaces. By Corollary 1.1.26, a coho-
mology theory is determined by an Ω-spectrum whose spaces are connected
CW-complexes. We could try to restrict to such spectra, but this excludes a
number of simple and important examples, such as the sphere spectrum that
we define below.

Example 1.3.2 The sphere spectrum S is defined by Sn = S n, with structure
maps given by the canonical maps ΣS n −→ S n+1.

Example 1.3.3 The suspension spectrum Σ∞K of a pointed topological space
K is given by S n ∧ K in level n, with the structure maps being the canonical
maps. Hence S = Σ∞S 0.

Example 1.3.4 The Eilenberg–Mac Lane spectrum HG for the abelian group
G is the spectrum with level n given by the space K(G, n). The adjoint structure
maps are given by (a choice of) the weak homotopy equivalence

K(G, n) −→ ΩK(G, n + 1).
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Given a space A and a spectrum X, we can make a new spectrum X ∧A with
level n given by Xn ∧ A and structure maps given by smashing the structure
maps of X with A. Hence S ∧ A = Σ∞A.

Given a space A and a spectrum X, we can make a new spectrum F(A, X)
with level n given by Top∗(A, Xn) and adjoint structure maps given by

Top∗(A, Xn)
Top∗(A,σ̃X

n )−−−−−−−−→ Top∗(A,ΩXn+1) � ΩTop∗(A, Xn+1).

The last isomorphism is our first encounter with a recurring issue in spectra,
namely the twist isomorphism

τA,B : A ∧ B −→ B ∧ A.

For example, if we wanted to define the smash product of a spectrum X with a
space A as A∧ X, then we would need to define the structure maps of A∧ X by

Σ(A ∧ Xn) = S 1 ∧ A ∧ Xn

τS 1∧A,Xn−−−−−−→ A ∧ S 1 ∧ Xn
A∧σX

n−−−−→ A ∧ Xn+1.

Since the twist maps are not always homotopic to the identity (τS 1,S 1 , for ex-
ample) we will need to keep track of where they are needed.

The functors (−∧A, F(A,−)) demonstrate why it is difficult to only consider
Ω-spectra: while F(A,−) preserves Ω-spectra, the functor − ∧ A will not, in
general. Hence we need a way to turn a spectrum into an Ω-spectrum. We will
discuss this in Section 2.4. For now, we simply assume that for every spectrum
X there is an Ω-spectrum RX and a levelwise weak homotopy equivalence
RX

∼−→ X.
Using the smash product of spectra with pointed spaces, we can define ho-

motopy between maps of spectra in a entirely analogous way to homotopy of
pointed spaces.

Definition 1.3.5 Let X and Y be spectra. A homotopy between two maps
f , g : X −→ Y of spectra is a map

H : X ∧ [0, 1]+ −→ Y

such that H ◦ i0 = f and H ◦ i1 = g, where i0 and i1 are the two endpoint
inclusions of S 0 into [0, 1]+.

Hence, a homotopy between maps of spectra f and g is a collection of ho-
motopies Hn between fn and gn which are compatible with the structure maps
of X and Y .

We may define a category whose object class is given by the class of spectra,
and morphism class given by the class of homotopy classes of maps of spectra.
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We have already seen that such objects determine reduced cohomology theo-
ries in Proposition 1.1.25. However, this category does not have enough maps
to be a good candidate for the stable homotopy category. The following exam-
ple illustrates this by giving two spectra which are not homotopy equivalent
but represent the same cohomology theory.

Example 1.3.6 Consider the spectrum S(1), which is the sphere spectrum at
all levels except 0, where it is a point. The structure maps are the canonical
maps and ∗ −→ S 1 in degree 0. There is a levelwise inclusion

S
(1) −→ S,

which becomes a levelwise weak homotopy equivalence

RS(1) −→ RS.

By Proposition 1.1.25, these two Ω-spectra represent the same cohomology
theory. (Here, we assume that the homotopy colimit functor defining R takes
values in CW-complexes.)

However, each map

f : S −→ S(1)

is levelwise contractible. At level 0,

f0 : S 0 −→ ∗
is the constant map to the one-point space. At level 1, the homotopy commuting
square forces f1 to be homotopic to the composite

S 1 −→ ∗ −→ S 1.

By induction, each fn is homotopic to a constant map.

The example also makes it clear that homotopy equivalence is too strong a
condition for a suitable notion of weak equivalence of spectra. One obvious
candidate would be inducing an isomorphism on stable homotopy groups: for
X a spectrum and n ∈ Z, the structure maps of X allow us to define

πn(X) = colima πn+a(Xa)

= colim(· · · → [S n+a, Xa]
Σ→ [S n+a+1,ΣXa]

σ∗→ [S n+a+1, Xa+1]→ · · · ),
see also Definition 2.2.1. It is evident that S(1) −→ S induces an isomorphism
on all stable homotopy groups, but we do not have a suitable map of spectra
inducing an inverse.
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There are a number of solutions to this lack of maps from one spectrum to
another. Adams [Ada74] defines the complicated notion of a cofinal subspec-
trum and considers (equivalences classes of) maps from cofinal subspectra of
X to Y . Composition is then quite complicated, as one must find suitably com-
patible cofinal subspectra.

Another approach is to recognise that a similar problem occurs in topologi-
cal spaces and simplicial sets. The functor Top∗(A,−) is homotopically poorly-
behaved unless A is a CW-complex, and the functor sSet∗(−, Z) requires Z to be
a Kan complex to be a useful homotopical functor. Hence to get the correct set
of maps from X to Y in the homotopy category of spectra, we should require
X to be a “CW-spectrum” and Y to be an Ω-spectrum. We then face the un-
pleasant choice between restricting to Ω-spectra that are also “CW-spectra”, or
defining a suitable CW-approximation functor and using both it and the functor
R to define composition. A notable approach along these lines is that of Lewis,
May and Steinberger [LMSM86], which defines a highly structured version
of R that is a right adjoint and outputs an Ω-spectrum whose adjoint structure
maps are homeomorphisms.

The preferred solution of the authors is to use model categories. This allows
us to have a point-set model of spectra with a rich homotopy theory, whose
homotopy category satisfies the list of conditions and properties of the stable
homotopy category of Subsection 1.1.4. In particular, the objects of SHC will
represent reduced cohomology theories, and SHC will contain the Spanier–
Whitehead category SW.

The machinery of model categories essentially gives us the functor R and a
CW-approximation functor. Furthermore, it takes care of when these functors
need to be applied. Another advantage of the model category approach is that
(with a suitable base category) it will allow for a good definition of the smash
product of spectra, which is associative and commutative before passage to the
level of homotopy categories. This avoids numerous problems with the “handi-
crafted smash product” that is only useful at the homotopy category level. See
Chapter 6 for more details.
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Sequential Spectra and the Stable Homotopy
Category

Bousfield and Friedlander defined the stable homotopy category in terms of the
homotopy category of a model category of spectra [BF78]. We will construct
this model category following an approach similar to [MMSS01]. We do this
in two stages. First, we construct a levelwise model structure, and then build
the desired stable model structure from the levelwise model structure. We then
formally define the stable homotopy category to be the homotopy category of
sequential spectra.

A sequential spectrum is a sequence of pointed topological spaces (and
structure maps), thus, a natural candidate for an analogue of weak homotopy
equivalences are those maps of spectra inducing a weak homotopy equiva-
lence at every level. However, we will see that these levelwise weak homotopy
equivalences are not sufficient to define a class of weak equivalences leading
to a meaningful stable homotopy theory. A key ingredient is the definition of
homotopy groups of spectra π∗(X) and π∗-isomorphisms. This generalises the
notion of stable homotopy groups of topological spaces that we encountered
earlier. Making the π∗-isomorphisms the weak equivalences of sequential spec-
tra will give us a construction of our desired stable homotopy category.

The task of much of the later chapters is to prove that the homotopy category
of sequential spectra satisfies the desired properties of the stable homotopy
category (see Subsection 1.1.4). To achieve this, we will introduce the lan-
guage of stable model categories and triangulated categories more formally in
Chapters 3 and 4. Unfortunately, sequential spectra are not a monoidal model
category, making it very difficult to prove directly that the homotopy cate-
gory of sequential spectra has a suitable smash product. We resolve this in
Chapter 6, using the more highly structured versions of spectra from Chapter 5.

37
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Nevertheless, we will know enough about spectra and the stable homotopy
category by the end of this chapter to introduce the reader to the most powerful
tool for calculating the stable homotopy groups of spheres, namely, the Adams
spectral sequence.

2.1 The Levelwise Model Structure

We discussed the motivation behind spectra in Chapter 1. In this chapter we de-
fine the category of sequential spectra, whose objects are similar to the spectra
we have seen previously. The morphisms of sequential spectra are sequences
of maps commuting strictly with the structure maps, rather than commuting up
to homotopy.

We give a levelwise model structure on the category of sequential spectra,
whose primary purpose is to help us construct the stable model structure of
Section 2.3.

For this section, we take the suspension functor Σ to be S 1 ∧ −.

Definition 2.1.1 A sequential spectrum X is a sequence of pointed topologi-
cal spaces Xn, n ∈ N with structure maps

σX
n : ΣXn −→ Xn+1.

We denote the adjoints of the structure maps by

σ̃X
n : Xn −→ ΩXn+1,

and call them the adjoint structure maps. A spectrum X is called anΩ-spectrum
if the adjoint structure maps are weak homotopy equivalences. The category
of sequential spectra SN is given by the following. The objects are the class of
sequential spectra. A morphism

f : X −→ Y

in SN is a sequence of pointed maps of topological spaces fn : Xn −→ Yn such
that for each n ∈ N, the square below commutes.

ΣXn
Id∧ fn

σX
n

ΣYn

σY
n

Xn+1
fn+1

Yn+1

We will often shorten “sequential spectrum” to “spectrum” and omit the
superscript X from the (adjoint) structure maps.
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Example 2.1.2 The sphere spectrum S is defined by Sn = S n with structure
maps given by the canonical maps ΣS n −→ S n+1.

For n ∈ N, we write Sn = Σn
S and S−n = FNn S 0, with the latter defined in the

next example.

Example 2.1.3 The shifted suspension spectrum FNd K of a pointed topologi-
cal space K with d ∈ N is defined by

(FNd K)n =

⎧⎪⎪⎨⎪⎪⎩
S n−d ∧ K n � d

∗ n < d.

The structure maps are given by the canonical maps and by the inclusion of a
point for n = d − 1. To match other notations, we often write Σ∞ for FN0 .

The shifted suspension spectrum of a pointed space is part of an adjoint
functor pair with the right adjoint sending a spectrum X to the space Xd

FNd : Top∗ SN :EvNd .

Example 2.1.4 Given a space A and a spectrum X, we can make a new spec-
trum X ∧A with level n given by Xn ∧A and structure maps given by smashing
the structure maps of X with A. We may also define a spectrum A∧X with level
n given by A ∧ Xn and structure maps given by smashing with A and using the
twist map τ to exchange S 1 and A. The twist map induces an isomorphism of
sequential spectra between X ∧ A and A ∧ X.

Given a space A and a sequential spectrum X, we can make a new spectrum
Top∗(A, X) with level n given by Top∗(A, Xn) and adjoint structure maps given
by

Top∗(A, Xn)
Top∗(A,σ̃X

n )−−−−−−−−→ Top∗(A,ΩXn+1) � ΩTop∗(A, Xn+1).

We write ΣX for S 1 ∧ X and ΩX for Top∗(S 1, X).

The point-set definition of the category of sequential spectra allows us to de-
fine products, coproducts, limits and colimits in a straightforward manner. The
definition demonstrates how certain constructions are easier to define using the
structure maps and others using the adjoint structure maps.

Definition 2.1.5 Given a diagram of spectra {X(i), αi, j : X(i) −→ X( j)}, we
may form the colimit colimi X(i) and the limit limi X(i) levelwise. The structure
maps for the colimit and limit are

Σ colimi X(i) � colimi ΣX(i)
colimi σ

X
i−−−−−−−→ colimi ΣXi+1

limi X(i)
limi σ̃

X
i−−−−−→ limiΩX(i) � Ω limi X(i).
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The category of sequential spectra has all small limits and colimits, as the
category of pointed spaces does. The initial and terminal objects are
∗ = Σ∞(point).

We now construct the levelwise model structure on spectra. It is a useful
stepping stone to the stable model structure.

Proposition 2.1.6 There is a levelwise model structure on sequential spectra,
where the weak equivalences are the levelwise weak homotopy equivalences of
pointed spaces. The fibrations are the class of levelwise Serre fibrations of
pointed spaces. The cofibrations are called the q-cofibrations.

This model structure is cofibrantly generated with generating sets given by

INlevel = {FNd S n−1
+ −→ FNd Dn

+ | n, d ∈ N}
JNlevel = {FNd Dn

+ −→ FNd (Dn × [0, 1])+ | n, d ∈ N}.
The q-cofibrations are, in particular, levelwise q-cofibrations of pointed topo-
logical spaces.

Proof We follow the Recognition Theorem for cofibrantly generated model
structures, Theorem A.6.9.

1. The levelwise weak homotopy equivalences satisfy the two-out-of-three
condition.

2. The domains of the generating sets are small with respect to the class of
levelwise cofibrations of spaces.

3. A map in JNlevel-cell is a levelwise weak equivalence and an INlevel-cofibration.

4. The class of maps with the right lifting property with respect to INlevel is
exactly the class of levelwise weak equivalences that also have the right
lifting property with respect to JNlevel.

The two-out-of-three property for the weak equivalences is evident.
As colimits are defined levelwise, a sequential colimit of pushouts of maps

in INlevel or JNlevel is in each level a sequential colimit of pushouts of q-cofibrations
of pointed spaces, see Example A.1.5. Hence, each such map is a levelwise
q-cofibration of pointed spaces.

For the smallness conditions, we prove that the domains of INlevel are small
with respect to the class of levelwise q-cofibrations. Consider a sequential
diagram

Y0 −→ Y1 −→ Y2 −→ · · ·
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of spectra with each map a levelwise q-cofibration. The adjunction (FNd ,EvNd )
for d ∈ N induces the first and last isomorphism of

colimi S
N(FNd S n−1

+ ,Yi) � colimi Top∗(S n−1
+ ,Yi

d)
� Top∗(S n−1

+ , colimi Yi
d)

= Top∗(S n−1
+ ,EvNd colimi Yi)

� SN(FNd S n−1
+ , colimi Yi),

and the second isomorphism comes from the smallness of S n−1
+ with respect

to q-cofibrations of pointed spaces (see also Corollary A.7.10). A similar ar-
gument shows that the domains of JNlevel are small with respect to the class of
levelwise acyclic q-cofibrations.

The lifting properties relating the generating sets and the (acyclic) fibrations
also follow from this adjunction and the corresponding properties of the Serre
model structure on Top∗. For example, consider the two lifting squares below,
where X and Y are spectra, A and B are pointed spaces and d ∈ N. The first
square below has a lift if and only if the other does.

FNd A X

f

A Xd

fd

FNd B Y B Yd

Assume that f : X → Y has the right lifting property with respect to INlevel. By
the equivalence of the lifting diagrams above, it follows that each

fd : Xd −→ Yd

has the right lifting property with respect to S n−1
+ −→ Dn

+. Hence, each fd is
a levelwise acyclic fibration. The converse also holds, as does the equivalent
statement for JNlevel and its converse. It follows that the class of levelwise weak
homotopy equivalences with the right lifting property with respect to JNlevel is
exactly the class of maps with the right lifting property with respect to INlevel.

One must also consider the set of maps JNlevel-cell. A sequential colimit of
pushouts of maps in JNlevel is in each level a sequential colimit of pushouts of
acyclic cofibrations of the Serre model structure on pointed spaces. Hence,
each such map is a levelwise weak homotopy equivalence by the cofibrant
generation of the Serre model structure.

Since the maps in JNlevel have the left lifting property with respect to levelwise
acyclic fibrations, it follows from Lemma A.6.11 that sequential colimits of
pushouts of maps in JNlevel also have this left lifting property and hence are
q-cofibrations. �
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We can give an explicit description of the q-cofibrations. It may be useful to
compare the following with Theorem A.7.1 and Example A.7.9.

Theorem 2.1.7 Let X and Y be sequential spectra. A map i : X −→ Y in the
levelwise model structure is a q-cofibration if and only if

i0 : X0 −→ Y0

is a q-cofibration and the induced map σ̂n in the pushout diagram below

ΣXn
σX

n

Σin

Xn+1

in+1

ΣYn

σY
n

ΣYn

∨

ΣXn

Xn+1

σ̂n

Yn+1

is a q-cofibration of pointed spaces for each n ∈ N. A spectrum Z is q-cofibrant
in the levelwise model structure if and only if Z0 is a q-cofibrant pointed space
and the maps ΣZn −→ Zn+1 are q-cofibrations.

Proof Let i : X −→ Y be a map of spectra such that i0 is a q-cofibration and
σ̂n is a q-cofibration in Top∗ for each n ∈ N. We show that i is a levelwise
q-cofibration in Top∗. Assume we have shown that

in : Xn −→ Yn

is a q-cofibration. Then the left-hand map in the pushout square

ΣXn
σX

n

Σin

Xn+1

an

ΣYn ΣYn

∨

ΣXn

Xn+1

is a q-cofibration, hence so is the right-hand map an. The map in+1 is the com-
posite σ̂n ◦ an and hence is the composite of two q-cofibrations.



2.1 The Levelwise Model Structure 43

To prove that i is a q-cofibration in the levelwise model structure, consider a
lifting square in spectra

X
f

i

P

p

Y g Q

with p : P −→ Q a levelwise acyclic fibration. We want to construct a map
of spectra h : Y −→ P making the two triangles commute. At level 0, we
can choose some lift h0 in the Serre model structure on pointed spaces, as
X0 −→ Y0 is a q-cofibration and P0 −→ Q0 is an acyclic fibration. Therefore,
we obtain

X0
f0

i0

P0

p0

Y0 g0

h0

Q0.

At level 1, we must construct a lift h1 that is compatible with our choice of h0.
The maps σP

0 ◦ Σh0 and f1 induce a map

k0 : ΣY0

∨

ΣX0

X1 −→ P1.

This map fits into the commuting square below, where we can choose a lift h1,
as σ̂0 is a q-cofibration and p1 is an acyclic fibration.

ΣY0

∨

ΣX0

X1
k0

σ̂0

P1

p1

Y1 g1

h1

Q1

Let b0 be the inclusion ΣY0 −→ ΣY0
∨
ΣX0

X1. Then, the commutativity of the
upper-left triangle implies

h1 ◦ σY
0 = h1 ◦ σ̂0 ◦ b0 = k0 ◦ b0 = σ

P
0 ◦ Σh0,

so that h1 is compatible with our choice of h0. Continuing inductively, we
obtain a lift h. Hence, i has the left lifting property with respect to acyclic
fibrations and hence is a q-cofibration.
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We now must prove the converse, namely, that the map σ̂n induced by a
q-cofibration of spectra

i : X −→ Y

is a q-cofibration in Top∗ for each n ∈ N and that i0 is a q-cofibration. The
second statement is immediate: each level of i is a q-cofibration of Top∗. For
the first, we argue via cofibrant generation of the levelwise model structure, see
Section A.6. Every q-cofibration is a retract of a sequential colimit of pushouts
of maps in

INlevel = {FNd S n−1
+ −→ FNd Dn

+ | n, d ∈ N}.
Consider a pushout square of spectra

FNd A
f

FNd j

X

i

FNd B g Y,

where j : A −→ B is a cofibration in Top∗. For n � d − 1, the structure maps
Σ(FNd B)n −→ (FNd B)n+1 are isomorphisms. Thus, we have isomorphisms

ΣYn

∨

ΣXn

Xn+1 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝Σ(FNd B)n

∨

Σ(FNd A)n

ΣXn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∨

ΣXn

Xn+1

� Σ(FNd B)n

∨

Σ(FNd A)n

Xn+1

� (FNd B)n+1

∨

(FNd A)n+1

Xn+1

� Yn+1.

The composite of these isomorphisms is exactly

σ̂n : ΣYn

∨

ΣXn

Xn+1 −→ Yn+1.

Thus, σ̂n is a homeomorphism, and hence a q-cofibration, when n � d − 1.
When n = d − 1, σ̂n is given by

ΣYd−1

∨

ΣXd−1

Xd � ∗
∨

∗
ΣXd−1

∨

ΣXd−1

Xd � Xd
id−→ Yd,

and we know that id is a q-cofibration for all d. Hence, for each n, σ̂n is a
q-cofibration.
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Now consider a sequential diagram

(X = X0 i0−→ X1 i1−→ · · · ) −→ colimi Xi = Y,

where each map ik : Xk −→ Xk+1 is given by a wedge of pushouts of maps in
INlevel. We know that each σ̂k

n is a q-cofibration, and we want to prove that

ΣYn

∨

ΣXn

Xn+1 −→ Yn+1

is a q-cofibration for each n ∈ N. Writing out the colimits defining Y , the above
map is

colimk ΣXk
n

∨

ΣXn

Xn+1 −→ colimk Xk
n+1.

It suffices to prove that in the projective model structure on sequential diagrams
in Top∗, the map

ΣX•n
∨

ΣXn

Xn+1 −→ X•n+1

induced by the diagram below is a cofibration (as the colimit is a left Quillen
functor with this model structure and hence preserves cofibrations).

ΣX0
n
∨
ΣXn

Xn+1 X0
n+1

ΣX1
n
∨
ΣXn

Xn+1 X1
n+1

ΣX2
n
∨
ΣXn

Xn+1 X2
n+1

...
...

This amounts to proving that the first map is a q-cofibration in Top∗ (in our
case it is the identity) and that for each square of the diagram, the map

⎛⎜⎜⎜⎜⎜⎜⎝ΣXk+1
n

∨

ΣXn

Xn+1

⎞⎟⎟⎟⎟⎟⎟⎠
∨

(
ΣXk

n
∨
ΣXn

Xn+1

)
Xk

n+1 −→ Xk+1
n+1

is a q-cofibration in Top∗. By studying the domain, we see this map is isomor-
phic to
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ΣXk+1
n

∨

ΣXk
n

Xk
n+1 −→ Xk+1

n+1,

which we already know to be a q-cofibration. Hence, we see that the colimit is
a q-cofibration. Therefore, we proved our statement for sequential colimits of
pushouts of maps in INlevel.

The general case of a q-cofibration i : X −→ Y is a retract of a sequen-
tial colimit of pushouts of maps in INlevel. Since retracts preserve cofibrations,
we see that our i has the desired property, namely, that the induced σ̂n are
q-cofibrations of topological spaces.

The statement about cofibrant objects follows from setting X = ∗. �

This condition on cofibrant objects of the levelwise model structure has ap-
peared in various forms before (see, for example, [LMSM86], or [EKMM97]),
and these spectra have been called Σ-cofibrant spectra. A related definition
in the early literature [Ada74] is that of a CW-spectrum and its stable cells.
Using these ideas, one can extend many of the cell–based arguments on spaces
to spectra.

Definition 2.1.8 A sequential spectrum X is a CW-spectrum if each Xn is a
pointed CW-complex and each structure map ΣXn → Xn+1 is an isomorphism
onto a subcomplex of Xn+1.

For a d-cell c of the CW-complex Xn, the suspension of c is a (d + 1)-cell
Σc of Xn+1 via the structure map. Let Cn be the set of cells of Xn, then we have
maps

sn : Cn → Cn+1.

The set of stable cells is the colimit of the Cn under the maps sn. A stable d-cell
is a stable cell represented by an (n + d)-cell of Xn for some n.

Note that the definition implies that the structure maps are, in particular, cel-
lular maps. Moreover, a CW-spectrum is cofibrant. The following result gives
the converse to this statement and is analogous to the situation for spaces.

Proposition 2.1.9 For a pointed CW-complex B and a subcomplex A, the
spectra FNd A and FNd B are CW-spectra, and the map

FNd A −→ FNd B

is an inclusion of a sub-CW-spectrum.
If Y is a cofibrant spectrum, then there is a CW-spectrum X and a map

X −→ Y that is a levelwise homotopy equivalence.

Proof The first and second statements are evident by inspection of the levels
and the structure maps.
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CW-complexes are preserved by pushouts along cellular maps and by se-
quential colimits of cellular maps. Furthermore, a retract of a CW-complex
has the homotopy type of a CW-complex. Thus, we see that the levels of a
cofibrant spectrum Y have the homotopy type of CW-complexes.

We now choose a CW-replacement

f0 : X0 −→ Y0.

This is a homotopy equivalence, as Y0 has the homotopy type of a CW-complex.
The structure maps of Y are q-cofibrations of pointed spaces by Theorem 2.1.7.
Hence, they are monomorphisms, and we may choose a CW-replacement

f1 : X1 −→ Y1

containing ΣX0 as a subcomplex so that the square involving structure maps
commutes. Continuing inductively gives a map X −→ Y which at each level is
a homotopy equivalence. �

2.2 Homotopy Groups of Spectra

The levelwise weak equivalences are not the correct weak equivalences for the
stable model structure. Recalling Example 1.3.6, we would like the map

FN1 S 1 = S(1) −→ S
to be a weak equivalence in the stable model structure. Our earlier investiga-
tions indicate that these weak equivalences should be related to stable homo-
topy groups. For a spectrum X, n ∈ Z and a ∈ N such that n + a > 1, we have
maps of abelian groups

πn+a(Xa)
Σ−→ πn+a+1(ΣXa)

σX
a−→ πn+a+1(Xa+1)

Σ−→ πn+a+2(ΣXa+1) −→ · · ·
which in the case of X = Σ∞A is the system of groups used to define πstable

n (A).
The following definition is then a natural continuation.

Definition 2.2.1 The homotopy groups of a spectrum X are defined to be

πn(X) = colima πn+a(Xa)

for n ∈ Z. A map f : X −→ Y is a π∗-isomorphism if the induced map

πn( f ) : πn(X) −→ πn(Y)

is an isomorphism for each n ∈ Z. We regard π∗ as a functor from spectra to
graded abelian groups. We say that spectra X and Y are π∗-isomorphic if there
is a sequence of π∗-isomorphisms relating X and Y .
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Note that, again, this definition of homotopy groups does not depend on the
choice of a basepoint.

Example 2.2.2 The homotopy groups of the shifted suspension spectrum
FNd A are given by

πn(FNd A) = πstable
n+d (A),

hence, the homotopy groups of Σ∞A are the stable homotopy groups of the
pointed topological space A. In particular, the homotopy groups of the sphere
spectrum S = Σ∞S 0 are the stable homotopy groups of spheres

πn(S) = πstable
n (S 0).

The adjoint of the identity map S n+1 −→ S n+1 = (FN0 S n)1 is a map

λ1 : FN1 S n+1 −→ FN0 S n = Σ∞S n.

This map is a π∗-isomorphism, as after the first level, the two spectra are the
same. In general, we may replace the first n levels of a spectrum X with ∗
obtaining a spectrum X(n), and the resulting inclusion

X(n) −→ X

will be a π∗-isomorphism. Similarly, the map

λn : FNn+1 S 1 −→ FNn S 0

is a π∗-isomorphism, as it is the identity above degree n.
Thus, we see that spectra can have non-trivial negative homotopy groups as,

for example,

π−3(FN4 S 0) = πstable
1 (S 0).

Example 2.2.3 The map η : X −→ ΩΣX is a π∗-isomorphism. The adjoint
structure maps of the spectrum ΩΣX are given by

ΩΣXa
ΩΣσ̃X

a−−−−→ ΩΣΩXa −→ ΩΩΣXa
τ−→ Ω(ΩΣXa),

where the unlabelled map is induced by the natural transformation ΣΩ −→ ΩΣ
and τ swaps the two copies of Ω. From this description, we can check that η
induces a map of sequential spectra. As π∗(η) is part of the colimit sequence
defining homotopy groups of spectra

πn+a(Xa) −→ πn+a(ΩΣXa) � πn+a+1(ΣXa) −→ πn+a+1(Xa+1),

it follows that η is a π∗-isomorphism.
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Example 2.2.4 For G an abelian group, the homotopy groups of the
Eilenberg–Mac Lane spectrum HG are

πk(HG) = colimn πk+n(K(G, n)) =

⎧⎪⎪⎨⎪⎪⎩
G if k = 0

0 otherwise.

From the uniqueness of Eilenberg–Mac Lane spaces and the above calculation,
it follows that any two Eilenberg–Mac Lane spectra for G are π∗-isomorphic.

Remark 2.2.5 Similarly to Eilenberg–Mac Lane spectra, given an abelian
group G, we can construct a spectrum whose homology is concentrated in de-
gree zero, where it takes value G. These spectra are known as Moore spec-
tra by analogy to Moore spaces. We construct a Moore spectrum for Z/n in
Example 2.5.6. The general case needs substantially more technology and is
given in Example 7.4.7.

Example 2.2.6 Let us have a look at the homotopy groups of the spectrum
representing complex topological K-theory, see Subsection 7.4.2 for a more
detailed introduction. The unitary group U(n) may be considered as a sub-
group of U(n + 1) by acting by the identity on the last coordinate. Taking the
union over all n gives the infinite unitary group

U = ∪n�0U(n).

The loop space of U is BU × Z and Ω2U 	 U via Bott periodicity. It follows
that we can define an Ω-spectrum K (often denoted KU in literature):

Kn =

⎧⎪⎪⎨⎪⎪⎩
BU × Z if n is even

U if n is odd.

Let X be a finite CW-complex (in particular compact and Hausdorff). We then
have

[Σ∞X,K]∗ � [X,K0]∗ � K̃∗(X).

It follows that

πn(K) = [Σ∞S 0,K]n � K̃n(S 0) =

⎧⎪⎪⎨⎪⎪⎩
Z if n is even

0 if n is odd.

Hence, we have a spectrum with infinitely many non-zero negative homotopy
groups.

It follows from the definition of π∗-isomorphisms that (small) coproducts
or products of π∗-isomorphisms are π∗-isomorphisms. We also show that π∗-
isomorphisms are preserved by suspension and loops.
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Lemma 2.2.7 A map of spectra f : X −→ Y is a π∗-isomorphism if and only if

Σk f : ΣkX −→ ΣkY

is a π∗-isomorphism for all k ∈ N.
A map of spectra f : X −→ Y is a π∗-isomorphism if and only if

Ωk f : ΩkX −→ ΩkY

is a π∗-isomorphism for all k ∈ N.

Proof The result follows from the formulae

πn(ΣkX) � πn−k(X), πn(ΩkX) � πn+k(X),

which hold for all n ∈ Z and k ∈ N. We prove the first for k = 1, the second
is similar. We have a diagram as below where τ is the twist map which swaps
the two copies of S 1 in the double suspension. The left-hand square commutes
and the right-hand square commutes up to a factor of −1, which corresponds
to the effect of the twist map τ on homotopy groups. The colimit of the top row
is πn(ΣX), and the colimit of the second row is πn−1(X).

· · · πn+a(ΣXa) Σ

σX
a

πn+a+1(ΣΣXa)
ΣσX

a ◦τ

Σ(σX
a )

πn+a+1(ΣXa+1)

σX
a+1

· · ·

· · · πn+a(Xa+1)
Σ
πn+a+1(ΣXa+1)

σX
a+1




πn+a+1(Xa+2) · · ·

Since the structure maps appear in both rows and the horizontal maps, a dia-
gram chase shows that the induced map on colimits is an isomorphism.

The series of isomorphisms below completes the proof.

πn(ΣX) = colima πn+a(ΣXa) � colima πn+a(Xa+1)

= colima πn−1+1+a(Xa+1)

� colimb πn−1+b(Xb) = πn−1(X) �

Remark 2.2.8 Note how the above result does not assume anything about the
basepoints of the levels of the spectrum. Given how much Subsection 1.1.2 re-
lies on non-degenerate basepoints, this result should be considered a little sur-
prising. Moreover, it allows us to prove that when A is a pointed CW-complex,
A ∧ − preserves π∗-isomorphisms, see Proposition 2.2.14. Thus, we see that
the weak equivalences of sequential spectra are better behaved than those of
pointed spaces.
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Since homotopy groups of spaces interact well with coproducts, we have the
following result for homotopy groups of spectra.

Lemma 2.2.9 For a set of spectra {Xi | i ∈ I}, there is a natural isomorphism
⊕

i∈I
πn(Xi) −→ πn(

∨

i∈I
Xi). �

Let us recall the notion of homotopy cofibres and homotopy fibres of maps
of pointed spaces. Let f : A −→ B be a map in Top∗. The homotopy cofibre of
f is the pushout of the diagram

CA = A ∧ [0, 1]
i0←− A

f−→ B,

and the homotopy fibre of f is the pullback of the diagram

A
f−→ B

p0←− Top∗([0, 1], B) = PB,

where [0, 1] has basepoint 1. If f is a h-cofibration of pointed spaces, then the
natural quotient map

C f −→ B/A

to the cokernel of f is a homotopy equivalence by Lemma A.5.6. Similarly, if
f is a Serre fibration of pointed spaces, F f is homotopy equivalent to f −1(∗)
by the dual statement. We define the homotopy cofibre and homotopy fibre of
a map g of spectra analogously, so that level n is the homotopy (co)fibre of
the nth level gn of g. A homotopy fibre sequence is then a sequence of maps in
spectra

A −→ B −→ C

with A weakly homotopy equivalent to the homotopy fibre of

B −→ C.

We define the homotopy cofibre sequence dually.

Proposition 2.2.10 A map of spectra f : X −→ Y induces long exact se-
quences of homotopy groups as below

· · · −→ πn+1(Y)→ πn(F f )→ πn(X)→ πn(Y)→ πn−1(F f )→ · · ·
· · · → πn+1(C f )→ πn(X)→ πn(Y)→ πn(C f )→ πn−1(X)→ · · · ,

where C f denotes the homotopy cofibre of f , and F f is the homotopy fibre
of f .



52 Sequential Spectra and the Stable Homotopy Category

Proof The first sequence is obtained from looking at the levelwise long ex-
act sequence of homotopy groups of a Serre fibration. For all a, the map
fa : Xa −→ Ya is a map in Top∗, so we can construct the long exact sequence
of homotopy groups

· · · → πn+a(ΩXa) −→ πn+a(ΩYa) −→ πn+a(F fa) −→ πn+a(Xa) −→ · · ·
from the Puppe sequence of fa (see Theorem 3.6.1). Here, n can be any integer
such that n + a > 1. Taking colimits over a and using Lemma 2.2.7 gives the
result.

For the second sequence, we can construct the Puppe sequence of pointed
spaces

Xn
fn

Yn
in

C fn
δn
ΣXn

−Σ fn
ΣYn · · · .

Recall that with the given sign convention, any three consecutive terms in the
sequence is a homotopy cofibre sequence. Applying suspension and using the
structure maps gives the diagram

ΣXn
fn
ΣYn

in
ΣC fn

δn
Σ2Xn

−Σ2 fn
Σ2Yn · · ·

Xn+1
fn+1

Yn+1
in+1

C fn+1
δn+1

ΣXn+1
−Σ fn+1

ΣYn+1 · · · ,
hence, we have a levelwise homotopy cofibre sequence of spectra

X
f

Y
i

C f
δ
ΣX

−Σ f
ΣY · · · .

The homotopy group functor πn gives a sequence of abelian groups

· · · −→ πn(X)
f∗−→ πn(Y)

i∗−→ πn(C f )
∂−→ πn(ΣX) −→ · · · .

If we know that this sequence is exact, we can apply Lemma 2.2.7 and patch to-
gether these sequences for varying n to obtain the desired long exact sequence.
Since

Y −→ C f −→ ΣX and C f −→ ΣX −→ ΣY

are homotopy cofibre sequences, it suffices to show exactness at πn(Y). The
composite i∗ ◦ f∗ is zero. Consider an element α of πn(Y) which maps to zero
in πn(C f ). We can represent α as the homotopy class of a map

g : S n+a −→ Ya,
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where ia ◦ g is homotopic to zero. This homotopy is represented by a map out
of a cone

h : CS n+a −→ C fa.

Representing this information as a diagram of homotopy cofibre sequences, we
obtain the following diagram. Hence, we may choose a map k that makes the
squares commute.

S n+a

g

CS n+a

h

ΣS n+a

k

ΣS n+a

g

· · ·

Ya C fa ΣXa
Σ fa

ΣYa · · ·
The homotopy class of k is an element of πn+a+1(ΣXa) and hence an element
β ∈ πn+1(ΣX). The commutativity of the diagram and the formula

πn+1(ΣX) � πn(X)

shows that f∗β = α. �

The proof shows nicely how stability is used to construct this long exact se-
quence, just as it was needed to construct the homological long exact sequence
of stable homotopy groups of Example 1.1.19.

Corollary 2.2.11 Let f : X −→ Y be a map of spectra, let C f be the homo-
topy cofibre of f , and let F f be the homotopy fibre of f . Then the following are
equivalent:

• The map f is a π∗-isomorphism.
• The homotopy cofibre C f is π∗-isomorphic to ∗.
• The homotopy fibre F f is π∗-isomorphic to ∗. �

Given the similarity of the two long exact sequences of Proposition 2.2.10,
one may ask if F f and C f are related. In fact there is a natural map

F f −→ ΩC f

that is a π∗-isomorphism. A direct construction of F f −→ ΩC f is as follows.
An element of F f is a point x ∈ X and a path σ from f (x) to ∗ ∈ Y . In C f ,
we have a path τx from [x, 0] = [ f (x)] to ∗ = [x, 1] given by t �→ [x, t]. Taking
the reverse of σ concatenated with τx gives a loop in C f starting and ending
at ∗. To see that this map is continuous, we may include F f into X × PY and
map this to PCX × PC f , where X −→ PCX sends x ∈ X to τx. Reversing σ
and concatenating with τ gives the map to PC f , and since the path is closed,
we have the desired map F f −→ ΩC f .
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The easiest way to see that this is a π∗-isomorphism is to wait until we
have our stable model structure on sequential spectra and use the technology
of triangulated categories from Chapter 4. Specifically, Lemma 4.4.3 gives the
following.

Corollary 2.2.12 For any map of spectra f , the natural map F f −→ ΩC f is
a π∗-isomorphism. �

As one should expect, these long exact sequences are a fundamental tool for
calculating the homotopy groups of spectra. They also allow us to construct
new π∗-isomorphisms from certain colimits of π∗-isomorphisms.

Lemma 2.2.13 Several standard operations preserve π∗-isomorphisms.

1. If g : X −→ Y is a levelwise h-cofibration and a π∗-isomorphism, then the
pushout of g along another map of spectra is also a π∗-isomorphism.

2. Given a diagram as below, where i and i′ are levelwise h-cofibrations and
the vertical maps are all π∗-isomorphisms

B

	

A
i

	

C

	

B′ A′i′
C′,

then the induced map from the pushout P of the top row to the pushout of
the second row P′ is a π∗-isomorphism.

3. If f i : Xi −→ Xi+1 for i ∈ N is a collection of levelwise h-cofibrations and
π∗-isomorphisms, then the map from the initial object into the colimit

X0 −→ colimi Xi

is a π∗-isomorphism and a levelwise h-cofibration.

Proof We must show that the map h in the pushout square below is a π∗-
isomorphism.

X

g

P

h

Y Q.

Since g and h are levelwise h-cofibrations, the homotopy cofibres of g and h are
levelwise weakly equivalent to the cokernels Y/X and Q/P by Lemma A.5.6.
The induced map

Y/X −→ P/Q
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is an isomorphism since we have a pushout square. As g is a π∗-isomorphism,
Y/X is π∗-isomorphic to a point, hence, so is P/Q. By Corollary 2.2.11, h is a
π∗-isomorphism as claimed.

For the second statement, the same argument as above shows that B/A and
B′/A′ are the cofibres of i and i′. They are π∗-isomorphic by Proposition 2.2.10
and the Five Lemma. Since

B/A � P/C and B′/A′ � P′/C′,

we see that P/C and P′/C′ are π∗-isomorphic. The Five Lemma then implies
that the natural map P −→ P′ is a π∗-isomorphism.

For the third statement, as the maps are levelwise h-cofibrations, Corollary
A.7.10 implies that the colimit is levelwise homotopy equivalent to the sequen-
tial homotopy colimit of the maps fi, see Example A.7.9. Here, we work in the
Hurewicz model structure on topological spaces. Corollary A.7.10 also implies
that the natural map

colimi πn+k(Xi
k) −→ πn+k(colimi Xi

k)

is an isomorphism for all k and n. The result then follows by the definition of
π∗-isomorphisms. �

We may use these rules to prove that smashing with a pointed CW-complex
preserves all π∗-isomorphisms. Again we note that no assumptions on the base-
points of the spectra are required.

Proposition 2.2.14 Let f : X −→ Y be a π∗-isomorphism of spectra and A a
pointed CW-complex. Then the map

f ∧ Id : X ∧ A −→ Y ∧ A

is a π∗-isomorphism.

Proof We want to argue via the CW-structure of A, so we begin by proving
that − ∧ Dn

+ and − ∧ S n
+ preserve all π∗-isomorphisms.

Let X be a spectrum, then X ∧ Dn
+ at level d is given by the quotient space

Xd × Dn/({xd} × Dn),

where xd is the basepoint of Xd. The contraction of Dn to a point gives a ho-
motopy equivalence of spectra

X ∧ Dn
+ 	 X

by [Rot88, Chapter 8, Lemma 8.9] which deals with the point set issues of
identification spaces and products, see also [Sch18, Propositions A.2 and A.3].
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Now consider the maps of homotopy cofibre sequences

X ∧ S n−1
+ X ∧ Dn

+ X ∧ S n

Y ∧ S n−1
+ Y ∧ Dn

+ Y ∧ S n.

We have seen that the second and third vertical arrows are π∗-isomorphisms.
Proposition 2.2.10 and the Five Lemma imply that so is the first vertical arrow.

To deal with a general CW-complex A, we use the cellular filtration of A

A = colim(A0 −→ A1 −→ A2 −→ · · · ),
where An+1 is formed from An by a pushout

∨
S n−1
+ An

∨
Dn
+ An+1.

Consider the diagram below. Since π∗-isomorphisms are preserved by coprod-
ucts and smashing with spheres and discs, we may inductively assume that
each vertical arrow is a π∗-isomorphism.

X ∧∨
Dn
+ X ∧∨

S n−1
+ X ∧ An

Y ∧∨
Dn
+ Y ∧∨

S n−1
+ Y ∧ An

Lemma 2.2.13 states that the induced map on pushouts is a π∗-isomorphism.
We now have a diagram of the form

X ∧ A0 X ∧ A1 X ∧ A2 X ∧ A3 · · ·

Y ∧ A0 Y ∧ A1 Y ∧ A2 Y ∧ A3 · · · ,
where each horizontal map is a levelwise h-cofibration in Top∗. Taking the
homotopy cofibre of each vertical map gives a sequence of levelwise
h-cofibrations

Z ∧ A0 Z ∧ A1 Z ∧ A2 Z ∧ A3 · · ·
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between spectra that are π∗-isomorphic to a point. Lemma 2.2.13 implies that
there is a π∗-isomorphism

Z ∧ A0 −→ colimn(Z ∧ An) � Z ∧ A,

and hence Z ∧ A is π∗-isomorphic to a point. Thus,

f ∧ Id : X ∧ A −→ Y ∧ A

is a π∗-isomorphism by Corollary 2.2.11. �

2.3 The Stable Model Structure

Our goal is to construct a model structure on sequential spectra which “mod-
els” the behaviour of cohomology theories as outlined earlier as well as mim-
icking the behaviour of topological spaces. This will be called the “stable
model structure”. Its weak equivalences should be the π∗-isomorphisms. As
fibrant objects, we would like the Ω-spectra. Hence, we want fewer fibrations
than in the levelwise model structure, which can be achieved by adding more
maps to the set of generating acyclic cofibrations. We know that these new
maps should be π∗-isomorphisms, as they will be weak equivalences in the
new model structure. While we will construct everything directly, it should
be noted that this is exactly the context of a left Bousfield localisation, see
Chapter 7.

We will need to have a much better understanding of how the levelwise
model structure on spectra interacts with the Serre model structure on pointed
spaces to construct the stable model structure and to understand the stable
fibrations. For this, we need a topological version of Quillen’s axiom SM7
[Qui67].

Earlier on, we defined a functor

− ∧ − : SN × Top∗ −→ SN,

which sends (X, A) to the spectrum X ∧ A with level n being Xn ∧ A and with
structure maps

σX
n ∧ IdA : ΣXn ∧ A −→ Xn+1 ∧ A.

We refer to this functor as the tensor of spaces with spectra. We would also
like an enrichment and a cotensor functor satisfying the expected adjointness
properties.
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Definition 2.3.1 The adjoints to − ∧ − are

SN(−,−) : (SN)op × SN −→ Top∗ Top∗(−,−) : Topop
∗ × SN −→ SN.

For spectra X and Y , the pointed space SN(X,Y) is the subspace of
∏

n�0

Top∗(Xn,Yn)

consisting of maps of spectra. Its basepoint is the constant map at ∗. We refer
to this functor as the enrichment of spectra in spaces.

For a pointed space A, the cotensor is the spectrum Top∗(A, X) whose level
n is given by the space of maps Top∗(A, Xn) and adjoint structure maps given
by

Top∗(A, Xn)−→Top∗(A,ΩXn+1) � ΩTop∗(A, Xn+1).

Just as with spaces, there is no danger of confusing the set of maps of spectra
with the space of maps of spectra. We also note that the adjunction

FNd : Top∗ SN :EvNd

induces an isomorphism

SN(FNd A, X) � Top∗(A, Xd).

In particular,

SN(FNd S 0, X) � Xd and SN(FNd S 1, X) � ΩXd

as pointed spaces.
Looking at the adjunction levelwise, we obtain the expected relation be-

tween these three functors.

Lemma 2.3.2 For a pointed space A and spectra X and Y, there are natural
isomorphisms of pointed spaces

Top∗(A, S
N(X,Y)) � SN(X ∧ A,Y) � SN(X,Top∗(A,Y)). �

We now prove that sequential spectra with the levelwise model structure is
a “topological model category”, see Definition 6.1.28

Proposition 2.3.3 Let f : X −→ Y be a q-cofibration of spectra, i : A −→ B
a q-cofibration of pointed spaces, and p : P −→ Q a levelwise fibration of
spectra. Then the natural map induced by f and p

hom�( f , p) : SN(Y, P) −→ SN(X, P) ×
SN(X,Q)

SN(Y,Q)
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is a fibration of pointed spaces. Moreover, if one of f or p is a levelwise weak
equivalence, the map hom�( f , p) is a weak homotopy equivalence.

The natural map

f � i : Y ∧ A
∨

X∧A

X ∧ B −→ Y ∧ B

is a q-cofibration of spectra. Moreover, if i is a weak homotopy equivalence or
f a levelwise weak equivalence, then f � i is a levelwise weak equivalence.

The natural map

hom�(i, p) : Top∗(B, P) −→ Top∗(A, P) ×Top∗(A,Q) Top∗(B,Q)

is a levelwise fibration of spectra. Moreover, if i is a weak homotopy equiva-
lence or p is a levelwise weak equivalence, then hom�(i, p) is a levelwise weak
equivalence.

Proof The three statements are equivalent. The proof of this equivalence is
an exercise similar to Lemma 6.1.8.

The last statement is the easiest to prove: it follows directly from levelwise
statements about pointed topological spaces (specifically, they are a monoidal
model category and hence satisfy the pushout product axiom). �

We list some consequences of the previous proposition which we will need
to construct the stable model structure on spectra and to describe its fibrations.
Each is proven by taking some suitable version of Proposition 2.3.3 and letting
one of the objects be the trivial spectrum ∗.
Corollary 2.3.4 Let X and Y be spectra. The enrichment functor SN(−, Y)
sends q-cofibrations to fibrations and acyclic q-cofibrations to acyclic fibra-
tions of pointed spaces. In particular, it sends levelwise weak equivalences
between q-cofibrant spectra to weak homotopy equivalences.

If X is a q-cofibrant spectrum, the functor SN(X,−) is a right Quillen functor
from the levelwise model structure on spectra to pointed spaces. Its left adjoint
is X ∧ −. �

We will need a homotopy–invariant version of pullbacks to define the fibra-
tions of the stable model structure.

Definition 2.3.5 The levelwise homotopy pullback of a diagram of spectra
X −→ Z ←− Y is the pullback of the diagram

X −→ Z ←− Y ′,

where Y −→ Y ′ −→ Z is a factorisation of Y −→ Z into an acyclic q-
cofibration followed by a levelwise fibration.
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A diagram of spectra

W
f

p

X

q

Y g Z

is said to be a levelwise homotopy pullback square if the map induced by f and
p from W to the levelwise homotopy pullback of X −→ Z ←− Y is a levelwise
weak homotopy equivalence.

This definition of levelwise homotopy pullback is the same as a homotopy
pullback in the level model structure, see Section A.7. Homotopy pullback
squares are also known as homotopy cartesian squares. Note that the definition
of a homotopy pullback usually requires both maps in the square to be factored
as in the construction, but in this case, one will suffice, see Lemma A.7.20.

We have already seen that the square

SN(Y, P) SN(X, P)

SN(Y,Q) SN(X,Q)

is a levelwise homotopy pullback square when the map X −→ Y is a q-
cofibration, the map P −→ Q is a fibration, and one of those maps is a levelwise
weak equivalence.

We can extend the standard results about homotopy pullback squares of
pointed spaces to the levelwise model structure on spectra.

Proposition 2.3.6 Consider a commutative square S of spectra

W
f

p

X

q

Y
g

Z.

If one of q or g is a levelwise fibration, then the square is a levelwise homotopy
pullback square if and only if the map induced by f and p

W −→ Y ×Z X

is a levelwise weak homotopy equivalence.
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Consider a map of squares α : S −→ S′ (a cube) such that the component
maps of α are levelwise weak equivalences.

W
αW

	

X
αX

	
W ′ X′

Y
αY

	

Z
αZ

	
Y ′ Z′.

Then α induces a levelwise weak homotopy equivalence between the homotopy
pullbacks of the punctured squares

Y −→ Z ←− X and Y ′ −→ Z′ ←− X′.

Moreover, the back square S is a levelwise homotopy pullback square if and
only if the front square S′ is a levelwise homotopy pullback square. �

With these preliminaries understood, we can start defining the additional
acyclic cofibrations needed to make the stable model structure.

Definition 2.3.7 Let λn : FNn+1 S 1 −→ FNn S 0 be the adjoint of the identity
map

S 1 −→ EvNn+1 FNn S 0 = S 1.

This map is the identity in every level except n, where it is the inclusion

∗ −→ S 0.

We have seen in Example 2.2.2 that λn is a π∗-isomorphism. While λn is a
levelwise h-cofibration, it is not a q-cofibration. Hence, we need to alter the λn

before we can add them to our set of generating acyclic cofibrations.

Definition 2.3.8 Define Mλn to be the mapping cylinder of λn, that is, the
pushout of

FNn+1 S 1 λn

i1

FNn S 0

sn

(FNn+1 S 1) ∧ [0, 1]+
tn

Mλn,

where i1 is the inclusion into the one end of the interval. We then have a map

kn : FNn+1 S 1 −→ Mλn
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coming from the inclusion into the zero end of the interval (so kn = tn ◦ i0). We
also have a deformation retraction

rn : Mλn −→ FNn S 0

induced by the collapse map

(FNn+1 S 1) ∧ [0, 1]+ −→ FNn+1 S 1.

The composition rn ◦ kn is the original map λn.

The maps i0 and i1 are q-cofibrations of spectra, as any q-cofibration of
pointed spaces smashed with a q-cofibrant spectrum is a q-cofibration. The
map kn is a π∗-isomorphism, as both rn and λn are as well. It is also a
q-cofibration of spectra by Lemma A.7.7 (the Patching Lemma).

Recall the generating sets for the levelwise model structure on sequential
spectra.

INlevel = {FNd (S a−1
+ → Da

+) | a, d ∈ N}
JNlevel = {FNd (Da

+ → (Da × [0, 1])+) | a, d ∈ N}
Definition 2.3.9 The following sets will be the generating sets of the stable
model structure on sequential spectra.

INstable = INlevel
JNstable = JNlevel ∪ {kn � (S a−1

+ → Da
+) | a, n ∈ N}

We can characterise those maps with the right lifting property with respect
to JNstable. These maps will be the fibrations of our stable model structure. In
particular, the following result makes it clear that the fibrant objects will be the
Ω-spectra.

Proposition 2.3.10 A map of spectra f : X −→ Y has the right lifting prop-
erty with respect to JNstable if and only if f is a levelwise fibration of spaces and
for each n ∈ N, the map

Xn −→ Yn ×
ΩYn+1

ΩXn+1

induced by σ̃X
n and f is a weak homotopy equivalence. If Y = ∗, then X has

this right lifting property if and only if it is an Ω-spectrum.

Proof A map f : X −→ Y has the right lifting property with respect to JNstable
if and only if f is a levelwise fibration of spaces and it has the right lifting
property with respect to

{kn � (S a−1
+ → Da

+) | a, n ∈ N}.
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The adjunctions between −�− and hom�(−,−) of Proposition 2.3.3 show that
a levelwise fibration f of spectra has a lift in the first square if and only if the
map of pointed spaces hom�(k∗n, f∗) has a lift in the second square.

Mλn ∧ S a−1
+

∨
FNn+1 S 1∧S a−1

+

FNn+1 S 1 ∧ Da
+

kn�i

X

f

Mλn ∧ Da
+ Y

S a−1
+

i

SN(Mλn, X)

hom�(k∗n, f∗)

Da
+ SN(FNn+1 S 1, X) ×

SN(FNn+1 S 1,Y)
SN(Mλn,Y)

Hence, f has the right lifting property with respect to JNstable if and only if f is a
levelwise fibration of spaces and hom�(k∗n, f∗) is an acyclic fibration of pointed
spaces for all n. We already know from Proposition 2.3.3 that hom�(k∗n, f∗) will
be a fibration when f is a levelwise fibration, so the condition is now that f is
a levelwise fibration and hom�(k∗n, f∗) is a weak homotopy equivalence.

Now assuming that f is a levelwise fibration, consider the map of squares (a
cube) induced by the homotopy equivalence r∗n

SN(Mλn, X)
r∗n
	

SN(Mλn,Y)
r∗n
	

SN(FNn S 0, X) SN(FNn S 0,Y)

SN(FNn+1 S 1, X)
Id
	

SN(FNn+1 S 1,Y)
Id
	

SN(FNn+1 S 1, X) SN(FNn+1 S 1,Y).

By the adjunction between FNd and EvNd , the front square is isomorphic to the
square

Xn
f

σ̃X
n

Yn

σ̃Y
n

ΩXn+1
Ω fn+1

ΩYn+1.
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By Proposition 2.3.6, the above square is a homotopy pullback square if and
only if the back square of the cube is a homotopy pullback. Moreover, both
right-hand vertical maps are fibrations, hence hom�(k∗n, f∗) is a weak homotopy
equivalence if and only if

Xn −→ Yn ×
ΩYn+1

ΩXn+1

is a weak homotopy equivalence for all n ∈ N.
The second statement follows from the first. �

Corollary 2.3.11 Let f : X −→ Y be a levelwise fibration betweenΩ-spectra.
Then f has the right lifting property with respect to JNstable. �

Theorem 2.3.12 The stable model structure on sequential spectra is defined
by the three classes below.

• The weak equivalences are the π∗-isomorphisms.
• The cofibrations are the q-cofibrations.
• The fibrations are given by Proposition 2.3.10 and are called the stable fi-

brations.

The fibrant spectra are the Ω-spectra. The model structure is cofibrantly
generated with generating sets given by Definition 2.3.9.

Proof The weak equivalences have the two-out-of-three property. The gen-
erating sets INlevel and JNstable have small codomains, as pushouts of diagrams of
small objects are small by Lemma A.6.5.

A map f : X −→ Y with the right lifting property with respect to INlevel is a
levelwise acyclic fibration. We must show it is also a stable fibration. Letting
n ∈ N, we must show that the square

Xn
f

	
σ̃X

n

Yn

σ̃Y
n

ΩXn+1
Ω fn+1

	
ΩYn+1

is a levelwise homotopy pullback square. We know that Ω fn+1 is an acyclic
fibration, so it suffices to prove that

Xn −→ Yn ×
ΩYn+1

ΩXn+1

is a weak homotopy equivalence of pointed spaces. The projection map

Yn ×
ΩYn+1

ΩXn+1 −→ Yn
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is an acyclic fibration, as these are preserved by pullbacks, and Xn −→ Yn is a
weak equivalence, so the result follows by the two-out-of-three property.

Now consider a stable fibration f : X −→ Y that is a π∗-isomorphism. We
must prove it is a levelwise acyclic fibration. We know it is a levelwise fibra-
tion, so we must prove that each fn is a weak homotopy equivalence. Since
each fn is a fibration, we know that the homotopy fibre of f is given by the lev-
elwise fibre (F f )n = f −1

n (∗). Moreover, the map F f −→ ∗ is an acyclic stable
fibration, as it is the pullback of one. Thus, F f is an Ω-spectrum by our char-
acterisation of fibrations, Proposition 2.3.10, and has trivial homotopy groups.
Since the maps

F fn −→ ΩF fn+1

are weak homotopy equivalences, the homotopy groups of the spectrum F f
are given by levelwise homotopy groups

0 = πn(F f ) � πn+a(F fa), a ∈ N.
Hence, each level of F f is weakly contractible, and

πq(Xn) −→ πq(Yn)

is an isomorphism for each q > 0 and n ∈ N by the long exact sequences of
homotopy groups. The map

Ω fn : ΩXn −→ ΩYn

is therefore a weak homotopy equivalence for all n ∈ N. (This is to be expected,
as ΩXn only depends on the basepoint component of Xn.) We can write fn as
the composite

Xn −→ Yn ×
ΩYn+1

ΩXn+1 −→ Yn.

As the first map is a weak homotopy equivalence ( f is a stable fibration) and
the second map is the pullback of the acyclic fibration of spaces Ω fn+1, we see
that fn is a weak equivalence.

Finally, we must show that a sequential colimit of pushouts of maps in JNstable
is a π∗-isomorphism and a q-cofibration. Every map in JNstable is a q-cofibration,
and these are preserved by pushouts and sequential colimits. Moreover, every
q-cofibration is a levelwise q-cofibration, so Lemma 2.2.13 completes this part
of the argument. �

By general model category theory, the homotopy category of sequential
spectra with the stable model structure may be described as spectra with in-
verses to the π∗-isomorphisms added (taking care of the lack of maps men-
tioned previously) or as homotopy classes of maps from a cofibrant spectrum



66 Sequential Spectra and the Stable Homotopy Category

to a fibrant spectrum. This last description implies that we are looking at homo-
topy classes of maps from CW-spectra to Ω-spectra, as on [Ada74, Page 141].
It follows that maps in this homotopy category agree with the more classical
approaches.

Definition 2.3.13 The stable homotopy category is the homotopy category of
sequential spectra equipped with the stable model structure

SHC = Ho(SN).

We shall see in Chapter 4 that the stable homotopy category is triangulated,
an important structural property that gives many useful results. We need one
more piece of information for this to hold, namely, we need to know that the
stable homotopy category is “stable with respect to Σ”, that is, Σ induces an
equivalence on the stable homotopy category.

Theorem 2.3.14 The loop–suspension adjunction

Σ : SN SN :Ω

on sequential spectra equipped with the stable model structure is a Quillen
equivalence. Hence, for any spectra X and Y, the suspension functor induces
an isomorphism of maps in the stable homotopy category

[X,Y]S
N

� [ΣX,ΣY]S
N

.

Proof The functor Σ preserves q-cofibrations, and by Lemma 2.2.7, it pre-
serves π∗-isomorphisms. Hence, it is a left Quillen functor. To prove that it is a
Quillen equivalence, we note that Ω preserves and detects all π∗-isomorphisms
by that same lemma, and that the map X −→ ΩΣX is a π∗-isomorphism for all
spectra X by Example 2.2.3. �

We can relate the stable model structure on sequential spectra to the level-
wise model structure. Let us temporarily use SNl to denote sequential spectra
with the levelwise model structure and [−,−]l for maps in the corresponding
homotopy category.

Lemma 2.3.15 The identity functor from the levelwise structure on sequential
spectra to the stable model structure is a left Quillen functor

Id : SNl SN : Id.

If E is an Ω-spectrum, then

[X, E] � [X, E]l.



2.4 Explicit Fibrant Replacement 67

Proof Since the generating sets for the levelwise model structure are con-
tained in the generating sets for the stable model structure, we have the Quillen
adjunction as claimed. The second statement follows by looking at the derived
adjunction. �

Lemma 2.3.16 For d ∈ N, the shifted suspension spectrum functor FNd and
the evaluation functor EvNd form a Quillen adjunction

FNd : Top∗ SN :EvNd .

In particular, there is a Quillen adjunction

Σ∞ : Top∗ SN :EvN0 .

Proof This follows from inspecting the generating sets for the Serre model
structure and for the stable model structure (Definition 2.3.9), which are given
in terms of the functors FNd for d ∈ N. �

We will discuss the derived functor of EvN0 in Section 2.4.
A common question is whether it is useful to index spectra over the integers

rather than the natural numbers. The method of this section can be used to put
a stable model structure on integer-indexed spectra. If X is a spectrum indexed
over the natural numbers, we can always extend it to an integer-indexed spec-
trum EX by putting a point in negative degrees. A spectrum Z indexed over
the integers can be truncated to give a spectrum UZ indexed over the natural
numbers. The map X −→ UEX is an isomorphism, and the inclusion EUZ into
Z is a π∗-isomorphism.

We see that the resulting functors (E,U) form a Quillen equivalence, and
hence both categories are models for the stable homotopy category. In general,
the “smaller” category is used rather than integer-indexed spectra. One possi-
ble reason is that it is harder to perform inductive constructions over integer-
indexed spectra.

2.4 Explicit Fibrant Replacement

Now that we have a stable model structure on spectra, we can investigate how
the stable homotopy category relates to pointed spaces. For this, we will need
an explicit construction of fibrant replacement in the stable model structure of
sequential spectra.

Let X be a sequential spectrum. We want to define an Ω-spectrum R∞X with
a π∗-isomorphism X −→ R∞X. Let R0X = X. For k � 1, define RkX by

(RkX)n = Ω
kXn+k
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with structure map given by

(RkX)n = Ω
kXn+k

Ωkσ̃X
n+k−−−−−→ ΩkΩXn+k+1

�−→ ΩΩkXn+k+1,

where the last isomorphism is an associativity isomorphism S 1 ∧S k � S k ∧S 1

without reordering the coordinates of the sphere.
We have a map RkX −→ Rk+1X induced by the adjoint structure maps

(RkX)n = Ω
kXn+k

Ωkσ̃n+k

Ωkσ̃n+k

Ωk+1Xn+k+1 = (Rk+1X)n

Ωk+1σ̃n+k+1

Ω(RkX)n+1 = Ω
k+1Xn+k+1

Ωk+1σ̃n+k+1
Ωk+2Xn+k+2 = Ω(Rk+1X)n+1.

Each map RkX −→ Rk+1 is a π∗-isomorphism, as the adjoint structure maps are
“inverted” by the colimit defining the homotopy groups of a spectrum.

We may then define R∞X = hocolimk RkX. If we wanted a functorial defi-
nition, then we could choose a functorial construction of homotopy colimits.
This is done in [Sch97, Lemma 2.1.3] using the functorial factorisations of
the stable model structure on sequential spectra. For now, we just want some
construction.

We claim that R∞X is an Ω-spectrum. Level n of the spectrum is given by

(R∞X)n = (hocolimk RkX)n = hocolimk Ω
kXn+k

with structure map

hocolimk Ω
kXn+k

hocolimk Ω
kσ̃X

n+k−→ hocolimk Ω
kΩXn+k+1

�−→ hocolimk ΩΩ
kXn+k+1

	−→ Ω hocolimk Ω
kXn+k+1.

The last map is a weak homotopy equivalence, as the loop functor commutes
with sequential homotopy colimits of pointed spaces, see Corollary A.7.10.
The second map is an instance of the associativity isomorphism, and the first
map is a weak homotopy equivalence, as the maps defining the homotopy col-
imit are the adjoint structure maps.

It follows that X −→ R∞X is a π∗-isomorphism to an Ω-spectrum. Hence,
we may take this to be fibrant replacement in the stable model structure on
sequential spectra.
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Definition 2.4.1 For a sequential spectrum X, we define a pointed topological
space

Ω∞X = REvN0 X = EvN0 X f ib 	 hocolimnΩ
nXn.

We use the convention that Ω∞ is the derived functor of evaluation at 0
so as to match the notation of many older texts which only consider Ω∞. In
particular, we see that for A a CW-complex,

Ω∞Σ∞A = EvN0 (Σ∞A) f ib 	 hocolimnΩ
nΣnA = QA,

where the functor Q was introduced in Definition 1.1.14.
The spaces in the image of Ω∞ have many interesting properties. In particu-

lar, they satisfy the following definition.

Definition 2.4.2 An infinite loop space is a pointed topological space Z such
that for each n, there is a space Zn and a weak homotopy equivalence

Z −→ ΩnZn.

We caution the reader that there are many competing definitions of an infi-
nite loop space – we have chosen the simplest and least structured.

Proposition 2.4.3 For a sequential spectrum X, the space Ω∞X is an infinite
loop space.

Proof The fibrant replacement Y = X f ib of a spectrum X is an Ω-spectrum.
We then have maps Yn 	 ΩYn+1 for n ∈ N. Thus, Ω∞X = Y0 is an infinite loop
space. �

One can also prove this from the definition of the homotopy colimit defini-
tion of the fibrant replacement. This requires care when commuting the various
copies of Ω.

In the reverse direction, we construct a spectrum from an infinite loop space.

Definition 2.4.4 A spectrum whose negative homotopy groups are all trivial
is called a connected spectrum.

A spectrum with only finitely many homotopy groups in negative degrees is
called a connective spectrum.

The suspension spectrum of a space is a connected spectrum by Example
2.2.2.

Proposition 2.4.5 Every infinite loop space Z defines a connectedΩ-spectrum
Z̄ with Z 	 Ω∞Z̄.
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Proof Let Z = Z0 be an infinite loop space. Choose a delooping Z1 so that
Z 	 ΩZ1. We may choose Z1 to be path-connected, as Ω only depends on the
basepoint component. Continuing in this way gives connected spaces Zn and
weak homotopy equivalences

Zn −→ ΩZn+1,

thus, we have an Ω-spectrum Z̄. Having Z̄0 = Z implies the last statement.
The assumption that the spaces Zn, n > 0, are connected ensures that the

homotopy groups of each Zn are entirely determined by Z. Moreover, for k < n,

πk(Zn) � π0(ΩkZn) � π0(Zn−k) = 0.

The spectrum Z̄ is connected, as for negative a one has

πa(Z̄) = colimk πk+a(Zk) = 0. �

In positive degrees, the homotopy groups of the spectrum Z̄ are given by the
homotopy groups of the space Z.

To illustrate, we may build a connective spectrum ku representing connec-
tive complex K-theory from the infinite loop space BU × Z. We start with

ku0 = BU × Z.

The space ku1 should be a connected space satisfying

Ωku1 	 ku0.

Hence, we may take ku1 = U = KU1 as it is connected. For ku2, we take
ku2 = BU rather than KU2 = BU × Z, as it also needs to be connected. The
third space must satisfy Ωku3 	 BU and be 2-connected, so we may take
ku3 = S U. The fourth space is then the classifying space of the group S U,
ku4 = BS U. From here on, the spaces no longer have particularly meaningful
names, other than being certain Postnikov–type constructions on U and BU.

Remark 2.4.6 We would like to give a formal statement and proof of the
slogan “up to homotopy, infinite loop spaces are connected spectra”. But, as
we have defined it, the construction of Z̄ from an infinite loop space Z does not
need to be unique or functorial.

Resolving these problems is a substantial task which we leave to the numer-
ous references in the literature, for example, the work of Adams [Ada78] and
the extensive work of May on the subject and its relations to operads [May77],
[May09a] and [May09b].
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With this section complete, we have an excellent point-set model SN for
the stable homotopy category SHC. It is easy to construct objects and maps in
this category, it represents cohomology theories by the Brown Representability
Theorem 1.1.23, and it is nicely related to topological spaces by Σ∞ and Ω∞.
Moreover, we have an explicit description of cofibrations, fibrations and fibrant
replacements, as well as a theory of CW-objects similar to that of spaces.

There is one major problem with this model category: it is unable to model
the smash product of the stable homotopy category. We discuss this issue (and
give definitions and solutions) in Chapters 5 and 6.

2.5 The Steenrod Algebra

In this section, we assume that the homotopy category of sequential spectra
satisfies the list of properties from Subsection 1.1.4 and examine some of the
consequences of this structure.

For a space X, we know that its cohomology H̃∗(X; Fp) is a module over
Fp for a prime p, but sometimes this is not enough structure for our purposes.
We will see in this section that H̃∗(X; Fp) is in addition a module over a more
structured algebra, the Steenrod algebra A = A∗. The Steenrod algebra is
necessary for discussing the Adams spectral sequence in Section 2.6, and it is
also one of the first examples of a Hopf algebra naturally occurring in topology.
Therefore, let us go through some of the properties of A, which can be found
in, for example, [Ste62].

Throughout this section, let p denote a prime. For a pointed topological
space X, we know that we have an isomorphism between the reduced Fp–
cohomology of X and maps in the stable homotopy category from the suspen-
sion spectrum of X to the Eilenberg–Mac Lane spectrum for Fp:

H̃∗(X; Fp) � [Σ∞X,HFp]−∗.

As [HFp,HFp]∗ is a (graded) ring under addition and composition, it follows
that H̃∗(X; Fp) is a (graded) module over [HFp,HFp]∗ under composition.

For this section, we assume that the stable homotopy category has a commu-
tative smash product and that HFp is a commutative ring object in the stable
homotopy category. The multiplication map (in the stable homotopy category)
HFp ∧ HFp −→ HFp gives the second map in

[S,HFp]∗ ⊗ [HFp,HFp]∗ −→ [HFp,HFp ∧ HFp]∗ −→ [HFp,HFp]∗.

We know that [S,HFp]∗ is Fp in degree 0 and that the multiplicative structure
on Fp corresponds to the smash product induced multiplication on [S,HFp]∗.
It follows that [HFp,HFp]∗ and [X,HFp]∗ are Fp–modules.
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The definition of Fp–cohomology can be extended from spaces to spectra
quite easily using the stable homotopy category. For a spectrum Z, define

H̃∗(Z; Fp) � [Z,HFp]−∗.

This is again a [HFp,HFp]∗–module by the argument above.
This module structure amounts to a natural transformation of functors

θ : H̃∗(−, Fp) −→ H̃∗+a(−; Fp)

for each θ ∈ [HFp,HFp]a. These natural transformations must also commute
with the coboundary maps of H̃∗, as in Remark 1.1.22. As a consequence, θ
will be compatible with the long exact sequence of a pair and with the suspen-
sion isomorphism of H̃∗. We call these natural transformations θ cohomology
operations and can therefore think of [HFp,HFp]a as the algebra of cohomol-
ogy operations.

Definition 2.5.1 A cohomology operation is a natural transformation of
functors

θ : H̃∗(−, Fp) −→ H̃∗(−; Fp),

where H̃∗ denotes reduced singular cohomology of topological spaces.

Using the composition of natural transformations as well as the additive
structure on morphisms in SHC, the cohomology operations form a Fp–algebra.

Definition 2.5.2 The mod-p Steenrod algebra A = A∗ is the Fp–algebra of
cohomology operations

H̃∗(−; Fp) −→ H̃∗(−; Fp).

Equivalently, we can define

A = A∗ = [HFp,HFp]∗.

In the literature, the mod-p Steenrod algebra is often denoted by Ap to
recognise that this definition depends on the prime p. As we will only use
p = 2 in this section from this point onwards, we omit the subscript and mod-p
from our notation. We refer the interested reader to [Ste62] for the odd primary
analogues of the results.

The definition of the Steenrod algebra is often given via this equivalent,
axiomatic characterisation.

Theorem 2.5.3 The Steenrod algebra A is generated by additive homomor-
phisms

S qn : H̃m(X,F2)→ H̃m+n(X,F2)

natural in X satisfying the following.
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1. S q0 is the identity.

2. For x ∈ H̃n(X; F2), S qn(x) = x2.

3. For x ∈ H̃m(X; F2) with m < n, S qn(x) = 0.

4. S qn(x∪ y) =
∑

i+ j=n S qi(x)∪S q j(y), which is known as the Cartan formula.

5. S q1 is the Bockstein homomorphism β associated to the short exact se-
quence

0 −→ Z/2 −→ Z/4 −→ Z/2 −→ 0.

6. If 0 < a < 2b, the Adem relations hold, that is,

S qaS qb =

�a/2�∑

i=0

(
b − 1 − i

a − 2i

)
S qa+b−iS qi.

Because of the second point, the elements S qn are often referred to as “Steen-
rod squares”.

We will not give the proof that the two definitions of the Steenrod algebra are
indeed equivalent. The construction of the S qn and the result that an algebra
satisfying (1.) – (6.) is unique are performed in the setting of power operations
in cohomology, see, for example, [May70]. The axiomatic set-up of power
operations is indeed a very strong tool, leading to Steenrod squares, Dyer–
Lashof operations and other, more algebraic applications. However, it is also
lengthy and technical, which is why we refer the reader to the literature, for
example, [Ste62] and [Hat02].

Remark 2.5.4 The product ∪ in the Cartan formula is the cup product

∪ : H̃i(X; F2) ⊗ H̃ j(X; F2) −→ H̃i+ j(X; F2).

There is an equivalent version of the Cartan formula, namely,

S qn(x ⊗ y) =
∑

i+ j=n

S qi(x) ⊗ S q j(y),

where

x ∈ H̃∗(X; F2), y ∈ H̃∗(Y; F2),

and x ⊗ y is viewed as an element in

x ⊗ y ∈ H̃∗(X; F2) ⊗ H̃∗(Y; F2) � H̃∗(X × Y; F2).

Assume that the cup product version of the Cartan formula holds. Let x, y as
above, (x ⊗ 1), (1 ⊗ y) ∈ H̃∗(X × Y; F2), and let

pX : X × Y −→ X and pY : X × Y −→ Y
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be the respective projections. Then,

S qn(x ⊗ y) = S qn((x ⊗ 1) ∪ (1 ⊗ y))

=
∑

i

S qi(x ⊗ 1) ∪ S qn−i(1 ⊗ y)

=
∑

i

S qi(p∗X(x)) ∪ S qn−i(p∗Y (y))

=
∑

i

p∗XS qi(x) ∪ p∗YS qn−i(y)

=
∑

i

(S qi(x) ⊗ 1) ∪ (1 ⊗ S qn−i(y))

=
∑

i

S qi(x) ⊗ S qn−i(y).

Conversely, as the cup product is the composition of the Künneth isomorphism
with the morphism induced by the diagonal map, the cup product version of
the Cartan formula follows from the new version.

The A–module structure of H̃∗(X; F2) gives the cohomology considerable
additional structure. For example, we know that H̃∗(RP∞+ ; F2) is a polynomial
algebra over F2 with one generator in degree 1, using the characterisation of
Theorem 2.5.3 we can also describe its A–module structure.

Corollary 2.5.5 On the mod-2 cohomology of the infinite-dimensional real
projective space, we have

H̃i(RP∞+ ; F2) = F2[u], |u| = 1,

with the Steenrod algebra action given by

S q j(u2k
) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u2k
if j = 0

u2k+1
if j = 2k

0 otherwise. �

The above corollary is particularly useful, as we can show many of the alge-
braic properties of A by evaluating Steenrod squares on powers of u.

The A–module structure also helps us distinguish between spectra, as we
demonstrate in the following example and lemma.

Example 2.5.6 Since we are assuming that the homotopy category of se-
quential spectra satisfies the list of properties from Subsection 1.1.4, we see
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that [S,S] = Z. The self map of the sphere spectrum corresponding to n is
called multiplication by n. Choosing a representative map

f : Sco f −→ S f ib

of multiplication by n in sequential spectra, we call the homotopy cofibre of
f the mod-n Moore spectrum M(Z/n). We may calculate the homology of
M(Z/n) using the long exact homology sequence and see that it is concen-
trated in degree zero, where it takes value Z/n. For a construction of Moore
spectra for arbitrary abelian groups G, see Example 7.4.7.

Lemma 2.5.7 Let M denote the mod-2 Moore spectrum, that is, the homotopy
cofibre of multiplication by 2 on the sphere spectrum S. Then we have

H̃∗(M ∧ M; F2) � H̃∗(M ∨ ΣM; F2) as graded F2–modules,

but

H̃∗(M ∧ M; F2) � H̃∗(M ∨ ΣM; F2) as A–modules.

Proof The long exact cohomology sequence associated to the homotopy cofi-
bre sequence

S
2−→ S −→ M

shows that the mod-2 cohomology of M is

H̃i(M; F2) =

⎧⎪⎪⎨⎪⎪⎩
F2 if i = 0, 1

0 otherwise.

We would like to determine the structure of H̃∗(M; F2) as an A–module.
For degree reasons, the only non-trivial option for this is to check whether
S q1(x0) = x1 or S q1(x0) = 0, where xi denotes the F2–generator in H̃i(M; F2).
We show that S q1(x0) = x1.

By Theorem 2.5.3, S q1 is the Bockstein homomorphism associated to the
short exact sequence of coefficients

0 −→ Z/2 i−→ Z/4 p−→ Z/2 −→ 0.

Applying cohomology to these coefficients gives us

· · · → H̃0(M;Z/4)
p∗→ H̃0(M; F2)

β→ H̃1(M; F2)
i∗→ H̃1(M;Z/4) → · · · .
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To work out the terms in the sequence, we use the Universal Coefficient Theo-
rem, which says that for a group G, the sequence

0→ Ext1
Z
(Hn−1(X,Z),G)→ H̃n(X,G)→ HomZ(Hn(X,Z),G) −→ 0

is exact. Using H̃0(M,Z) = F2 and H̃1(M,Z) = 0, one obtains

H̃0(M;Z/4) � HomZ(F2;Z/4) � F2 and H̃1(M;Z/4) = 0.

Therefore, the above long exact cohomology sequence is

· · · −→ F2
p∗−→ F2

β−→ F2 −→ 0 −→ · · · .
The cyclic generator of H̃0(M;Z/4) � HomZ(F2;Z/4) is precisely

i : F2 −→ Z/4
from the original short exact coefficient sequence. Consequently, the map p∗ is
zero as p ◦ i = 0. Thus,

S q1 = β : H̃0(M; F2) −→ H̃1(M; F2)

is an isomorphism. So altogether, as a module over F2, H̃∗(M; F2) is generated
by two elements x0 and x1 in degrees 0 and 1, respectively, and the A–module
structure is S q1(x0) = x1, see Theorem 2.5.3.

Consequently, H̃∗(M ∨ ΣM; F2) is generated over F2 by elements x0, x1, y1

and y2 in respective degrees 0, 1, 1 and 2. The Steenrod algebra action is

S q1(x0) = x1 and S q1(y1) = y2

and is trivial in all other cases. We can illustrate H̃∗(M ∨ ΣM; F2) as an
A–module in the following picture.

2 •

1 • •
S q1

0 •.
S q1

Meanwhile, by the Künneth isomorphism we have

H̃∗(M ∧ M; F2) � H̃∗(M; F2) ⊗ H̃∗(M; F2),
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which as a graded F2–module is generated by the elements

{x0 ⊗ x0, x0 ⊗ x1, x0 ⊗ x1, x1 ⊗ x1}
and therefore isomorphic to H̃∗(M∨ΣM; F2), as a graded F2–module. Another
possible basis is

{x0 ⊗ x0, x0 ⊗ x1 + x1 ⊗ x0, x1 ⊗ x0, x1 ⊗ x1}.
The Cartan formula tells us that

S q1(x0⊗x0) = x0⊗x1+x1⊗x0, S q1(x0⊗x1) = x1⊗x1 and S q2(x0⊗x0) = x1⊗x1,

as illustrated below.

2 •

1 • •
S q1

0 •.

S q2

S q1

As H̃∗(M ∨ΣM; F2) does not possess any non-trivial action by S q2, it there-
fore cannot be isomorphic to H̃∗(M ∧ M; F2) as A–module. �

Taking a closer look at the Adem relations, we see that not all possible prod-
ucts of the S qn are necessary to generate A as a graded module over F2. In fact,
we can give a minimal generating set.

Definition 2.5.8 A monomial S qi1 S qi2 · · · S pik in A is admissible if ik � 1
and ir−1 � 2ir for k � r � 2.

Proposition 2.5.9 As a module over F2, the admissible monomials form a
basis of the Steenrod algebra A.

Proof We have to show that every monomial S qi1 S qi2 · · · S pik can be uniquely
written as a sum of admissible monomials. We use the notation

S qI = S qi1 · · · S qik for I = (i1, · · · , ik).

We speak of k as the length of I, and the degree of I is i1 + · · · + ik. To show
the generating statement, one looks at the Adem relations

S qaS qb =

�a/2�∑

i=0

(
b − 1 − i

a − 2i

)
S qa+b−iS qi
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to see that every monomial can be rearranged into a sum of admissibles. The
following terminology will allow for a smooth inductive argument. We define
the moment of the monomial S qI to be

m(I) �
k∑

s=1

sis.

The idea is that the monomials with a small moment are those with relatively
large i j for j small, and those with a big moment have large i j for j large. So
to get a monomial closer to being admissible, one has to decrease its moment,
which we can do with the Adem relations.

Assume that every monomial with moment smaller than the moment of S qI

can be written as a sum of admissibles. Also, assume that S qI is not an admis-
sible monomial itself, that is, there is an index r with ir < 2ir+1. Applying the
Adem relations to that place in the monomial gives us

S qI = S q(i1,··· ,ir−1)S qir S qir+1 S q(ir+2,··· ,ik)

=
�ir/2�∑

j=0
χ j S q(i1,··· ,ir−1)S qir+ir+1− jS q jS q(ir+2,··· ,ik),

where χ j ∈ F2. The moment of the monomials inside the sum on the right-hand
side is

r−1∑

s=1

sis + r(ir + ir+1 − j) + (r + 1) j +
k∑

s=r+2

sis.

This is smaller than the moment of S qI , because

rir + (r + 1)ir+1 > r(ir + ir+1 − j) + (r + 1) j

as

0 � j � ir/2 < ir+1.

Thus, by induction,

S q(i1,··· ,ir−1)S qir+ir+1− jS q jS q(ir+2,··· ,ik)

can be written as a sum of admissibles, and therefore, also S qI .
Now we have to show that the admissible monomials are linearly indepen-

dent. We show this by evaluating them on

u⊗n ∈ H̃n((RP∞+ )∧n; F2),

where u is the polynomial generator of the cohomology ring of RP∞+ . We will
do this by induction on n.
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Let 0 � d � n. Consider a linear combination
∑

χI · S qI(u⊗n) = 0, (2.1)

where χI ∈ F2 and the sum is taken over all I for which S qI is admissible and
of degree d � n. We would like to show that χI = 0 for all I, which we again
show by (decreasing) induction on the length of I. We note that we can start
this induction because no monomial of degree d (not containing any S q0) can
have length greater than d, particularly not an admissible one. The main idea
of the overall claim is splitting our linear combination

∑
χI · S qI(u⊗n)

into sums involving u⊗ j for j < n using the Cartan formula and our induction
assumption: let us assume that if

∑
χI · S qI(u⊗n−1) = 0, (2.2)

where the sum runs over all admissible monomials of degree d where d � n−1,
then all the χI are zero. Furthermore, assume that all χI in (2.1) are zero if the
length of I is greater than m.

The Künneth isomorphism gives us

S qI(u⊗n) ∈ H̃d+n((RP∞+ )∧n; F2)

�
⊕

r

H̃r(RP∞+ ; F2) ⊗ H̃d+n−r((RP∞+ )∧(n−1); F2).

Applying the Cartan formula to this results in

S qI(u⊗n) =
∑

J�I

S qJ(u) ⊗ S qI−J(u⊗n−1).

In this notation, the difference I − J is taken componentwise, and J � I means
that jr � ir for all r. Let us take a closer look at the summand belonging to
r = 2m in the Künneth formula by considering the projection pr onto this
summand.

We saw in Corollary 2.5.5 that

S qJ(u) =

⎧⎪⎪⎨⎪⎪⎩
u2k

if J = Jk � (2k−1, 2k−2, · · · , 2, 1)

0 otherwise.

As S qJm is the only monomial in the summand r = 2m acting non-trivially
on u, we obtain

pr(S qI(u⊗n)) =

⎧⎪⎪⎨⎪⎪⎩
u2m ⊗ S qI−Jm (u⊗n−1) if the length of I is m

0 otherwise.
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Now applying the projection pr to the original linear combination (2.1) gives
us

pr
(∑

χIS qI(u⊗n)
)
=

∑

length(I)=m

χI · pr(S qI(u⊗n)) +
∑

length(I)<m

χI · pr(S qI(u⊗n))

= u2m ⊗
∑

length(I)=m

χI · S qI−Jm (u⊗n−1) = 0.

The sets of all monomials of the form I − Jm, where I is admissible of length
m and degree d, is in one-to-one correspondence with the set of admissible
monomials of length m or less and degree d − 2m + 1. Therefore, the final sum
in the previous formula is the same as (2.2), which we assumed to imply that
χI = 0 for all I. Thus, we have proved that χI = 0 for all admissible I of length
m and degree d � n, which was precisely our claim.

Hence, the map

en : A −→ H̃n((RP∞+ )∧n; F2)

given by evaluation on u⊗n sends the set of admissible monomials to a linearly
independent set. In particular, it is an isomorphism in degrees n and smaller. As
a consequence, the set of admissible monomials must be linearly independent
itself. �

Definition 2.5.10 Let Ā denote the ideal of all positive degree elements in
A. An element of A is decomposable if it is in the image of Ā ⊗ Ā under the
multiplication map

m : A ⊗A −→ A.

If an element of A is not in this image, it is called indecomposable.

In other words, an element is indecomposable if it cannot be written as a
(sum of a) product of two other elements. In fact, we can say what the inde-
composable elements of A are.

Lemma 2.5.11 For p = 2, the element S qi is indecomposable if and only if i
is a power of 2.

Proof Let i = 2k. Assume that S qi is decomposable, that is, there are mj ∈ A
with

S q2k
=

2k−1∑

j=1

mj · S qj.

Evaluated on u2k
, with u the polynomial generator of H̃∗(RP∞+ ; F2), this

would be
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u2k+1
= S q2k

(u2k
) =

2k−1∑

j=1

mj · S q j(u2k
) =

2k−1∑

j=1

mj · 0 = 0

because of Corollary 2.5.5. This contradiction shows that S q2k
must be inde-

composable.
Now let i � 2k. We can write i = a + b, where 0 < a < 2k and b = 2k for a

maximal k. Then the Adem relations give us
(
b − 1

a

)
S qa+b = S qaS qb +

∑

j�0

(
b − 1 − j

a − 2 j

)
S qa+b− jS q j.

As b − 1 = 1 + · · · + 2k−2 + 2k−1, induction shows that
(
b − 1

a

)
≡ 1 mod 2,

which means that S qa+b = S qi is decomposable as claimed. �

Corollary 2.5.12 The elements S q2k
generate the mod-2 Steenrod algebra A

as an algebra. �

A useful algebraic property of A is that it has the structure of a Hopf algebra,
meaning that it is a bialgebra with an antipode and compatibility conditions,
see, for example, [Wei94].

Definition 2.5.13 A Hopf algebra is a (graded) algebra A over a ring R to-
gether with

• an augmentation ε : A −→ R,
• an R-algebra homomorphism

Δ : A −→ A ⊗ A,

• an antipode c : A −→ A which is an R–module isomorphism

satisfying the following properties.

• With Δ and ε, A is a cocommutative coalgebra.
• The composites

A
Δ−→ A ⊗ A

c⊗1−−−→ A ⊗ A
m−→ A

and

A
Δ−→ A ⊗ A

1⊗c−−−→ A ⊗ A
m−→ A,

where m denotes the multiplication in A, equal the composite

A
ε−→ R

ι−→ A.



82 Sequential Spectra and the Stable Homotopy Category

Recall that a graded F2–algebra A is connected if it is 0 in negative gradings
and A0 = F2.

Remark 2.5.14 Work of Milnor and Moore [MM65], proves the following
result. If we have a graded connected bialgebra A with comultiplication of the
form

Δ(x) = x ⊗ 1 + 1 ⊗ x +
∑

i

yi ⊗ zi,

where yi and zi are elements of positive degree, then there is a unique R–module
homomorphism c : A −→ A satisfying c(1) = 1, c is an anti-automorphism,
meaning that it is a linear isomorphism satisfying c(x · y) = (−1)|x||y|c(y)c(x), if
x has positive degree and Δ(x) =

∑
i

ai ⊗ bi, then
∑
i

ai · c(bi) = 0, and c2 is the

identity.
Furthermore, the last point is equivalent to

∑

i

c(ai) · bi = 0,

which follows from applying c to the third point and using c2 = Id. In other
words, in this situation, A is a Hopf algebra with antipode c.

Theorem 2.5.15 The Steenrod algebra A is a Hopf algebra over F2 with
comultiplication given by

Δ(S qk) =
k∑

i=0

S qi ⊗ S qk−i

and antipode defined by

c(S q0) = S q0,

n∑

i=0

S qi · c(S qn−i) = 0 for n � 1.

Proof We first have to show that

Δ : A −→ A ⊗A
is an algebra homomorphism. Let F denote the free graded algebra generated
by elements S qn of degree n ∈ N (S q0 = Id), and let

pr : F −→ A
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denote the canonical projection. Then, the kernel of pr is exactly the Adem
relations. As F is free, Δ ◦ pr induces an algebra homomorphism

Δ̄ : F −→ A ⊗A.
To show that Δ itself is also an algebra homomorphism, we need to show that
Δ̄ sends the Adem relations to zero.

We have seen at the end of Proposition 2.5.9 that the map

en : A −→ H̃∗((RP∞+ )∧n; F2)

given by evaluating an element of the Steenrod algebra on the n-fold tensor
product u⊗n of the polynomial generator u ∈ H̃1((RP∞+ )∧n; F2) is an isomor-
phism in degrees less than or equal to n. Therefore,

en ⊗ en : A ⊗A −→ H̃∗((RP∞+ )∧n; F2) ⊗ H̃∗((RP∞+ )∧n; F2)

is also an isomorphism in degrees less than or equal to n. Similarly,

e2n : A −→ H̃∗(((RP∞+ )∧n)2; F2)

induces an isomorphism in degrees less than or equal to 2n. We can fit all these
maps into a diagram, which the Cartan formula tells us will be commutative.

F

Δ̄

pr
A

e2n

A ⊗A
en⊗en

H̃∗((RP∞+ )∧n; F2)⊗2 �

k
H̃∗((RP∞+ )∧n)2; F2)

In other words, the two F–module structures H̃∗((RP∞+ )∧n)2; F2) inherits from
the diagram are identical. So now let S be an element of the kernel of pr of
degree n or less. As the diagram commutes, this means that

(k ◦ (en ⊗ en) ◦ Δ̄)(S ) = 0.

But k and en ⊗ en are isomorphisms, meaning that Δ̄(S ) must already be zero.
As this holds for all n, we have proved our claim that Δ̄ sends the Adem rela-
tions to zero, meaning that the algebra homomorphism Δ̄ induces the algebra
homomorphism

Δ : A −→ A ⊗A
as claimed.

The next claim on our list is that Δ is a cocommutative, coassociative coal-
gebra with counit ε. This is a straightforward calculation using the explicit
formulas of Δ and ε, so we are not going to spell this out here.
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Finally, we have to deal with the antipode c : A −→ A. We are in precisely
the situation of Remark 2.5.14, thereby finishing the proof that A is a Hopf
algebra. �

It is also worth considering the dual of A due to its comparatively simple
structure.

Definition 2.5.16 The dual of the Steenrod algebra A is defined by

A∗ = HomFp (A,Fp).

Its grading is given by

An = HomFp (An,Fp).

The dual of A is in fact traditionally denoted A∗ rather than A∗ – the latter
is often used for the Steenrod algebra itself.

Proposition 2.5.17 For p = 2, the dual A∗ of the Steenrod algebra A is the
polynomial algebra

F2[ξ1, ξ2, · · · ],
where ξk is the dual of the admissible monomial S q2k−1

S q2k−2 · · · S q2S q1.

Proof Let I = (i1, · · · , in) be a sequence of non-negative integers, and let

S qI = S qi1 · · · S qin .

Then we define ξk ∈ A∗ to be the dual of S qI with

I = (2k−1, 2k−2, · · · , 2, 1)

in the following sense. We recall that by Proposition 2.5.9, a graded F2–vector
space basis of A is given by those admissible S qI , so for an admissible a ∈ A,
we define

〈ξk, a〉 =
⎧⎪⎪⎨⎪⎪⎩

1 if a = S q(2k−1,2k−2,··· ,2,1)

0 otherwise.

Our goal is to show that the standard map

Φ : F2[ξ1, ξ2, · · · ] −→ A∗, ξi �→ ξi

is an isomorphism of algebras. We will first show that it is an epimorphism,
and then that the dimensions of the source and target over F2 agree in every
degree.

Firstly, let us introduce some notation. Let us inductively define

ξI = ξi if I = (i) and ξI = ξi1 · ξ(i2,··· ,in) ∈ A∗
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if the length of I is greater than 1, where the multiplication · in A∗ is dual to
the comultiplication in A

ξI · ξJ = Δ
∗(ξI ⊗ ξJ).

By definition, these elements ξI lie in the image of Φ.
We prove the following claim: given an element a ∈ A, if 〈ξI , a〉 = 0 for

all possible I, then a = 0. This is shown by using the A–module structure on
H̃∗((RP∞+ )∧n; F2). Let u be the polynomial generator of H̃∗(RP∞+ ; F2). One can
prove by induction that

a(u⊗n) =
∑

length(I)=n

〈ξI , a〉u(I),

where u(I) is some word in tensor powers of u. Therefore, if 〈ξI , a〉 was always
trivial, then the action of A on u⊗n would also be trivial. But we have seen in
the proof of Proposition 2.5.9 that it is not. So, 〈ξI , a〉 = 0 for all I implies that
a = 0. However, this means that the ξI (and therefore the whole image of Φ)
must already make up the whole of A∗, as otherwise we could construct an I
and an a such that 〈ξ(I), a〉 = 1. Therefore, Φ is an epimorphism.

Now we will show that

Φ : F2[ξ1, ξ2, · · · ] −→ A∗

is not just an epimorphism, but an isomorphism by proving that the dimension
of F2[ξ1, ξ2, · · · ] as a F2–vector space is the same as the dimension of A∗ in
each degree. This is purely combinatorial.

Monomials in F2[ξ1, ξ2, · · · ] correspond to sequences of non-negative
integers

I = (i1, i2, · · · , in, 0, 0, · · · )
with finitely many non-zero entries. On the right-hand side, additive genera-
tors of A∗ correspond, via duality, to admissible monomials in A (Proposition
2.5.9), which in turn correspond to sequences of non-negative integers

J = ( j1, j2, · · · , jn, 0, · · · ), jk � 2 jk+1, jn � 1.

We can set up a bijection between the two respective sets of integer sequences
as follows. Let

Ik � (0, · · · , 0, 1, 0, · · · ) (non-zero entry in position k)

and

Jk � (2k−1, 2k−2, · · · , 2, 1, 0, · · · ).
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We define a map on sequences by sending Ik to Jk and asking for this map to
be additive with respect to componentwise addition. It is now straightforward
to check that an admissible sequence

J = ( j1, j2, · · · , jn, 0, · · · )
has the unique preimage

I = (i1, i2, · · · , in, 0, · · · ) where ik = jk − 2 jk+1.

This completes the proof that Φ is an algebra isomorphism between the poly-
nomial algebra F2[ξ1, ξ2, · · · ] and the dual of the Steenrod algebra. �

As a consequence of Theorem 2.5.15, we get the following.

Corollary 2.5.18 The dual A∗ of the Steenrod algebra A is a Hopf algebra.

Proof This is standard because A is finite in every degree. The multiplication
in A∗ is then the dual of the comultiplication in A and vice versa. �

Remark 2.5.19 The dual map of the multiplication on A

Δ : A∗ −→ A∗ ⊗A∗
is given by

ψ(ξk) =
k∑

i=0

ξ2i

k−i ⊗ ξi.

This is again shown by using the cohomology of (RP∞+ )∧n, see [Ste62] or
[Mil58]. One can furthermore derive a closed formula for the antipode on A∗
using the methods of Remark 2.5.14.

2.6 The Adams Spectral Sequence

The Adams spectral sequence is not only one of the most powerful tools to
calculate the stable homotopy groups of spheres (and of other spectra), but it
is also related to other phenomena in stable homotopy theory such as power
operations. We will give a brief overview of the construction of the spectral
sequence and its properties. This is by no means a replacement for a rigor-
ous discussion, such as Bruner [Bru09] and Rognes [Rog12], but we hope that
it will serve as a gentle introduction which may inspire further reading. We
assume that the reader is familiar with the basic terminology of spectral se-
quences, see McCleary [McC01].

As with the previous section, we assume that the homotopy category of se-
quential spectra satisfies the list of properties from Subsection 1.1.4.
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2.6.1 Construction of the Spectral Sequence

In this section, p will denote a fixed prime, Z∧p will be the p-adic integers and
Z(p) will be the p-local integers

Z
∧
p = lim

n�0
Z/pn

Z(p) = { ab | p � b} ⊆ Q.
Given two spectra X and Y , applying mod-p singular cohomology H∗ gives

us a map

[X,Y]
H∗−−→ HomA(H∗(Y),H∗(X)),

where A denotes the mod-p Steenrod algebra and HomA(−,−) denotes mor-
phisms in the category of modules over A. The Adams spectral sequence is an
attempt to reverse this, to find out about [X,Y] by knowing the cohomology of
X and Y as modules over A.

By a spectrum of “finite type”, we mean a spectrum whose cohomology is
finitely generated in each degree. For reasons of convergence, we also assume
our spectra to have bounded below homotopy groups. The example we have in
mind is X = Y = S.

Theorem 2.6.1 (The Adams spectral sequence) Let X and Y be spectra of fi-
nite type, and let p be a prime. Furthermore, assume that the homotopy groups
of X and Y are bounded below. Then there is a spectral sequence

Es,t
2 = Exts,t

A
(H∗(Y),H∗(X)) =⇒ [X,Y∧p ]t−s,

where Y∧p denotes the p-completion of Y.

For details on the p-completion of a spectrum, see Section 7.4. Alternatively,
the reader may just bear in mind that in the case of X = Y = S, one has

[S,S∧p ] = [S, S] ⊗ Z∧p .
Remark 2.6.2 For each r, the Er-term of the spectral sequence carries a bi-
linear pairing

Es,t
r (X,Y) ⊗ Es′,t′

r (Y,Z) −→ Es+s′,t+t′
r (X,Z),

which is natural in X,Y and Z, and which converges to the pairing given by
composing morphisms of spectra. For r = 2, this pairing coincides with the
Yoneda product on Ext groups.
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Remark 2.6.3 As the dual A∗ of the Steenrod algebra is so much simpler
algebraically than the Steenrod algebra itself, it is preferable in some situations
to use the homological variant of the Adams spectral sequence, which is

E2
s,t = Exts,t

A∗
(H∗(X),H∗(Y)) =⇒ [X,Y]t−s ⊗ Z(p).

Let us now look into the construction of the spectral sequence.

Definition 2.6.4 An Adams tower for a spectrum Y is a diagram in SHC

...

i2

Y2

i1

J2

Y1

i0

J1

Y Y0 J0

such that

• Jn is the homotopy cofibre of in,
• H∗(in) = 0 for all n,
• H∗(Jn) is a projective A–module for all n,
• the map

[X, Jn]∗ −→ Hom∗A(H∗(Jn),H∗(X))

given by [ f ] �→ H∗( f ) is an isomorphism for all n and all X (i.e. Jn is an
“A-Eilenberg–Mac Lane object”).

For any spectrum Y , there is an Adams tower with the above properties. For
the sphere spectrum, we can construct an Adams tower as follows. Let HFp

denote the Eilenberg–Mac Lane spectrum of Fp, and let HFp be the homotopy
cofibre of the Hurewicz map

S
hur−→ HFp −→ HFp

which is the inclusion of S into the bottom cell of HFp. Then we define

Jn � HFp ∧ HFp
∧(n−1)

and

Yn+1 � HFp
∧n
,
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where (−)∧(n−1) denotes the (n−1)–fold smash product. This gives us an Adams
tower, the “standard Adams tower”.

Applying [X,−]∗ to an Adams tower gives us an exact couple
⊕

n
[X.Yn]∗ (in)∗

⊕
n

[X,Yn]∗

⊕
n

[X, Jn]∗

by using the Puppe exact sequence for spectra. Generally, having an exact
couple

D∗∗
i

D∗∗

j

E∗∗
k

induces the derived exact couple

E′ � ker( j ◦ k)/ Im( j ◦ k), D′ � ker( j), d′ � j ◦ k

with j′ and k′ being the maps induced by j and k. By inductively defining

Er � E′r−1, dr � j′r−1 ◦ k′r−1,

we obtain a spectral sequence {E∗∗r , dr}.
Remark 2.6.5 One can show that any Adams tower for Y will give us the
same spectral sequence (up to isomorphism).

In any case, the exact couple yields

Es,t
1 = [X,ΣsJs]t = [ΣtX,ΣsJs],

where the right-hand side denotes ungraded morphisms in SHC.
We obtain a diagram where the two rows are exact sequences.

[X,ΣnYn]t
jn

[X,ΣnJn]t
kn

[X,Σn+1Yn+1]t
in

[X,Σn+1Yn]t

[X,Σn+1Yn+2]t
in+1

[X,Σn+1Yn+1]t
jn+1

[X,Σn+1Jn+1]t
kn+1

[X,Σn+2Yn+2]t.

(By abuse of notation, we write in = (in)∗, where the first in is part of the exact
couple, and the second in is part of the Adams tower.)

The differential on the E1-term is given by

d1 = jn+1 ◦ kn : [X,ΣnJn] −→ [X,Σn+1Jn+1].
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It satisfies d1 ◦ d1 = 0, as this composite factors over kn+1 ◦ jn+1, which is zero.
In fact, the differential d1 is induced by a morphism ∂ : Jn −→ ΣJn+1 in SHC

which satisfies ∂ ◦ ∂ = 0 by the properties of the Adams tower. Also, by the
assumptions on the Adams tower, each H∗(Jn) is a projective A–module, so
applying H∗ to the sequence

Y
∂−→ J0

∂−→ Σ1J1
∂−→ Σ2J2

∂−→ · · ·
results in a projective resolution of A–modules

H∗(Y)
∂∗←− H∗(J0)

∂∗←− H∗(Σ1J1)
∂∗←− H∗(Σ2J2)

∂∗←− · · · .
Recall that the E1-term of our spectral sequence was

[X, Jn]∗
�−→ Hom∗A(H∗(Jn),H∗(X)).

This means that the E2-term of our spectral sequence is

Es,t
2 = Hs(Hom(H∗(ΣnJn),H∗+t(X)), ∂∗) = Exts,t

A
(H∗(Y),H∗(X)).

We will not discuss the convergence of this spectral sequence and only men-
tion that it converges strongly with respect to the following filtration. We say
that an element f of [X,Y] has filtration k if it lifts over the kth level of the
Adams tower

Yk

X
f

Y = Y0.

In other words,

Fk[X,Y] = Im([X,Yk] −→ [X,Y]).

Remark 2.6.6 With the method described in this section, it is possible to
construct a spectral sequence for a fixed homology theory E,

Es,t
2 = Exts,t

E∗E(E∗(Y), E∗(X)) =⇒ [X, LEY]t−s,

see Chapter 7 for the definition of LEY . However, convergence becomes a sep-
arate question depending on E.

For the Johnson–Wilson theories E = E(n) (see Definition 7.4.43), this has
been discussed by Hovey and Strickland [HS99, Proposition 6.5]. For complex
cobordism MU or its p-local version, the Brown–Peterson spectrum BP, this is
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known as the Adams–Novikov spectral sequence, whose technical advantages
have been discussed in, for example, [Rav78]. The Thom reduction map

Φ : BP −→ HZ/p

induces a morphism of spectral sequences between the Adams–Novikov spec-
tral sequence and the Adams spectral sequence. Applying it to the respective
Adams towers, we see that if a morphism has Adams filtration s, it has Adams–
Novikov filtration at most s.

2.6.2 A Look at the E2-Term

The most frequently discussed calculation of the Adams spectral sequence is
X = Y = S:

Es,t
2 = Exts,t

A
(F2,F2) =⇒ πt−s(S) ⊗ Z∧2 .

First, let us look at the 1-line of the E2-term. We will just talk about the case
p = 2, as the odd primary case is very similar.

Lemma 2.6.7 For p = 2,

Ext1,t
A

(F2,F2) =

⎧⎪⎪⎨⎪⎪⎩
F2{hi} if t = 2i

0 if t � 2i.

Proof An element in Ext1,t
A

(F2,F2) is represented by a short exact sequence

0 −→ F2[t] −→ M −→ F2[0] −→ 0,

where M is a module over A, and Fp[s] denotes one copy of F2 in degree s
generated over F2 by the element xs.

As an underlying graded F2–module, M = F2[t] ⊕ F2[0] generated by x0

and xt, but we are interested in M as an A–module. Therefore, the different
possibilities for M in the short exact sequence are encoded by those elements
Q ∈ A of degree t, where Qx0 = xt.

This means that Q is an indecomposable element of A, that is, Q cannot be
written as a product Q = Q1 · Q2, see Definition 2.5.10. If Q = Q1 · Q2, then
the underlying F2–module would have to have at least rank 3 to accommodate
Q2x0.

By Lemma 2.5.11, the indecomposable elements of A are given by

{S q2i | i ∈ N},
so there is a bijection between Ext1,t

A
(F2,F2) and the set of indecomposables as

above. The Ext class represented by the short exact sequence corresponding to
S q2i

is traditionally denoted by hi. This completes our proof. �
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The next question is of course if any of the hi survive the spectral sequence,
that is, if they are permanent cycles. It turns out that the only permanent cycles
are h0, h1, h2 and h3, giving rise to the Hopf elements

2 ∈ π0(S) ⊗ Z∧2 = Z∧2 ,
η ∈ π1(S) ⊗ Z∧2 = Z/2,
ν ∈ π3(S) ⊗ Z∧2 = Z/8,
σ ∈ π7(S) ⊗ Z∧2 = Z/16.

The fact that these elements survive to the E∞-term is related to the classical
geometric question of whether S n is parallelisable, see, for example, [Ada60]
or [Ste62].

Of course, the 1-line is just the start of many calculations, relations and
structural results that one can compute in the E2-term. The E2-term

Es,t
2 = Exts,t

A
(Fp,Fp)

can be calculated manually in small degrees by writing down an explicit pro-
jective resolution of Fp as A–module, which in practice makes heavy use of
the Adem relations.

For example, one can use a minimal resolution [Ben98] or bar resolution
[Wei94]. The minimal resolution has, unsurprisingly, the advantage that it is
small in terms of generators used, whereas the bar resolution allows us to detect
structure of π∗(S) already on the E2-term, such as the product structure or Toda
brackets (see Section 4.6), as well as a wealth of other patterns.

As mentioned earlier, the relative simplicity of the dual A∗ of A means that
in some situations it is preferable to use the homological Adams spectral se-
quence and a cobar resolution instead [Rav86].

In any case, the Adams spectral sequence provides a very useful method for
calculating morphisms in SHC by using cohomology and cohomology oper-
ations (or, respectively, endomorphisms of HFp), which is why it is a fitting
application to conclude this chapter.
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The Suspension and Loop Functors

In this chapter, we introduce the notion of pointed model categories and show
that the homotopy category of a pointed model category has a suspension func-
tor with an adjoint called the loop functor. This suspension functor is a gener-
alisation of the standard notion of (reduced) suspension of pointed topological
spaces. We shall also see that in the case of chain complexes over a ring, this
suspension functor is modelled by the shift functor. With these constructions
in place, we can define the notion of a stable model category.

The suspension and loop functors allow us to define cofibre and fibre sequ-
ences in an arbitrary pointed model category. These sequences are a general-
isation of cofibre and fibre sequences for pointed spaces and are a useful aid
to calculations. When the model category is also stable, these cofibre and fibre
sequences form the basis of important additional structure on the homotopy
category, as we examine in Chapter 4.

It would be tempting to think that a cofibre sequence in Ho(C) simply con-
sists of a sequence of maps

A
f−→ B −→ C,

where C is the cofibre of f or that a fibre sequence is

F −→ E
p−→ B,

where F is the fibre of p. However, some additional information is needed to
obtain the properties that are enjoyed by fibre and cofibre sequences in topo-
logical spaces.

Specifically, a cofibre sequence comes with a coaction of the suspension of
A on the cofibre of f : B −→ C, and part of the information of a fibre sequence
with fibre F is an action of the loops of the base space ΩB on the fibre. These
actions are standard in topological spaces, see [Bre97], but we will obtain a

93
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well-defined action and coaction using nothing but the definition of a model
category and some other basic category theory similar to [Qui67].

We will also examine some key properties of fibre and cofibre sequences, in-
cluding that they can be “shifted” to the left or to the right to obtain a new fibre
or cofibre sequence, that [X,−] takes fibre sequences to long exact sequences
of groups and that [−, X] takes cofibre sequences to long exact sequences of
groups.

3.1 Definition of the Functors

In Chapter 1, we worked primarily in the category of pointed topological
spaces with basepoint–preserving maps as morphisms. The basepoint plays a
role similar to that of the zero object in Ch(A), chain complexes in an abelian
category A (or in other “algebraic” model categories). This notion can be gen-
eralised to the model category context as follows.

Definition 3.1.1 A model category C is pointed if the unique map from the
initial object to the terminal object is an isomorphism. This object is denoted ∗
and called the basepoint.

Given any two objects A and B in C, the composite map A −→ ∗ −→ B is
called the zero map from A to B.

The composite of any map with a zero map is again a zero map.
Recall that a cylinder object for X ∈ C is a factorisation of the fold map

X � X −→ X

X � X
(i0,i1)

Cyl(X) ∼
X.

Similarly, a path object for X is a factorisation of the diagonal X −→ X × X

X
∼

PX
(p0,p1)

X × X,

see Definition A.2.1. We assume without loss of generality that our cylinder
and path objects are “very good” (see Section A.2), so the first map is a cofi-
bration and the second map a fibration.

Definition 3.1.2 Let C be a pointed model category, and let X ∈ C be cofi-
brant. The suspension ΣX of X is defined as the pushout of the diagram

∗ ←− X � X
(i0,i1)−−−−→ Cyl(X).
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Dually, let Y ∈ C be fibrant. The loop object ΩY of Y is defined as the
pullback of the map

PY
(p0,p1)−−−−−→ Y × Y ←− ∗.

The above definition does not depend on the choice of cylinder or path object
in the following sense.

Proposition 3.1.3 Let C be a pointed model category. The suspension and
loop constructions define functors

Σ : Ho(C) −→ Ho(C) and Ω : Ho(C) −→ Ho(C).

Proof Let Cyl(X) and Cyl(X)′ denote two (very good) path objects for a cofi-
brant X. Then, by Section A.2 there are comparison maps

c1 : Cyl(X) −→ Cyl(X)′ and c2 : Cyl(X)′ −→ Cyl(X)

which are weak equivalences and mutually homotopy inverse. Denote the re-
spective pushouts by

p1 : Cyl(X) −→ ΣX and p2 : Cyl(X)′ −→ (ΣX)′.

Now, a map f : Cyl(X) −→ A which is trivial on both “ends” of the cylinder
induces a unique map ΣX −→ A, but also a unique map (ΣX)′ −→ A by
precomposing f with c2. Conversely, any g : Cyl(X)′ −→ A inducing a map
(ΣX)′ −→ A also induces a map ΣX −→ A.

Thus, we have commutative diagrams

X � X Cyl(X)

p2◦c1

p1

X � X Cyl(X)′

p1◦c2

p2

∗ ΣX

F

∗ (ΣX)′

G

(ΣX)′ ΣX.
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Putting them together gives a big diagram

X � X Cyl(X)

p2◦c1

p1

p1∗ ΣX
F

(ΣX)′

G

ΣX.

This diagram does not commute strictly, but as p1 ◦ c2 ◦ c1 
 p1, it commutes
in Ho(C). Thus, in Ho(C), we have G ◦ F = Id and, repeating the process with
Cyl(X) and Cyl(X)′ interchanged, F ◦G = Id, so ΣX and (ΣX)′ are canonically
isomorphic in Ho(C).

Now let A and B be both fibrant and cofibrant in C. By definition, ΣA is the
pushout of the diagram

∗ ←− A � A −→ Cyl(A),

and ΣB is given by the pushout

∗ ←− B� B −→ Cyl(B).

A morphism f : A −→ B in C therefore gives a commutative diagram

∗ A � A

f� f

Cyl(A)

Cyl( f )

∗ B� B Cyl(B).

Note that by Remark A.3.4, the map Cyl( f ) is unique in Ho(C). The universal
property of pushouts now gives us a morphism

Σ f : ΣA −→ ΣB.

An analogous argument holds for the loop construction. �

The derived left adjoint of a Quillen adjunction preserves coproducts,
pushouts and cylinder objects, hence, it commutes with suspensions. Similarly,
the derived right adjoint will commute with loops.

Corollary 3.1.4 Let C and D be model categories, and let

F : C D :G
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be a Quillen adjunction. Then for X ∈ C and Y ∈ D, there are natural isomor-
phisms

LF(ΣX) � ΣLF(X) RG(ΩY) � ΩRG(Y),

where

LF : Ho(C) −→ Ho(D) and RG : Ho(D) −→ Ho(C)

denote the respective derived functors of F and G. �

Example 3.1.5 The definition gives the usual suspension and loop construc-
tions on pointed topological spaces and pointed simplicial sets. For example,
if X is a cofibrant pointed topological space, we can take the cylinder object on
X to be X ∧ [0, 1]+ with X ∨ X → X ∧ [0, 1]+ being the inclusion of the ends of
the cylinder. We then form the pushout diagram

X ∨ X X ∧ [0, 1]+

∗ ΣX.

For a cofibrant sequential spectrum Z, we can perform the above construc-
tions levelwise to obtain Cyl(Z) and ΣZ. The spectrum ΣZ is defined by
(ΣZ)n = ΣZn and the structure maps are given by

ΣΣZn
τ∧Id

ΣΣZn
Σσn
ΣZn+1.

Note the use of the twist map. Its necessity can be seen more clearly by looking
at the structure map of A ∧ Z for a pointed space A, see Example 2.1.4.

Example 3.1.6 For chain complexes Ch(A), one obtains the following. Let
A∗ ∈ Ch(A). A cylinder object for A∗ is given by

Cyl(A∗)n = An ⊕ An−1 ⊕ An, ∂(a, b, c) = (d(a) + b,−d(b), d(c) − b),

where d denotes the differential in A∗. One can verify that the inclusion

i : A∗ ⊕ A∗ −→ Cyl(A∗),

which sends (a, b) to (a, 0, b), and the projection

p : Cyl(A∗) −→ A∗

given by p(a, b, c) = a + c are chain maps. Their composite is the fold map
A∗ ⊕ A∗ −→ A∗, and p∗ is a homology isomorphism. Furthermore, we see that
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the cokernel of i and thus the suspension of A∗ is simply given by the degree
shift

(ΣA)n = An−1, dΣA(x) = −dA(x).

Similarly, a path object for A∗ ∈ Ch(A) is given by

PAn = An × An+1 × An, ∂(a, b, c) = (d(a),−d(b) − a + c, d(c)).

The maps i : A∗ −→ PA∗ given by i(x) = (x, 0, x) and

p : PA∗ −→ A∗ × A∗

given by p(a, b, c) = (a, c) are chain maps, their composition is the diagonal
map A∗ −→ A∗ × A∗, and i is a homology isomorphism. We can then see that
the kernel of i is ΩA∗ with

ΩAn = An+1, dΩA(x) = −dA(x),

that is, the loop object is given by the degree shift in the opposite
direction.

Note that these are not automatically very good cylinder objects in the pro-
jective or injective model structure, but they are both very good in either model
structure if A∗ is fibrant and cofibrant.

Proposition 3.1.7 Let C be a pointed model category. Then the suspension
and loop construction induce an adjoint functor pair

Σ : Ho(C) Ho(C) :Ω,

hence, there are natural isomorphisms

ρA,B : [ΣA, B]
�−→ [A,ΩB]

for A, B ∈ Ho(C).

Proof We saw that Σ and Ω are functors in Proposition 3.1.3, so we now have
to deal with the adjointness.

Definition of the Isomorphism ρ
By definition of the suspension, a map [ f ] ∈ [ΣA, B] is represented by a map

F : Cyl(A) −→ B

in C such that the composite

A � A −→ Cyl(A)
F−→ B
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is the zero map A � A −→ ∗ −→ B. In other words, F is a left homotopy
between two copies of the zero map A → B. In a similar way, elements
[g] ∈ [A,ΩB] are represented by right homotopies between two copies of the
zero map from A to B. As A and B can be chosen to be both fibrant and cofi-
brant, being left homotopic is equivalent to being right homotopic (see Lemma
A.2.6), so [ΣA, B] and [A,ΩB] agree. We will spell out the details below.

As A and B are both fibrant and cofibrant, a left homotopy

F : Cyl(A) −→ B

gives rise to a right homotopy G between two copies of the zero map, namely,
G = H ◦ i1 : A −→ PB with H a lift in the commutative diagram below

A

i0 ∼

0
PB

(e0,e1)

Cyl(A)

H

(0,F)
B × B,

see Lemma A.2.6. Note that because A is cofibrant, i0 is an acyclic cofibration
see Section A.2. As

(e0, e1) ◦G = (e0 ◦ H ◦ i1, e1 ◦ H ◦ i1) = (0 ◦ i1, F ◦ i1) = (0, 0),

the map G factors over the pullback of

∗ −→ B × B←− PB,

thus gives us a unique map g : A −→ ΩB. Furthermore, the choice of H is
unique in Ho(C), meaning that a different choice of lift H would result in the
same [g] ∈ [A,ΩB].

ρ is Well-Defined
This part of the proof boils down to the following statement: if

F : Cyl(A) −→ B and F′ : Cyl(A) −→ B

are right homotopic, then their corresponding right homotopies

G : A −→ PB and G′ : A −→ PB

are left homotopic. So to show that the assignment

ρ : [ΣA, B] −→ [A,ΩB], [ f ] �→ [g]
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is well-defined we must show that it does not depend on the choice of repre-
sentative F of [ f ]. Let [ f ] = [ f ′] ∈ [ΣA, B]. Then f and f ′ are related by a
right homotopy

K : ΣA −→ PB.

We can consider K as a map

K : Cyl(A) −→ PB

with K ◦ i0 = K ◦ i1 = 0. If we pick a different representative

F′ : Cyl(A) −→ B

for [ f ] ∈ [ΣX,Y], then F and F′ are related by the homotopy K, with e0◦K = F
and e1 ◦ K = F′.

Performing the same construction with F′ as we did with F earlier, we obtain
a lift H′ : Cyl(A) −→ PB and G′ � H′ ◦ i1 which factors over g′ : A −→ ΩB.
We now have to show that G and G′ are homotopic. We can concatenate the
homotopies H and K to obtain

K ∗ H : Cyl(A) −→ PB

using the construction given in Section A.2. Note that we can concatenate K
and H both as left and as right homotopies, and the results are the same in the
homotopy category. We are allowed to perform this construction because

e1 ◦ H = F = e0 ◦ K,

that is, the homotopies “fit together”.
We can choose H′ = H ∗ K because

e0 ◦ (H ∗ K) = e0 ◦ H = 0

and

e1 ◦ (H ∗ K) = e1 ◦ K = F′

as well as

(H ∗ K) ◦ i0 = (H ◦ i0) ∗ (K ◦ i0) = 0 ∗ 0 = 0.

By definition,

(H ∗ K) ◦ i1 = (H ◦ i1) ∗ (K ◦ i1) = G ∗ 0,

which is homotopic to G. Therefore, we have just shown that the left homotopy
F′ corresponds to both the right homotopy G′ as well as to G∗0.As correspon-
dence between left and right homotopy is a bijection up to homotopy, G′ and
G ∗ 0 (and consequently G′ and G) are homotopic, and therefore, [g] = [g′].
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This proves that our construction of ρ : [ΣX,Y] −→ [X,ΩY] is indeed well-
defined.

ρ is Bijective
The previous part showed that if two left homotopies F : Cyl(A) −→ B and
F′ : Cyl(A) −→ B are right homotopic, then their corresponding right homo-
topies G,G′ : A −→ PB are left homotopic. For ρ to be bijective, we have
to show the converse. The proof is exactly dual to the proof of ρ being well-
defined, so we shall not repeat it here.

This finishes the proof that ρ is an isomorphism. �

3.2 Stable Model Categories: A First Look

With the technicalities of suspension and loop functors in place, we can now
come to the central definition of this whole book.

Definition 3.2.1 A pointed model category C is stable if the suspension and
loop functors are equivalences of categories from Ho(C) to itself.

Example 3.2.2 The model category of pointed topological spaces is not sta-
ble. Recall that πn(X) = [S n, X] for a pointed space X, and that π2(S 1) = 0, but
π3(S 2) = Z (generated by the Hopf map) and π4(S 3) = Z/2. It follows that the
suspension functor is not an equivalence on the homotopy category.

Sequential spectra are stable by Theorem 2.3.14. Section 2.4 gives a nice
illustration of stability on sets of maps between suspension spectra Σ∞A and
Σ∞B of CW complexes, provided A is finite:

[Σ∞A,Σ∞B] = colimn[ΣnA,ΣnB]
= colimn[Σn+1A,Σn+1B] = [Σ (Σ∞A) ,Σ (Σ∞B)].

Example 3.2.3 For A an abelian category, the injective and projective model
structures on chain complexes in A are stable, whenever they exist. We have
seen that suspension and loop functors are simply given by degree shifts. In
particular, they are equivalences of categories and form a Quillen adjunction.
Hence, they induce an equivalence of categories on the homotopy category.

Definition 3.2.4 For C a stable model category, the graded set of maps from
X to Y in Ho(C), denoted [X,Y]C∗ , is defined as

[X,Y]n =

⎧⎪⎪⎨⎪⎪⎩
[ΣnX,Y] if n � 0

[X,Σ−nY] if n < 0.

A map in [X,Y]n is called a map of degree n.
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It follows from stability that the composite of a map of degree n and a map
of degree m is a map of degree n + m. We may also relate the grading to Ω via

[X,ΩY]n = [ΣX,Y]n = [X,Y]n+1 and [ΩX,Y]n � [ΣΩX,Y]n−1 � [X,Y]n−1.

This grading convention agrees with that of homotopy groups of spectra. For
a sequential spectrum X, we will see in Proposition 5.6.6 that

πn(X) = [S, X]S
N

n .

Definition 3.2.5 A category C is additive if it has all finite products and
coproducts and is enriched in the category of abelian groups. In other words,
the morphism sets are abelian groups, and the composition of morphisms

◦ : C(Y,Z) × C(X,Y) −→ C(X,Z)

is bilinear. An additive functor is a functor

F : C −→ D

of additive categories such that

F : C(X,Y) −→ D(F(X), F(Y))

is a morphism of abelian groups.

A consequence of the definition is that finite products and coproducts coin-
cide. Given f : A −→ X and g : A −→ Y , we have a map

( f � g) ◦ (i1 + i2) : A −→ X � Y

given by adding together the two inclusions i1, i2 : A −→ A � A. Let

pX : X � Y −→ X and p1 : A � A −→ A

be the projections onto the first summands, and let

pY : X � Y −→ Y

be the projection onto the second summand. Then

pX ◦ ( f � g) ◦ (i1 + i2) = f ◦ p1 ◦ (i1 + i2) = f
pY ◦ ( f � g) ◦ (i1 + i2) = g ◦ p2 ◦ (i1 + i2) = g.

This proves that X � Y is also the product of X and Y . In an additive category,
the product (or coproduct) is sometimes called the biproduct or the direct sum.

Our goal is to show that the homotopy category of a stable model category
is additive and that a Quillen functor between stable model categories induces
an additive functor. But let us first consider the following.
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Lemma 3.2.6 If C is a pointed model category, then for any X,Y ∈ C, the
sets [ΣX,Y] and [X,ΩY] are groups, and the adjunction isomorphism

ρ : [ΣX,Y] −→ [X,ΩY]

is a group isomorphism.

Proof The group composition on [ΣX,Y] is given by concatenating left ho-
motopies as in Definition A.2.8. We explain at the end of Section A.2 that for
fibrant and cofibrant A and B, homotopy classes of maps from A to B are the
objects of a groupoid. Therefore, restricting to homotopies between the zero
map and itself gives us a group. The isomorphism ρ is given by sending a left
homotopy to its corresponding right homotopy, and concatenation and corre-
spondence commute in the homotopy category, see again Section A.2. Thus, ρ
is a group homomorphism. �

The Yoneda Lemma yields the following.

Corollary 3.2.7 Let C be a pointed model category, and let X ∈ C. Then ΣX
is a cogroup object in Ho(C), and ΩX is a group object in Ho(C). �

Lemma 3.2.8 Let C be a pointed model category, and X, Y ∈ C. Then the
groups [Σ2X,Y] and [X,Ω2Y] are abelian.

Proof We only prove the first claim as the second claim is dual. Let

X � X −→ Cyl(X) −→ X

be a cylinder object for X. Then we can obtain a cylinder object for Cyl(X)
either the usual way or by applying Cyl to the previous diagram (it is, after
all, a functor on Ho(C), although not one on C itself). We denote the resulting
double cylinder objects by Cyl′(Cyl(X)) and Cyl(Cyl′(X)).

Let α and β be representatives of elements in [Σ2X,Y]. We know that in
Ho(C)

α ∗ β = (α ∗ 0) ∗ (0 ∗ β) : Cyl′(Cyl(X)) −→ Y.

The concatenation ∗ within the brackets is the concatenation in the Cyl′-
“direction”, whereas the concatenation between the brackets is the concatena-
tion on Cyl. This is illustrated by the first equivalence in the following diagram.

∼ ∼ ∼ ∼ ∼α β
α

β0

0 α

β0

0 0

0β

α 0

0β

α
β α

The second equivalence in the picture is given by the isomorphism

Cyl′(Cyl(X)) � Cyl(Cyl′(X)).
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On the third object,

α ∗ 0 = 0 ∗ α and 0 ∗ β = β ∗ 0,

which gives the third equivalence. The fourth equivalence is given by the in-
verse isomorphism Cyl(Cyl′(X)) to Cyl′(Cyl(X)), and the final equivalence is
given by

(0 ∗ β) ∗ (α ∗ 0) = β ∗ α,
which is the result we wanted. �

Proposition 3.2.9 Let C be a stable model category. Then its homotopy cate-
gory Ho(C) is an additive category. If C and D are stable model categories and
F : C −→ D is a (left or right) Quillen functor, then F is an additive functor.

Proof By stability, [X,Y] � [Σ2X,Σ2Y], which is an abelian group by Lem-
mas 3.2.6 and 3.2.8.

Composing morphisms is bilinear, because Definition A.2.8 implies that in
Ho(C),

f ◦ (α ∗ β) = ( f ◦ α) ∗ ( f ◦ β) and (α ∗ β) ◦ g = (α ◦ g) ∗ (β ◦ g).

For the first equality, we use left homotopies and pushouts, and for the second
equality, we use right homotopies and pullbacks.

A left or right Quillen functor F satisfies F(α ∗ β) = F(α) ∗ F(β) because
F(Cyl(X)) is isomorphic to Cyl(F(X)) in Ho(C) and P(F(Y)) is isomorphic to
F(P(Y)). �

Corollary 3.2.10 Let C and D be stable model categories with a Quillen
adjunction

F : C D :G.

Then the derived functors LF andRG commute with both Σ andΩ and preserve
the grading on maps in the homotopy categories.

Proof By Corollary 3.1.4, LF commutes with Σ and RG commutes with Ω.
Since C and D are stable model categories, X � ΣΩX for any X ∈ Ho(C) and
Y � ΩΣY for any Y in Ho(D). Thus,

ΩLF(X) � ΩLF(ΣΩX) � ΩΣLF(ΩX) � LF(ΩX).

The case of RG commuting with Σ is dual, and the statement about gradings
follows from the definition. �

We will uncover a lot more of the structure of Ho(C) for stable C in the next
sections and Chapter 4.
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3.3 The Coaction of a Cofibre

We start by abstracting the coaction associated to a cofibre and the action as-
sociated to a fibre to the level of model categories. We need this coaction and
action to give the definition of a cofibre sequence and a fibre sequence in a
homotopy category.

Definition 3.3.1 Let C be a pointed model category and f : A −→ B a map
in C.

The cofibre of f is the pushout of the diagram

∗ ←− A
f−→ B.

The fibre of f is the pullback of the diagram

A
f−→ B←− ∗.

The cofibre of f : A→ B is often written as a quotient B/A, and the fibre of
f is sometimes written as f −1(∗). Let

A
f−→ B

g−→ C

be a sequence of maps in a pointed model category C, where C is the cofibre
of f . Assume that f is a cofibration of cofibrant objects. We start by defining
an action of the group [ΣA, X] on [C, X], where X is any (fibrant) object of C.
We know that an element of [ΣA, X] can be thought of as a homotopy

h : A −→ PX

between the zero map A −→ X and itself. We can pick the path object PX such
that the canonical map

PX
e0−→ X

is an acyclic fibration. Furthermore, let

q : C −→ X

represent an element of [C, X]. Then the diagram

A
h

f

PX

e0∼

B
q◦g

X

commutes as both composites are zero. Because f is a cofibration and e0 an
acyclic fibration, there is a lift

φ : B −→ PX
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in this diagram. Because h is a right homotopy from zero to zero, this satisfies

e1 ◦ h = (e1 ◦ φ) ◦ f = 0.

This implies that e1 ◦ φ factors over the cofibre C of f , that is,

A
f

B
g

e1◦φ

C.

w

X

We now define [q] � [h] � [w]. We will see soon that this pairing is actually
well-defined and gives a right action of [ΣA, X] on [C, X].

We can perform a dual construction involving the fibre of a map. Let

F
i−→ E

p−→ B

be a sequence of maps in C, where p is a fibration between fibrant objects and
F is the fibre of p. Furthermore, let A be any (cofibrant) object of C. We saw
that an element [A,ΩB] can be represented by a left homotopy

h : Cyl(A) −→ B

between the zero map A −→ B and itself. Lastly, let

f : A −→ F

represent an element of [A, F]. Then, the diagram

A

∼i0

i◦ f
E

p

Cyl(A)
h

B

commutes because both composites are zero. Again, we can choose the cylin-
der object Cyl(A) so that the map i0 is an acyclic cofibration. Thus, the diagram
has a lift

α : Cyl(A) −→ E

satisfying

h ◦ i1 = p ◦ (α ◦ i1) = 0

because h is a homotopy between 0 and 0. This means that α ◦ i1 factors over
the fibre F of p
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F
i

E
p

B.

A

α◦i1v

We define [ f ] � [h] � [v].

Example 3.3.2 In the case of pointed topological spaces and A = S 0, this
action corresponds to the classical action of the fundamental group of the base
space on the fibre. A loop in B is represented by a continuous map

ω : [0, 1] −→ B

with basepoint x0. For f ∈ F, the homotopy lifting property gives us a path

ω̃ : [0, 1] −→ E

in the total space that lifts ω and starts at f . The action

� : π0(F) × π0(ΩB) −→ π0(F)

assigns to a point f ∈ F and a loop ω the end point of the lifted path ω̃.

We can now show that this action and coaction are well-defined and natural.
The proof of the following theorem will occupy the rest of this section, so some
readers may want to simply read the statement and skip to Section 3.4.

Theorem 3.3.3 Let f : A → B be a cofibration of cofibrant objects with
cofibre C. The map

� : [C, X] × [ΣA, X] −→ [C, X]

is well-defined natural in X ∈ C, associative and unital and thus defines a
group action of [ΣA, X] on [C, X].

Now let p : E → B be a fibration of fibrant objects with fibre F. The map

� : [A, F] × [A,ΩB] −→ [A, F]

is well-defined natural in A ∈ C, associative and unital and thus defines a
group action of [A,ΩB] on [A, F].

Proof We are going to prove the statement for the second action, using the
notation from the definition.
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The Operation � is Well-Defined
First, we have to show that � is well-defined by picking a representative

h′ : Cyl(A) −→ B for [h] ∈ [A,ΩB]

(possibly different from h) and

g : A −→ F representing [ f ] ∈ [A, F].

Then, we pick a lift β in the diagram

A

i0 ∼

i◦g
E

p

Cyl(A)
h′

β

B

and a map v′ factoring over F as

F
i

E
p

B.

A

β◦i1
v′

We have to show that v′ is homotopic to the original v obtained using h and f
instead of h′ and g.

As [h] = [h′], there is a right homotopy H̄ : ΣA −→ PB. This homotopy H̄
is defined by a map

H : Cyl(A) −→ PB with e0 ◦ H = h, e1 ◦ H = h′,H ◦ i0 = H ◦ i1 = 0.

As [ f ] = [g], there is a right homotopy

K : A −→ PF

relating f and g in the usual way, e0 ◦ K = f , e1 ◦ K = g.
Let Q denote the pullback of the diagram

E × E
(p,p)−−−→ B × B

(e0,e1)←−−−− PB.

Then there are commutative diagrams

Cyl(A)

(α,β)

c
H

PE

(e0,e1)

k
Pp

Q

e

q
PB

(e0,e1)

Q

e

q
PB

(e0,e1)

E × E
(p,p)

B × B E × E
(p,p)

B × B
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because p ◦ β = h′, p ◦ α = h and h is homotopic to h′ via H. Without loss
of generality, we can pick k to be a fibration. If not, then we can factor k as an
acyclic cofibration and a fibration as follows

k : PE
∼

PE′ Q

and use PE′ as a path object instead of PE. Thus, there is a commutative
diagram

A
K

i0 ∼

PF
Pi

PE

k

Cyl(A)
c

Q

because the composites

q ◦ k ◦ Pi ◦ K : A −→ PB and q ◦ c ◦ i0 : A −→ PB

are both zero and

e ◦ k ◦ Pi ◦ K : A −→ E × E and e ◦ c ◦ i0 : A −→ E × E

are both equal to (i ◦ f , i ◦ g). Now there is a lift

Γ : Cyl(A) −→ PE

in the above diagram. We have that

(e0 ◦ Γ, e1 ◦ Γ) = e ◦ k ◦ Γ = e ◦ c = (α, β),

that is, Γ is a right homotopy between α and β.
We have Pp ◦ Γ = q ◦ k ◦ Γ = q ◦ c = H and thus,

Pp ◦ Γ ◦ i = q ◦ k ◦ Γ ◦ i1 = H ◦ i1 = 0.

Thus, Γ ◦ i1 factors over the fibre of q ◦ k = Pp:

PF
Pi

γ

PE
Pp

PB.

A

Γ◦i1

Recall that Γ is a homotopy between α and β, thus, Γ◦i1 is a homotopy between
α ◦ i1 and β ◦ i1, so γ : A −→ PF is a homotopy between v and v′, which is
what we needed for � to be a well-defined map.
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The Operation � is Natural in A
Let ϕ : A′ −→ A be a map of cofibrant objects. As before, let h : Cyl(A) −→ B
represent an element of [A,ΩB] and f represent an element of [A, F]. Then

h ◦ Cyl(ϕ) : Cyl(A′) −→ B

represents an element of [A′,ΩB] and

f ◦ ϕ : A′ −→ F

represents an element of [A′, F]. We are now going to calculate
[ f ◦ ϕ] � [h ◦ Cyl(ϕ)]. For that, we need a lift in the commutative square

A′
i◦ f◦ϕ

i0

E

p

Cyl(A′)
h◦Cyl(ϕ)

B.

We can take this lift to be α ◦ Cyl(ϕ), where α is a lift in the second square

A′
ϕ

i0

A
i◦ f

i0

E

p

Cyl(A′)
Cyl(ϕ)

Cyl(A)
h

α

B

as before. So,

[w] = [ f ◦ ϕ] � [h ◦ Cyl(ϕ)],

where w is the unique map in the diagram below.

F
i

E
p

B

A′

w
α◦Cyl(ϕ)◦i1

With our usual notation, [v] = [ f ] � [h], where v is given by the lift

F
i

E
p

B.

A

v
α◦i1

Comparing these two diagrams, we can see that w is given by v ◦ ϕ, because
i1 ◦ ϕ = Cyl(ϕ) ◦ i1. Thus,

[v ◦ ϕ] = [ f ◦ ϕ] � [h ◦ Cyl(ϕ)]

as claimed.
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The Operation � is Unital
The unit of [A,ΩB] is represented by the trivial homotopy 0: Cyl(A) −→ B.
Denote by r the map given in the factorisation

A � A
(i0,i1)−−−−→ Cyl(A)

r−→ A.

By definition, we have r ◦ i0 = r ◦ i1 = IdA. This means that in the diagram

A
i◦ f

i0 ∼

E

p

Cyl(A)
0

B,

we can take our lift to be i◦ f ◦ r because i◦ f ◦ r◦ i0 = i◦ f and p◦ i◦ f ◦ r = 0.
For our definition of [v] = [ f ] � [0], we are now looking for a map v such that
i ◦ v = i ◦ f ◦ r ◦ i1. But we can simply take v = f . Thus, � is unital.

The Operation � is Associative
We start by calculating

[k] � ([ f ] � [h]) � [h′]

and show that this equals [ f ] � [h ∗ h′].
First of all, let [v] = [ f ]� [h] be represented by v : A −→ F defined via a lift

α in the usual diagram. This lift satisfies i ◦ v = α ◦ i1. To define [k], we need
a lift in the diagram

A
i◦v

i0

E

p

Cyl(A)
h′

β

B.

This means that

β ◦ i0 = α ◦ i1,

and we define k to be the map such that i ◦ k = β ◦ i1.
To calculate [ f ]� [h ∗h′], recall the notion of concatenation from Definition

A.2.8. Because α ◦ i1 = β ◦ i0, we may concatenate as below.
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A
i0

i1

Cyl(A)

β
hCyl(A)

α

h′

Cyl(A)′

α∗β
E

p

B

We see that p ◦ (α ∗ β) is a concatenation of h and h′. Moreover,

(α ∗ β) ◦ i1 = β ◦ i1 and (α ∗ β) ◦ i0 = α ◦ i0 = i ◦ f .

It follows that α ∗ β is a lift for the commutative diagram

A
i◦ f

i0

E

p

Cyl(A)′ h∗h′
B.

Because (α ∗ β) ◦ i1 = β ◦ i1, we may choose k to be the lift in the diagram

F
i

E
p

B,

A

(α∗β)◦i1

and thus,

[k] = ([ f ] � [h]) � [h′] = [ f ] � [h ∗ h′]. �

3.4 Definition of Fibre and Cofibre Sequences

We have seen in Section 3.3 that ΩC is a (unital) group object in Ho(C) for
C ∈ Ho(C), and that ΣA is a (counital) cogroup object in Ho(C) for A ∈ Ho(C).
Let p : E → B be a fibration of fibrant objects in C with fibre F.

The group action from Theorem 3.3.3 gives a map

[F ×ΩB, F ×ΩB] � [F ×ΩB, F] × [F ×ΩB,ΩB]
�−→ [F ×ΩB, F].
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The identity map of F ×ΩB thus specifies a map in Ho(C)

� : F ×ΩB −→ F,

the same name is used for this map and the group action, as the context usually
prevents confusion.

The Yoneda Lemma tells us that � defines an action of the group object ΩB
on F. That is, the following diagrams in Ho(C) commute, where the unique
map ∗ → ΩB acts as the unit, and the composition of loops is denoted by m.

F ×ΩB ×ΩB
�×IdΩB

IdF×m

F ×ΩB

�

F × ∗
�

F ×ΩB

�

F ×ΩB
�

F F
IdF

F

Dually, let f : A → B be a cofibration of cofibrant objects with cofibre C. The
Yoneda Lemma tells us that the group action from Theorem 3.3.3 gives a map

� : C −→ C � ΣA

that defines a coaction of the cogroup object ΣA on C in Ho(C). With this, we
can now make our main definitions.

Definition 3.4.1 Let C be a pointed model category. A cofibre sequence in
Ho(C) is a diagram

X −→ Y −→ Z

that is isomorphic in Ho(C) to a diagram

A
f−→ B

g−→ C,

where f is a cofibration between cofibrant objects and C is the cofibre of f . In
addition, the diagram is equipped with a right coaction in Ho(C)

Z −→ Z � ΣX

that is isomorphic to the coaction from Theorem 3.3.3.

Definition 3.4.2 Let C be a pointed model category. A fibre sequence is a
diagram

X −→ Y −→ Z

that is isomorphic in Ho(C) to a diagram

F
i−→ E

p−→ B,
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where p is a fibration between fibrant objects and F is the fibre of p. Further-
more, the diagram is equipped with a right action in Ho(C)

X ×ΩZ −→ X

that is isomorphic to the action from Theorem 3.3.3.

It is important to remember that the (co)actions are all defined at the level of
homotopy categories. One could pick a representative for the map �, but then
one would have to take care over the (co)fibrancy of the objects. Consequently,
the following pair of definitions give maps in Ho(C).

Definition 3.4.3 Let X −→ Y −→ Z be a cofibre sequence in Ho(C), where C
is a pointed model category. The boundary map is the composite

∂ : Z
�−→ Z � ΣX

(0,Id)−−−−→ ΣX,

where the first map is the coaction associated to the cofibre sequence.

Definition 3.4.4 Let X −→ Y −→ Z be a fibre sequence in Ho(C), where C is
a pointed model category. The boundary map is the composite

∂ : ΩZ
(0,Id)−−−−→ X ×ΩZ

�−→ X,

where the second map is the action associated to the fibre sequence.

The remainder of this chapter focuses on the properties of these actions,
coactions and the boundary maps. In the next section, we will use the boundary
maps to “shift” cofibre and fibre sequences, and in Section 3.6, we will use the
boundary maps to extend cofibre and fibre sequences indefinitely to obtain the
Puppe sequences.

The interesting thing about the boundary map is that it contains the same
information as the (co)action associated to a (co)fibre sequence: one uses the
(co)action to define the boundary map, but can also recover the (co)action if
given just the boundary map. More precisely, in the cofibre case, if

X
f−→ Y

g−→ Z

is a cofibre sequence with boundary map ∂ : Z −→ ΣX and there is a commu-
tative diagram in Ho(C)

X
f

Y
g

Z
∂
ΣX

A
u

B
v

C
w
ΣA,
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where the vertical arrows are isomorphisms, then

A
u−→ B

v−→ C

is a cofibre sequence with boundary map w : C −→ ΣA. This is proven in full
detail in Lemma 4.2.2 and Remark 4.2.3 and there is a dual statement.

3.5 Shifting Fibre and Cofibre Sequences

In this section, we show that a fibre sequence can be “shifted” to the left using
its boundary map to obtain another fibre sequence. This result is a powerful
tool that will make the subsequent results a lot easier. The proof will occupy
the rest of this section, so some readers may wish to read the statement and
skip ahead to Section 3.6.

Lemma 3.5.1 Let X
f−→ Y

g−→ Z be a fibre sequence in Ho(C), where C is a
pointed model category. Then

ΩZ
∂−→ X

f−→ Y

is a fibre sequence with the action

� : ΩZ ×ΩY −→ ΩZ

given by

ΩZ ×ΩY
(Id,Ωg)−−−−−→ ΩZ ×ΩZ

(Id,−1)−−−−−→ ΩZ ×ΩZ
∗−→ ΩZ,

where ∗ is the group structure map of the loop object and −1 the group inverse.
In other words,

[−((Ωg) ◦ h)] ∗ [u] = [u] � [h],

where u ∈ [A,ΩZ] and [h] ∈ [A,ΩY] for A ∈ Ho(C).

Note that we write the inverse additively rather than multiplicatively, as in
our stable setting all such groups will be abelian. On [A,ΩZ], the inverse is
given by reversing homotopies and the group structure is given by compos-
ing homotopies. Note that when we write f ∗ g, we read this group composi-
tion from left to right, that is, f is the homotopy that is being executed first.
Because we are dealing with a group inverse, [u] is on the right side in the term
[−((Ωg) ◦ h)] ∗ [u] despite [h] acting from the right.

Proof Our strategy is to construct a new fibre sequence, compare it to the
original, and then show that this comparison is an isomorphism compatible
with the actions of each fibre sequence.
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Construction of the Fibre Sequence
Without loss of generality, let us assume that our starting fibre sequence is of

the form F
i−→ E

p−→ B, where p is a fibration between fibrant objects in C.
We let ∂ be the boundary map. Now let F′ be the pullback of

PB
(e0,e1)−−−−→ B × B

(p,0)←−−− E.

We can extend this to a commutative diagram

ΩB

h′

∗

F′ i′

ϕ

E

(p,0)

PB
(e0,e1)

B × B.

The outer square and the bottom square are pullback squares, thus, so is the
top square [Str11, Theorem 2.42], and we have a fibre sequence

ΩB
h′−→ F′

i′−→ E.

Our claim is that this fibre sequence is isomorphic to the one of the statement,

ΩB
∂−→ F

i−→ E. We must prove the following points.

• There is a weak equivalence φ : F −→ F′.
• This map satisfies φ ◦ ∂ = h′ and i′ ◦ φ = i in the homotopy category.

• The actionΩB × ΩE −→ ΩB associated to this fibre sequence is isomorphic
to the action in the statement of the lemma.

First, we must obtain a map φ : F −→ F′. Rewriting (p, 0) as (Id, 0) ◦ p, we
have the diagram

F

0

i
φ

F′ i′

ϕ

E

(Id,0)◦p

PB
(e0,e1)

B × B,

where the outer square commutes because p ◦ i = 0. Thus, the universal prop-
erty of the pullback gives us φ with i′ ◦ φ = i at the level of model categories.



3.5 Shifting Fibre and Cofibre Sequences 117

Comparison of Fibres
To show that φ is a weak equivalence, we rewrite it as a map into a double
pullback, followed by two maps of double pullbacks, each of which is a weak
equivalence. The double pullback diagrams and maps between them are given
below, with their limits on the right.

PE
Id

Id

PE

Id

PE
Id

Id

e1
E

p

F
i

PE ×E F

α

PE
Id

e0

PE

pe0

PE

Pp

Id
B

Id

∗ PE ×B ∗
β

E
p

B PB
e1e0

B ∗ E ×B×B PB = F′

The map from F into the first row is induced by the identity of F and the
composite s ◦ i, where s : E −→ PE is a weak equivalence that is part of the
structure of the path object. Furthermore, note that

F′ = E ×B×B PB � E ×B PB ×B ∗.
By considering the composite maps from F into the outer terms of the last

pullback, we see that φ is the composite

F
(s◦i,Id)−−−−−→ PE ×E F

α−→ PE ×B ∗ β−→ E ×B×B PB = F′.

As e0 : PE −→ E is an acyclic fibration, so is the pullback of it along i,
which is a map PE ×E F −→ F. The two-out-of-three axiom implies that
(s ◦ i, Id) is a weak equivalence as desired.

For the second map, we consider the commutative diagram

PE ×E F

pr

F

i

∗

PE
e0

E
p

B.

The two small squares are both pullback squares, thus, the outer rectangle is
a pullback square too. In other words, the identity of PE, p and the zero map
F −→ ∗ induce an isomorphism

α : PE ×E F −→ PE ×B ∗.
We will prove that the third map β fits into a pullback square, with the right-

hand vertical being an acyclic fibration.
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PE ×B ∗ pr

β

PE

∼ (e0,Pp)

E ×B×B PB
(Id,Id)

E ×B PB

(3.1)

Since the pullback of an acyclic fibration is itself an acyclic fibration, so is β,
and the result will be complete. To see that β is given by that pullback, we
rewrite the above square as a commutative diagram in the diagram category
C1→2←3→4←5.

(
PE

Id−→ PE
Id←− PE

e1◦Pp−→ B
Id←− ∗)

(Id,Id,Id,0,0)

(e0,p◦e0,Pp,Id,0)
(
PE

Id−→ PE
Id←− PE −→ ∗ ←− ∗)

(e0,p◦e0,Pp,0,0)
(
E

p−→ B
e0←− PB

e1−→ B←− ∗)
(Id,Id,Id,0,0)

(
E

p−→ B
e0←− PB −→ ∗ ←− ∗)

(3.2)

Evaluating the diagram (3.2) at each vertex of the index category

1→ 2← 3→ 4← 5

gives a pullback square. This means that the diagram (3.2) is a pullback square
in C1→2←3→4←5, as limits are defined termwise. Consequently, applying the
limit functor to each of the four corners of (3.2) gives another pullback square
in C. But that square is exactly the square (3.1).

It still remains to show that the map

β : PE ×B ∗ −→ E ×B×B PB = F′

is an acyclic fibration. Recall that β is the pullback of PE −→ E ×B PB along

(Id, Id) : E ×B×B PB −→ E ×B PB.

We construct a specific model for PE so that the map PE −→ E ×B PB induced
by e0 and Pp is an acyclic fibration. We first construct a double pullback

E ×B PB ×B E = lim
(
E

p−→ B
e0←− PB

e1−→ B
p←− E

)
.
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We can view this as an iterated pullback, hence, we get a diagram as below.

E ×B PB ×B E

λ

PB ×B E ∼ E

p

E ×B PB

∼

PB

∼e0

∼
e1

B

E
p

B

We may then recognise E × E, B × B and PB in terms of limits of double
pullback diagrams.

E × E = lim (E−→ ∗←− ∗ −→ ∗←−E)
B × B = lim (B−→ ∗←− ∗ −→ ∗←−B)

PB = lim
(
B

Id−→ B
e0←− PB

e1−→ B
Id←− B

)
.

The maps (p, p) : E × E −→ B × B and (e0, e1) : PB → B × B are recognis-
able as limits of maps of these diagrams. Specifically, (p, p) is induced by a
map from the first diagram to the second, which is p on the two outermost
terms and zero elsewhere. Furthermore, (e0, e1) is induced by a map from the
third to the second, which is the identity map on the outermost terms and zero
elsewhere.

Using these maps of diagrams, E ×B PB ×B E can be recognised as the
pullback of (p, p) along (e0, e1). This is similar to the earlier statements relating
diagrams (3.1) and (3.2). Moreover, as PB → B × B is a fibration, the map
created from the pullback

(pr0, pr1) : E ×B PB ×B E −→ E × E

is also a fibration.
The maps Id : E −→ E, s ◦ p : E −→ PB and Id : E −→ E induce a map

ν : E −→ E ×B PB ×B E

such that (pr0, pr1) ◦ ν is the diagonal E −→ E × E. It follows that factorising
ν into a acyclic cofibration s followed by a fibration μ

E
s−→ PE

μ−→ E ×B PB ×B E

gives a path object for E

E
s−→ PE

(pr0,pr1)◦μ−−−−−−−−→ E × E.
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We call the last map (e0, e1) to match the standard notation. As before, e0 ◦ s
and e1 ◦ s are the identity maps of E. Moreover, by definition of a map into a
pullback, μ induces a map PE −→ PB, which we may call Pp as

e0 ◦ Pp = p ◦ e0 and e1 ◦ Pp = p ◦ e1.

The composite of the fibrations μ and λ from the pullback diagram explain-
ing E ×B PB ×B E gives a fibration

PE
μ−→ E ×B PB ×B E

λ−→ E ×B PB,

which is precisely that induced by e0 and Pp. Since κ ◦ λ ◦ ν is the identity of
E, κ is a weak equivalence and μ is a factorisation of ν, it follows that λ ◦ μ is
an acyclic fibration as required.

Comparison of the New Fibre Sequence with the Original Sequence
We now show that φ ◦ ∂ = h′ to obtain a commutative diagram

ΩB
∂

F
i

φ

E

ΩB
h′

F′ i′
E,

where all three vertical maps are weak equivalences. We are going to show that

[h′ ◦ f ] = [φ ◦ ∂ ◦ f ] for all [ f ] ∈ [A,ΩB].

Let [ f ] be represented by both the right homotopy j : A −→ PB and the left
homotopy k : Cyl(A) −→ B which are related via the correspondence

A � A
( j,0)

(i0,i1)

PB

e1

Cyl(A)
0

K

B

with

e0 ◦ K = k, K ◦ i0 = j, e1 ◦ K = 0 = K ◦ i1.
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Firstly, [h′ ◦ f ] ∈ [A, F′] is given by

A

j

0

F′

ϕ

E

(p,0)

PB
(e0,e1)

B × B.

Now let us look at a representative for [φ ◦ ∂ ◦ f ]. By definition of ∂,
[∂ ◦ f ] = [0] � [ f ], so

[φ ◦ ∂ ◦ f ] = [φ] ◦ ([0] � [ f ]).

To compute [0] � [ f ], we get a lift H in the commutative square

A
0

i0

E

p

Cyl(A)

H

k
B.

Then [0] � [ f ] is represented by a map v : A −→ F such that i ◦ v = H ◦ i1. As
i′ ◦ φ = i, this means that H ◦ i1 represents i′ ◦ φ ◦ ∂ ◦ f , so φ ◦ ∂ ◦ f is given
by the commutative diagram

A

0

H◦i1

F′

ϕ

E

(p,0)

PB
(e0,e1)

B × B.

We now consider the map π induced by H and the homotopy correspondence K

Cyl(A)

K

H
π

F′

ϕ

E

(p,0)

PB
(e0,e1)

B × B.
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This map π is in fact a (left) homotopy between h′ ◦ f and φ ◦ ∂ ◦ f because

K ◦ i0 = j, H ◦ i0 = 0 and thus, π ◦ i0 = h′ ◦ f ,

as well as

K ◦ i1 = 0, and thus, π ◦ i1 = φ ◦ ∂ ◦ f ,

meaning [h′ ◦ f ] = [φ ◦ ∂ ◦ f ], which is what we wanted to prove.

Comparison of the Two Actions
Lastly, we compare the natural action ofΩE onΩB as part of the fibre sequence

ΩB
h′−→ F′

i′−→ E

with the action given in the statement of the lemma. For this, let f : A −→ PB
represent an element of [A,ΩB], and let h : Cyl(A) −→ E represent an element
[h] of [A,ΩE]. By definition of the loop object, there is a commutative diagram

A
f̃

f

ΩB

h′

∗

F′

ϕ

i′
E

(p,0)

PB
(e0,e1)

B × B

for some f̃ : A −→ ΩB. This gives us the usual commutative square from the
definition of �

A
h′◦ f̃

i0

F′

i′

Cyl(A)
h

E

with a lift α : Cyl(A) −→ F′. As this α is a map into a pullback, this is equiv-
alent to a commutative diagram
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Cyl(A)
h

K

α

F′ i′

ϕ

E

(p,0)

PB
(e0,e1)

B × B

for some map K : Cyl(A) −→ PB. This map K satisfies

K ◦ i0 = ϕ ◦ α ◦ i0 = ϕ ◦ h′ ◦ f̃ = f ,
e0 ◦ K = p ◦ h and e1 ◦ K = 0.

The element [ f ] � [h] ∈ [A,ΩB] is defined as the homotopy class of the map v
in the commutative diagram below.

ΩB
h′

F′ i′
E

A

v
α◦i1

First, we notice that because

e0 ◦ K ◦ i1 = p ◦ h ◦ i1 = 0 = e1 ◦ K ◦ i1,

the map K ◦ i1 : A −→ PB factors over ΩB. We denote this map by
k : A −→ ΩB. Thus, we have

ϕ ◦ h′ ◦ k = K ◦ i1 = ϕ ◦ α ◦ i1,

and we can conclude that [v] = [ f ] � [h] = [k]. This means that our claim
amounts to

[k] = [(−Ωp ◦ h) ∗ f ],

where ∗ is the group multiplication (i.e. composition of homotopies) on [A,ΩB].
We look at K ◦ i1 : A −→ PB as a right homotopy between 0 and 0. This

corresponds to a left homotopy h̄ : Cyl(A) −→ B via a correspondence H̄,
that is, we have a commutative diagram

A � A
(K◦i1,0)

(i0,i1)

PB

e1

Cyl(A)
0

H̄

B
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with

H̄ ◦ i0 = K ◦ i1, H̄ ◦ i1 = 0, e0 ◦ H̄ = h̄ and e1 ◦ H̄ = 0.

The first equation means that we can form K ∗ H̄. We therefore get

(K ∗ H̄) ◦ i1 = H̄ ◦ i1 = 0,

(K ∗ H̄) ◦ i0 = K ◦ i0 = f ,

e0 ◦ (K ∗ H̄) = (e0 ◦ K) ∗ (e0 ◦ H̄) = (p ◦ h) ∗ h̄,

e1 ◦ (K ∗ H̄) = (e1 ◦ K) ∗ (e1 ◦ H̄) = 0 ∗ 0 = 0.

In other words, we have a commutative diagram

A � A
( f ,0)

(i0,i1)

PB

e1

Cyl(A)
0

K∗H̄

B,

which means that K ∗ H̄ is a correspondence between f and

e0 ◦ (K ∗ H̄) = (p ◦ h) ∗ h̄,

so [ f ] = [p ◦ h] ∗ [h̄]. Now h̄ is in the same homotopy class as K ◦ i1 which
represents [k] = [ f ] � [h], so

[ f ] = [p ◦ h] ∗ [h̄] = [p ◦ h] ∗ ([ f ] � [h]).

By slight abuse of notation, h : Cyl(A) −→ B is h : A −→ ΩB, so

[ f ] = [Ωp ◦ h] ∗ ([ f ] � [h]).

Rearranging the above equation then gives

[−(Ωp) ◦ h] ∗ [ f ] = [ f ] � [h]

as required. �

Corollary 3.5.2 With the previous notation, if F
i−→ E

p−→ B is a fibre se-
quence, then so is

ΩE
−Ωp−−−→ ΩB

∂−→ F.

Proof Using the action � of ΩE on ΩB given in Lemma 3.5.1 as well as
Definition 3.4.4, we see that the boundary map associated to ΩB −→ F −→ E
is given by
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[X,ΩE] [X,ΩB] × [X,ΩE]
�

[X,ΩB],

[ f ] ([0], [ f ]) [0] ∗ [−Ωp ◦ f ] = [−Ωp ◦ f ]. �

The proof of this corollary very neatly justifies the minus sign appearing in
the shifted fibre sequence, which plays an important role in the following long
exact sequence and will do so again in Definition 4.1.2. For topological spaces,
this is known as the Puppe sequence or simply the long exact fibre sequence,
and it also holds in a general model category environment.

3.6 The Long Exact Puppe Sequence

Because we have already done so much preparation work, the proof of the long
exact sequence is now relatively brief. In the following result and Theorem
3.6.4, note that the signs (−1)n can be removed while keeping the sequences
exact.

Theorem 3.6.1 Let X
f−→ Y

g−→ Z be a fibre sequence in Ho(C), where C is
a pointed model category, and let ∂ : ΩZ −→ X be the boundary map from
Definition 3.4.4. Then the sequence

· · · → [A,Ωn+1Z]
(−1)n(Ωn∂)∗−−−−−−−−→ [A,ΩnX]

(−1)n(Ωn f )∗−−−−−−−−→ [A,ΩnY]
(−1)n(Ωng)∗−−−−−−−−→ · · ·

· · · → [A,ΩZ]
∂∗−→ [A, X]

f∗−→ [A,Y]
g∗−→ [A,Z]

is exact for any A ∈ Ho(C).

Of course, the homotopy category of a pointed model category C is not nec-
essarily additive, so unless, for example, C is stable or A is a cogroup object,
the last three terms of the sequence need not carry any group structure. Thus,
exactness at these terms should be considered as exactness in pointed sets.

Proof Because of Lemma 3.5.1 and Corollary 3.5.2, it is sufficient to show
exactness of

[A, X]
f∗−→ [A,Y]

g∗−→ [A,Z]

only. Note that Corollary 3.5.2 is important here because Lemma 3.5.1 alone
does not tell us that the boundary map in the twice shifted fibre sequence is
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actually what one expects. Without loss of generality, let us assume that our
fibre sequence is of the form

F
i−→ E

p−→ B,

where p is a fibration of fibrant objects, so we will show that

[A, F]
i∗−→ [A, E]

p∗−→ [A, B]

is exact. Because p◦ i = 0 by definition, we have that the image of (i∗) is in the
kernel of p∗. Now let u : A −→ E satisfy [p◦u] = 0. We would like to show that
u is in the image of i∗. As [p ◦ u] = 0, there is a homotopy h : Cyl(A) −→ B
with h ◦ i0 = p ◦ u and h ◦ i1 = 0. As p is a fibration, there is a lift in the
following commutative square.

A
u

i0 ∼

E

p

Cyl(A)

H

h
B

Because p ◦ (H ◦ i1) = h ◦ i1 = 0, the map H ◦ i1 lifts over the fibre of p,
meaning that there is

v : A −→ F such that i ◦ v = H ◦ i1.

Since H is a homotopy between H ◦ i1 and H ◦ i0, they represent the same
homotopy class, hence,

i∗[v] = [i ◦ v] = [H ◦ i1] = [H ◦ i0] = [u],

thus, [u] is in the image of i∗ as required. �

There are dual statements of the previous results for cofibre sequences.

Lemma 3.6.2 Let X
f−→ Y

g−→ Z be a cofibre sequence in Ho(C), where C is a
pointed model category. Then

Y
g−→ Z

∂−→ ΣX

is a cofibre sequence with the coaction

� : ΣX −→ ΣX � ΣY

given by

[u] � [h] = [u] ∗ [−h ◦ Σ f ]. �
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Corollary 3.6.3 If X
f−→ Y

g−→ Z is a cofibre sequence, then so is

Z
∂−→ ΣX

−Σ f−−−→ ΣY. �

Theorem 3.6.4 Let X
f−→ Y

g−→ Z be a cofibre sequence in Ho(C), where C is
a pointed model category, and let ∂ : Z −→ ΣX be its boundary map. Then the
sequence

· · · → [Σn+1X, A]
(−1)n(Σn∂)∗−−−−−−−−→ [ΣnZ, A]

(−1)n(Σng)∗−−−−−−−−→ [ΣnY, A]→ · · ·
· · · ∂

∗
−→ [Z, A]

g∗−→ [Y, A]
f ∗−→ [X, A]

is exact for any A ∈ Ho(C). �

Indeed, all standard properties of fibre sequences can be reformulated for
cofibre sequences and vice versa. The proofs are identical, one just has to ex-
change limits for colimits, left homotopies for right homotopies etc. In the
next chapter, the duality between fibre and cofibre sequences for stable model
categories is highlighted even more strongly.



4

Triangulated Categories

The aim of this chapter is to state the definition of a triangulated category
and show that the homotopy category of a stable model category is a triangu-
lated category, see Theorem 4.2.1. Triangulated categories were developed to
axiomatise the structure of the derived category of an abelian category. This
structure comes in the form of exact triangles, a replacement for the short ex-
act sequences (and kernels and cokernels) of an abelian category. The exact
triangles of a stable model category are defined in terms of cofibre sequences.

Once we have proven the main theorem, we will investigate some of the
consequences for the homotopy category of a stable model category. These
include the agreement between fibre and cofibre sequences and finite prod-
ucts equalling finite coproducts. Next, we will consider the notion of an exact
functor, which is a functor that is compatible with the structures of triangu-
lated categories. We will show that a Quillen functor of stable model categories
induces an exact functor of the respective homotopy categories.

We end the chapter with two overview sections. The first introduces the
concept of Toda brackets, an important method of calculation in triangulated
categories, and applies the theory to the stable homotopy category. The second
gives an example of a triangulated category that does not arise from a stable
model category.

4.1 Definition and Basic Properties

Let us begin with the axioms, which arise naturally from some of the properties
of fibre and cofibre sequences, as well as from the algebraic structures found
on the derived category D(A) of an abelian category A. The version we give
has some redundancies, but has been chosen for its ease of use. For example,
axiom (T3) follows from (T1) and (T4), but is the first step in proving that the
homotopy category of a stable model category is triangulated.

128
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Recall that an additive category is a category whose sets of morphisms come
with abelian group structures such that composition is bilinear and the category
has all finite coproducts and products (which coincide and are called direct
sums), see Definition 3.2.5. Note that the zero object is the direct sum of an
empty collection.

Definition 4.1.1 Let T be an additive category equipped with an additive
self-equivalence Σ : T −→ T. A triangle in T is a sequence of morphisms

X
f1−→ Y

f2−→ Z
f3−→ ΣX.

A morphism of triangles from

X → Y → Z → ΣX to X′ → Y ′ → Z′ → ΣX′

is a commutative diagram

X
f1

φ1

Y
f2

φ2

Z
f3

φ3

ΣX

Σφ1

X′
f ′1

Y ′
f ′2

Z′
f ′3
ΣX′.

Given what we know about fibres and cofibres, we might expect the defi-
nition of a triangle to require that the composites f2 ◦ f1 and f3 ◦ f2 are the
zero map. However, we shall shortly see that this follows from the axioms of a
triangulated category.

Definition 4.1.2 Let T be an additive category equipped with an additive self-
equivalence Σ : T −→ T. (This functor is often called the “shift functor” as a
concession to the most common examples.)

We say that T is a triangulated category if there is a class of distinguished
triangles called exact triangles satisfying the following axioms.

(T1) The triangle

∗ X X ∗
is exact for every X ∈ T. A triangle isomorphic to an exact triangle is exact.
Every morphism f : X −→ Y fits into some exact triangle

X
f

Y
g

Z
u
ΣX.

(T2) The triangle

X
f

Y
g

Z
u
ΣX
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is exact if and only if the triangle

Y
g

Z
u
ΣX

−Σ f
ΣY

is exact.
(T3) Let

X
f1

φ1

Y
f2

φ2

Z
f3
ΣX

Σφ1

X′
f ′1

Y ′
f ′2

Z′
f ′3
ΣX′

be a diagram such that the two rows are exact triangles and the left square
commutes. Then one can add a morphism φ3 : Z −→ Z′ to this diagram such
that the resulting second and third square commute.

(T4) Let

X
f1

Y
f2

u1

Z
f3
ΣX

X
g1

U
g2

u2

V
g3
ΣX

W

u3

ΣY

be a commutative diagram such that the column and two rows are exact
triangles. Then there is an exact triangle

Z
v1

V
v2

W
v3
ΣZ

that can be added to the first diagram to obtain the commutative diagram

X
f1

Y
f2

u1

Z
f3

v1

ΣX

X
g1

U
g2

u2

V
g3

v2

ΣX

W

u3

W

v3

ΣY
Σ f2
ΣZ.
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First, we note that because of (T2), the fill-in axiom (T3) could equivalently
be reformulated with φ2 instead of φ3 and asking for the right square to com-
mute.

The axiom (T4) is known as the octahedral axiom. This is due to its original
form concerning the four exact triangles arranged in the shape of an octahe-
dron. The version we stated above is equivalent to the original octahedral ax-
iom [Kra07, Appendix] and has established itself as a more convenient version
in practice.

Rewriting the object Z in the first row of the diagrams in (T4) as “Z = Y/X”,
the octahedral axiom then has the appearance of the Third Isomorphism Theo-
rem

(Y/X)
/
(U/X) = Y/U.

It is somewhat unclear why “triangulated” is the name for this kind of cate-
gory. A possible explanation lies in the following. One could rewrite an exact
triangle

X
f

Y
g

Z
u
ΣX

as below, where u is considered as a morphism of degree 1 (indicated by a
special arrow ◦ )

X
f

Y.

g

Z

u
◦

The axiom (T2) would then say that one can “rotate” such a triangle either way
and still obtain a triangle. The octahedral axiom then says that the diagram

V

◦

Z

◦

W

◦

X Y U
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(where the bottom two triangles are exact and the big outer triangle is exact)
can be filled in so that the top central triangle is also exact.

V

◦

Z

◦

W

◦

◦

X Y U

(The other triangle shapes appearing in the second diagram are not exact trian-
gles, which is already evident from the direction of the arrows and degrees of
the maps.)

Definition 4.1.3 A subcategory T′ of a triangulated category T is a triangu-
lated subcategory if it is a triangulated category with shift and exact triangles
inherited from T.

Let us look at some of the immediate consequences of the definition.

Lemma 4.1.4 Let

X
f

Y
g

Z
u
ΣX

be an exact triangle in a triangulated category T. Then g◦ f = 0 and u◦g = 0.

Proof We have the commutative diagram

X
f

Y
g

Z
u

u

ΣX

X ∗ ΣX ΣX.

(T1) and (T2) tell us that the two rows are exact triangles. The right square
evidently commutes, thus, by (T3) there is a fill-in map Y −→ ∗ making the
resulting square commute. But this means that u ◦ g = 0. The case g ◦ f is
similar, but uses the fact that h = 0 if and only if Σh = 0. �

The following is one of the most useful tools in a triangulated category.
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Proposition 4.1.5 Let T be a triangulated category, X
f1−→ Y

f2−→ Z
f3−→ ΣX

an exact triangle in T and A an object in T. Then the two sequences of abelian
groups

T(A, X)
f1∗

T(A,Y)
f2∗

T(A,Z)
f3∗

T(A,ΣX)

T(ΣX, A)
f ∗3

T(Z, A)
f ∗2

T(Y, A)
f ∗1

T(X, A)

are exact.

Proof We will only show exactness for the first sequence. By (T2), it is suffi-
cient to show exactness of

T(A, X)
f1∗−→ T(A,Y)

f2∗−→ T(A,Z).

Take g : A −→ Y and the diagram

A A

g

∗ ΣA

X
f1

Y
f2

Z
f3
ΣX,

where the two rows are exact triangles. If g is in the image of f1∗, this means
that there is a map u : A −→ X giving the first and last vertical arrow in the
commutative diagram

A

u

A

g

∗ ΣA

Σu

X
f1

Y
f2

Z
f3
ΣX.

By (T3), we can fill in the third vertical arrow, which implies that g ∈ ker( f2∗)
because f2 ◦ g factors over ∗.

Conversely, if we assume that g ∈ ker( f2∗), we have the second and third
vertical arrow in the diagram, so (T3) gives us a map u : A −→ X to make the
first square commute, thus, g ∈ Im( f1∗). �

Remark 4.1.6 Proposition 4.1.5 will play an important role when we study
the homotopy category of a stable model category. Theorems 3.6.1 and 3.6.4
give similar long exact sequences in the homotopy category of a pointed model
category, one for fibre sequences and one for cofibre sequences. Once we know
that the homotopy category of a triangulated model category is triangulated, we
can actually compare them and show that in a stable model category, cofibre
sequences and fibre sequences agree. We discuss this in detail in Section 4.3.
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Definition 4.1.7 A functor from a triangulated category to an abelian cate-
gory that sends exact triangles to exact sequences as in Proposition 4.1.5 is
called a cohomological functor.

Applying the Five Lemma to Proposition 4.1.5 gives the following.

Corollary 4.1.8 Let

X
f1

φ1

Y
f2

φ2

Z
f3

φ3

ΣX

Σφ1

X′
f ′1

Y ′
f ′2

Z′
f ′3
ΣX′

be a morphism of exact triangles. If two of the φi are isomorphisms, then so is
the third. �

Let us continue with some more properties of exact triangles.

Lemma 4.1.9 Exact triangles are closed under products and coproducts.

Proof We only show the proof for coproducts, as the other case is very simi-
lar. Let

Xi
fi

Yi
gi

Zi
ui
ΣXi

be an exact triangle for i ∈ I. We want to show that

∐
i∈I

Xi

∐
i∈I

fi ∐
i∈I

Yi

∐
i∈I

gi ∐
i∈I

Zi

∐
i∈I

ui

Σ
∐
i∈I

Xi

is exact by showing that it is isomorphic to an exact triangle. (Note that the
shift Σ commutes with coproducts as it is an equivalence of categories.) By
(T1), the morphism

∐
i∈I

fi :
∐
i∈I

Xi −→∐
i∈I

Yi

can be completed to an exact triangle

∐
i∈I

Xi

∐
i∈I

fi ∐
i∈I

Yi W Σ
∐
i∈I

Xi.
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Furthermore, by (T3), we have a morphism of exact triangles

Xi
fi

Yi
gi

Zi
ui

ΣXi

∐
i∈I

Xi

∐
i∈I

fi ∐
i∈I

Yi W Σ
∐
i∈I

Xi.

The universal property of the coproduct now implies that there is a morphism

∐
i∈I

Zi −→ W,

which is part of a commutative diagram

∐
i∈I

Xi
∐
i∈I

Yi
∐
i∈I

Zi Σ
∐
i∈I

Xi

∐
i∈I

Xi
∐
i∈I

Yi W Σ
∐
i∈I

Xi.

Let A ∈ T. Applying the cohomological functor T(−, A) to the exact triangle

Xi
fi

Yi
gi

Zi
ui
ΣXi

gives us a long exact sequence of abelian groups by Proposition 4.1.5. Taking
the coproduct of these results in the long exact sequence

· · · −→
⊕

i∈I
T(Zi, A) −→

⊕

i∈I
T(Yi, A) −→

⊕

i∈I
T(Xi, A) −→ · · · ,

which by definition of the coproduct is isomorphic to the long exact sequence

· · · −→ T(
∐
i∈I

Zi, A) −→ T(
∐
i∈I

Yi, A) −→ T(
∐
i∈I

Xi, A) −→ · · · .

Applying T(−, A) to the exact triangle

∐
i∈I

Xi

∐
i∈I

fi ∐
i∈I

Yi W Σ
∐
i∈I

Xi

also gives a long exact sequence. Comparing this sequence to the previous
exact sequence using the Five Lemma gives us a canonical isomorphism

T(W, A) −→ T(
∐
i∈I

Zi, A),
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which, by the Yoneda Lemma, means that the morphism
∐
i∈I

Zi −→ W

is in fact an isomorphism. We now have a commutative diagram
∐
i∈I

Xi
∐
i∈I

Yi
∐
i∈I

Zi Σ
∐
i∈I

Xi

∐
i∈I

Xi
∐
i∈I

Yi W Σ
∐
i∈I

Xi,

where the bottom row is an exact triangle and all the vertical arrows are iso-
morphisms, so (T1) tells us that the top row is an exact triangle too, which is
what we wanted to show. �

Remark 4.1.10 The axiom (T3) does not specify that the fill-in is unique. In
general, there will be several suitable maps. For example, consider the diagram

Σ−1X
0

Y X
∐

Y X

Σ−1X
0

Y X
∐

Y X,

where the rows are the coproduct of (shifts of) the triangles

∗ X X ∗
and

∗ Y Y ∗.
Let f : X −→ Y be a map in T. Then the map

f̄ : X
∐

Y −→ X
∐

Y

induced by

(Id, f ) : X −→ X
∐

Y and (0, Id) : Y −→ X
∐

Y

is a possible fill-in for the diagram. As this is true for any f : X −→ Y , the
fill-in thus need not be unique.

Definition 4.1.11 An exact triangle

X
f1−→ Y

f2−→ Z
f3−→ ΣX

in a triangulated category T is split if one of the maps f1, f2, or f3 is zero.
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Lemma 4.1.12 If

X
f1−→ Y

f2−→ Z
f3−→ ΣX

is a split exact triangle in a triangulated category T, then Y � X
∐

Z in T.

Proof We prove the result in the case f3 = 0. By the axiom (T1),

X X ∗ ΣX

and

∗ Z Z ∗
are exact triangles. Therefore, by Lemma 4.1.9, their coproduct

X X
∐

Z Z
0
ΣX

is an exact triangle. We also have a commutative diagram

X Y Z
0
ΣX

X X
∐

Z Z
0
ΣX,

which by (T3) can be completed to a morphism of exact triangles

X Y Z
0
ΣX

X X
∐

Z Z
0
ΣX.

By Corollary 4.1.8, the resulting map Y −→ X
∐

Z is an isomorphism. �

The following result may be thought of as saying that the cofibres of a map
of exact triangles form an exact triangle. The proof is quite lengthy, so we leave
it to the references [BBD82, Proposition 1.1.11] or [May01, Lemma 2.6].

Lemma 4.1.13 (3 × 3 Lemma) A commutative square

X1
f1

a1

Y1

b1

X2
f2

Y2

can be extended to the diagram below, with all rows and columns triangles.
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X1
f1

a1

Y1
g1

b1

Z1
h1

c1

ΣX1

Σa1

X2
f2

a2

Y2
g2

b2

Z2
h2

c2

ΣX2

Σa2

X3
f3

a3

Y3
g3

b3

Z3
h3

c3 �

ΣX3

Σa3

ΣX1
Σ f1

ΣY1
Σg1

ΣZ1
Σh1
Σ2X1.

The squares of this diagram commute, except the bottom-right square, which
commutes up to sign

Σa3 ◦ h3 = −Σh1 ◦ c3.

4.2 The Homotopy Category of a Stable Model Category

The main goal of this chapter is the following.

Theorem 4.2.1 Let C be a stable model category. Then its homotopy category
Ho(C) is a triangulated category where the exact triangles are given by cofibre
sequences with their boundary maps

X −→ Y −→ Z
∂−→ ΣX.

We are going to present the proof of the theorem in a separate lemma for
each axiom. (T1) follows immediately from the definition of a cofibre se-
quence.

We are going to start with (T3) because, although the axioms of a trian-
gulated category are traditionally listed in the given order, the proof of (T2)
actually needs (T3).

Lemma 4.2.2 (Proof of (T3)) Let C be a stable model category. Assume that
we have a commutative diagram in Ho(C)

X′
f ′

φ1

Y ′
g′

φ2

Z′ u′
ΣX′

Σφ1

X
f

Y
g

Z
u
ΣX,

where the two rows are cofibre sequences with their respective boundary maps.
Then there is a map φ3 : Z′ −→ Z making the resulting second and third square
commute.
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Proof This is a direct calculation using the definition of the coaction. Without
loss of generality, let f and f ′ be cofibrations between cofibrant objects, Z′ the
cofibre of f ′ and Z the cofibre of f . That is, Z and Z′ are given by the pushouts
of the diagrams

∗ ←− X′
f ′−→ Y ′ and ∗ ←− X

f−→ Y.

There is a map φ3 making the following diagram commute

X′
f ′

φ1

Y ′
g′

φ2

Z′

φ3

X
f

Y
g

Z

because

g ◦ φ2 ◦ f ′ = g ◦ f ◦ φ1 = 0,

so g ◦ φ2 factors over the cofibre of f ′. To show that Σφ1 ◦ u′ = φ3 ◦ u, we
are going to show that φ3 is compatible with the coaction of the two cofibre
sequences because the boundary maps u and u′ are defined using those. This
means that we have to show that

Z′ 	

φ3

Z′
∐
ΣX′

φ3

∐
Σφ1

Z
	

Z
∐
ΣX

commutes. That is, for w : Z −→ A and for h : X −→ PA representing an
element of [ΣX, A], we show that

[w ◦ φ3] 	 [h ◦ φ1] = ([w] 	 [h]) ◦ φ3.

Recall that [w]	 [h] is constructed as follows: we have a commutative diagram

X
h

f

PA

e0∼

Y
w◦g

A

with a lift α : Y −→ PA. The element [w] 	 [h] is represented by the map v
such that v ◦ g = e1 ◦ α as below.

X
f

Y
g

e1◦α

Z

v

A
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Similarly, for [v′] = [w ◦ φ3] 	 [h ◦ φ1], we start with a commutative diagram

X′
h◦φ1

f ′

PA

e0∼

Y ′
w◦φ3◦g′

A

in which there is a lift β : Y ′ −→ PA, and we get

X′
f ′

Y ′
g′

e1◦β

Z.

v′

A

But we can take β = α ◦ φ2 because

α ◦ φ2 ◦ f ′ = α ◦ f ◦ φ1 = h ◦ φ1

and

e0 ◦ α ◦ φ2 = w ◦ g ◦ φ2 = w ◦ φ3 ◦ g′.

This means that v′ = v ◦ φ3 because

v′ ◦ g′ = v ◦ φ3 ◦ g′ = v ◦ g ◦ φ2 = e1 ◦ α ◦ φ2 = e1 ◦ β
as required.

So we have shown that the coactions of the two cofibre sequences are com-
patible. By definition of the boundary maps, φ3 ◦ u′ = u ◦ φ3 is equivalent to
having a commutative diagram

Z′ 	

φ3

u′

Z′
∐
ΣX′

φ3

∐
Σφ1

(0
∐

Id)
ΣX′

Σφ1

Z
	

u

Z
∐
ΣX

(0
∐

Id)
ΣX.

It is evident that the second square commutes, and we have just shown that the
first square commutes, which completes the proof. �

Remark 4.2.3 The proof of this lemma also shows the following: let C be a
pointed model category and let

X
f−→ Y

g−→ Z
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be a cofibre sequence with boundary map ∂ : Z −→ ΣX. If there is a commuta-
tive diagram in Ho(C)

X
f

Y
g

Z
∂
ΣX

A
u

B
v

C
w
ΣA,

where the vertical arrows are isomorphisms, then

A
u−→ B

v−→ C

is a cofibre sequence with boundary map w : C −→ ΣA. We will make use of
this in the proof of (T2).

Remark 4.2.4 We would also like to point out that in the case of Ho(C) for
a stable model category C, there is a canonical choice of fill-in map in (T3)
coming from the induced map of cofibres. However, as in the general case of
Remark 4.1.10, there can still be other possible fill-in maps.

The statement and proof of (T3) only used properties of cofibre sequences
in the homotopy category of a pointed model category and did not require the
model category to be stable. However, stability comes into play now. Let

εX : ΣΩX −→ X and ηX : X −→ ΩΣX

denote the counit and unit of the loop-suspension adjunction on Ho(C).
By Lemma 3.6.2, we can shift exact triangles of cofibre sequence to the

right, giving one half of (T2). The proof of (T2) shows that in a stable model
category, one can shift cofibre sequences to the left and not just to the right.

Lemma 4.2.5 (Proof of (T2)) Let C be a stable model category. Then

X
f−→ Y

g−→ Z

is a cofibre sequence in Ho(C) with boundary map u : Z −→ ΣX if and only if

ΩZ
−η−1

X ◦Ωu−−−−−−→ X
f−→ Y

is a cofibre sequence with boundary map ε−1
Z ◦ g : Y −→ Σ(ΩZ).

Proof Assume that

ΩX
−η−1

X ◦Ωu−−−−−−→ X
f−→ Y
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is a cofibre sequence with boundary map ε−1
Z ◦ g. Then by Lemma 3.6.2,

X
f−→ Y

ε−1
Z ◦g−−−−→ Z

is a cofibre sequence with boundary map

−Σ(−η−1
X ◦Ωu) = Ση−1

X ◦ ΣΩu.

The unit of the loop-suspension adjunction εX is natural in X, so we have

u ◦ εZ = εΣX ◦ ΣΩu.

But εΣX = Σ(η−1
X ) = (ΣηX)−1, which means that we have the following commu-

tative diagram

X
f

Y
ε−1

Z ◦g
ΣΩZ

Ση−1
X ◦ΣΩu

εZ

ΣX

X
f

Y
g

Z
u

ΣX.

As the top row is a cofibre sequence with its boundary map, then by definition,
so is the bottom because all vertical arrows are isomorphisms. (The boundary
map holds the information about the coaction of ΣX on the cofibre, thus, hav-
ing a commutative diagram as above also means that the coactions of the two
cofibre sequences are isomorphic, see Remark 4.2.3.)

For the converse, assume that

X
f−→ Y

g−→ Z

is a cofibre sequence in Ho(C) with boundary map u. As in the previous step,
naturality of the counit gives us the commutative diagram

ΣΩX
ΣΩ f

εX

ΣΩY
ΣΩg

εY

ΣΩZ
Σε−1

X ◦Ση−1
X ◦ΣΩu

εZ

Σ2ΩX

ΣεZ

X
f

Y
g

Z
u

ΣX.

As the bottom row is a cofibre sequence with its boundary map and the verti-
cal maps are isomorphisms in Ho(C), this means that the top row is a cofibre
sequence with its boundary map too.

Our claim is now that “desuspending” the top row still gives us a cofibre
sequence

ΩX
Ω f
ΩY

Ωg
ΩZ

ε−1
X ◦η−1

X ◦Ωu
ΣΩX.
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Of course, Ω f is part of some cofibre sequence ΩX
Ω f−−→ ΩY

g′−→ W
u′−→ ΣΩX,

to which we apply Σ and put it in the following commutative diagram.

ΣΩX
ΣΩ f

ΣΩY
ΣΩg

ΣΩZ
Σε−1

X ◦Ση−1
X ◦ΣΩu

Σ2ΩX

ΣΩX
ΣΩ f

ΣΩY
Σg′

ΣW
Σu′

Σ2ΩX

We know that both rows are cofibre sequences, so Lemma 4.2.2 gives us a
fill-in map k : ΣΩZ −→ ΣW. The long exact sequence of cofibre sequences
(Theorem 3.6.4) together with the Five Lemma tell us that this map k is an
isomorphism in Ho(C). Furthermore, we have that k = Σk′ for some k′ ∈ Ho(C)
that is also an isomorphism (specifically, k′ = (η−1

W ) ◦ Ωk ◦ ηΩZ). This means
that we have a commutative diagram

ΩX
Ω f
ΩY

Ωg
ΩZ

k′

ε−1
X ◦η−1

X ◦Ωu
ΣΩX

ΩX
Ω f
ΩY

g′
W

u′
ΣΩX,

where all vertical maps are isomorphisms and the bottom row is a cofibre
sequence by assumption. Thus, the top row must be a cofibre sequence too.
Lemma 3.6.2 and Corollary 3.6.3 allow us to shift the top row cofibre sequence
two places to the right and obtain a cofibre sequence which is the top row of
the next commutative diagram.

ΩZ
ε−1

X ◦η−1
X ◦Ωu

ΣΩX

εX

−ΣΩ f
ΣΩY

εY

−ΣΩg
ΣΩZ

ΩZ
η−1

X ◦Ωu
X

− f
Y

−ε−1
Z ◦g
ΣΩZ

All vertical arrows are isomorphisms, which means that the bottom row is a
cofibre sequence and has the desired boundary map, which was the claim of
the lemma. �

The proof of the octahedral axiom (T4) in fact only requires our model cat-
egory to be pointed rather than stable.
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Lemma 4.2.6 (Proof of (T4)) Let C be a pointed model category and suppose
we have cofibre sequences

X
f1

Y
f2

Z

X
g1

U
g2

V

Y
u1

U
u2

W

in Ho(C) with g1 = u1 ◦ f1. Then there are maps v1 : Z −→ V, v2 : V −→ W
and v3 : W −→ ΣZ making the following diagram commute

X
f1

Y
f2

u1

Z
f3

v1

ΣX

X
g1

U
g2

u2

V
g3

v2

ΣX

W

u3

W

v3

ΣY
Σ f2
ΣZ.

Furthermore,

• Z
v1−→ V

v2−→ W is a cofibre sequence with boundary map v3,
• the coaction of ΣZ on W is given by

W
	−→ W

∐
ΣY

Id
∐
Σ f2−−−−−−→ W

∐
ΣZ,

where the first map is the coaction of ΣY on W from the third cofibre se-
quence.

Proof Without loss of generality, let X, Y and U be fibrant and cofibrant in C

and let f1 and u1 (and thus g1) be cofibrations. We have a commutative diagram

Y

u1

X
f1 ∗

U X
g1

f1

∗

U Y
u1 ∗.
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The pushout of the first row gives a map f2 : Y −→ Z, the pushout of the second
row gives a map g2 : U −→ V and the pushout of the third row gives a map
u2 : U −→ W.

The commutative diagram also gives us induced maps of the pushouts of the
three rows,

Z
v1−→ V

v2−→ W.

We see that v2 ◦ v1 = 0, as it is induced by the maps 0 = u2 ◦ u1 : Y −→ W and
0 = u2 ◦ u1 ◦ f1 : X −→ W.

By Lemma A.7.7 (the Patching Lemma), the map v1 is a cofibration. The
cofibre of v1 is then given by v2 : V −→ W, as the cofibre of a map of pushouts
is the pushout of a map of cofibres, see [Str11, Theorem 2.43].

We now claim that the coaction associated to the cofibre sequence

Z
v1−→ V

v2−→ W

is given by

W
	−→ W

∐
ΣY

Id
∐
Σ f2−−−−−−→ W

∐
ΣZ,

where 	 is the coaction of ΣY on W from the third cofibre sequence. We denote
this coaction by • to avoid confusion with the other coaction 	. If our claim
holds, the boundary map v3 is given by

v3 = (0
∐

Id) ◦ • = (0
∐

Id) ◦ (Id
∐
Σ f2) ◦ 	 while u3 = (0

∐
Id) ◦ 	,

so Σ f2 ◦ u3 = v3. So we now have to check that this coaction • is the correct
one. In other words, given A ∈ C, we have to show that

[ f ] • [h] = [ f ] 	 [h ◦ f2],

where f : W −→ A and where h : Z −→ PA represents an element of [ΣZ, A].
To obtain [ f ] • [h], we start with a commutative diagram

Z
h

v1

PA

e0∼

V
f◦v2

A.

In this diagram, there is a lift α : V −→ PA, and the map α ◦ e1 factors over the
cofibre of v1

Z
v1

V
v2

e1◦α

W

ϕ

A
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to give us [ϕ] = [ f ]• [h]. In the same way, we get [ f ]	 [h◦ f2] by starting with
a diagram

Y
h◦ f2

u1

PA

e0∼

U
f◦u2

A

in which there is a lift β : U −→ PA. Then e1 ◦ β factors over the cofibre of u1

Y
u1

U
u2

e1◦β

W,

ψ

A

which gives us [ψ] = [ f ]	 [h◦ f2]. But we can simply pick β = α◦g2, because

α ◦ g2 ◦ u1 = α ◦ v1 ◦ f2 = h ◦ f2 and e0 ◦ α ◦ g2 = f ◦ v2 ◦ g2 = f ◦ u2.

Then

ψ ◦ u2 = e1 ◦ β = e1 ◦ α ◦ g2 = ϕ ◦ v2 ◦ g2 = ϕ ◦ u2,

so ψ = ϕ, which is what we wanted to prove. �

With the last lemma, we finally completed the proof that the cofibre se-
quences equip the homotopy category Ho(C) of a stable model category C with
the structure of a triangulated category.

4.3 Comparison of Fibre and Cofibre Sequences

The fact that the homotopy category of a stable model category is triangulated
means that we can use Proposition 4.1.5 to obtain a long exact sequence from
a cofibre sequence using the functor [A,−] for any A ∈ C. This contrasts with
Theorem 3.6.4, which converts cofibre sequences into long exact sequences
via [−, A]. This is going to be important when comparing fibre and cofibre
sequences in a stable model category. Our starting point is a lemma that holds
for all pointed model categories.

Recall that

εX : ΣΩX −→ X and ηX : X −→ ΩΣX

denote the counit and unit of the loop-suspension adjunction on Ho(C).



4.3 Comparison of Fibre and Cofibre Sequences 147

Lemma 4.3.1 Let C be a pointed model category, and let

A
u

α

B
v

β

C
∂′
ΣA

−εZ◦Σα

ΩZ
∂

X
f

Y
g

Z

be a commutative diagram in Ho(C), where the top row is a cofibre sequence
and its boundary map and the bottom row is a fibre sequence with its boundary
map. Then there is a fill-in map γ : C −→ Y making the resulting second and
third square commute.

As expected, there is a dual statement. We will only prove the second
version.

Lemma 4.3.2 Let C be a pointed model category, and let

A
u

−Ωγ◦ηA

B
v

C
∂′

β

ΣA

γ

ΩZ
∂

X
f

Y
g

Z

be a commutative diagram in Ho(C), where the top row is a cofibre sequence
and its boundary map and the bottom row is a fibre sequence with its boundary
map. Then there is a fill-in map α : B −→ X making the resulting diagram
commute.

Proof Without loss of generality, let us assume that A, B and C are cofibrant
and that u is a cofibration. Similarly, assume that X,Y and Z are fibrant and g is
a fibration. Furthermore, we can assume C to be the mapping cone of u defined
as the pushout of

B
(u,0)←−−− A

∐
A

(i0,i1)−−−−→ Cyl(A)

because the cofibre sequence using the mapping cone is isomorphic to our
original one.

In Ho(C) we have

g ◦ β ◦ v = γ ◦ ∂′ ◦ v = 0,

so β ◦ v factors over the fibre of g, giving us a map α : B −→ X with
f ◦ α = β ◦ v. Recalling that C is the mapping cone of u, the map β : C −→ Y
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is now the pushout of f ◦ α and some other map H : Cyl(A) −→ Y , resulting
in the following commutative diagram

A
∐

A
(i0,i1)

(u,0)

Cyl(A)

c

H
B

v

f◦α

C
β

Y.

Now we have to show that with this α, the first square in our original diagram
commutes. For convenience, let γ̃ = Ωγ ◦ ηA. Thus, our claim is that

α ◦ u = ∂ ◦ (−γ̃).

We know that elements of [ΣA,Z] � [A,ΩZ] are represented by homotopies
between the zero map 0: A −→ Z and itself. Furthermore, we can choose
to have [γ] ∈ [ΣA,Z] and [γ̃] ∈ [A,ΩZ] represented by the same homotopy
H′ : Cyl(A) −→ Z because γ̃ is the adjoint of γ.

With the definition of C as a pushout, g ◦ β = γ ◦ ∂′ : C −→ Z is given by
the zero map on B and H′ on Cyl(A). This means that we have the following
commutative diagram

A
∐

A
(i0,i1)

(u,0)

Cyl(A)

c

H
H′B

v

f◦α

0

C
β

Y
g

Z,

that is, g ◦ H = H′.
Let us return to showing that α ◦ u = ∂ ◦ (−γ̃). By definition, [∂ ◦ (−γ̃)]

equals 0 	 [−γ̃], thus, our claim amounts to showing that [α ◦ u] = 0 	 [−γ̃],
or, equivalently,

[α ◦ u] 	 [H′] = 0.
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To calculate this action, we look at the commutative square

A

∼i0

f◦α◦u
Y

g

Cyl(A) H′
Z

in which there is a lift K : Cyl(A) −→ Y . We then have [k] = [α ◦ u] 	 [H′],
where k : A −→ X is the unique map with f ◦ k = K ◦ i1.

But we can choose K = H, where H : Cyl(A) −→ X was defined in the
pushout diagram earlier, because

g ◦ H = H′ and H ◦ i0 = f ◦ α ◦ u.

But also H ◦ i1 = 0, so k = 0, which is exactly what we wanted to prove. �

4.4 Consequences of Stability

We start with a result about the special relationship between cofibre and fibre
sequences that holds when the pointed model category is also stable.

Corollary 4.4.1 Let C be a stable model category. If

X
f−→ Y

g−→ Z

is a fibre sequence in Ho(C) with boundary map ∂ : ΩZ −→ X, then

ΩZ
∂−→ X

f−→ Y

is a cofibre sequence with boundary map −ε−1
Z ◦ g : Y −→ ΣΩZ.

Corollary 4.4.2 Let C be a stable model category. If

A
u−→ B

v−→ C

is a cofibre sequence in Ho(C) with boundary map w : C −→ ΣA, then

B
v−→ C

w−→ ΣA

is a fibre sequence with boundary map u ◦ (−η−1
A ) : ΩΣA −→ B.

We will only prove the first corollary as the second proof is very similar.
People often suppress the η and ε (as well as ΣΩ and ΩΣ) from the statement,
as they are canonical isomorphisms, which leads to the slogan “in stable model
categories, fibre and cofibre sequences agree”.
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Proof Let

X
f−→ Y

g−→ Z

be a fibre sequence with boundary map ∂ : ΩZ −→ X. Then ∂ is part of some
cofibre sequence

ΩZ
∂−→ X

f ′−→ Y ′
g′−→ ΣΩZ,

where g′ is the boundary map. We can complete this to a commutative diagram

ΩZ
∂

X
f ′

Y ′
g′
ΣΩZ

−εZ

ΩZ
∂

X
f

Y
g

Z.

By Lemma 4.3.1, there is a fill-in map Y ′ −→ Y making the whole diagram
commute. Because the bottom row is a fibre sequence, Theorem 3.6.1 tells us
that applying [A,−] to the bottom row results in a long exact sequence. Because
Ho(C) is triangulated, applying [A,−] to the top row also yields a long exact
sequence by Proposition 4.1.5. Because our model category is stable, −εZ is a
weak equivalence, so the Five Lemma implies that the fill-in map Y ′ −→ Y is
an isomorphism in Ho(C). Thus,

ΩZ
∂

X
f ′

Y ′
g′

∼

ΣΩZ

ΩZ
∂

X
f

Y
−ε−1

Z ◦g
ΣΩZ

is a commutative diagram where the top row is a cofibre sequence and its
boundary map and all the vertical maps are weak equivalences. Therefore, the
bottom row must also be a cofibre sequence with its boundary map. �

We may now show that the homotopy cofibre of a map and the suspension
of the homotopy fibre of a map are weakly equivalent.

Lemma 4.4.3 Let f : X → Y be a map in a stable model category C. There is
a weak equivalence F f −→ ΩC f between the homotopy fibre of f and loops
of the homotopy cofibre of f .

Proof By Lemma 3.5.1 we have fibre sequences

ΩY
∂−→ F f

i−→ X
f−→ Y and ΩX

−Ω f−−−→ ΩY
∂−→ F f

i−→ X.
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By Corollary 4.4.1 we have cofibre sequences

X
f−→ Y

q−→ C f
∂′−→ ΣX and ΩX

−Ω f−−−→ ΩY
∂−→ F f

−ε−1
F f ◦i−−−−−→ ΣΩX.

Applying Σ to the last cofibre sequence gives the first row in the commutative
diagram below.

ΣΩX
ΣΩ f

εX

ΣΩY
Σ∂

εY

ΣF f
Σ(ε−1

F f ◦i)
Σ2ΩX

ΣεX

X
f

Y q C f
∂′

ΣX

By (T3) (see Lemma 4.2.2), we can fill in the diagram to obtain a map

ΣF f −→ C f .

By Corollary 4.1.8, the map ΣF f −→ C f is an isomorphism in Ho(C) and,
hence, so is its adjoint F f −→ ΩC f . �

We are now going to discuss some further useful results that hold in stable
model categories.

A particularly handy consequence of stability is that finite products and co-
products are weakly equivalent. Hence, maps into a coproduct (or out of a
product) are well understood.

Lemma 4.4.4 Let C be a stable model category. Then for fibrant and cofi-
brant objects X and Y, the canonical map χX,Y : X

∐
Y → X

∏
Y is a weak

equivalence.

Proof Given such X and Y , we have two exact triangles

X X ∗ ΣX

∗ Y Y ∗.
Hence, we can construct both their coproduct and product and obtain a map
of exact triangles as below, where the middle map is the canonical map of a
coproduct into a product.

X X
∐

Y
χX,Y

Y ΣX

X X
∏

Y Y ΣX

By Corollary 4.1.8, the result follows. �
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In most cases (including sequential spectra and chain complexes), one does
not need to assume that X and Y are fibrant and cofibrant, as the functors
(−)
∐

A and (−)
∏

A preserve all weak equivalences.

Remark 4.4.5 The above lemma gives an equivalent definition of the addi-
tion in Ho(C). Given two maps f , g : X → Y between fibrant and cofibrant
objects, one can model f + g ∈ [X,Y]C by either of the composites

X
Δ

X
∏

X
f
∏

g
Y
∏

Y
χ−1

Y,Y
Y
∐

Y
fold

Y

X
Δ

X
∏

X
χ−1

X,X
X
∐

X
f
∐

g
Y
∐

Y
fold

Y.

4.5 Exact Functors and Quillen Functors

When dealing with categories with certain additional structure, we also have
to consider functors that respect this additional structure. In the case of trian-
gulated categories, this means that we have to study functors that send exact
triangles to exact triangles. More precisely,

Definition 4.5.1 Let T and T′ be triangulated categories. A functor

F : T −→ T′

is exact if there is a natural isomorphism

τ : Σ ◦ F(X)
�−→ F ◦ (ΣX)

such that for every exact triangle

X
α−→ Y

β−→ Z
γ−→ ΣX

in T, the sequence

F(X)
F(α)−−−→ F(Y)

F(β)−−−→ F(Z)
τ◦F(γ)−−−−−→ ΣF(X)

is an exact triangle in T′.

The key example of an exact functor is of course the following, which we
may think of as an extension to Corollary 3.2.10.

Theorem 4.5.2 Let C and D be stable model categories, and let

F : C D :G

be a Quillen adjunction. Then the derived functors LF : Ho(C) −→ Ho(D)
and RG : Ho(D) −→ Ho(C) are exact functors.
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Proof We prove that the derived functor LF preserves cofibre sequences. The
dual proof will show that the derived functor RG preserves fibre sequences. By
Corollary 4.4.1, cofibre sequences and fibre sequences agree in a stable model
category, hence, the second statement follows from the first.

We will write F instead of LF for convenience. Let

X
α−→ Y

β−→ Z

be a cofibre sequence. Without loss of generality, let α be a cofibration between
cofibrant objects and let Z be the cofibre of α. This means that Z is the pushout
of α over a point. As F is a left adjoint and a left Quillen functor, it preserves
cofibrations, cofibrant objects and pushouts, so F(Z) is the cofibre of F(α).

Now let • denote the coaction associated to our original cofibre sequence,
that is, for A ∈ Ho(C),

• : [Z, A] × [ΣX, A] −→ [Z, A], ([ f ], [k]) �→ [ f ] • [k].

Also, let 	 denote the coaction associated to F(X)
F(α)−−−→ F(Y)

F(β)−−−→ F(Z). Our
main claim amounts to showing that

[F( f )] 	 [F(k)] = F([ f ] • [k]) ∈ [F(Z), F(A)].

Recall that to define [ f ]• [k], we begin with a lift in the commutative square

X
k

α

PA

e0∼

Y
f◦β

H

A.

(4.1)

Because k is a right homotopy from zero to zero, this satisfies

0 = e1 ◦ k = (e1 ◦ H) ◦ α.
This implies that e1 ◦ H factors over the cofibre C of α, that is,

X
α

Y
β

e1◦H

Z,

w

A

and we define [ f ] • [k] = [w].
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Applying F to the commutative square 4.1 gives a commutative diagram

F(X)
F(k)

F(α)

F(PA)

F(e0)

F(Y)
F( f )◦F(β)

F(H)

F(A).

(4.2)

Since F is a left Quillen functor, the left-hand vertical is still a cofibration. The
issue we now encounter is that F(PA) is not necessarily a path object for F(A).
We will rectify this as follows. A path object for F(A) is

FA
s

PF(A)
(e0,e1)

F(A) × F(A).

Applying F to the projections pr1, pr2 : A × A −→ A induces a map

(q1, q2) : F(A × A) −→ F(A) × F(A).

Let s′ : A −→ PA be the acyclic cofibration that is part of the path object
information for PA. We then get a diagram

F(A)
s

F(s′) �

PF(A)

(e0,e1)

F(PA)
(q1,q2)◦(F(e0),F(e1))

λ

F(A) × F(A)

which commutes as each composite is the diagonal

Δ : F(A) −→ F(A) × F(A).

The lift exists as F sends the acyclic cofibration s′ to an acyclic cofibration. It
is a weak equivalence as both F(s′) and s are weak equivalences.

We can therefore extend diagram (4.2)

F(X)
F(k)

F(α)

F(PA)
λ

PF(A)

e0∼

F(Y)
F( f )◦F(β)

F(H)

F(A),

so that λ ◦ F(H) is a lift. Note that

λ ◦ F(k) : F(X) −→ PF(A)

is a representative of [F(k)] ∈ [ΣF(X), F(A)]. Hence, the diagram above is the
first step to calculating [F( f )] 	 [F(k)].
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We now have

F(X)
F(α)

F(Y)
F(β)

e1◦λ◦F(H)=F(e1◦H)

F(Z),

F(A)

so we may take the dotted map, a representative for [F( f )]	[F(k)], to be F(w),
where we defined [w] = [ f ] • [k]. Hence, we have shown that

F([ f ] • [k]) = F([w]) = [F( f )] 	 [F(k)]. �

The above proof does not use the fact that F has an adjoint, only that it
preserves finite colimits. Hence, we have the following slightly more general
statement.

Corollary 4.5.3 Let F : C → D be a left Quillen functor between stable
model categories which commutes with finite colimits. Then LF is an exact
functor. Dually, let G : D→ C be a right Quillen functor between stable model
categories which commutes with finite limits. Then RG is an exact functor. �

4.6 Toda Brackets

Toda brackets give additional structure to a triangulated category T. We will
introduce the definition and some basic properties, then discuss examples of
how this set-up is used in the stable homotopy category.

Let

X
α−→ Y

β−→ Z and Y
β−→ Z

γ−→ ΣW

be diagrams in a triangulated category T. Assume that β ◦ α = 0 and γ ◦ β = 0.
Using (T1), α is part of some exact triangle

X
α−→ Y

i−→ Cα
j−→ ΣX.

Because β ◦ α = 0, we have a commutative diagram

X
α

Y
i

β

Cα
j
ΣX

∗ Z Z ∗,
where the two rows are triangles by axiom (T1), so (T3) gives an arrow
β̄ : Cα −→ Z with β̄ ◦ i = β.
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We now have 0 = γ ◦ β = (γ ◦ β̄) ◦ i, so using the same argument, we have a
commutative diagram where the two rows are exact triangles

Y
i

Cα

γ◦β̄

j
ΣX

−Σα
ΣY

∗ W W ∗.
By (T3), there is a τ : ΣX −→ W with τ ◦ j = γ ◦ β̄. Therefore, we arrive at the
commutative diagram

X
α

Y
i

β

Cα

β̄

j
ΣX.

τ
Z

γ

W

Definition 4.6.1 Let α : X −→ Y , β : Y −→ Z and γ : Z −→ W be morphisms
in a triangulated category T such that γ ◦ β = 0 and β ◦ α = 0. Then the Toda
bracket 〈α, β, γ〉 is defined as the set of all possible elements τ ∈ T(ΣX,W)
arising in the manner described above.

It would be wonderfully simple if we could just set 〈α, β, γ〉 to equal τ in the
previous definition, but there are choices involved in the construction, meaning
that the set in the definition can contain more than one element. We now give
an identification of those choices with sets of maps in T.

Lemma 4.6.2 Let α : X −→ Y, β : Y −→ Z and γ : Z −→ W be morphisms in
a triangulated category T such that γ ◦ β = 0 and β ◦ α = 0. Then 〈α, β, γ〉 is a
coset of

γ∗T(ΣX,Z) ⊕ Σα∗T(ΣY,W)

in T(ΣX,W).

Proof By Proposition 4.1.5, using our previous notation, we have a diagram
of exact sequences

T(ΣY,Z)

γ∗

Σα∗
T(ΣX,Z)

j∗

γ∗

T(Cα,Z)
i∗

γ∗

T(Y,Z)
α∗

γ∗

T(X,Z)

γ∗

T(ΣY,W)
Σα∗

T(ΣX,W)
j∗

T(Cα,W)
i∗

T(Y,W)
α∗

T(X,W),
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which is going to form the basis of our proof. Let β̄ and β̄′ be two lifts of β, so

i∗(β̄) = i∗(β̄′) = β.

This means that

β̄ − β̄′ ∈ ker(i∗) = Im( j∗),

that is, there is a κ ∈ T(ΣX,Z) with β̄′ = β̄ + κ ◦ j. Furthermore, for any such κ,
β̄ + κ ◦ j is a lift of β.

Now let τ′ and τ be two elements in the Toda bracket 〈α, β, γ〉, that is,

τ′ ◦ j = γ ◦ β̄ = τ ◦ j.

As this also equals γ ◦ β̄′, we have

(τ − τ′) ◦ j = γ ◦ (β̄′ − β̄) = γ ◦ κ ◦ j.

This implies that

τ′ − τ − γ ◦ κ ∈ ker( j∗) = Im(Σα∗),

so there is an ε ∈ Σα∗T(ΣY,W) such that

τ′ = τ + γ ◦ κ + ε ◦ Σα.
Conversely, every ε ∈ Σα∗T(ΣY,W) creates another element in the Toda bracket
as above. Therefore, we have shown that two elements τ and τ′ in the Toda
bracket can differ by elements in

γ∗T(ΣX,Z) ⊕ Σα∗(ΣY,W). �

Definition 4.6.3 The subgroup γ∗T(ΣX,Z) ⊕ Σα∗T(ΣY,W) of T(ΣX,W) is
called the indeterminacy of 〈α, β, γ〉.
Remark 4.6.4 In [Qui67], Quillen gives a similar construction of the Toda
bracket 〈α, β, γ〉 in the homotopy category Ho(C) of a pointed rather than stable
model category C. Let

X
α−→ Y

β−→ Z
γ−→ W

be a diagram in Ho(C) with β ◦ α = 0 and γ ◦ β = 0. Then we have a diagram

X
α

Y
i

Cα
∂
ΣX,

where the first two arrows form a cofibre sequence and ∂ is the connecting
map. Analogously, we have a fibre sequence with connecting map ∂′,

ΩW
∂′

Fγ
j

Z
γ

W.
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By our assumptions on α, β and γ, the vertical arrows in the following di-
agram exist and the Toda bracket 〈α, β, γ〉 is the coset of possible choices for
the rightmost arrow ΣX −→ W.

X
α

Y
β

i
Cα

∂
ΣX

ΩW
∂′

Fγ
j

Z
γ

W

In the case of C being stable, this recovers Definition 4.6.1.

Remark 4.6.5 We could also start our construction of elements in 〈α, β, γ〉 in
a dual way by completing γ : Z −→ W to an exact triangle

ΩW
i

Fγ
j

Z
γ

W,

which leads us to a commutative diagram

X
α

τ

Y

β̄

β
Z

γ
W.

Fγ

j

ΩW

i

This construction gives rise to a definition of 〈α, β, γ〉 which is equivalent to
Definition 4.6.1.

Toda bracket relations have been extensively studied on the ring of the stable
homotopy groups of spheres π∗(S). For

α ∈ πi(S), β ∈ π j(S) and γ ∈ πk(S),

we get 〈α, β, γ〉 ⊆ πi+ j+k+1(S). Some of the best-known relations are listed
below, but many more can be found in, for example, [Tod62] or [Rav86]. Let

η ∈ π1(S) = Z/2, ν ∈ π3(S), σ ∈ π7(S), ε ∈ π8(S) and μ ∈ π9(S).

Then

• η2 = 〈2, η, 2〉,
• 8σ = 〈ν, 8, ν〉,
• μ ∈ 〈2, 8σ, η〉, with indeterminacy generated by η2σ and ηε.
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We will show the first of the relations above. To do this, we look into the
following phenomenon.

Let M denote the mod-2 Moore spectrum, that is, the cofibre of multiplica-
tion by 2 on S. We have the following diagram

S
2−→ S incl−−→ M

pinch−−−−→ S1 = ΣS,

which is an exact triangle in the stable homotopy category. As a CW-spectrum,
M has one cell in dimension 0 and one cell in dimension 1. The map

incl : S −→ M

is the inclusion of the bottom cell into M, and the map

pinch : M −→ S1

denotes “killing” the bottom cell and thus only leaving the top cell S1. The
mod-2 Moore spectrum M has the following remarkable anomaly, which the
mod-p analogue for odd primes does not possess, in which case, p · IdM = 0.

Lemma 4.6.6 The endomorphisms of the mod-2 Moore spectrum M in degree
0 are

[M,M] = Z/4{IdM},
where

2IdM = incl ◦ η ◦ pinch � 0.

(Recall that the curly brackets behind a module denote the generators of this
module.)

Proof We calculate [M,M] by repeated application of Theorem 3.6.1 to the
exact triangle defining M. As the first map in the exact triangle S → S is
multiplication by 2, the long exact Puppe sequence breaks up into short exact
sequences

0 −→ π0(S)/2
incl∗−−−→ π0(M)

pinch∗−−−−→(2)π−1(S) −→ 0

and

0 −→ π1(S)/2
incl∗−−−→ π1(M)

pinch∗−−−−→(2)π0(S) −→ 0,

where

(2)πn(S) = {x ∈ πn(S) | 2x = 0}.
Thus, we obtain

π0(M) = Z/2{incl} and π1(M) = Z/2{incl ◦ η}.
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By Theorem 3.6.4, applying [−,M] to the exact triangle defining M gives a
long exact sequence which splits into short exact sequences as above. Hence,
we have a short exact sequence

0 −→ π1(M)/2
pinch∗−−−−→ [M,M]

incl∗−−−→(2)π0(M) −→ 0.

At first glance, this means there are two possibilities for [M,M] – it could
either be

Z/2{IdM} ⊕ Z/2{pinch ◦ η ◦ incl} or Z/4{IdM}.
If the former was the case, we would have 2IdM = 0. Applying M ∧ − to the
exact triangle

S
2−→ S incl−−→ M

pinch−−−−→ S1

yields another exact triangle

M
2IdM−−−→ M −→ M ∧ M −→ ΣM.

If 2IdM = 0, the above triangle splits, that is, M ∧ M � M ∨ ΣM by
Lemma 4.1.12. However, we have seen in Lemma 2.5.7 that this is not the
case. Therefore, we must have

2IdM = incl ◦ η ◦ pinch � 0

as claimed. �

A useful consequence is the following.

Corollary 4.6.7 Let x ∈ πn(S) be an element with 2x = 0. Then

ηx ∈ 〈2, x, 2〉.
In particular, η2 = 〈2, η, 2〉.
Proof By Lemma 4.6.6, the following diagram commutes, where x̄ is a lift
of x.

S
n 2

S
n

x

incl
ΣnM

x̄
2

pinch
S

n+1

η

S

2

ΣnM
x̄

S
n

x

incl

S �
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4.7 Muro’s Exotic Triangulated Category

We saw in Section 4.2 that every stable model category gives rise to a trian-
gulated category via its homotopy category. However, until relatively recently,
it was not known whether every triangulated category arose as the homotopy
category of a stable model category. Muro finally provided a counterexample
in [MSS07], with technical additions by Schwede and Strickland. We will give
a summary of this exotic triangulated category.

Let R be a commutative local ring with maximal idealm = (2) � 0 satisfying
m2 = 0. For example, R = Z/4 is such a ring. Let F(R) denote the category of
finitely generated R–modules. Furthermore, we are going to use the following
terminology.

Definition 4.7.1 A triangulated category T is topological if it is equivalent to
a full triangulated subcategory of the homotopy category Ho(C) of some stable
model category C.

Muro’s theorem is the following.

Theorem 4.7.2 Let R and F(R) be as before. Then F(R) admits a triangu-
lated structure such that the self-equivalence Σ : F(R) −→ F(R) is the identity
functor and

R
2−→ R

2−→ R
2−→ R

is an exact triangle. Furthermore, if T is a topological triangulated category,
then every exact functor

F(R) −→ T or T −→ F(R)

is trivial.

As a consequence, F(R) cannot be topological itself because then the iden-
tity functor would be trivial. We give an introduction to the key ingredients of
the proof.

Definition 4.7.3 A sequence of morphisms in F(R)

X
f−→ Y

g−→ Z
h−→ X

is called a candidate triangle if g ◦ f = 0, h ◦ g = 0 and f ◦ h = 0.

In particular,

X
2−→ X

2−→ X
2−→ X

is always a candidate triangle for any X ∈ F(R).
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We can also define the notion of a homotopy between morphisms of exact
triangles in a similar fashion to the notion of chain homotopies.

Definition 4.7.4 Let (φ1, φ2, φ3) and (φ′1, φ
′
2, φ
′
3) be two morphisms of candi-

date triangles in F(R) (i.e. morphisms between the respective vertices of the
candidate triangles making the obvious diagrams commute). Then a homotopy
from (φ1, φ2, φ3) to (φ′1, φ

′
2, φ
′
3) consists of three morphisms (H1,H2,H3) as

follows

X
f

φ1 φ′1

Y
g

H1 φ2 φ′2

Z
h

H2 φ3 φ′3

X

H3 φ1 φ′1

X′
f ′

Y ′
g′

Z′
h′

X′

satisfying

φ′1 − φ1 = h′ ◦ H3 + H1 ◦ f , φ′2 − φ2 = f ′ ◦ H1 + H2 ◦ g,

and φ′3 − φ3 = g′ ◦ H2 + H3 ◦ h.

Definition 4.7.5 A candidate triangle in F(R) is contractible if the identity
morphism is homotopic to the zero morphism.

We can now say what the triangulated structure on F(R) is.

Definition 4.7.6 A candidate triangle in F(R) is exact if it is isomorphic to
the direct sum of a contractible candidate triangle and a candidate triangle of
the form

X
2−→ X

2−→ X
2−→ X

for some X ∈ F(R).

Muro showed that with this choice of self-equivalence and exact triangles,
F(R) is indeed a triangulated category. The proof of this involves various re-
sults in commutative algebra, most prominently how over a ring satisfying our
assumptions, morphisms can be decomposed into direct sums of much simpler
morphisms.

The proof that F(R) is not topological depends on two different types of
objects: “exotic” objects and “hopfian” objects.

Definition 4.7.7 Let T be a triangulated category and A ∈ T. A Hopf map is
a morphism

η : ΣA −→ A with 2η = 0
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such that for any exact triangle

A
2

A
i

C
p
ΣA,

we have that 2IdC = i ◦ η ◦ p. An object that admits a Hopf map is called
hopfian.

Note that to obtain this condition for any exact triangle as above, it is enough
to have it for one.

Of course, this terminology stems from the sphere spectrum: we have the
classical Hopf map η ∈ π1(S) � Z/2. The mapping cone of multiplication
by 2 on the sphere is the mod-2 Moore spectrum M. Its identity map satisfies
2IdM = i ◦ η ◦ p (as we showed in Lemma 4.6.6), a phenomenon which is also
crucial for Section 5.7.

Proposition 4.7.8 In a topological triangulated category, every object is
hopfian.

Proof Let C be a stable model category. By Theorem 6.9.25, for every fibrant
and cofibrant A ∈ C, there exists a left Quillen functor (from sequential spectra
in simplicial sets)

L : S −→ C

such that L(S) � A.
The left derived functor

L : Ho(S) −→ Ho(C)

is exact by Theorem 4.5.2. Thus, it sends the exact triangle

S
2
S

i
M

p
S

1

to an exact triangle

A
2

A
j
L(M)

q
ΣA

with j = L(i) and q = L(p). This also means that L sends the composite

2IdM : M
p
S

1 η
S

i
M

to the composite

2IdL(M) : L(M)
q
ΣA

L(η)
A

j
L(M).

But this means that L(η) is a Hopf map for A, and A is hopfian. �

On the other hand, we have the following notion.
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Definition 4.7.9 An object E in a triangulated category T is exotic if there is
an exact triangle of the form

E
2

E
2

E
q
ΣE.

In F(R), with the triangulation described earlier, every object is exotic. The
relationship between exotic objects and hopfian objects boils down to the
following.

Proposition 4.7.10 Let T be a triangulated category, E ∈ T an exotic object
and A ∈ T hopfian. Then the morphism groups T(E, A) and T(A, E) are trivial.

Proof We only prove T(E, A) = 0, as the other direction is very similar. First,
we make the following observation. Given an exotic object E, we can compare
the triangle

E
2

E
2

E
q
ΣE

to its shifted version

E
2

E
q
ΣE

−2
ΣE.

The axiom (T3) then gives us a fill-in morphism Ψ in the following diagram.

E
2

E
2

E
q

Ψ

ΣE

E
2

E
q
ΣE

−2
ΣE

Thus, q = 2Ψ, that is, the morphism q is always divisible by 2.
Now consider a morphism f : E −→ A between an exotic element and a

Hopf element. Then (T3) gives us a fill-in map g as follows.

E

f

2
E

f

2
E

q

g

ΣE

Σ f

A
2

A
i

C
p
ΣA

This means that, using that A is hopfian,

i ◦ f = 2g = (i ◦ η ◦ p) ◦ g = i ◦ η ◦ Σ f ◦ q.

We already showed that q = 2Ψ for some Ψ and 2η = 0 by assumption, which
means that we arrive at i◦ f = 0. Hence, f factors over the cofibre of i, obtaining
a map f ′ with 2 f ′ = f as illustrated below.
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A
2

A
i

C

E

f
f ′

We can iterate this process to obtain a map f ′′ : E −→ A with 2 f ′′ = f ′, so
altogether f = 4 f ′′ for some f ′′. But as E is an exotic object, 4IdE = 0, which
means that f is trivial. �

As a consequence, there are no non-trivial objects that can be hopfian and
exotic at the same time. Therefore, F(R) does not contain any hopfian objects
and thus cannot be topological, as claimed.
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Modern Categories of Spectra

In this chapter, we introduce symmetric spectra and orthogonal spectra along
with their associated stable model structures. These versions of spectra have
various technical advantages over the sequential spectra of Chapter 2. Fur-
thermore, they are Quillen equivalent to the category of sequential spectra
(equipped with its stable model structure). Hence, one may choose between
these models according to their relative strengths.

The primary advantage of symmetric and orthogonal spectra is that these
model categories are symmetric monoidal models for the stable homotopy cat-
egory. We will examine these monoidal structures further in Chapter 6 and
show that symmetric spectra and orthogonal spectra are monoidally Quillen
equivalent. Several other models of spectra also exist, and we will give short
introductions to these later in this chapter. We end the chapter with a result
that, roughly speaking, says that any model for the stable homotopy category
will be Quillen equivalent to sequential spectra.

In each of the monoidal categories of spectra, there is some extra structure
that accounts for “symmetries”. This allows us to avoid the twist problem we
saw earlier that prevents sequential spectra from being monoidal. In the case
of symmetric spectra, this extra structure of symmetries comes from the sym-
metric groups Σn as the symmetry set of n = {1, 2, . . . , n}. This has the ad-
vantage that the extra structure compared to sequential spectra is somewhat
minimal, but it will cause the weak equivalences of symmetric spectra to be
quite different from the expected answer of the class of π∗-isomorphisms. In
the case of orthogonal spectra, the extra symmetries come from the orthogonal
groups O(n) as the symmetry set of Rn. This is a much larger group than Σn,
and one that requires us to take more care over the continuity of the actions,
but it allows orthogonal spectra to have the “correct” weak equivalences, the
π∗-isomorphisms.

166
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5.1 The Stable Homotopy Category – Revisited

In Subsection 1.1.4, we discussed key properties of the stable homotopy cat-
egory. We then spent Chapter 2 introducing sequential spectra with the long-
term aim of providing a good model for the stable homotopy category. We are
finally in a good position to start proving this list of properties, as we have
developed most of the necessary language in previous chapters.

Pre-Theorem 5.1.1 The homotopy category of sequential spectra Ho(SN)
satisfies Properties 1–12 from Subsection 1.1.4.

We will prove these properties in separate lemmas and repeat the bullet
points throughout the section. It will become clear in points 10, 11 and 12
why we are calling the above “Pre-Theorem” rather than “Theorem”.

Let us begin with properties 1 and 2. Property 1 is
(1) There is an adjunction

Σ∞ : Ho(Top∗) SHC :Ω∞.

We prove the following, where we abuse notation and do not distinguish
between the functor Σ∞ and its derived functor.

Lemma 5.1.1 There is an adjunction

Σ∞ : Ho(Top∗) Ho(SN) :Ω∞,

where Σ∞ applied to a pointed CW-complex A is the suspension spectrum of A,
and Ω∞ sends an Ω-spectrum to its level zero space.

Proof By Lemma 2.3.16, the adjunction (Σ∞,EvN0 ) is a Quillen adjunction.
Hence, we have an adjunction on homotopy categories

LΣ∞ : Ho(Top∗) Ho(SN) :REvN0 = Ω
∞

with the equality on the right given by Section 2.4. Since Ω-spectra are the
fibrant objects of the stable model structure, Ω∞ sends an Ω-spectrum X to the
space X0. �

As a consequence, if X is anΩ-spectrum and A a pointed CW-complex, then
we have natural isomorphisms

π(Σ∞A, X) � [Σ∞A, X] � [A, X0],

where the left-hand side denotes maps of spectra up to homotopy and the right-
hand side denotes maps in the homotopy category of pointed spaces. As Σ∞A
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is cofibrant and X is fibrant, a homotopy between two maps f , g : Σ∞A −→ X
is a map

H : Σ∞A ∧ [0, 1]+ −→ X.

Because (Σ∞A∧ [0, 1]+)n = Σ
nA∧ [0, 1]+, we see that a homotopy H is entirely

determined by a map of spaces H0 : A ∧ [0, 1]+ −→ X0.
The next item on our list is the following.
(2) Let A and B be pointed CW-complexes. If A has only finitely many cells,

there is a natural isomorphism

[Σ∞A,Σ∞B] � [A, B]s,

where [A, B]s is the set of stable homotopy classes of maps of spaces from
Definition 1.1.16.

Lemma 5.1.2 Let A be a pointed CW-complex with finitely many cells and B
a pointed CW-complex. Then there is a natural isomorphism

[Σ∞A,Σ∞B] � [A, B]s = colimn[ΣnA,ΣnB].

Proof We have that

[Σ∞A,Σ∞B] = [Σ∞A,R∞(Σ∞B)],

where R∞ is the fibrant replacement functor constructed in Section 2.4. By
Lemma 5.1.1,

[Σ∞A,R∞(Σ∞B)] = [A, (R∞(Σ∞B))0] = [A, hocolimk(ΩkΣkB)].

Because A is finite, we have

[A, hocolimk(ΩkΣkB)] = colimk[A,ΩkΣkB] = colimk[ΣkA,ΣkB]. �

Lemma 5.1.2 can be thought of as saying that the Spanier–Whitehead cate-
gory SW is the full subcategory of the stable homotopy category SHC whose
object class consists of the suspension spectra on finite CW-complexes. We
can extend this result to the full subcategory of ŜW on finite CW-complexes
as follows.

Lemma 5.1.3 For finite CW-complexes A and B and non-negative integers d
and e, there is a natural isomorphism

[FNd A,FNe B] � {(A,−d), (B,−e)},
where the right hand side denotes morphisms in ŜW.
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Proof We suspend d + e times so that we can use Lemma 5.1.2 to simplify
the proof.

[FNd A,FNe B] � [Σ∞ΣeA,Σ∞ΣdB]
� colima[Σa+eA,Σa+dB]
� colima[Σa−dA,Σa−eB]
= {(A,−d), (B,−e)} �

We have to restrict the previous statements to finite complexes, as
Example 1.2.7 and the isomorphism below show that ŜW can take incorrect
values on infinite complexes

[
Σ∞

∨
i�0 S i,Σ∞S 0] � ∏

i�0
[
Σ∞S i,Σ∞S 0]

�
∏

i�0

{
(S i, 0), (S 0, 0)

}

�

{(∨
i�0 S i, 0

)
, (S 0, 0)

}
.

Theorem 2.3.14 showed that

Σ = (−) ∧ S 1 : Ho(SN) −→ Ho(SN)

is an equivalence of categories, which shows Property 6:
(6) The functor

(−) ∧ S 1 : SHC −→ SHC

is an equivalence of categories.
As a consequence, SN is a stable model category, and thus Ho(SN) is additive

(see Proposition 3.2.9) and has arbitrary small products and coproducts. By
Lemma 4.4.4, finite products and coproducts agree. This gives us Properties 3
and 4:

(3) The set of maps in SHC can be equipped with the structure of graded
abelian groups and composition is bilinear. We will use [−,−]∗ for the graded
set of maps.

(4) The stable homotopy category SHC has arbitrary (small) products and
coproducts. Finite products and coproducts coincide.

In Example 2.3.2, we defined X∧A for a sequential spectrum X and a pointed
CW-complex A via

(X ∧ A)n = Xn ∧ A.

We also defined F(A,Y) for a pointed CW-complex A and a spectrum Y as

F(A,Y)n = Top∗(A,Yn).

This gives us the first part of Property 5.
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(5) For a pointed CW-complex A and X,Y ∈ SHC, there are objects X ∧ A
and F(A,Y) in SHC such that

[X ∧ A,Y] � [X, F(A,Y)],

and for any pointed CW-complex B, there is an isomorphism in SHC

(Σ∞B) ∧ A � Σ∞(B ∧ A).

Lemma 5.1.4 Let X and Y be sequential spectra and A a pointed CW-complex.
In Ho(SN), we have a natural isomorphism

[X ∧ A,Y] � [X, F(A,Y)].

Proof We need to show that

− ∧ A : SN −→ SN

is a left Quillen functor. Since (FNd B)∧ A � FNd (B∧ A) and FNd is a left Quillen
functor, it follows that − ∧ A sends the generating q-cofibrations of sequential
spectra to q-cofibrations. Hence, − ∧ A preserves q-cofibrations of sequential
spectra.

Smashing with a pointed CW-complex preserves π∗-isomorphisms of spec-
tra by Proposition 2.2.14. These two properties together imply that − ∧ A pre-
serves cofibrations and acyclic cofibrations. �

The second part of Property 5 claims that for A and B pointed CW-complexes,

(Σ∞B) ∧ A � Σ∞(B ∧ A).

This follows from

(Σ∞B ∧ A)n = Σ
nB ∧ A � Σn(B ∧ A).

Properties 7, 8 and 9 are concerned with the relation between sequential
spectra and cohomology theories.

(7) Given a reduced cohomology theory Ẽ∗, there is an object E ∈ SHC

such that

Ẽ∗(A) = [Σ∞A, E]∗

for any pointed CW-complex A. Moreover, the object E is unique up to isomor-
phism. We say that E represents Ẽ∗.

(8) Every E ∈ SHC defines a reduced cohomology theory on pointed CW-
complexes by

A �→ [Σ∞A, E]∗ = Ẽ∗(A).
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(9) A map E1 −→ E2 in SHC induces a map of cohomology theories

Ẽ∗1(X) −→ Ẽ∗2(X).

The next proposition implies Property 7. Before we state the result, please
note the following about notation. In Subsection 1.1.3, we denoted a cohomol-
ogy theory of spaces by E∗ and its reduced version by Ẽ∗. In the context of
(co)homology theories of spectra, we will only consider reduced versions and
therefore drop the tilde from the notation.

Proposition 5.1.5 Let E be a spectrum. Then the functor

E∗ = [−, E]−∗ : Ho(SN) −→ Ab∗

is a cohomology theory on spectra, that is,

• E∗ sends an exact triangle X −→ Y −→ Z −→ ΣX in SHC to a long exact
sequence

· · · −→ En−1(X) −→ En(Z) −→ En(Y) −→ En(X) −→ En+1(Z) −→ · · ·,
• for a set of spectra {Xα}α, the maps iα : Xα −→ ∨

α Xα induce isomorphisms
∏

α

(iα)∗ : E∗(
∨

α

Xα) −→
∏

α

E∗(Xα) ,

• for any spectrum X, there is a natural isomorphism En+1(ΣX) � En(X).

If X = Σ∞A is a suspension spectrum, then the E∗–cohomology of X is the
E∗–cohomology of A as defined in Proposition 1.1.25.

Proof Proposition 4.1.5 tells us that in a triangulated category, an exact trian-
gle X −→ Y −→ Z −→ ΣX gives us exact sequences

[Σn+1X, E]→ [ΣnZ, E]→ [ΣnY, E]→ [ΣnX, E]

for every E and n ∈ Z. This proves the first point. The second point is a con-
sequence of the fact that SN is a model category. The third point follows from
the first point applied to the exact triangle

X −→ ∗ −→ ΣX −→ ΣX.

The final claim is that for a CW-complex A, En(Σ∞A) = [A, En]. We have

En(Σ∞A) = [Σ∞A, E]−n = [Σ∞A,ΣnE] � [FNn Σ
nA,ΣnE] � [FNn A, E] � [A, En].

�
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The Brown Representability Theorem (Theorem 1.1.23 and Corollary 1.1.24)
tells us that for a pointed CW-complex A and a cohomology theory Ẽ∗, there
is a spectrum E with

Ẽn(A) = [A, En].

Proposition 1.1.25 and Corollary 1.1.26 tell us that the representing sequential
spectrum E is unique up to isomorphism in Ho(SN), and that a morphism of
spectra induces a map of cohomology theories. These are Properties 8 and 9.
We summarise these results in the following.

Corollary 5.1.6 The stable homotopy category SHC is equivalent to the cat-
egory of cohomology theories on spectra. �

Properties 10 and 11 discuss monoidal properties of SHC.
(10) There is a monoidal product ∧L on SHC with

Σ∞A ∧L Σ∞B � Σ∞(A ∧ B)

for all pointed CW-complexes A and B.
(11) There is an internal function object RHom(−,−) on SHC so that for

X,Y,Z ∈ SHC

[X ∧L Y,Z] � [X,RHom(Y,Z)].

Unfortunately, we cannot obtain those two properties from the model struc-
ture on sequential spectra. In order to obtain Properties 10 and 11 from a model
category level, we will need the categories of spectra which we will define later
in this chapter. There is a construction by Adams in [Ada74] of a monoidal
product on SHC, but it is not very practical, to say the least. For now, we
will assume that SHC (not SN itself!) has a decent monoidal product which in
particular satisfies

(E ∧L Σ∞A)k = Ek ∧ A.

This allows us to consider Property 12. We will encounter categories of spectra
inducing Properties 10 and 11 later in this chapter and prove these properties
in Chapter 6, see Lemma 6.3.21 and Theorem 6.4.8.

(12) Every E ∈ SHC defines a reduced homology theory via

En(X) = πn(E ∧L X).

More precisely, we get the following.
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Proposition 5.1.7 Let E be a spectrum. Then the functor

E∗ = π∗(E ∧L −) = [S, E ∧L −]∗ : Ho(SN) −→ Ab∗

is a homology theory on spectra, that is,

• an exact triangle X −→ Y −→ Z −→ ΣX gives a long exact sequence

· · · −→ En+1(Z) −→ En(X) −→ En(Y) −→ En(Z) −→ En−1(X) −→ · · · ,

• for a set of spectra {Xα}α, the maps iα : Xα −→ ∨
α Xα induce isomorphisms

⊕

α

(iα)∗ :
⊕

α

E∗(Xα) −→ E∗(
∨

α

Xα),

• for any spectrum X, there is a natural isomorphism En+1(ΣX) � En(X).

If X = Σ∞A is a suspension spectrum, then the homology of X is the homology
of A as in

En(X) = En(A) = colimk πn+k(En ∧ A).

Proof As in the proof of Proposition 5.1.5, the first point follows from having
the long exact Puppe sequence

· · · −→ πn+1(E ∧L Z)→ πn(E ∧L X)→ πn(E ∧L Y)→ πn(E ∧L Z)→ · · ·,

which is a consequence of E ∧L − being a triangulated functor. The second
point holds as π∗ sends coproducts to direct sums, and the third point follows
from applying the first point to the exact triangle

X −→ ∗ −→ ΣX −→ ΣX.

As for the last statement, Property 10 implies

En(Σ∞A) = πn(E∧Σ∞A) = colimk πn+k((E∧Σ∞A)k) = colimk πn+k(Ek∧A). �

Remark 5.1.8 The analogue of Corollary 5.1.6 for homology theories is
false. The problem is the existence of phantom maps: maps of pointed CW-
complexes f : X −→ Y which are trivial on all (reduced) homology functors,
but are not homotopic to the trivial map. Phantom maps are discussed in more
detail in, for example, [HPS97] and [CS98].
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5.2 Orthogonal Spectra

We define the category of orthogonal spectra and equip it with a stable model
structure. We show that this model category is Quillen equivalent to the sta-
ble model structure on sequential spectra and, hence, is a model for the stable
homotopy category. We leave the monoidal structure of orthogonal spectra for
Chapter 6. The standard reference for orthogonal spectra is [MMSS01]. We
take a different approach to that reference, using the results of Chapter 2 to cre-
ate the stable model structure. In particular, there is a levelwise model structure
on orthogonal spectra, but we will make little use of it. As well as these model
structures, we will introduce h-cofibrations of spectra. These will be needed
for the monoidal structures of Chapter 6.

Our starting place is to recall the notion of group actions on topological
spaces. In the following, G will be a compact topological group, such as O(n)
or a finite group.

Definition 5.2.1 A pointed G-space X is a pointed topological space X with
a continuous map G × X → X, (g, x) �→ gx such that

(gh)x = g(hx), gx0 = x0 and ex = x

for all g, h ∈ G and x ∈ X.
A map of pointed G-spaces f : X −→ Y is a continuous map of pointed

spaces such that f (gx) = g f (x) for all x ∈ X and g ∈ G. We often describe
such a map as a G-equivariant map.

Since the basepoint of the G-space X is G–fixed, the elements g ∈ G give
pointed maps g : X → X.

The natural action of O(n) on Rn induces an action on S n (the one-point
compactification of Rn) which we call the canonical action.

Definition 5.2.2 An orthogonal spectrum X is a sequence of pointed topo-
logical spaces Xn, along with the following data and conditions for n ∈ N.

1. The space Xn has a continuous action of O(n) which fixes the basepoint.
2. There are maps of pointed spaces σn : S 1 ∧ Xn → Xn+1.

3. The composite map σk
n given by

S k ∧ Xn
Id∧σn

S k−1 ∧ Xn+1
Id∧σn+1 · · · σn+k−1

Xn+k

is (O(k) × O(n))-equivariant. Here, we treat O(k) × O(n) as a subgroup of
O(k + n), where O(k) acts on the first k coordinates and O(n) the last n
coordinates.
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A morphism of orthogonal spectra f : X → Y is a collection of O(n)-
equivariant maps fn : Xn → Yn such that the square

S 1 ∧ Xn
Id∧ fn

σX
n

S 1 ∧ Yn

σY
n

Xn+1
fn+1

Yn+1

commutes for each n ∈ N. We denote the category of orthogonal spectra as SO.

Limits and colimits of orthogonal spectra are defined levelwise: the O(n)-
action on level n of the (co)limit is induced by the O(n)-action on the compo-
nents and the universal property of (co)limits. The structure maps for a colimit
arise from the structure maps of the components and the fact that colimits of
pointed spaces commute with smash products. The structure maps for a limit
arise similarly. It follows that all small limits and colimits exist in SO.

Examples 5.2.3 We can now give a series of simple examples of orthogonal
spectra.

The trivial spectrum We define the spectrum ∗ to be the spectrum with level
n given by a point. This object is the zero object of orthogonal spectra, as it is
both initial and terminal.

The sphere spectrum We define the sphere spectrum S to be the orthogonal
spectrum where level n is given by S n with the canonical action of O(n). The
structure map

S 1 ∧ S n −→ S n+1

is the usual isomorphism, and we see that the maps σk
n are O(k) × O(n)-

equivariant.

Suspension spectra Generalising the above somewhat, we can make Σ∞A, the
suspension spectrum of the pointed space A. Level n is given by S n ∧ A, with
O(n) acting as α[s, a] = [αs, a] for α ∈ O(n), a ∈ A and s ∈ S n. The structure
maps are the isomorphisms as for the sphere spectrum

S 1 ∧ S n ∧ A −→ S n+1 ∧ A,

and the composite maps σk
n are O(k) × O(n)-equivariant as before.
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Shifted suspension spectra The final generalisation is given by the shifted
suspension functors. For A a pointed space and d ∈ N, we define a spectrum
FO

d A by

(FO
d A)n =

{
O(n)+ ∧O(n−d) S n−d ∧ A n � d

∗ n < d,

where O(n − d) is the subgroup which acts on the first n − d coordinates. The
structure map is either trivial or the composite of the isomorphism

S 1 ∧ O(n)+ ∧O(n−d)

(
S n−d ∧ A

)
−→ O(n)+ ∧O(n−d)

(
S 1+n−d ∧ A

)

with O(n)→ O(1+ n) (and O(n− d)→ O(1+ n− d)). Checking that the maps
σk

n are O(k) × O(n)-equivariant is an exercise in tracking the partition of k + n
into [k|n − d|d] through the maps.

Another source of examples comes from an adjunction with sequential spec-
tra. The left adjoint is difficult to define precisely at this stage, so we use the
following lemma to see that it exists and leave the exact construction to Propo-
sition 6.3.22.

Lemma 5.2.4 There is an adjunction

P
O
N

: SN SO :UO
N
,

where the functor UO
N

preserves all colimits. We call UO
N

the forgetful functor
and PO

N
the prolongation functor.

Proof Let X be an orthogonal spectrum. Then we can define a sequential
spectrum UO

N
X by forgetting structure as follows. Level n of UO

N
X is Xn (for-

getting the O(n)-action) and the structure maps are those of X. As limits and
colimits are constructed levelwise, it follows that UO

N
preserves them. It there-

fore follows that the left adjoint PO
N

exists. �

As well as forgetting to sequential spectra, we can also forget from orthog-
onal spectra to pointed spaces.

Definition 5.2.5 For each d ∈ N, there is an adjunction

FO
d : Top∗ SO :EvOd

between orthogonal spectra and pointed topological spaces. The left adjoint FO
d

is the shifted suspension functor, and the right adjoint EvO
d sends an orthogonal

spectrum X to the space Xd. We refer to EvO
d as an evaluation functor. When

d = 0, we write Σ∞ for FO
0 .
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As with sequential spectra, we keep Ω∞ for the derived functor of EvN0 , see
Section 2.4.

Lemma 5.2.6 The forgetful functors commute with the evaluation functors,
and the shifted suspension functors commute with the prolongation functors,
that is,

EvNn U
O
N
= EvOn FO

n � P
O
N

FNn .

Proof Let X be an orthogonal spectrum. Then level n of UO
N

X is precisely Xn.
Hence, we have

EvNn U
O
N
= EvO

n .

The functor PO
N

FNn is left adjoint to EvNn U
O
N

, and FO
n is left adjoint to EvO

n . As
the two right adjoints are equal, we must have a natural isomorphism

FO
n � P

O
N

FNn

between the corresponding left adjoints. �

Given a spectrum X and a pointed space A, we can make a spectrum X ∧ A,
which at level n is Xn ∧ A. The group O(n) acts only on the Xn term and the
structure map is

σn ∧ IdA : S 1 ∧ Xn ∧ A −→ Xn+1 ∧ A.

We call this the tensor of orthogonal spectra with spaces. Similarly, we have
a cotensor and can make a spectrum Top∗(A, X), which at level n is the space
of maps Top∗(A, Xn). Again, the group O(n) acts only on the Xn term, and the
structure map is the composite

S 1 ∧ Top∗(A, Xn)→ Top∗(A, S
1 ∧ Xn)→ Top∗(A, Xn+1).

The levelwise adjunction between smash products and function spectra gives
an adjunction

SO(X ∧ A,Y) � SO(X,Top∗(A,Y)).

We also have that UO
N

(Top∗(A, X)) = Top∗(A,UO
N

X), hence, we have an iso-
morphism PO

N
(Z ∧ A) � PO

N
Z ∧ A for any sequential spectrum Z.

Using these constructions we can define h-cofibrations of orthogonal spec-
tra. These are similar to h-cofibrations of pointed spaces, see Section A.5 for a
discussion of h-cofibrations in general model categories.

Definition 5.2.7 A map i : A −→ X of orthogonal spectra is a h-cofibration if
there is a map to the mapping cylinder of i

r : X ∧ [0, 1]+ −→ Mi

making the following diagram commute.
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A
i0

i

A ∧ [0, 1]+

i∧Id

X

i0

Mi

X ∧ [0, 1]+

r

Lemma 5.2.8 Each level of a h-cofibration of orthogonal spectra is a h-
cofibration of pointed spaces.

The tensor −∧ A with a pointed space A preserves h-cofibrations of orthog-
onal spectra.

Proof The tensor with spaces and mapping cylinders is constructed levelwise.
�

The converse statement is false: a levelwise h-cofibration of sequential spec-
tra is not necessarily a h-cofibration of sequential spectra. The levelwise retrac-
tions of Cyl(X) onto Mi of a levelwise h-cofibration do not have to give a map
of spectra.

Recall from Section A.7 the notion of homotopy cofibres of maps of pointed
spaces: the homotopy cofibre of f : A→ X is the pushout of

A ∧ [0, 1]
i0←− A

f−→ X,

where [0, 1] has basepoint 1. Recall further, that if f is a h-cofibration of
pointed spaces, then the natural quotient map C f → X/A to the cokernel of
f is a homotopy equivalence by Lemma A.5.6.

We can define the homotopy cofibre of a map g of orthogonal spectra anal-
ogously, so level n is the homotopy cofibre of gn. The proof of Lemma A.5.6
extends to orthogonal spectra, giving the next result.

Lemma 5.2.9 Let i : A −→ X be a h-cofibration of orthogonal spectra. Then
the pushout X/A of i over a point is naturally homotopy equivalent to Ci, the
homotopy cofibre of i. �

Now we introduce the stable model structure on orthogonal spectra. The
weak equivalences are our starting point. We choose the π∗-isomorphisms as
we did for sequential spectra.

Definition 5.2.10 A map f : X → Y of orthogonal spectra is said to be a
weak equivalence of the stable model structure if UO

N
f is a π∗-isomorphism of
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sequential spectra. That is, a map f : X → Y is a weak equivalence if for each
n ∈ Z, the map induced by f

colimk πn+k(Xk) −→ colimk πn+k(Yk)

is an isomorphism.

It follows from the definition that (small) coproducts or products of π∗-
isomorphisms are π∗-isomorphisms. We also see that UO

N
preserves and detects

weak equivalences.

Lemma 5.2.11 We have the following results on π∗-isomorphisms.

1. Let f : X → Y be a map of orthogonal spectra, and let C f be the homotopy
cofibre of f . Then f is a π∗-isomorphism if and only if C f is π∗-isomorphic
to ∗.

2. If f is a π∗-isomorphism and a levelwise h-cofibration, then the pushout
of f along another map of spectra is a π∗-isomorphism and a levelwise
h-cofibration.

3. If (Xi)i∈N is a collection of orthogonal spectra and f i : Xi → Xi+1 a col-
lection of levelwise h-cofibrations and π∗-isomorphisms, then the map from
the initial object into the colimit

X0 −→ colimi Xi

is a π∗-isomorphism and a levelwise h-cofibration.

Proof The first statement follows from the long exact sequence of homotopy
groups of sequential spectra that we have already seen.

For the second, Corollary A.5.4 states that h-cofibrations are preserved by
pushouts, so we must show that the map g in the pushout square below is a
π∗-isomorphism.

X

f

P

g

Y Q.

We know that f and g are levelwise h-cofibrations, so the homotopy cofibres
of f and g are homotopy equivalent to the cokernels Y/X and Q/P by Lemma
5.2.9. The induced map Y/X → P/Q is a isomorphism since we have a pushout
square. As f is a π∗-isomorphism, Y/X is π∗-isomorphic to a point, hence, so
is P/Q. Thus, by the first part, g is a π∗-isomorphism as claimed.
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For the third statement, we use Corollary A.7.10 and the Hurewicz model
structure on spaces to see that the homotopy colimit of the system

· · · → Xi f i

−→ Xi+1 f i+1

−−−→ Xi+2 → · · ·
is levelwise homotopy equivalent to the colimit of the sequence f i. Hence, the
natural map

colimi πn+k(Xi
k) −→ πn+k(colimi Xi

k)

is an isomorphism for all k and n. The result then follows by the definition of
π∗-isomorphisms. �

We introduce orthogonal spectra versions of the maps λn that we used to
make the stable model structure on sequential spectra, see Section 2.2. We
abuse notation and use λn and kn for both the sequential and orthogonal spec-
tra versions. We find this acceptable as they agree under prolongation, be-
cause prolongation commutes with smash products of spaces and colimits and,
hence, commutes with the mapping cone construction.

Definition 5.2.12 Let λn : FO
n+1 S 1 → FO

n S 0 be the adjoint of the map

S 1 → EvO
n+1 FO

n S 0 = O(n + 1)+ ∧O(1) S 1,

which is t �→ [Id, t].

As previously, this map is not a q-cofibration. In fact, it is not even a lev-
elwise cofibration of pointed spaces. We need to replace the λn by a different
collection of maps before we can add them to the generating acyclic cofibra-
tions.

Definition 5.2.13 Define Mλn to be the mapping cylinder of λn, that is, the
pushout of

FO
n+1 S 1 λn

i1

FO
n S 0

sn

(FO
n+1 S 1) ∧ [0, 1]+

tn
Mλn,

where i1 is the inclusion into the one end of the interval. We then have a map

kn = tn ◦ i0 : FO
n+1 S 1 → Mλn

coming from the inclusion into the zero end of the interval. We also have a
deformation retraction rn : Mλn → FO

n S 0 induced by the collapse map

(FO
n+1 S 1) ∧ [0, 1]+ → FO

n+1 S 1.

The composition rn ◦ kn is the original map λn.
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It remains to be shown that the maps λn and kn are indeed π∗-isomorphisms.

Lemma 5.2.14 For each n ∈ N, the maps

λn : FO
n+1 S 1 → FO

n S 0 and kn : FO
n+1 S 1 → Mλn

are π∗-isomorphisms. Furthermore, the maps kn are h-cofibrations of orthogo-
nal spectra and levelwise q-cofibrations of pointed spaces.

Proof By our earlier work on π∗-isomorphisms of sequential spectra, we see
that it suffices to show that Σnλn is a π∗-isomorphism. When a � n + 1, level a
of Σnλn is given by

S n ∧ O(a)+ ∧O(a−n−1) S 1 ∧ S a−n−1 �−→ O(a)+ ∧O(a−n−1)

(
S n+1 ∧ S a−n−1

)
�−→ O(a)+ ∧O(a−n−1) S a

−→ O(a)+ ∧O(a−n) S a

induced by the map O(a − n − 1) → O(a − n). We want to replace the domain
and codomain with simpler spaces. The key is that we can regard S a as space
with the canonical action of O(a) instead of an action of the smaller groups.
We define a pair of isomorphisms

O(a)/O(a − n − 1)+ ∧ S a O(a)+ ∧O(a−n−1) S a

O(a)/O(a − n)+ ∧ S a O(a)+ ∧O(a−n) S a.

We describe the first map, the second is similar. The domain is the smash prod-
uct of the space of cosets of O(a − n − 1) (with a disjoint basepoint) and S a,
and O(a) acts diagonally on the smash product. The codomain has O(a) acting
on the first factor only. The map is given by

[σO(a − n − 1), t] �→ [σ,σ−1t],

and one can check this is well-defined with respect to the choice of coset repre-
sentative, O(a)-equivariant, continuous, and an isomorphism between compact
and Hausdorff spaces. The above isomorphisms, the map Σnλn (at level a) and

λ′n,a : O(a)/O(a − n − 1)+ ∧ S a → O(a)/O(a − n)+ ∧ S a
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fit into a commutative square

S n ∧ O(a)+ ∧O(a−n−1) S 1 ∧ S a−n−1

�

O(a)+ ∧O(a−n−1) S a O(a)/O(a − n − 1)+ ∧ S a
�

λ′n,a

O(a)+ ∧O(a−n) S a O(a)/O(a − n)+ ∧ S a.
�

Thus, we now focus on the maps λ′n,a for varying a and fixed n.
We argue that λ′n,a is a (2a − n − 1)-equivalence. To see this, note that we

have a pair of fibre bundles

O(a − 1) −→ O(a)→ S a−1 O(a − n) −→ O(n)→ O(a)/O(a − n).

Looking at the long exact sequence of homotopy groups of the first fibre se-
quence, it follows that

O(a − 1)+ −→ O(a)+

induces an isomorphism on πq for q < a − 2 and a surjection on πq when
q = a − 2. The long exact sequence of homotopy groups of the second fibre
sequence shows that the space O(a)/O(a − n)+ is (a − n − 1)-connected. It
follows that the map λ′n,a is a (2a − n − 1)-equivalence, that is, πm+1λ

′
n,a is an

isomorphism for m + a < 2a − n − 1 and a surjection for m + a = 2a − n − 1.
Now consider πm+aλ

′
n,a for some m ∈ Z and take colimits over a. As a grows,

the right-hand side of this inequality increases more quickly than the left-hand
side, thus λ′n,a induces an isomorphism of stable homotopy groups. It follows
that Σnλn is a π∗-isomorphism as claimed.

To prove that kn is a π∗-isomorphism, we use Lemma 5.2.11 to see that the
map tn of the definition is a π∗-isomorphism and hence, so is kn = tn ◦ i0.

The statements about cofibrations follow, as all the constructions are per-
formed levelwise, and the spectrum FO

n+1 S 1 is levelwise cofibrant as a pointed
space. �

We can now give the generating sets for the stable model structure on
orthogonal spectra.

Definition 5.2.15 We say that a map f : X → Y of orthogonal spectra is a
stable fibration if UO

N
f is a stable fibration of sequential spectra.
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We then define sets of maps of orthogonal spectra as below, where � denotes
the pushout product.

IOstable = IOlevel = {FO
d (S a−1

+ −→ Da
+) | a, d ∈ N)},

JOlevel = {FO
d (Da

+ −→ (Da × [0, 1])+) | a, d ∈ N)},
JOstable = JOlevel ∪ {kn � (S a−1

+ → Da
+) | a, n ∈ N}.

In particular, we see that the domains of each set of maps are levelwise cofi-
brant as pointed spaces and each generating cofibration is a levelwise
q-cofibration of pointed spaces.

Note that IOstable is precisely the prolongation functor PO
N

applied to the gen-
erating cofibrations for the stable (or levelwise) model structure on sequential
spectra INlevel by Lemma 5.2.6. The analogous statement is true for JOlevel and
JOstable when compared to JNlevel and JNstable.

Theorem 5.2.16 The sets IOstable and JOstable and the class of π∗-isomorphisms
form a cofibrantly generated model structure on SO called the stable model
structure. The fibrations are called the stable fibrations. The cofibrations are
called the q-cofibrations, and every q-cofibration is a h-cofibration of spectra,
as well as a levelwise q-cofibration of pointed spaces.

Proof We first prove that a q-cofibration is a h-cofibration. Since FO
d

commutes with tensoring with pointed spaces and colimits, it follows that
the generating cofibrations of the stable model structure are h-cofibrations of
orthogonal spectra.

An arbitrary q-cofibration is a retract of a sequential colimit of pushouts
of coproducts of the generating q-cofibrations. These constructions preserve
h-cofibrations by Corollary A.5.4, so every q-cofibration is a h-cofibration.
A similar argument shows that a q-cofibration is a levelwise q-cofibration of
pointed spaces.

To prove the stable model structure exists, we apply the lifting lemma,
Lemma A.6.12 to the adjunction

P
O
N

: SN SO :UO
N
.

We must show that the sets IOstable and JOstable admit the small object argument,
but this holds as UO

N
commutes with all colimits. We also note that the previ-

ously defined

kn : FO
n+1 S 1 −→ Mλn

is in fact equal to

P
O
N

kn : PO
N

FNn+1 S 1 −→ PO
N

Mλn,

where the second kn and λn are maps of sequential spectra.
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We must also show that any element of JOstable-cell is a π∗-isomorphism. Each
map in JOlevel is a levelwise homotopy equivalence and hence, a
π∗-isomorphism. The other maps in JOstable are of the form kn�i for i a generating
cofibration of spaces. We have seen that the maps kn are π∗-isomorphisms and
levelwise q-cofibrations. It follows that maps of the form kn � i are levelwise
q-cofibrations.

A q-cofibration of topological spaces is a h-cofibration, therefore, a
levelwise q-cofibration is also a levelwise h-cofibration. This means we can ap-
ply Lemma 5.2.11, which shows that the maps of the form kn � i are
π∗-isomorphisms as well as levelwise h-cofibrations. Hence, we know that each
map in JOstable is a π∗-isomorphism and a levelwise h-cofibration.

Such maps are preserved by pushouts, coproducts and countable colim-
its by Lemma 5.2.11, so it follows that the elements of JOstable-cell are π∗-
isomorphisms. We can therefore apply the lifting lemma, Lemma A.6.12 to
obtain the final statement. �

Our characterisation of stable fibrations of sequential spectra lifts to orthog-
onal spectra.

Corollary 5.2.17 A map of orthogonal spectra f : X → Y is a stable fibration
if and only if f is a levelwise fibration of spaces and for each n ∈ N, the map

Xn −→ Yn ×
ΩYn+1

ΩXn+1

induced by σ̃n and f is a weak homotopy equivalence.
The class of stably fibrant orthogonal spectra is exactly the class of Ω-

spectra, namely, those orthogonal spectra X whose adjoint structure maps

Xn → ΩXn+1

are weak homotopy equivalences. �

It remains to be shown that this model category is stable and Quillen equiv-
alent to the stable model structure on SN. The first statement can be shown
using the same approach as for sequential spectra, but it follows from the
second.

Theorem 5.2.18 The category of orthogonal spectra equipped with the stable
model structure is Quillen equivalent to the stable model structure on sequen-
tial spectra. More precisely, the adjunction

P
O
N

: SN SO :UO
N



5.2 Orthogonal Spectra 185

is a Quillen equivalence. Hence, SO is a stable model category, and the derived
functors of PO

N
and UO

N
induce an equivalence of categories

Ho(SO) � Ho(SN) = SHC.

Proof The adjunction is a Quillen adjunction, as the fibrations and weak
equivalences are defined by UO

N
. Indeed, UO

N
preserves and detects all weak

equivalences, so it suffices to check that for any cofibrant sequential spectrum
X, the unit of the adjunction X → UO

N
P
O
N

X is a π∗-isomorphism.
We claim that the unit of the adjunction is a π∗-isomorphism for spectra of

the form FNn S 0.
Assuming this claim, the unit of the adjunction will be a π∗-isomorphism

on spectra of the form FNn A for a pointed CW-complex A, as − ∧ A preserves
π∗-isomorphisms and commutes with UO

N
and PO

N
. Using Lemma 2.2.13, it

follows that X → UO
N
P
O
N

X is a π∗-isomorphism for any spectrum X that is
a sequential colimit of pushouts of coproducts of the generating cofibrations.
Since a cofibrant spectrum is a retract of a such a spectrum, the result will
follow once we have proven the claim.

By Lemma 2.2.7, a map is a π∗-isomorphism if and only if its suspension
is. So it suffices to consider X = FNn S n for n ∈ N. The map FNn S n → FN0 S 0

is the composite of suspensions of maps of the form λn and hence, is a π∗-
isomorphism. Similarly, the prolongation of such a map is a π∗-isomorphism
by Ken Brown’s Lemma, see Lemma A.4.4. Now consider the commutative
square

FNn S n

�

U
O
N
P
O
N

FNn S n

�

FN0 S 0
U

O
N
P
O
N

FN0 S 0.

The bottom map is the identity map of the sphere spectrum, hence, a stable
equivalence, and so the result follows.

This implies that Ho(SO) is equivalent to the stable homotopy category.
Since PO

N
and its derived functor commute with the suspension functor as this

is smashing with a pointed CW-complex, it follows that Ho(SO) is stable. �

A formally identical proof to Proposition 2.1.6 shows that there is a level-
wise model structure on orthogonal spectra with weak equivalences and
fibrations given by the levelwise weak equivalences and fibrations of pointed
spaces. The cofibrations of the levelwise model structure are the q-cofibrations.
This model structure is cofibrantly generated by the sets IOlevel and JOlevel.



186 Modern Categories of Spectra

We denote this model structure by SOl and use [−,−]l for maps in the cor-
responding homotopy category. Since these generating sets are subsets of the
generating sets for the stable model structure, we have the analogue of
Lemma 2.3.15.

Lemma 5.2.19 The identity functor from the levelwise structure on orthogo-
nal spectra to the stable model structure is a left Quillen functor

Id : SOl SO : Id.

If E is an Ω-spectrum, then

[X, E] � [X, E]l. �

Inspecting the generating sets of the stable model structure gives the ana-
logue of Lemma 2.3.16.

Lemma 5.2.20 For d ∈ N, the shifted suspension spectrum functor FO
d and

the evaluation functor EvOd form a Quillen adjunction

FO
d : Top∗ SO :EvO

d .

In particular, there is a Quillen adjunction

Σ∞ : Top∗ SO :EvO0 . �

5.3 Symmetric Spectra

We consider symmetric spectra on pointed topological spaces, with our ac-
count based on a mixture of [HSS00] (which uses simplicial sets in place of
topological spaces) and [MMSS01]. We aim to give a short and direct account,
showing that we can put a stable model structure on symmetric spectra that is
Quillen equivalent to the sequential spectra of Chapter 2 and hence, is a model
for the stable homotopy category. This requires substantially more effort than
for orthogonal spectra, primarily as the weak equivalences for this stable model
structure are not the π∗-isomorphisms.

The definition of symmetric spectra is particularly short and relatively
simple.

Definition 5.3.1 A symmetric spectrum X is a sequence of pointed topologi-
cal spaces Xn along with the following data and conditions for n ∈ N.
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1. Xn has a continuous action of the symmetric group Σn which fixes the base-
point.

2. There are maps of pointed spaces σn : S 1 ∧ Xn → Xn+1.

3. The composite map σk
n given by

S k ∧ Xn
Id∧σn

S k−1 ∧ Xn+1
Id∧σn+1 · · · σn+k−1

Xn+k

is compatible with the Σk × Σn-actions on domain and target. Here, we treat
Σk × Σn as a subgroup of Σk+n, where Σk permutes the first k letters and Σn

the last n letters.

A morphism of symmetric spectra f : X → Y is a collection of Σn-equivariant
maps fn : Xn → Yn (so fn(αx) = α fn(x) for each x ∈ X and α ∈ Σn) such that
the square

S 1 ∧ Xn
Id∧ fn

σX
n

S 1 ∧ Yn

σY
n

Xn+1
fn+1

Yn+1

commutes for each n ∈ N. We denote the category of symmetric spectra as SΣ.

In the above, the Σk-action on S k is the one-point compactification of the
permutation of coordinates action of Σk on Rk. This will be referred to as the
canonical action of Σk on S k.

Note that every symmetric spectrum has an underlying sequential spectrum
via forgetting the symmetric group actions: there is a forgetful functor

U
Σ
N

: SΣ −→ SN,

where the level n ofUΣ
N

X is Xn (forgetting the Σn-action). As limits and colimits
in SΣ are defined levelwise, the functorUΣ

N
preserves all limits and colimits and,

thus, has a left and a right adjoint. We are only interested in the left adjoint,

P
Σ
N

: SN −→ SΣ.

A construction of this functor is given in Proposition 6.3.22.

Examples 5.3.2 With our knowledge of other types of spectra, it is relatively
simple to give some examples of symmetric spectra.

Sphere spectrum We define the sphere spectrum S to be the symmetric spec-
trum with level n given by S n with the canonical action of Σn. The structure
map
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S 1 ∧ S n −→ S n+1

is the usual isomorphism, and we see that the maps σk
n are Σk ×Σn-equivariant.

Suspension spectra Generalising the above somewhat, we can make Σ∞A, the
suspension spectrum of the pointed space A. Level n is given by S n ∧ A, with
Σn acting as α[s, a] = [αs, a] for α ∈ Σn, a ∈ A and s ∈ S n. The structure maps
are the isomorphisms as for the sphere spectrum

S 1 ∧ S n ∧ A −→ S n+1 ∧ A,

and the composite maps σk
n are Σk × Σn-equivariant.

Shifted suspension spectra The final generalisation along this path is the
shifted suspension functors. For a pointed space A and d ∈ N, we define a
spectrum FΣd A, where

(FΣd A)n =

{
(Σn)+ ∧Σn−d S n−d ∧ A n � d

∗ n < d,

and Σn−d is the subgroup which acts on the first n−d letters. The structure map
is either trivial or the composite of the inclusion

S 1 ∧ (Σn)+ ∧Σn−d S n−d ∧ A −→ (Σn)+ ∧Σn−d S 1+n−d ∧ A

with Σn → Σ1+n. Checking that the maps σk
n are Σk × Σn-equivariant is an

exercise in tracking the partition of k + n into [k|n − d|d] through the maps.

Eilenberg–Mac Lane spectra Let R be a ring. We define a symmetric spec-
trum HR, the Eilenberg–Mac Lane spectrum of R, as follows. For K, a simpli-
cial set, let K ⊗ R denote the simplicial abelian group whose set of k-simplices
is the free R–module on the non-basepoint simplices of K. We identify the
basepoint with 0. This can be turned into a topological space by geometric re-
alisation |K ⊗ R|. Choose a simplicial circle S 1

s and an isomorphism S 1 � |S 1
s |.

Level n of HR is given by

HRn = |(S 1
s)n ⊗ R|,

where Σn permutes the factors of the n-fold smash product (S 1
s)n. The structure

map is induced by the chosen map S 1 � |S 1
s | and the isomorphisms

|S 1
s | ∧ |(S 1

s)n ⊗ R| � |S 1
s ∧ (S 1

s)n ⊗ R| � |(S 1
s )n+1 ⊗ R|.



5.3 Symmetric Spectra 189

This is anΩ-spectrum whose underlying sequential spectrum is the Eilenberg–
Mac Lane spectrum of Example 1.3.4. Note that the inclusion

(S 1
s)n −→ (S 1

s)n ⊗ R

that sends a non-basepoint simplex x to x ⊗ 1 induces a map S −→ HR called
the Hurewicz map.

Tensor with spaces Given a symmetric spectrum X and a pointed space A, we
can construct a new symmetric spectrum X∧A, where level n is simply Xn∧A.
The structure maps and equivariance are inherited from X. Similarly, we have
a cotensor with spaces, given by the symmetric spectrum Top∗(A, X), which at
level n is Top∗(A, Xn).

As one should expect, suspension spectra are part of an adjunction between
symmetric spectra and pointed topological spaces. We have already seen the
left adjoints.

Definition 5.3.3 For each d ∈ N, there is an adjunction

FΣd : Top∗ SΣ :EvΣd

between symmetric spectra and pointed topological spaces. The left adjoint FΣd
is the shifted suspension functor, the right adjoint EvΣd sends a spectrum X to
the space Xd. When d = 0, we write Σ∞ for FΣ0 .

As with other categories of spectra, we use Ω∞ to denote the derived func-
tor of EvΣ0 from the stable model structure on symmetric spectra to pointed
topological spaces, see Section 2.4 for a discussion in the case of sequential
spectra.

Now we show that we can equip symmetric spectra with a stable model
structure. As with sequential spectra, it is useful to start with the levelwise
model structure, then refine that into the stable model structure. This refine-
ment will be an example of the left Bousfield localisations of Chapter 7, though
we will not rely on the language of localisations in this chapter.

Definition 5.3.4 The levelwise model structure on symmetric spectra is a
cofibrantly generated model structure with generating sets given by

IΣlevel = {FΣd (S a−1
+ → Da

+) | a, d ∈ N)},
JΣlevel = {FΣd (Da

+ → (Da × [0, 1])+) | a, d ∈ N)}.
The cofibrations of this model structure are called the q-cofibrations, the fibra-
tions are called the levelwise fibrations and the weak equivalences are called
the levelwise weak equivalences.
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The set of maps from X to Y in the levelwise homotopy category is denoted
[X,Y]l.

As in Theorem 2.1.7, the q-cofibrations are not simply the levelwise cofi-
brations of pointed spaces – a full description is given in [HSS00, Proposition
5.2.2].

Proposition 5.3.5 The sets IΣlevel, JΣlevel and the class of levelwise weak ho-
motopy equivalences (ignoring the Σn-action) define a cofibrantly generated
model structure on symmetric spectra. A map f is a fibration if and only if
each fn is a fibration of pointed spaces (with the Σn-action ignored). This model
structure is called the levelwise model structure.

Proof Limits and colimits of spectra are defined levelwise, and the Σn-action
on level n of the (co)limit is induced by the Σn-action on the components and
the universal property of the (co)limit. The structure maps for a colimit arise
from the structure maps of the components and the fact that colimits of pointed
spaces commute with smash products. The structure maps for a limit arise
similarly, using the adjoints of the structure maps. It follows that all small
limits and colimits exist.

Following the Recognition Theorem for cofibrantly generated model cate-
gories, Theorem A.6.9, it suffices to show the following points. The proof is
very similar to that for Proposition 2.1.6.

1. The levelwise equivalences satisfy the two-out-of-three condition.
2. The domains of the generating sets are small with respect to the class of

levelwise cofibrations of spaces.
3. Maps in the class of JΣlevel-cell are levelwise weak equivalences and are

IΣlevel-cofibrations.
4. The class of maps with the right lifting property with respect to IΣlevel is

exactly the class of levelwise weak equivalences that also have the right
lifting property with respect to JΣlevel.

The first is clear. For the second, we show that the spectrum FΣd A is small with
respect to the class of levelwise cofibrations of spaces for any compact pointed
space A and d ∈ N. This is sufficient, as every element of IΣlevel is (in particular)
a levelwise cofibration of pointed spaces. It follows that every map in IΣlevel-cell
is also such. Let

X0 −→ X1 −→ X2 −→ · · ·
be a diagram of spectra, where each map is a levelwise cofibration of spectra
and consider the map of sets

colima S
Σ(FΣd A, Xa) −→ SΣ(FΣd A, colima Xa).
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Since the functor EvΣd commutes with colimits, the above map is isomorphic to

colima Top∗(A, X
a
d) −→ Top∗(A, colima Xa

d).

This is an isomorphism for a compact space A: the image of a compact space
can only intersect with finitely many cells of the target, see [MP12, Proposition
2.5.4] for details.

For the fourth point, let i : A −→ B be a map of pointed spaces. Then, by ad-
jointness, a map of symmetric spectra f : X −→ Y has the right lifting property
with respect to FΣd i in the diagram

FΣd A

FΣd i

X

FΣd B Y

if and only if fd has the right lifting property with respect to i. Hence, f has
the right lifting property with respect to IΣlevel if and only if it is a levelwise
acyclic fibration of pointed spaces. Similarly, f has the right lifting property
with respect to JΣlevel if and only if it is a levelwise fibration of pointed spaces.
The statement then follows.

For the third point, the maps in JΣlevel have the left lifting property with re-
spect to levelwise acyclic fibrations, hence, JΣlevel consists of IΣlevel-cofibrations.
The maps

Da
+ −→ (Da × [0, 1])+

are weak homotopy equivalences of pointed spaces, and thus, by construction,
the maps

FΣd (Da
+ −→ (Da × [0, 1])+)

are levelwise weak homotopy equivalences.
We thus have a cofibrantly generated model category with the properties as

claimed. �

We now want to investigate how the tensor product of symmetric spectra
and pointed spaces interacts with this model structure.

Lemma 5.3.6 If f : X → Y is a q-cofibration of symmetric spectra and
i : A→ B is a cofibration of pointed spaces, then the pushout product

f � i : X ∧ B
∐

X∧A
Y ∧ A −→ Y ∧ B
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is a cofibration of symmetric spectra. If one of f or i is a weak equivalence,
then so is f � i. In particular,

Y ∧ − : Top∗ −→ SΣ

is a left Quillen functor from pointed spaces to symmetric spectra when Y is a
cofibrant symmetric spectrum.

Proof Since −�− commutes with colimits in either factor, it suffices to show
this for the generating cofibrations of the levelwise model structure of sym-
metric spectra and cofibrations of pointed spaces (see also Lemma 6.1.13). We
have three facts: firstly, for cofibrant spaces A and B and d ∈ N, there is an
isomorphism

(FΣd A) ∧ B � FΣd (A ∧ B).

Secondly, if i and j are (acyclic) cofibrations of pointed spaces, then so is
i � j. Thirdly, FΣd is a left Quillen functor from pointed spaces to symmetric
spectra. These three together imply the statement for the generating (acyclic)
cofibrations and thus all (acyclic) cofibrations. The last statement is the case
∗ → Y . �

We now want to develop the stable model structure. This will be a Bousfield
localisation of the levelwise model structure at the class of stable equivalences.
We start by defining the fibrant objects of the stable model structure, which
will be the “local objects” in the terminology of Bousfield localisations from
Chapter 7.

Definition 5.3.7 A symmetric spectrum X is said to be an Ω-spectrum if the
adjoints of the structure maps σ̃n : Xn → ΩXn+1 are weak equivalences for all
n ∈ N.

The Ω-spectra in symmetric spectra are exactly those spectra sent to an
Ω-spectrum in sequential spectra via the forgetful functor UΣ

N
.

From these “local” objects, we can define the stable equivalences. This class
is harder to understand than the π∗-isomorphisms of sequential spectra. One
way to motivate this class is that we want the homotopy category of symmetric
spectra to be the stable homotopy category, which is the representing category
of cohomology theories.

We can relate cohomology theories to weak equivalences in the stable model
structure of sequential spectra as follows. By Proposition 5.1.5, a sequential
spectrum E defines a cohomology theory on sequential spectra by

E∗(−) = [−, E]−∗ : Ho(SN) −→ Ab∗.
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By the Yoneda Lemma, X −→ Y is a weak equivalence in the stable model
structure on sequential spectra if and only if E∗(Y)→ E∗(X) is an isomorphism
for all spectra E. By Theorem 2.3.12 and Lemma 2.3.15, we may just as well
use the homotopy category of the levelwise model structure and restrict E to
the class ofΩ-spectra. Hence, we can characterise the weak equivalences of the
stable model structure using the levelwise homotopy category. For symmetric
spectra, we will take this characterisation as a definition.

Definition 5.3.8 A stable equivalence is a map f : X −→ Y of symmetric
spectra such that for each Ω-spectrum E the induced morphism

f ∗ : [Y, E]l −→ [X, E]l

is an isomorphism.

Here, [−,−]l denotes morphisms in the homotopy category of symmetric
spectra with the levelwise model structure.

The stable equivalences satisfy the two-out-of-three axiom. Furthermore,
every levelwise weak equivalence is a stable equivalence, as weak equivalences
induce isomorphisms in their corresponding homotopy category.

Similarly to sequential spectra, we want a model structure whose cofibra-
tions are the q-cofibrations, whose weak equivalences are the stable equiva-
lences and whose class of fibrant objects is precisely the class of Ω-spectra.
We can follow the same pattern as for sequential spectra. The first step is to
find a set of maps that will identify Ω-spectra.

Let λn : FΣn+1 S 1 → FΣn S 0 be the adjoint of the map

S 1 → EvΣn+1 FΣn S 0 = (Σn+1)+ ∧ S 1 =
∨

α∈Σn+1

S 1,

which sends the domain to the α = Id summand by the identity.
Define Mλn to be the mapping cylinder of λn, that is, the pushout of

FΣn+1 S 1 λn

i1

FΣn S 0

sn

(FΣn+1 S 1) ∧ [0, 1]+ Mλn,

where i1 is the inclusion into the one end of the interval. We then have a map
kn : FΣn+1 S 1 → Mλn coming from the inclusion into the zero end of the interval
and a deformation retraction rn : Mλn → FnS 0 induced by the collapse map

(FΣn+1 S 1) ∧ [0, 1]+ → FΣn+1 S 1.
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The composition rn ◦ kn is the original map λn.
The following lemma shows how the maps kn are related to Ω-spectra and

why they are stable equivalences.

Lemma 5.3.9 The maps λn : FΣn+1 S 1 → FΣn S 0 for n ∈ N are stable equiva-
lences. Hence, so are the maps kn : FΣn+1 S 1 → Mλn for n ∈ N.

Proof Let E be an Ω-spectrum. As E is fibrant and FΣn+1 S 1 is cofibrant in the
levelwise model structure,

[FΣn+1 S 1, E]l � π(FΣn+1 S 1, E),

where π(−,−) denotes homotopy classes of maps between spectra. Since smash-
ing with [0, 1]+ gives cylinder objects, we see that the model category defini-
tion of (left) homotopy agrees with levelwise homotopy of pointed topological
spaces. It follows that we can use our adjunction (FΣn+1,EvΣn+1) to obtain an
isomorphism

π(FΣn+1 S 1, E) � π(S 1, En+1) � π(S 0,ΩEn+1),

where the middle and right-hand terms refer to homotopy classes of maps of
pointed spaces. Similarly, we have isomorphisms

[FΣn S 0, E]l � π(FΣn S 0, E) � π(S 0, En).

Consider the square below, where the top map sends the homotopy class of
a map f to the homotopy class of σn◦Σ f with σn being the structure map of E.

π(S 0, En)

�

π(S 1, En+1)

�

[FΣn S 0, E]l λ∗n
[FΣn+1 S 1, E]l

This square commutes as the counit of the adjunction (FΣn ,EvΣn ) in level k is
given by the composite structure map of E for k � n and the trivial map for
k < n. Therefore, composing with the adjunction isomorphism

π(S 1, En+1) � π(S 0,ΩEn+1)

gives a commutative square, where [ f ] ∈ π(S 0, En) is sent to σ̃n ◦ f , where σ̃n

is the adjoint structure map of E.

π(S 0, En)

�

(σ̃n)∗
π(S 0,ΩEn+1)

�

[FΣn S 0, E]l λ∗n
[FΣn+1 S 1, E]l
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As E is an Ω-spectrum, the map σ̃n : En −→ ΩEn+1 is a weak homotopy
equivalence. Thus, (σ̃n)∗ is an isomorphism and λn is a stable equivalence.

We know that the retraction rn is a levelwise homotopy equivalence, hence, a
stable equivalence. It follows by the two-out-of-three property that so is kn. �

We are ready to demonstrate that the stable model structure on symmet-
ric spectra is more complicated to define than that of orthogonal spectra. As
mentioned, the problem is that the π∗-isomorphisms are not the correct weak
equivalences for this category.

Definition 5.3.10 A map f : X → Y of symmetric spectra is a π∗-isomorphism
if the map induced by f

πn(X) = colimk πk+n(Xk)
f∗−→ colimk πk+n(Yk) = πn(Y)

is an isomorphism for all n ∈ Z.

We see that for a symmetric spectrum X, π∗(X) = π∗(UΣNX).

Remark 5.3.11 The maps of symmetric spectra

λd : FΣd+1 S 1 −→ FΣd S 0

for d ∈ N are not π∗-isomorphisms. Following the same argument as for
orthogonal spectra, we look at a map of spectra which at level k is given by
a quotient map smashed with the sphere S k

(Σk/Σk−d−1)+ ∧ S k −→ (Σk/Σk−d)+ ∧ S k.

Taking homotopy groups πm+k and a colimit over k, we obtain a non-injective
map from a countable direct sum of πstable

m (S 0) to itself. It follows that λd is not
a π∗–isomorphism. The homotopy groups of symmetric spectra are studied in
more detail by Schwede [Sch08].

We do however have a containment in one direction: a π∗-isomorphism is
a stable equivalence. We will make substantial use of this result in proving
that the stable equivalences and q-cofibrations form a model structure on sym-
metric spectra. The basic idea is to construct a functor Q which sends π∗-
isomorphisms to levelwise weak equivalences and a natural transformation
i : Id −→ Q which is a levelwise weak equivalence on Ω-spectra.

Proposition 5.3.12 Every π∗-isomorphism is a stable equivalence.

Proof To avoid a much harder direct proof, we will use the closed monoidal
structure on symmetric spectra. This is constructed in detail in Section 6.3. For
now, we use the following properties.
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• The category SΣ is a closed symmetric monoidal category with product ∧,
unit S and internal function object FS(−,−).

• There is a natural isomorphism SΣ(A, FS(X,Y)) � SΣ(A ∧ X,Y).

• Furthermore, for pointed spaces A and B, we have

FΣn A ∧ FΣm B � FΣn+m(A ∧ B),

which is Lemma 6.3.21.

All the relevant constructions are entirely categorical, and they do not make
use of the model structure we are still constructing at this stage. Therefore,
we could have given Section 6.3, which contains the above constructions and
properties, before the statement of this proposition.

We start by defining a functor R : SΣ −→ SΣ. The map

λ = λ1 : FΣ1 S 1 −→ FΣ0 S 0 = S

induces a map

λ∗ : X = FS(F
Σ
0 S 0, X) −→ FS(F

Σ
1 S 1, X) =: RX.

Iterating this construction, we get a sequence of maps

X
λ∗−→ RX

Rλ∗−→ R2X
R2λ∗−→ R3X

R3λ∗−→ · · · ,
and we define QX to be the homotopy colimit of this sequence in the levelwise
model structure. The map from the first term to the homotopy colimit will be
denoted i : X −→ QX. If we choose a functorial construction of homotopy
colimits, then we have a functor and a natural transformation to that functor

Q : SΣ −→ SΣ and i : Id −→ Q.

In practice though, we only need to be able to make a few commuting squares,
which can be done with a non-functorial model for the homotopy colimit.

We have defined

RnX = FS(FΣ1 S 1,Rn−1X) = FS(FΣ1 S 1, FS(FΣ1 S 1,Rn−2X))
� FS(FΣ1 S 1 ∧ FΣ1 S 1,Rn−2X)
� FS((FΣ1 S 1)∧n, X).

By Lemma 6.3.21, we have (FΣ1 S 1)∧n � FΣn S n, so there is a natural isomor-
phism

RnX � FS(F
Σ
n S n, X).
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We can use this to give a description of the levels of RnX via

Top∗(A, (RnX)m) � Top∗(A,EvΣm FS(FΣn S n, X))

� SΣ(FΣm A, FS(FΣn S n, X))

� SΣ(FΣm A ∧ FΣn S n, X)

� SΣ(FΣn+m(A ∧ S n), X)

� Top∗(A ∧ S n, Xn+m)

� Top∗(A,ΩnXn+m).

The third isomorphism uses the closed symmetric monoidal structure of sym-
metric spectra as a category, and the fourth is another instance of
Lemma 6.3.21. It follows that

(RnX)m � EvΣm FS(F
Σ
n S n, X) � ΩnXn+m,

and that the map

(Rnλ∗)m : ΩnXn+m −→ Ωn+1Xn+m+1

is induced from the structure map of X. Thus, if X is an Ω-spectrum, the maps
Rnλ∗ are levelwise weak homotopy equivalences. Furthermore, when X is an
Ω-spectrum, the map i : X −→ QX is a levelwise weak equivalence and QX is
also an Ω-spectrum.

By the properties of homotopy colimits, given a map f : X −→ Y , we may
construct a map Q f : QX −→ QY giving a (homotopy) commutative square

X
f

iX

Y

iY

QX
Q f

QY.

If f : X −→ Y is a π∗-isomorphism, we claim the map Q f is a levelwise weak
equivalence. We calculate the homotopy groups of the levels of QX

πa(QXb) = colimc πa((RcX)b)

� colimc πa(ΩcXb+c)

� colimc πa+c(Xb+c)

= πa−b(X),

where the last term is the homotopy groups of the spectrum X. The claim now
follows.

Now assume that f : X −→ Y is a π∗-isomorphism and E is an Ω-spectrum.
We have a diagram of sets of maps in the levelwise homotopy category of
symmetric spectra.
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[Y, E]l (iE )∗
�

Q

f ∗

[Y,QE]l

f ∗
[QY,QE]l

Q f ∗
�

i∗Y

[X, E]l (iE )∗
�

Q

[X,QE]l

[QX,QE]l

i∗X

The diagram commutes by naturality of i and Q. Since iE is a levelwise weak
equivalence, the maps (iE)∗ are isomorphisms. The maps labelled Q in the
triangles are injective, and the maps i∗X and i∗Y are surjective.

The remainder of our proof that

f ∗ : [Y, E]l −→ [X, E]l

is an isomorphism is a diagram chase. Firstly, let us show that f ∗ is injective.
Let α and β be elements of [Y, E]l such that f ∗α = f ∗β. Then

Q f ∗(Qα) = Q( f ∗α) = Q( f ∗β) = Q f ∗(Qβ).

Since Q f ∗ and Q are injective, this implies α = β. Hence, f ∗ is injective.
Now take γ ∈ [X, E]l. Then there is a δ ∈ [QY,QE]l such that Q f ∗(δ) = Q(γ).

Similarly, there is an ε ∈ [Y, E]l such that (iE)∗(ε) = i∗Y (δ). Using the commu-
tativity of the diagram, we see that

(iE)∗ f ∗(ε) = f ∗(iE)∗(ε) = f ∗i∗Y (δ) = i∗XQ f ∗(δ) = i∗XQ(γ) = (iE)∗(γ).

Since (iE)∗ is an isomorphism, f ∗(ε) = γ, so f ∗ is surjective and therefore an
isomorphism. �

Note that a direct proof of the existence of a symmetric spectrum with level
m given byΩnXn+m and the required properties is difficult to give without using
the monoidal structure.

Lemma 5.3.13 A stable equivalence between Ω-spectra is a levelwise weak
equivalence of symmetric spectra.

Proof Let f : X → Y be a stable equivalence between Ω-spectra. This means
that

f ∗ : [Y, X]l −→ [X, X]l

is an isomorphism. Let g be the pre-image of IdX . Similarly to the proof of
Proposition 1.2.3, we see that g is an inverse isomorphism to f in the levelwise
homotopy category. Hence, f and g are levelwise weak equivalences. �
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Similarly to Section 2.2, we need to know that a number of operations
will preserve stable equivalences. The first one requires some careful
consideration of basepoints, as with Lemma 2.2.7. For convenience, it also
makes some use of the monoidal structure of symmetric spectra similar to
Proposition 5.3.12.

Lemma 5.3.14 A map of symmetric spectra f : X → Y is a stable equivalence
if and only if Σ f : ΣX → ΣY is a stable equivalence.

If A is a pointed CW-complex, then − ∧ A preserves stable equivalences.

Proof The cofibrant replacement map in the levelwise model structure

Xco f → X

is a levelwise weak equivalence and hence is a π∗-isomorphism of symmetric
spectra. Suspension preserves π∗-isomorphisms of spectra by Lemma 2.2.7,
hence, Σ(Xco f )→ ΣX is a π∗-isomorphism and thus is a stable equivalence.

Let E be an Ω-spectrum. Then we have natural isomorphisms

[ΣX, E]l � [Σ(Xco f ), E]l � [Xco f ,ΩE]l � [X,ΩE]l.

Since ΩE = Top∗(S 1, E) is also an Ω-spectrum, we see that Σ preserves stable
equivalences (without assumptions on the basepoints of the spectra). Replacing
S 1 by an arbitrary pointed CW-complex A gives the second statement.

For the converse, let E be an Ω-spectrum and consider the symmetric spec-
trum FS(FΣ1 S 0, E). Similarly to the proof of Proposition 5.3.12, we see that

FS(F
Σ
1 S 0, E)k � Ek+1

because

Top∗(A,EvΣk FS(FΣ1 S 0, E)) � SΣ(FΣk A, FS(FΣ1 S 0, E))

� SΣ(FΣk A ∧ FΣ1 S 0, E)

� SΣ(FΣk+1 A, E)

� Top∗(A, Ek+1)

for any pointed space A. It follows that FS(FΣ1 S 0, E) is an Ω-spectrum and the
the structure map of E induces a levelwise weak equivalence

E −→ ΩFS(F
Σ
1 S 0, E) � FS(F

Σ
1 S 1, E) = RE.
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Assume that f : X −→ Y is a map of symmetric spectra such that Σ f is a
stable equivalence. Since E is an Ω-spectrum, it follows from the
isomorphisms

[X, E]l � [X,ΩFS(F
Σ
1 S 0, E)]l � [ΣX, FS(F

Σ
1 S 0, E)]l

that f induces an isomorphism on the third term and hence, f is a stable
equivalence. �

Our next aim is to give the analogous result to Lemma 2.2.13, using stable
equivalences in place of π∗-isomorphisms. We will use this list of results to
prove the existence of the stable model structure on SΣ. The proof requires
some long exact sequence arguments, similar to those for pointed spaces and
the notion of h-cofibrations.

We can define h-cofibrations of symmetric spectra just as we did for
orthogonal spectra in Definition 5.2.7.

Definition 5.3.15 A map i : A −→ X of symmetric spectra is a h-cofibration
if there is a map to the mapping cylinder of i

r : X ∧ [0, 1]+ −→ Mi

making the following diagram commute.

A
i0

i

A ∧ [0, 1]+

i∧Id

X

i0

Mi

X ∧ [0, 1]+

r

We can relate h-cofibrations to q-cofibrations and levelwise h-cofibrations
as we did for orthogonal spectra.

Lemma 5.3.16 Let i : A −→ X be a h-cofibration of symmetric spectra. Then
the pushout X/A of i over a point is naturally homotopy equivalent to Ci, the
homotopy cofibre of i.

Furthermore,

• every q-cofibration of symmetric spectra is a h-cofibration,
• each level of a h-cofibration of symmetric spectra is a h-cofibration of pointed

spaces,
• the tensor −∧A with a pointed space A preserves h-cofibrations of symmetric

spectra.
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Proof These follow from the same proofs as for Lemma 5.2.8, Lemma 5.2.9,
Lemma A.5.6, and the part of Theorem 5.2.16 relating to h-cofibrations. �

Consider a q-cofibration i : A→ X of cofibrant symmetric spectra. The cofi-
bre of i is also cofibrant and is homotopy equivalent to X/A. The usual argu-
ments for pointed spaces (which need cofibrancy assumptions) applied to each
level of i gives a long exact Puppe sequence

· · · −→ [Σn+1A, E]l −→ [ΣnX/A, E]l −→ [ΣnX, E]l −→ [ΣnA, E]l −→ · · ·
for any spectrum E. Recall further, that this sequence ends as maps of sets

· · · −→ [X/A, E]l −→ [X, E]l −→ [A, E]l.

Lemma 5.3.17 Several standard operations preserve stable equivalences.

1. If g : X −→ Y is a h-cofibration of symmetric spectra and a stable equiva-
lence, then the pushout of g along another map of spectra is also a stable
equivalence.

2. Given a diagram as below, where i and i′ are h-cofibrations and the vertical
maps are all stable equivalences

B

�

A
i

�

C

�

B′ A′i′
C′,

then the induced map from the pushout P of the top row to the pushout of
the second row P′ is a stable equivalence.

3. If f i : Xi −→ Xi+1 for i ∈ N is a collection of maps which are both levelwise
h-cofibrations and stable equivalences, then the map from the first object
into the colimit

X0 −→ colimi Xi

is also a stable equivalence and a levelwise h-cofibration.

Proof Consider a diagram

Z X
gf

Y

with g a stable equivalence and f a h-cofibration of symmetric spectra. Let P
be the pushout of this diagram. Since a h-cofibration of symmetric spectra is,
in particular, a levelwise h-cofibration, we can use Part 2. of Lemma 2.2.13 to
see that a cofibrant replacement of this diagram in the levelwise model struc-
ture (see Section A.7) will give a pushout that is π∗-isomorphic to P. Hence,
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we may assume that X, Y and Z are cofibrant and the maps f and g are q-
cofibrations.

With this assumption, the horizontal cofibres are (up to homotopy equiva-
lence) given by Y/X and P/Z, which are isomorphic. Choosing an Ω-spectrum
E, we obtain a map of long exact sequences

· · · [ΣY/X, E]l

�

[ΣY, E]l � [ΣX, E]l [Y/X, E]l

�

· · ·

· · · [ΣP/Z, E]l [ΣP, E]l [ΣZ, E]l [P/Z, E]l · · ·
from which we see that ΣZ −→ ΣP is a stable equivalence. By Lemma 5.3.14,
the map Z −→ P is a stable equivalence.

Now let us show 2. As with the first statement, we may assume without loss
of generality that all spectra in the diagram are cofibrant. A long exact sequence
argument just like the above shows that B/A is stably equivalent to B′/A′. The
map C → C′ is a stable equivalence, and we also have stable equivalences

P/C � B/A
�−→ B′/A′ � P′/C′.

Another long exact sequence argument then shows that P −→ P′ is a stable
equivalence.

As for the last point, once again, we begin by making every spectrum in the
diagram cofibrant by taking a cofibrant replacement of X0 and then factorising
the map Y0 → X1 into a q-cofibration Y0 → Y1 followed by a levelwise acyclic
fibration Y1 → X1. Repeating inductively, we obtain a diagram

X0 f 0

X1 f 1

X2 f 2

· · ·

Y0 Y1 Y2 · · ·
with each vertical map a levelwise acyclic fibration and each Yi → Yi+1 a q-
cofibration. Since the maps f i in the original diagram were stable equivalences,
so are the maps Yi → Yi+1.

As the maps in each sequential diagram are levelwise h-cofibrations, Corol-
lary A.7.10 implies that the colimit of each diagram is levelwise homotopy
equivalent to the homotopy colimit. Moreover, the induced map

Y � colim Yi � hocolim Yi −→ hocolim Xi � colim Xi =: X

is a levelwise weak equivalence as the homotopy colimits are constructed lev-
elwise.



5.3 Symmetric Spectra 203

By Corollary A.7.14, we obtain an exact sequence of sets

∗ lim1[ΣYi, E]l [Y, E]l limi[Yi, E]l ∗.
As the maps f i : Yi −→ Yi+1 in the sequential diagrams are stable equivalences,
the maps

[Yi+1, E]l �−→ [Yi, E]l

are isomorphisms. Hence, the lim1 term is trivial and both maps below are
isomorphisms

[Y, E]l −→ limi[Y
i, E]l −→ [Y0, E]l.

It follows that Y0 −→ Y is a stable equivalence and hence, so is X0 −→ X. �

We are ready to define a model structure on SΣ, where the weak equiva-
lences are the stable equivalences and the cofibrations are the q-cofibrations.
We will call this the stable model structure on symmetric spectra. We give the
generating sets for this model structure below.

Definition 5.3.18 We define two sets of maps

IΣstable = IΣlevel = {FΣn (S a−1
+ → Da

+) | a, n ∈ N)}
JΣstable = JΣlevel ∪ {kn � (S a−1

+ → Da
+) | a, n ∈ N},

where kn was defined just before Lemma 5.3.9.

We can now give our main theorem for this section, namely, that the desired
stable model structure on symmetric spectra exists. We prove this as a series
of lemmas which will also characterise the stable fibrations.

Theorem 5.3.19 The sets IΣstable and JΣstable and the stable equivalences define
a cofibrantly generated model structure on symmetric spectra called the stable
model structure.

The cofibrations of this model structure are the class of q-cofibrations, and
the fibrations are called the stable fibrations. An object is fibrant if and only if
it is an Ω-spectrum.

Proof We have a category with all small limits and colimits. Following the
Recognition Theorem for cofibrantly generated model categories, Theorem
A.6.9, it suffices to show the following points.

1. The stable equivalences satisfy the two-out-of-three condition.
2. The domains of the generating sets are small with respect to the class of

levelwise cofibrations of spaces.
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3. Maps in the class JΣstable-cell are q-cofibrations that are stable equivalences,
see Lemma 5.3.20.

4. The class of maps with the right lifting property with respect to IΣstable is ex-
actly the class of stable equivalences that also have the right lifting property
with respect to JΣstable, see Lemma 5.3.22.

The first point is immediate. For the second, we are only concerned with the
domains of the maps kn � (S a−1

+ → Da
+),

FΣn+1 S 1 ∧ Da
+

∐
FΣn+1 S 1∧S a−1

+

Mλn ∧ S a−1
+ .

To deal with these terms, we use the two facts, namely, (FΣd A)∧ B � FΣd (A∧ B)
and that pushouts of small objects are small by Lemma A.6.5. This proves the
second point.

The last two points will be proven in the following lemmas. �

The third point of the theorem is the following lemma.

Lemma 5.3.20 The elements of JΣstable-cell are stable equivalences and are
IΣstable-cofibrations.

Proof The maps kn : FΣn+1 S 1 −→ Mλn are q-cofibrations of spectra, hence,
so are the maps kn � i by Lemma 5.3.6. It follows that JΣstable consists of q-
cofibrations. In turn, any map formed by pushouts and sequential colimits of
q-cofibrations is also a q-cofibration. Equally, we may use Lemma A.6.11.

The maps in JΣlevel are levelwise weak homotopy equivalences and therefore
stable equivalences. The maps kn are stable equivalences by Lemma 5.3.9. It
remains to be checked that for a cofibration i of pointed spaces, the map kn � i
is a stable equivalence. By Lemmas 5.3.14 and 5.3.17, we know that stable
equivalences that are q-cofibrations are preserved by smashing with cofibrant
pointed spaces and taking pushouts.

The result then follows from Lemma 5.3.17. �

For now, let us say that a map is a stable fibration if it has the right lifting
property with respect to JΣstable. As with sequential spectra, we can characterise
such maps. Indeed, the proof is formally identical to Proposition 2.3.10.

Lemma 5.3.21 A map of symmetric spectra f : X → Y is a stable fibration if
and only if f is a levelwise fibration and for each n ∈ N, the
map

Xn −→ Yn ×
ΩYn+1

ΩXn+1
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induced by the structure map σ̃X
n and f is a weak homotopy equivalence of

pointed spaces. In particular, a spectrum X is stably fibrant if and only if it is
an Ω-spectrum. �

The second condition of the lemma is often phrased as saying that a map f
is a stable fibration if and only if it is a levelwise fibration and the square below
is a homotopy pullback square.

Xn
fn

σ̃X
n

Yn

σ̃Y
n

ΩXn+1
Ω fn+1

ΩYn+1.

Recall from Proposition 5.3.5, that a map has the right lifting property with
respect to IΣstable = IΣlevel if and only if it is a levelwise acyclic fibration of pointed
spaces.

Lemma 5.3.22 A stable equivalence f has the right lifting property with re-
spect to JΣstable if and only if it is a levelwise acyclic fibration of pointed spaces.

Proof Let f : X → Y be a stable equivalence with the right lifting property
with respect to JΣstable. Then f is a levelwise fibration, and

Xn
fn

σ̃X
n

Yn

σ̃Y
n

ΩXn+1
Ω fn+1

ΩYn+1

is a homotopy pullback square for each n ∈ N. We must show that each fn is a
weak homotopy equivalence.

Consider the kernel F of f : X → Y , that is, the pullback of f over ∗. This
spectrum is constructed levelwise, and the map F → ∗ also has the right lifting
property with respect to JΣstable. This means that F is stably fibrant and therefore
an Ω-spectrum by Lemma 5.3.21. Moreover, F is the homotopy fibre of f .

We can then construct Ci, the (levelwise) homotopy cofibre of the map

i : F −→ X.

There is a natural map Ci→ Y and a map of cofibre sequences

X

=

Ci ΣF

X
f

Y C f .
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The map ΣF −→ C f is a π∗-isomorphism by Corollary 2.2.12, hence, the map
Ci −→ Y is a π∗-isomorphism by the Five Lemma applied to the long exact
sequences of homotopy groups of underlying sequential spectra. It follows that
X −→ Ci is a stable equivalence.

The long exact sequence of the cofibre sequence F −→ X −→ Ci � Y

[F, E]l ← [X, E]l �← [Ci, E]l ← [ΣF, E]l ← · · ·
shows that [ΣF, E]l is isomorphic to [∗, E]l = 0. Thus, ΣF → ∗ is a stable
equivalence and so is F → ∗. By Lemma 5.3.13, the map F → ∗ is a levelwise
weak equivalence.

Hence, each level of F is weakly contractible, and

πq(Xn) −→ πq(Yn)

is an isomorphism for each q > 0 and n ∈ N by the long exact sequences of
homotopy groups of the spaces Xn, Yn and Fn. We still need to show that the
above is an isomorphism for q = 0. The map

Ω fn : ΩXn −→ ΩYn

is a weak homotopy equivalence for all n ∈ N. We can write fn as the composite

Xn −→ Yn ×
ΩYn+1

ΩXn+1 −→ Yn.

As the first map is a weak homotopy equivalence ( f is a stable fibration) and
the second map is the pullback of the acyclic fibration of spaces Ω fn+1, we see
that fn is a weak equivalence.

For the converse, assume that f : X → Y is a levelwise acyclic fibration.
Then f is a stable equivalence and Xn → Yn and ΩXn+1 → ΩYn+1 are weak
homotopy equivalences (and fibrations). Consider the diagram

Xn fn
�

σ̃X
n

P Yn

σ̃Y
n

ΩXn+1
Ω fn+1

� ΩYn+1.

Since Ω fn+1 is an acyclic fibration of spaces, so is P → Yn, hence, it follows
that Xn → P is a weak homotopy equivalence. Therefore, f has the right lifting
property with respect to JΣstable by Lemma 5.3.21. �
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This completes the proof of Theorem 5.3.19.
It remains to be shown that this model category is stable and is Quillen

equivalent to the stable model structure on orthogonal spectra. We could prove
the first point directly, but it will follow from the second.

Recall that at the beginning of this section, we defined a forgetful functor
from symmetric spectra to sequential spectra UΣ

N
X as follows. Level n of UΣ

N
X

is Xn (forgetting the Σn-action), and the structure maps are those of X. We may
compare symmetric spectra and orthogonal spectra in a similar way.

Definition 5.3.23 Given an orthogonal spectrum Y , we can define a symmet-
ric spectrum UO

Σ
Y by forgetting structure as follows. Level n of UO

Σ
Y is Yn,

with Σn acting through the standard inclusion Σn → O(n). The structure maps
are those of X.

As limits and colimits are constructed levelwise, it follows that both for-
getful functors preserve them. It therefore follows that the left adjoints called
prolongation functors exist, and we have a diagram

SN
P
Σ
N

SΣ

U
Σ
N

P
O
Σ

SO.
U

O
Σ

The composite adjunction between SN and SO is the adjunction (PO
N
,UO
N

) of
Theorem 5.2.18, which we have already shown to be a Quillen equivalence.
We give a construction of the prolongation functors in Proposition 6.3.22.

Theorem 5.3.24 The category of symmetric spectra equipped with the sta-
ble model structure is Quillen equivalent to the category of sequential spectra
equipped with the stable model structure and to the category of orthogonal
spectra equipped with the stable model structure.

Hence, we have equivalences of triangulated categories

Ho(SO) � Ho(SΣ) � Ho(SN) = SHC.

Proof We prove that (PΣ
N
,UΣ
N

) is a Quillen adjunction and that (PO
Σ
,UO
Σ

) is a
Quillen equivalence. Theorem 5.2.18 will then imply that the first adjunction
is also a Quillen equivalence.

The forgetful functors UΣ
N

and UO
Σ

send stable fibrations to stable fibrations,
as in all three model categories stable fibrations are defined as levelwise fibra-
tions that satisfy a pullback diagram, see Proposition 2.3.10, Corollary 5.2.17
and Lemma 5.3.21. The forgetful functors also preserve acyclic stable fibra-
tions, as these are just levelwise acyclic fibrations of pointed spaces in each
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case. Hence, we have Quillen adjunctions. Moreover, the forgetful functors
preserve π∗-isomorphisms.

We prove that (PO
Σ
,UO
Σ

) is a Quillen equivalence by showing that the right
adjoint reflects isomorphisms and that the derived unit of the adjunction is an
isomorphism.

We claim that if f : X → Y is a map of orthogonal spectra such that UO
Σ

f
is a stable equivalence, then f is a π∗-isomorphism. Take a fibrant replace-
ment Y ′ of Y in the stable model structure of orthogonal spectra and factor the
composite

X
f

Y
∼

Y ′

as an acyclic cofibration followed by a stable fibration in the stable model
structure

X
∼

X′
f ′

Y ′.

Then UO
Σ

f ′ is π∗-isomorphic to UO
Σ

f and hence is also a stable equivalence
of symmetric spectra. As UO

Σ
X′ and UO

Σ
Y ′ are Ω-spectra, UO

Σ
f ′ is a levelwise

acyclic fibration, hence, so is f ′ itself. Thus, f is a π∗-isomorphism.
All that remains is to prove that for a cofibrant symmetric spectrum X, the

derived unit map

X −→ UO
Σ P

O
Σ X −→ UO

Σ (POΣ X)
f ib

is a stable equivalence. In fact, it suffices to check this for the strict unit

X −→ UO
Σ P

O
Σ X,

as the second map is UO
Σ

applied to a π∗-isomorphism and hence is itself a
π∗-isomorphism.

The rest of the proof follows the same argument as the proof of Theorem
5.2.18. Any cofibrant spectrum is a retract of a sequential colimit of pushouts
of coproducts of the generating cofibrations. The functorsUO

Σ
and PO

Σ
commute

with sequential colimits, pushouts and smash products with pointed spaces. By
Lemma 5.3.17, it suffices to prove that the (strict) unit of the adjunction is a
stable equivalence for spectra of the form FΣn S 0. As a map is a stable equiva-
lence if and only if its suspension is, we consider the unit of the adjunction at
X = FΣn S n for n ∈ N.

The map FΣn S n → FΣ0 S 0 is the composite of suspensions of maps of the
form λn and hence is a stable equivalence. The prolongation of such a map
is a π∗-isomorphism by Ken Brown’s Lemma. Now consider the commutative
square
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FΣn S n

�

U
O
Σ
P
O
Σ

FΣn S n

�

FΣ0 S 0
U

O
Σ
P
O
Σ

FΣ0 S 0.

The bottom map is the identity map of the sphere spectrum, hence, a stable
equivalence. The right-hand map is UO

Σ
applied to the π∗-isomorphism

FO
n S n −→ FO

0 S 0

and hence is a π∗-isomorphism of symmetric spectra. Thus, the unit map is a
stable equivalence of symmetric spectra. �

As for orthogonal spectra and sequential spectra, we can relate the stable
model structure on symmetric spectra to the levelwise model structure and the
Serre model structure on pointed spaces.

Lemma 5.3.25 The identity functor from the levelwise model structure on
symmetric spectra to the stable model structure is a left Quillen functor

Id : SΣl SΣ : Id.

If E is an Ω-spectrum, then

[X, E] � [X, E]l. �

Lemma 5.3.26 For d ∈ N, the shifted suspension spectrum functor FΣd and
the evaluation functor EvΣd form a Quillen adjunction

FΣd : Top∗ SΣ :EvΣd .

In particular, there is a Quillen adjunction

Σ∞ : Top∗ SΣ :EvΣ0 . �

One may ask if the levelwise model structure on symmetric spectra is Quillen
equivalent to the levelwise model structure on sequential spectra, but this is ir-
relevant. We are only interested in the levelwise model structures as a stepping
stone to the stable model structures, whose purpose is to model the stable ho-
motopy category.

Since we can define stable equivalences for sequential spectra and orthogo-
nal spectra using their respective levelwise model structures, we may ask how
the stable equivalences are related to π∗-isomorphisms in those categories. The
satisfactory answer is the following.
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Lemma 5.3.27 A map in sequential spectra or orthogonal spectra is a stable
equivalence if and only if it is a π∗-isomorphism.

Proof We work in the case of sequential spectra as the other case is similar.
Let f : X → Y be a map of sequential spectra. Furthermore, let Z be a spec-
trum with fibrant replacement Z f ib, which is an Ω-spectrum. Then there is a
commutative square

[Y,Z]
f ∗

�

[X,Z]

�

[Y,Z f ib]l f ∗
[X,Z f ib]l.

The map f is a weak equivalence of the stable model structure (i.e. a π∗-
isomorphism) if and only if the top map is an isomorphism for all Z. That
is equivalent to the bottom map being an isomorphism for all Z f ib. This occurs
if and only if

[Y, E]l f ∗
[X, E]l

is an isomorphism for all Ω-spectra E, that is, if and only if f is a stable
equivalence. �

5.4 Properness of Spectra

There are a number of model-categorical results that apply to all three kinds
of spectra that we have seen so far. For this section, we let S denote any of
the three categories of spectra SN, SΣ, or SO. As we have shown that each of
these model categories is stable, Theorem 4.2.1 tells us that their homotopy
categories are triangulated. This implies all kinds of useful properties. In par-
ticular, Theorem 3.6.4, Theorem 3.6.1 and Corollaries 4.4.1 and 4.4.2 give us
four long exact sequences involving fibre and cofibre sequences. Also, the nat-
ural map X ∨ Y −→ X

∏
Y is a stable equivalence by Lemma 4.4.4.

We can use these properties to show that the categories of spectra S are
proper.

Definition 5.4.1 Consider a commutative square in a model category C

A
f

i

B

j

C g D.
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1. We say that C is left proper if whenever the square is a pushout square,
i is a cofibration and f is a weak equivalence, the map g is also a weak
equivalence.

2. We say that C is right proper if whenever the square is a pullback square, j
is a fibration and g is a weak equivalence, the map f is also a weak equiva-
lence.

3. We say that C is proper if it is both left and right proper.

Many familiar model structures are proper.

Example 5.4.2 The category of (pointed) spaces with either the Serre model
structure or the Hurewicz model structure is proper. The category of (pointed)
simplicial sets is proper, see [Hir03, Section 13.1].

The category of chain complexes with either the injective or projective model
structure is proper [Hov01a].

Lemma 5.4.3 The stable model structure on S is proper.

Proof Consider a commutative square in S

A
f

i

B

j

C g D.

Assume that this is a pushout square with i a h-cofibration and f a stable equiv-
alence (noting Lemma 5.3.27).

Corollary A.5.4 says that j is also a h-cofibration. We then use the same
argument as for the first statement of Lemma 2.2.13 and the second statement
of Lemma 5.2.11 to give the homotopy equivalences (see Lemma A.5.6) and
the isomorphism below.

Ci � C/A � D/B � C j.

Applying the functor [−, E] to the cofibre sequences of i and j gives a long
exact sequence. The Five Lemma shows that

g : C −→ D

is a stable equivalence. Every q-cofibration is a h-cofibration by Theorem
5.2.16 (whose proof also applies to sequential spectra) and Lemma 5.3.16.
It follows that S is left proper.

Now assume that the square is a pullback, with j a levelwise fibration of
pointed spaces and g a stable equivalence. Then i is also a levelwise fibration
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of pointed spaces. Since the Serre model structure on pointed spaces is right
proper, a similar argument to the above gives levelwise weak equivalences and
isomorphisms

Fi � i−1(∗) � j−1(∗) � F j.

Applying the functor [−, E] to the fibre sequences of i and j gives another long
exact sequence. The Five Lemma shows that f : A→ B is a stable equivalence.
Since every fibration is a levelwise fibration, it follows that S is right proper.

�

Note that the proof uses slightly weaker assumptions: we only require
h-cofibrations for left properness and levelwise fibrations for right properness.

5.5 Other Categories of Spectra

There are many other categories of spectra. We discuss a few below and move
on to mention the existence of other stable model categories which are related
to spectra, but which are not a model for the stable homotopy category.

5.5.1 Spectra of Simplicial Sets

Chapter 2 and Section 5.3 could just as easily be written using pointed sim-
plicial sets in place of pointed topological spaces. The primary reference is
Hovey, Shipley and Smith [HSS00]. We give a summary of the main results as
the proofs are similar to the techniques used in earlier sections.

Definition 5.5.1 A sequential spectrum in simplicial sets X is a sequence of
pointed simplicial sets Xn, n ∈ N, with structure maps

σX
n : ΣXn −→ Xn+1.

A morphism f : X −→ Y in sequential spectra in simplicial sets is a sequence
of pointed maps of simplicial sets fn : Xn −→ Yn such that for each n ∈ N, the
square below commutes.

ΣXn
Σ fn

σX
n

ΣYn

σY
n

Xn+1
fn+1

Yn+1

We denote this category SN(sSet∗).
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This category has all limits and colimits created levelwise in simplicial sets.
The evaluation functors EvNn have left adjoints FNn as in the topological case.

Proposition 5.5.2 The category of sequential spectra in simplicial sets has
a levelwise model structure, where the weak equivalences and fibrations are
the levelwise weak equivalences and fibrations of simplicial sets. We call the
cofibrations the q-cofibrations.

A map f : X → Y is a q-cofibration if and only if each fn is injective and the
maps

Xn+1
∐
ΣXn

ΣYn −→ Yn+1

induced by f and the structure maps of X and Y are injective.

This category is cofibrantly generated, with generating sets analogous to
those for the levelwise model structure in the topological case (Proposition
2.1.6), where the generating sets of topological spaces have been replaced with
the generating sets of pointed simplicial sets. In other words,

Ilevel = {FNd ∂Δ[n]+ −→ FNd Δ[n]+ | n, d ∈ N}
Jlevel = {FNd Λr[n]+ −→ FNd Δ[n]+ | d ∈ N, 0 < n, 0 � r � n}.

Definition 5.5.3 An Ω-spectrum in SN(sSet∗) is a spectrum X such that each
level Xn is a Kan complex and the adjoint structure maps

σ̃X
n : Xn −→ ΩXn+1

are weak equivalences of simplicial sets.

For the rest of this section we write SN(Top∗) for the category of sequen-
tial spectra in topological spaces. Given such a spectrum Y , we can apply the
singular complex functor levelwise and obtain a sequential spectrum sing Y in
simplicial sets. The structure maps are defined by

Ω(sing Y)n = Ω(sing Yn) � sing(ΩYn)
σ̃Y

n−→ sing(Yn+1) = (sing Y)n+1.

Equally, we may apply the geometric realisation functor | − | levelwise to a
sequential spectrum in simplicial sets X and obtain an object |X| of SN(Top∗).
The structure maps are defined by

Σ(|X|)n = Σ(|X|n) = Σ|Xn| � |ΣXn|
σX

n−→ |Xn+1| = |X|n+1.

Using geometric realisation, we may define a π∗-isomorphism of sequen-
tial spectra in simplicial sets as a map whose geometric realisation is a π∗-
isomorphism of sequential spectra in topological spaces.
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Theorem 5.5.4 The category of sequential spectra in simplicial sets has a
stable model structure with weak equivalences given by the π∗-isomorphisms
and cofibrations given by the q-cofibrations.

The fibrations are the levelwise Kan fibrations f : X −→ Y such that the
commutative square

Xn
f

σ̃X
n

Yn

σ̃Y
n

ΩXn+1
Ω f
ΩYn+1

is a homotopy pullback square of pointed simplicial sets for each n ∈ N.

We may compare the stable model structure on sequential spectra in sim-
plicial sets with the stable model structure on sequential spectra in topological
spaces using the geometric realisation–singular complex adjunction.

Theorem 5.5.5 Geometric realisation and the singular complex functor in-
duce a Quillen equivalence

| − | : SN(sSet∗) SN(Top∗) : sing.

Proof Both functors preserve all levelwise weak equivalences, and the sin-
gular complex functor preserves levelwise fibrations and levelwise acyclic fi-
brations. The stable fibrations of SN(Top∗) are defined as levelwise fibrations
satisfying a homotopy pullback square property in pointed spaces analogous to
Theorem 5.5.4. As sing is a right Quillen functor, it sends homotopy pullback
squares in pointed spaces to homotopy pullback squares in pointed simplicial
sets. Hence, we have a Quillen adjunction on the stable model structures.

We now prove it is a Quillen equivalence. Let X be a cofibrant spectrum
in simplicial sets and Y a fibrant spectrum in topological spaces. The derived
counit of the adjunction at Y is the composite of a pair of levelwise weak
equivalences

|(sing Y)co f | −→ | sing Y | −→ Y.

The derived unit of the adjunction at X is the composite

X
∼−→ sing |X| −→ sing |X f ib|.

The first map is a levelwise weak equivalence, and the second map is levelwise
weakly equivalent to the π∗-isomorphism

X −→ X f ib. �
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We may repeat the above for symmetric spectra in simplicial sets. The start-
ing point is simplicial sets with an action of the symmetric group on n letters,
Σn. An action of Σn on a pointed simplicial set A is an action of Σn on each
set Ak that preserves the basepoint, and these actions should commute with the
face and degeneracy maps.

Definition 5.5.6 A symmetric spectrum in simplicial sets X is a sequence of
pointed simplicial sets Xn, along with the following data and conditions, for
n ∈ N.

1. Xn has an action of Σn which fixes the basepoint.
2. There are maps of pointed simplicial sets σn : S 1 ∧ Xn → Xn+1.

3. The composite map σk
n given by

S k ∧ Xn
Id∧σn

S k−1 ∧ Xn+1
Id∧σn+1 · · · σn+k−1

Xn+k

is compatible with the Σk × Σn-actions on domain and target. Here, we treat
Σk × Σn as a subgroup of Σk+n, where Σk permutes the first k letters and Σn

the last n letters.

A morphism of symmetric spectra f : X → Y is a collection of Σn-equivariant
maps

fn : Xn → Yn

(so fn(αx) = α fn(x) for each x ∈ X and α ∈ Σn) such that the square

S 1 ∧ Xn
Id∧ fn

σX
n

S 1 ∧ Yn

σY
n

Xn+1
fn+1

Yn+1

commutes for each n ∈ N. We denote the category of symmetric spectra in
simplicial sets as SΣ(sSet∗).

Just as for sequential spectra, we get levelwise and stable model structures
on symmetric spectra in simplicial sets.

Proposition 5.5.7 There is a levelwise model structure on symmetric spectra
in simplicial sets, where the weak equivalences are the levelwise weak equiv-
alences of simplicial sets and where the fibrations are the levelwise fibrations
of simplicial sets. We call the cofibrations the q-cofibrations.

This category is cofibrantly generated with generating sets analogous to
those for the levelwise model structure in the topological case (see Definition
5.3.4), but using the generating sets of pointed simplicial sets, that is,
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Ilevel = {FΣd (∂Δ[n]+ −→ FΣd Δ[n]+) | n, d ∈ N}
Jlevel = {FΣd (Λr[n]+ −→ FΣd Δ[n]+) | d ∈ N, 0 < n, 0 � r � n}.

Similarly, there is a stable model structure on SΣ(sSet∗). We omit the proofs
that the levelwise and stable model structures exist, as they are similar in nature
to those of Section 5.3.

Theorem 5.5.8 There is a stable model structure on the category of symmet-
ric spectra in simplicial sets SΣ(sSet∗) with weak equivalences given by the
stable equivalences and cofibrations by the q-cofibrations.

The fibrations are the levelwise Kan fibrations f : X −→ Y such that the
commutative square

Xn
f

σ̃X
n

Yn

σ̃Y
n

ΩXn+1
Ω f
ΩYn+1

is a homotopy pullback square of pointed simplicial sets for each n ∈ N.

The primary reference for symmetric spectra in simplicial sets is [HSS00].
That reference takes a slightly different approach, using injective Ω-spectra to
define stable equivalences, see [HSS00, Definition 3.1.1].

As with the topological case, there is a forgetful functor UΣ
N

from symmetric
spectra to sequential spectra. It has a left adjoint PΣ

N
.

Theorem 5.5.9 There is a diagram of Quillen equivalences

SN(sSet∗)
|−|

P
Σ
N

SN(Top∗)
sing

P
Σ
N

SΣ(sSet∗)

U
Σ
N

|−|
SΣ(Top∗),

U
Σ
N

sing

such that the square of left adjoints commutes up to natural isomorphism (and
hence, so does the square of right adjoints).

Proof The left-hand vertical pair is a Quillen adjunction, as the right adjoint
U
Σ
N

preserves levelwise (acyclic) fibrations and preserves the homotopy pull-
back squares defining stable fibrations.

We have seen that the right-hand vertical pair is a Quillen equivalence by
Theorem 5.3.24. The top horizontal adjunction is a Quillen equivalence by
Theorem 5.5.5. A similar argument applies to show that the lower horizontal
pair is also a Quillen equivalence.
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The result follows from the two-out-of-three property for Quillen equiva-
lences. �

A direct proof of the Quillen equivalence between symmetric spectra (in
simplicial sets) and sequential spectra (in simplicial sets) is given as [HSS00,
Theorem 4.2.5].

5.5.2 Diagram Spectra

We describe two other constructions from Mandell, May, Schwede and Shipley
[MMSS01]. The first, SW , is another model for the stable homotopy category.
The category SW , along with sequential spectra, symmetric spectra and orthog-
onal spectra, is an example of diagram spectra, as we discuss in more detail in
Chapter 6.

The second construction, SF , is a model for that part of the stable homotopy
category whose objects have trivial homotopy groups in negative degrees, also
known as connective spectra. A thorough treatment is given in [Sch99].

The first construction uses a very complicated category to define its category
of spectra. While this is an obvious drawback, the suspension functor appears
naturally from the definition.

Definition 5.5.10 We define W ⊂ Top∗ to be the full subcategory consist-
ing of pointed spaces isomorphic to finite CW-complexes. A W -spectrum is a
functor from W to Top∗ that is enriched over Top∗.

A morphism of W -spectra is a natural transformation of Top∗-enriched func-
tors. We denote the category of W -spectra by SW .

It is not immediately clear why SW deserve to be called “spectra”, so we
show how to define a sequential spectrum from a W -spectrum. Let

F : W −→ Top∗

be a Top∗-enriched functor, and let A and B be finite CW-complexes. Since F
is an enriched functor, there are maps of pointed spaces

FA,B : W (A, B) −→ Top∗(F(A), F(B))
F̃A,B : F(A) ∧W (A, B) −→ F(B)

which correspond to each other under the adjunction of smash product and
function spaces. The smash product functor of pointed spaces also induces
a map

aA,B : B � W (S 0, B)
A∧−−−−→ W (A, A ∧ B).



218 Modern Categories of Spectra

Combining these maps gives the assembly map of F

F(A) ∧ B
Id∧aA,B−−−−−→ F(A) ∧W (A, A ∧ B)

F̃A,A∧B−−−−→ F(A ∧ B).

We may now define a sequential spectrum UW
N

F by (UW
N

F)n = F(S n). Its
structure maps are the assembly maps defined above with A = S n and B = S 1,
giving a map

ΣF(S n) −→ F(S n+1).

We can think of the assembly map as allowing us to suspend with respect to
any finite CW-complex.

Theorem 5.5.11 There is a stable model structure on the category SW of
W -spectra, where the weak equivalences are the π∗-isomorphisms of underly-
ing sequential spectra. The fibrations are defined termwise. The cofibrations
are those maps with the left lifting property with respect to termwise acyclic
fibrations.

The functor UW
N

: SW −→ SN has a left adjoint, and this adjunction is a
Quillen equivalence with respect to the stable model structures. �

This model structure is called the absolute stable model structure in
[MMSS01]. In the other direction, we may take a very simple category and
obtain a model for the category of connective spectra, that is, spectra whose
homotopy groups are zero in negative degrees. Thus, we do not obtain a model
for the stable homotopy category, but the resulting homotopy category is still
interesting. Consequently, we do not use the term “spectra” for these objects.

Definition 5.5.12 We define F to be the category of finite pointed sets

n+ = {0, 1, . . . , n}

with basepoint 0, for n ∈ N. The morphisms are the pointed maps of sets.
An F -space is a Top∗-enriched functor from F to Top∗. A morphism of

F -spaces is a Top∗-enriched natural transformation. The category of F -spaces
is denoted by SF .

The category of F -spaces can also be found in literature as the category of
Γ-spaces.

Since a finite pointed set is a finite CW-complex, any W -spectrum defines
an F -space. There is an adjunction

P
W
F : SF SW :UW

F .



5.5 Other Categories of Spectra 219

Given an F -space X, we may define the homotopy groups of X to be the
homotopy groups of the sequential spectrum underlying PW

F X. This gives us
the notion of π∗-isomorphisms of F -spaces.

Theorem 5.5.13 The category of F -spaces has a model structure with the
weak equivalences being the π∗-isomorphisms. The cofibrations are those maps
that have the left lifting property with respect to levelwise acyclic fibrations of
pointed spaces.

The prolongation–forgetful functor adjunction

P
W
F : SF SW :UW

F

is a Quillen adjunction with this model structure.
If X is a cofibrant F -space, then PW

F X is a W -spectrum with πk(PW
F X) = 0

for all k < 0. If Y is a W -spectrum with πk(Y) = 0 for all k < 0, then the
derived unit map at Y

P
W
F (UW

F Y f ib)
co f −→ PW

F (UW
F Y f ib) −→ Y f ib −→ Y

is a π∗-isomorphism.

We view the last two statements as saying that F -spaces are a model for
connective spectra. By Remark 2.4.6, connective spectra are strongly related
to infinite loop spaces. In [Seg74], Segal uses F -spaces (Γ-spaces) to examine
this relation in detail.

5.5.3 More Spectra

S–Modules
We briefly mention the category of S –modules of Elmendorf, Kriz, Mandell
and May [EKMM97]. We leave the (lengthy) definition to the reference and
concentrate on the main theorem. Our reason for including S –modules on
such a brief scale rather than omitting them altogether is that they provide a
model for the stable homotopy category where every object is fibrant, which
can sometimes provide a technical advantage.

Theorem 5.5.14 There is a stable model structure on the category of
S –modules which is Quillen equivalent to the category of orthogonal spectra
equipped with the positive stable model structure of Proposition 6.7.1.

Every object of the stable model structure on S –modules is fibrant.

The Quillen equivalence statement can be found in [MM02, Chapter 1], see
also [Sch01a] for a Quillen equivalence between S –modules and symmetric
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spectra rather than orthogonal spectra. In fact, these Quillen equivalences are
strong symmetric monoidal and pass to Quillen equivalences of rings, modules
and commutative rings.

Spectra in General Model Categories
Hovey [Hov01b] provides a theory of how to generalise the notion of spectra
and symmetric to spectra to more general model categories.

The base idea is that one takes a model category C and a left Quillen functor
T : C −→ C with right adjoint U and makes a category

SN(C,T ),

where an object X is a collection Xn ∈ C, n � 0, with maps σn : T Xn → Xn+1.
A map of spectra f : X −→ Y is then a sequence of maps fn : Xn −→ Yn

commuting with the structure maps.
After making a levelwise model structure, one constructs a stable model

structure via a left Bousfield localisation, see Chapter 7. This requires C to
be left proper and cellular (in the sense of [Hir03, Chapter 12]). The fibrant
objects are the U-spectra, that is, those spectra which are levelwise fibrant and
where the adjoints of the structure maps

Xn −→ UXn+1

are weak equivalences.

Theorem 5.5.15 Let C be a left proper and cellular model category, with a
Quillen adjunction (T,U) between C and itself. Then, using the stable model
structure, the functor T extends to a Quillen equivalence

T : SN(C,T ) −→ SN(C,T ).

Similar statements are proven for symmetric spectra in the case that C is a
symmetric monoidal model category and T = K ⊗ − for K a cofibrant object
of C.

Equivariant Spectra
Equivariant homotopy theory is a means of discussing homotopy theory “with
symmetries” via incorporating group actions. Rather than introducing group
actions to the constructions that we already performed, one would have to start
the whole book again from the category of pointed spaces with an action of
a compact topological group G. The weak equivalences of G-spaces are maps
f : X −→ Y such that for each closed subgroup H of G, the induced map on
fixed points f H : XH −→ YH is a weak homotopy equivalence. In this category,
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one would look for stable phenomena, construct equivariant (co)homology the-
ories and then develop categories of equivariant spectra. We will only give the
starting points of equivariant stable homotopy theory and direct the interested
reader to [LMSM86], [May96] and [MM02].

A G-spectrum is not indexed over N like a sequential or orthogonal spec-
trum, but is indexed over real G-representations V . We do not index over
all representations, but rather a particular set of representations called a G-
universe. A representation sphere S V is the one-point compactification of a
representation V . The maps g : V −→ V induce maps g : S V −→ S V , and thus,
S V is a G-space. A G-spectrum consists of the following data

• a G-space X(V) for every representation V in the G-universe,
• structure maps of G-spaces S W−V ∧ X(V) −→ X(W), with the domain

equipped with the diagonal action of G.

Morphisms of G-spectra are then defined as a collection of G-maps between
G-spaces that commute with the structure maps. We say that a morphism
f : X −→ Y of G-spectra is a weak equivalence if the maps

πH
∗ ( f ) : πH

∗ (X) −→ πH
∗ (Y)

are isomorphisms for all subgroups H of G. Here,

πH
q (X) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
colimV [G/H+ ∧ S V⊕Rq

, X(V)]G if q � 0

colim
V⊃Rq

[G/H+ ∧ S V−Rq
, X(V)]G if q � 0,

where [−,−]G denotes the homotopy category of G-spaces. This leads to a
model structure on G-spectra which is very rich in structure, as it incorporates
all concepts of the homotopy theory of spectra, as well as inheriting a wealth
of constructions from representation theory such as induction, restriction, in-
flation, fixed points, transfer maps and norm functors.

Motivic Spectra
Motivic homotopy theory [MV99] is the study of schemes up to a notion of
homotopy, with the role of the unit interval taken by the affine line A1. To help
study these schemes and their homotopy theory, one develops cohomology the-
ories. From here, it is logical to construct motivic spectra, representing objects
for cohomology theories of schemes. Interestingly, there are two different sus-
pension coordinates for these spectra. This gives an extra grading in homotopy
groups.

From here, one may develop motivic stable homotopy theory. This is inter-
esting from the point of algebraic geometry and has applications in “classical”
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stable homotopy theory. For example, the motivic Adams spectral sequence
has been used to calculate stable homotopy groups of spheres far beyond the
range that they have previously been known, see, for example, [IX15]. The extra
grading on suspensions provides crucial extra algebraic structure on the
E2-term. This again shows how the general machinery of spectra and stable
homotopy theory encompasses and brings together a huge variety of interesting
mathematical fields.

5.6 Compact Objects

A very useful feature of triangulated categories is the notion of generators,
that is, objects that “generate” a whole triangulated category using exact trian-
gles and coproducts. When these generators are “compact”, we can understand
the whole of the triangulated category by looking at those generators and the
maps between them. This then leads to vital structural results for the stable
homotopy category.

Definition 5.6.1 Let T be a triangulated category with all small coproducts,
and let

G = {Xi | i ∈ I}
be a set of objects in T, where I denotes an indexing set. Then G is a set of
generators for T if the only full triangulated subcategory of T which is closed
under coproducts and contains G is T itself.

Our prime example is of course the case of T being the homotopy category of
a stable model category. In this case, the objects Xi are often called “homotopy
generators” of C. While we will not make this distinction, it is important to
avoid confusion with the notion of a generator (separator) of a category as in
[Mac71, Section V.7].

Definition 5.6.2 Let T be a triangulated category with all small coproducts.
We say that an object A ∈ T is compact if the functor T(A,−)∗ commutes with
arbitrary coproducts.

The above definition relates to the definition of compactness of topological
spaces, because if a space A is compact, the functor [A,−] commutes with
arbitrary coproducts.

Lemma 5.6.3 Let T be a triangulated category with all small coproducts.
The class of compact objects is closed under finite coproducts, suspension and
desuspension. �
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Lemma 5.6.4 For a set of compact objects {Xi} in a triangulated category T

with all small coproducts, the following two statements are equivalent.

• The set G = {Xi | i ∈ I} is a set of generators of T.
• A morphism f : A −→ B in T is an isomorphism if and only if

T(Xi, f )∗ : T(Xi, A)∗ −→ T(Xi, B)∗

is an isomorphism of groups for all Xi ∈ G.

Proof Assume that G is a set of generators and that T(Xi, f )∗ is an isomor-
phism for all i ∈ I. We want to show that f itself is an isomorphism. Let T′

denote the full subcategory on those objects K such that T(K, f )∗ is an isomor-
phism. By the Five Lemma, T′ is a triangulated subcategory of T. It is closed
under coproducts and contains all of G, hence, T′ is equal to T by the definition
of a set of generators. The Yoneda Lemma implies that f is an isomorphism.

Now assume the second condition. Note that this assumption is equivalent
to assuming that Z � 0 for an object Z ∈ T is equivalent to T(Xi,Z) = 0 for all
Xi ∈ G. Let X ∈ T and

W = {∗ −→ Xi | i ∈ I}.
Then Example 7.1.5 (which only requires a triangulated category with all small
coproducts) applied to this set gives an exact triangle

W̃∞ −→ X −→ X∞ −→ ΣW̃∞

with W̃∞ built from G using coproducts, triangles and (de)suspensions, and

T(Xi, X∞) = 0 for all i ∈ I.

By our assumption, X∞ � 0, and so W̃∞ −→ X is an isomorphism in T. Thus,
X is in the full triangulated subcategory generated by G. �

Remark 5.6.5 Having a set of compact generators is a non-trivial condi-
tion. For example, the triangulated categories Ho(LHZS) and Ho(LHFpS) which
will be introduced in Chapter 7 have no non-zero compact objects by [HS99,
Corollary B.13].

Let us look at the example of T = SHC = Ho(SN).

Proposition 5.6.6 Let X be a sequential spectrum and k ∈ N. There are
natural isomorphisms of abelian groups

πk(X) � [Σ∞S k, X] and π−k(X) � [FNk S 0, X],

where FNk S 0 denotes the shifted suspension spectrum.
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Proof We begin with the case of [Σ∞S k, X]. Using the adjunction

Σ∞ : Ho(Top∗) SHC :Ω∞

from Lemma 5.1.1, we can work in the homotopy category of pointed spaces.
That adjunction and our explicit description of fibrant replacement in
Section 2.4 show that [Σ∞S k, X] is isomorphic to the abelian groups

[S k, hocolimaΩ
aXa] � colima[S k+a, Xa] � πk(X).

The first isomorphism follows since S k is a compact space. For the second
isomorphism, we note that we only need to consider the basepoint components
of the Xa, as the adjoint structure maps Xa −→ ΩXa+1 only depend on the
basepoint components of the Xa+1. Equally, the structure map ΣXa −→ Xa+1

has image in the basepoint component of Xa+1.
For the case of [FNk S 0, X], we use the stability of the stable model struc-

ture on sequential spectra to suspend k times and get the first isomorphism
below. The second isomorphism is the π∗-isomorphism FNk S K −→ FN0 S 0. The
remainder are as for the previous case.

[FNk S 0, X] � [FNk S k,ΣkX]

� [FN0 S 0,ΣkX]

� [S 0, hocolimaΩ
aΣkXa]

� colima[S a,ΣkXa]

� colima πa(ΣkXa)

= π0(ΣkX)

The result then follows from the formula

π0(ΣkX) � π−k(X)

used in the proof of Lemma 2.2.7. �

Since π∗-isomorphisms are the weak equivalences of the stable model struc-
ture on sequential spectra, our definition of graded maps in the homotopy cat-
egory gives the following.

Corollary 5.6.7 Let X be a sequential spectrum. Then [S, X]∗ = 0 if and only
if X � ∗. �

As a consequence of the above and Lemma 2.2.9, we have the following.

Corollary 5.6.8 The sphere spectrum is a compact generator for SHC. �
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We will encounter compact generators in various places in this book. In
any case, there is a very useful comprehensive list of examples of compact
generators in stable homotopy theory in [SS03b].

Having a set of compact generators makes it much easier to check if exact
functors which preserve arbitrary coproducts are equivalences.

Lemma 5.6.9 Let T be a triangulated category with infinite coproducts and
a set of compact generators G = {Xi | i ∈ I}. Furthermore, let F : T −→ T be
an exact endofunctor that commutes with arbitrary coproducts. If

{F(Xi) | i ∈ I} = G

and

F : T(Xi, Xj)
�−→ T(F(Xi), F(Xj)) for all i, j ∈ I,

then F is an equivalence of categories.

The idea is that all of T is “generated” from the Xi using exact triangles
and coproducts, so a functor respecting exactly those must inevitably be an
equivalence.

Proof We are going to show that F is fully faithful and essentially surjective.
Consider the full subcategories of T for each i ∈ I

Ti = {Y ∈ T | F : T(Xi,Y) −→ T(F(Xi), F(Y)) is an isomorphism}.
As F is exact, Ti is triangulated. As Xi and F(Xi) are compact for each i ∈ I, Ti

is closed under coproducts. By assumption, Xj ∈ Ti for all j ∈ I. This means
that Ti = T for all i. Similarly, the full subcategory

T̄ = {X ∈ T | F : T(X,Y)
�−→ T(F(X), F(Y)) for all Y ∈ T}

is triangulated and closed under coproducts, and we have just shown that it
contains all the Xi. Thus, T̄ = T, so our functor is fully faithful.

It remains to be shown that F is essentially surjective. Let T̃ denote the
essential image of F, that is, all X′ ∈ T for which there is an X with F(X) � X′.
We claim that T̃ is closed under exact triangles. For this, let X′,Y ′ ∈ T̃, and
let X,Y ∈ T with F(X) = X′ and F(Y) = Y ′. If X′ and Y ′ are part of an exact
triangle

X′
f ′

Y ′ Z′ ΣX′,

then we must show that Z′ ∈ T̃. As F is fully faithful, there is a morphism f
with F( f ) equal to the composite

F(X) �
X′

f ′
Y ′ �

F(Y).
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The map F( f ) is part of an exact triangle

F(X)
F( f )

F(Y) Z ΣF(X)

for some Z. By the axioms of triangulated categories, we have a morphism of
exact triangles

X′
f ′

�

Y ′

�

Z′

�

ΣX′

�

F(X)
F( f )

F(Y) Z ΣF(X),

where the third vertical arrow Z′ −→ Z is an isomorphism because the other
vertical arrows are.

We can complete f to an exact triangle

X
f−→ Y −→ C f −→ ΣX.

As F is exact, we have that

F(X)
F( f )

F(Y) F(C f ) ΣF(X)

is an exact triangle. Comparing with the exact triangle

F(X)
F( f )

F(Y) Z ΣF(X)

yields that Z′ � Z � F(C f ), which implies that Z′ lies in the essential image
of F. Thus, T̃ = T, which was our original claim. �

Corollary 5.6.10 Consider an adjunction between compactly generated tri-
angulated categories with all small coproducts

F : T T′ :G.

If G commutes with small coproducts and the unit and counit

ηY : Y −→ (G ◦ F)(Y), εX : (F ◦G)(X) −→ X

are isomorphisms on the generators, the adjunction is an equivalence of trian-
gulated categories. �

Definition 5.6.11 Let T be a triangulated category, and let F be a full trian-
gulated subcategory of T. Then F is thick if F is closed under retracts.

If in addition F is closed under arbitrary coproducts, then F is a localising
subcategory.
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Proposition 5.6.12 Let T be a triangulated category with all small coprod-
ucts and a set of compact generators

G = {Xi | i ∈ I}.
Then an object of T is compact if and only if it lies in the thick subcategory
generated by G, that is, in the smallest thick subcategory of T containing G.

Proof First, we show that the compact objects of T form a thick subcategory.
Let

A1 −→ A2 −→ A3 −→ ΣA1

be an exact triangle with two of the objects being compact. Now let Xi be a set
of objects in T. Applying

⊕iT(−, Xi)∗ −→ T(−,�Xi)∗

gives us a morphism of two long exact sequences

· · · ⊕iT(A1, Xi)∗−1 ⊕iT(A3, Xi)∗ ⊕iT(A2, Xi)∗ ⊕iT(A1, Xi)∗ · · ·

· · · T(A1,�Xi)∗−1 T(A3,�Xi)∗ T(A2,�Xi)∗ T(A1,�Xi)∗ · · · .

By the Five Lemma, all vertical maps are isomorphisms, hence, the class of
compact objects is closed under exact triangles. Now let A be compact and B
a retract of A. We have a morphism of two retracts of graded abelian groups,

⊕iT(B, Xi)∗ ⊕iT(A, Xi)∗ ⊕iT(B, Xi)∗

T(B,�Xi)∗ T(A,�Xi)∗ T(B,�Xi)∗.

The middle vertical map is an isomorphism. As retracts of isomorphisms are
isomorphisms, the other two vertical maps are isomorphisms too, and we can
conclude that retracts of compact objects are compact. Thus, the compact ob-
jects of T form a thick subcategory containing the generators G, which are
compact by assumption. Thus, we have

(thick subcategory generated by G) ⊆ (compact objects of T).

The converse is [HPS97, Corollary 2.3.12]. We will give a sketch proof. Let
F denote the thick subcategory of T generated by the elements of G. Let

H : F −→ Ab∗
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be a homology functor, that is, a functor that takes exact triangles to long
exact sequences, which also takes coproducts to direct sums. Then H can be
extended to the entire category of T by

Ĥ : T −→ Ab∗, Ĥ(X) = colim H(Xα),

where the colimit is taken over {Xα −→ X | Xα ∈ F}. This Ĥ is again a homol-
ogy functor, and every other extension of H onto T is canonically isomorphic
to Ĥ [HPS97, Corollary 2.3.11].

Now let X be a compact object of T. We would like to show that it is in F.
Because X is compact, the functor H = T(X,−)∗ defines a homology functor
on F. As before, let

Ĥ(X) = colim H(Xα) = colimT(X, Xα)∗,

which extends

T(X,−)∗ : F −→ Ab∗

uniquely to T. Since X is compact, the functor T(X,−)∗ is already a well-
defined homology functor on T. So uniqueness of the extension implies

T(X, X)∗ = Ĥ(X) = colimT(X, Xα)∗.

This means that the identity of X is an element of this colimit and thus factors
through some Xα. In other words, X is a retract of Xα. As Xα lies in F, which
is closed under retracts, X lies in F too. �

In Definition 2.1.8, we defined a CW-spectrum as a sequential spectrum X
such that

• each space Xn is a pointed CW-complex,
• each structure mapσ : ΣXn −→ Xn+1 is a cellular map that is an isomorphism

onto a subcomplex of Xn+1.

We also noted that if we apply the structure map to a cell in Xn, we obtain a
cell in Xn+1. The colimit of such a sequence of cells is called a stable cell.

Now Proposition 5.6.12 helps us identify the compact objects of the stable
homotopy category.

Theorem 5.6.13 For an object X in the stable homotopy category SHC, the
following are equivalent.

• X is compact.
• X is in the thick subcategory generated by the sphere spectrum.
• X is isomorphic in SHC to a CW-spectrum with finitely many stable cells.
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Proof The first two points are equivalent by Proposition 5.6.12.
The class of spectra isomorphic to finite CW-spectra is a thick subcategory

of SHC. Furthermore, it contains the sphere spectrum. Therefore, it contains
the thick subcategory generated by the sphere spectrum, that is, the class of
compact objects.

Conversely, let us show that a spectrum that is isomorphic to a finite CW-
spectrum is compact. Let X be a CW-spectrum with finitely many stable cells.
Without loss of generality, we assume that the smallest dimension of a stable
cell is 0. We construct a CW-approximation to X. The 0–skeleton X(0) con-
sists of FN0 (∗) (the basepoint) and a finite wedge of spectra of the form FNd Dd

+,
one for each stable 0–cell. We choose the indices d so that there is a map
Dd
+ −→ Xd representing each stable 0–cell. By adjunction, these representa-

tives give a map X(0) −→ X.
A stable 1–cell of X is represented by a map of pointed spaces Dn+1

+ −→ Xn

(a cell of the CW-complex Xn). The attaching map of this cell S n
+ −→ Xn lands

in the n–skeleton of Xn. By increasing n, we may assume that the image of the
attaching map lands in the image of the stable 0–cells. By adjunction, we have
a map FNn S n

+ −→ X. After repeating this for each stable 1–cell, we may form
the pushout diagram

∨
α FNdα S dα

+ X(0)

∨
α FNdα Ddα+1

+ X(1),

where α runs over the finite set of stable 1–cells of X. This pushout defines an
exact triangle

∨

α

FNdα S dα
+ −→ X(0) −→ X(1) −→ Σ

⎛⎜⎜⎜⎜⎜⎝
∨

α

FNdα S dα
+

⎞⎟⎟⎟⎟⎟⎠ .

We continue in this way until all stable cells are added. As X only has finitely
many stable cells, this process will terminate at X(m) for some m. As with
spaces, there is a map X(m) −→ X which is a π∗-isomorphism.

Thus, up to isomorphism in SHC, X can be constructed using finitely many
coproducts and cofibre sequences of objects of the form FNd S n

+. Applying FNd
to the cofibre sequence of spaces

S n
+ −→ Dn+1

+ −→ S n+1

gives an exact triangle

FNd S n
+ −→ FNd S 0 −→ FNd S n+1 −→ ΣFNd S n

+.
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Since spectra of the form FNd S n+1 are shifts of the sphere spectrum, every finite
CW-spectrum is in the thick subcategory generated by the sphere. �

Corollary 5.6.14 The homotopy groups of a compact spectrum X are finitely
generated over Z in each degree, and only finitely many negative homotopy
groups are non-zero.

Proof This is true for the sphere spectrum, see, for example, [Ser53] or [Spa81,
Chapter 9.7], so it holds for any CW-spectrum with finitely many cells. �

The following result is phrased for sequential spectra, but similar results
hold for any orthogonal spectra and, where appropriate, symmetric spectra.

Lemma 5.6.15 Let

X1
f1−→ X2

f2−→ X3
f3−→ · · ·

be a sequential diagram of cofibrant sequential spectra. If each Xi is an Ω-
spectrum, then so is the homotopy colimit of the diagram.

Furthermore, there is an exact triangle

∨

n

Xn
Id−∨n fn−−−−−−→

∨

n

Xn −→ hocolim Xn −→ Σ
⎛⎜⎜⎜⎜⎜⎝
∨

n

Xn

⎞⎟⎟⎟⎟⎟⎠ .

For any compact spectrum A there is a natural isomorphism

colim[A, Xn] � [A, hocolim Xn].

Proof The first statement follows from Corollary A.7.10: Ω commutes with
homotopy colimits as loops and homotopy colimits are constructed levelwise.

Using Example A.7.12 and Lemma A.7.13, we may write the homotopy
colimit as the homotopy cofibre of

Id −
∨

n

fn :
∨

n

Xn −→
∨

n

Xn.

Applying [A,−] for a compact spectrum A to this exact triangle gives a short
exact sequence

0
⊕

n[A, Xn]
Id−⊕n( fn)∗ ⊕

n[A, Xn] [A, hocolimn Xn] 0.

Note that this is in fact a short exact sequence because Id − ⊕
n( fn)∗ is injec-

tive. The cokernel of the map Id −⊕
n( fn)∗ is colimn[A, Xn]. �

We may think of this as understanding maps from a compact object of the
stable homotopy category into a sequential homotopy colimit. Maps out of a
sequential homotopy colimit are examined in Corollary A.7.14, with the case
of maps into a sequential homotopy limit appearing as Corollary A.7.23.
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5.7 Rigidity of Spectra

Previously in this chapter, we got to know several different model categories
of spectra, which all have their individual technical advantages and disadvan-
tages. What they all have in common is that their homotopy category is the
stable homotopy category SHC. We have also seen that each individual cate-
gory of spectra that we discussed is Quillen equivalent to sequential spectra,
and thus, those categories of spectra are also Quillen equivalent to each other.

However, there is a wealth of different categories of spectra all modelling
SHC, and it would be tedious to compare them individually. The following
result by Schwede [Sch07a, Sch01b] tells us that, in fact, all such categories of
spectra are Quillen equivalent. This means that all higher homotopy structure
of spectra is captured by the triangulated structure of SHC alone.

Theorem 5.7.1 (Schwede) Let C be a stable model category. If there is an
equivalence of triangulated categories

Ψ : SHC −→ Ho(C),

then C is Quillen equivalent to sequential spectra SN.

This phenomenon is known as rigidity, that is, the stable homotopy category
is rigid.

In particular, we can replace sequential spectra in the statement with any
other model category of spectra. The idea of the theorem stems from a time
when lots of categories of highly structured spectra were being developed, the
construction of which usually involved a manually constructed Quillen equiv-
alence with a previously known category of spectra. The Rigidity Theorem
removes the necessity of this step, as it says that all stable model categories
modelling the stable homotopy category are automatically Quillen equivalent
on a model category level.

Providing a complete proof of Schwede’s Rigidity Theorem would be be-
yond the scope of this book, but we are going to present some of the key ideas,
as they will demonstrate the use of many tools in triangulated categories and
indeed spectra.

The model category C of the theorem could be any stable model category for
now, which makes it awkward to work with. So the first step will be to refor-
mulate the problem in order to remove C. The construction of stable framings
from Subsection 6.9.2 tells us that for any (fibrant and cofibrant) object X in a
stable model category C, there is a Quillen adjunction

X ∧ − : SN C :Map(X,−),
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which sends the sphere to X. (A weaker version had been previously devised
by Schwede and Shipley [SS02] as the “universal property of spectra”.)

In the situation of the theorem, let X be a fibrant and cofibrant replacement
of Ψ(S 0). Denote by F the composite

F : Ho(SN)
X∧L−−−−−→ Ho(C)

Ψ−1

−−−→ Ho(SN).

Note that

F(S) = Ψ−1(X ∧L S) = Ψ−1(Ψ(S)) = S.

We see immediately that X ∧L − is an equivalence of categories if and only
if F is, and as X ∧L − is the left derived functor of a Quillen functor, this
would prove the theorem. Thus, we have reduced the Rigidity Theorem to the
following statement:

Theorem 5.7.2 Let F : SHC −→ SHC be an exact endofunctor which sends
the sphere spectrum to itself. Then F is an equivalence of categories.

The rest of this section will outline the proof of this result.

Because the sphere spectrum is a compact generator for the stable homotopy
category, a consequence of Lemma 5.6.9 is the following.

Corollary 5.7.3 Let F : SHC −→ SHC be an exact endofunctor such that
F(S) � S. If

F : [S,S]n −→ [S,S]n

is an isomorphism for all n, then F is an equivalence of categories. �

To prove the Rigidity Theorem it is sufficient to show that for each prime p,

F : [S,S]n ⊗ Z(p) −→ [S,S]n ⊗ Z(p)

is an isomorphism for all n, where Z(p) denotes the p-local integers. We are
going to give an extremely brief outline of the steps towards this.

The statement is proved by induction on the Adams filtration of the elements
of π∗(S) ⊗ Z(p). This is based on the idea that the exact endofunctor preserves
not just composition, but also Toda brackets, see Section 4.6, and each ele-
ment of π∗(S) is “built” from elements of Adams filtration 1 using higher Toda
brackets [Coh68].

For p = 2, the elements of π∗(S) ⊗ Z(p) of Adams filtration 1 are the Hopf
elements η, ν and σ, and for each odd prime the only element in Adams filtra-
tion 1 is α1 ∈ π2p−3(S). Thus, the statement is reduced to checking that, up to a
p-local unit,

F(η) = η, F(ν) = ν, F(σ) = σ and F(α1) = α1 for all p.
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Again, as ν and σ satisfy strong Toda bracket relations with η, the statement
for those last two elements can be deduced from the statement for η with some
brief calculations. It remains to be shown that

F(η) = η and F(α1) = α1.

The proof that F(α1) = α1 is very lengthy and technical, and it occupies the
majority of [Sch07a]. However, the proof that F(η) = η is a very neat argument.
Consider the mod-2 Moore spectrum M as part of the exact triangle

S
2−→ S incl−−→ M

pinch−−−−→ ΣS.
Its identity map IdM satisfies

2IdM = incl ◦ η ◦ pinch,

see Lemma 4.6.6. As an exact endofunctor F has to send 2IdM to 2IdM

again (because it is, in particular, additive), it cannot send η to 0, otherwise
F(2IdM) = 2IdM would also be trivial. Hence,

F(η) = η ∈ π1(S) = Z/2.

Therefore, the key aspect of the Rigidity Theorem is the various reduction
steps in the proof:

• from checking that F : [X,Y]
�−→ [F(X), F(Y)] for all X,Y ∈ T to only check-

ing that F is an isomorphism on [S,S] ⊗ Z(p) using compact generators,
• from asking that F is an isomorphism on all of [S,S] ⊗ Z(p) to checking

this only on the Hopf elements and on α1 using induction on the Adams
filtration,
• finally reducing the previous statement to just one element for each p, namely,
η for p = 2 and α1 for p odd.

We return to the question of rigidity in Subsection 7.4.2.
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Monoidal Structures

The aim of this chapter is to investigate symmetric monoidal products on
our categories of spectra and the stable homotopy category. After motivat-
ing this monoidal product in terms of the smash product on spaces and the
Spanier–Whitehead category SW, we show that symmetric spectra and orthog-
onal spectra are symmetric monoidal model categories. As a consequence, the
stable homotopy category is a closed symmetric monoidal category, and this
monoidal structure is compatible with the triangulated structure in the sense of
Theorem 6.1.14.

The remainder of the chapter is investigating the consequences of this
monoidal structure at both the homotopy category and model category level. At
the homotopy level, we can give a modern interpretation of Spanier–Whitehead
duality. At the model category level, we discuss model categories of ring spec-
tra, modules over ring spectra and commutative ring spectra.

We end the chapter with an overview of some of the fundamental properties
of spectra and the stable homotopy category, demonstrating that they are cen-
tral to the study of stable homotopy theory. At the model category level, The-
orem 6.8.1 states that the positive stable model structure on symmetric spectra
(see Proposition 6.7.1) is initial amongst stable simplicial monoidal model cat-
egories. At the homotopy level, we show that the homotopy category of any
stable model category has an “action” of SHC in Theorem 6.9.28.

6.1 Monoidal Model Categories

A particularly useful piece of structure for a category to have is a monoidal
structure. In this section, we give a categorical definition, examples and nec-
essary conditions for the monoidal product to interact with the model struc-
ture and pass to the homotopy category. We focus on the case of symmetric

234
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monoidal structures, as this is the structure we aim to give to the stable homo-
topy category.

Further references for this material are Hovey [Hov99], along with Borceaux
[Bor94] and Kelly [Kel05] for the categorical underpinnings.

Definition 6.1.1 A symmetric monoidal category is a category C with a
functor

⊗ : C × C −→ C

called a monoidal product, an object I called the monoidal unit and isomor-
phisms

• a : (X ⊗ Y) ⊗ Z −→ X ⊗ (Y ⊗ Z) (associativity)
• u : I ⊗ X −→ X (unit)
• τ : X ⊗ Y −→ Y ⊗ X (symmetry)

which are natural in X, Y and Z and satisfy the coherence diagrams given be-
low. We often omit the maps from our notation and refer to (C,⊗, I) as a sym-
metric monoidal category. We also refer to the product ⊗ as being commutative
and call τ the twist functor.

The four coherence diagrams are as follows. The first says that four-fold
associativity is coherent.

((W ⊗ X) ⊗ Y) ⊗ Z
a

a⊗Id

(W ⊗ X) ⊗ (Y ⊗ Z)
a

W ⊗ (X ⊗ (Y ⊗ Z))

((W ⊗ (X ⊗ Y)) ⊗ Z a W ⊗ ((X ⊗ Y) ⊗ Z)

Id⊗a

The second says that the twist is self-inverse.

X ⊗ Y
τ

Id

Y ⊗ X
τ

X ⊗ Y

The third gives a coherence between the twist map and associativity.

(X ⊗ Y) ⊗ Z
a

τ

X ⊗ (Y ⊗ Z)

τ

Z ⊗ (X ⊗ Y)

Id⊗τ

(Y ⊗ Z) ⊗ X

τ⊗Id

Z ⊗ (Y ⊗ X) (Z ⊗ Y) ⊗ Xa
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The fourth gives a coherence between the unit, the twist and associativity.

(X ⊗ I) ⊗ Y
a

τ⊗Id

X ⊗ (I ⊗ Y)

Id⊗u

(I ⊗ X) ⊗ Y
u⊗Id

X ⊗ Y

Many other coherence diagrams will follow from these, such as n-fold asso-
ciativity, and that τ is the identity on I ⊗ I. A discussion on coherence is given
in [Mac71, Sections VII.1 and VII.7].

Many of standard categories have a symmetric monoidal structure.

Examples 6.1.2 The category of sets is a symmetric monoidal category with
the Cartesian product as the monoidal operation. The one-point set is the
monoidal unit. This product extends to simplicial sets, with the product act-
ing levelwise

(A × B)n = An × Bn,

and face and degeneracy maps given by the products of those for A and B. Sim-
ilarly, the category of pointed simplicial sets is a symmetric monoidal category
under the smash product. Its unit is the simplicial set S 0.

Topological spaces (that is, compactly generated weak Hausdorff spaces) are
a symmetric monoidal category under the Cartesian product, using the Kelly
product topology with the one-point space as the unit. Pointed spaces are also
symmetric monoidal categories with the smash product as the monoidal prod-
uct. The unit is S 0.

Chain complexes over a commutative ring R are a symmetric monoidal cat-
egory with monoidal product − ⊗ − given by

(X ⊗ Y)n =
⊕

a+b=n

Xa ⊗ Yb, ∂(xa ⊗ yb) = (∂xa) ⊗ yb + (−1)axa ⊗ ∂yb.

We will see later that each of these examples is a closed symmetric monoidal
category, that is, there is a function object related to the monoidal product.
Another source of examples is the category of maps in a monoidal category.
We will introduce two monoidal products on maps.

Definition 6.1.3 Let (C,⊗, I) be a symmetric monoidal category. For maps
f : A −→ B and g : X −→ Y in C, we define their pushout product to be the
natural map

f � g : B ⊗ X
∐

A⊗X
A ⊗ Y −→ B ⊗ Y.
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Let g : X −→ Y be a map in C and A be an object of C. Then,

IdA � g = IdA⊗Y : A ⊗ Y −→ A ⊗ Y.

In particular, IdI � g = IdY . Assume that C has an initial object ∅ and that
∅⊗ X = ∅ for all X in C. (This will hold when C is a closed symmetric monoidal
category.) Let iA : ∅ −→ A be the unique map from the initial object. Then

iA � g = A ⊗ g : A ⊗ X −→ A ⊗ Y.

In particular, iI � g = g.

Examples 6.1.4 Let (C,⊗, I) be a symmetric monoidal category. The cate-
gory of maps in C with commuting squares as the morphisms has a symmetric
monoidal product given by the termwise product. Given maps f : A −→ B and
g : X −→ Y , we define their termwise product as

f ⊗ g : A ⊗ X −→ B ⊗ Y.

The monoidal unit is the identity map of the unit.
Now assume that C has an initial object ∅ and that ∅ ⊗ X = ∅ for all X in C.

The category of maps in C is a symmetric monoidal category with the monoidal
product given by the pushout product. The monoidal unit is the map ∅ −→ I.

Definition 6.1.5 Let (C,⊗, I) be a symmetric monoidal category. We say that
C is closed symmetric monoidal if there is a functor

Hom: Cop × C −→ C

and a natural isomorphism

φ : C(A ⊗ B,C) −→ C(A,Hom(B,C)).

We call Hom the internal function object. Omitting the natural isomorphisms
as previously, we refer to (C,⊗, I,Hom) as a closed symmetric monoidal cate-
gory.

The addition of an internal function object adds a great deal of structure to
the category. In particular, we see that for any A in C there is an adjunction

A ⊗ − : C C :Hom(A,−),

so that A⊗− will preserve colimits and Hom(A,−) will preserve limits. More-
over, the functor Hom(I,−) is adjoint to IdC � I ⊗ − and hence is (naturally
isomorphic to) the identity functor of C.
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For A, B and C in C, the sequence of natural isomorphisms

Cop(Hom(A, B),C) = C(C,Hom(A, B)) � C(C ⊗ A, B) � C(A,Hom(C, B))

implies that there is an adjunction

Hom(−, B) : C Cop :Hom(−, B).

It follows that for any B in C, the functor Hom(−, B) sends colimits to limits.
For any A and B in C the isomorphism

C(∅ ⊗ A, B) � C(∅,Hom(A, B))

says that there is a unique map ∅ ⊗ A −→ B. Hence, we have a unique map
∅ ⊗ A −→ ∅ and the two composites

∅ ⊗ A −→ ∅ −→ ∅ ⊗ A ∅ −→ ∅ ⊗ A −→ ∅
are the identity maps. Thus, ∅ −→ ∅ ⊗ A is an isomorphism.

Examples 6.1.6 Sets, simplicial sets and topological spaces are all closed
symmetric monoidal categories. For sets, the function object is given by the
set of maps. For simplicial sets, the function object Hom(K, L) has n-simplices
given by

Hom(K, L)n = sSet(K × Δ[n], L)

with face and degeneracy maps coming from those for Δ[n]. For topological
spaces, we use the modified compact–open topology on the set of continuous
maps from a space X to a space Y , as introduced in Subsection 1.1.1.

Pointed spaces and pointed simplicial sets are also closed symmetric
monoidal categories, using smash products and function spaces defined via
pointed maps.

We now investigate symmetric monoidal categories that are also model cat-
egories. Given a model category C that is a symmetric monoidal category, we
want conditions on the model structure so that the monoidal product and inter-
nal function object pass to derived versions on the homotopy category. A first
condition is that the adjunction

(A ⊗ −,Hom(A,−))

should be a Quillen adjunction when A is cofibrant. We may also like to have
that the adjunction

(Hom(−, B),Hom(−, B))
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is a Quillen adjunction (using the opposite model structure on Cop) when B
is fibrant. The definition of a monoidal model category gives a much stronger
requirement that will imply both of these conditions.

Definition 6.1.7 Let (C,⊗, I,Hom) be a closed symmetric monoidal category
such that C is also a model category. We say that the pushout product axiom
holds for C if the following conditions are satisfied.

1. For some cofibrant replacement of the unit Ico f −→ I and any cofibrant A
in C, the map

Ico f ⊗ A→ I ⊗ A � A

is a weak equivalence.

2. For cofibrations f : A −→ B and g : X −→ Y in C, the map

f � g : B ⊗ X
∐

A⊗X
A ⊗ Y −→ B ⊗ Y

is a cofibration.

3. For cofibrations f and g in C with one of f or g a weak equivalence, the
map f � g is an acyclic cofibration.

By Lemma 6.1.10, if the first condition on the unit holds for some cofibrant
replacement of I, then it holds for every cofibrant replacement of I.

There are several adjoint versions of the above conditions involving fibra-
tions as well as cofibrations. These may be easier to check in some specific
examples where the fibrations are well understood.

Lemma 6.1.8 Let (C,⊗, I,Hom) be a closed symmetric monoidal category
with a model structure. The following two conditions are equivalent.

1. Given cofibrations f : A −→ B and g : X −→ Y in C, the map

f � g : B ⊗ X
∐

A⊗X
A ⊗ Y −→ B ⊗ Y

is a cofibration that is acyclic if one of f or g is as well.

2. Given a cofibration f : A −→ B and a fibration h : P −→ Q in C, the map

Hom�( f , h) : Hom(B, P) −→ Hom(B,Q) ×
Hom(A,Q)

Hom(A, P)

is a fibration that is acyclic if one of f or g is as well.

Proof This follows from how the adjunction relation between − ⊗ − and
Hom(−,−) interacts with pushouts and pullbacks. �
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Definition 6.1.9 A symmetric monoidal model category is a closed symmet-
ric monoidal category (C,⊗, I,Hom) with a model structure on C which satis-
fies the pushout product axiom.

We will see that this definition gives us the desired Quillen adjunctions and
a symmetric monoidal structure on the homotopy category.

Lemma 6.1.10 Let (C,⊗, I,Hom) be a symmetric monoidal model category.
Then when A is cofibrant and B is fibrant, the adjunctions

(A ⊗ −,Hom(A,−)) and (Hom(−, B),Hom(−, B))

are Quillen adjunctions.

Proof Consider the cofibration f : ∅ −→ A from the initial object to A and an
(acyclic) cofibration g : X → Y . The pushout product axiom states that

f � g : A ⊗ X � A ⊗ X
∐
∅⊗X
∅ ⊗ Y −→ A ⊗ Y

is an (acyclic) cofibration. Hence, A ⊗ − is a left Quillen functor. The other
case follows using the adjoint descriptions of the pushout product axiom from
Lemma 6.1.8 with the fibration B −→ ∗ from B to the terminal object. �

Theorem 6.1.11 Let (C,⊗, I,Hom) be a symmetric monoidal model category.
Then (Ho(C),⊗L, I,RHom) is a closed symmetric monoidal category.

Proof Let f : A −→ B and g : X −→ Y be weak equivalences between cofi-
brant objects. Then, as A ⊗ − and − ⊗ Y are Quillen functors, the maps

A ⊗ g : A ⊗ X −→ A ⊗ Y and f ⊗ Y : A ⊗ Y −→ B ⊗ Y

are weak equivalences, hence, so is f ⊗ g. It follows that ⊗ has a derived func-
tor. A similar argument shows that Hom also has a derived functor. We must
show that the functors

− ⊗L − : Ho(C) × Ho(C) −→ Ho(C)

RHom(−,−) : Ho(C)op × Ho(C) −→ Ho(C)

induce a closed symmetric monoidal structure on the homotopy category.
We begin by constructing the unit, symmetry and associativity isomorphisms.

We use the model category versions of these statements, but we must check
that they pass to homotopy categories. This will follow from two facts. Firstly,
when A is cofibrant, the functor A ⊗ − preserves cylinder objects on cofibrant
objects, therefore, it preserves homotopies. Secondly, −⊗− preserves all weak
equivalences between cofibrant objects. It follows that a, τ and u induce maps
at the level of homotopy categories.
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We have assumed that for any A in C, the map

I ⊗L A = Ico f ⊗ Aco f −→ I ⊗ Aco f u−→ Aco f −→ A

is a weak equivalence. Hence, I is a unit for ⊗L. The twist isomorphism on C

induces one on the homotopy category

τ : A ⊗L B = Aco f ⊗ Bco f −→ Bco f ⊗ Aco f = B ⊗L A.

We may define an associativity isomorphism via the sequence of maps

(A ⊗L B) ⊗L C = (Aco f ⊗ Bco f )
co f ⊗Cco f

∼−→ (Aco f ⊗ Bco f ) ⊗Cco f

a−→ Aco f ⊗ (Bco f ⊗Cco f )
∼←− Aco f ⊗ (Bco f ⊗Cco f )

co f

= A ⊗L (B ⊗L C).

The two maps labelled “∼” come from choices of cofibrant replacements and
are weak equivalences. Hence, the composite is an isomorphism in the homo-
topy category.

We next show that the adjunction isomorphism

φ : C(A ⊗ B,C) −→ C(A,Hom(B,C))

passes to the level of homotopy categories. As already mentioned, when A is
cofibrant, the functor A ⊗ − preserves cylinder objects on cofibrant objects.
Similarly, when B is cofibrant, Hom(B,−) preserves path objects on fibrant
objects, and for C fibrant, Hom(−,C) sends cylinder objects on cofibrant ob-
jects to path objects on fibrant objects. It follows that for A and B cofibrant and
C fibrant we obtain an isomorphism

[A ⊗ B,C] −→ [A,Hom(B,C)]

after one takes quotients by the homotopy relation. Since the functors involved
preserve weak equivalences between suitably cofibrant and fibrant objects, we
have an adjunction at the level of homotopy categories.

The coherence diagrams all follow from their model category versions, us-
ing the explicitly described associativity, unit and twist maps given above. �

Examples 6.1.12 Simplicial sets and topological spaces (with the Serre or
Hurewicz model structure) are all symmetric monoidal model categories. The
same is true of the pointed versions.

The projective model structure on chain complexes is a symmetric monoidal
model category. However, the category of chain complexes with the injective
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model structure is not symmetric monoidal: the pushout product axiom fails.
Recall that the cofibrations of this model structure are the monomorphisms.
Consider the monomorphisms 0 −→ Z/2 and Z −→ Q, viewed as chain
complexes in degree 0. Their pushout product is Z/2 −→ 0, which is not a
monomorphism.

When C is cofibrantly generated, it suffices to check conditions (2.) and (3.)
of the pushout product axiom on the generating sets.

Lemma 6.1.13 Let (C,⊗, I,Hom) be a closed symmetric monoidal category
with a cofibrantly generated model structure with generating sets I and J. As-
sume that for some cofibrant replacement of the unit Ico f −→ I and any cofi-
brant A in C, the map

Ico f ⊗ A→ I ⊗ A � A

is a weak equivalence.
If every map in I � I is a cofibration and every map in I � J is an acyclic

cofibration, then C is a symmetric monoidal model category.

Proof By Lemma 6.1.8, the maps in I have the left lifting property with re-
spect to maps of the form Hom�(i, h), where i ∈ I and h is an acyclic fibration.
Hence, maps of the form Hom�(i, h) are acyclic fibrations. As every cofibration
has the left lifting property with respect to such maps, Lemma 6.1.8 implies
that any map of the form f � i is a cofibration for f a cofibration and i ∈ I.
Using symmetry and repeating this argument shows that f � g is a cofibration
whenever f and g are cofibrations.

The case of an acyclic cofibration paired with a cofibration is similar. �

We note there is an adjoint version of the unit condition for a monoidal
model category: the map

X � Hom(I, X) −→ Hom(Ico f , X)

must be a weak equivalence for any fibrant X.
Now that we have defined stable model categories (whose homotopy cat-

egories are triangulated) and closed symmetric monoidal model categories
(whose homotopy categories are closed symmetric monoidal), it is logical to
ask how these two definitions interact.

A proposed list of axioms for a triangulated category with a compatible ten-
sor product can be found in [HPS97]. The following theorem is based on that
list. Further axioms for compatibility of a tensor product with a triangulated
category are given in [May01]. In particular, that reference considers axioms
for a tensor products of an exact triangle with another exact triangle.
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Theorem 6.1.14 Let (C,⊗, I,Hom) be a symmetric monoidal stable model
category. Then (Ho(C),⊗L, I,RHom) is a triangulated category with a closed
symmetric monoidal structure satisfying the following list of properties for all
A, X, Y and Z in Ho(C).

1. There is a natural isomorphism

eX,Y : (ΣX) ⊗L Y −→ Σ(X ⊗L Y).

2. The functor − ⊗L A is an exact functor.

3. The functor RHom(A,−) is an exact functor.

4. The functor RHom(−, A) sends an exact triangle of the form

X
f−→ Y

g−→ Z
h−→ ΣX

to the exact triangle

RHom(ΣX, A)
RHom(h,IdA)−−−−−−−−−→ RHom(Z, A)

RHom(g,IdA)−−−−−−−−−→
RHom(Y, A)

RHom( f ,IdA)−−−−−−−−−→ RHom(X, A).

5. Let a and b be integers, and let (−1) denote the additive inverse of the
identity map in the ring [I, I]. Then the diagram below commutes, where
the horizontal isomorphisms are induced by e and τ.

ΣaI ⊗L ΣbI
�

τ

Σa+bI

(−1)ab

ΣbI ⊗L ΣaI
�
Σa+bI

6. The following diagram commutes

(Σ(X ⊗L Y)) ⊗L Z
eX⊗LY,Z

(ΣX ⊗L Y) ⊗L Z

eX,Y⊗LIdZ

aΣX,Y,Z

Σ((X ⊗L Y) ⊗L Z)

ΣaX,Y,Z

ΣX ⊗L (Y ⊗L Z) eX,Y⊗LZ
Σ(X ⊗L (Y ⊗L Z)),

where aX,Y,Z denotes the associativity isomorphism of ⊗L.



244 Monoidal Structures

7. The following diagram commutes, where u denotes the unit isomorphism of
the monoidal structure.

ΣX ⊗L I u

eX,I

ΣX

Σ(X ⊗L I)
Σu

Proof When Y is cofibrant, the functor −⊗Y is a left adjoint which preserves
cylinder objects between cofibrant objects. It follows that for cofibrant X, there
is an isomorphism

eX,Y : ΣX ⊗ Y −→ Σ(X ⊗ Y).

This induces the natural map eX,Y in Ho(C), see Definition 3.1.2. The last two
coherence diagrams in the theorem follow as the suspensions are defined us-
ing pushouts, and the natural transformation e is defined using the universal
property of pushouts.

Let X −→ Y −→ Z −→ ΣX be an exact triangle in Ho(C), and let A ∈ Ho(C).
Since − ⊗L A, is the left derived functor of a Quillen functor, it is exact by
Theorem 4.5.2. Hence, the sequence

X ⊗L A −→ Y ⊗L A −→ Z ⊗L A −→ ΣX ⊗L A

is also an exact triangle, and the natural isomorphism eX,A shows that there is
no ambiguity in the last term.

Similarly, RHom(A,−) is exact. We may use the isomorphisms induced by
the natural transformation e

RHom(ΣX, A) � Σ−1
RHom(X, A) and RHom(X,Σ−1A) � Σ−1

RHom(X, A)

to see how Σ interacts with this functor.
The functor RHom(−, B) takes cofibre sequences to fibre sequences, which

we can see as follows. The sequence

· · · → [A,RHom(ΣX, B)]
∂→ [A,RHom(Z, B)]→ [A,RHom(Y, B)]

→ [A,RHom(X, B)]→ · · ·
is exact as it is isomorphic, by adjunction, to the long exact sequence

· · · → [ΣX ⊗L A, B]→ [Z ⊗L A, B]→ [Y ⊗L A, B]→ [X ⊗L A, B]→ · · · .
Moreover, the boundary map ∂ in the first exact sequence is induced by a map

RHom(ΣX, B) −→ RHom(Z, B)
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(which in turn is induced by the map Z −→ ΣX). By Remark 4.2.3, such a
boundary map in a long exact sequence is equivalent to the action of a fibre
sequence. Therefore,

RHom(Z, B)
RHom(g,IdB)−−−−−−−−−→ RHom(Y, B)

RHom( f ,IdB)−−−−−−−−−→ RHom(X, B)

is a fibre sequence whose action is induced by the coaction of the cofibre se-
quence

X
f−→ Y

g−→ Z.

Therefore, we have the exact triangle of point 4.
The remaining point is the sign convention 5. Given two exact triangles

X
f−→ Y

g−→ Z
h−→ ΣX and A

a−→ B
b−→ C

c−→ ΣA,

we can apply the 3 × 3 Lemma, Lemma 4.1.13, to the square

A ⊗L X
Id⊗L f

a⊗LId

A ⊗L Y

a⊗LId

B ⊗L X
Id⊗L f

B ⊗L Y.

In the resulting large grid, the lower right-hand corner commutes up to a sign
of −1. This corner is

C ⊗L Z
e◦Id⊗Lh

e′◦c⊗LId

Σ(C ⊗L X)

e′◦c⊗LId

Σ(A ⊗L Z)
e◦Id⊗Lh

�

Σ2(A ⊗L Z),

where e′ is the natural transformation (− ⊗L Σ−) −→ Σ(− ⊗L −) induced by e
and τ. Taking both triangles to be

I −→ ∗ −→ ΣI Id−→ ΣI
gives the result. �

Remark 6.1.15 We will refer to the homotopy category of a symmetric
monoidal stable model category as a tensor-triangulated category.

We now consider functors between symmetric monoidal (model) categories
that interact well with the monoidal structures. We focus on the case of most
interest, where we consider adjunctions between closed symmetric monoidal
categories. Our approach is based on [SS03a].
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Definition 6.1.16 Let (C,⊗C, IC,HomC) and (D,⊗D, ID,HomD) be sym-
metric monoidal categories. A functor G : C −→ D is said to be lax symmetric
monoidal (also known as weak symmetric monoidal) if there is a natural trans-
formation

φc,c′ : G(c) ⊗D G(c′) −→ G(c ⊗C c′)

and a map

ν : ID −→ G(IC)

satisfying three coherence diagrams describing the interaction with the unit,
twist map and associativity isomorphism.

We say that F is strong symmetric monoidal if φ is a natural isomorphism
and ν an isomorphism.

A functor F : C −→ D is said to be op-lax symmetric monoidal if there is a
natural transformation

φ̃c,c′ : F(c ⊗C c′) −→ F(c) ⊗D F(c′)

and a map

ν̃ : F(IC) −→ ID

satisfying three coherence diagrams describing the interaction with the unit,
twist map and associativity isomorphism.

As the coherence diagrams in the above definition are very similar to those
of Definition 6.1.1, we do not spell them out here.

Remark 6.1.17 A lax symmetric monoidal functor F lifts to a functor from
commutative monoids in C to commutative monoids in D. An op-lax symmet-
ric monoidal functor lifts to the level of commutative comonoids.

If the morphisms φ̃ and ν̃ of an op-lax symmetric monoidal functor F are
isomorphisms, then the functor F is strong symmetric monoidal. The notation
φ̃ and ν̃ has been chosen to reflect the standard example: op-lax symmetric
monoidal functors tend to be left adjoints to lax symmetric monoidal functors.

Lemma 6.1.18 Let (C,⊗C, IC,HomC) and (D,⊗D, ID,HomD) be symmetric
monoidal categories with an adjunction

F : C D :G.

Then the right adjoint G is lax symmetric monoidal if and only the left adjoint
F is op-lax symmetric monoidal.
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Proof We only show one direction of the proof as the other one is dual. We
first consider the maps relating the monoidal units. As (F,G) is an adjunction,
a map

ν : IC −→ G(ID)

corresponds to a map

ν̃ : F(IC) −→ ID.

Assume that G is lax monoidal, so there is a natural map

φd,d′ : G(d) ⊗C G(d′) −→ G(d ⊗D d′)

satisfying certain coherence conditions. The adjoint φ′ of φ is the composite

F(G(d) ⊗C G(d′))
Fφd,d′−−−−→ F(G(d ⊗D d′))

ε−→ d ⊗D d′.

We define φ̃d,d′ to be the composite below.

F(c ⊗C c′)
F(ηc⊗Cηc′ )−−−−−−−−→ F(GF(c) ⊗C GF(c′))

φ′
F(c),F(c′)−−−−−−→ F(c) ⊗D F(c′)

The coherence conditions for G imply the coherence conditions for F. �

Definition 6.1.19 Let (C,⊗C, IC,HomC) and (D,⊗D, ID,HomD) be sym-
metric monoidal model categories. Let

F : C D :G

be an adjunction such that G is lax symmetric monoidal with structure maps φ
and ν. The adjunction is a weak symmetric monoidal Quillen adjunction if the
adjoint structure maps φ̃ and ν̃ satisfy the following conditions.

1. For a cofibrant replacement IC
co f → IC of the unit of C, the composite

F(IC
co f ) −→ F(IC)

ν̃−→ ID

is a weak equivalence in D.
2. For cofibrant c and c′ in C, the map

φ̃c,c′ : F(c ⊗C c′) −→ F(c) ⊗D F(c′)

is a weak equivalence in D.

We say that (F,G) is a strong symmetric monoidal Quillen adjunction if, in
addition, ν̃ is an isomorphism and the adjoint structure φ̃ is an isomorphism for
all c and c′.
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If the unit condition of a weak symmetric monoidal Quillen adjunction holds
for one cofibrant replacement of the unit IC, then it holds for any cofibrant
replacement.

Examples 6.1.20 The primary example of a weak symmetric monoidal Quillen
adjunction is the rational Dold–Kan adjunction, as explained in detail in [SS03a].

Given a map of commutative rings f : R −→ S , the adjunction

S ⊗R − : Ch(R) Ch(S ) : f ∗

on chain complexes with the respective projective model structures is a strong
symmetric monoidal Quillen adjunction.

The Quillen adjunction given by geometric realisation and the singular
functor

| − | : sSet∗ Top∗ : sing

is strong symmetric monoidal.

Theorem 6.1.21 Let (C,⊗C, IC,HomC) and (D,⊗D, ID,HomD) be symmet-
ric monoidal model categories. Let

F : C D :G

be a weak symmetric monoidal Quillen adjunction. Then LF is a strong sym-
metric monoidal functor and RG is a lax symmetric monoidal functor.

Proof We prove that LF is a strong symmetric monoidal functor. Lemma
6.1.18 will then give the statement for RG.

Similar arguments to those in the proof of Theorem 6.1.11 show that the
natural transformations ν̃ and φ̃ pass to the homotopy category. The unit map
on homotopy categories is induced by the inverse of the composite

LF(I) = F(IC
co f ) −→ F(IC)

ν̃−→ ID,

which is a weak equivalence by assumption.
The monoidal map on homotopy categories is the composite

LF(c) ⊗L
D
LF(c′) = F(cco f )

co f ⊗D F(c′co f )
co f

−→ F(cco f ) ⊗D F(c′co f )
∼←− F(cco f ⊗C c′co f )

−→ F((cco f ⊗C c′co f )
co f

)
= LF(c ⊗L

C
c′),

where the middle map is φ̃, which is a weak equivalence by assumption.
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The coherence conditions follow from the model category versions, using
the explicit maps above. �

Remark 6.1.22 It seems to be more common that the left adjoint of an ad-
junction is strong symmetric monoidal, rather than the right adjoint. Of course,
when one has an equivalence of categories, the left adjoint is strong symmetric
monoidal if and only if the right adjoint is strong symmetric monoidal. This
follows from the relation between φ and φ̃ of Lemma 6.1.18.

This applies to show that the derived functors of a weak symmetric monoidal
Quillen equivalence are strong monoidal.

We now review the concept of an enriched category and how an enrichment
can interact usefully with model structures. The ideas are similar to those we
have already seen for monoidal model categories.

Definition 6.1.23 Let (C,⊗, I,Hom) be a closed symmetric monoidal cate-
gory. An enrichment of a category D in C is a functor

mapD(−,−) : Dop ×D −→ C

satisfying the following conditions and properties.

1. For each A ∈ D, there is a map I −→ mapD(A, A) called the identity
element.

2. For each triple A, B, C ∈ D, there is a composition map

mapD(B,C) ⊗mapD(A, B) −→ mapD(A,C).

3. The composition is associative and unital.

We have encountered this concept before.

Example 6.1.24 An additive category is a category with an enrichment in
abelian groups.

A closed symmetric monoidal category is enriched in itself, with the func-
tion object providing the enrichment.

In the cases of interest to us, we have more structure, namely, a tensor and
cotensor that are compatible with the enrichment.

Definition 6.1.25 Let (C,⊗, I,Hom) be a closed symmetric monoidal cate-
gory. A category D is a closed module over C (or a C–module) if there are
functors − ⊗̄ − called the tensor and (−)(−) called the cotensor

−⊗̄− : C ×D −→ D

(−)(−) : C ×Dop −→ D

mapD(−,−) : Dop ×D −→ C
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together with the following isomorphisms and coherence conditions.

1. An associativity isomorphism a : (C ⊗C′) ⊗̄ D −→ C ⊗̄ (C′ ⊗̄ D).
2. A unit isomorphism u : I ⊗̄ D −→ D.
3. A coherence diagram for associativity.
4. A coherence diagram relating the unit isomorphism of the tensor and the

unit isomorphism of C.
5. A coherence diagram relating the two unit isomorphisms and the symmetry

of C.
6. Compatibility isomorphisms

D(D, EC) � D(C ⊗̄ D, E) � C(C,mapD(D, E))

for C ∈ C and D, E ∈ D.

We can think of the tensor as giving an action of C on D. The functor ⊗̄ and
its adjoints are known as an adjunction of two variables.

Examples 6.1.26 For a ring R, the category of R–modules is a closed module
over the category of abelian groups.

A closed symmetric monoidal category is a closed module over itself. The
function object gives the enrichment and cotensor, and the tensor is the
monoidal product.

The category of sequential spectra is a closed module over the category of
pointed spaces, see Definition 2.3.1.

Just as we passed from closed symmetric monoidal categories to symmet-
ric monoidal model categories with Definition 6.1.7, we can define a model
category version of closed modules.

Definition 6.1.27 Let (C,⊗, I,Hom) be a symmetric monoidal model cate-
gory. A model category D is called a C–model category if it is a closed module
over C and the following conditions hold.

1. For a cofibration i in C and a cofibration j in D, the pushout product i� j is
a cofibration of D that is a weak equivalence if one of i or j is as well.

2. For a cofibrant replacement Ico f −→ I of the unit of C, the map

Ico f ⊗̄ D −→ I ⊗̄ D � D

is a weak equivalence for any cofibrant D ∈ D.

One can use an analogue of Lemma 6.1.8 to give equivalent characterisa-
tions of the above in terms of the enrichment or cotensor.
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Definition 6.1.28 When C is the category of pointed simplicial sets, a C–
model category is often called a simplicial model category.

When C is the category of pointed topological sets, a C–model category is
often called a topological model category.

Analogously to Theorem 6.1.14, the homotopy category of a C–model cat-
egory has an action of Ho(C). We do not include a proof, as it would be very
similar.

Theorem 6.1.29 Let (C,⊗, I,Hom) be a symmetric monoidal model category
and D a C–model category. The Ho(D) is a closed module over Ho(C). �

6.2 A Smash Product on the Stable Homotopy Category

The category of pointed topological spaces is a symmetric monoidal model
category with the smash product providing the monoidal product. Its unit is
the two point space S 0, and the internal function object is given by the space
of continuous maps (with a suitable topology).

It makes sense to extend this smash product to the Spanier–Whitehead cate-
gory SW and further to the stable homotopy category SHC, where we denote
it − ∧L −. We want the functor

Σ∞ : Ho(Top∗) −→ SHC

to be strong symmetric monoidal, so that

Σ∞A ∧L Σ∞B � Σ∞(A ∧ B)

for any pointed CW-complexes A and B. This will also imply that the unit of the
smash product of spectra will be the sphere spectrum S = Σ∞S 0. Furthermore,
for any spectrum X, we want the smash product of spectra to be related to the
smash product of a pointed CW-complex with a spectrum

X ∧L Σ∞A � X ∧ A,

where the second term has

(X ∧ A)n = Xn ∧ A.

Finally, we want an internal function object making the stable homotopy cate-
gory into a closed symmetric monoidal category.

This extension (and defining the internal function object for spectra) took a
long time to construct, as it does not come from a symmetric monoidal product
on the model category of sequential spectra. Indeed, the primary reason for



252 Monoidal Structures

the development of symmetric spectra or orthogonal spectra is that these are
symmetric monoidal model categories, and hence, their monoidal structures
pass to the level of homotopy categories.

We can define an operation on sequential spectra that behaves like a symmet-
ric monoidal product, up to (coherent) homotopy. We will call this the “handi-
crafted smash product”. Keeping track of the homotopies and coherence is a
substantial task, see Adams [Ada74, Section III.4]. The starting idea is that the
smash product should use the spaces and structure maps from both inputs. Let
X and Y be sequential spectra. We can define a new spectrum by

(X ∧
hand

Y)k =

⎧⎪⎪⎨⎪⎪⎩
Xn ∧ Yn k = 2n

Xn+1 ∧ Yn k = 2n + 1

with structure maps given by

Σ(Xn ∧ Yn) � (ΣXn) ∧ Yn
σX

n ∧Yn−−−−−→ Xn+1 ∧ Yn

Σ(Xn+1 ∧ Yn) = S 1 ∧ Xn+1 ∧ Yn

τS 1 ,Xn+1
∧Id

−−−−−−−−→ Xn+1 ∧ S 1 ∧ Yn
Id∧σY

n−−−−→ Xn+1 ∧ Yn+1.

We leave the proof that this product gives a symmetric monoidal product on
SHC with the sphere spectrum as the unit to [Ada74]. We will instead show
that SΣ and SO are symmetric monoidal model categories, and hence, their
homotopy categories have closed symmetric monoidal products. For now, we
continue to investigate this handi-crafted smash product in order to motivate
the constructions of the symmetric monoidal products on symmetric and or-
thogonal spectra.

One can see that the definition of the handi-crafted smash product is not
going to be associative. There are many other similar choices one could make,
but none of these will be strictly associative. One solution often employed by
mathematicians is to take all choices. We define an operation − ⊗ − as

(X ⊗ Y)n =
∨

a+b=n

Xa ∧ Yb.

We make no claim that this object is a spectrum, as it is not clear how to define
the suspension in a way that makes use of the structure maps of both X and Y .
While this operation is associative, the unit is the spectrum with S 0 in degree
zero and ∗ elsewhere.

Interestingly, we see that a sequential spectrum X has an “action” of the
sphere spectrum in the sense that the structure maps of X induce maps of each
level

μX,n : (S ⊗ X)n =
∨

a+b=n

S a ∧ Xb −→ Xn.
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Again, the category in which we are working is left undefined. If we pretend
that a spectrum is a “module” over S, then we can make X ⊗ Y into a module
over S: we follow algebra and take the monoidal product over S

X ⊗S Y � coeq
(
X ⊗ S ⊗ Y X ⊗ Y

)
.

For this to make sense, we need the sphere spectrum to be a “commutative ring
object” with regards to the operation − ⊗ −. We can see that this is not true for
sequential spectra, even before we attempt to improve the categorical setting
for − ⊗ −. Consider the map of spaces

μS,2 : (S ⊗ S)2 = (S 0 ∧ S 2) ∨ (S 1 ∧ S 1) ∨ (S 2 ∧ S 0) −→ S 2

induced by the structure map of the sphere spectrum. The component map
a : S 1 ∧ S 1 −→ S 2 is precisely the standard isomorphism. If S were a commu-
tative object with respect to ⊗, then we would have a commutative diagram

S 1 ∧ S 1 a

τS 1 ,S 1

S 2.

S 1 ∧ S 1

a

In particular, the two maps labelled a have to be the same. Taking singular
homology, we obtain the diagram

Z
H2(a)

−1

Z,

Z

H2(a)

which cannot commute, regardless of whether the isomorphism H2(a) is rep-
resented by 1 or −1. We can view the problem as coming from a lack of sym-
metries on the sphere spectrum itself. This can be resolved in symmetric and
orthogonal spectra.

6.3 Closed Monoidal Structures on Spectra

The solution to the difficulties we encountered previously is to recast the def-
inition of spectra in a very categorical manner. We will see that this approach
to constructing a commutative smash product will work for symmetric and or-
thogonal spectra. Our approach is based on that of Mandell et al. [MMSS01].

We will need the notion of enriched categories, enriched functors, enriched
ends and coends, enriched Kan extensions and the enriched Yoneda Lemma.
Our primary sources are [Kel05] and [Bor94]. In all cases, we will use pointed
topological spaces Top∗ for our enrichment.
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We define three enriched categories, each with the same object set, but dif-
ferent spaces of morphisms.

Definition 6.3.1 We define three enriched categories with objects given by
the non-negative integers

N = {0, 1, 2, 3, . . . }.
(N) The Top∗–enriched category N has morphism spaces given by

N(a, b) =

⎧⎪⎪⎨⎪⎪⎩
S 0 if a = b

∗ if a � b.

(Σ) The Top∗–enriched category Σ has morphism spaces given by

Σ(a, b) =

⎧⎪⎪⎨⎪⎪⎩
(Σa)+ if a = b

∗ if a � b.

(O) The Top∗–enriched category O has morphism spaces given by

O(a, b) =

⎧⎪⎪⎨⎪⎪⎩
O(a)+ if a = b

∗ if a � b.

In the case of Σ, it may be helpful to think of n as the set {1, 2, . . . , n} and the
morphism spaces given by (discrete) spaces of isomorphisms, with a disjoint
basepoint. For O, it may be helpful to think of n as the inner product space Rn

and the morphisms spaces given by spaces of linear isometries, with a disjoint
basepoint.

There are maps of enriched categories

N −→ Σ −→ O,

which send n to n. On morphism spaces, these maps are given by the identity
when a � b, and for a = b, they are induced by the inclusion maps

∗ −→ Σa −→ O(a),

where the first sends the point to the identity of Σa and the second is the stan-
dard inclusion of Σa into O(a), which sends a permutation to the corresponding
permutation of the axes.

We now define some categories of enriched functors and natural transforma-
tions. We will use these to define spectra in terms of modules over a monoid.

Recall that a Top∗–enriched functor F : E −→ Top∗ from an enriched cate-
gory E to Top∗ is a collection of maps of pointed spaces

F(a, b) : E(a, b) −→ Top∗(Fa, Fb)
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for each a, b ∈ E. These maps are required to be compatible with composition
and satisfy associativity and unital coherence conditions. We may rewrite the
map F(a, b) as a map

E(a, b) ∧ Fa −→ Fb

and think of E acting of F.

Definition 6.3.2 We define three categories of enriched functors.

(N) A sequential space is a Top∗–enriched functor from N to pointed topolog-
ical spaces. The category of sequential spaces and enriched natural transfor-
mations is denoted NTop∗.

(Σ) A symmetric space is a Top∗–enriched functor from Σ to pointed topologi-
cal spaces. The category of symmetric spaces and enriched natural transfor-
mations is denoted ΣTop∗.

(O) An orthogonal space is a Top∗–enriched functor from O to pointed topo-
logical spaces. The category of orthogonal spaces and enriched natural trans-
formations is denoted OTop∗.

In other words, a sequential space is a sequence of pointed topological
spaces. A symmetric space X is a sequence of spaces Xn with maps

(Σn)+ ∧ Xn −→ Xn,

which are associative and unital. These maps are precisely the data of an action
of Σn on the pointed space Xn. A symmetric space is also called a symmetric
sequence in [HSS00].

An orthogonal space X is a sequence of spaces Xn with maps

O(n)+ ∧ Xn −→ Xn,

which are associative and unital. These maps are precisely the data of an action
of O(n) on the pointed space Xn. One may also call an orthogonal space an
orthogonal sequence.

Lemma 6.3.3 The enriched categories N, Σ and O have symmetric monoidal
products. We use + to denote all three of them, as the three operations are very
similar. On objects, it sends (a, b) to a + b.

(N) There is a symmetric monoidal product + : N ×N −→ N, which on map-
ping spaces

+ : N(a, b) ∧N(c, d) −→ N(a + c, b + d)

is either the identity ∗ → ∗, the identity S 0 ∧ S 0 → S 0, or the initial map
∗ → S 0.
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(Σ) There is a symmetric monoidal product + : Σ×Σ −→ Σ, which on mapping
spaces

+ : Σ(a, b) ∧ Σ(c, d) −→ Σ(a + c, b + d)

is only non-trivial when a = b and c = d. In this case, it is induced by the
block inclusion

Σa × Σc −→ Σa+c,

where (σ, τ) is sent to the permutation which acts as σ on the first a letters
and τ on the last c letters.

(O) There is a symmetric monoidal product + : O × O −→ O, which on map-
ping spaces

+ : O(a, b) ∧ O(c, d) −→ O(a + c, b + d)

is only non-trivial when a = b and c = d. In this case, it is induced by the
block sum of matrices

O(a) × O(c) −→ O(a + c)

(A, B) �−→
(

A 0
0 B

)
.

Proof We see that the products are unital and associative.
For commutativity, we need to give an enriched natural transformation from
+ to + pre-composed with the swap map. We give the components in each case.

(N) The map S 0 −→ N(a + b, b + a) = S 0 is the identity map.
(Σ) The map S 0 −→ Σ(a + b, b + a) = (Σa+b)+ sends the non-basepoint to

the block permutation map, that is, the permutation which swaps the first a
letters with the last b letters.

(O) The map S 0 −→ O(a + b, b + a) = O(a + b)+ sends the non-basepoint to
the block permutation matrix

(
0 Ida

Idb 0

)
.

We then need to see that these maps induce a commutative square as below.
We start with O. The only non-trivial case is where a = b and c = d.

O(a, b) ∧ O(c, d) +

τ

O(a + c, b + d)

O(c, d) ∧ O(a, b) +
O(c + a, d + b)
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The right-hand vertical map is given by conjugation by the block permutations.
Commutativity follows from the equation

(
B 0
0 A

)
=

(
0 Idd

Idb 0

) (
A 0
0 B

) (
0 Ida

Idc 0

)
.

The symmetric case follows by restriction. The sequential case follows as
the twist map is the identity. �

Note that for N, the elements of the natural transformation in the proof have
domain and codomain S 0, so the only sensible choice is the identity map.

We can use these symmetric monoidal products on our enriched categories
to produce a symmetric monoidal product on the categories of enriched func-
tors to pointed spaces. The original reference is [Day70].

Before we construct our smash products, we will give the definitions of en-
riched ends and coends and recap how they relate to the Yoneda Lemma and
left Kan extensions. Let V denote a closed symmetric monoidal category with
all small limits and colimits. We use ⊗ for the monoidal product of V and hom
for the internal function object.

Definition 6.3.4 Let C be a small V–enriched category and D a V–enriched
category with all small limits and colimits. Let

M : Cop × C −→ D

be an enriched functor. We define the enriched coend of M as

∫ c∈C
M(c, c) = coeq

( ∐
a,b∈C

M(a, b) ⊗ C(b, a)
∐
c∈C

M(c, c)

)
.

The two maps are the two different actions of C on M.
We define the enriched end of F to be

∫
c∈C M(c, c) = eq

( ∏
c∈C

M(c, c)
∏

a,b∈C
hom(C(a, b),M(a, b))

)
.

The two maps are adjoints to the action maps.

Let C be a small V–enriched category. Given two V–enriched functors

F, G : C −→ D,

we can define the V object Nat(−,−) of enriched natural transformations from
F to G in terms of an enriched end

Nat(F,G) =
∫

c∈C
hom(Fc,Gc).
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Lemma 6.3.5 (Yoneda) Let C be a small V–enriched category. For any V–
enriched functor F : C −→ V and any c ∈ C, there is a natural isomorphism
in V

Nat(C(c,−), F) � Fc.

We may write the object Nat(C(c,−), F) ∈ V in terms of an enriched end so
that the Yoneda Lemma becomes

Fc
�−→

∫

d∈C
hom(C(c, d), Fd).

This description of the Yoneda Lemma suggests the following adjoint form.

Lemma 6.3.6 Let C be a small V–enriched category. For any V–enriched
functor F : C −→ V and any d ∈ C, there is a natural isomorphism

∫ c∈C
C(c, d) ⊗ Fc

�−→ Fd

given on term c by using the action of C(c, d) on Fc.

We can describe enriched left Kan extensions in terms of an enriched coend.

Lemma 6.3.7 Let C, D and E be V–enriched categories. Further, assume
that C and E are small categories. Given enriched functors

F : C −→ D and G : C −→ E,

the left Kan extension LanGF of F along G is given by the enriched coend

(LanGF)e =

∫ c∈C
E(G(c), e) ⊗ Fc.

Let us return to sequential, orthogonal and symmetric spaces.

Definition 6.3.8 Let E be some Top∗–enriched symmetric monoidal category.
The convolution product F ⊗ G of two enriched functors F and G from E to
Top∗ is defined to be the left Kan extension of ∧ ◦ (F,G) along +.

E × E (F,G)

+

Top∗ × Top∗
∧ Top∗

E
F⊗G

Note that we do not ask for the diagram to commute, instead, we require the
universal property

ETop∗(F ⊗G,H) � (E × E)Top∗(∧ ◦ (F,G),H ◦ +),
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which in terms of ends is given by
∫

a∈E
Top∗((F ⊗G)a,Ha) �

∫

b,c∈E
Top∗(Fb ∧Gc,Hb+c).

Using Lemma 6.3.7, we can write the Kan extension as a coend

(F ⊗G)a =

∫ b,c∈E
E(b + c, a) ∧ Fb ∧Gc.

In our case, the neatness of enriched categories leads to the following alterna-
tive descriptions of the monoidal products.

Lemma 6.3.9 The categories NTop∗, ΣTop∗ and OTop∗ are symmetric
monoidal. The unit in each case is the functor which sends 0 to S 0 and ev-
erything else to a point.

(N) If F and G are in NTop∗, then

(F ⊗G)a =

∫ b,c∈N
N(b + c, a) ∧ Fb ∧Gc �

∨

b+c=a

Fb ∧Gc.

(Σ) If F and G are in ΣTop∗, then

(F ⊗G)a =

∫ b,c∈Σ
Σ(b + c, a) ∧ Fb ∧Gc �

∨

b+c=a

(Σa)+ ∧
Σb×Σc

Fb ∧Gc.

(O) If F and G are in OTop∗, then

(F ⊗G)a =

∫ b,c∈O
O(b+ c, a)∧ Fb ∧Gc �

∨

b+c=a

O(a)+ ∧
O(b)×O(c)

Fb ∧Gc. �

Definition 6.3.10 We can define a sphere spectrum for each of these cate-
gories.

(N) The sphere spectrum in NTop∗ sends n to S n.
(Σ) The sphere spectrum in ΣTop∗ sends n to S n, which we may think of as

(S 1)∧n. The group Σn acts on S n by permuting the factors.
(O) The sphere spectrum in OTop∗ sends n to S n, which we may think of as the

one-point compactification of Rn. The group O(n) acts on S n by the standard
action of O(n) on Rn.

Note that the action of Σn on S n � (S 1)∧n is equal to the action of Σn on the
one-point compactification of Rn via the standard inclusion Σn −→ O(n).

Lemma 6.3.11 In ΣTop∗ and OTop∗, the sphere spectrum is a commutative
monoid with respect to ⊗.
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Proof We give the multiplication map for each of our two cases.

(Σ) The multiplication map of the sphere spectrum is given by

(S ⊗ S)a =
∨

b+c=a(Σa)+ ∧
Σb×Σc

S b ∧ S c

�
∨

b+c=a(Σa)+ ∧
Σb×Σc

S b+c

−→ S a,

where the last map is evaluation using the Σa-action on S a = S b+c.
(O) The multiplication map of the sphere spectrum is given by

(S ⊗ S)a =
∨

b+c=a O(a)+ ∧
O(b)×O(c)

S b ∧ S c

�
∨

b+c=a O(a)+ ∧
O(b)×O(c)

S b+c

−→ S a,

where the last map is evaluation using the O(a)-action on S a = S b+c.

We leave the unit and associativity conditions to the reader.
The coend description is the easiest way to see that these are commuta-

tive monoids. It suffices to check that the following diagram commutes when
a = b + c.

O(b + c, a) ∧ S b ∧ S c S a

O(c + b, a) ∧ S c ∧ S b

The vertical map is defined to be pre-multiplication by the block permutation
matrix for b and c on O(b + c, a) and the twist map on the spheres. The other
maps are then evaluation maps and the natural isomorphisms S c ∧ S b � S a.
The diagram commutes as the block permutation cancels out the twist map.

The case of symmetric spectra holds by restriction. �

Lemma 6.3.12 In NTop∗, the sphere spectrum is a monoid with respect to ⊗,
but it is not commutative.

Proof We focus on the case where a = b + c. Recall that

N(c + b, a) = N(b + c, a) = S 0.

The action map is given by the natural isomorphism of smash products of
spheres

N(b + c, a) ∧ S b ∧ S c = S b ∧ S c −→ S a.
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One can check this is associative and unital. However, this monoid is not com-
mutative. Consider the following diagram.

N(b + c, a) ∧ S b ∧ S c =
S b ∧ S c S a

N(c + b, a) ∧ S c ∧ S b
= S c ∧ S b

The vertical maps are the identity on S 0 = N(b + c, a) and the twist maps on
S b ∧ S c. This diagram does not commute when b = c = 1 and does not even
commute up to homotopy, as the twist map has degree −1 and the action maps
have degree 1, as we saw in Section 6.2. �

We may view the above result as saying that the sphere spectrum in sequen-
tial spectra lacks the symmetries to make it a commutative monoid. This is
resolved for symmetric spectra by using the symmetric groups and for orthog-
onal spectra by using the orthogonal groups.

We are now able to relate our constructions to the original categories of
spectra.

Theorem 6.3.13 In each case, the category of S–modules is a category of
spectra.

(N) The category of S–modules in NTop∗ is isomorphic to the category of
sequential spectra, SN.

(Σ) The category of S–modules in ΣTop∗ is isomorphic to the category of sym-
metric spectra SΣ.

(O) The category of S–modules in OTop∗ is isomorphic to the category of
orthogonal spectra SO.

Proof We start with NTop∗, then the other cases build on this by considering
the additional information of the symmetric and orthogonal group actions.

(N) An enriched functor F from N to Top∗ is an S–module if and only if there
is an associative and unital map μ : S ⊗ F −→ F. At level a, this map takes
the form

μa :
∨

b+c=a

S b ∧ Fc −→ Fb+c = Fa.

Associativity implies that the component S b ∧ Fc −→ Fb+c is the composite
of maps S 1 ∧ Fc −→ Fc+1. The unit condition implies that S 0 ∧ Fc −→ Fc
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acts as the identity. Therefore, such a map is equivalent to having structure
maps

σF
n : S 1 ∧ Fn = ΣFn −→ Fn+1

for each n.
(Σ) Following the same proof as for N, we look at the components of the S-

action on a module F ∈ ΣTop∗

μa :
∨

b+c=a

(Σa)+ ∧
Σb×Σc

S b ∧ Fc −→ Fb+c = Fa.

As before, associativity implies that each map S b ∧ Fc −→ Fb+c is a com-
posite of structure maps σF

n : ΣFn −→ Fn+1. The (b, c) component of μa is
required to be Σa-equivariant. This precisely says that

S b ∧ Fc −→ Fb+c

is Σb×Σc-equivariant, regarding the right-hand side as a Σb×Σc–module via
block sum of permutations.

(O) This is similar to the case of Σ. �

Following the original plan of Section 6.2, we can define a monoidal product
on S–modules via the tensor product over S.

X ∧ Y = X ⊗S Y � coeq
(
X ⊗ S ⊗ Y X ⊗ Y

)

The first map of the coequaliser is induced by the action S ⊗ Y → Y of the
sphere spectrum on Y . The second map is induced by the action of the sphere
spectrum on X, but pre-composed with a twist map

X ⊗ S −→ S ⊗ X −→ X.

Just as in the world of algebra, the smash product is symmetric monoidal.

Corollary 6.3.14 The category of symmetric spectra SΣ has a symmetric
monoidal smash product ∧ with the sphere spectrum as the unit. For X and
Y in SΣ, the smash product is defined to be

X ∧ Y = X ⊗S Y.

The category of orthogonal spectra SO has a symmetric monoidal smash
product ∧ with the sphere spectrum as the unit. For X and Y in SO, the smash
product is defined to be

X ∧ Y = X ⊗S Y. �
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We can incorporate the S–module structure of our categories of spectra into
the enriched categories and obtain a description of spectra as enriched functors
from some enriched category to pointed topological spaces. This description
will give very compact formulae for the shifted suspension functors and the
smash product of symmetric spectra and orthogonal spectra.

If E is a Top∗–enriched category, then any element a of E defines a functor

E(a,−) : E −→ Top∗
b �−→ E(a, b).

Similarly, one has a functor E(a,−) ∧ A given by the termwise smash with a
pointed topological space A.

In the case of N (and Σ and O), we can use the functor N(a,−) to define an
S–module S ⊗N(a,−) in NTop∗. We have seen these functors before.

Lemma 6.3.15 Let A be a pointed topological space.

(N) For a ∈ N, there is a natural isomorphism

(S ⊗N(a,−)) ∧ A � FNa A

of sequential spectra.

(Σ) For a ∈ Σ, there is a natural isomorphism

(S ⊗ Σ(a,−)) ∧ A � FΣa A

of symmetric spectra.

(O) For the a ∈ O, there is a natural isomorphism

(S ⊗ O(a,−)) ∧ A � FO
a A

of orthogonal spectra.

Proof For symmetric spectra,

((S ⊗ Σ(a,−)) ∧ A)b = (S ⊗ Σ(a,−))b ∧ A =
∨

b=c+d

(Σb)+ ∧
Σc×Σd

S c ∧ Σ(a, d) ∧ A.

There is only one factor which is non-trivial, namely, d = a, where it takes
value

(Σb)+ ∧Σb−a S b−a ∧ A,

if b � a and ∗ otherwise. This is precisely the definition of the shifted suspen-
sion.

For sequential and orthogonal spectra similar calculations apply. �
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Using ends and coends, we show directly that the adjoint to

(S ⊗N(a,−)) ∧ (−) : Top∗ −→ SN

A �−→ (S ⊗N(a,−)) ∧ A

is evaluation of a sequential spectrum at level a. A map from this functor to
an S–module X in SN is precisely a map from the functor N(a,−) ∧ A to the
object of NTop∗ that underlies the sequential spectrum X. Now consider the
following sequence of isomorphisms.

NTop∗(N(a,−) ∧ A, X) =
∫

b∈N Top∗(N(a, b) ∧ A, Xb)

�
∫

b∈N Top∗(A,Top∗(N(a, b), Xb))

� Top∗(A,
∫

b∈N Top∗(N(a, b), Xb))

� Top∗(A, Xa)

The first is the definition of the set of maps, the second is the standard smash
product–function space adjunction, and the third is moving a limit into the
second variable. The final isomorphism is an instance of the enriched Yoneda
Lemma. Formally similar arguments can be applied to symmetric and orthog-
onal spectra.

We can use these functors S ⊗ N(a,−) to make new enriched categories,
giving a description of spectra as enriched functors without needing to mention
S–modules.

Definition 6.3.16 We define three enriched categories, one for each of our
three cases. The object set in each case remains the non-negative integers.

(N) Define a Top∗–enriched category NS by setting NS(a, b) = ∗ for a > b and
the following for a � b.

NS(a, b) = SN(S ⊗N(b,−), S ⊗N(a,−))
� (S ⊗N(a,−))b

�
∫ c∈N

N(a + c, b) ∧ S c � S b−a

The composition is given by composition in SN.

(Σ) Define a Top∗–enriched category ΣS by setting ΣS(a, b) = ∗ for a > b and
the following for a � b.

ΣS(a, b) = SΣ(S ⊗ Σ(b,−), S ⊗ Σ(a,−))
� (S ⊗ Σ(a,−))b

�
∫ c∈Σ
Σ(a + c, b) ∧ S c � (Σb)+ ∧Σb−a S b−a

The composition is given by composition in SΣ.
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(O) Define a Top∗–enriched category OS by setting OS(a, b) = ∗ for a > b and
the following for a � b.

OS(a, b) = SO(S ⊗ O(b,−), S ⊗ O(a,−))
� S ⊗ O(a,−)b

�
∫ c∈O

O(a + c, b) ∧ S c � O(b)+ ∧O(b−a) S b−a.

The composition is given by composition in SO.

We may consider Top∗–enriched functors from these categories to Top∗.
This gives three categories

NSTop∗, ΣSTop∗ and OSTop∗.

Theorem 6.3.17 There are equivalences of categories

SN � NSTop∗, SΣ � ΣSTop∗ and SO � OSTop∗.

Proof The proof is the same in each case. We use the notation of SO for
definiteness.

For one direction, we use Theorem 6.3.13, namely, that the category of or-
thogonal spectra is isomorphic to the category of S–modules in OTop∗. Let
X : OS −→ Top∗ be a Top∗–enriched functor. We want to show that X is an
S–module in OTop∗.

The natural isomorphism

O(a, a) � OS(a, a)

shows that Xa has an action of O(a, a). Since O(a, b) = ∗ when a � b, this
shows that X has an underlying enriched functor from O to Top∗, so X ∈ OTop∗.

For any b ∈ N there is a map

S b −→ O(a + b)+ ∧O(b) S b = OS(a, a + b),

which sends x to the class of (e, x), where e is the identity of O(a+b). Smashing
this map with X(a) gives a map

S b ∧ X(a) −→ OS(a, a + b) ∧ X(a) −→ X(a + b).

It follows that X defines a S–module in OTop∗ and thus an orthogonal spec-
trum.

For the converse, let X be an orthogonal spectrum and a � b. The structure
maps of X and the action of the orthogonal groups induce a map

O(b)+ ∧O(b−a) S b−a ∧ X(a) −→ O(b)+ ∧O(b−a) X(b) −→ X(b).
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This map is unital and associative, so this gives a Top∗–enriched functor

OS −→ Top∗. �

Using this new description of the various kinds of spectra, we obtain a com-
pact description of the symmetric monoidal product via Lemma 6.3.7.

Lemma 6.3.18 The smash product of symmetric spectra is given by the
formula

(X ∧ Y)a =

∫ b,c∈ΣS
ΣS(b + c, a) ∧ Xb ∧ Yc.

The smash product of orthogonal spectra is given by the formula

(X ∧ Y)a =

∫ b,c∈OS
OS(b + c, a) ∧ Xb ∧ Yc.

Proof Let X and Y be symmetric spectra. Recall that

X ∧ Y = X ⊗S Y

by Corollary 6.3.14. Lemma 6.3.6 gives isomorphisms

X �
∫ b∈ΣS

ΣS(b,−) ∧ Xb Y �
∫ c∈ΣS

ΣS(c,−) ∧ Yc.

Using these and the operation − ⊗S − gives an isomorphism

X ⊗S Y =
∫ b,c∈ΣS

ΣS(b,−) ⊗S ΣS(c,−) ∧ Xb ∧ Yc.

The result then follows from the isomorphisms

ΣS(b,−) ⊗S ΣS(c,−) = (S ⊗ Σ(b,−)) ⊗S (S ⊗ Σ(c,−))
� S ⊗ (Σ(b,−) ⊗ Σ(c,−))
� S ⊗ Σ(b + c,−)
= ΣS(b + c,−).

An analogous proof gives the case of orthogonal spectra. �

Our next aim is to show that these symmetric monoidal structures are closed
and related well to the smash product of spaces with spectra and the enrichment
of spaces in spectra.

Definition 6.3.19 For G and H symmetric spectra, the internal function ob-
ject from G to H is a symmetric spectrum FS(G,H) defined by

FS(G,H)b =

∫

c∈ΣS
Top∗(Gc,Hc+b).
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For G and H orthogonal spectra, the internal function object from G to H is
an orthogonal spectrum FS(G,H) defined by

FS(G,H)b =

∫

c∈OS
Top∗(Gc,Hc+b).

The structure maps are given by the sequence of maps below. We use sym-
metric spectra for definiteness, the case of orthogonal spectra is formally
identical.

FS(G,H)b ∧ ΣS(b, d) =
(∫

c∈ΣS Top∗(Gc,Hc+b)
)
∧ ΣS(b, d)

−→ ∫
c∈ΣS

(
Top∗(Gc,Hc+b) ∧ ΣS(b, d)

)

−→ ∫
c∈ΣS Top∗(Gc,Hc+d)

= FS(G,H)d.

The first brings the smash product (a left adjoint) inside an enriched end (a
limit) and the second map is induced by the maps

Hc+b ∧ ΣS(b, d) −→ Hc+b ∧ ΣS(c + b, c + d) −→ Hc+d.

The first map comes from the monoidal structure on ΣS. For any a, b and c
in ΣS, we may combine the unit S 0 → ΣS(c, c) with the monoidal product to
obtain the map

ΣS(a, b) −→ ΣS(a, b) ∧ ΣS(c, c) −→ ΣS(a + c, b + c).

We can also recognise an internal function object F⊗ on the symmetric
monoidal categories ΣTop∗, OTop∗. Then we can define the internal function
object FS of spectra as one would do for algebra, namely, as an equaliser of

F⊗(X,Y) F⊗(X ⊗ S,Y).

As we have already shown, the various descriptions of the smash product agree,
and so too do the descriptions of the function objects.

Lemma 6.3.20 The categories of symmetric spectra SΣ and orthogonal spec-
tra SO are closed symmetric monoidal.

Proof We need to prove that for symmetric spectra X, Y and Z, there is a
natural isomorphism

SΣ(X ∧ Y,Z) � SΣ(X, FS(Y,Z)).
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This is done by manipulating enriched ends and coends. We start by writing
the smash product in terms of the universal property

SΣ(X ∧ Y,Z) �
∫

b,c∈ΣS Top∗ (Xb ∧ Yc,Zb+c)

�
∫

b,c∈ΣS Top∗
(
Xb,Top∗(Yc,Zb+c)

)

�
∫

b∈ΣS Top∗
(
Xb,

∫
c∈ΣS Top∗(Yc,Zb+c)

)

�
∫

b∈ΣS Top∗ (Xb, FS(Y,Z)b)

= SΣ(X, FS(Y,Z)). �

We can use our understanding of the smash product to see how the adjoints
to the evaluation functors interact with the smash product.

Lemma 6.3.21 In the categories of symmetric spectra and orthogonal spec-
tra, there are natural isomorphisms of spectra

FΣn A ∧ FΣm B � FΣn+m(A ∧ B) and FO
n A ∧ FO

m B � FO
n+m(A ∧ B)

for all m, n ∈ N and all pointed spaces A and B.

Proof From the original description of the shifted suspension functors of
Chapter 5, and the smash product over the sphere spectrum of Corollary 6.3.14,
this is difficult to see. Instead, we argue using the description in terms of rep-
resentable functors of ΣS and OS of Lemma 6.3.15. We choose ΣS for definite-
ness. One then has

FΣn A ∧ FΣm B =
∫ b,c∈ΣS

ΣS(b + c,−) ∧ ΣS(n, b) ∧ A ∧ ΣS(m, c) ∧ B

� ΣS(n + m,−) ∧ A ∧ B

= FΣn+m(A ∧ B).

The isomorphism in the middle is two applications of Lemma 6.3.6. �

We also obtain a precise description of the prolongation functors originally
introduced in Chapter 5. We will see that PO

Σ
is strong symmetric monoidal in

Theorem 6.4.9.

Proposition 6.3.22 The prolongation functors from sequential spectra to
symmetric spectra and symmetric spectra to orthogonal spectra are given by
the formulas

(PΣ
N

X)a =

∫ c∈NS
ΣS(c, a) ∧ Xc and (POΣ Y)a =

∫ c∈ΣS
OS(c, a) ∧ Yc.
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Proof Using Theorem 6.3.17 to describe spectra as categories of enriched
functors, we can identify the adjoint forgetful functor UO

Σ
as a pullback along

a map of enriched categories

ΣS −→ OS
a �−→ a

ΣS(a, b) = (Σb)+ ∧Σb−a S b−a −→ O(b)+ ∧O(b−a) S b−a = OS(a, b).

Here, the map on spaces is induced by the standard inclusion of the symmetric
group into the orthogonal group. This map ΣS −→ OS is a morphism of sym-
metric monoidal categories. The key fact is that the block permutations of Σn

are sent to block permutations matrices of O(n) via the standard inclusion.
Since left adjoints are unique (up to natural isomorphism), we recognise the

left adjoint PO
Σ

on a symmetric spectrum X as the left Kan extension of X along
ΣS −→ OS. The result follows from Lemma 6.3.7. �

Remark 6.3.23 The categories Σ and O have larger versions that can also
be used to construct equivalent categories of spectra. Instead of Σ, one could
use the category of finite subsets of N and bijections, and one could use finite-
dimensional subspaces of R∞ instead of O. This is useful when constructing
equivariant spectra.

6.4 Monoidal Model Categories of Spectra

6.4.1 Homotopical Properties of the Smash Product

We are going to prove that orthogonal spectra and symmetric spectra are sym-
metric monoidal model categories. The key results concern the interaction of
the smash product with stable equivalences and π∗-isomorphisms in symmetric
spectra and orthogonal spectra.

Lemma 6.4.1 The levelwise model structures on orthogonal spectra and sym-
metric spectra are symmetric monoidal model structures.

Proof We prove that these model categories satisfy the pushout product ax-
iom from Definition 6.1.7 by showing that the assumptions of Lemma 6.1.13
hold.

We work in orthogonal spectra for definiteness, the case of symmetric spec-
tra is the same. Let FO

n i and FO
m j be two generating cofibrations of orthogonal

spectra, where i and j are generating cofibrations of pointed topological spaces.
Then

FO
n i � FO

m j � FO
n+m(i � j)
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by Lemma 6.3.21. The model category Top∗ with the Serre model structure is
symmetric monoidal, and FO

n+m is a left Quillen functor from pointed spaces
to the levelwise model structure. Therefore, we see that FO

n+m(i � j) is a q-
cofibration.

The case of a generating cofibration and generating acyclic cofibration fol-
lows by the same argument. The unit part of the pushout product axiom holds
as the unit is already cofibrant. �

Theorem 6.4.2 If f : X → Y is a stable equivalence (or π∗-isomorphism)
of symmetric spectra, then X ∧ Z −→ Y ∧ Z is also a stable equivalence (or
π∗-isomorphism) for any cofibrant symmetric spectrum Z.

Proof Assume that we know the result for Z = FΣn S n. Lemma 5.3.14 gives
the result for the cases Z = FΣn S 0 and Z = FΣn A.

Now let Z be a IΣstable-cell complex, so Z = colimi(Zi) with Z0 = ∗, and each
map Zi −→ Zi+1 is a pushout of coproducts of maps in IΣstable. By Lemma 6.4.6,
X ∧ Z is the colimit of a sequence of h-cofibrations and hence is a homotopy
colimit. By Lemmas 2.2.13 and 5.3.17, each map

X ∧ Zi −→ Y ∧ Zi

is a stable equivalence (or π∗-isomorphism). Hence, the induced map on ho-
motopy colimits

X ∧ Z −→ Y ∧ Z

is a stable equivalence (or π∗-isomorphism). The general case follows by pass-
ing to retracts.

We now return to the case of − ∧ FΣn S n and π∗-isomorphisms of symmetric
spectra. The smash product with a shifted suspension spectrum is given by
tensoring with a representable functor by Lemma 6.3.15

FΣn S n ∧ X = (S ⊗ Σ(n,−) ∧ S n) ⊗S X � (Σ(n,−) ∧ S n) ⊗ X.

We then calculate the value of this tensor product at a ∈ N to be

(Σa)+ ∧Σa−n Xa−n ∧ S n.

Ignoring the group actions, this space is homeomorphic to

(Σa/Σa−n)+ ∧ Xa−n ∧ S n,

where the isomorphism is given by choosing coset representations. This iso-
morphism requires Σa to be discrete. We may then choose the cosets induc-
tively, leading to a commutative square
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(Σa)+ ∧Σa−n ΣXa−n ∧ S n Id∧σa−n∧Id
(Σa+1)+ ∧Σa+1−n Xa+1−n ∧ S n

(Σa/Σa−n)+ ∧ ΣXa−n ∧ S n Id∧σa−n∧Id
(Σa+1/Σa+1−n)+ ∧ Xa+1−n ∧ S n.

Taking homotopy groups shows that π∗(FΣn S n ∧ X) is a countable direct sum
of copies of π∗(X), and that this isomorphism is natural in X. It follows that
− ∧ FΣn S n preserves π∗-isomorphisms.

It remains to be shown that −∧ FΣn S n preserves stable equivalences of sym-
metric spectra. Since the cofibrant replacement Xco f −→ X is a levelwise weak
equivalence, it is also a π∗-isomorphism. Hence,

Xco f ∧ Z −→ X ∧ Z

is a π∗-isomorphism and thus a stable equivalence. We conclude that it suffices
to prove that −∧FΣn S n preserves stable equivalences between cofibrant spectra.

Let E be an Ω-spectrum. Recall from the proof of Proposition 5.3.12 that

FS(F
Σ
n S n, E) � RnE

is an Ω-spectrum, which at level m is the space ΩnEn+m.
By Lemma 6.4.1, there is a natural isomorphism

[X ∧ FΣn S n, E]l � [X, FS(F
Σ
n S n, E)]l,

which shows that X ∧ FΣn S n −→ Y ∧ FΣn S n is a stable equivalence. �

We have the analogous result for orthogonal spectra, recalling that for or-
thogonal spectra, the class of stable equivalences is equal to the class of π∗-
isomorphisms by Lemma 5.3.27.

Theorem 6.4.3 If f : X → Y is a π∗-isomorphism of orthogonal spectra, then
X∧Z −→ Y ∧Z is a π∗-isomorphism for any cofibrant orthogonal spectrum Z.

Proof We follow the same plan as for Theorem 6.4.2. Assume that −∧FO
n S n

preserves π∗-isomorphisms, then Lemmas 2.2.7, 2.2.13 and 5.2.11 give the
general case.

Let C f be the homotopy cofibre of f . Then (C f ) ∧ FO
n S n is the homotopy

cofibre of

f ∧ FO
n S n : X ∧ FO

n S n −→ Y ∧ FO
n S n.

Thus, it suffices to prove that W ∧ FO
n S n is π∗-isomorphic to ∗ for any W with

π∗(W) = 0.
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We prove this directly, arguing via elements of homotopy groups. Recall that
the map λn : FO

n+1 S 1 → FO
n S 0 is the adjoint of the map

S 1 → EvO
n+1 FO

n S 0 = O(n + 1)+ ∧O(1) S 1,

which is t �→ [Id, t], see Definition 5.2.12. The central point is that the two
maps

FO
2n S 2n � FO

n S n ∧ FO
n S n

λn∧Id

Id∧λn

FO
n S n

are homotopic. These maps are determined by their adjoints

S 2n O(2n)+ ∧O(n) S 2n � (O(2n)/O(n))+ ∧ S 2n.

The top map sends t ∈ S 2n to the equivalence class [Id, t], and the lower map
sends it to the equivalence class [τn,n, t], where τn,n is the block permutation
matrix exchanging the first n coordinates with the last n. As O(2n)/O(n) is
path-connected, these two maps are homotopic. Hence, λn ∧ Id and Id∧ λn are
homotopic.

Let α ∈ πq(FO
n S n ∧W) be represented by f : FO

r S q+r −→ FO
n S n ∧W. Our

calculation on λn shows that the two composites

FO
n S n ∧ FO

r S q+r Id∧ f
FO

n S n ∧ FO
n S n ∧W

λn∧Id∧Id

Id∧λn∧Id
FO

n S n ∧W

are homotopic. The lower composite is Id ∧ g, where

g = (λn ∧ Id) ◦ f : FO
r S q+r f−→ FO

n S n ∧W
λn∧Id−−−−→ W.

We may choose r large enough so that g, and hence Id ∧ g, is homotopic to
zero. The upper composite of our pair of maps is equal to

FO
n+r S n+q+r � FO

n S n ∧ FO
r S q+r λn∧Id

FO
r S q+r f

FO
n S n ∧W,

which is another representative for α, as

FO
n+r S n+q+r −→ FO

r S q+r

induced by λn is a π∗-isomorphism. Putting this together, we have shown that
α = 0 and thus,

πq(FO
n S n ∧W) = 0

as claimed. �



6.4 Monoidal Model Categories of Spectra 273

Corollary 6.4.4 Working in either orthogonal spectra or symmetric spectra,
let X −→ Y be a stable equivalence of cofibrant spectra. Then

X ∧ Z −→ Y ∧ Z

is a stable equivalence for any spectrum Z. Furthermore, let W be an orthog-
onal spectrum and n,m ∈ N. Then

πm(FO
n S n ∧W) � πm+n(W).

Proof For the first statement, let Zco f → Z be a cofibrant replacement of Z,
which is a levelwise weak equivalence and hence a stable equivalence. There
is a commutative square

X ∧ Z Y ∧ Z

X ∧ Zco f Y ∧ Zco f .

We have seen that the vertical maps and the lower horizontal map are stable
equivalences, so the result follows by the two-out-of-three axiom.

By the first part, the map λn : FO
n S n −→ FO

0 S 0 induces a stable equivalence

FO
n S n ∧W −→ FO

0 S 0 ∧W � W.

Therefore, one has isomorphisms of homotopy groups of orthogonal spectra

πm+n(W) � πm+n(FO
n S n ∧W) � πm+n(FO

n S 0 ∧W ∧ S n) � πm(FO
n S 0 ∧W). �

Remark 6.4.5 In algebra, a module M over a ring R is said to be flat if
M ⊗− is exact. Hence, tensoring with a flat module preserves homology iso-
morphisms.

Therefore, we may describe the previous theorems as saying that a cofibrant
spectrum is “flat”. Or more simply, “cofibrant implies flat” in the stable model
structures of symmetric and orthogonal spectra.

Before we prove the pushout product axiom for spectra, we show that smash-
ing an acyclic cofibration with a spectrum gives a h-cofibration that is a stable
equivalence. This result is needed to prove the existence of model structures of
modules and rings. The statement is known as the monoid axiom in [SS00].

Lemma 6.4.6 Let S denote either symmetric spectra or orthogonal spectra.
If f : X −→ Y is a h-cofibration in S and Z is a spectrum in S, then the map

f ∧ Id : X ∧ Z −→ Y ∧ Z

is a h-cofibration.
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Proof A h-cofibration is defined using a pushout and smashing with spaces
(see Definition 5.2.7 and Section A.5). Both these operations are preserved by
−∧Z. It follows that for a h-cofibration f , the map f ∧Z will be a h-cofibration
too. �

Corollary 6.4.7 (The monoid axiom) Let S denote either symmetric or
orthogonal spectra. Let X −→ Y be a stable equivalence and q-cofibration
of spectra and Z a spectrum. Then

X ∧ Z −→ Y ∧ Z

is a stable equivalence and a h-cofibration.
Pushouts and sequential colimits of such maps are also stable equivalences

and h-cofibrations.

Proof Let X −→ Y be a stable equivalence and q-cofibration. Since every
q-cofibration is a h-cofibration,

X ∧ Z −→ Y ∧ Z

is a h-cofibration. Let C = Y/X be the cofibre of X −→ Y . By Lemmas 5.2.9
and 5.3.16, C is homotopy equivalent to the homotopy cofibre of f .

The spectrum C is cofibrant and stably equivalent to ∗ because f is a sta-
ble equivalence. We know that − ∧ Zco f preserves stable equivalences, so the
homotopy cofibre of

f ∧ Zco f : X ∧ Zco f −→ Y ∧ Zco f

is also stably equivalent to ∗ as well as stably equivalent to C∧Zco f . Now C∧−
preserves stable equivalences, so C ∧ Zco f � ∗ in turn is stably equivalent to
C ∧ Z. This implies that

X ∧ Z −→ Y ∧ Z

is a stable equivalence too, because it is a h-cofibration whose homotopy cofi-
bre is stably equivalent to ∗.

The last statement is a consequence of Lemmas 2.2.13 and 5.3.16. �

Theorem 6.4.8 The stable model structures on orthogonal spectra and sym-
metric spectra are symmetric monoidal model structures.

Proof We work in orthogonal spectra for definiteness. The case of symmet-
ric spectra is the same. We have seen that the levelwise model structure is
monoidal in Lemma 6.4.1. The levelwise model structure and the stable model
structure have the same cofibrations. Therefore, all that remains is to prove
the pushout product axiom for a q-cofibration and an acyclic q-cofibration
j : X −→ Y.
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By Lemma 6.1.13, we may assume that the q-cofibration is a generating
cofibration

FO
n i : FO

n A −→ FO
n B.

The pushout product is now

X ∧ FO
n A

Id∧FO
n i

j∧Id

X ∧ FO
n B

j∧Idh

Y ∧ FO
n A

k

Id∧FO
n i

X ∧ FO
n B

∐
X∧FO

n A

Y ∧ FO
n A

j�FO
n i

Y ∧ FO
n B.

Since FO
n A and FO

n B are cofibrant, Theorem 6.4.3 implies that both maps la-
belled j ∧ Id are stable equivalences and q -cofibrations. Therefore, the pushout
h is a stable equivalence (and a q-cofibration). It follows that j � FO

n i is a stable
equivalence.

As the unit is cofibrant, the other point of the pushout product axiom holds.
�

Theorem 6.4.9 The Quillen equivalence between symmetric spectra and
orthogonal spectra

P
O
Σ

: SΣ SO : UO
Σ

is a strong symmetric monoidal Quillen equivalence.

Proof We want to give a natural isomorphism

P
O
Σ (X ∧ Y) � POΣ X ∧ POΣ Y

for symmetric spectra X and Y . We use the formulae of Lemma 6.3.18 and
Proposition 6.3.22 to obtain this isomorphism. Starting at one side we have

P
O
Σ

(X ∧ Y) =
∫ c∈ΣS

OS(c,−) ∧ (X ∧ Y)c

�
∫ a,b,c∈ΣS

OS(c,−) ∧ ΣS(a + b, c) ∧ Xa ∧ Yb

�
∫ a,b∈ΣS

OS(a + b,−) ∧ Xa ∧ Yb,

where the last isomorphism is (a contravariant version of) Lemma 6.3.6.
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Starting at the other end, we use the same formulae to obtain the first two
comparisons.

P
O
Σ

X ∧ PO
Σ

Y =
∫ d,e∈ΣS

OS(d + e,−) ∧ (PO
Σ

X)d ∧ (PO
Σ

X)e

�
∫ d,e∈OS

OS(d + e,−) ∧
(∫ a∈ΣS

OS(a, d) ∧ Xa

)

∧
(∫ b∈ΣS

OS(b, e) ∧ Yb

)

�
∫ a,b∈ΣS ∫ d,e∈OS

OS(d + e,−) ∧ OS(a, d) ∧ Xa ∧ OS(b, e)∧Yb

�
∫ a,b∈ΣS

OS(a + b,−) ∧ Xa ∧ Yb

The third isomorphism follows as colimits commute with colimits, and the last
is Lemma 6.3.6. Thus, we have our desired natural isomorphism and PO

Σ
is

strong monoidal. It is strong symmetric monoidal as the map ΣS −→ OS is a
morphism of symmetric monoidal categories. �

Hence, at the level of derived categories, we have strong symmetric monoidal
equivalences of triangulated categories

LP
O
Σ

: Ho(SΣ) Ho(SO) : RUO
Σ
.

Since the monoidal structures on Ho(SΣ) and Ho(SO) agree, we have con-
structed a single closed symmetric monoidal structure on SHC. Moreover, this
monoidal structure has the properties listed in Theorem 6.1.14. Summarising,
we have the following.

Corollary 6.4.10 The stable homotopy category is a tensor-triangulated
category. �

Similar arguments to the above apply to symmetric spectra in simplicial
sets, see Hovey et al. [HSS00] for a complete treatment. Therefore, the stable
model structure on symmetric spectra in simplicial sets, SΣ(sSet∗) is a symmet-
ric monoidal model category whose homotopy category is strong symmetric
monoidally equivalent to SHC.

6.4.2 Homotopy Groups of a Smash Product

In this section, we prove that the handi-crafted smash product of sequential
spectra is related to the smash products of orthogonal and symmetric spectra,
and we give a formula for the homotopy groups of a smash product.
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Since symmetric spectra and orthogonal spectra are symmetric monoidally
Quillen equivalent, it suffices to compare the handi-crafted smash product on
sequential spectra with the smash product of orthogonal spectra. Note that the
implied relationship to symmetric spectra will have to phrased carefully as not
every stable equivalence of symmetric spectra is a π∗-isomorphism.

We start by proving that for cofibrant orthogonal spectra X and Y , there are
natural isomorphisms

πn(X ∧ Y) � colima πn+a(Xa ∧ Y) � colima,b πn+a+b(Xa ∧ Yb).

In the first and second terms, π∗ indicates homotopy groups of spectra, in the
last term, π∗ denotes homotopy groups of spaces. Note that the second isomor-
phism follows automatically from the definition of homotopy groups of spec-
tra, and note that we need to move S 1 past Xa (a twist map) before we may
use the structure maps of Y . We will then relate this formula to the homotopy
groups of a handi-crafted smash product.

Proposition 6.4.11 For cofibrant orthogonal spectra X and Y, there is a nat-
ural isomorphism of abelian groups

colima,b πn+a+b(Xa ∧ Yb) −→ πn(X ∧ Y).

Proof The map of orthogonal spectra

λ : FO
a+1 Xa ∧ S 1 −→ FO

a Xa

of Definition 5.2.12 is a π∗-isomorphism. Since Y is cofibrant, −∧ Y preserves
π∗-isomorphisms by Theorem 6.4.3. Consequently, there is a natural isomor-
phism

πn(FO
a+1 Xa ∧ S 1 ∧ Y)

�−→ πn(FO
a Xa ∧ Y).

We have a commutative diagram

FO
a+1 Xa ∧ S 1

λ

FO
a+1 σ

X
a

FO
a+1 Xa+1

FO
a Xa X,

where the unlabelled maps come from the counit maps FO
a+1 EvO

a+1 → Id and
FO

a EvO
a → Id. The top map is induced by the structure map on X.
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As the map λ is a π∗-isomorphism, there are natural maps

πn(FO
a Xa)

λ−1∗−−→ πn(FO
a+1 Xa ∧ S 1) −→ πn(FO

a+1 Xa+1)

and thus,

πn(FO
a Xa ∧ Y) −→ πn(FO

a+1 Xa ∧ S 1 ∧ Y) −→ πn(FO
a+1 Xa+1 ∧ Y).

By Corollary 6.4.4, these induce a natural map on colimits

ψn(X,Y) : colima πn+a(Xa ∧ Y) � colima πn(FO
a Xa ∧ Y) −→ πn(X ∧ Y).

We want to prove that this map is an isomorphism. It is true for Y = S = FO
0 S 0

by the definition of homotopy groups of an orthogonal spectrum.
Consider the class of those Y in the homotopy category of orthogonal spectra

where ψn(X,Y) is an isomorphism. Both colima πn+a(Xa∧−) and πn(X∧−) com-
mute with coproducts and send exact triangles to long exact sequences. (For
the second, we note that X ∧ − and FO

a Xa ∧ − preserve cofibre sequences, that
πn sends cofibre sequences to long exact sequences and that exact sequences
are preserved by sequential colimits.) Therefore, this class defines a full tri-
angulated subcategory of SHC which is closed under coproducts and contains
the sphere spectrum.

By Corollary 5.6.8, it follows that the class of Y such that ψn(X,Y) is an
isomorphism is the entire stable homotopy category. In other words, ψn(X,−)
is an isomorphism on every object in the homotopy category of orthogonal
spectra. Therefore, for all cofibrant X and Y ,

colima πn+a(Xa ∧ Y) � colima,b πn+a+b(Xa ∧ Yb) � πn(X ∧ Y). �

Using the symmetric monoidal model structure on orthogonal spectra, we
can follow Proposition 5.1.7 and define a homology theory on the homotopy
category of spectra from any cofibrant orthogonal spectrum E by

E∗ = π∗(E ∧L −).

Similarly, we can define a reduced homology theory on the category of pointed
spaces by

Ẽ∗ = π∗(E ∧L Σ∞−),

see Proposition 5.1.7. Using the formula for the homotopy groups of a smash
product, we can see a relation between the values of Ẽ∗ on the levels of a
spectrum X and E∗(X).
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Corollary 6.4.12 Let E and X be cofibrant orthogonal spectra. Then

En(X) � colimb Ẽn(Xb).

Proof The result follows from the isomorphisms

En(X) = πn(E ∧L X) = πn(E ∧ X)
= colima,b πn+a+b(Ea ∧ Xb)
� colimb πn+b(E ∧ Xb)
� colimb Ẽn+b(Xb).

Here, ∧L denotes the derived smash product in SHC. We have the second
equality, as the spectra are all cofibrant. �

Since the smash product preserves colimits, the derived smash product in-
teracts well with homotopy colimits. This allows us to give a neat formula for
the homology of a sequential homotopy colimit. We start by looking again at
sequential homotopy colimits.

Let A ∈ SO be cofibrant. Then, for a sequential diagram of orthogonal spec-
tra

X1
f1−→ X2

f2−→ X3
f3−→ · · · ,

there is a weak equivalence

A ∧ hocolim Xn � hocolim(A ∧ Xn).

This follows by replacing the sequential diagram with a cofibrant diagram (see
Example A.7.9) and from the fact that A ∧ − preserves cofibrant diagrams, as
it is a left Quillen functor.

If the maps of the diagram were h-cofibrations, then Corollary A.7.10 says
that it suffices to take the colimit without performing any cofibrant replace-
ments. In this case, the above weak equivalence becomes an equality, as A∧−
preserves h-cofibrations by Lemma 6.4.6.

Lemma 6.4.13 Let E be a cofibrant orthogonal spectrum representing the
homology theory E∗. Then

E∗(hocolim(Xn)) = colim E∗(Xn).

Proof This follows from the above discussion and Lemma 5.6.15. �

Let X and Y be cofibrant orthogonal spectra. If we forget down to sequential
spectra, we may take the homotopy groups of the handi-crafted smash product

πn(UO
N

X ∧
hand
U

O
N

Y) � colima πn+2a(Xa ∧ Ya) � colima,b πn+a+b(Xa ∧ Yb).
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Hence, we see that the homotopy groups of the underlying handi-crafted smash
product agree with those of the smash product of orthogonal spectra.

We could further ask for a map

U
O
N

X ∧
hand
U

O
N

Y −→ UO
N

(X ∧ Y).

It is possible to make a map on each level. For example on the even levels,
the map S 0 → OS(2n, 2n) = O(2n)+ sends the non-basepoint to the identity
matrix. This induces a natural map

Xn ∧ Yn −→ (X ∧ Y)2n =

∫ a,b∈OS
OS(a + b, 2n) ∧ Xa ∧ Yb,

as any term of a colimit admits a preferred map to the colimit itself. Similarly
on odd indices, we have S 0 → OS(2n + 1, 2n + 1) = O(2n + 1)+, which sends
the non-basepoint to the identity matrix. This induces a natural map

Xn+1 ∧ Yn −→ (X ∧ Y)2n+1 =

∫ a,b∈OS
OS(a + b, 2n + 1) ∧ Xa ∧ Yb.

However, the square involving these maps and the structure maps of the domain
and codomain is commutative only up to homotopy. Further details are given in
[MMSS01, Section 11]. The relation between the handi-crafted smash product
of sequential spectra and the smash product of symmetric spectra is discussed
in [HSS00, Remark 4.2.16].

6.5 Spanier–Whitehead Duality

Spanier–Whitehead duality is a relation between the homology and cohomol-
ogy of finite CW-complexes. It was the original motivation for constructing
the Spanier–Whitehead category SW, see [SW55]. Now that we have a closed
symmetric monoidal structure on the stable homotopy category, we can place
those early results in a more formal framework which shows that compact
spectra interact exceptionally well with the closed monoidal structure on SHC.
In this section, we give a brief account of the concepts. A discussion of histor-
ical versions can be found in [Ada74, Section III.5] and further details can be
found in [LMSM86, Chapter III] and [DP80].

We work in the stable homotopy category and use “spectrum” to mean an
object of SHC and “map” to mean a map in SHC. While one can translate
the following to statements about symmetric or orthogonal spectra, one would
then need to keep track of fibrancy and cofibrancy conditions.
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Definition 6.5.1 The Spanier–Whitehead dual of a spectrum X is

DX = RHom(X,S),

where RHom is the internal function object of SHC. This is often shortened
to just the dual of X.

Given a spectrum X, the adjoint of the identity map of DX gives an evalua-
tion map

ε : DX ∧L X −→ S.
A spectrum X is strongly dualisable if there is a map

η : S −→ X ∧L DX

such that the two composites below are the identity maps.

X � S ∧L X
η∧LId−−−−→ X ∧L DX ∧L X

Id⊗ε−−−→ X ∧L S � X

X � X ∧L S Id∧Lη−−−−→ DX ∧L X ∧L DX
ε⊗Id−−−→ S ∧L X � X

Example 6.5.2 The dual of Sn is S−n for n ∈ Z. This follows from the more
general case D FO

k S l � FO
l S k for k, l ∈ N. We have isomorphisms

[A,RHom(FO
k S l,S)] � [A ∧ FO

k S l,S]
� [A ∧ FO

k S l+k,Σk
S]

� [A ∧ S l,Σk
S]

� [A ∧ S l,FO
0 S k]

� [A ∧ S l,FO
l S k+l]

� [A,FO
l S k].

In particular, we can conclude that the sphere S and all of its (de)suspensions
are strongly dualisable.

Let M denote the mod-pn Moore spectrum. We have an exact triangle in
SHC

S
pn

−→ S −→ M −→ S1.

We know that RHom(−,S) is an exact functor by Theorem 6.1.14, so we have
an exact triangle

DS1 pn

−→ DS1 −→ DM −→ DS.

Using that DS1 = S−1, the above becomes

S
−1 pn

−→ S−1 −→ DM −→ S
and thus, DM = Σ−1M.
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We can give an alternative characterisation of strongly dualisable spectra.
For any spectra B and X there is a natural map

νB,X : B ∧L X −→ RHom(DX, B)

induced by

B ∧L X ∧L DX
Id∧Lτ−−−−→ B ∧L DX ∧L X

ε−→ B ∧L S � B.

Lemma 6.5.3 When the spectrum X is strongly dualisable, there is an ad-
junction

− ∧L DX : SHC SHC :− ∧L X.

A spectrum X is strongly dualisable if and only if the natural map

νB,X : B ∧L X −→ RHom(DX, B)

is an isomorphism for all B.

Proof After tensoring with a spectrum A, the maps η and ε from Definition
6.5.1 form the counit and unit of the adjunction. The triangle identities of an
adjunction then follow from the two conditions relating η and ε.

Assume that X is strongly dualisable. Then we have natural isomorphisms

[A, B ∧L X] � [A ∧L DX, B] � [A,RHom(DX, B)]

for every A, which show that the map νB,X is an isomorphism.
Conversely, the natural isomorphisms

[A, B ∧L X] � [A,RHom(DX, B)] � [A ∧L DX, B]

give an adjunction. The unit η comes from the case of A = S and B = DX and
corresponds to the identity of DX under the given isomorphisms. �

Corollary 6.5.4 Let X be a strongly dualisable spectrum. Then

νS,X : X −→ DDX

is an isomorphism. Furthermore, for strongly dualisable X and for any spectra
A and B, the map

RHom(A, B) ∧L X −→ RHom(A, B ∧L X)

induced by the adjoint to the evaluation RHom(A, B)∧L A −→ B is an isomor-
phism. �

Theorem 6.5.5 A spectrum is strongly dualisable if and only if it is compact.
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Proof Consider the class of strongly dualisable spectra, thought of as those
spectra X such that

νB,X : B ∧ X −→ RHom(DX, B)

is an isomorphism for all B. This class forms a thick subcategory of SHC, as it
is closed under retracts and because the functors

B ⊗ − and RHom(D(−), B)

are exact by Corollary 6.4.10. This thick subcategory contains S and hence
contains all compact objects by Theorem 5.6.13.

Conversely, assume X is strongly dualisable. We have a natural isomorphism

[DX,−] � [S,− ∧L X],

and the right-hand side commutes with coproducts. Therefore, DX is compact.
By the previous step, as DX is compact, it is also strongly dualisable. Thus,
DDX � X is compact. �

As a consequence, we obtain the following.

Theorem 6.5.6 (Spanier–Whitehead duality) Let E and X be spectra, and let
X be compact. Then there is a natural isomorphism

En(X) = [S, E ∧ X]n � [DX, E]n = E−n(DX). �

Remark 6.5.7 If we let X = Σ∞A, we can try to use this to apply Brown
representability to homology theories. This works for finite CW-complexes,
but we must be cautious when using infinite complexes due to phantom maps,
see Remark 5.1.8.

6.6 Ring Spectra and Modules

Using our symmetric monoidal product on orthogonal and symmetric spectra,
we can define ring spectra (monoids), commutative ring spectra (commutative
monoids) and modules over a ring spectrum. We prove that there are model cat-
egories of modules over a ring spectrum in symmetric spectra and orthogonal
spectra and that these categories are Quillen equivalent (in a suitable sense).

We then turn to ring spectra and discuss model categories of ring spectra
in symmetric spectra and orthogonal spectra and compare them via Quillen
equivalences.

Let S denote either orthogonal spectra or symmetric spectra.
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Definition 6.6.1 A ring spectrum is a spectrum R ∈ S with maps in S

μ : R ∧ R −→ R and η : S −→ R

such that μ is associative and unital with respect to η. A map of ring spectra
f : R −→ S is a map of spectra that commutes with the multiplication and unit
maps.

A spectrum R is called a commutative ring spectrum if it is a ring spectrum
and the following diagram commutes

R ∧ R
μ

τ

R,

R ∧ R

μ

where τ is the twist map. A map of commutative ring spectra f : R −→ T is a
map of ring spectra.

Ring spectra are also often called algebras.

Examples 6.6.2 We have already seen some examples of ring spectra. We
recap these examples here.

Sphere spectrum The sphere spectrum is a commutative ring spectrum in
symmetric spectra and orthogonal spectra.

Eilenberg–Mac Lane spectra For R a (commutative) ring, the Eilenberg–
Mac Lane spectrum HR from Examples 5.3.2 is a (commutative) ring spec-
trum in symmetric spectra. Level n of HR is given by

HRn = |(S 1
s)n ⊗ R|.

The (commutative) ring structure comes from the natural map

(K ⊗ R) ∧ (L ⊗ R) −→ (K ∧ L) ⊗ R

induced by sending the simplex (k · r, l · s) to (k ∧ l) · rs.

Endomorphism spectra For any spectrum X, the spectrum FS(X, X) is a ring
spectrum. The composition map

FS(X, X) ∧ FS(X, X) −→ FS(X, X)

is defined via its adjoint map

FS(X, X) ∧ FS(X, X) ∧ X −→ X,
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which is two instances of the evaluation map FS(X, X) ∧ X −→ X, which is
adjoint to the identity of FS(X, X). The unit map S −→ FS(X, X) is defined as
the adjoint of the identity map on X. In general, there is no reason for this ring
spectrum to be commutative.

Dual spectra For an unpointed space A, the spectrum DA+ = FS(A+,S) is
a commutative ring spectrum. The unit map is induced by the terminal map
A −→ ∗ in unpointed spaces. The multiplication map is given by the composite

FS(A+,S)∧FS(A+,S) −→ FS(A+∧A+,S∧S) � FS((A×A)+,S) −→ FS(A+,S),

where the last map is induced by the diagonal A −→ A× A. Since the diagonal
on unpointed spaces is coassociative and cocommutative, the spectrum DA+
has an associative and commutative multiplication.

More examples of ring spectra can be found in [Sch07b, Chapter I.2]. Con-
structing point-set models for commutative ring spectra can be quite involved.
As an example of some of the complexities, a point-set model for the spectrum
of real K-theory KO (see Subsection 7.4.2) can be found in work of Joachim
[Joa01].

Definition 6.6.3 A spectrum M is a left module over a ring spectrum R if
there is a map

ν : R ∧ M −→ M,

which is associative and unital. A map of module spectra f : M −→ N is a map
of spectra that commutes with the module action maps. A right module over R
is defined similarly, but with R on the right of the module.

By default, a module will mean a left module.

Examples 6.6.4 We already know several examples of module spectra.

• Every spectrum is a module over the sphere spectrum.
• If R is a ring spectrum, then it is a module over itself.
• For any spectrum X, the free R–module on X, R∧X, is a left R–module, with

R acting on itself.
• If M is a module over a ring R, then the Eilenberg–Mac Lane spectrum HM

is a module over HR.
• The spectrum X is a module over FS(X, X).

One motivation for the study of ring spectra is that they induce cohomology
theories with cup products.
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Lemma 6.6.5 If E is a (commutative) ring spectrum and A is an unpointed
space, then Ẽ∗(A+) is a (commutative) graded ring.

If M is a module over E, then M̃∗(A+) is a graded module over Ẽ∗(A+).

Proof Similarly to the multiplication on dual spectra, we define the multipli-
cation using the multiplication μ of E and the diagonal map Δ : A −→ A× A as
below.

Ẽ∗(A+) ⊗ Ẽ∗(A+) = [A+, E]−∗ ⊗ [A+, E]−∗ −→ [A+∧A+, E∧E]−∗ −→ [A+, E]−∗

This is commutative when E has a commutative multiplication. The second
statement is similar. �

We may now consider the categories of ring spectra and the category of
modules over a fixed ring spectrum. We leave commutative ring spectra to
Section 6.7 and turn to modules over a ring spectrum.

Definition 6.6.6 For a ring spectrum R ∈ S, the category of (left) R–modules
is denoted R–mod.

As with algebra, there is an adjunction

R ∧ − : S R–mod :U,

where the right adjoint U is the forgetful functor and the left adjoint sends a
spectrum X to the free R–module R ∧ X. There is a right adjoint to U denoted
FS(R,−). The action map

R ∧ FS(R,M) −→ FS(R,M)

is defined to be the adjoint of multiplication followed by evaluation

R ∧ R ∧ FS(R,M)
μ∧Id−−−→ R ∧ FS(R,M) −→ M.

The category of R–modules has all small limits and colimits. Colimits are
defined as the colimit of the diagram of underlying spectra, with action map
given by commuting R ∧ − past the colimit (which is an isomorphism). The
case for limits is similar, and it follows that the functor U preserves all limits
and colimits.

The category of R–modules is tensored, cotensored and enriched over pointed
spaces. The tensor M ∧ A is given by smashing a module M with a space A
and by letting R act on M as before. The cotensor Top∗(A,M) has the same
underlying spectrum as for the cotensor of spectra, with action map adjoint to

A ∧ R ∧ Top∗(A,M)
τA,R∧Id−−−−−→ R ∧ A ∧ Top∗(A,M) −→ R ∧ M

νM−→ M.



6.6 Ring Spectra and Modules 287

The enrichment over pointed spaces is given by an equaliser

TopR
∗ (M,N) = eq

(
Top∗(M,N) Top∗(R ∧ M,N)

)
.

The two maps are defined by their adjoints, with the unmarked maps being the
evaluations.

R ∧ N
νN

R ∧ M ∧ Top∗(M,N)

νM∧Id

N

M ∧ Top∗(M,N)

We give the main result on modules over ring spectra. This is similar to the
part of [SS00, Theorem 4.1] which relates to modules, but we do not make the
strict smallness assumptions of that result.

Theorem 6.6.7 Let R ∈ S be a ring spectrum. There is a model category of
modules over R where f is a weak equivalence or fibration if U f ∈ S is a weak
equivalence or fibration.

This model category on R–mod is cofibrantly generated, proper and stable.
If R is commutative, R–mod is a closed monoidal model category.

Furthermore, if R is cofibrant, then a cofibration of R–modules forgets to a
cofibration of S.

Proof We use the lifting lemma, Lemma A.6.12 to obtain the model structure.
The most complicated part is verifying the smallness conditions. The generat-
ing sets of R–mod are given by applying R∧− to the generating sets for S, see
Definitions 5.2.15 and 5.3.18. Lemma 6.4.6 says that the generating cofibra-
tions of R–mod are h-cofibrations. As U preserves all colimits, the smallness
conditions will hold if the domains of the generating sets of S are small with
respect to the class of h-cofibrations in the category S.

By Lemma A.5.7, shifted suspension spectra FΣd A and FO
d A are small in S

with respect to the class of h-cofibrations when A is a pointed compact topo-
logical space. The domains of the generating sets of S are defined in terms
of pushouts of shifted suspension spectra on compact spaces, hence, they are
small with respect to the class of h-cofibrations by Lemma A.6.5.

The final condition to verify for the lifting lemma is the condition on acyclic
cofibrations. Lemma 6.4.6 and Corollary 6.4.4 show that R ∧ − takes the gen-
erating acyclic cofibrations of S to stable equivalences that are h-cofibrations.
As these are preserved by pushouts and sequential colimits, the results follow.

Properness follows as colimits, limits, fibrations and weak equivalences are
given in the underlying category of spectra and every cofibration of R–modules
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is a h-cofibration by Lemma 6.4.6. Stability also follows from considering un-
derlying spectra.

When R is commutative, the tensor product over R given by

M ∧R N = coeq
(
M ∧ R ∧ N

νM∧Id

Id∧νN

M ∧ N
)

defines a monoidal product just as with rings and modules in algebra. The
internal function object is given by an equaliser. Proposition 6.6.8 will show
that R–mod satisfies the unit statement of the pushout product axiom. The rest
of the pushout product axiom follows as the (co)domains of the generating
sets are free R–modules. The monoid axiom follows from that for spectra as
the generating acyclic cofibrations are free R–modules.

When R is cofibrant, the functor R ∧ − preserves cofibrations. Hence, the
generating cofibrations of R–mod, and thus all cofibrations, forget to cofibra-
tions of S. �

We have the module equivalent of “cofibrant implies flat”.

Proposition 6.6.8 Let M be a cofibrant R–module in S, where R is a com-
mutative ring spectrum. Then − ∧R M preserves stable equivalences and π∗-
isomorphisms.

Proof When M = R ∧ X for a cofibrant spectrum X, this follows from The-
orems 6.4.2 and 6.4.3. The same method as the proof of those theorems gives
the general case. �

Now that we have categories of modules over a ring, it is natural to ask
about change of rings functors. Let f : R −→ R′ be a map of rings and M an
R′–module. Let

μR : R ∧ R −→ R and μR′ : R′ ∧ R′ −→ R′

denote the multiplication maps of R and R′, with the action map of M denoted

νM : R ∧ M −→ M.

We may define an R–module f ∗M by taking the same underlying spectrum as
M with action map given by pre-composition with f

R ∧ M
f∧Id−−−→ R′ ∧ M

νM−→ M.

This functor f ∗ : R′–mod −→ R–mod has both left and right adjoints and hence
preserves all limits and colimits. Let N be an R–module with action map

νN : R ∧ N −→ N.
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Then the left adjoint is given by

R′ ∧R N = coeq
(
R′ ∧ R ∧ N

μR◦Id∧ f∧Id

Id∧νN

R′ ∧ N
)
.

The right adjoint is given by a similar formula, namely,

FR(R′,N) = eq
(
FS(R′,N) FS(R′ ∧ R,N)

)
.

Theorem 6.6.9 Let S denote either symmetric spectra or orthogonal spec-
tra and let f : R −→ R′ be a map of ring spectra. Then the change of rings
adjunction is a Quillen adjunction

R′ ∧R − : R–mod R′–mod : f ∗.

Furthermore, if f is a stable equivalence, this adjunction is a Quillen equiva-
lence.

Proof The right adjoint f ∗ preserves and detects fibrations and weak equiva-
lences, so (R′ ∧R−, f ∗) is a Quillen adjunction. When f is a stable equivalence,
the derived unit on a cofibrant R–module M

M = R ∧R M −→ R′ ∧R M

is a weak equivalence by Proposition 6.6.8. �

We now show that the homotopy category of R–modules does not depend
on whether we work in orthogonal or symmetric spectra. In the following, we
use the fact that the functor PO

Σ
from symmetric spectra to orthogonal spectra

is strong monoidal to produce the displayed functors at the level of module
categories.

Let R be a cofibrant ring spectrum in symmetric spectra, and let R′ be a ring
spectrum in orthogonal spectra. If M is an R–module in symmetric spectra,
then PO

Σ
M is a PO

Σ
R–module with action map

P
O
Σ R ∧ POΣ M � POΣ (R ∧ M) −→ POΣ M.

If N is a UO
Σ

R′–module in symmetric spectra, then PO
Σ

N is a module over
P
O
Σ
U

O
Σ

R′, hence, we define an R′–module LN in orthogonal spectra by

LN = R′ ∧
P
O
Σ
U

O
Σ

R′ P
O
Σ N.

The right adjoint UO
Σ

passes to the various module categories in a similar fash-
ion, using the monoidal structure on the functor and the unit map. More details
on these adjoints can be found in [SS03a].
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Theorem 6.6.10 Let R be a cofibrant ring spectrum in symmetric spectra
and R′ a ring spectrum in orthogonal spectra. Then there are commutative di-
agrams of Quillen adjunctions in which the horizontal adjunctions are Quillen
equivalences.

R–mod
P
O
Σ

U

P
O
Σ

R–mod
U

O
Σ

U

U
O
Σ

R′–mod
L

U

R′–mod
U

O
Σ

U.

SΣ
P
O
Σ

R∧−

SO

U
O
Σ

P
O
Σ

R∧−

SΣ
P
O
Σ

U
O
Σ

R′∧−

SO

U
O
Σ

R′∧−

Proof The squares of right adjoints commute, hence, so do the squares of
left adjoints. The functors labelled UO

Σ
are right Quillen functors at the level

of spectra. They are also right Quillen functors at the level of modules, as the
fibrations and acyclic fibrations of modules are defined in terms the functors
labelled U.

To see that the upper adjunctions are Quillen equivalences, we only need
consider the derived units. For the left-hand square, this follows from the fact
that

P
O
Σ

: SΣ SO :UO
Σ

is a Quillen equivalence: the derived unit and counit of the top adjunction are
weak equivalences of module spectra because the underlying maps of spectra
are weak equivalences.

For the right-hand square, we use the same argument to see that

P
O
Σ

: UO
Σ

R′–mod P
O
Σ
U

O
Σ

R′–mod :UO
Σ

is a Quillen equivalence, and then we compose it with the change of rings
Quillen equivalence of Theorem 6.6.9. �

We will now turn our attention to the category of ring spectra in S. As with
commutative ring spectra later, we sketch some of the key constructions and
results. We leave details to our references.

The category of rings has all small limits, which are constructed by forget-
ting to the underlying category S as follows. Take a diagram of ring spectra

φi, j : Ri −→ Rj
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for i, j in some indexing set. Then the smash products of the canonical maps

limi Ri ∧ lim j R j −→ Rk ∧ Rk −→ Rk

induce a map to the limit limk Rk. This defines a multiplication map on the
limit. The construction of colimits is more complicated. One can either show
that filtered colimits of ring spectra can be constructed in S and use Borceux
[Bor94, Section 4.3] or take the approach of Elmendorf et al. [EKMM97,
Propositions II.7.2 and VII.2.10].

The initial object in the category of ring spectra is the sphere spectrum S,
the terminal object is ∗. Hence, the category of ring spectra is not pointed,
so, in particular, the model structures we will put on these categories are not
stable.

Definition 6.6.11 The category of ring spectra in S is denoted ring–S. The
free ring spectrum TX on X ∈ S is defined by

TX =
∨

n�0

X∧n

with X∧0 � S.

Let U denote the forgetful functor from ring spectra to spectra. This is the
right adjoint to the free functor

T : S ring–S :U.

The main theorems on ring spectra are the existence of the model structures,
as well as the Quillen equivalences between ring spectra in symmetric spectra
and ring spectra in orthogonal spectra.

Theorem 6.6.12 There is a model structure on the category of ring spectra
where f is a weak equivalence or fibration if U f ∈ S is a weak equivalence or
fibration.

If f : X −→ Y is a cofibration of ring spectra then U f is a h-cofibration
of spectra. If X is a cofibrant ring spectrum, then U f is a q-cofibration of
spectra.

In particular, a cofibrant ring spectrum is cofibrant as a spectrum. For the
proof of the theorem, one applies the lifting lemma to the adjunction

T : S ring–S :U

and follows the strategy of [SS00, Theorem 4.1], see also [MMSS01, Theorem
12.1]. One ingredient for this is [SS00, Lemma 6.2], which can be modified
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to drop the smallness assumption of the original result by using h-cofibrations
similarly to Theorem 6.6.7.

Since PO
Σ

: SΣ SO :UO
Σ

is a strong symmetric monoidal Quillen ad-

junction, it passes to the level of ring spectra.

Theorem 6.6.13 There are commutative diagrams of Quillen adjunctions in
which the horizontal adjunctions are Quillen equivalences.

ring–SΣ
P
O
Σ

U

ring–SO

U
O
Σ

U

SΣ
P
O
Σ

T

SO

U
O
Σ

T

Proof Since the fibrations and weak equivalences in our model structures on
ring spectra are defined in terms of the underlying model categories of spectra,
we have a Quillen adjunction. Since a cofibrant ring symmetric spectrum is a
cofibrant symmetric spectrum, the derived unit and counit are stable equiva-
lences at the level of ring spectra. �

Given a commutative ring spectrum R, one can define the category of R–
algebras to be the category of ring spectra under R. This has a model structure
by [DS95, Remark 3.10]. As with Theorem 6.6.10, one can then compare R–
algebras in symmetric spectra with PO

Σ
R–algebras in orthogonal spectra. The

adjoints in this result become more complicated, so we refer to Schwede and
Shipley [SS03a] for details.

6.7 Commutative Ring Spectra

There are model structures on the categories of commutative ring symmetric
spectra and commutative ring orthogonal spectra. These model structures are
even harder to construct than those for ring spectra. The problem arises from
the Σn-action of the n-fold smash of a spectrum. As an example of the extra
difficulties caused by symmetry, consider the case of chain complexes over the
integers. The chain complex Dk is given by

Dk = (· · · ←− 0← Z Id←− Z←− 0←− · · · )
with the copies of Z in degrees k and k − 1. It is therefore acyclic. However,
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PDk =
⊕

n�0

(Dk)⊗n/Σn

is not acyclic. This implies that there is no model structure on integral commu-
tative differential graded algebras with the homology isomorphisms as weak
equivalences and with surjections as fibrations.

For spectra, this problem is resolved by Lemma 6.7.4, which implies that
the analogous free commutative algebra functor P preserves weak equivalences
between cofibrant spectra. A complete account of the existence of the model
structure of commutative ring spectra would take us too far afield and would be
best placed alongside a comprehensive account of E∞–ring spectra and oper-
ads. We leave these to the numerous references on the subject, such as Elmen-
dorf et al. [EKMM97], Harper [Har09, Har15] and May [May77].
Instead, we give an overview of the properties of the model structure on com-
mutative ring spectra, which is lifted from the “positive stable model structure”
on symmetric spectra and orthogonal spectra.

The positive stable model structures are required to avoid a problem origi-
nally identified by Lewis in [Lew91]. The problem is that if S is a cofibrant–
fibrant spectrum that is also a commutative ring spectrum, then level zero of
this spectrum would be a strictly commutative model X for QS 0, see Definition
1.1.14. By [Moo58, Theorem 3.19], the basepoint component of X is a product
of Eilenberg–Mac Lane spaces, but this is not true of the basepoint component
of QS 0.

The following result summarises Mandell et al. [MMSS01, Section 14].

Proposition 6.7.1 There are positive stable model structures on symmetric
spectra and orthogonal spectra. The weak equivalences are given by the stable
equivalences. The cofibrations are called the positive q-cofibrations, which are
precisely the class of q-cofibrations that are homeomorphisms in degree zero.
The fibrations are called the positive fibrations. We denote the positive stable
model structures by SΣ+ and SO+ .

These model structures are cofibrantly generated proper model structures.
Furthermore, there is a commutative square of Quillen equivalences

SΣ+

P
O
Σ

Id

SO+
U

O
Σ

Id

SΣ
P
O
Σ

Id

SO.
U

O
Σ

Id
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We give the generating sets for the positive stable model structures. They are
the generating sets of the stable model structures, but with maps in the image
of Σ∞ removed.

IOstable+ = IOlevel+ = {FO
d (S a−1

+ −→ Da
+) | a ∈ N, d > 0}

JOlevel+ = {FO
d (Da

+ −→ (Da × [0, 1])+) | a ∈ N, d > 0}
JOstable+ = JOlevel+ ∪ {kd � (S a−1

+ → Da
+) | a ∈ N, d > 0}

IΣstable+ = IΣlevel+ = {FΣd (S a−1
+ → Da

+) | a ∈ N, d > 0}
JΣlevel+ = {FΣd (Da

+ → (Da × [0, 1])+) | a ∈ N, d > 0}
JΣstable+ = JΣlevel+ ∪ {kd � (S a−1

+ → Da
+) | a ∈ N, d > 0}

From these sets, we see that a positive cofibration is a q-cofibration, so every
fibration of the stable model structure is a positive fibration. We also see that
the sphere spectrum is not cofibrant in either positive model structure.

As with ring spectra, a limit of a diagram of commutative ring spectra may
be constructed in the underlying category of S. The proof that all small colim-
its exist can be found in Elmendorf et al. [EKMM97, Propositions II.7.2 and
VII.2.10] or Borceux [Bor94, Section 4.3]. While an arbitrary colimit in the
category of commutative ring spectra can be very complicated, filtered colim-
its are given by colimits in the underlying category of spectra. The pushout of
a diagram

B←− A −→ C

is given by the smash product B ∧A C over the initial term. The initial object
of commutative ring spectra is the sphere spectrum S, and the terminal object
is ∗, so again, this category is not pointed and hence cannot support a stable
model structure.

Lemma 6.7.2 There is an adjunction

P : S comm–ring–S :U,

where U denotes the forgetful functor from commutative ring spectra to
spectra and

PX =
∨

n�0

X∧n/Σn

with X∧0 � S. The Σn-action commutes the factors of the smash product.
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We may now give the first main result for this section, namely, the existence
of model structures on commutative ring symmetric spectra and commutative
ring orthogonal spectra. The proof is particularly difficult and is left to the
references given at the start of the section and [MMSS01, Section 15].

Theorem 6.7.3 There is a model structure on the category of commutative
ring spectra where f is a weak equivalence or fibration if U f is a weak equiv-
alence or positive fibration.

The model structure is cofibrantly generated, with generating sets given by
applying P to the generating sets for the positive stable model structures.

Work of Shipley [Shi04] gives an alternative model structure on symmetric
spectra and orthogonal spectra that has better compatibility properties between
commutative ring spectra and their underlying spectra.

The key fact that allows the model structure to exist is the following lemma.
It says that the n-fold smash product of a cofibrant spectrum is Σn–free up to
stable equivalence. The proof uses a small amount of equivariant homotopy
theory, see [May96, Chapter 1] for an introduction.

Lemma 6.7.4 For X, a positive cofibrant symmetric spectrum or a cofibrant
orthogonal spectrum, the natural map

ρX,n : (EΣn)+ ∧Σn X∧n −→ X∧n/Σn

is a stable equivalence for any cofibrant X.

The functors PO
Σ

and UO
Σ

pass to the level of commutative ring spectra and
form a Quillen equivalence by [MMSS01, Theorem 0.7].

Theorem 6.7.5 There are commutative diagrams of Quillen adjunctions in
which the horizontal adjunctions are Quillen equivalences.

comm–ring–SΣ
P
O
Σ

U

comm–ring–SO

U
O
Σ

U

SΣ
P
O
Σ

P

SO

U
O
Σ

P

This statement is the commutative analogue of Theorem 6.6.13. It says
that we can work with either symmetric spectra or orthogonal spectra. How-
ever, there are sometimes small differences in the behaviour of these model
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categories. An example is given by Kro [Kro07] which gives a symmetric
monoidal fibrant replacement functor for the positive stable model structure
on orthogonal spectra. The corresponding construction for symmetric spectra
does not give a fibrant replacement functor.

We can repeat the above with symmetric spectra in simplicial sets, obtain-
ing categories of rings, modules and commutative rings. Geometric realisation
and the singular complex functor give Quillen equivalences between the vari-
ous model categories of rings, modules and commutative rings. Details can be
found in Mandell et al. [MMSS01, Section 19].

6.8 Applications of Monoidality

We now have commutative smash products on model categories of spectra and
the stable homotopy category, as well as model categories of rings, modules
and commutative rings. This is a major improvement on SN, and these struc-
tures have major consequences and applications.

The primary place for such results is Elmendorf et al. [EKMM97], which has
chapters on the algebraic K-theory of ring spectra and topological Hochschild
homology and cohomology. We leave that material to the reference (see also
Baker and Richter [BR04]) to focus on a number of results on the structure
of the stable homotopy category. They make fundamental use of the monoidal
structure of spectra.

The following result of Shipley [Shi01] is related to Theorem 6.9.31. This
theorem makes use of the monoidal structure on the model category rather
than on the triangulated homotopy category. It states that the positive stable
model category of symmetric spectra in simplicial sets is initial among stable
simplicial symmetric monoidal model categories.

Theorem 6.8.1 (Shipley) Let SΣ+(sSet∗) denote symmetric spectra in simpli-
cial sets with the positive stable model structure, and let C be any stable sim-
plicial symmetric monoidal model category. Then there is a simplicial strong
symmetric monoidal left Quillen functor

SΣ+(sSet∗) −→ C.

Much of this book is focused on categories of spectra rather than on stable
model categories in general. The following pair of theorems of Schwede and
Shipley from [SS03b] shows that this is in fact no restriction at all: under some
reasonable assumptions, any other stable model category can be considered as
a category of spectra.
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Theorem 6.8.2 (Schwede–Shipley) Let C be a simplicial cofibrantly gener-
ated proper stable model category with a compact generator P. Then there
exists a chain of simplicial Quillen equivalences between C and the model cat-
egory of End(P)–modules. Here, End(P) is a ring spectrum satisfying

π∗(End(P)) � [P, P]C∗

as graded rings.

The ring spectrum can be constructed using the framings of Section 6.9.
With that technology, one can consider the case where C has a set of compact
generators P rather than a single generator. In this case, there is a category
E(P) with objects given by the elements of P. This category is enriched over
SΣ(sSet∗). There are natural isomorphisms

π∗(E(P)(A, B)) � [A, B]C∗

in a manner that is associative and unital. One can then define an E(P)–module
to be a functor, enriched over symmetric spectra, from E(P) to SΣ(sSet∗).

Theorem 6.8.3 (Schwede–Shipley) Let C be a simplicial cofibrantly gener-
ated proper stable model category with a set P of compact generators. Then
there exists a chain of simplicial Quillen equivalences between C and the model
category of E(P)–modules.

The next results of Shipley [Shi07] and Richter and Shipley [RS17] can be
thought of as extensions of Theorem 6.8.2 in the case where C is the category
Ch(R) of chain complexes of R–modules for a commutative ring R. These re-
sults are extremely significant, as they allow us to view the world of algebra as
a special case of spectra.

Theorem 6.8.4 (Shipley) There is a chain of weak symmetric monoidal
Quillen equivalences between Ch(R) with the projective model structure and
HR–module spectra in symmetric spectra, where HR denotes the Eilenberg–
Mac Lane spectrum of R.

The ring version also holds.

Theorem 6.8.5 (Shipley) There is a chain of Quillen equivalences between
differential graded R–algebras (ring objects in Ch(R)) and ring spectra under
HR in symmetric spectra.

The analogue of the above for commutative algebras is more complicated
due to the difficulty of constructing a model structure on that category. However,
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when R = Q, the projective model structure on rational chain complexes does
lift to the level of commutative differential graded algebras.

Theorem 6.8.6 (Richter–Shipley) There is a chain of Quillen equivalences
between E∞–monoids in Ch(R) and commutative ring spectra under HR in
symmetric spectra.

There is a chain of Quillen equivalences between commutative differential
gradedQ–algebras (commutative ring objects in Ch(Q)) and commutative ring
spectra under HQ in symmetric spectra.

Versions of these last two results were known for some time at the homo-
topical level, see Elmendorf et al. [EKMM97, Section IV.2] and Robinson
[Rob87].

6.9 Homotopy Mapping Objects and Framings

6.9.1 Unstable Framings

Let C be a pointed simplicial model category (see Definition 6.1.28). Then the
homotopy category of C is tensored, cotensored and enriched over the homo-
topy category of pointed simplicial sets by Theorem 6.1.29. In particular, let
X ∈ C be cofibrant and Y ∈ C be fibrant. Then the enrichment gives a Kan
complex mapC(X,Y) such that

πn(mapC(X,Y)) = [S n,mapC(X,Y)]sSet∗ � [X ⊗ S n,Y]C.

We can think of mapC(X,Y) as a “mapping space” as it is a space (simplicial
set) consisting of maps from X to Y .

It would be desirable to have similar structures when C is not simplicial, at
least at the level of homotopy categories. We will see in this chapter that for
any model category C, Ho(C) is a closed Ho(sSet)–module. In other words,
we can always achieve well-behaved homotopy mapping objects. This tech-
nique is known as framings. We give an outline of the constructions, results and
properties using [Hov99, Chapter 5], [Hir03, Chapters 16 and 17] and [BR11].
We will furthermore see that for a stable model category C, Ho(C) becomes
a closed module over the stable homotopy category [Len12]. In particular, we
obtain mapping spectra.

In [Dug01], Dugger creates a Quillen equivalence between any left proper
and cellular (or combinatorial) model category and a simplicial model cate-
gory. While these assumptions on the model category are often satisfied in
practice, they are non-trivial nonetheless, whereas the method of framings we
present in this chapter requires no such assumptions at all. Furthermore, the



6.9 Homotopy Mapping Objects and Framings 299

concept of framings classifies all Quillen adjunctions between simplicial sets
and an arbitrary model category C up to homotopy, making simplicial sets “ini-
tial” among model categories.

The general idea of framings is the following. If C is not simplicial, then for
A, B ∈ C, the set C(A, B) is not necessarily a simplicial set in any meaningful
way. However, we can “include” A and B into a bigger model category that
is simplicial. We use the enrichment in this category to obtain a simplicial
mapping object.

Recall the category Δ, whose objects are finite ordinals [n] = {0, 1, · · · , n},
and whose morphisms are the order-preserving maps.

Definition 6.9.1 Let C be a category. The category of cosimplicial objects CΔ

in C is defined as the category of functors

Δ −→ C.

Dually, the category of simplicial objects CΔ
op

in C is defined as the category
of functors

Δop −→ C.

Analogously to (co)simplicial sets, this means that a cosimplicial object
A• ∈ CΔ (respectively, a simplicial object B• ∈ CΔ

op
) consists of an object

An (resp. Bn) for each n ∈ N and structure maps (face and degeneracy maps)
between those levels. Given A• ∈ CΔ and B• ∈ CΔop

, we write A•([n]) = An and
B•([n]) = Bn.

The category CΔ is very useful for describing adjunctions between simplicial
sets sSet and C, see [Hov99, Proposition 3.1.5].

Lemma 6.9.2 Let C be a category containing all colimits. Then the category
of cosimplicial objects CΔ is equivalent to the category of adjunctions

F : sSet C :G.

Proof Given an adjunction

F : sSet C :G,

we obtain a cosimplicial object X• in the following way. Let Δ[n] ∈ sSet denote
the standard n-simplex, that is, the functor given by

Δ[n] : [k] �→ Δ([k], [n]).

Then the composite

Δ −→ sSet
F−→ C
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is the object of X• of CΔ, where the first functor is given by [n] �→ Δ[n], so
Xn = F(Δ[n]).

Conversely, given X• ∈ CΔ, we would like to construct an adjunction

FX : sSet C :GX .

Let K ∈ sSet. By ΔK, we denote the category of simplices in K: the objects are
maps of simplicial sets

Δ[n] −→ K,

and the morphisms are induced by the maps [k] −→ [n] such that the resulting
triangle commutes. The functor

ΔK −→ Δ, (Δ[n] −→ K) �→ [n]

induces a restriction functor CΔ
res−−→ CΔK , which we compose with the colimit

over ΔK to obtain

FX : CΔ
res−−→ CΔK colimΔK−−−−−→ C, so FX(K) � (colim

ΔK
◦ res)(X•).

Because a morphism of simplicial sets K −→ L induces

ΔK ΔL,

Δ

FX is indeed functorial in K.
Before we examine the right adjoint of this functor FX , we note that Δ(Δ[n])

has a cofinal object (namely, the identity of [n]), therefore the above construc-
tion gives

FX(Δ[n]) = Xn.

The right adjoint of FX is given by

C(X•,−) : C −→ sSet.

The nth level of the simplicial set C(X•,Y) is given by

C(X•,Y)n = C(Xn,Y),

and the structure maps of X• ∈ CΔ induce the structure maps of C(X•,Y)• in
sSet. The adjunction isomorphism is given by
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C(FX(K), Y) � C(colim
ΔK

X•,Y)

� lim
ΔK

C(X•,Y)

� lim
ΔK

sSet(Δ[−],C(X•,Y))

� sSet(colim
ΔK
Δ[−],C(X•,Y))

= sSet(K,C(X•,Y)).

We now show that we have an equivalence of categories between adjunctions
and CΔ. Given a left adjoint F : sSet −→ C, the corresponding cosimplicial
object is given by

Xn = F(Δ[n]).

Constructing the functor FX : sSet −→ C out of X• as before, we see that
FX = F, as both functors agree on Δ[n] and commute with colimits. Con-
versely, given X•, we construct FX . This satisfies FX(Δ[n]) = Xn, therefore the
cosimplicial object arising from FX is again X•. This concludes our proof. �

We have seen in the proof of Lemma 6.9.2 that for X• ∈ C, the thus con-
structed

FX : sSet −→ C

has the following properties.

• FX(Δ[n]) = Xn.
• The right adjoint of FX is C(X•,−) : C −→ sSet.

The standard notation for FX(−) is X• ⊗ − as this functor will be the basis
for defining our tensor (at the level of homotopy categories) of simplicial sets
with C.

Remark 6.9.3 An analogous proof shows that there is an equivalence be-
tween the category of simplicial objects CΔ

op
and adjunctions

sSetop C.

Now that we have a convenient description of adjunctions between simpli-
cial sets and a category C, we can ask how to identify those adjunctions that
are Quillen adjunctions in the case of C being a model category. In order to do
so, we need to introduce a model structure in CΔ.

Definition 6.9.4 A Reedy category is a small category I together with a func-
tion d : Ob(I) −→ λ for an ordinal λ, called a “degree function”. Furthermore,
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there are two subcategories I+ and I− of I satisfying the following. The cate-
gory I+ consists of those morphisms of I raising degree, and the category I−
consists of those morphisms lowering degree. In addition, every f ∈ I can be
factored uniquely as f = f+ ◦ f−, where f+ raises degree and f− lowers degree.

Reedy categories are useful for defining model structures on functor cate-
gories CI . In this chapter, we would like to apply this to CΔ. The category Δ
is a Reedy category, where Δ+ are the injections and Δ− are the surjections.
Similarly, Δop is also a Reedy category, with I+ and I− swapped.

Definition 6.9.5 Let C be a category and I a Reedy category. Then for i ∈ I
we define a functor

Li : C
I −→ CI+ −→ C(I+)i

colim−→ C.

Here, the category (I+)i consists of those morphisms of I+ with codomain i,
and the first two functors are the restrictions induced by the inclusions

(I+)i ⊂ I+ ⊂ I.

For X ∈ CI , the object LiX is called the latching object of X at i.

Similarly, we have the following.

Definition 6.9.6 Let C be a category and I a Reedy category. Then for i ∈ I
we define a functor

Mi : CI −→ CI− −→ C(I−)i lim−→ C.

Here, the category (I−)i consists of those morphisms of I− with domain i, and
the first two functors are the restrictions. For X ∈ CI , the object MiX is called
the matching object of X at i.

As all functors in the definition of the latching object factor over the evalu-
ation functor at i, we have natural transformation LiX −→ Xi for every i ∈ I,
where Xi denotes the value of X at i ∈ I. Analogously, the constant functor
gives us a natural transformation Xi −→ MiX for each i ∈ I. For a morphism
f : X −→ Y in CI , we obtain pushout and pullback diagrams

LiX Xi

LiY LiY
∐

LiX Xi

Yi

Xi

MiX ×MiY Yi Yi

MiX MiY.
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Now we have all the ingredients to describe a model structure on CI . The
proof can be found, for example, in [Hov99, Theorem 5.2.5].

Theorem 6.9.7 Let C be a model category and I a Reedy category. Then there
is a model structure on CI called the Reedy model structure with the following
properties. A morphism f : X −→ Y in CI is a

• weak equivalence if fi : Xi −→ Yi is a weak equivalence in C for all i ∈ I,
• cofibration if the map LiY

∐
LiX Xi −→ Yi is a cofibration in C for all i ∈ I,

• fibration if the map Xi −→ MiX ×MiY Yi is a fibration in C for all i ∈ I.

Recall that we showed in Lemma 6.9.2 that for a category C, the category of
adjunctions

sSet C

is equivalent to the category CΔ. If C is in addition a model category, we can
now identify those adjunctions that are Quillen adjunctions.

Lemma 6.9.8 Let C be a model category. An adjunction

F : sSet C :G

is a Quillen adjunction if and only if the corresponding X• ∈ CΔ satisfies the
following.

• The map LnX• −→ Xn is a cofibration for all n.
• All structure maps in X• are weak equivalences.

In other words, X• ∈ CΔ is cofibrant as well as weakly constant.

Proof The category of simplicial sets sSet is cofibrantly generated (see Ex-
ample A.6.8) with generating cofibrations

I = {∂Δ[n] −→ Δ[n] | n ∈ N}
and generating acyclic cofibrations

J = {Λr[n] −→ Δ[n] | 0 < n, 0 � r � n}.
As F is a left adjoint, it commutes with colimits. Asking for F to be a left
Quillen functor is equivalent to asking for F to send the elements of I to cofi-
brations in C and the elements of J to acyclic cofibrations in C. The morphism

F(∂Δ[n]) −→ F(Δ[n])

is identical to the map LnX• −→ Xn by [Hir03, Lemma 16.3.8]. By the char-
acterisation of the Reedy model structure (see Theorem 6.9.7), asking for this
map to be a cofibration for all n is equivalent to X• being cofibrant in CΔ.
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If F is a left Quillen functor, then F sends the acyclic cofibrations

Δ[0] −→ Δ[n]

to acyclic cofibrations X0 −→ Xn, which implies that all structure maps of X•

are weak equivalences.
Conversely, assume that all X0 −→ Xn are weak equivalences and that X•

is cofibrant. As stated at the beginning of the proof, the assumption that X• is
cofibrant means that F sends the generating cofibrations of sSet to cofibrations
in C and therefore sends inclusions of simplicial sets to cofibrations. In partic-
ular, X0 −→ Xn is not just a weak equivalence, but also an acyclic cofibration,
and

X• ⊗ Λr[n] = F(Λr[n]) −→ F(Δ[n]) = X• ⊗ Δ[n]

is a cofibration. We still need to show that it is also a weak equivalence. This is
an inductive argument. By [Hir03, Lemma 16.4.10], there is a finite sequence
of inclusions of simplicial sets

Δ[0] = K0 −→ K1 −→ · · · −→ Km = Λ
r[n]

arising from pushouts

Λri [ni] Ki

Δ[ni] Ki+1,

for i < r and ni < n. We note that Λ0[1] � Λ1[1] � Δ[0], and that the functor
F = X• ⊗ − commutes with pushouts. Thus, the assumption that X0 −→ X1 is
a weak equivalence implies that F(Δ[0]) −→ F(Λi[2]) is a weak equivalence,
because this map arises as a finite sequence of pushouts of cofibrations. As the
composite

F(Δ[0])
∼−→ F(Λi[2]) −→ F(Δ[2])

is assumed to be a weak equivalence, the two-out-of-three axiom tells us that
F(Λi[2]) −→ F(Δ[2]) is one. Continuing this argument inductively completes
our proof. �

We now have half of the structure we need.

Theorem 6.9.9 Let C be a model category, and let X ∈ C a cofibrant object.
Then there is a Quillen adjunction

X ⊗ − : sSet C :mapl(X,−)

such that X ⊗ Δ[0] � X.
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Proof By Lemma 6.9.8, the statement is equivalent to creating a cosimplicial
object in C which is weakly constant and whose zero degree object is weakly
equivalent to X. Therefore, we can take a cofibrant replacement of the constant
cosimplicial object on X. �

Again, we would like to stress that the notation (X⊗−,mapl(X,−)) is simply
notation that is justified by some of the functors’ properties. It is not implying
that C is tensored or enriched over simplicial sets. We will discuss the differ-
ence later in this section and see the justification of the subscript in mapl.

Remark 6.9.10 The results outlined in this chapter so far also work in the
pointed context. The left adjoint in the pointed analogue of Theorem 6.9.9 is
usually denoted X ∧ − and has the property that X ∧ S 0 � X. The pointed and
unpointed functors are related via X ∧ K+ � X ⊗ K, where K is an unpointed
simplicial set, and K+ is K with a disjoint basepoint.

A very useful consequence of Theorem 6.9.9 is the following.

Corollary 6.9.11 Let C be a model category, and let

F,G : sSet −→ C

be left Quillen functors with F(Δ[0]) � G(Δ[0]). Then the left derived functors

LF, LG : Ho(sSet) −→ Ho(C)

agree.

Proof Both F and G correspond to weakly constant cofibrant cosimplicial
objects with the same object X in level zero. Any two such objects are weakly
equivalent in CΔ, as they are both weakly equivalent to the constant cosimpli-
cial object on X. �

Example 6.9.12 Let C be a simplicial model category and X ∈ C be a cofi-
brant object. Then we can define the canonical cosimplicial object on X as

Xn � X ⊗ Δ[n],

where ⊗ is now the tensor that is part of the simplicial structure of C. Thus, we
see that the left Quillen functors

X ⊗ − : sSet −→ C

given by either tensoring with X as part of the simplicial model category struc-
ture or by evaluating X• induce the same left derived functors in the respective
homotopy categories.
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Remark 6.9.13 In [Hov99], the Quillen adjunction of Theorem 6.9.9 is as-
signed to an object in C functorially. This works because [Hov99] assumes
that all model categories satisfy functorial factorisation, in particular, functo-
rial cofibrant replacement. We do not assume this for this book. However, if
C is cofibrantly generated, functorial cofibrant replacement holds by Corollary
A.6.14. In this case, the resulting functor assigning a Quillen adjunction to an
object in C is called a framing functor.

Note that sometimes the functor X �→ X• is called a cosimplicial frame, and
sometimes this term is used just for the object X• itself.

We can apply this machinery to adjunctions

sSetop C.

For a model category C, one can identify which of those adjunctions are Quillen
adjunctions using the model category CΔ

op
, rather than CΔ in Lemma 6.9.2. Fur-

thermore, the analogue of Theorem 6.9.9 holds, namely, that for fibrant X ∈ C
there is a Quillen adjunction

X(−) : sSetop C :mapr(−, X)

with XΔ[0] � X. If we assume functorial factorisation for C (such as in the case
of C being cofibrantly generated), these Quillen adjunctions can be assigned
functorially, as before, which is called a simplicial framing functor.

Using both simplicial and cosimplicial framing functors together, we obtain
bifunctors

− ⊗ − : C × sSet −→ C, (A,K) �→ A• ⊗ K
mapl(−,−) : Cop × C −→ sSet, (A, B) �→ C(A•, B)

(−)(−) : sSetop × C −→ C, (A,K) �→ AK•
mapr(−,−) : Cop × C −→ sSet, (A, B) �→ C(A, B•).

The following is [Hov99, Theorem 5.4.9].

Theorem 6.9.14 The bifunctors

− ⊗ − : C × sSet −→ C and (−)(−) : sSetop × C −→ C

possess total left derived functors.

We mentioned before that in an ideal situation, the above bifunctors would
satisfy the conditions of Definitions 6.1.25 and 6.1.27. Unfortunately, this fails
in two significant aspects.

• The mapping spaces mapl and mapr do not generally agree – they only agree
up to a zig-zag of weak equivalences [Hov99, Proposition 5.4.7].
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• The functor − ⊗ − is not in general associative, that is, for an object X ∈ C
and simplicial sets K and L, the objects X ⊗ (K ⊗ L) and (X ⊗ K)⊗ L are not
necessarily identical. In [Hov99, Theorem 5.5.3], Hovey provides an explicit
associativity weak equivalence to relate them.

Thus, one can achieve the following.

Theorem 6.9.15 (Hovey) Let C be a model category with functorial cofibrant
replacement. Then Ho(C) is a closed Ho(sSet) – module category.

We define

mapC(X,Y) = Rmapl(X,Y) � Rmapr(X,Y)

and call this the homotopy mapping space.

Note that this result also holds without the functorial factorisation discussed
earlier. In the general case, there may not be a functorial way to assign to an
X ∈ C a cofibrant, weakly constant X• ∈ CΔ. However, any two such choices
give the same result in the homotopy category, see Remark A.3.4.

Example 6.9.16 If C is a simplicial model category, then the simplicial struc-
ture makes Ho(C) into a closed Ho(sSet)–module category by Theorem 6.1.29.
We saw previously that we can also define a framing functor on C by sending
a (cofibrant) X ∈ C to X• with Xn = X ⊗ Δ[n] in a way that is unique up to
homotopy. Consequently, the Ho(sSet)–module structure on Ho(C) from fram-
ings agrees with the Ho(sSet)–module structure coming from the simplicial
structure on C.

In particular, the simplicial enrichment homC(−,−) gives a suitable homo-
topy mapping space object, that is, if X is cofibrant and Y is fibrant,

mapC(X,Y) � homC(X,Y).

In any case, our constructions give us the following.

• For an arbitrary model category C, we have a very well-behaved notion of a
homotopy mapping “space” functor.
• For any cofibrant object X ∈ C, there is a left Quillen functor FX : sSet −→ C

with FX(Δ[0]) � X. Thus, the model category of simplicial sets is initial
among model categories in this sense.
• This left Quillen functor FX is unique up to homotopy, meaning that any

other left Quillen functor with the above properties has the same left derived
functor.
• Therefore, a left Quillen functor F : sSet −→ C is uniquely determined by

F(Δ[0]).
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Lastly, we stress again that the results of this section all have pointed ana-
logues. If C is a pointed model category, we replace sSet with sSet∗ and see
that a left Quillen functor sSet∗ −→ C is entirely determined by its value on
the simplicial sphere S 0. This will be important in the next section.

We finish this subsection with three useful lemmas on homotopy mapping
spaces and the tensor with simplicial sets in the case of a pointed model cate-
gory. Recall that in the pointed case we write ∧ instead of ⊗.

Lemma 6.9.17 Let C be a pointed model category with X cofibrant and Y
fibrant. Then in Ho(C), there are natural isomorphisms

ΣX � S 1 ∧ X ΩX � XS 1
.

Proof We may write S 1 as the pushout of the square

∂Δ[1]+ Δ[1]+

∗ S 1.

Applying the left adjoint X ∧ − gives a pushout square in C. Since

X ∧ ∂Δ[1]+ � X ∨ X

and the object X ∧ ∂Δ[1]+ is a cylinder object for X, the result follows.
The case of an Ω is dual. �

As a consequence, we obtain the following.

Lemma 6.9.18 For X and Y in C, there are natural isomorphisms in Ho(sSet∗)

mapC(ΣX,Y) � mapC(X,ΩY) � ΩmapC(X,Y).

Proof By the previous lemma, we can recognise Σ and Ω in terms of fram-
ings. The result follows from the associativity of the action of Ho(sSet∗) on
Ho(C). �

We can relate the homotopy groups of mapping spaces to maps in the homo-
topy category. In the following, we always take the basepoint of the homotopy
groups to be the element arising from the zero map.

Lemma 6.9.19 For X and Y in C, there is a natural isomorphism

πn(mapC(X,Y)) � [ΣnX,Y]C.

If C is stable then

πn(mapC(X,ΣmY)) � [X,Y]Cn−m.
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Proof By the previous lemmas, we have isomorphisms

πn(mapC(X,Y)) = [S n,mapC(X,Y)]sSet∗ � [X ∧ S n,Y]C � [ΣnX,Y]C. �

6.9.2 Stable Framings

As our focus generally lies on stable homotopy theory, we would like results
analogous to the previous section for stable model categories C. Specifically,
we will show that for stable C, the homotopy category Ho(C) is a closed module
category over the stable homotopy category SHC. Furthermore, we will study
and classify all Quillen adjunctions

S C,

which will lead to the notion that spectra (specifically, sequential spectra in
simplicial sets, denoted S) are initial among stable model categories. We will
be closely following work of Lenhardt [Len12] in this chapter for our outline.

In this section, all categories C are pointed, and we work with sequential
spectra in simplicial sets (see Subsection 5.5.1). Thus, a spectrum X consists
of a sequence of pointed simplicial sets Xn, n ∈ N, together with structure maps

σX
n : ΣXn −→ Xn+1,

where Σ is smashing with S 1 = Δ[1]/∂Δ[1], the simplicial circle. For every
n ∈ N, there is an adjunction

FNn : sSet∗ S :EvNn ,

where EvNn is the evaluation of a spectrum X in degree n. The left adjoint FNn is
the shifted suspension functor from Example 2.1.2.

Again, we start by describing all adjunctions between spectra and an arbi-
trary category. This can be related to (unstable) framings from the previous
section by pre-composing an adjunction (L,R) between spectra and a category
C with (EvNn ,F

N

n ),

Ln � L ◦ FNn : sSet∗ S C :EvNn ◦R =: Rn

to obtain an adjunction between pointed simplicial sets and C, which is pre-
cisely the subject of Lemma 6.9.2. Therefore, for an adjunction

F : S C :G,
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we obtain a cosimplicial object Xn for every n ∈ N. These objects Xn ∈ CΔ are
linked as follows. By definition of the shifted suspension spectrum, there is a
natural transformation FNn ◦Σ −→ FNn−1. This gives us natural transformations

τn : Ln ◦ Σ −→ Ln−1.

Translating this back into cosimplicial objects CΔ with Lemma 6.9.2 gives us
a morphism ΣXn −→ Xn−1 in CΔ. More precisely, Xn is (L ◦ FNn )(S 0), and so
ΣXn −→ Xn−1 is the canonical map

ΣL(FNn (S 0)) −→ L(FNn−1(S 0)).

Here, the suspension of a cosimplicial object is obtained by tensoring with
the simplicial circle at every level, using pointed framings. Altogether, there is
a name for this type of object arising from the above discussion.

Definition 6.9.20 Let C be a pointed category. A Σ-cospectrum is a sequence
of objects Xn ∈ CΔ, n ∈ N, together with structure maps

σ : ΣXn −→ Xn−1

for n ≥ 1. A morphism of Σ-cospectra is a morphism in CΔ at each level n
commuting with the structure maps. The resulting category of Σ-cospectra is
denoted CΔ(Σ).

Thus, we have already shown the following.

Lemma 6.9.21 Let C be a pointed category with all colimits. Then the cate-
gory of adjunctions

S C

is equivalent to the category of Σ-cospectra CΔ(Σ) in CΔ. �

For a Σ-cospectrum X, we denote the corresponding adjunction by

X ∧ − : S C :Map(X,−).

This is justified as X ∧ S = X, and the right adjoint in level n is given by the
simplicial set C(Xn,−). The adjoint structure maps of this mapping spectrum
are induced by the cospectrum structure maps

C(Xn−1,Y) −→ C(ΣXn,Y) � ΩC(Xn,Y).
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Now if C is not just a category, but a model category, we can seek to iden-
tify those adjunctions that are Quillen adjunctions. For this, we need a model
structure on Σ-cospectra. The following is [Len12, Theorem 4.6]. We use the
Reedy model structure on CΔ.

Theorem 6.9.22 The category of Σ-cospectra CΔ(Σ) admits a model structure
called the level model structure with the following properties.

• A morphism f : X −→ Y is a weak equivalence if fn : Xn −→ Yn is a weak
equivalence in CΔ for every n ∈ N.
• A morphism f : X −→ Y is a (trivial) cofibration if fn : Xn −→ Yn is a

(trivial) cofibration in CΔ for every n ∈ N.
• A morphism f : X −→ Y is a (trivial) fibration if f0 : X0 −→ Y0 is a (trivial)

fibration in CΔ, and

Xn −→ Yn ×ΩYn−1 ΩXn−1

is a (trivial) fibration in CΔ for all n � 1.

Before we get to describe the Quillen adjunctions between sequential spectra
and other stable model categories, we need the following.

Lemma 6.9.23 Let C be a model category and G : C −→ S be a functor. If G
satisfies the following points

1. G preserves acyclic fibrations,
2. G(Y) is an Ω-spectrum for all fibrant Y ∈ C,
3. G sends fibrations between fibrant objects to level fibrations,

then G is a right Quillen functor.

Proof We use Lemma A.4.3, which says that G is a right Quillen functor if
and only if it preserves acyclic fibrations and fibrations between fibrant objects.
Therefore, all that is left to do for us is to show that level fibrations between
fibrant spectra are fibrations. Let f : A −→ B be a level fibration between Ω-
spectra. This means we have commutative squares (which are also homotopy
pullback squares) for each n ∈ N

An

∼

Bn

∼

ΩAn+1 ΩBn+1.

By Proposition 2.3.10, this implies that f is a fibration in sequential spectra,
which is what we wanted to prove. �
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With this in mind, we are now in a position to describe Quillen adjunctions.

Lemma 6.9.24 Let X be a Σ-cospectrum. Then the corresponding adjunction

X ∧ − : S C :Map(X,−)

is a Quillen adjunction if and only if all structure maps ΣXn −→ Xn−1 of X are
weak equivalences and all levels Xn are weakly constant and cofibrant in CΔ.

Proof We prove that Map(X,−) satisfies the three points of Lemma 6.9.23:

1. Map(X,−) preserves acyclic fibrations,
2. Map(X,Y) is an Ω-spectrum for all fibrant Y ∈ C,
3. Map(X,−) sends fibrations between fibrant objects to level fibrations.

We have that Map(X,Y)n = C(Xn,Y) with adjoint structure maps

C(Xn−1,Y) −→ C(ΣXn,Y) � ΩC(Xn,Y).

Thus, the three points above are equivalent to the following:

1. C(Xn,−) : C −→ sSet∗ preserves acyclic fibrations for all n,
2. C(Xn−1,Y) −→ ΩC(Xn,Y) is a weak equivalence for all fibrant Y ∈ C and

all n,
3. C(Xn,−) sends fibrations between fibrant objects to fibrations for all n.

Those three points are again equivalent to the following:

• C(Xn,−) : C −→ sSet∗ is a right Quillen functor for every n,
• ΣXn −→ Xn−1 is a weak equivalence in CΔ for all n,

which is precisely our claim. �

Theorem 6.9.25 Let C be a stable model category. Then for any fibrant and
cofibrant A ∈ C, there is a Quillen adjunction

L : S C :R

with L(S) � A.

Proof We begin with a cosimplicial frame X0 corresponding to

L ◦ FN0 : sSet∗ −→ C.

We can take this to be a cofibrant replacement of a constant cosimplicial
object on A. We furthermore take a fibrant replacement of this cosimplicial
object so that we can use the following result of Schwede and Shipley
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[SS02, Lemma 6.4]: If Y ∈ CΔ is fibrant and C is stable, then there is an X ∈ CΔ
which is cofibrant and weakly constant such that

ΣX −→ Y

is a weak equivalence in CΔ. Continuing this inductively gives us all the Xn to
obtain a Σ-cospectrum that is a cosimplicial frame on every level and whose
structure maps are weak equivalences. �

Theorem 6.9.25 gives us Quillen adjunctions (X ∧ −,Map(X,−)) for every
X. We would like to see what happens if we vary X.

Lemma 6.9.26 Let C be a model category and B ∈ S be a cofibrant spectrum.
Then the functor

− ∧ B : CΔ(Σ) −→ C

is a left Quillen functor.

Proof We show that if f : X −→ Y is a cofibration in Σ-cospectra and

g : A −→ B

is a cofibration in spectra, then the pushout product of f and g

X ∧ B
∐

X∧A
Y ∧ A −→ Y ∧ B

is a cofibration which is trivial if f is as well. It is enough to show the above
for g being the generating cofibrations of sequential spectra in sSet∗

FNm ∂Δ[n]+ −→ FNm Δ[n]+,

see Subsection 5.5.1. Using that (X ∧ −) ◦ FNm = Xm, the pushout product
becomes

Xn
m

∐
Xm∧∂Δ[n]+

(Ym ∧ ∂Δ[n]+) −→ Yn
m.

We have assumed that f : X −→ Y was a (trivial) cofibration in Σ-cospectra.
By Theorem 6.9.22, this means that fm : Xm −→ Ym is a (trivial) cofibration
in CΔ, which by the Reedy model structure is precisely asking for the above
pushout product map to be a (trivial) cofibration. Our claim now follows from
taking g : ∗ −→ B. �

Let X be an object of a stable model category C. By ωX, we denote a Σ-
cospectrum corresponding to a left Quillen functor L : S −→ C sending the
sphere spectrum to X. We call ωX a stable framing on X. Note that we say
“a Σ-cospectrum” and “a Quillen functor” rather than “the Σ-cospectrum” and
“the Quillen functor”. This is because so far we have no reason to assume
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that either is unique in any sense. However, with a lot of attention to technical
detail this issue can be resolved. We will not prove this theorem here, as it goes
beyond the scope of this chapter.

Theorem 6.9.27 (Lenhardt) Let C be a stable model category, X ∈ C cofi-
brant, and Y ∈ C fibrant and cofibrant. Let ωX ∈ CΔ(Σ) be a stable framing on
X, and let ωY ∈ CΔ(Σ) be a fibrant stable frame on Y.

• Any morphism f : X −→ Y in C extends non-uniquely to a morphism

F : ωX −→ ωY

and therefore corresponds to a natural transformation

(X ∧ −) −→ (Y ∧ −)

such that the map

X ∧ S � X −→ Y ∧ S � Y

is again f .
• If f ′ : X −→ Y is homotopic to f as before, then the thus constructed

F′ : ωX −→ ωY

is homotopic to F, and the induced derived natural transformations

(X ∧L −) −→ (Y ∧L −)

agree.
• If f : X −→ Y is a weak equivalence in C, then the map

F : ωX −→ ωY

from the first point is a weak equivalence in CΔ(Σ).
• Evaluation at level 0 and degree 0 induces an equivalence of categories

Ho(CΔ(Σ) f r) −→ Ho(C),

where Ho(CΔ(Σ) f r) is the full subcategory of Ho(CΔ(Σ)) on those objects that
are stable frames.

Because of the subtleties arising in the proof of this theorem, it would not
be reasonable to aim for the four bifunctors between spectra and C we saw in
the unstable case. However, the previous theorem tells us that whilst ω is not a
functor from C to Σ-cospectra in C, it at least gives us a functor

ω : Ho(C) −→ Ho(CΔ(Σ) f r).
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The theorem also tells us that we have a bifunctor

Ho(CΔ(Σ) f r) × SHC −→ Ho(C).

Combining this with the equivalence

Ho(CΔ(Σ) f r) −→ Ho(C)

in the last point of the theorem gives us a bifunctor

− ∧L − : Ho(C) × SHC −→ Ho(C).

Theorem 6.9.28 (Lenhardt) Let C be a stable model category. The bifunctor

− ∧L − : Ho(C) × SHC −→ Ho(C)

makes Ho(C) into a closed module over the stable homotopy category.

In particular, for a stable model category, we have the nicely behaved ho-
motopy mapping spectra which we will use in several places throughout this
book.

Since symmetric spectra (in simplicial sets) is a symmetric monoidal model
category, we can consider categories enriched (tensored and cotensored) over
symmetric spectra.

Definition 6.9.29 Let SΣ(sSet∗) be the category of symmetric spectra in sim-
plicial sets. A SΣ(sSet∗)–model category is called a spectral model category.

Combining the previous two theorems gives the following result.

Corollary 6.9.30 Let C be a spectral model category. Then the SHC–module
structure on Ho(C) from the derived spectral structure on C agrees with the
SHC–module structure from Theorem 6.9.28. �

Additionally, stable frames induce another very useful piece of structure on
a stable model category C: using −∧L−, the stable homotopy groups of spheres
π∗(S) = [S,S]∗ act on morphisms in Ho(C) via

πn(S) ⊗ [A, B]Ck −→ [A, B]Ck+n, α ⊗ f = f ∧L α.
Now let C and D be stable model categories, and let F : C −→ D be a left
Quillen functor. By the uniqueness part of Theorem 6.9.27, we have a natural
weak equivalence

F ◦ (X ∧ −) � F(X) ∧ −
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for X ∈ C. Applying this to the action of π∗(S) yields that a left Quillen functor
induces an exact functor

LF : Ho(C) −→ Ho(D),

that is also “π∗(S)-linear” in the sense that we have a commutative diagram

πn(S) ⊗ [A, B]Ck

Id⊗LF

[A, B]Cn+k

LF

πn(S) ⊗ [LF(A),LF(B)]k [LF(A),LF(B)]Cn+k.

This π∗(S)-linear structure can be useful in proving uniqueness results. For
example, Schwede and Shipley apply it in [SS02, Theorem 3.2] to prove Mar-
golis’ unique conjecture.

Theorem 6.9.31 (Schwede–Shipley) Let T be a symmetric monoidal trian-
gulated category whose product − ∧ − is exact in each variable. Furthermore,
T should satisfy the following.

• T has infinite coproducts.
• The unit S of − ∧ − is a compact generator of T.
• There is an exact strong symmetric monoidal equivalence

Φ : ŜW
f −→ Tc,

where ŜW
f

is the full subcategory of finite CW-complexes in ŜW, and Tc is
the full subcategory of compact objects in T.

If there is a stable model category C and a π∗(S)-linear exact equivalence

T −→ Ho(C),

then C is Quillen equivalent to SN and, in particular, T � SHC.

In other words, if there is a stable model category C whose homotopy cat-
egory Ho(C) satisfies the bullet points of the theorem (which are the points
from Margolis’ original conjecture), then the π∗(S)-linear structure on Ho(C)
is enough to prove that Ho(C) is in fact the stable homotopy category SHC.
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Left Bousfield Localisation

Bousfield localisation, or more specifically, left Bousfield localisation, is an
established tool to formally add more weak equivalences to a model cate-
gory. The most common setting is localisation of spaces or spectra with re-
spect to a homology theory E∗: rather than the weak equivalences being π∗-
isomorphisms, one constructs a model structure with the E∗-isomorphisms
as the weak equivalences. As a consequence, the E∗-isomorphisms become
strict isomorphisms in the corresponding homotopy category. Therefore, we
can think of Bousfield localisation as a good formal framework for inverting
maps in the homotopy category.

Typically, information is lost in this process, but some specific aspects may
stand out clearer after localisation. We will see an example of this behaviour in
the final section when we show that the p-local stable homotopy category has
vast computational advances over working with the stable homotopy category
itself. We will also see how Bousfield localisation can help us gain insight into
the deeper structure of the stable homotopy category.

7.1 General Localisation Techniques

We start by giving some general definitions and examples before moving on to
proving that, under some assumptions, we can form a “local” model structure
from an existing one. When we work with stable model categories, we will see
that the main existence result is a lot simpler to obtain than in the general case.

The aim of this localisation is to add weak equivalences to a given model
structure. The first point to address is that adding a class of maps W to the
weak equivalences of a model category C may make more maps than just W
into weak equivalences.

317
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Recall that mapC(−,−) denotes the homotopy mapping space construction
introduced in Section 6.9.

Definition 7.1.1 Let C be a model category andW be a class of maps.

• We say that an object Z ∈ C isW-local if

mapC( f ,Z) : mapC(B,Z) −→ mapC(A,Z)

is a weak equivalence of simplicial sets for all f : A −→ B inW.

• A morphism g : X −→ Y in C is aW-equivalence if

mapC(g,Z) : mapC(Y,Z) −→ mapC(X,Z)

is a weak equivalence of simplicial sets for allW-local objects Z ∈ C.

• An object X ∈ C isW-acyclic if

mapC(X,Z) � ∗
for allW-local objects Z.

We may think of this definition as giving a procedure to define the weak
equivalences of LWC from W. We start with a class of maps W, from which
we constructW-local objects. We then use theW-local objects to construct the
W-equivalences. In particular,

W ⊆W-equivalences.

The process stabilises at this point, meaning that further steps will not change
either the set of local objects or the set of equivalences. In other words,

(W-equivalences)-equivalences =W-equivalences.

Some references including [Hir03] define a W-local object to be a fibrant
object of C satisfying the mapping space condition above. We find it more
convenient to separate these two conditions.

We have the following lemma.

Lemma 7.1.2 Every element of W and every weak equivalence in C is a
W-equivalence.

If g : Z −→ Z′ is a weak equivalence in C, then Z isW-local if and only if Z′

isW-local.
A W-equivalence f : X −→ Y between W-local objects is a weak equiva-

lence of C.
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Proof The first two statements are a direct consequence of Definition 7.1.1.
The third statement is a local version of the Whitehead Theorem and will be
proved in a similar way to Proposition 1.2.3 and Lemma 5.3.13. Let

f : X −→ Y

be aW-equivalence betweenW-local objects. Then

f ∗ : mapC(Y, X) −→ mapC(X, X)

is a weak equivalence. In particular, there is a g : Y −→ X with g ◦ f � IdX in
Ho(C). We also have that

f ∗ : mapC(Y,Y) −→ mapC(X,Y)

is a weak equivalence which sends f ◦g to f ◦g◦ f , which is isomorphic to f in
Ho(C). This map also sends IdY to f , therefore f ◦ g � IdY in Ho(C), meaning
that f is a weak equivalence. �

The definitions also imply that only the equivalence class ofW in the homo-
topy category of C matters. That is, if f and g are weakly equivalent maps (see
Example A.7.2), then the maps mapC( f ,Z) and mapC(g,Z) are weakly equiv-
alent, so one is a weak equivalence if and only if the other is as well. Hence,
one can replaceW by a class of weakly equivalent maps. In particular, one may
always assume thatW consists of cofibrations between cofibrant objects.

We may now define left Bousfield localisations. The idea is to have a new
model structure that focuses on the W-local objects and W-equivalences and
has a suitable universal property, see Remark 7.1.7. Since the definition speci-
fies a category, a class of cofibrations and a class of weak equivalences, we see
that left Bousfield localisations are unique. Note that we do not claim that any
given left Bousfield localisation exists.

Definition 7.1.3 Let C be a model category and W be a class of maps. The
left Bousfield localisation of C is a model structure LWC on the same category
as C with the weak equivalences given by the class ofW-equivalences and with
the same cofibrations as C.

The fibrations of LWC are usually quite complicated and often have no ex-
plicit characterisation outside of the right lifting property. However, in the case
where C is left proper, we have a clear description of the fibrant objects of
LWC: they are theW-local objects that are fibrant in C by [Hir03, Proposition
3.4.1].

This leads to the following definition.



320 Left Bousfield Localisation

Definition 7.1.4 Let C be a model category and W a class of maps. We say
that a morphism f : X −→ Y in C is aW-localisation if

• the map f is aW-equivalence,
• the object Y isW-local.

In the above situation, Y satisfies the following universal property in Ho(C).
If Z is anotherW-local object and g : X −→ Z is a map, Definition 7.1.1 implies
that g uniquely factors over f in Ho(C), because

mapC( f ,Z) : mapC(Y,Z) −→ mapC(X,Z)

is an isomorphism in Ho(sSet∗). Therefore, it is common at this stage already
to speak of Y as “the” W-localisation of X and write Y = LWX, although we
would like to specify LWX further later in this chapter.

X

f

g
Z.

Y = LWX

Example 7.1.5 The following example is known as finite localisation and
was discussed by Miller in [Mil92]. This localisation can be described explic-
itly. Let C be a stable model category, and letW be a set of maps f in C, where
each f has a compact homotopy cofibre (see Definition 5.6.2). Let A denote
the set of (cofibrant replacements of) these cofibres. Note that W is assumed
to be a set rather than a class, but W does not have to be finite. Furthermore,
assume thatW and therefore A is closed under suspension and desuspension.
The resulting localisation is often denoted by LWX = L f

A
X and called finite

A-localisation rather thanW-localisation. The choice of letter A refers to the
fact that its elements areW-acyclic.

Let X be a fibrant object of C. We start with X0 � X and set

W0 �
∐

A∈A
∐

f∈[A,X]C
A,

the coproduct over all the maps A −→ X in Ho(C) and A ∈ A. Choosing
representatives for the maps in this coproduct, we obtain a map

W0 −→ X0

by sending the summand A corresponding to a representative g : A −→ X to X
via g. We now set X1 to be the (fibrant replacement of the) cofibre of this map.
Continuing, we set

W1 �
∐

A∈A
∐

f∈[A,X1]C
A,
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which gives us a map

W1 −→ X1,

where we call the cofibre X2 and so on. We thus obtain a cofibre sequence

Wi −→ Xi
ji−→ Xi+1 for all i � 0.

The maps ji induce a map

	Xi
j−→ 	Xi.

We define X∞ to be the homotopy cofibre of the map

Id − j : 	 Xi −→ 	Xi,

where Id denotes the identity of the coproduct. Our claim is that the canonical
map

X −→ X∞

is aW-localisation. For this, we have to show that

• the object X∞ isW-local,
• the map X −→ X∞ is aW-equivalence.

For the first point, we check that [A, X∞] = 0 for all A ∈ A. This is sufficient by
Lemma 7.2.7 and by the long exact sequence of the cofibre sequence defining
A, see Theorem 3.6.4.

Since X∞ is defined as the cofibre of a map, there is a long exact sequence

· · · [A,	Xi]k
(Id− j)∗

[A,	Xi]k [A, X∞]k · · · .
Using compactness of A and injectivity of the maps Id−⊕i( ji)∗, the long exact
sequence splits into short exact sequences

0 ⊕i[A, Xi]k
Id−⊕i( ji)∗ ⊕i[A, Xi]k [A, X∞]k 0

for each k ∈ Z, just as with Lemma 5.6.15. Hence,

[A, X∞]C∗ � colimn[A, Xn]C∗ .

Therefore, any map f : A −→ X∞ must factor over one of the Xn, that is,

f : A
fn−→ Xn

in−→ X∞,

where in is the canonical map. By construction,

( jn)∗ : [A, Xn]C −→ [A, Xn+1]C

sends fn to 0, so f must be trivial in the sequential colimit.
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For the second point, we show that there is an exact triangle

W̃∞ −→ X −→ X∞ −→ ΣW̃∞

with W̃∞ a W-acyclic object. The long exact sequence of a cofibre will then
imply that

[X∞,Z]C∗ −→ [X,Z]C∗

is an isomorphism for allW-local Z.
Since we assumed W to be closed under suspensions and desuspensions,

we can use morphism sets in Ho(C) rather than homotopy mapping spaces
to detect local objects, see Lemma 7.2.7. Hence, the above isomorphism will
imply that X −→ X∞ is aW-equivalence.

We have that

[A,Z]C∗ = 0 for all A ∈ A,
as all the A are acyclic and Z isW-local. Therefore, we also have

[Wi,Z]C∗ = 0 for all i � 0,

as the Wi have been defined to be coproducts of the A.
Define W̃i to be the fibre of X = X0 −→ Xi. The octahedral axiom shows

that W̃2 fits into an exact triangle with (suspensions of) W1 and W2. The Five
Lemma gives that W̃2 is W-acyclic (see Corollary 7.2.8). Continuing induc-
tively, each W̃i isW-acyclic. The maps ji : Xi −→ Xi+1 induce maps

hi : W̃i −→ W̃i+1.

We can repeat our construction of X∞ with the W̃i and hi to obtain W̃∞. This
gives the left-most column in the diagram below. The middle column below is
another instance of this construction using the identity map of X. In this case,
the cofibre is just X itself. The 3 × 3 Lemma, Lemma 4.1.13, implies that we
have a commutative diagram with all rows and columns being part of exact
triangles

	W̃i

Id−h

	X 	Xi

Id− j

	W̃i 	X 	Xi

W̃∞ X X∞.
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The object W̃∞ is W-acyclic, as it is part of an exact triangle with two other
W-acyclic objects. Moreover, W̃∞ is constructed from the objects of A using
(de)suspensions, coproducts and exact triangles.

The most commonly known existence result is the following [Hir03, Theo-
rem 4.1.1]. Most notably, it requires W to be a set rather than a class. Recall
that a cellular model category is a cofibrantly generated model category satis-
fying some additional conditions related to smallness, see [Hir03, Chapter 12].

Theorem 7.1.6 Let C be a left proper, cellular model category, and letW be
a set of morphisms in C. Then there is a left proper, cellular model structure
LWC on the category C such that

• a map f : X −→ Y in C is a weak equivalence in LWC if and only if it is a
W-equivalence,

• a map f : X −→ Y in C is a cofibration in LWC if and only if it is a cofibration
in C,

• the fibrant objects in LWC are precisely those objects in C that are fibrant in
C andW-local.

In particular, the last point implies that fibrant replacement in the model
structure LWC provides a W-localisation. Another consequence is that the
identity functor provides a Quillen adjunction

Id : C LWC : Id,

which in turn induces an adjunction

Ho(C) Ho(LWC).

Hence, for X and Y in C, there is a natural isomorphism

[X, LWY]C � [X,Y]LWC.

The homotopy category of a model category M is equivalent to the full subcat-
egory of cofibrant-fibrant objects in M and maps up to homotopy. Therefore,
the above implies that the homotopy category of LWC is equivalent to the full
subcategory of Ho(C) on the cofibrant-fibrant andW-local objects in C.

Remark 7.1.7 Our construction gives a localisation functor of categories in
the following sense. Let

L : Ho(C) −→ Ho(LWC)
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be the left derived functor of the Quillen functor

Id : C −→ LWC.

Then L takes the images of W in the homotopy category to isomorphisms in
Ho(LWC) and furthermore satisfies the following universal property. Let D be
another model category and

F : C −→ D

be a left Quillen functor such that the left derived functor

LF : Ho(C) −→ Ho(D)

takes the images of elements ofW in Ho(C) to isomorphisms in Ho(D). Then
F passes to a left Quillen functor

F′ : LWC −→ D

(which on underlying categories is the same functor as F) making the diagram
of Quillen functors below commute.

C
F

Id

D.

LWC
F′

Further properties of LWC are given in [Hir03, Section 3.3], and further proper-
ties of Ho(LWC) in the stable setting are discussed in [HPS97]. As it is not our
aim to provide a comprehensive reference for everything related to left Bous-
field localisation, we will only touch on those things when we have a concrete
need for them.

Remark 7.1.8 Note that the class of E∗-isomorphisms (or “E-equivalences”)
of spectra for a homology theory E∗ does not form a set. However, it is pos-
sible (and highly non-trivial) to find a set JE such that E∗-isomorphisms are
precisely the JE-equivalences, see Section 7.3. Therefore, we can apply The-
orem 7.1.6 (or Theorem 7.2.17) to the set JE to obtain a model structure on
spectra where the weak equivalences are the E∗-isomorphisms.

In many cases, the main challenge to localising a model category lies in
finding a set of maps, rather than a class of maps, which generates the desired
equivalences that one would like to formally invert in the homotopy category.

Example 7.1.9 The stable model structures on SN, SΣ and SO are left Bous-
field localisations of the levelwise model structures at the class of stable equiv-
alences.
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If we wanted to use Theorem 7.1.6 to construct the stable model struc-
ture, we would need to give a set of stable equivalences W such that the W-
equivalences are the class of all stable equivalences, similar to Remark 7.1.8.
In this case, we can give an explicit set at which to localise. Choosing sequen-
tial spectra for definiteness, we claim that the stable model is the left Bousfield
localisation of the levelwise model structure at the set of maps

W = {λn : FNn+1 S 1 −→ FNn S 0 | n ∈ N}.
To see this, we note that we can use the enrichment over pointed topological
spaces to give homotopy mapping objects, see Example 6.9.16. Since these
shifted suspension spectra are cofibrant in the levelwise model structure and
every object is fibrant, we see that X isW-local if and only if the map

Xn � SN(FNn S 0, X) −→ SN(FNn+1 S 1, X) � ΩXn+1

is a weak equivalence of spaces for all n ∈ N. This means that theW-local spec-
tra are precisely theΩ-spectra, the fibrant objects of the stable model structure.
The claim then follows.

7.2 Localisation of Stable Model Categories

It is not surprising that the proof of the existence result, Theorem 7.1.6 is very
technical. However, a considerable amount of this complexity is removed if
both the underlying model category is stable and the desired localisation is
also “stable” in a certain sense. In this section, we examine how this stabil-
ity can make localisations better behaved. The main result of this section is
Theorem 7.2.17, a simpler existence result for left Bousfield localisations,
which is a development of [BR13, Remark 4.12].

By Lemma 6.9.18, the homotopy mapping complexes interact with suspen-
sion and loop functors in the expected way. In particular,

mapC(ΣX,Y) � mapC(X,ΩY) � ΩmapC(X,Y).

From this, we obtain the following.

Lemma 7.2.1 Let C be a model category andW a class of maps in C. Then
the class ofW-local objects is closed underΩ, and the class ofW-equivalences
is closed under Σ.

Proof We have the following natural isomorphisms in Ho(sSet∗)

ΩmapC(X,Z) � mapC(X,ΩZ) � mapC(ΣX,Z).
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Thus, if

mapC( f ,Z) : mapC(B,Z) −→ mapC(A,Z)

is a weak equivalence for all f : A −→ B inW, then so is

mapC( f ,ΩZ) : mapC(B,ΩZ) −→ mapC(A,ΩZ).

Similarly, if

mapC(g,Z) : mapC(Y,Z) −→ mapC(X,Z)

is a weak equivalence of simplicial sets, then so is

mapC(Σg,Z) : mapC(ΣY,Z) −→ mapC(ΣX,Z). �

If the class ofW-equivalences is not just closed under Σ, but also under Ω,
we call a localisation stable.

Definition 7.2.2 Let C be a stable model category andW a class of maps in
C. We say that W is stable if one of the following two equivalent conditions
hold.

• The class ofW-local objects is closed under Σ.
• The class ofW-equivalences is closed under Ω.

Stability of C together with the (Σ,Ω)–adjunction gives weak equivalences

mapC(ΩX,Y) � mapC(ΩX,ΩΣY) � mapC(ΣΩX,ΣY) � mapC(X,ΣY).

Hence, when W itself is closed under Ω (up to weak equivalence), an object
Y ∈ C isW-local if and only if ΣY is, in which caseW is stable.

Lemma 7.2.3 Let C be a stable model category, and letW be a class of maps
such that the model category LWC exists. Then LWC is a stable model category
if and only ifW is a stable class of maps.

Proof First, assume that W is stable, that is, the class of W-local objects in
Ho(LWC) is closed under suspension and desuspension. As mentioned earlier,
theW-local homotopy category Ho(LWC) is equivalent to the full subcategory
of Ho(C) on itsW-local objects. Therefore, the adjunction

Σ : Ho(C) Ho(C) :Ω

restricts to this full subcategory. The functor Ω on Ho(LWC) is fully faithful,
as it is the restriction of such a functor. It is essentially surjective by stability
of C, hence, it is again an equivalence.

Now assume that LWC is stable and that X ∈ C is W-local. Since Ω is an
equivalence on Ho(LWC), there is a W-local Y with ΩY � X in Ho(LWC).
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Since X and ΩY areW-local, we see that ΩY � X in Ho(C). By stability of C,
there are isomorphisms in Ho(C)

Y � ΣΩY � ΣX.

As Y isW-local, so is ΣX. �

Example 7.2.4 The prime example of a stable localisation is localisation of
spectra with respect to a homology theory. Let S denote a suitable category of
spectra and E a (cofibrant) spectrum. Recall that an E-equivalence is defined
to be an E∗-isomorphism, that is, a map of spectra that induces an isomorphism
in the homology theory E∗. We want to localise S at the class

W = E-equivalences = E∗-isomorphisms.

The model category LWS is more commonly called LES. This choice of W is
stable because for a morphism of spectra f : X −→ Y ,

E∗(Σ f ) : E∗(ΣX) −→ E∗(ΣY)

is an isomorphism if and only if E∗( f ) is one. We will discuss further properties
of this localisation in Sections 7.3 and 7.4.

In this case, we have that the class of W-equivalences is exactly the class
W. That is, no further equivalences are introduced when we add the class W
to the weak equivalences of S. This follows as the class W is proven to be
the JE-equivalences for some set JE , and the process of taking equivalences
stabilises.

Example 7.2.5 The finite localisation discussed in Example 7.1.5 is stable
by definition.

Example 7.2.6 Let S denote a suitable category of spectra, and let

fk : Σ∞S k+1 −→ Σ∞Dk+2

denote the canonical inclusion of the (k + 1)-sphere into the (k + 2)–disc. By
definition, a spectrum Z is fk-local if and only if

mapS( fk,Z) : mapS(Σ∞Dk+2,Z) −→ mapS(Σ∞S k+1,Z)

is a weak equivalence of simplicial sets. As Σ∞Dk+2 is contractible, Z is fk-
local if and only

πm(Z) = 0 for m � k + 1.

Thus, for a spectrum X, its localisation

X −→ Lfk X
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is the kth Postnikov section of X. For fk-local Z, we see that πm(ΣZ) is only
guaranteed to be trivial for m � k + 2. Therefore, the class of local objects is
not closed under suspension, and thusW = { fk} is not stable.

The definition of W-local objects and W-equivalences, Definition 7.1.1, is
written for general model categories and uses the homotopy mapping space
construction, mapC(−,−). In the case of a stable model category and a stable
localisation, an equivalent definition can be given in terms of [−,−]C∗ . This
formulation can often be more convenient.

Note that the statements of the next result still hold after replacing all graded
morphism groups [−,−]C∗ with ungraded morphisms [−,−]C because of the
stability ofW.

Lemma 7.2.7 Let C be a stable model category and W a stable class of
morphisms in C.

• An object Z ∈ C isW-local if and only if

[ f ,Z]C∗ : [B,Z]C∗ −→ [A,Z]C∗

is an isomorphism for all f : A −→ B inW.
• A morphism g : X −→ Y in C is aW-equivalence if and only if

[g,Z]C∗ : [Y,Z]C∗ −→ [X,Z]C∗

is an isomorphism for allW-local objects Z ∈ C.
• An object X ∈ C isW-acyclic if and only if

[X,Z]C∗ � ∗
for allW-local objects Z.

Proof We only show the first part as the others are very similar. By Lemma
6.9.19, for any n, m ∈ N we have

πn(mapC(X,ΣmZ)) � [X,Z]Cn−m

using the zero map as the basepoint. By the stability of C andW, we have the
“only if” direction.

For the converse, let f : A −→ B in W. Then C f , the cofibre of f , is W-
acyclic. By Lemma 6.9.19,

0 = [C f ,Z]n � πn(mapC(C f ,Z))

for all n ∈ N. As mapC(C f ,Z) is weakly equivalent to the homotopy fibre of
mapC( f ,Z), we see that

πn(mapC( f ,Z)) : πn(mapC(B,Z)) −→ πn(mapC(A,Z))
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is an isomorphism for all n > 0, using the zero map as the basepoint for the
homotopy groups. Hence,

mapC(B,ΩZ) � ΩmapC(B,Z) −→ ΩmapC(A,Z) � mapC(A,ΩZ)

is a weak equivalence of pointed simplicial sets, and so ΩZ isW-local. AsW
is stable, the local objects are closed under suspension. Since C is stable, we
have the weak equivalence

ΣΩZ
∼−→ Z

which shows that Z isW-local. �

Corollary 7.2.8 Let C be a stable model category and W a stable class of
morphisms. Furthermore, let

A −→ B −→ C −→ ΣA

be an exact triangle in Ho(C). If two out of the objects A, B and C areW-local,
then so is the third. If two out of the objects A, B and C areW-acyclic, then so
is the third.

A map X −→ Y is a W-equivalence if and only if the homotopy cofibre (or
homotopy fibre) isW-acyclic. �

Corollary 7.2.9 Let C be a stable model category, and letW be a stable class
of morphisms such that LWC exists. For a diagram ofW-local objects

X1
f1←− X2

f2←− X3
f3←− · · ·

the homotopy limit X = holimn Xn isW-local.

Proof This follows from Corollary A.7.23 and Lemma 7.2.7. �

Stable localisations also interact well with pullbacks. Recall that the fibre of
a map f : X −→ Y in a model category C is the pullback of

X
f−→ Y ←− ∗.

The homotopy fibre of f is the pullback of

Y ′
f−→ Y ←− ∗,

where Y ′ is given by factoring f into an acyclic cofibration and a fibration

X
∼

Y ′ Y.

If C is right proper and f is a fibration, then the fibre is weakly equivalent to
the homotopy fibre F f by Lemma A.7.20.
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Lemma 7.2.10 Let C be a stable model category,W be a stable set of maps
and A, B,C and P be objects in C. Furthermore, let

P
f

i

A

j

B g C

be a commutative square.
If the square is a homotopy pullback square and A, B and C are W-local,

then P is alsoW-local.
If C is right proper, the square is a pullback square, g is a fibration and j is

aW-equivalence, then i is also aW-equivalence.

Proof A homotopy pullback square gives rise to a long exact sequence

· · · −→ [X, P]n −→ [X, A]n ⊕ [X, B]n −→ [X,C]n −→ [X, P]n−1 −→ · · ·
for X ∈ C by Lemma A.7.21. If A, B and C are W-local and X is W-acyclic,
then

[X, A]n = [X, B]n = [X,C]n = 0

and thus also [X, P]n = 0 for all n. This means that P is alsoW-local as claimed.
For the second statement, as we have a pullback square, the fibres F f and Fg

of f and g are isomorphic. Moreover, the fibres are weakly equivalent to the
homotopy fibres F f and Fg.

This gives a map of homotopy fibre sequences in C

F f

�

P
f

i

A

j

Fg B g C.

Applying [−,Z]C∗ for aW-local object Z gives a map of long exact sequences.
The Five Lemma shows that i is also aW-equivalence. �

We now turn to our existence theorem for left Bousfield localisations in the
stable context. We begin by constructing the maps which will be our generating
acyclic cofibrations of the localised model structure.

Let C be a cofibrantly generated stable model category and W be a set of
cofibrations between cofibrant objects. Let f : X −→ Y be in W and



7.2 Localisation of Stable Model Categories 331

in : ∂Δ[n]+ → Δ[n]+ be the standard inclusion of simplicial sets. The con-
struction of framings from Section 6.9 gives us a bifunctor

− ∧ − : C × sSet∗ −→ C.

In particular, f induces a natural transformation

f ∧ − : (X ∧ −) −→ (Y ∧ −)

of functors from pointed simplicial sets to C that is a cofibration in CΔ. Then
f � in is the indicated map out of the pushout

X ∧ ∂Δ[n]+
f∧Id

Id∧in

Y ∧ ∂Δ[n]+

Id∧in

X ∧ Δ[n]+

f∧Id

X ∧ Δ[n]+
∐

X∧∂Δ[n]+
Y ∧ ∂Δ[n]+

f�in

Y ∧ Δ[n]+.

Recall from Lemma 6.9.8 that the map from the nth latching object of a cosim-
plicial frame on X to the nth level of that cosimplicial frame is exactly

X ∧ ∂Δ[n]+ −→ X ∧ Δ[n]+,

see also [Hir03, Lemma 16.3.8]. It follows that the map f � in is a cofibration
between cofibrant objects by the definition of the model structure on cosimpli-
cial frames, Theorem 6.9.7.

Definition 7.2.11 LetW be a set of cofibrations between cofibrant objects in
a cofibrantly generated model category C. We define a set of horns onW to be
the set

ΛW = { f � in | f ∈W, n ∈ N},
where in : ∂Δ[n]+ → Δ[n]+ is the standard inclusion.

The set of horns onW is strongly related to localisations.

Lemma 7.2.12 Let W be a set of maps in a model category C. Then the set
of horns satisfies the following properties.

• Every element f � in of ΛW is aW-equivalence.
• A fibrant object Z ∈ C is W-local if and only if Z → ∗ has the right lifting

property with respect to the maps in ΛW.
• If C is left proper and J is a set of acyclic cofibrations of C, then every

element of (J ∪ ΛW)-cell is a cofibration and aW-equivalence.
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As the proof of these statements is very set-theoretic, we refer to [Hir03,
Propositions 3.2.10 and 3.2.11] and [Hir03, Propositions 4.2.3 and 4.2.4]. Note
that the first two points do not require the model category to be left proper
or cellular. The last point is essentially the statement that mapr(−, Z) sends
colimits to limits andW-equivalences to weak equivalences of simplicial sets
when Z isW-local.

We give some technical lemmas needed for our existence theorem. These
lemmas require that C is stable.

Lemma 7.2.13 Let C be a stable model category andW a stable set of maps
in C. Assume we have a commutative triangle

X
u

p

Y

q

B

such that the homotopy fibres of p and q areW-local. Then u is aW-equivalence
if and only if it is a weak equivalence in C.

Proof We only need to prove one direction of the statement as the other fol-
lows straight from the definition. The commutative triangle gives a map of
exact triangles in Ho(C)

ΩB F p

v

X
p

u

B

ΩB Fq Y
q

B.

Applying the functor [−, Z]∗ for Z, a fibrant object, we obtain a diagram of
long exact sequences

· · · [F p,Z]n+1

v∗

[B,Z]n

=

[X,Z]n

u∗

[F p,Z]n

v∗

· · ·

· · · [Fq,Z]n+1 [B,Z]n [Y,Z]n [Fq,Z]n · · · .
Assume that u is a W-equivalence. Then u∗ is an isomorphism for each W-
local Z, and so is v∗ by the Five Lemma. Lemma 7.2.7 then implies that v
is aW-equivalence. SinceW-equivalences betweenW-local objects are weak
equivalences by Lemma 7.1.2, it follows that v is a weak equivalence. Thus v∗

is an isomorphism for any fibrant Z, and by the Five Lemma, u∗ is an isomor-
phism for any fibrant Z. Therefore, u is a weak equivalence. �
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The following definition is necessary for the section’s main result.

Definition 7.2.14 We say that a model category C is acceptable if there are
sets of generating cofibrations I and generating acyclic cofibrations J such that

1. the codomains of I are transfinitely small with respect to I,
2. the domains of J are cofibrant.

Examples 7.2.15 The levelwise and stable model structures on the various
kinds of spectra we have studied are acceptable.

Other examples include chain complexes with the projective model struc-
ture, (pointed) topological spaces and (pointed) simplicial sets.

Note that being acceptable is a considerably weaker condition than being
cellular. We are particularly interested in the following property: every cofi-
brant object in an acceptable model category is transfinitely small with respect
to the class of cofibrations (see Lemma A.6.15).

We can now give our key lemma.

Lemma 7.2.16 Let C be a proper, acceptable stable model category, and let
W be a stable set of cofibrations between cofibrant objects in C.

If f : X −→ Y is a fibration in C, then the following statements are equiva-
lent.

1. The map f has the right lifting property with respect to ΛW.
2. The fibre F of f isW-local.
3. The homotopy fibre F f of f isW-local.

Proof We show each condition implies the next.

(1⇒ 2) : Assume f has the right lifting property with respect to ΛW. By the
properties of pullbacks, the terminal map F −→ ∗ also has the right lifting
property with respect to ΛW. Hence, F isW-local by Lemma 7.2.12.

(2⇒ 3) : Now assume that F, the fibre of f , isW-local. Since f is a fibration
and C is right proper, the strict fibre F is weakly equivalent to the homotopy
fibre F f . Hence, F f is alsoW-local.

(3⇒ 1) : Now assume that F f , the homotopy fibre of f , is W-local. As the
domains of J ∪ ΛW are cofibrant, they are transfinitely small with respect
to the class of all cofibrations (see Lemma A.6.15), and hence transfinitely
small with respect to J ∪ ΛW. By the small object argument (Proposition
A.6.13), we may factor f as an element of (J ∪ ΛW)-cell j : X −→ B fol-
lowed by a fibration q : B −→ Y with the right lifting property with respect
to ΛW.

By the earlier parts of the proof, the homotopy fibre of q is also
W-local. By Lemma 7.2.12, j is a cofibration andW-equivalence. Applying
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Lemma 7.2.13, we see that j is a weak equivalence. Then we have a lift-
ing square as on the left (with lift g), and hence a retract diagram as on the
right.

X

j �

X

f

X
j

f

B
g

q

X

f

B q

g

Y Y Y Y.

Since f is a retract of q, it also has the right lifting property with respect
to ΛW. �

We may now give an existence theorem for the W-local model structure in
the stable case. This theorem has two advantages over the unstable case. Firstly,
it does not require the model category to be cellular and secondly, it provides
explicit generating sets.

Theorem 7.2.17 Let C be a proper, acceptable stable model category, and let
W be a stable set of maps in C.

Then the left Bousfield localisation LWC of C atW from Theorem 7.1.6 exists
and is a proper, acceptable stable model structure. The generating cofibrations
are given by the generating cofibrations I of C. The generating acyclic cofibra-
tions are given by the set J ∪ ΛW, where J denotes the generating acyclic
cofibrations of C.

Proof We start by replacing W with a weakly equivalent set of cofibrations
between cofibrant objects.

We follow the Recognition Theorem, Theorem A.6.9. The W-equivalences
satisfy the two-out-of-three property.

As for the smallness conditions, we have not changed the generating cofi-
brations I. Because every element of J ∪ ΛW is a cofibration, every map in
(J ∪ ΛW)-cell is a cofibration. The domains of J ∪ ΛW are cofibrant, hence,
they are transfinitely small with respect to the class of cofibrations by Lemma
A.6.15, hence, they are transfinitely small with respect to (J ∪ ΛW).

Now that the smallness properties have been dealt with, let us move on to
the rest of the Recognition Theorem. Every element of (J ∪ ΛW)-cell is a
cofibration and aW-equivalence by Lemma 7.2.12.

Let a morphism f in C have the right lifting property with respect to I.
Then we know that f is a weak equivalence in C (hence, a W-equivalence)
and a fibration. Since the maps J ∪ΛW are cofibrations, f has the right lifting
property with respect to J ∪ ΛW. Thus, we have shown that

I-inj ⊆ (J ∪ ΛW)-inj ∩ (W-equivalences).
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Let f have the right lifting property with respect to J ∪ΛW. Then we know
that f is a fibration in C. In addition, by Lemma 7.2.16, the homotopy fibre
F f of f is W-local. If we assume that f is also a W-equivalence, then F f is
a W-local object that is W-equivalent to ∗ by Corollary 7.2.8. Hence, F f is
weakly equivalent to ∗ in C. As C is stable, f is a weak equivalence in C and a
fibration. Thus, f has the right lifting property with respect to I. Therefore, we
have shown

(J ∪ ΛW)-inj ∩ (W-equivalences) ⊆ I-inj.

We have proved that the model structure exists and is cofibrantly generated.
It is an acceptable model category because we have not changed the set of
generating cofibrations, and the domains of J ∪ ΛW are cofibrant. Lemmas
7.2.3 and 7.2.10 imply that the model structure is stable and right proper. Left
properness of LWC is a dual proof to Lemma 7.2.10. �

Remark 7.2.18 We have required C to be acceptable in order to give check-
able conditions that J ∪ ΛW will satisfy the conditions of the small object
argument. The minimum requirement is that the domains of J ∪ΛW are trans-
finitely small with respect to J ∪ ΛW, see [BR13, Remark 4.12].

Since the standard examples of stable model categories (that is, the various
model categories of spectra, and chain complexes with the projective model
structure) are acceptable model categories, we find the requirements quite ac-
ceptable.

However, if we remove stability from the assumptions above, the result will
fail, as with [BR13, Example 4.13].

Combining Corollary 7.2.8, Lemma 7.2.16 and Theorem 7.2.17 gives the
following result.

Corollary 7.2.19 Let C be a proper, acceptable stable model category, and let
W be a stable set of maps in C. Let f : X → Y be a fibration betweenW-local
objects. Then f has the right lifting property with respect to all cofibrations
that areW-equivalences. �

Remark 7.2.20 LetW be a stable set of maps in a proper, acceptable stable
model category C. Then LWC exists and is cofibrantly generated with weak
equivalences given by theW-equivalences. It can be hard to give a good char-
acterisation of the W-equivalences beyond the definition and description in
terms of maps in the homotopy category.

However, up to weak equivalence in C, every W-equivalence is a transfi-
nite composition of pushouts of maps in J ∪ ΛW, where J is a set of gener-
ating acyclic cofibrations of C. This is due to the fact that we may factor a
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W-equivalence f as i ∈ (J ∪ ΛW)-cell followed by a fibration p. Since p is
also a W-equivalence, it is an acyclic fibration in LWC. Consequently, p is an
acyclic fibration of C.

7.3 Localisation of Spectra with Respect to Homology
Theories

Recall from Proposition 5.1.7 that E ∈ SHC defines a homology theory on
SHC by

En(X) = πn(E ∧ X).

A map f : X −→ Y in SHC is called an E∗-isomorphism, or E-equivalence, if
E∗( f ) is an isomorphism of graded abelian groups. In this section, we concen-
trate on localising the stable homotopy category at the E∗-isomorphisms for
fixed E ∈ SHC.

We work in the model category of orthogonal spectra for convenience. Let
E be a cofibrant orthogonal spectrum. Then for any cofibrant spectrum X,

En(X) = πn(X ∧ E) = colima En+a(Xa),

see Corollary 6.4.12. Since E is cofibrant, Theorem 6.4.3 implies that E∗
preserves all weak equivalences. By Example 7.2.4, we know that the
E-equivalences are stable, hence, the resulting localised model structure on
orthogonal spectra will also be a stable model category by Lemma 7.2.3.

Definition 7.3.1 We say that an orthogonal spectrum Z is E-local if for any
E-equivalence f : A −→ B, the induced map

f ∗ : [B,Z] −→ [A,Z]

is an isomorphism. We say that an orthogonal spectrum A is E-acyclic if A is
E-equivalent to ∗.

Because E-localisation is stable, we see that an orthogonal spectrum A is
E-acyclic if and only if [A,Z] = 0 for every E-local Z.

Let S be any of our models for the stable homotopy category, that is, sequen-
tial spectra, symmetric spectra, or orthogonal spectra.

Definition 7.3.2 We define LES to be the localisation of S at the class of
E-equivalences. We call this the E-localisation of spectra.

The existence of this model category does not follow from Theorem 7.2.17
as the E-equivalences are a proper class, not a set. Instead, we must prove
that there is a set of maps W such that the class of W-equivalences equals
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the E-equivalences. This is essentially a set-theoretic argument, and we fol-
low the approach of [EKMM97, Chapter VIII], which is based upon [Bou75,
Section 11]. It is also known as the Bousfield–Smith cardinality argument.

Theorem 7.3.3 The left Bousfield localisation of orthogonal spectra at the
class of E-equivalences exists.

Proof Recall that the stable model structure on orthogonal spectra is cofi-
brantly generated by the following sets from Definition 5.2.15

IOstable = IOlevel = {FO
d (S a−1

+ −→ Da
+) | a, d ∈ N)}

JOstable = {FO
d (Da

+ −→ (Da × [0, 1])+) | a, d ∈ N}
∪{kn � (S a−1

+ → Da
+) | a, n ∈ N}.

Let us call a map which is a cofibration and an E∗-isomorphism an E-acyclic
cofibration, and let us call a map which has the right lifting property with
respect to the E-acyclic cofibrations an E–fibration.

We will construct a set of generating E-acyclic cofibrations JOE . This re-
quires the transfinite small object argument, see Remark A.6.4 and Proposition
A.6.13.

Let κ be a fixed infinite cardinal that is at least the cardinality of E∗(S). Let
∗ −→ X be a map in orthogonal spectra which is in IOstable-cell (a transfinite
composition of pushouts of maps in IOstable). We call X a cell complex. In this
transfinite setting, we do not need to use coproducts due to [Hov99, Lemma
2.1.13].

Given a cell complex X, we regard each pushout over a map in IOstable as one
cell and let #X be the cardinality of the set of cells of X. We define JOE to be
the following set.

JOE = { f : X −→ Y in IOstable-cell | X is a cell complex,

#Y � κ and f is an E-equivalence}
Note that each map in JOstable is in JOE . We claim that the domains of JOE are
κ-small with respect to JOE . Let λ be a κ-filtered ordinal and

Y0 −→ Y = colim
β<λ

Yβ

a transfinite composition of pushouts of elements of JOE , where the composition
is indexed by λ. Consider a map A −→ Y such that A is a cell complex with
#A � κ.

Since spheres are compact topological spaces, a map from FO
k S n into Y

lands in some finite subcomplex. That is, each cell of A must be mapped into
some finite subcomplex of Y . Since there are at most κ-many cells, the image of
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X must be mapped to some subcomplex of Y of size at most κ. This is precisely
the required smallness condition.

We use the Recognition Theorem A.6.9 to show that IOstable and JOE are gen-
erating sets for a model structure on orthogonal spectra where the weak equiv-
alences are the E∗-isomorphisms. The two-out-of-three property holds, and we
have shown the smallness conditions. It remains to be shown that the lifting
properties hold.

Since the maps in JOE are q-cofibrations, every map in JOE -cell is a
q-cofibration. The functor E ∧− commutes with colimits and sends E∗-acyclic
cofibrations to acyclic cofibrations. Hence, Lemma 5.2.11 implies that E∗-
acyclic cofibrations are preserved by pushouts and transfinite compositions.
It follows that every map in JOE -cell is an E∗-acyclic cofibration.

This shows that

JOE -cell ⊆W ∩ IOstable-cof.

The maps in JOE are cofibrations, hence, every acyclic fibration has the right
lifting property with respect to JOE . Moreover, an acyclic fibration is a π∗-
isomorphism and therefore an E∗-isomorphism. In other words,

IOlevel-inj ⊆W ∩ JOE -inj.

It remains to be shown that any E-acyclic q-cofibration is in JOE -cof. That is,
any E-acyclic q-cofibration has the left lifting property with respect to JOE -inj.

We show this in two steps. First, we show that every map in JOE -inj has the
right lifting property with respect to every inclusion of cell subcomplexes that
is an E∗-isomorphism. Secondly, we show that every map in JOE -inj has the
right lifting property with respect to every E-acyclic q-cofibration.

We put the first step into Lemma 7.3.5. The second step we give below. Take
a q-cofibration

i : X −→ Y

that is an E∗-isomorphism. Then we construct a cofibrant replacement

X′ → X

using the transfinite small object argument on IOstable. By construction, X′ is a
cell complex. We then use the transfinite small object argument again to factor
X′ −→ Y into a q-cofibration

i′ : X′ −→ Y ′

followed by an acyclic fibration Y ′ −→ Y . The map i′ is an E∗-acyclic inclusion
of a cell subcomplex and hence has the left lifting property with respect to any
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map in JOE -inj by the first step. We then use a technical result on left proper
model categories [Hir03, Proposition 13.2.1]: if in a left proper model category
a map has the right lifting property with respect to a cofibrant approximation
of a map, then it also has the right lifting property with respect to the original
map. This implies that i itself has the left lifting property with respect to any
map in JOE -inj and thus

IOstable-cof ⊆W ∩ JOE -cof

which is the final condition required for the Recognition Theorem. �

Corollary 7.3.4 In the E-localisation of orthogonal spectra, the class of E∗-
isomorphisms is the class of JOE -equivalences. �

Since JOE consists of inclusions of cell complexes, the generating acyclic
cofibrations of the E-local model structure have cofibrant domains and
codomains.

Lemma 7.3.5 Let i : A −→ B be an E-acyclic inclusion of a cell subcomplex
of orthogonal spectra. Then i has the left lifting property with respect to any
map in JOE -inj.

Proof Let f : X −→ Y be a map with the right lifting property with respect to
JOE and consider a square

A

i

X

f

B Y.

Let T be the set of all pairs (Bt, kt) with the following properties.

• Bt is a subcomplex of B containing A.
• it : A −→ Bt is an E∗-isomorphism.
• The map kt : Bt −→ X provides a lift in the square

A

it

X

f

Bt

kt

B Y.

We define a pre-order on T by (Bs, ks) < (Bt, kt) if Bs ⊆ Bt and the restriction
of kt to Bs is ks. If a set T ′ ⊆ T is totally ordered, define

Bu = colim
t∈T ′

Bt ku = colim
t∈T ′

kt.

It follows that (Bu, ku) is in T and is an upper bound for T ′.
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This means that we can apply Zorn’s Lemma, showing that there is a max-
imal element (Bm, km). We show by contradiction that Bm = B, hence, km is
a lift in the original square, which would prove our claim. Assume Bm is not
B, then choose a cell c of B not in Bm. There is a finite cell complex K0 of B
containing this cell.

Recall that κ is a fixed infinite cardinal that is at least the cardinality of E∗(S).
For each x ∈ E∗(K0) that is not in the image of E∗(K0∩Bm) (that is, an element
of E∗(K0/(K0∩Bm))), we can attach finitely many cells of B to “kill” x, that is,
make x trivial in the E–homology of the resulting pushout. Repeating for all
such x gives a cell complex K1, where we have added at most κ-many cells to
K0, as E∗(K0/(K0 ∩ Bm)) has cardinality at most κ. For successor ordinals, we
repeat the above process: for a limit ordinal λ we define

Kλ = colim
β<λ

Kβ.

Taking the colimit

K = colim
β<κ

Kβ

gives a subcomplex K of B such that

K ∩ Bm −→ K

is E∗-acyclic and #K � κ. The pushout of this map along K ∩ Bm −→ Bm gives
an E∗-acyclic inclusion of subcomplexes Bm −→ K ∪ Bm. This map has the
left lifting property with respect to JOE -inj (with a lift k), as it is the pushout of
such a map. This means that we have

(K ∪ Bm, k) > (Bm, km),

so Bm is not maximal. �

We can now prove directly what the fibrant objects in E-local spectra are.

Corollary 7.3.6 The fibrant objects of LES
O are the E-local Ω-spectra.

Proof Let Z be fibrant in LES
O. Since

Id : SO LES
O : Id

is a Quillen adjunction, Z is also fibrant in SO. In particular, Z is anΩ-spectrum.
It remains to be shown that Z is E-local.

As the model categories have the same cofibrations, the Quillen adjunction
gives us an isomorphism

[A,Z]∗ � [A,Z]E
∗
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for any orthogonal spectrum A, where the right-hand side denotes the E-local
stable homotopy category. Now if f : A −→ B is an E-equivalence, it induces
an isomorphism

[B,Z]E
∗ −→ [A,Z]E

∗

and because of the previous isomorphism,

[B,Z]∗
�−→ [A,Z]∗.

Thus, we have shown that Z is an E-local Ω-spectrum.
Now assume that X is an E-local Ω-spectrum. Taking a fibrant replacement

in the E-local model structure gives an E-acyclic q-cofibration

q : X −→ LE X

between E-local objects. By Lemma 7.1.2, q is an acyclic q-cofibration. Since q
has the left lifting property with respect to X −→ ∗, it follows that the terminal
map X −→ ∗ is a retract of LE X −→ ∗. Consequently, X is a retract of an
E–fibrant object and therefore itself E–fibrant. �

We now consider sequential spectra and symmetric spectra and show that
they have E-local model structures, which are all Quillen equivalent to the
E-local model structure on orthogonal spectra.

The following lemma is [Hir03, Theorem 3.3.20].

Lemma 7.3.7 Let F : C D :G be a Quillen equivalence of model cat-
egories. Let S be a set of maps in C, and let S ′ = LF(S ). Then, assuming both
model structures exist, the adjunction

F : LSC LS ′D :G

is a Quillen equivalence.

Starting with a set of maps T in D, we can obtain the analogous result, using
the fact that for a Quillen equivalence LF(RG(T )) � T , and that localisations
only depend on the homotopy type of the maps.

Corollary 7.3.8 Let F : C D :G be a Quillen equivalence of model
categories. Let T be a set of maps in D, and let T ′ = RG(T ). Then, assuming
both model structures exist, the adjunction

F : LT ′C LTD :G

is a Quillen equivalence. �
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Theorem 7.3.9 There are E-local model structures on sequential spectra,
symmetric spectra and orthogonal spectra with Quillen equivalences

LES
N

P
Σ
N

LES
Σ

U
Σ
N

P
O
Σ

LES
O.

U
O
Σ

Proof Starting with the set JOE in orthogonal spectra, we can use Theorem
7.2.17 with the sets UO

Σ
JOE for SΣ and UO

N
JOE for SN to obtain E-local model

structures LES
Σ and LES

N on symmetric spectra and sequential spectra. The
result then follows from Corollary 7.3.8. �

Definition 7.3.10 The E-local stable homotopy category Ho(LES) is the ho-
motopy category of the E-localisation of a category of spectra from Theorem
7.3.9.

The monoidal structure of the stable homotopy category passes to that of the
E-local stable homotopy category.

Theorem 7.3.11 Let E be a cofibrant orthogonal (respectively symmetric)
spectrum. Then the E-local model structure on SO (respectively SΣ) is a sym-
metric monoidal model structure, and hence the E-local stable homotopy cat-
egory is symmetric monoidal. The Quillen equivalence

LES
Σ

P
O
Σ

LES
O

U
O
Σ

is a strong symmetric monoidal Quillen equivalence.

Proof Since the stable model structure on SO is monoidal and the cofibrations
are unchanged, we only need to check that for a cofibration and E-equivalence
f : X −→ Y and a generating cofibration g : A −→ B of orthogonal spectra, the
pushout product map j

A ∧ X
IdA∧g

f∧IdX

A ∧ Y

f∧IdY

l

B ∧ X
k

IdB∧g

B ∧ X
∐

A∧X
A ∧ Y

j

B ∧ Y
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is an E-equivalence. Since A and B are cofibrant, the maps IdA ∧ g and IdB ∧ g
are E-equivalences and cofibrations. Since pushouts preserve acyclic cofibra-
tions in any model structure, the map k is an E-equivalence. Thus, j is an
E-equivalence.

The unit condition also holds as before as cofibrant replacement in the E-
local model structure is given by cofibrant replacement in the stable model
structure.

The adjunction is a Quillen equivalence by Theorem 7.3.9. It is a strong
symmetric monoidal adjunction, and cofibrant replacement has not changed,
so it is a strong symmetric monoidal Quillen equivalence. �

We finish this section with a small result relating module structures to local
spectra.

Proposition 7.3.12 If E is a cofibrant ring spectrum, then every E–module is
E-local.

Proof Let E be a cofibrant orthogonal ring spectrum with unit map η, let X
be a module over E in orthogonal spectra with E-action map ν, and let A be
an orthogonal spectrum. Given any map f : A −→ X, we have a commutative
square

A
f

η

X

A ∧ E
f∧Id

X ∧ E.

ν

It follows that the composite

[A, X]
−∧LE−−−−→ [A ∧L E, X ∧L E]

η∗−→ [A, X ∧L E]
ν∗−→ [A, X]

is the identity. When A is E-acyclic, the second term is zero, so [A, X] = 0.
Consequently, X is E-local. �

7.4 Examples of Left Localisation

In this section, we are going to look at some common examples of localisation
of spectra. As all the calculations presented take place in the stable homotopy
category, we do not have to worry about what kind of spectra we are using, so
throughout the section, we let S denote a suitable category of spectra. Further-
more, the smash product ∧ will denote the smash product in SHC.

Many of the examples we will encounter satisfy the following property,
which equips them with a wealth of technical advantages.
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Definition 7.4.1 Let S be a category of spectra and W a stable set such that
LWS exists. We say that the localisation atW is smashing if

X −→ X ∧ LWS

is a W-localisation, that is, the map is a W-equivalence and X ∧ LWS is
W-local.

We could make this definition with any monoidal stable model category
C such that the stable localisation LWC exists and replace the sphere in the
definition with the monoidal unit. However, we chose to only discuss spectra
in this section.

Example 7.4.2 We will encounter the following examples and counterexam-
ples of localisation of spectra.

• Miller’s finite localisation (Example 7.1.5) is smashing.

• Localisation of spectra at a set of primes is smashing. In particular, rational-
isation is smashing, see Corollary 7.4.11.

• Completion at a prime p is not smashing, see Corollary 7.4.14.

• Localisation with respect to topological K-theory is smashing, see Theorem
7.4.37.

• Localisation at the Johnson–Wilson theories E(n) is smashing, see Theorem
7.4.46.

• Localisation at the Morava K-theories K(n) is not smashing, see Proposition
7.4.50.

In general, left localisation does not commute with sequential homotopy
colimits. For example, the homotopy colimit of p-complete spectra is not nec-
essarily p-complete itself. However, in the smashing case, these two operations
do commute.

Proposition 7.4.3 Let S be a category of spectra andW a stable set such that
LWS exists. Then the localisation at W is smashing if and only if the (transfi-
nite) sequential homotopy colimit ofW-local spectra is againW-local.

Proof We formulate the proof for orthogonal spectra. By the discussion above
Lemma 6.4.13, we have

hocolimn(Xn ∧ A) � (hocolimn Xn) ∧ A

for a sequential diagram of spectra fn : Xn −→ Xn+1, n ∈ N. This extends to the
transfinite case giving one direction of the result.
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For the converse, assume thatW-localisation commutes with transfinite se-
quential homotopy colimits. Since we have a stable localisation,

ΣmLWX � LWΣ
mX

for any m ∈ Z and any X ∈ SHC. By transfinite induction and our assumption
that LW commutes with transfinite sequential (homotopy) colimits, it follows
that LW commutes with arbitrary (small) coproducts of cofibrant spectra.

Now consider the class of those X ∈ SHC such that X −→ X ∧ LWS is aW-
localisation. This class contains the sphere spectrum, is closed under suspen-
sions, triangles and coproducts, and hence is the whole of the stable homotopy
category by Corollary 5.6.8. �

As a consequence of the proof of Proposition 7.4.3, we have the following.

Corollary 7.4.4 If localisation at W is smashing, then LW commutes with
coproducts and preserves compact objects. �

Corollary 7.4.5 Let LW be a smashing localisation. Then theW-local sphere
LWS is a compact generator for Ho(LWS).

Proof We have the following sequence of equivalences.

X −→ Y is a weak equivalence in LWS.
⇐⇒ LWX −→ LWY is a weak equivalence in LWS.
⇐⇒ LWX −→ LWY is a weak equivalence in S by Lemma 7.1.2.
⇐⇒ [S, LWX]∗ −→ [S, LWY]∗ is an isomorphism.
⇐⇒ [LWS, LWX]∗ −→ [LWS, LWY]∗ is an isomorphism.
⇐⇒ [LWS, X]LWS∗ −→ [LWS,Y]LWS∗ is an isomorphism. �

Remark 7.4.6 There are plenty more good properties of smashing localisa-
tions of spectra to study and exploit. We refer the interested reader to
[EKMM97, Chapter VIII]. For example, Wolbert’s Theorem says that if a lo-
calisation LW is smashing, then LWS and the model category of modules over
theW-local sphere spectrum LWS are Quillen equivalent.

7.4.1 p-Localisation and p-Completion

Localisation and completion at a prime p or at a set of primes is often one
of the first (left) Bousfield localisations one encounters. We will give some
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explicit constructions of p-localisation and p-completion as in [Bou79]. Then
we will conclude the section by collecting some useful related results.

The spectra we will use for localisation and completion at a prime p are
more general versions of the mod-n Moore spectra.

Example 7.4.7 For G an abelian group, the Moore spectrum M(G) of G is
constructed as follows. Assume that G is obtained via a short exact sequence

0 −→ F2
ρ−→ F1 −→ G −→ 0,

where F1 is a free group on a generating set I1 and F2 is a free group on a
generating set I2. We think of I1 as the generators of G and of ρ(I2) as the
relations. We then construct a cofibre sequence

∨

I2

S
r−→

∨

I1

S −→ M(G),

where r is a map satisfying π0(r) = ρ. Such a map exists as [S,S] = Z, and
[S,−] commutes with coproducts by Corollary 5.6.8.

Applying homology to the above cofibre sequence gives rise to a long ex-
act homology sequence which implies that M(G) has the following homology
groups

Hi(M(G)) =

⎧⎪⎪⎨⎪⎪⎩
G, i = 0

0, i � 0.

One can check that different choices of resolution give weakly equivalent spec-
tra.

We would like to study the M(G)-localisation of a spectrum X. We start with
the following computational tool.

Lemma 7.4.8 Given a spectrum X and abelian group G, there is a homolog-
ical universal coefficient short exact sequence

0 −→ G ⊗ π∗(X) −→ π∗(M(G) ∧ X) −→ TorZ(G, π∗−1(X)) −→ 0,

and a cohomological universal coefficient short exact sequence

0 −→ ExtZ(G, π∗+1(X)) −→ [M(G), X]∗ −→ HomZ(G, π∗(X)) −→ 0.

These sequences are natural in X.

Proof Following Example 7.4.7, we take a free resolution of G

0 −→ F2
ρ−→ F1 −→ G −→ 0,
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where F1 is a free group on a generating set I1 and F2 is a free group on a
generating set I2. We then construct a cofibre sequence

∨

I2

S
r−→

∨

I1

S −→ M(G).

Applying the functor [S,− ∧L X]∗ to this cofibre sequence gives a long exact
sequence

· · ·−→
⊕

I2

πn(X)
r−→

⊕

I1

πn(X)
s−→ πn(M(G)∧LX)

t−→
⊕

I2

πn−1(X)−→· · · .

We split this long exact sequence into the desired short exact sequence by
taking the cokernel of s and the kernel of t.

A map of spectra f : X −→ Y induces a natural transformation

f∗ : [S,− ∧ X]∗ −→ [S,− ∧ Y]∗,

so naturality of the short exact sequence follows.
The cohomological case is dual. �

Let us now turn to localisation with respect to Moore spectra.

Definition 7.4.9 Let P be a set of primes, and let

Z(P) = {ab | p � b for all p ∈ P} ⊆ Q.
Then the localisation LM(Z(P))X is called the P-localisation of X and is de-
noted X(P). The P-local stable homotopy category Ho(LM(Z(P))S) is denoted
Ho(S(P)) = SHC(P).

Quite often we only care about localisation at one prime at a time and write
X(p) for X({p}). Note that for the case P = ∅, we obtain Z(P) = Q, and thus we
call this localisation rationalisation. In this case, we write XQ for X(∅).

The p-local stable homotopy category still has much the same “complexity”
as the entire stable homotopy category itself. However, working in a p-local
context often makes things easier in practice, such as when dealing with stable
homotopy groups. Furthermore, there are powerful results about the structure
of SHC(p), which we will talk about in Subsection 7.4.3.

Proposition 7.4.10 Let X be a spectrum and P a set of primes. Then the
P-localisation of X is given by

X(P) = LM(Z(P))X = X ∧ M(Z(P)).

Furthermore, π∗(X(P)) = π∗(X) ⊗ Z(P).
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Proof Since Z(P) is torsion-free, the homological universal coefficient short
exact sequence of Lemma 7.4.8 gives an isomorphism

Z(P) ⊗ π∗(X)
�−→ π∗(X ∧ M(Z(P))).

It follows that a M(Z(P))-equivalence is precisely a map of spectra inducing an
isomorphism on P-local homotopy groups and that a spectrum A is M(Z(P))-
acyclic if and only if its P-local homotopy groups are trivial.

We also see that p · Id : X −→ X is a M(Z(P))-equivalence for a spectrum
X and a prime p not in P. If X is a M(Z(P))-local spectrum, then p · Id is
a π∗-isomorphism. Hence, the homotopy groups of M(Z(P))-local spectra are
uniquely p-divisible for each prime p � P.

We may assume that in the resolution of Z(P) as a Z–module, there is a gener-
ator corresponding to the unit 1. This gives a preferred map η : S −→ M(Z(P)),
and we claim that

η ∧ Id : X −→ X ∧ M(Z(P))

is P-localisation. The map

(η ∧ Id)∗ : π∗(X) −→ Z(P) ⊗ π∗(X)

is induced by the unit map of the ring Z(P), and hence, η ∧ Id is a M(Z(P))-
equivalence.

It remains to be proven that X ∧M(Z(P)) is M(Z(P))-local. Let X −→ X(P) be
the fibrant replacement of X in the M(Z(P))-local model structure on spectra.
Consider the commutative square below

X
�Z(P)

�Z(P)

X ∧ M(Z(P))

�

X(P)
�Z(P)

X(P) ∧ M(Z(P)),

where the arrows labelled � Z(P) are Z(P) ⊗ π∗-isomorphisms. As the homo-
topy groups of X(P) and X(P) ∧ M(Z(P)) are uniquely p-divisible, the bottom
horizontal map is a π∗-isomorphism. Hence, X ∧ M(Z(P)) is M(Z(P))-local and
π∗(X(P)) � π∗(X) ⊗ Z(P). �

Corollary 7.4.11 For a set of primes P, P-localisation is smashing, and the
P-local sphere is S(P) = M(Z(P)). �

Now we turn to the case G = Z/p for a prime p.
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Definition 7.4.12 Let X be a spectrum and let p be a prime. Then the p-
completion of X is given by LM(Z/p)X and is denoted by X∧p . The p-complete
stable homotopy category Ho(LM(Z/p)S) is denoted by Ho(S∧p ) = SHC∧p .

Proposition 7.4.13 Let X be a spectrum and p be a prime. Then the p-
completion of X is given by

X∧p = LM(Z/p)X = RHom(Σ−1M(Z/p∞), X),

where RHom denotes the function object in SHC, and

Z/p∞ = Z[ 1
p ]/Z = colim(Z/p −→ Z/p2 −→ · · · ).

Proof We start with the cohomological universal coefficient short exact se-
quence from Lemma 7.4.8

0 −→ ExtZ(G, π∗+1(Y)) −→ [M(G), Y]∗ −→ HomZ(G, π∗(Y)) −→ 0.

Let us put in G = Z/p. If Y has uniquely p-divisible homotopy groups (i.e. for
every a ∈ π∗(Y) there is a b ∈ π∗(Y) with pb = a), then both the Ext-term and
the Hom-term are trivial, and therefore Y is M(Z/p)-acyclic. We apply this to
the following case. Let X be a spectrum. The exact triangle in SHC

Σ−1M(Z/p∞) −→ S −→ M(Z[ 1
p ]) −→ M(Z/p∞)

induces an exact triangle of homotopy mapping spectra

RHom(M(Z[ 1
p ]), X) −→ RHom(S, X) � X −→
−→ RHom(Σ−1M(Z/p∞), X) −→ ΣRHom(M(Z[ 1

p ]), X).

Let A be an M(Z/p)-acyclic spectrum. Using exact triangles and induction,

A ∧ M(Z/p) � ∗
implies that A ∧ M(Z/pn) � ∗ for all n and thus,

A ∧ M(Z/p∞) � ∗,
see the proof of Theorem 7.4.39 for the full argument. The spectrum

RHom(Σ−1M(Z/p∞), X)

is M(Z/p)-local because for A as above,

[A,RHom(Σ−1M(Z/p∞), X)] = [A ∧ Σ−1M(Z/p∞), X] = [∗, X] = 0.
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The homotopy groups of RHom(M(Z[ 1
p ]), X) are uniquely p-divisible, hence,

this mapping spectrum is M(Z/p) acyclic as explained above. Therefore, the
map from the previous exact triangle

X −→ RHom(Σ−1M(Z/p∞), X)

is a M(Z/p)-equivalence and thus a M(Z/p)-localisation as claimed. �

Corollary 7.4.14 As a functor, p-completion is not smashing.

Proof Proposition 7.4.13 says that

S
∧
p = RHom(Σ−1M(Z/p∞), S).

Thus, for p-localisation to be smashing, we would have to have

RHom(Σ−1M(Z/p∞), X) � X ∧ RHom(Σ−1M(Z/p∞), S)

for any spectrum X. The above is equivalent to the spectrum M(Z/p∞) being
strongly dualisable by Lemma 6.5.3. However, a spectrum is only strongly
dualisable if and only if it is compact by Theorem 6.5.5. Since compact spectra
have finitely generated homotopy groups in each degree by Corollary 5.6.14
and Z/p∞ is not finitely generated over Z, we conclude that M(Z/p∞) is not
compact. �

Proposition 7.4.15 For a spectrum X and a prime p, the p-completion of X
is given by

X∧p = holim(M(Z/p) ∧ X ←− M(Z/p2) ∧ X ←− M(Z/p3) ∧ X ←− · · · ),
where the maps are induced by the projections Z/pn −→ Z/pn−1.

Proof The Moore spectrum of Z/p∞ is given by

M(Z/p∞) = hocolim(M(Z/p) −→ M(Z/p2) −→ M(Z/p3) −→ · · · ),
where the maps are induced by multiplication by p on Z/pn−1 −→ Z/pn.

Since the dual of M(Z/pn) is Σ−1M(Z/pn), and these spectra are strongly
dualisable,

M(Z/pn) ∧ X � RHom(S,M(Z/pn) ∧ X) � RHom(Σ−1M(Z/pn), X).

Consequently,

holimn(M(Z/pn) ∧ X) � holimn RHom(Σ−1M(Z/pn), X)
� RHom(hocolimn Σ

−1M(Z/pn), X)
� RHom(Σ−1M(Z/p∞), X). �
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We will need the following statement in Theorem 7.4.39.

Lemma 7.4.16 Let X be a q-local spectrum for a prime q. Then, for any
prime p different from q, the p-completion X∧p is trivial.

Proof By Proposition 7.4.15, we have that

X∧p = holim(M(Z/p) ∧ X ←− M(Z/p2) ∧ X ←− M(Z/p3) ∧ X ←− · · · ).
We will show that all terms in the homotopy limit are trivial. The universal
coefficient short exact sequence tells us that

0 −→ Z/pn ⊗ π∗(X) −→ π∗(M(Z/pn) ∧ X) −→ TorZ(Z/pn, π∗−1(X)) −→ 0

is exact. As X is q-local, all homotopy groups of X are of the form G ⊗ Z(q),
see Proposition 7.4.10. This means that the first and third term of the short
exact sequence are zero. Thus, M(Z/pn) ∧ X � ∗ for all n. Therefore, by the
properties of homotopy limits listed after Definition A.7.16, X∧p � ∗. �

The homotopy groups of a p-completion have a nice algebraic characterisa-
tion as described below. However, it is not quite as straightforward as in the
p-local case. We now have to make the extra assumption that the homotopy
groups are finitely generated. By Corollary 5.6.14, this assumption holds for
compact spectra.

Proposition 7.4.17 Let X be a spectrum and p a prime. If πn(X) is finitely
generated for all n ∈ Z, then the homotopy groups of the p-completion of X
are

π∗(X∧p ) = π∗(X) ⊗ Z∧p ,
where Z∧p denotes the p-adic integers.

Proof By Proposition 7.4.13, the p-completion of X is

X∧p = RHom(Σ−1M(Z/p∞), X).

The homotopy groups of RHom(Σ−1M(Z/p∞), X) are

[S,RHom(Σ−1M(Z/p∞), X)] � [Σ−1M(Z/p∞), X].

Thus, the short exact sequence

0 −→ ExtZ(G, π∗+1(Y)) −→ [M(G), Y]∗ −→ HomZ(G, π∗(Y)) −→ 0

gives us the following short exact sequence for G = Z/p∞.

0 −→ ExtZ(Z/p∞, π∗(X)) −→ π∗(X∧p ) −→ HomZ(Z/p∞, π∗−1(X)) −→ 0
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As the homotopy groups of X itself are finitely generated in each degree, the
Hom-term of this sequence is trivial: a finitely generated abelian group is a
finite coproduct of copies of cyclic groups (either infinite, of order pk, or of
order ql for q � p), and in all those three cases HomZ(Z/p∞,−) is indeed zero.
Thus,

ExtZ(Z/p∞, π∗(X)) � π∗(X∧p ).

Let us calculate this Ext group. We have that Z/p∞ = colimn Z/pn, where the
maps in the colimit are multiplication by p. Therefore, we get the short exact
sequence

0 −→ lim1
n HomZ(Z/pn, π∗(X)) −→ ExtZ(Z/p∞, π∗(X)) −→

limn ExtZ(Z/pn, π∗(X)) −→ 0.

The system

· · · −→ HomZ(Z/pn, π∗(X)) −→ HomZ(Z/pn−1, π∗(X)) −→ · · ·
satisfies the Mittag–Leffler condition [Wei94, Proposition 3.5.7], which we can
verify directly by either assuming π∗(X) = Z, π∗(X) = Z/pk or π∗(X) = Z/ql

for q � p. This implies that the lim1-term is zero, and consequently

ExtZ(Z/p∞, π∗(X))� limn ExtZ(Z/pn, π∗(X))
= limn π∗(X)/(pn) = π∗(X) ⊗ Z∧p . �

Sometimes it is also useful to have the following algebraic characterisation.

Proposition 7.4.18 A spectrum X is p-complete if and only if π∗(X) is Ext-p-
complete, that is,

ExtZ(Z[ 1
p ], π∗(X)) = 0 = HomZ(Z[ 1

p ], π∗(X)).

Proof We use the universal coefficient short exact sequence again for
G = Z[ 1

p ],

0 −→ ExtZ(Z[ 1
p ], π∗+1(X)) −→ [M(Z[ 1

p ]), X]∗ −→ HomZ(Z[ 1
p ], π∗(X)) −→ 0.

If X is p-complete, then X = RHom(Σ−1M(Z/p∞, X) by Proposition 7.4.13.
Thus,

[M(Z[ 1
p ]), X] = [M(Z[ 1

p ]),RHom(Σ−1M(Z/p∞, X)]

� [Σ−1M(Z[ 1
p ]) ∧ M(Z/p∞), X].

The spectrum Σ−1M(Z[ 1
p ]) ∧ M(Z/p∞) is trivial by the universal coefficient

short exact sequence, and therefore, π∗(X) is Ext-p-complete.
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Conversely, if the groups π∗(X) are Ext-p-complete, the short exact sequence
forces [M(Z[ 1

p ]), X] = 0 and consequently,

X −→ RHom(Σ−1M(Z/p∞), X) = X∧p

is weak equivalence as in the proof of Proposition 7.4.13. �

We can also generalise completion in the following way. Let P be a set of
primes again, and let Z/P �

⊕
p∈P
Z/p. Then we can set

X∧P � LM(Z/P)X =
∏

p∈P
X∧p .

Our results about localisation and completion now allow us to characterise
LM(G) for all abelian G. Recall that an abelian group G is uniquely p-divisible
if for all g ∈ G, there exists exactly one h ∈ G with ph = g.

Definition 7.4.19 Let G1 and G2 be two abelian groups. Then we say that G1

and G2 are of the same acyclicity type if

• G1 is torsion if and only if G2 is torsion,
• for every prime p, G1 is uniquely p-divisible if and only if G2 is as well.

Every abelian group G is of the same acyclicity type as Z(P) or Z/P for ex-
actly one set of primes P. First, note that the groups Z/p and Z(p) are uniquely
q-divisible for all primes q � p. Therefore, if G is torsion and

P = {all primes p for which G is not uniquely p-divisible},
the group G has the same acyclicity type as Z/P. Likewise, if G is not torsion,
then it has the same acyclicity type as Z(P). The term “acyclicity type” refers
to the following.

Theorem 7.4.20 (Bousfield) Let G1 and G2 be two abelian groups. Then G1

and G2 are of the same acyclicity type if and only if M(G1) and M(G2) give
rise to the same Bousfield localisation, that is, a spectrum X is M(G1)-local if
and only if it is M(G2)-local.

Proof The full proof uses lengthy arguments involving the arithmetic of
abelian groups, so we only provide an outline of [Bou74]. Let E be a con-
nective spectrum. Then the class of groups

ME = {
⊕

n

πn(X) | X is an E-acyclic spectrum}

satisfies the following.
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• 0 ∈ME .
• ME is closed under direct sums.
• Let G1 → G2 → G3 → G4 → G5 be an exact sequence of abelian groups

such that G1,G2,G4 and G5 are in ME , then so is G3.

Then it is possible to prove that a class of groups M satisfying the points above
can only be one of the two following cases.

1. M consists of all p-divisible groups, where P is a fixed set of primes and
p ∈ P.

2. M consists of all P-torsion groups for a set of primes P. (A group G is P-
torsion if for every x ∈ G there is an n with nx = 0, where n is a product of
elements of P.)

This means that all groups in M have the same acyclicity type. In the first case,
M contains Z(Q) for Q all primes not in P, in the second case, M contains Z/Q.
In particular, this holds for MM(G) for any group G. �

Putting these pieces together, we see that P-localisation and P-completion
describe all instances of localisation at M(G).

Corollary 7.4.21 Let X be a spectrum and G an abelian group. Then either

LM(G)X = LZ(P) X = X(P) or LM(G)X = LZ/PX = X∧P

for a set of primes P. �

There is the following nice result for connective spectra.

Proposition 7.4.22 Let X be a connective spectrum. Then X is HZ-local.

Proof The Postnikov tower of a connected spectrum X describes how a spec-
trum can be successively constructed from fibre sequences

Ki −→ Xi −→ Xi−1, i � 1,

where the fibres Ki are Eilenberg–Mac Lane spectra. Any Eilenberg–Mac Lane
spectrum HG is HZ-local as HG can be constructed as a module over the
ring spectrum HZ, see Examples 6.6.4 and Proposition 7.3.12. Furthermore,
Corollary 7.2.8 states that if two out of the three spectra in an exact triangle
are HZ-local, then so is the third.

In the Postnikov tower, X0 is an Eilenberg–Mac Lane spectrum itself, as is
K1. Hence, X1 is HZ-local. Continuing inductively, we see that all the Post-
nikov sections Xi are HZ-local. We then have X = holimn Xn, so by Corollary
7.2.9, X itself is HZ-local. The result for connective spectra follows as a con-
nective spectrum is a shift of a connected spectrum. �
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By Lemma 7.1.2, we have the following.

Corollary 7.4.23 A map between connective spectra that induces an
isomorphism on integer homology groups (i.e. HZ–homology) is a stable equiv-
alence. �

We are going to conclude this section by collecting a few more related re-
sults. As most of the proofs involve lengthy arithmetic arguments differentiat-
ing between various types of abelian groups, we are only going to include the
statements of the results and refer to literature for proofs.

In [Bou79], Bousfield shows that for any spectra E and X, there are homo-
topy pullback squares

LE X
∏

p prime
LE∧MZ/pX

LQLE X LQ

( ∏
p prime

LE∧MZ/pX

)

as well as
LE X LE∧Z(P) X

LE∧Z(R) X LQLE X,

where P is a set of primes and R is the set of all primes not in P. These are often
referred to as Bousfield arithmetic squares. These two squares can be used to
deduce the following.

Proposition 7.4.24 (Bousfield) Let E and X be spectra, and let G be an
abelian group. If in addition G is either a torsion group or E ∧ HQ � ∗, then

LE∧M(G)X � LM(G)(LE X).

The arithmetic squares together with the results on acyclicity types can be
combined to discuss all localisations with respect to connective spectra.

Theorem 7.4.25 (Bousfield) Let E be a connective spectrum, and let
π∗(E) = ⊕n πn(E) be of either acyclicity type G = Z(P) or G = Z/P for a
set of primes P. Then for another connective spectrum X, the E-localisation of
X is LE X = LM(G)X, that is, either

LE X = X(P) or LE X = X∧P .

The following useful result arises from the proof of the previous theorem,
see [Bou79].
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Proposition 7.4.26 (Bousfield) For any connective spectrum X and abelian
group G, LHGX = LM(G)X.

So, in particular, we have some understanding of localisation at Eilenberg–
Mac Lane spectra. We can also consider localisation of Eilenberg–Mac Lane
spectra at any other spectrum. While this is not immediately related to
P-localisation and P-completion, it is nevertheless an interesting result.
Details and applications can be found in [Gut10].

Theorem 7.4.27 (Gutiérrez) Let E be any spectrum, and let G be an abelian
group. Then LE HG is again related to a generalised Eilenberg–Mac Lane
spectrum, that is, a product of wedges of Eilenberg–Mac Lane spectra. Specifi-
cally, let P be the set of primes p such that E∗(HZ/p) � 0 and G is not uniquely
p-divisible. Define

Ap = ExtZ(Z/p∞,G) and Bp = HomZ(Z/p∞,G).

If E∗(HQ) = 0, then

LE HG �
∏

p∈P
HAp ∨ ΣHBp,

otherwise, there is a cofibre sequence of spectra

LE HG −→ H(Q ⊗G) ∧
∏

p∈P
HAp ∨ ΣHBp −→ HQ ∧

∏

p∈P
HAp ∨ ΣHBp.

7.4.2 Localisation with Respect to K-Theory

In this section, we are going to describe Bousfield localisation with respect
to topological K-theory. We could simply start with a definition of K-theory
using nothing but spectra, but we feel that it would not be fitting to omit its
geometric interpretation. For more details about K-theory, [Ati89] and [Hus94]
are excellent sources, but we also think that [Gra75, Chapter 29] provides a
very good introduction.

Background on K-Theory
The K-theory of a space is defined in terms of the vector bundles over that
space. Let X be a compact Hausdorff topological space, and let k be either
the field R or C. By Vectn(X), we denote the set of equivalence classes of
n-dimensional k-vector bundles over X. Here, two vector bundles

ξ1 : E1 −→ X and ξ2 : E2 −→ X

are equivalent if there is a map f : E1 −→ E2 inducing an isomorphism on
each fibre and satisfying ξ2 ◦ f = ξ1.
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Take two vector bundles

ξ1 : E1 −→ X and ξ2 : E2 −→ X.

The Whitney sum ξ1⊕ξ2 is given by the pullback of the diagonal of the product
of ξ1 and ξ2, that is, it is the left vertical arrow in the pullback square

Δ∗(ξ1 × ξ2)

π

E1 × E2

ξ1×ξ2

X
Δ

X × X,

where

Δ∗(ξ1 × ξ2) = {(e1, e2, x) ∈ E1 × E2 × X | ξ1(e1) = ξ2(e2) = x},
and

π : Δ∗(ξ1 × ξ2) −→ X

is the projection. This construction is well-defined on equivalence classes and
therefore provides

Vect(X) =
⊕

n

Vectn(X)

with the structure of a semigroup. We now define Kk(X) to be the Grothendieck
group of the semigroup (Vect(X),⊕). It has the universal property that if G is
a group and f : Vect(X) −→ G a semigroup homomorphism, then f factors
uniquely over Kk(X),

Vect(X)
f

G.

Kk(X)

More concretely, Kk(X) is the quotient of the free group F(Vect(X)) on Vect(X)
by the subgroup generated by all [ξ ⊕ η] − [ξ] − [η]. In other words, the
Grothendieck construction formally adds inverses to a group in a “minimal”
fashion.

If X is a pointed space, the information of the fibre over the basepoint is
redundant, so one discards it by taking reduced K-theory

K̃k(X) = coker(Kk(∗) −→ Kk(X)).

Now we can define the K-theory group of a pointed space X by

K0(X) = K̃C(X) and KO0(X) = K̃R(X)
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and for n ∈ N,

K−n(X) = K̃C(ΣnX) and KO−n(X) = K̃R(ΣnX).

We will soon see that for n ∈ N, there are natural isomorphisms

K−n(X) � K−n−2(X) and KO−n(X) � KO−n−8(X).

We use this periodicity to define K-theory for positive indices,

Kn(X) � K−n(X) and KOn(X) � KOn−8k(X), 8k � n.

In the first case, one speaks of complex topological K-theory, in the second
case of real topological K-theory. For reasons of convenience, we will not dec-
orate those K-theory groups with a tilde. In literature, K is sometimes denoted
by KU. The groups K∗(X) and KO∗(X) form reduced cohomology theories, so
we would like to look at the representing spectra.

It can be shown that for paracompact spaces, every n-dimensional vector
bundle is a pullback of the canonical bundle ξ over BU(n) in the complex case,
respectively, BO(n) in the real case. We see that every map f : X −→ BU(n)
gives us a vector bundle over X with total space

f ∗(ξ) = {(x, e) ∈ X × EU | f (x) = ξ(e)}.
A map homotopic to f gives an equivalent vector bundle. Conversely, con-
structing a bundle map from a vector bundle over X to the canonical bundle
over BU(n) is point-set topology. Thus, one obtains

Vectn(X) =

⎧⎪⎪⎨⎪⎪⎩
[X, BU(n)], k = C

[X, BO(n)], k = R

and after taking the colimit over n,

Vect(X) =

⎧⎪⎪⎨⎪⎪⎩
[X, BU], k = C

[X, BO], k = R.

Therefore, a spectrum K representing K∗ would have to satisfy Kn = Ω
nBU,

but how would we get its structure maps? The answer comes from the famous
Bott periodicity theorem.

Theorem 7.4.28 (Bott) There are homotopy equivalences Ω2BU � BU × Z
and Ω8BO � BO × Z.

Thus, we have spectra K and KO via

Kn =

⎧⎪⎪⎨⎪⎪⎩
BU × Z n even

U n odd
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and

KOn = Ω
i(BO × Z), n = 8s + i.

So now for a topological space X, we have that

Kn(X) = [X,Kn] and KOn(X) = [X,KOn].

As a consequence,

Kn(S 0) =

⎧⎪⎪⎨⎪⎪⎩
Z n even

0 n odd
KOn(S 0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Z n = 8s, n = 8s + 4

Z/2 n = 8s + 1, n = 8s + 2

0 otherwise.

The tensor product on vector bundles gives rise to an associative multiplica-
tion on Vect(X), which corresponds to the multiplicative structure on BU and
BO. These multiplicative structures allow one to construct multiplications (cup
products) on K∗ and KO∗. Schwede [Sch07b, Example I.2.10] and Joachim
[Joa01] give constructions of K and KU as commutative ring spectra which
induce these multiplications.

From now on, when discussing K-theory, we will be talking only about K-
theory of spectra instead of spaces, using the representing K-theory spectra to
do so.

Because we would like to consider Bousfield localisation with respect to
K-theory, the following lemma tells us that we do not have to worry about
working over R or over C.

Lemma 7.4.29 Let X be a spectrum. Then K∗(X) = 0 if and only if
KO∗(X) = 0. Equivalently, a spectrum X is K-local if and only if it is
KO-local.

Proof There is an exact triangle

ΣKO
Id∧η−−−→ KO −→ K −→ Σ2KO,

where η : S1 −→ S is the Hopf map, see [Ada74, p.206]. Consequently,

ΣKO ∧ X
Id∧η∧Id−−−−−−→ KO ∧ X −→ K ∧ X −→ Σ2KO ∧ X

is exact. Therefore, if KO ∧ X � ∗ for a spectrum X, we must have K ∧ X � ∗
too. Conversely, if K ∧ X � ∗, the map

ΣKO ∧ X
Id∧η∧Id−−−−−−→ KO ∧ X

is an isomorphism in SHC. However, it is also nilpotent as η4 = 0, so it can
only be an isomorphism if KO ∧ X � ∗ as well. �
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In [Ada66b, IV, Corollary 8], Adams showed that one can split up K-theory
into smaller parts.

Theorem 7.4.30 (Adams) Let X be a space, and let K∗(p) denote complex
topological K-theory at the prime p, that is, K(p) = K ∧ S(p). Then there are
idempotent maps

Eα : K∗(p)(X) −→ K∗(p)(X), α ∈ Z/(p − 1)

such that there are natural isomorphisms

K∗(p)(X) =
⊕

α

Eα(K∗(p)(X)).

Furthermore, the functors Eα ◦K∗(p) are cohomology theories and therefore are
representable.

It was shown that the summands also satisfy the following. Let G denote the
spectrum representing E1 ◦ K∗(p). Then

K∗(p)(X) =
⊕

0�i�p−1

Σ2iG∗(X),

that is, K-theory splits into shifted copies of G. This G is known as the Adams
summand, and its homotopy groups are

π∗(G) = Z[v1, v
−1
1 ], |v1| = 2p − 2.

The Adams summand also appears in literature denoted by L. A more contem-
porary notation for the Adams summand is E(1) because it is the special case
of some E(n) for n = 1, as we will see in Subsection 7.4.3. Note that the prime
p is absent from the notation, and for p = 2, K(p) = E(1). As a consequence of
Adams’ result we obtain the following.

Corollary 7.4.31 A spectrum X is K(p)-local if and only if it is E(1)-local. �

K-Localisation
We can now study K-localisation of spectra. We will actually study localisation
with respect to p-local K-theory, K(p) = K ∧ S(p). Throughout this section, p
denotes a prime and M = M(Z/p) the mod-p Moore spectrum. Note that M is
p-local.

In [Ada66a], Adams constructed K(p)-equivalences

v4
1 : Σ8M −→ M (p = 2) and v1 : Σ2p−2M −→ M (p odd).
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In [Bou79], these maps are denoted by Ap. The notation v4
1, respectively, v1 is

a more contemporary notation and refers to the element v1 ∈ E(1)∗. The map
in each case is called a v1-self-map. In the case p = 2, v4

1 is not, however, the
fourth power of another map v1. The notation merely alludes to the fact that it
has degree 8. For convenience, in this section, we will write

v1 : Σd M −→ M

to denote both instances.
The mod-p Moore spectrum plays a big role in understanding and construct-

ing K-localisations. First, we define

M∞ � hocolim(M
v1−→ Σ−d M

v1−→ Σ−2d M
v1−→ · · · ).

Lemma 7.4.32 The map M −→ M∞ is a K(p)-equivalence.

Proof We have that K(p)∗(M∞) = colim(K(p)∗(M)
�−→ K(p)∗(M)

�−→ · · · ), see
Lemma 6.4.13, therefore, K(p)∗(M) −→ K(p)∗(M∞) is an isomorphism. �

The homotopy groups of this spectrum have been calculated by Mahowald
[Mah70] and Miller [Mil81].

Theorem 7.4.33 (Mahowald, Miller) For p = 2, the order of the group
πi(M∞) is

4, i = 0 mod 8,
8, i = 1 mod 8,
8, i = 2 mod 8,
4, i = 3 mod 8,
2, i = 4 mod 8,
1, i = 5 mod 8,
1, i = 6 mod 8,
2, i = 7 mod 8.

For odd primes, one has

πi(M∞) = Z/p for i = 0,−1 mod (2p − 2)

and πi(M∞) = 0 otherwise.

To study K-localisation, we need to know the stable homotopy groups of
the K(p)-local sphere, which were computed in, for example, [Ada66a] and
[Rav78]. The actual calculations and reasonings leading up to them are too
extensive to include in this book.
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Theorem 7.4.34 (Adams, Ravenel) The stable homotopy groups πi(LK(2)S) of
the K(2)-local sphere are

Z(2) ⊕ Z/2, i = 0,
Z/2∞, i = −2,
Z/2, i = 0 mod 8, i � 0
(Z/2)2, i = 1 mod 8,
Z/2, i = 2 mod 8,
Z/8, i = 3 mod 8,
0, i = 4, 5, 6 mod 8,
Z/2ν, i = 7 mod 8, i + 1 = 2ν−1q, q odd.

For odd primes, πi(LK(p)S) is given by

Z(p), i = 0,
Z/p∞, i = −2,
Z/pν, i = −1 mod (2p − 2), i � −1, i + 1 = (2p − 2)qpν−1, p � q,
0, else.

Furthermore, the map π∗(S) −→ π∗(LK(p)S) is a split epimorphism in degrees
greater than 1 for p = 2 and in non-negative degrees for p odd.

Since localisation at K(p) is the right derived functor of the identity functor
from LK(p)S to S, LK(p) is an exact functor on SHC by Theorem 4.5.2. Hence, it
preserves the cofibre sequence defining M

LK(p)S
p−→ LK(p)S −→ LK(p) M,

and so we have an isomorphism in SHC

LK(p) M � M ∧ LK(p)S.

This cofibre sequence and our knowledge of π∗(LK(p)S) allow us to calculate
the order of the homotopy groups of M ∧ LK(p)S. We see that the homotopy
groups of M∞ and M ∧ LK(p)S have the same order, a key step in the proof of
the next proposition.

Let us consider the map

M −→ M ∧ LK(p)S.

As M ∧ LK(p)S is K(p)-local and M −→ M∞ is a K(p)-equivalence by Lemma
7.4.32, the map M −→ M ∧ LK(p)S factors over M∞ as follows.

M M ∧ LK(p)S

M∞
θ
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Lemma 7.4.35 The map θ : M∞ −→ M ∧ LK(p)S is an isomorphism in SHC.

Proof We would like to show that

π∗(θ) : π∗(M∞) −→ π∗(M ∧ LK(p)S)

is an isomorphism. We already remarked that the groups on either side have
the same finite order in each degree, therefore, it is enough to prove that π∗(θ)
is surjective. Theorem 7.4.34 says that

π∗(S) −→ π∗(LK(p)S)

is a split epimorphism in degrees greater than 1. We have a commutative dia-
gram of long exact sequences,

· · · πi(S)
p

πi(S) πi(M) πi−1(S) · · ·

· · · πi(LK(p)S)
p
πi(LK(p)S) πi(M ∧ LK(p)S) πi−1(LK(p)S) · · ·.

The Five Lemma tells us that for i > 2, the map πi(M) −→ πi(M ∧ LK(p)S) is
also an epimorphism. We furthermore have a commutative diagram

M
v1

Σ−d M
v1

Σ−2d M
v1 · · ·

M ∧ LK(p)S
v1

� Σ
−d M ∧ LK(p)S

v1

� Σ−2d M ∧ LK(p)S · · · .
This means that we have a morphism between the homotopy colimits of the
top and the bottom row. The homotopy colimit of the top row is again M∞, and
the homotopy colimit of the bottom row is M ∧ LK(p)S, as all horizontal maps
in the bottom row are isomorphisms in SHC. The previous diagram induces

πi(M)
v1

πi+d(M)
v1

πi+2d(M)
v1 · · ·

πi(M ∧ LK(p)S)
v1

� πi+d(M ∧ LK(p)S)
v1

� πi+2d(M ∧ LK(p)S) · · · .
As i + kd will eventually be greater than 2 for any i, the vertical maps in this
diagram will eventually become epimorphisms. Therefore, the map

πi(M∞) −→ πi(M ∧ LK(p)S)

is also an epimorphism, which is exactly what we wanted to prove. �
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Together with Lemma 7.4.32, we obtain the following.

Corollary 7.4.36 The map M −→ M∞ is a K(p)-localisation.

Proof We saw in Lemma 7.4.35 that M∞ � M ∧ LK(p)S. This means, in par-
ticular, that M∞ is K(p)-local. We already saw in Lemma 7.4.32 that

M −→ M∞

is also a K(p)-equivalence. These two things together prove our claim. �

In fact, smashing with the K(p)-local sphere provides a K(p)-localisation of
any spectrum. However, the proof of this requires extensive knowledge of the
K(p)-local sphere again. Therefore, we will just state the result.

Theorem 7.4.37 (Ravenel) For any spectrum X, the map

X −→ X ∧ LK(p)S

is a K(p)-equivalence, that is, K(p)-localisation is smashing.

Corollary 7.4.38 Let X be a rational spectrum, that is, X = XQ. Then X is
also K(p)-local.

Proof The only torsion–free homotopy group of the K(p)-local sphere is in
degree 0, where it contains a copy of Z(p), see Theorem 7.4.34. Hence,

SQ = (LK(p)S)Q,

and therefore,

LK(p) (X) = LK(p) (XQ) = X ∧ SQ ∧ LK(p)S = X ∧ SQ = X,

which proves our claim. �

Finally, we have collected the necessary information to take on the main
result of this section, namely, that K(p)-localisation is detected by the v1-self-
map v1 : Σd M −→ M of the mod-p Moore spectrum.

Theorem 7.4.39 Let X be a p-local spectrum for p a prime, and let M denote
the mod-p Moore spectrum. The following are equivalent.

1. The spectrum X is K(p)-local.
2. The map v∗1 : [M, X]∗ −→ [M, X]∗+d is an isomorphism.
3. The map (v1)∗ : π∗(M ∧ X) −→ π∗+d(M ∧ X) is an isomorphism.

Proof The second and third points are equivalent as M is strongly dualisable
by Example 6.5.2 with DM = Σ−1M.

If X is K(p)-local, then

f ∗ : [B, X] −→ [A, X]
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is an isomorphism for all K(p)-equivalences f : A −→ B. In particular, it is an
isomorphism for the K(p)-equivalence

v1 : Σd M −→ M.

This proves that the first point implies the second point.
Lastly, assume that (v1)∗ : π∗(M ∧ X) −→ π∗+d(M ∧ X) is an isomorphism.

Let X be a p-local spectrum. We first show that M ∧ X is K(p)-local. Consider
the sequence

M ∧ X
v1∧Id−−−−→ Σ−d M ∧ X

v1∧Id−−−−→ Σ−2d M ∧ id
v1∧Id−−−−→ · · · .

Its homotopy colimit is

hocolim(M
v1−→ Σ−d M

v1−→ · · · ) ∧ X = M∞ ∧ X,

see Lemma 6.4.13. However, as all the maps in the sequence are isomorphisms
in SHC by assumption, the homotopy colimit is also isomorphic to its first
term, namely, M ∧ X. Altogether, we have

M ∧ X = M∞ ∧ X,

which, by Lemma 7.4.35 is also equal to

M ∧ LK(p)S ∧ X = LK(p) (M ∧ X).

Thus, M ∧ X is K(p)-local.
We use induction to verify that M(Z/pn) ∧ X is also K(p)-local for all n. It is

part of an exact triangle in SHC,

M(Z/pn−1) ∧ X −→ M(Z/pn) ∧ X −→ M(Z/p) ∧ X −→ ΣM(Z/pn−1) ∧ X.

To see this, we can use the octahedral axiom applied to the following diagram.

X
pn−1

X

p

M(Z/pn−1) ∧ X ΣX

X
pn

X M(Z/pn) ∧ X ΣX

M ∧ X M ∧ X

ΣX ΣM(Z/pn−1) ∧ X.

We know that the first two rows and the first column are exact triangles. The
octahedral axiom tells us that so is the second column. We also know that if
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two out of three spectra in an exact triangle are K(p)-local, then so is the third,
see Corollary 7.2.8. Consequently, M(Z/pn) ∧ X is K(p)-local for all n.

By Proposition 7.4.15, we have

X∧p = holim(M(Z/p) ∧ X ←− M(Z/p2) ∧ X ←− M(Z/p3) ∧ X ←− · · · ).
We now know that all terms in the homotopy limit are K(p)-local. By Corollary
7.2.9, the homotopy limit of K(p)-local spectra is also K(p)-local, so X∧p is K(p)-
local.

Recall that we have the Bousfield arithmetic square,

X
∏

p X∧p

XQ (
∏

p X∧p )Q.

As in our case, the spectrum X is p-local, all its q-completions are trivial except
for q = p (see Lemma 7.4.16). Therefore, the top right corner is simply X∧p ,
which we have just shown is K(p)-local. We also know from Corollary 7.4.38
that the rational terms in the square are also K(p)-local. Lemma 7.2.10 tells us
that this means that X itself is K(p)-local as well, which is what we wanted to
prove. �

In particular, we see that Bousfield localisation with respect to p-local com-
plex K-theory is the same as localisation with respect to just

v1 : Σd M −→ M

and its (de)suspensions. Therefore, K(p)-localisation is a special case of Miller’s
finite localisation Lf

A
S, which we encountered at the beginning of Section 7.1,

where in this case, A consists of the cofibre of

v1 : Σd M −→ M

and its (de)suspensions.
A lovely feature of the K-local stable homotopy category at the prime p = 2

is that it is rigid in the sense of Theorem 5.7.1, see [Roi07].

Theorem 7.4.40 (Roitzheim) Let C be a stable model category, and let LK(2)S
N

denote the model category of sequential spectra with the K(2)-local model
structure. If there is an equivalence of triangulated categories

Ψ : Ho(LK(2)S) −→ Ho(C),

then LK(2)S
N and C are Quillen equivalent.
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The first challenge presents itself immediately, as the stable framings from
Theorem 6.9.25 give us a Quillen adjunction

X ∧ − : SN C :RHom(X,−)

between spectra and C, but not necessarily between K(2)-local spectra and C.
Therefore, the following has to be verified first.

Lemma 7.4.41 Let G : C −→ D be a right Quillen functor and LWD a left
Bousfield localisation of D. Then G : C −→ LWD is a right Quillen functor if
and only if G(X) isW-local for all fibrant X ∈ C.

Proof The functor G sends acyclic fibrations to acyclic fibrations, as D and
LWD have the same cofibrations. If X ∈ C is fibrant, then G(X) is fibrant.
Furthermore, G(X) is W-local by assumption and therefore fibrant in LWD.
We still have to show that G sends fibrations to fibrations in LWD. By Lemma
A.4.3 it is sufficient to show that G sends fibrations between fibrant objects to
fibrations.

Let g : X −→ Y be a fibration in C between fibrant objects. This implies that

G(g) : G(X) −→ G(Y)

is a fibration in D between LWD–fibrant objects. We can factor G(g) in LWD
as an acyclic cofibration followed by a fibration

G(X)
i
∼ C

p
G(Y).

As C and G(X) are fibrant in LWD and i is anW-equivalence, i is also a weak
equivalence in D. As it is also a cofibration, it is thus an acyclic cofibration in
D. This implies that there is a lift H in the following diagram

G(X)

i

G(X)

G(g)

C p

H

G(Y).

This means that there is a retract in LWD

G(X)

G(g)

i
C

p

H
G(X)

G(g)

G(Y) G(Y) G(Y).

Therefore, G(g) is a retract of a fibration in LWD and thus is a fibration itself.
�
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In the case of K(2)-localisation, Theorem 7.4.39 gives us a criterion to check
whether a spectrum is local. In our case, we take X a fibrant–cofibrant replace-
ment of Ψ(LK(2)S) with

Ψ : Ho(LK(2)S) −→ Ho(C)

as in Theorem 7.4.40. A very laborious calculation in [Roi07] shows that for
any object Y in C, the mapping spectrum RHom(X,Y) is always K(2)-local.
This is done by examining the behaviour of v4

1 on its mod-2 homotopy groups.
Therefore, one obtains a Quillen adjunction

X ∧ − : LK(2)S
N C :RHom(X,−),

which one can now prove to be an equivalence.
The K(2)-local sphere is a compact generator of Ho(LK(2)S

N) as localisation
with respect to K(2) is smashing. As outlined in Section 5.7, the K(2)-local
Rigidity Theorem can therefore be reduced to showing the following.

Proposition 7.4.42 Let F : Ho(LK(2)S) −→ Ho(LK(2)S) be an exact endofunc-
tor of the K(2)-local stable homotopy category. Then

F : πn(LK(2)S) −→ πn(LK(2)S)

is an isomorphism for all n.

Like the proof of Theorem 5.7.1, the above statement in turn needs to be
reduced to checking where F sends just a manageable list of generators of
πn(LK(2)S). However, this reduction argument does not involve the Adams spec-
tral sequence as in the non-local proof. In the K(2)-local case, one manually
verifies that F is an isomorphism in degrees −1 through to 9, using again that
2 · IdM � 0 and Toda bracket relations. The claim for the other degrees follows
from using the 8-periodicity of the homotopy groups of LK(2) M and homologi-
cal algebra. Finally, one arrives at Theorem 7.4.40, namely, that all K(2)-local
higher homotopy information is encoded in the triangulated structure of the
K(2)-local stable homotopy category.

There is no such result at odd primes. In [Fra96], Franke constructs a sta-
ble model category whose homotopy category is triangulated equivalent to
Ho(LK(p)S) for p � 5, but this model category is not Quillen equivalent to
K(p)-local spectra. (For example, one can show that the respective homotopy
mapping spaces disagree.) It is baffling that one should obtain such different
results at p = 2 and odd primes. This is partly due to the fact that π∗(LK(2)S)
is much more densely equipped with algebraic relations than its odd primary
counterpart. The phenomenon still holds many open questions for future study.
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7.4.3 A Brief Introduction to Chromatic Homotopy Theory

So far, we have only sporadically touched on the practical uses of left Bousfield
localisation. In this section, we are going to give an overview of how locali-
sation with respect to certain homology theories gives great insight into the
overall structure of the stable homotopy category. This section’s intention is to
provide a first point of introduction to this type of result to a novice, proofs
and details are left to the references, which we would encourage the reader to
follow up.

For the rest of the section, we fix a prime p and work in the p-local stable
homotopy category SHC(p). Let us introduce our main tools. Ravenel [Rav92a]
is a good introduction to these, but also see [Rav84].

Definition 7.4.43 For n � 1, the nth Johnson–Wilson spectrum E(n) gives
rise to a multiplicative homology theory E(n)∗ with

E(n)∗ = Z(p)[v1, v2, . . . , vn, v
−1
n ], |vi| = 2pi − 2.

Definition 7.4.44 For n � 1, the nth Morava K-theory spectrum K(n) gives
rise to a multiplicative homology theory K(n)∗ with

K(n)∗ = Z/p [vn, v
−1
n ], |vn| = 2pn − 2.

By convention, one sets K(0) = E(0) = HQ and v0 = p. Also, note that the
prime p is absent from notation – there is an E(n) and a K(n) for every p.

It is somewhat inappropriate to call the above “definitions”, as it is by no
means assumed that these are the only spectra with these properties. We will
give a summary of the construction of the spectra E(n) and K(n).

Start with the complex cobordism spectrum MU, see [Ada74]. Its coeffi-
cients are

MU∗ = Z[x1, x2, . . . ], |xi| = 2i.

The p-localisation of MU splits into p − 1 copies of a “smaller” spectrum, the
Brown–Peterson spectrum,

MU(p) =

p−2∨

i=0

Σ2iBP,

where BP is a p-local spectrum with

BP∗ = Z(p)[v1, v2, · · · ], |vi| = 2pi − 2.

We can see from the notation that the rings E(n)∗ and K(n)∗ are modules over
the ring BP∗. The spectra E(n) and K(n) are constructed as module spectra
over BP to realise exactly this.
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The Morava K-theories K(n) are constructed from BP by first “killing” the
unwanted elements vi, i � n, of the homotopy groups by taking homotopy
cofibres to obtain a spectrum k(n) with k(n)∗ = Z/p[vn]. Then one inverts vn

by taking a “telescope” to obtain

K(n) = colim(k(n)
vn−→ Σ−2pn−2k(n)

vn−→ Σ−2(2pn−2)k(n)
vn−→ · · · ),

see, for example, [Rav86, Chapter 4.2]. Similarly, one obtains a spectrum
BP 〈n〉 with

BP 〈n〉∗ = Z(p)[v1, . . . , vn],

where one formally inverts vn to arrive at

E(n)∗ � colim(BP 〈n〉 vn−→ Σ−2pn−2BP 〈n〉 vn−→ Σ−2(2pn−2)BP 〈n〉 vn−→ · · · ).
Despite the similarity of their construction, the spectra E(n) and K(n) exhibit

very different behaviour in places. For a spectrum X, we obtain a BP∗–module
via

E(n)∗(X) � BP∗(X) ⊗BP∗ E(n)∗.

However, it is not at all clear for which BP∗–modules M the functor

M∗(X) � BP∗(X) ⊗BP∗ M

actually defines a homology theory. The Landweber exact functor theorem
gives conditions on M making M∗ a homology theory. The coefficient ring
E(n)∗ satisfies Landweber exactness, see, for example, [Rav86]. This gives an
alternative way of constructing E(n) as the representing spectrum of that coho-
mology theory.

Contrastingly, K(n)∗ is not Landweber exact. Nonetheless, K(n)∗ has several
useful algebraic properties. For example, it is a graded field in the sense that ev-
ery module over it is free. Furthermore, it comes with a Künneth isomorphism
for any spectra X and Y ,

K∗(X) ⊗K(n)∗ K∗(Y) � K∗(X ∧ Y).

For n = 1, E(1) and K(1) are closely related to K-theory (see Subsection
7.4.2). Comparing their coefficient rings, we see that

E(1)∗ = Z(p)[v1, v
−1
1 ] and K(1)∗ = Z/p [v1, v

−1
1 ],

so in fact K(1) = E(1) ∧ M(Z/p). The spectrum E(1) is the Adams summand
of p-local K-theory, see Theorem 7.4.30, and therefore, LE(1) = LK(p) . Thus, by
Proposition 7.4.24, for a spectrum X we have

LK(1)X = LE(1)∧M(Z/p)X = (LE(1)(X))∧p = (LK(p) (X))∧p ,
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that is, localisation with respect to E(1) is K-localisation, and localisation with
respect to K(1) is K-localisation followed by p-completion.

Definition 7.4.45 Localisation with respect to E(n) is denoted by Ln � LE(n).

In particular, L1 = LK(p) . Localisation with respect to E(n) enjoys the follow-
ing property, see [Rav92a, Theorem 7.5.6].

Theorem 7.4.46 (Ravenel) Localisation with respect to E(n) is smashing.

We saw that as a consequence of Theorem 7.4.39, L1 is a finite localisation
as introduced at the beginning of Section 7.1, that is, it can be constructed as
the localisation at a set of maps with finite cofibre. However, it has been unclear
for decades if the same can be said about Ln. The conjecture that Ln is a finite
localisation is known as the Telescope Conjecture. It was once thought to be
disproven by [Rav92b], but the proof has since been found to be insufficient
and the conjecture therefore remains open.

The following result relates the E(n) and K(n) in a very strong way, see
[Rav84, Theorem 2.1.(d)].

Theorem 7.4.47 A spectrum is E(n)-local if and only if it is local with respect
to (K(0) ∨ K(1) ∨ · · · ∨ K(n)).

Corollary 7.4.48 If a spectrum is E(n)-local, it is also E(n + 1)-local. Con-
sequently, there is a natural transformation Ln+1 −→ Ln.

If a spectrum is K(n)-local, it is also E(n)-local. Consequently, there is a
natural transformation Ln −→ LK(n).

Theorem 7.4.47 tells us that the “difference” between E(n)-localisation and
E(n − 1)-localisation is governed by K(n). This has been made precise by the
chromatic square, see Dwyer [Dwy04, Section 3.9]: for every p-local spectrum
X, there is a homotopy pullback square

LnX LK(n)X

Ln−1X Ln−1LK(n)X.

The left vertical arrow and the top arrow are given by the natural transfor-
mations from Corollary 7.4.48. The right vertical arrow is localisation with
respect to E(n − 1), and the bottom arrow is Ln−1 applied to the localisation
X −→ LK(n)X.

The following theorem says that for growing n, E(n)-localisation provides
a better and better “approximation” of the p-local stable homotopy category
itself. It also justifies the term “chromatic homotopy theory”, as it hints at the
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idea of decomposing SHC(p) into “chromatic layers” using the Ln – we will
see more of this later on.

Theorem 7.4.49 (Ravenel) Let X be the p-localisation of a finite
CW-spectrum. Then

X � holim(L0X ←− L1X ←− L2X ←− · · · ).
This is known as the Chromatic Convergence Theorem. Note that the finite-

ness assumption is actually necessary. For example, Eilenberg–Mac Lane spec-
tra are not finite. By Theorem 7.4.27, the E(n)-localisation of an Eilenberg–
Mac Lane spectrum is its rationalisation, that is, for all n,

LnHG � HGQ.

Therefore, the homotopy limit of the chromatic tower would also be HGQ, but
not every Eilenberg–Mac Lane spectrum is rational.

Returning to the Morava K-theories, we see that localisation with respect to
K(n) behaves very differently to the case of E(n)-localisation.

Proposition 7.4.50 Localising with respect to K(n) is not smashing.

Proof To show this, we need a spectrum E satisfying the following.

• E is K(n)-local.
• π∗(E ∧ HQ) � 0, that is, the rationalisation of E is non-trivial.

Then, if K(n)-localisation was smashing, we would have

E = LK(n)E = E ∧ LK(n)S

and also LK(n)S ∧ HQ = LK(n)HQ. The latter is trivial, because the K(n)-
localisation of an Eilenberg–Mac Lane spectrum is trivial by Theorem 7.4.27.
Combining these properties, we obtain

0 � π∗(E ∧ HQ) = π∗(E ∧ LK(n)S ∧ HQ) = π∗(E ∧ ∗) = 0,

which is a contradiction. For the above, we have to know that such a spectrum
E exists, which is highly non-trivial. For example, the nth Morava E-theory
(also known as Lubin–Tate theory) satisfies the conditions, see, for example,
Rezk [Rez98]. �

Despite this deficit, K(n)-localisation is still a powerful tool. For example, it
helps us answer the following questions.

• Does a spectrum X carry a non-trivial nilpotent self-map, that is, a map that
eventually becomes trivial when iterated?
• Does a spectrum X carry a non-trivial self-map that never becomes trivial

when iterated?
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Definition 7.4.51 Let n ∈ N, and let X be a spectrum such that K(m)∗(X) = 0
for m < n. Then a map

α : ΣdX −→ X

is called a vn–self map if

• K(n)∗(α) is multiplication by vk
n for some k,

• K(m)∗(α) = 0 for m > n.

It is worth remarking (and non-trivial) that K(n)∗(X) = 0 for some n implies
that K(n − 1)∗(X) = 0 [Rav84, Theorem 2.11]. Because of the first point in the
definition, a vn-self-map in particular never becomes trivial when iterated by
composition.

Note that we already encountered a v1-self-map on the mod-p Moore spec-
trum at the beginning of Subsection 7.4.2. It is an intriguing question whether
such maps exist on a given spectrum. This has been answered by Ravenel
[Rav92a, Theorem 1.5.4 and Chapter 6], see also Hopkins and Smith [HS98,
Theorem 9].

Theorem 7.4.52 (Periodicity Theorem) Let X be the p-localisation of a finite
CW-spectrum. If n is the largest integer such that K(m)∗(X) = 0 for m < n,
then X has a vn-self-map.

Let us now look at the other extreme.

Definition 7.4.53 A map f : X −→ Y of spectra is smash nilpotent if there is
an n such that f ∧n : X∧n −→ Y∧n is nullhomotopic.

A self-map f : ΣdX −→ X of a spectrum X is nilpotent if

f n = f ◦ · · · ◦ f : ΣdnX −→ X

is nullhomotopic for some n.

It can be shown that the Morava K-theories answer the question as to when
a map is nilpotent in those ways, see [HS98, Theorem 3].

Theorem 7.4.54 (Nilpotence Theorem) Let X be the p-localisation of a finite
CW-spectrum, and let Y be a p-local spectrum. Then a map f : X −→ Y is
smash nilpotent if and only if

K(n)∗( f ) = 0 for all 0 � n � ∞
(where K(∞) = HZ/p). A map f : ΣdX −→ X is nilpotent if and only if

K(n)∗( f ) = 0 for all 0 � n < ∞.
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In fact, a spectrum E detects smash nilpotence as in the above theorem if
and only if K(n)∗(E) � 0 for 0 � n � ∞.

Let us now look at how the K(n) are vital for understanding the overall
structure of SHC(p).

Recall the following definition. Let T be a triangulated category, and let F
be a full triangulated subcategory of T. Then F is thick if F is closed under
retracts, that is, if

A
i−→ X

p−→ A

such that p ◦ i = Id and X ∈ F, then A is also in F.
Note that if a coproduct of objects of T is contained in F, then all its sum-

mands are in F too.

Definition 7.4.55 Let T be a tensor-triangulated category (see Remark 6.1.15),
and let F be a thick subcategory of T. Then F is an ideal in T if for X ∈ T and
Y ∈ F, X ∧ Y is in F.

Recall that a finite p-local spectrum is a spectrum which is isomorphic to
the p-localisation of a finite CW-spectrum.

We let SHCfin
(p) denote the full triangulated subcategory of SHC(p) of finite

p-local spectra.
We can make a non-trivial example of a thick subcategory that is also an

ideal in SHCfin
(p) from these spectra.

Fn = {X a finite p-local spectrum | K(n − 1)∗(X) = 0 }.
The Fn form a descending chain of ideals in SHCfin

(p),

F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Fn ⊂ · · · .
In fact, the Fn as defined above give us all thick subcategories of SHCfin

(p), see
[Rav92a, Theorem 3.4.3], [HS98, Theorem 7] and also [HPS97, Section 5.2].
This means that the K(n)-acyclic spectra form the “atomic” part of SHCfin

(p).

Theorem 7.4.56 (Thick Subcategory Theorem) Let F be a non-trivial thick
subcategory of the homotopy category of finite p-local spectra. Then F = Fn

for some n � 1.

The Chromatic Convergence Theorem 7.4.49, the chromatic square and the
Thick Subcategory Theorem allow us to think of the stable homotopy category
as follows. For each prime p, the p-local stable homotopy category can be
thought of as a building with infinitely many floors. The nth floor is described
by LK(n), and the first n floors together are described by LE(n).
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........ ... ...

n = 0

n = 1

n = 2

n = ∞

�
p

�

n

Visualising Ho(S) in relation to Ho(LnS):

The “ground floor” is rationalisation, and the first floor is governed by K-
theory. The second floor is related to elliptic cohomology theories, which we
will not discuss in this book – we recommend Hopkins and Mahowald [HM14]
for the interested reader. This second chromatic layer is already very difficult
to describe explicitly or to use for calculations, and beyond this even less is
known. The recently emerging transchromatic homotopy theory is aiming to
shed more light on how the different chromatic layers are related.

Because we have the notion of an ideal in a tensor-triangulated category, we
can also say what a prime ideal should be.

Definition 7.4.57 An ideal F is prime if X ∧ Y ∈ F implies that either X ∈ F
or Y ∈ F.

The notion of ideals and prime ideals in a tensor-triangulated category can
be combined with techniques from commutative algebra in order to study the
structure of other interesting homotopy categories as well. The set of thick
prime ideals in a tensor-triangulated category is known as the Balmer spectrum

Spc(T) = {P | P � T is a thick prime ideal in T},
see Balmer and Sanders [BS17]. It can be given a Zariski-style topology by
asking for the sets

supp(X) = {P ∈ Spc(T) | X � P}, X ∈ T,
to be closed. For example, the Balmer spectrum of the homotopy category of
G-spectra for finite groups G is a particularly interesting object of study.



Appendix

Model Categories

In this Appendix, we give a short account of model categories, summarising
the definitions and results that we use in this book. With some exceptions,
we will not include proofs, but instead provide references where those can be
found if desired.

A.1 Basic Definitions

A model category is a category with a notion of homotopy between morphisms.
The ideas of a homotopy between continuous functions of topological spaces
and a chain homotopy between chain maps of chain complexes are well estab-
lished. We will see that they are not just “morally” similar, but that they are
special cases arising from the same formal definition, see [DS95].

Recall that a morphism f : X −→ Y is a retract of g : U −→ V , if there is a
commutative diagram

X

f

i
U

g

r
X

f

Y
i′

V
r′

Y,

such that r ◦ i and r′ ◦ i′ are the respective identities.

Definition A.1.1 A model category is a category C equipped with three dis-
tinguished classes of morphisms, which are closed under composition and all
contain the identities:

• weak equivalences, denoted ∼

• cofibrations, denoted
• fibrations, denoted .

376
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This information satisfies the following axioms.

(MC1) The category C has all finite limits and colimits.
(MC2) (2-out-of-3) Let f and g be composable morphisms in C. If two out of

f , g and g ◦ f are weak equivalences, then so is the third.
(MC3) (Retracts) Weak equivalences, cofibrations and fibrations are closed

under retracts.
(MC4) (Lifts) Assume there is a commutative square in C

A

i

f
X

p

B g Y,

where i is a cofibration and p is a fibration. If in addition, either i or p is
a weak equivalence, then there is a lift h : B −→ X in the square, that is,
h ◦ i = f and p ◦ h = g as below.

A

i ∼

f
X

p

A

i

f
X

p∼

B g

h

Y B g

h

Y

(MC5) (Factorisation) Every morphism f : X −→ Y can be factored as a
cofibration that is a weak equivalence followed by a fibration and as a cofi-
bration followed by a fibration that is a weak equivalence, that is,

f : X
∼

U Y, f : X V
∼

Y.

Some sources ask for the factorisations in (MC5) to be functorial. We do
not make this assumption in general, but it does hold for many of the model
categories we encounter in practice, see Corollary A.6.14.

The information of weak equivalences, cofibrations and fibrations together
with axioms (MC2) – (MC5) is often called a model structure on the category
C. We will see that there can be more than one different model structure on the
same underlying category.

First, some terminology for convenience’s sake.

Definition A.1.2 A morphism that is both a cofibration and a weak equiva-
lence is called an acyclic cofibration or trivial cofibration and is denoted by

∼ . A morphism that is both a fibration and a weak equivalence is called

an acyclic fibration or trivial fibration and is denoted by ∼ .
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Definition A.1.3 Let C be a category. We say that a morphism i : A −→ B has
the left lifting property (LLP) with respect to another morphism p : X −→ Y if
for any commutative diagram

A

i ∼

f
X

p

B g Y

there is a morphism h : B −→ X, such that h ◦ i = f and p ◦ h = g. Similarly,
p : X −→ Y has the right lifting property (RLP) with respect to i : A −→ B if
such a lift h exists for every commutative diagram of the above form.

Let us list some consequences of the definition of a model category. Proofs
can be found in [DS95], [Hov99] and [Qui67].

• Axiom (MC1) implies that a model category C has finite products and co-
products as well as an initial object ∅ and a terminal object ∗.
• Axiom (MC4) says that cofibrations have the left lifting property with re-

spect to acyclic fibrations, acyclic cofibrations have the left lifting property
with respect to fibrations, acyclic fibrations have the right lifting property
with respect to cofibrations and fibrations have the right lifting property with
respect to acyclic cofibrations. However, one can show that these conditions
are also necessary, that is, a morphism is a cofibration if and only if it has
the right lifting property with respect to all acyclic fibrations and so on.
• The above remark tells us that the full axioms of a model category contain

more information than strictly necessary, as the fibrations could be defined
as those maps having the right lifting property with respect to all acyclic
cofibrations, and the cofibrations could be defined as precisely those maps
having the left lifting property with respect to all acyclic fibrations. In other
words, the weak equivalences and the cofibrations determine the fibrations,
and the weak equivalences and the fibrations determine the cofibrations.
• Cofibrations and acyclic cofibrations are closed under pushouts.
• Fibrations and acyclic fibrations are closed under pullbacks.

Remark A.1.4 We usually assume a stronger condition than axiom (MC1),
namely, that our model categories have all small limits and colimits. Recall
that a small (co)limit is a (co)limit over a diagram whose object class is a set.

There is a wealth of naturally arising model structures. We will list some of
the most common ones below. In each case, it is a non-trivial effort to prove
that the model category axioms are satisfied. We leave this to the references.
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Example A.1.5 There are many meaningful examples of model structures on
the category of topological spaces Top. A commonly used one (which we are
also using in this book) is the Serre model structure. In this model structure, a
continuous map f : X −→ Y is

• a weak equivalence if f is a weak homotopy equivalence,
• a cofibration if f is a retract of a map X −→ Y ′, where Y ′ is obtained from

X by attaching cells (i.e. (X,Y ′) is a relative CW-complex),
• a fibration if f is a Serre fibration, that is, f has the right lifting property

with respect to the inclusion

A × {0} −→ A × [0, 1]

for any CW-complexes A.

The Hurewicz model structure on Top is given by the following. A continu-
ous map f : X −→ Y is

• a weak equivalence if f is a homotopy equivalence,
• a cofibration if f has the left lifting property with respect to all fibrations

that are also homotopy equivalences,
• a fibration if f has the right lifting property with respect to the inclusion

A × {0} −→ A × [0, 1]

for any topological space A. This is called a Hurewicz fibration.

In this book, the cofibrations in the Serre model structure are also called q-
cofibrations, and the cofibrations in the Hurewicz model structure are called
h-cofibrations.

Example A.1.6 Let Δ denote the category of finite ordered sets

[n] = {0, 1, · · · , n}, n ∈ N,
with the morphisms being the order-preserving maps, and let Set denote the
category of sets. The category of simplicial sets sSet is the category of functors
Δop −→ Set. There is an adjunction

| − | : sSet Top :sing,

where | − | denotes the geometric realisation functor, and where for a space
A ∈ Top, the set sing(A)n is the set of continuous functions from the standard
n-simplex Δn ∈ Rn into A. A model structure on sSet is given by the following
data. A map f : X −→ Y of simplicial sets is
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• a weak equivalence if | f | : |X| −→ |Y | is a weak homotopy equivalence in
Top,
• a cofibration if for every n ∈ N, the map f ([n]) : X([n]) −→ Y([n]) is a

monomorphism,
• a fibration if f has the right lifting property with respect to all acyclic cofi-

brations.

The fibrations in this model structure are known as Kan fibrations.

Example A.1.7 Important algebraic examples of model categories come from
chain complexes. Let us denote the category of non-negatively graded chain
complexes of R–modules by Ch(R)+. We say that a chain map f : C∗ −→ D∗ is

• a weak equivalence if H∗( f ) : H∗(X) −→ H∗(Y) is an isomorphism of graded
abelian groups, that is, f is a homology isomorphism,
• a cofibration if for each degree n, the map fn : Cn −→ Dn is injective with a

projective cokernel,
• a fibration if for each n � 1, the map fn : Cn −→ Dn is surjective.

This is known as the projective model structure on Ch(R)+.
We can define another model structure on Ch(R)−, the non-positively graded

chain complexes of R–modules by asking for a chain map f : C∗ −→ D∗ to be

• a weak equivalence if f is a homology isomorphism,
• a cofibration if for each degree n � −1, the map fn : Cn −→ Dn is injective,
• a fibration if for each n, the map fn : Cn −→ Dn is surjective with injective

kernel.

This is known as the injective model structure on Ch(R)−. There are also pro-
jective and injective model structures on unbounded chain complexes, although
they are not quite as straightforward to describe. We will do so in Section A.6.

Definition A.1.8 An object X in a model category C is cofibrant if the mor-
phism ∅ −→ X out of the initial object is a cofibration. An object X in a model
category is called fibrant if the unique morphism X −→ ∗ to the terminal object
is a fibration.

Examples A.1.9 We see that in the Serre model structure on topological
spaces Top defined earlier, a retract of a CW-complex is cofibrant. Meanwhile,
every simplicial set is cofibrant.

In the projective model structure on Ch(R)+, a chain complex is cofibrant if
and only if it is degreewise projective, and all chain complexes are fibrant. In
the injective model structure on Ch(R)−, every chain complex is cofibrant, and
a chain complex is fibrant if and only if it is degreewise injective.
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For many properties and proofs, it is necessary to assume that an object
is fibrant or cofibrant. However, this is not always a major restriction as any
object can be replaced by a fibrant and a cofibrant one.

Definition A.1.10 Let C be a model category and X an object in C. We say
that an object Y is a cofibrant replacement for X if Y is cofibrant and there is a
weak equivalence Y −→ X. An object Z is a fibrant replacement for X if Z is
fibrant and there is a weak equivalence X −→ Z.

Fibrant and cofibrant replacements exist for every X ∈ C by applying (MC5)
to the morphisms ∅ −→ X and X −→ ∗, respectively. They are unique up
to weak equivalence, therefore we can write Xco f and X f ib for a cofibrant,
respectively, fibrant replacement of X even if we have not assumed functorial
factorisation in our model category as in practice, proofs will not depend on
this choice.

Examples A.1.11 In Top with the Serre model structure, cofibrant replace-
ment is given by CW-approximation.

Let A be an R–module, and let A[0] ∈ Ch(R)+ be the chain complex con-
sisting of A in degree 0 and zero elsewhere. In the projective model structure
on Ch(R)+, a cofibrant replacement of A[0] is a projective resolution of A. If
we consider A[0] as an object of Ch(R)− with the injective model structure, a
fibrant replacement is an injective resolution.

A.2 Homotopies

In a model category, we can recreate the geometric notion of homotopy without
having a “unit interval” in our category.

Definition A.2.1 Let C be a model category and X ∈ C. A cylinder object for
X is an object Cyl(X) together with a diagram

X
∐

X
(i0,i1)

Cyl(X) r
∼ X,

which factors the fold map (Id, Id) : X
∐

X −→ X.

We have to make some important remarks concerning this definition. Firstly,
the cylinder object is not just the object in the middle of this factorisation, but
the entire diagram, although we are also going to abuse this wording. By the
axiom (MC5), every object has (at least) one cylinder object, and it can be
chosen so that (i0, i1) is a cofibration, i0 and i1 are weak equivalences and r
an acyclic fibration. This is known in the literature as a very good cylinder
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object. Furthermore, if X is cofibrant, then i0 and i1 are acyclic cofibrations
[DS95, Lemma 4.1]. For this book, we will assume all our cylinder objects to
be very good. For X a topological space, an actual cylinder X×[0, 1] provides a
cylinder object in topological spaces. For a chain complex A, a cylinder object
is given by

Cyl(A∗)n = An ⊕ An−1 ⊕ An, ∂(a, b, c) = (d(a) + b,−d(b), d(c) − b)

together with the evident inclusions and projection map.
Given a morphism f : X −→ Y , we have the following commutative dia-

gram.

X
∐

X
( f , f )

Y
∐

Y Cyl(Y)

∼

Cyl(X) X
f

Y

Axiom (MC4) says that there is a lift Cyl(X) −→ Cyl(Y), giving us a commu-
tative diagram

X
∐

X
(i0,i1)

( f , f )

Cyl(X) r
∼ X

f

Y
∐

Y
(i0,i1)

Cyl(Y) r
∼ Y.

In particular, we see that two cylinder objects of the same object are weakly
equivalent.

Definition A.2.2 Let f , g : X −→ Y be two morphisms in a model category
C. A left homotopy between f and g is a morphism

H : Cyl(X) −→ Y,

such that H ◦ i0 = f and H ◦ i1 = g for some cylinder object of X. We say that
f and g are left homotopic.

This recovers the notion of homotopy between two continuous maps of CW-
complexes in topological spaces, and one can check that this also recovers the
definition of chain homotopy in chain complexes.

Dually, we can make the following definitions, where analogous remarks
apply.
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Definition A.2.3 Let C be a model category, and let Y ∈ C. A path object for
Y is an object PY ∈ C together with a diagram

Y ∼
s

PY
(e0,e1)

Y × Y,

which factors the diagonal map Δ : Y −→ Y × Y .

Again, when we write “path object” in this book, we will actually mean a
very good path object where s is an acyclic cofibration, e0 and e1 are weak
equivalences and (e0, e1) is a fibration. If Y is fibrant, then e0 and e1 can be
chosen to be acyclic fibrations [DS95, Lemma 4.14].

Definition A.2.4 Let f , g : X −→ Y be two morphisms in a model category
C. A right homotopy between f and g is a morphism

H : X −→ PY,

such that e0 ◦ H = f and e1 ◦ H = g for some path object of Y . We say that f
and g are right homotopic.

Definition A.2.5 Two morphisms f and g in a model category C are homo-
topic if they are both left and right homotopic. We denote this by f 
 g.

We will now list some properties of left and right homotopies. The proofs of
these can be found in [DS95, Section 4], except for (4.) which we prove below.

1. If X is cofibrant, then “being left homotopic” is an equivalence relation on
C(X,Y).

2. If Y is fibrant, then “being right homotopic” is an equivalence relation on
C(X,Y).

3. If X is cofibrant and Y is fibrant, then “being homotopic” is an equivalence
relation on C(X,Y). An equivalence class is called a homotopy class of a
morphism f , denoted [ f ].

4. If X is cofibrant and Y is fibrant, then f and g are left homotopic if and only
if they are right homotopic.

5. If X,Y and Z are both fibrant and cofibrant, then composition induces a
well-defined map on homotopy classes
(
C(X,Y)/ ∼ ) × (C(Y,Z)/ ∼ ) −→ C(X,Z)/ ∼, ([ f ], [g]) �→ [g ◦ f ].

6. If X and Y are both fibrant and cofibrant, then a map f : X −→ Y is a weak
equivalence if and only if it has a homotopy inverse.
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Lemma A.2.6 Let f , g : X −→ Y be two morphisms in a model category C.
Furthermore, assume that X is cofibrant and Y fibrant. Then f and g are left
homotopic if and only if they are also right homotopic.

Proof We will only show one direction, as the other is very similar.
Let H : Y −→ PA be a right homotopy between f = e0 ◦ H and g = e1 ◦ H.
Consider the cylinder object

Y
∐

Y
(i0,i1)−−−−→ Cyl(Y)

r−→ Y

and the path object

A
s−→ PA

(e0,e1)−−−−→ A × A.

Because of our assumptions on X and Y , we can pick (i0, i1) to be a cofibration
and e0 to be an acyclic fibration, so there is a lift Φ in the diagram

Y
∐

Y
(s◦e0◦H,H)

(i0,i1)

PA

e0

Cyl(Y) r

Φ

Y
e0◦H

A.

The map H̄ � e1 ◦Φ : Cyl(Y) −→ A is now a left homotopy between f and
g because

e1 ◦ Φ ◦ i0 = e1 ◦ s ◦ e0 ◦ H = e0 ◦ H

(because e1 ◦ s = Id), and

e1 ◦ Φ ◦ i1 = e1 ◦ H. �

Definition A.2.7 The map Φ in the above proof is called a correspondence
between the right homotopy H and the left homotopy H̄.

As with topological spaces, we may concatenate (glue together) compatible
homotopies.

Let α, β : Cyl(A) −→ X be two left homotopies with α ◦ i1 = β ◦ i0. This
means that we can form the following pushout.

A
i0

i1

Cyl(A)

β

ι2

Cyl(A)
ι1

α

Cyl(A)′
α∗β

X
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Definition A.2.8 The concatenation of the homotopies α and β is given by
α ∗ β in the above diagram.

Note that we read the notation α∗β from left to right. The object Cyl(A)′ is a
cylinder object for A with i′0 : A−→Cyl(A)′ given by ι1◦i0, and i′1 : A−→Cyl(A)′

given by ι2 ◦ i1.
If A is cofibrant, then i0 and i1 are acyclic cofibrations, thus ι1 and ι2 are, and

therefore

(i′0, i
′
1) : A

∐
A −→ Cyl(A)′

is an acyclic cofibration. The structure map Cyl(A)′ −→ A is given by the
pushout of the structure map r : Cyl(A) −→ A with itself. While the pushout
of two fibrations is not necessarily a fibration, we can just factor r ∗ r into an
acyclic cofibration with a fibration, and this factorisation gives us a very good
cylinder object. However, we will simply assume without loss of generality
that Cyl(A)′ is itself very good.

Thus, we have

(α ∗ β) ◦ i′0 = (α ∗ β) ◦ ι1 ◦ i0 = α ◦ i0

and

(α ∗ β) ◦ i′1 = (α ∗ β) ◦ ι2 ◦ i1 = β ◦ i1.

For a map f : X −→ Y we get

f ◦ (α ∗ β) = ( f ◦ α) ∗ ( f ◦ β).

We can of course perform a dual construction for right homotopies using
pullbacks of path objects. These constructions satisfy some useful properties.
We omit the details of the proofs, which can be found in [Qui67, Chapter 1.1].

1. Two maps α, β : Cyl(A) −→ PB can be considered to be left homotopies
as well as right homotopies. The concatenation α ∗ β as left homotopies is
not the same morphism as α ∗ β concatenated as right homotopies, but the
results are homotopic if A and B are both fibrant and cofibrant.

2. Let Φα be a correspondence between α : Cyl(A) −→ B and some right
homotopy in the sense of Definition A.2.7 and Φβ a correspondence be-
tween β : Cyl(A) −→ B and some other right homotopy. Then the cor-
respondence of their concatenation is homotopic to the concatenation of
correspondences, that is,

Φα ∗ Φβ 
 Φα∗β.
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3. For a morphism f : A −→ B, let

const f � r ◦ Cyl( f ) : Cyl(A) −→ B

denote the constant homotopy. Then, for a left homotopy H : Cyl(A) −→ B,
we have

H ∗ constH◦i1 
 H 
 constH◦i0 ∗ H.

An analogous statement holds for right homotopies.
4. Given H : Cyl(A) −→ B, we can define the reverse H̄ of H as follows.

Consider the cylinder object

A
∐

A
τ−→ A
∐

A
(i0,i1)−−−−→ Cyl(A)

r−→ A,

where τ is the switch morphism. This cylinder now satisfies

inew
0 = iold

1 ◦ τ and inew
1 = iold

0 ◦ τ.
Now H̄ is the same morphism as H, but considered on this new cylinder
object. Therefore, if H is a homotopy between f : A −→ B and g : A −→ B,
then H̄ is a homotopy between

H̄ ◦ inew
0 = H ◦ iold

1 = g and H̄ ◦ inew
1 = H ◦ iold

0 = f .

The respective concatenations between those two homotopies satisfy, for
fibrant and cofibrant A and B,

H ∗ H̄ 
 const f and H̄ ∗ H 
 constg.

An analogous statement holds for right homotopies.
5. As taking pushouts (resp. pullbacks) is associative, the concatenation of left

(resp. right) homotopies is associative up to homotopy.
6. The previous three points can be summarised by saying that for cofibrant

and fibrant A and B, the set of morphisms from A to B are the objects of a
groupoid, with morphisms given by homotopies of maps (up to homotopy).

A.3 The Homotopy Category

We are now going to make the following important definition. Recall that for
an object X in a model category, Xco f denotes the cofibrant replacement and
X f ib the fibrant replacement.

Definition A.3.1 Let C be a model category. The homotopy category of C,
denoted Ho(C), is defined as follows:
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• the objects of Ho(C) are the objects of C,
• the morphisms of Ho(C) are given by

Ho(C)(X,Y) = C((Xco f ) f ib, (Yco f ) f ib)/ ∼,
that is, by the homotopy classes between the respective fibrant-cofibrant
replacements.

If there is no ambiguity over which model category we are working in, we
will denote Ho(C)(X,Y) by [X,Y].

Example A.3.2 An example of morphisms in the homotopy category comes
from chain complexes Ch(R)+. Let A[m] and B[n] be those chain complexes
which consist of the R–modules A concentrated in degree m and B in degree
n, respectively, and which are zero elsewhere. Then, by applying the previous
definitions to this specific example, one can show that

Ho(Ch(R)+)(A[m], B[n]) = Extn−m
R (A, B).

This is [DS95, Proposition 7.3], and it beautifully highlights the interaction
between homotopy theory and algebra.

Further technical properties about homotopy categories can be found in
[DS95, Section 5], as well as [Hov99, Chapter 1.2], including the following.

Proposition A.3.3 A morphism [ f ] ∈ Ho(C) is an isomorphism if and only if
f is a weak equivalence in C.

Therefore, Ho(C) is equivalent to the category-theoretic localisation C[W−1]
of C at the class of weak equivalences W, which is the free category on the
arrows in C together with added reversed arrows of the weak equivalences. It
is not initially clear why such a construction would result in a category with
morphism sets between objects rather than classes of morphisms, but our con-
struction using homotopies guarantees that this is in fact true in the model
category case.

Before we move on to functors, we have to make the following important
remark.

Remark A.3.4 The lifting axiom (MC3) for model categories does not make
any claims about the uniqueness of such a lift. However, two lifts in a square,
such as

A
f

i ∼

X

p

B
g

Y
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are identical in the homotopy category: assume that there are two lifts h1 and
h2 in the square above. Then

[h1] ◦ [i] = [h2] ◦ [i] = [ f ].

But as i is a weak equivalence, [i] is an isomorphism in Ho(C), thus [h1] = [h2].
This means, in particular, that in Ho(C), the map

Cyl(X) −→ Cyl(Y)

from earlier in Section A.2 is unique. Similarly, choices of left (or right) ho-
motopies between morphisms and correspondences between left and right ho-
motopies from Definition A.2.7 are unique in the homotopy category.

A.4 Quillen Functors

Now that we have discussed some properties of model categories, it makes
sense to consider functors that respect this structure. We give a very simplified
outline of the basics—more details and proofs of the statements can be found
in, for example, [Hov99, Chapter 1.3].

Definition A.4.1 Let C and D be model categories. A functor

F : C −→ D

is a left Quillen functor if F preserves cofibrations and acyclic cofibrations. A
functor

G : D −→ C

is a right Quillen functor if it preserves fibrations and acyclic fibrations. An
adjunction of functors

F : C D :G

is a Quillen adjunction if F is a left Quillen functor and G is a right Quillen
functor.

Example A.4.2 The adjunction consisting of geometric realisation and the
singular complex functor

| − | : sSet Top :sing

from Example A.1.6 is a Quillen adjunction.
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Lemma A.4.3 Let C and D be model categories and

F : C D :G

an adjunction of functors. Then the following are equivalent.

• F preserves cofibrations and G preserves fibrations.
• F is a left Quillen functor.
• G is a right Quillen functor.
• (F,G) is a Quillen adjunction.
• F preserves acyclic cofibrations and F preserves cofibrations between cofi-

brant objects.
• G preserves acyclic fibrations and G preserves fibrations between fibrant

objects.

For the proof that the last two points are equivalent to the others, see [Hir03,
Proposition 8.5.4].

The following result has been found to be quite useful. Note that it does not
require the functor F be a left or right Quillen functor.

Lemma A.4.4 (Ken Brown’s Lemma) Let C and D be model categories, and
let F : C −→ D be a functor.

• If F takes acyclic cofibrations between cofibrant objects to weak equiva-
lences, then F takes all weak equivalences between cofibrant objects to weak
equivalences.
• If F takes acyclic fibrations between fibrant objects to weak equivalences,

then F takes all weak equivalences between fibrant objects to weak equiva-
lences.

The primary reason for Quillen functors to be the “correct” notion of
structure-preserving functors between model categories is that they induce
functors on the respective homotopy categories.

Definition A.4.5 Let F : C −→ D be a left Quillen functor between model
categories C and D. Then the left derived functor

LF : Ho(C) −→ Ho(D)

is given by LF(X) � F(Xco f ).Dually, if G : D −→ C is a right Quillen functor,
then its right derived functor

RG : Ho(D) −→ Ho(C)

is given by RG(Y) � G(Y f ib).



390 Model Categories

As mentioned, this is an extremely simplified version of the real picture.
Non-trivial work goes into showing that the above actually describes well-
defined functors with the desired universal properties. We leave this to [Hov99,
Chapter 1.3.2] and [DS95, Section 9]. They also show the following important
result.

Theorem A.4.6 Let C and D be model categories and

F : C D :G

a Quillen adjunction. Then the left and right derived functors

LF : Ho(C) Ho(D) :RG

form an adjunction.

Definition A.4.7 A Quillen adjunction

F : C D :G

is called a Quillen equivalence, if

LF : Ho(C) Ho(D) :RG

is an adjoint equivalence of categories.

The following characterisation is frequently used, see [Hov99, Corollary
1.3.16].

Proposition A.4.8 Let C and D be model categories, and let

F : C D :G

be a Quillen adjunction. Then the following are equivalent.

• (F,G) is a Quillen equivalence.

• For every fibrant Y ∈ D, the composite map

F(G(Y)co f ) −→ F(G(Y)) −→ Y

is a weak equivalence in D, and whenever f : A −→ B is a morphism in C

between cofibrant objects, such that

F( f ) : F(A) −→ F(B)

is a weak equivalence in D, then f is a weak equivalence in C.
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• For every cofibrant X ∈ C, the composite map

X −→ G(F(X)) −→ G(F(X) f ib)

is a weak equivalence in C, and whenever g : A −→ B is a morphism in D

between fibrant objects, such that

G(g) : G(A) −→ G(B)

is a weak equivalence in C, then g is a weak equivalence in D.

Let us continue with some examples.

Example A.4.9 The adjunction

| − | : sSet Top :sing

from Example A.1.6 is a Quillen equivalence. Therefore, we can consider sim-
plicial sets to be a “model” for topological spaces in this context.

Example A.4.10 Example A.6.10 gives a projective model structure and an
injective model structure on the category Ch(R) of unbounded chain complexes
extending the bounded case. The identity functor Id : Ch(R) −→ Ch(R) from
the projective model structure to the injective model structure is the left adjoint
of a Quillen equivalence.

The examples show the importance of Quillen equivalences: they allow us
to use different model categories to model the same homotopy category. This
is particularly useful when those models have technical advantages over each
other. As a simple example, every simplicial set is cofibrant, while not every
topological space is cofibrant. As a more involved example, the model cate-
gory of sequential spectra is not a monoidal model category, but Chapters 5
and 6 discuss Quillen equivalent model categories with far better monoidal
properties.

Quillen equivalences are more structured than equivalences of homotopy
categories. In general, one can use the slogan “Quillen equivalent model cat-
egories have the same homotopy theory”. We will see instances of this phe-
nomenon all over this book.

A.5 Homotopy Cofibrations

A useful notion in a model category is that of h-cofibrations, which is a gener-
alisation of h-cofibrations of topological spaces. We give a general definition
and some properties. Further references can be found in Cole [Col06], May
[May99a] and May and Ponto [MP12].
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Definition A.5.1 Let C be a model category. A map i : A −→ X is a h-
cofibration if for any map f : X −→ Y and any homotopy H : Cyl(A) −→ Y ,
such that the following square commutes

A
i0

i

Cyl(A)

H

X
f

Y,

there is a homotopy G : Cyl(X) −→ Y with a map Cyl(A) −→ Cyl(X), such
that the following diagram commutes.

A
i0

i

Cyl(A)

HCyl(X)
G

X
f

i0

Y

This condition on i : A −→ X is also referred to as the homotopy extension
property.

Example A.5.2 The h-cofibrations of pointed spaces are the Hurewicz cofibr-
ations. The functor A∧− preserves h-cofibrations and thus sends q-cofibrations
to h-cofibrations for any pointed space A.

We may rewrite the definition of the homotopy extension property as a lift-
ing diagram for well-behaved topological model categories (including sequen-
tial, symmetric and orthogonal spectra).

Lemma A.5.3 Let C be a pointed topological model category, such that

Y ⊗ − : Top∗ −→ C and Y (−) : Topop
∗ −→ C

send homotopy equivalences to weak equivalences for any Y ∈ C.
Then a map i : A −→ X in C is a h-cofibration if and only if every square of

the following type admits a lift

A
H

i

YI+

p0

X
f

Y.
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Proof The assumption implies that (−) ⊗ I+ and (−)I+ are functorial cylinder
and path objects (though not necessarily very good ones). It follows that a ho-
motopy A ⊗ I+ −→ Y corresponds to a homotopy A −→ YI+ , without requiring
cofibrancy and fibrancy assumptions. �

Using this description of h-cofibrations in terms of lifting properties, we
have the following.

Corollary A.5.4 Let C be a pointed topological model category satisfying the
assumptions of Lemma A.5.3. The class of h-cofibrations in C is closed under
pushouts, coproducts, retracts and (countable) sequential colimits. �

There is a universal test case for a map to be a h-cofibration.

Lemma A.5.5 Let C be a model category. A map i : A −→ X is a h-cofibration
if and only if it has the homotopy extension property with respect to the inclu-
sion of X into the mapping cylinder of i

X −→ Cyl(A) �A X = Mi.

In this case, Mi is a retraction of Cyl(X).

The following result is well established. A proof can be found in [May99a,
Section 8.4]. The proof given there can be extended to any topological model
category. We may think of this as saying that when i is a h-cofibration, X/A has
the “correct” homotopy type.

Lemma A.5.6 Let i : A −→ X be a h-cofibration of pointed spaces. Then the
pushout X/A of i over a point is naturally homotopy equivalent to the homotopy
cofibre Ci of i.

A related statement for a Serre fibration p : E −→ B of pointed spaces also
holds: there is a weak homotopy equivalence between the pre-image of the
basepoint and the homotopy fibre

p−1(b0) 
 F p.

We also need a technical result about h-cofibrations and compact spaces. For
the proof, see [Hov99, Proposition 2.4.2] and [May99a, Problem 1, Page 48],
which relates h-cofibrations to closed inclusions. Recall that a closed inclusion
is an injective continuous map f : A −→ B with closed image such that U is
open in A if and only if U = f −1(V) for some open V in B.

Lemma A.5.7 Compact spaces are small with respect to the class of h-
cofibrations.
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A.6 Cofibrantly Generated Model Categories

In many situations, it is very helpful to know that the cofibrations and acyclic
cofibrations in a model category are generated by specified sets in a certain
sense rather than knowing them as classes of maps. This often allows one to
prove technical results by checking statements on these generating sets. Details
can be found in [Hov99, Section 2.1].

We begin with some notation.

Definition A.6.1 Let C be a category with all small colimits, and let I be a
set of morphisms in C. Then I-inj is the class of morphisms in C that have the
right lifting property with respect to all elements of I. Furthermore, I-cof is the
class of morphisms in C that have the left lifting property with respect to all
morphisms in I-inj.

The class of morphisms I-cell consists of all sequential colimits of pushouts
of elements of I. Hence, a map f : A −→ X is in I-cell if there is a
sequence

A = X0
f0−→ X1

f1−→ X2
f2−→ · · ·

such that the canonical map A = X0 −→ colimn Xn = X is the map f , and for
each n ∈ N, there is a pushout square

∐
αCα

iα

Xn

fn

∐
αDα Xn+1

with iα ∈ I and α in some small indexing set.
An I-cell complex X is an object of C whose map from the initial object is

in I-cell.

Since I-cof is defined by a lifting property, it is closed under coproducts,
pushouts and sequential colimits, hence, we have the following.

Lemma A.6.2 Let C be a category with all small colimits, and let I be a set
of morphisms in C. Then,

I-cell ⊆ I-cof. �

We can now define a class of objects that interacts well with I-cell. This is a
generalisation of the relationship between compact spaces and CW-complexes.
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Definition A.6.3 Let C be a category with all small colimits, and let I be a
class of morphisms in C. We say that Z is small with respect to I if for any map
i : A −→ X = colimn Xn in I-cell, the map of sets

colimn C(Z, Xn) −→ C(Z, colimn Xn)

is an isomorphism.

Taking Z and X = colimn Xn as in the definition, we see that a map from
Z −→ X factors as a map Z −→ Xn followed by the map into the colimit
Xn −→ X.

Remark A.6.4 We note that [Hov99, Chapter 2.1] calls such objects
“ω–small”, and [MMSS01] calls such objects “compact”. The first reference
considers smallness with respect to more general cardinals (see also [Hir03,
Chapter 10]) and introduces the notion of transfinite composition (a generali-
sation of sequential colimits) to define I-cell for a set of maps I. We call this
more general notion of smallness transfinitely small. We use transfinite com-
position in Sections 7.2 and 7.3, while for the earlier chapters, we only need
sequential colimits.

In particular, our levelwise and stable model structures on spectra (and cat-
egories of rings, modules and commutative rings) only use sequential colimits
in the proofs of the model structures.

Small objects in the sense of the previous definition are preserved by general
colimits, see [Hir03, Propositon 10.4.8].

Lemma A.6.5 Let C be a category with all small colimits, and let I be a class
of morphisms in C. If P is the pushout of a diagram of objects

B←− A −→ C

that are small with respect to I, then P is also small with respect to I.

We can now give the main definition of this section.

Definition A.6.6 A model category C is cofibrantly generated if there are sets
I and J such that the following hold.

• The domains of I are small with respect to I.
• The domains of J are small with respect to J.
• The fibrations in C are precisely J-inj.
• The acyclic fibrations in C are precisely I-inj.
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It can be shown that in a cofibrantly generated model category, the cofibra-
tions are exactly I-cof and the acyclic cofibrations are exactly J-cof. Therefore,
we often speak of I as the generating cofibrations of C and of J as the generat-
ing acyclic cofibrations of C.

Example A.6.7 In the Serre model structure for topological spaces (Example
A.1.5), the generating cofibrations are

I = {S n−1 −→ Dn | n ∈ N},
where S −1 = ∅. The generating acyclic cofibrations are

J = {Dn −→ Dn × [0, 1] | n ∈ N}.
The generating sets for the Serre model structure on pointed spaces Top∗ are
given by adding a disjoint basepoint to the maps in these sets.

Example A.6.8 Simplicial sets as in Example A.1.6 form a cofibrantly gen-
erated model category. Let us recall that the standard n-simplex is the functor

Δ[n] : Δop −→ Set,

sending [k] to the set of order-preserving injections Δ([k], [n]). The simplicial
set ∂Δ[n] is the functor Δop −→ Set sending [k] to the set of order-preserving
non-identity injections [k] −→ [n].

For 0 � r � n, the r-horn Λr[n] of Δ[n] is the functor Δop −→ Set, which
sends [k] to the order-preserving injections [k] −→ [n], but excluding both the
identity [n] −→ [n] and the map dr : [n − 1] −→ [n], which avoids r. For the
geometric realisations, we can picture ∂Δ[n] as the geometric n-simplex with
its interior removed and the horn Λr[n] as the geometric n-simplex without its
interior and the (n − 1)-face opposite the vertex r.

The generating cofibrations of sSet are the inclusions

I = {∂Δ[n] −→ Δ[n] | n ∈ N},
and the generating acyclic cofibrations are the inclusions

J = {Λr[n] −→ Δ[n] | n > 0, 0 � r � n}.
Adding a disjoint basepoint gives the generating sets for a model structure on
pointed simplicial sets.

If we are given sets of morphisms I and J in a category C, we would like
to know if I and J make C into a cofibrantly generated model category. The
following Recognition Theorem [Hir03, Theorem 11.3.1], [Hov99, Theorem
2.1.19] gives a highly useful answer, which we use in several places in this
book.
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Theorem A.6.9 Let C be a category with all small limits and colimits. Let W
be a class of morphisms which is closed under composition and contains all
the identity morphisms. Further, let I and J be sets of morphisms in C. Assume
that

• W satisfies the 2-out-of-3 property,
• the domains of I are small with respect to I,
• the domains of J are small with respect to J,
• J-cell ⊆W ∩ I-cof,
• I-inj ⊆W ∩ J-inj,
• either W ∩ I-cof ⊆ J-cof or W ∩ J-inj ⊆ I-inj.

Then C can be given a cofibrantly generated model structure with W being
the weak equivalences, I the set of generating cofibrations and J the set of
generating acyclic cofibrations.

Example A.6.10 Let Ch(R) be the category of (unbounded) chain complexes
over a ring R. By S n, we denote the chain complex that is R in degree n and
zero elsewhere. By Dn, we denote the chain complex which is R in degrees
n − 1 and n and zero elsewhere, with the identity differential between degrees
n and n − 1. Let I and J be the following sets of chain maps,

I = {S n−1 −→ Dn | n ∈ Z} and J = {0 −→ Dn | n ∈ Z}.
Then W = (H∗-isomorphisms), I and J satisfy the conditions of Theorem A.6.9
and therefore define a cofibrantly generated model structure on Ch(R), namely,
the projective model structure. With some extra work (see [Hov99, Chapter
2.3]), one can show that this model structure satisfies the following.

• The weak equivalences are the H∗-isomorphisms.
• The fibrations are the surjections.
• A cofibration is an injection with a cofibrant cokernel.

Note that while a cofibrant chain complex is projective in each degree, this is
not a sufficient condition.

We could have restricted ourselves to non-negatively graded chain com-
plexes Ch(R)+ and used

I+ = {0 −→ S 0} ∪ {S n−1 −→ Dn | n � 1} and J+ = {0 −→ Dn | n � 1}.
This would recover the first part of Example A.1.7, where the characterisation
of cofibrations is more straightforward. The analogous injective model struc-
tures on Ch(R) and Ch(R)− are also cofibrantly generated, but their generating
cofibrations and acyclic cofibrations are very difficult to make explicit, see
[Hov99, Definition 2.3.14].



398 Model Categories

The next result is sometimes useful in verifying the conditions of the Recog-
nition Theorem.

Lemma A.6.11 Let C be a category with all small colimits and sets of maps
I and J. Assume that I-inj ⊂ J-inj. Then J-cell ⊂ I-cof.

Proof We know that J-cell ⊂ J-cof. The assumption I-inj ⊂ J-inj implies
J-cof ⊂ I-cof. �

The following result is often known as the lifting lemma. It is a highly use-
ful method of creating new model structures from an adjunction and a cofi-
brantly generated model structure. Lifting results with the adjunction in the
other direction can be found in work of Hess et al. [HKRS17] and Garner et al.
[GKR18].

Lemma A.6.12 Let C be a cofibrantly generated model category and D a
category with all small limits and colimits. Given an adjunction

F : C D :G,

assume that

• the domains of FI are small with respect to FI,
• the domains of FJ are small with respect to FJ,
• the right adjoint G sends maps in FJ-cell to weak equivalences in C.

Then there is a model structure on D with fibrations and weak equivalences
defined via G, that is, a map f in D is a weak equivalence or a fibration if
and only if G( f ) is so in C. We call this model structure on D the lifted model
structure.

The next proposition is a very powerful tool when it comes to constructing
model structures and is often used in the context of cofibrantly generated model
categories. It works just as well in the case of transfinitely small objects and
transfinite composition.

Proposition A.6.13 (The Small Object Argument) Let C be a category with
all small colimits, and let I be a set of maps in C. Assume that the domains of
the elements of I are small relative to I-cell. Then there is a functorial factori-
sation

X
i−→ Z

q−→ Y

of every map f : X −→ Y in C, where i is in I-cell and q is in I-inj.

As a consequence, we have the following.
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Corollary A.6.14 Let C be a cofibrantly generated model category. Then the
factorisations of axiom (MC5) can be assigned functorially.

The following is a consequence of cofibrant generation, see [Hir03, Sec-
tion 11.2], but requires the notion of transfinitely small objects and transfinite
composition for its cofibrant generation. We find it useful in Section 7.2.

Lemma A.6.15 Let C be a cofibrantly generated model category with gen-
erating cofibrations I. If K is an object that is transfinitely small relative to I,
then it is transfinitely small relative to all cofibrations. If the codomains of the
elements of I are transfinitely small relative to I, then every cofibrant object is
transfinitely small relative to all cofibrations.

A.7 Homotopy Limits and Colimits

One general problem with limits and colimits is that they are not as homotopy
invariant as one would ideally like. For example, the pushout of the diagram

∗ ←− S n −→ ∗
in topological spaces is trivial. Meanwhile, the pushout of

Dn+1 ←− S n −→ Dn+1

is S n+1, despite the two diagrams being termwise homotopy equivalent. Homo-
topy limits and colimits are one method of bringing some order to this problem.
We will give an overview of the techniques which we hope to be sufficient for
understanding the instances arising in this book. In some cases, we will provide
references rather than explicit proofs.

Throughout this section let C be a model category and I a category that is
also a poset. Furthermore, we require I to be simple, meaning that the function

d : I −→ N ∪∞
with

d(i) = {sup(n) | there are non-identity maps x0 → x1 → · · · → xn = i}
is required to only take finite values. The key examples we have in mind are
the categories

I = (2←− 1 −→ 3)

and

I = N = (0 −→ 1 −→ 2 −→ · · · ).
The following is [Hov99, Theorem 5.1.3].
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Theorem A.7.1 Let C be a model category and I a simple category. Then
there is a model structure on CI called the projective model structure such that
a morphism f : X −→ Y is a weak equivalence (respectively fibration) if and
only if fi : Xi −→ Yi is a weak equivalence (respectively fibration) for every
i ∈ I.

Example A.7.2 Let C be a model category and I = (1 −→ 2). Then CI

is the category of morphisms in C, often called the arrow category. A map
α : f −→ g in CI is a commutative square

A
f

α1

B

α2

X g Y.

Theorem A.7.1 gives a model structure on this category and specifies that a
map α between morphisms in C is a weak equivalence if α1 and α2 are weak
equivalences in C.

Definition A.7.3 The homotopy colimit of a diagram X ∈ CI is given by the
colimit of a cofibrant replacement Xco f of X in CI with the projective model
structure. For

I = (2←− 1 −→ 3),

the homotopy colimit is the homotopy pushout, for I = N, we speak of the
sequential homotopy colimit.

This construction enjoys the following properties.

• There is a natural comparison map hocolim X −→ colim X.
• If F : X −→ Y ∈ CI is a vertexwise weak equivalence of diagrams, then F

induces a weak equivalence hocolim X −→ hocolim Y .
• If our model category has functorial factorisation, then we have a functor

hocolim: CI −→ C. Any other functor CI −→ C with the previous properties
factors through hocolim.

The following result helps to make the construction of homotopy colimits
explicit, see [Str11, Theorem 6.36]. As our indexing category I is a poset, we
can define I<i to be the full subcategory of I on objects j with j < i.

Theorem A.7.4 Let C be a model category and I be a simple category. As-
sume that X ∈ CI is vertexwise cofibrant. If for all i ∈ I, the map

colim
j∈I<i

X j −→ Xi

is a cofibration in C, then X is cofibrant in CI .
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Example A.7.5 We will take a look at what the conditions of Theorem A.7.4
translate to in the example of

I = (2←− 1 −→ 3),

that is, a homotopy pushout. Let

X2 ←− X1 −→ X3

be a diagram of cofibrant objects in C. Then, for i = 1, Theorem A.7.4 asks for
X1 to be cofibrant, which we assumed anyway. For i = 2 and i = 3, we obtain
that X1 −→ X2 and X1 −→ X3 are supposed to be cofibrations. Thus, we can
construct the cofibrant replacement of a diagram by replacing all vertices with
cofibrant objects and replace the “legs” of the diagram with cofibrations.

In the case of a left proper model category (see Definition 5.4.1), it is suffi-
cient to replace just one of the legs in a pullback square with a cofibration.

Lemma A.7.6 Let C be a left proper model category and X ∈ CI for

I = (2←− 1 −→ 3).

Then, if just one of the legs of the diagram X is a cofibration between cofibrant
objects of C, then its pushout is its homotopy pushout.

Proof Let

C A
f

B

be a diagram in C. We can write down another diagram that is vertexwise
weakly equivalent to this diagram and where both morphisms are cofibrations
by factoring f into a cofibration followed by an acyclic fibration.

C A Z

∼

C A
f

B

As both diagrams are vertexwise weakly equivalent, their homotopy pushouts
agree. Furthermore, the homotopy pushout of the top row is just its pushout.
Therefore, if we can show that the pushout of the bottom row is weakly equiv-
alent to the pushout of the top row, we have shown that the pushout of the
bottom row is also its homotopy pushout as claimed. Now let P be the pushout
of the top row. We thus have a diagram
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A Z
∼

B

C P Q,

where both squares are pushout squares. Therefore, the outer square of the
diagram is a pushout, that is, Q is the pushout of

C A
f

B.

But as C is left proper, the map P −→ Q is a weak equivalence (it is the
pushout of a weak equivalence along a cofibration), which is what we wanted
to show. �

The following is not a statement about homotopy colimits, but it uses the
projective model structure of diagrams, which is why we found it fitting to
include it in this place.

Lemma A.7.7 (The Patching Lemma) Consider a diagram

B A C

Y X Z,

such that

C −→ Z and B�A X −→ Y

are cofibrations (respectively acyclic cofibrations). Then the map

B�A C −→ Y �X Z

is a cofibration (respectively acyclic cofibration).

Proof We may write the map in question as the composite

B�A C −→ B�A Z � (B�A X) �X Z −→ Y �X Z.

By the assumptions, these maps are colimits of cofibrations in the projective
model structure for pushout diagrams of Theorem A.7.1. �

We give a sketch proof of the following.
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Lemma A.7.8 Let C be a stable model category, and let

A
i

j

B

g

C
f

P

be a homotopy pushout in C. Then,

A
i− j−→ B�C

( f ,g)−→ P −→ ΣA

is an exact triangle in Ho(C).

Proof The homotopy pushout commutes with cofibres in the following sense.
Consider a commutative diagram

X2

f2

X1

f1

X3

f3

Y2 Y1 Y3.

Let PX be the homotopy pushout of the top row and PY the homotopy pushout
of the bottom row. Then the cofibre of the induced map PX −→ PY is the
homotopy pushout of the cofibres

C f2 C f1 C f3.

This is [Str11, Corollary 7.28], which follows from various results about ma-
nipulating and “composing” squares, which we do not wish to discuss in detail.
We will apply the above statement to the diagram

C ∗ B

C A
j i

B

∗ A ∗

ΣC ∗ ΣB.
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The three columns are exact triangles, therefore their homotopy pushouts form
an exact triangle too. This is precisely

B�C
( f ,g)−→ P −→ ΣA

Σ(i− j)−→ Σ(B�C). �

Let us now take a closer look at sequential homotopy colimits.

Example A.7.9 Let

X = (X0
f0−→ X1

f1−→ X2
f2−→ · · · )

be a diagram in CN. Theorem A.7.4 says that if each fi is a cofibration between
cofibrant objects, then X is cofibrant. We can define a cofibrant replacement
X′ of X via the following inductive procedure. Assume X′i has already been
constructed for i � n such that the squares

X′i−1

f ′i−1

pi−1 ∼

X′i
pi ∼

Xi−1 fi−1
Xi

commute, the X′i are cofibrant, the vertical arrows are acyclic fibrations and
the f ′i are cofibrations. Then, for the next step, we factor fn ◦ pn in the diagram
below

X′n−1

f ′n−1

pn−1 ∼

X′n
pn ∼

Xn−1 fn−1
Xn fn

Xn+1

as a cofibration followed by an acyclic fibration,

X′n
f ′n

X′n+1

pn+1

∼ Xn+1,

which completes the next step of the diagram

X′n−1

f ′n−1

pn−1 ∼

X′n
pn ∼

f ′n
X′n+1

pn+1 ∼

Xn−1 fn−1
Xn fn

Xn+1

as desired.
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The explicit construction of the sequential homotopy colimit gives the fol-
lowing result.

Corollary A.7.10 In the category of pointed topological spaces with the
Serre model structure, we have the following.

• If X is a sequential diagram of pointed spaces with non-degenerate base-
points where all maps in X are h-cofibrations, then the homotopy colimit is
homotopy equivalent to the colimit.
• The homotopy groups of a homotopy colimit of pointed spaces are the colimit

of the homotopy groups of the spaces in the diagram.
• There is a weak equivalence

hocolimnΩXn −→ Ω hocolimn Xn.

Proof The assumptions of the first point are precisely saying that the diagram
is cofibrant in the Hurewicz model structure.

For the second point, let

X0
f0−→ X1

f1−→ X2
f2−→ · · ·

be a cofibrant diagram of pointed topological spaces. For x0 ∈ X0, let

xn = ( fn ◦ fn−1 ◦ · · · ◦ f0)(x0) ∈ Xn.

Let x∞ ∈ colimn Xn be the image in the colimit. We must prove

colimn πk(Xn, xn) � πk(colimn Xn, x∞).

We can assume that the Xn are CW-complexes and that the maps fn are
inclusions of CW-subcomplexes. Choose a map

α : S k −→
∞⋃

n=0

Xn = colimn Xn 
 hocolimn Xn.

As S k is compact, its image under α lies in a finite subcomplex of the codomain
and hence lies in some Xn.

The third point follows from the second. �

Example A.7.11 We consider how coequaliser diagrams interact with the
conditions of Theorem A.7.4. A coequaliser has the shape

I = (1 2).

Let

X = (X1

f

g
X2)
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be a diagram in C. Then Theorem A.7.4 asks for X1 to be cofibrant and the map
induced by f and g

X1
∐

X1
( f ,g)−−−→ X2

to be a cofibration (which implies that f and g are cofibrations).
Since the coequaliser of f and g may be constructed as the pushout of the

diagram

X1
fold←−−− X1 � X1

( f ,g)−−−→ X2,

we may then construct the homotopy coequaliser using our construction of
homotopy pushouts.

When C is left proper, we may construct the homotopy coequaliser by re-
placing the fold map by the map to a cylinder object X1 −→ Cyl(X1) and
taking the pushout.

Example A.7.12 The homotopy coequaliser gives an alternative construction
of the sequential homotopy colimit. Let

X = (X0
f0−→ X1

f1−→ X2
f2−→ · · · )

be a diagram in CN. The colimit is exactly the coequaliser of the maps

Id, �
n�0

fn : �
n�0

Xn −→ �
n�0

Xn.

It follows that the sequential homotopy colimit is (weakly equivalent to) the
homotopy coequaliser.

It may be helpful for the reader to sketch the homotopy pushout construction
of a homotopy coequaliser and the homotopy colimits of the previous exam-
ple in the case of topological spaces. Further details can be found in [MP12,
Section 2.2].

Lemma A.7.13 In a stable model category, the homotopy coequaliser of
f , g : X −→ Y is weakly equivalent to the cofibre of g − f : X −→ X.

Proof By Lemma A.7.8, the homotopy pushout construction of the homotopy
coequaliser CE( f , g) gives an exact triangle

X � X
(−fold, f�g)−−−−−−−−→ X � Y −→ CE( f , g) −→ Σ(X � X).
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Since the fold map is the sum of the two projections X � X −→ X, we have a
commutative diagram

X
IdX

i1

X

(−IdX , f )

∗

X � X
(−fold, f�g)

p2

X � Y

( f ,IdY )

CE( f , g)

X
g− f

Y C(g − f )

ΣX
IdΣX

ΣX ∗,
where C(g − f ) is the cofibre of g − f .

The middle column is an exact triangle, as it is isomorphic to the sum of two
exact triangles

X −→ X −→ ∗ −→ ΣX and ∗ −→ Y −→ Y −→ ∗,
as the diagram below demonstrates.

X

IdX

i1
X � Y

(−IdX , f )⊕IdY

p2
Y

IdY

ΣX

IdΣX

X
(−IdX , f )

X � Y
( f ,IdY )

Y ΣX

The result then follows from the 3 × 3 Lemma, Lemma 4.1.13. �

Corollary A.7.14 Let C be a stable model category and consider a diagram

X0
f0−→ X1

f1−→ X2
f2−→ · · · .

Then, for any Y ∈ C, there is a natural short exact sequence

∗ −→ lim1
n[ΣXn,Y] −→ [hocolimn Xn,Y] −→ limn[Xn,Y] −→ ∗.

Proof Using the constructions of Example A.7.12 and Lemma A.7.13, we
may write the homotopy colimit as the cofibre of

Id − �
n�0

fn : �
n�0

Xn −→ �
n�0

Xn.

Applying the functor [−, Y] to this exact triangle and splitting the resulting
long exact sequences gives the result. See [HPS97, Proposition 2.2.4 (d)] or
[MP12, Section 2.2] for details on the lim1 term. �
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Unsurprisingly, the set-up for homotopy limits is dual to that of the previous
section. For the rest of this section, I will denote an opposite-simple poset, that
is, its opposite category Iop is a simple category. The main examples that we
have in mind are

I = (2 −→ 1←− 3)

and

N
op = (0←− 1←− 2←− · · · ).

The following is the second part of [Hov99, Theorem 5.1.3].

Theorem A.7.15 Let C be a model category and I an opposite-simple cate-
gory. Then there is a model structure on CI called the injective model structure
such that a morphism f : X −→ Y is a weak equivalence (respectively cofibra-
tion) if and only if fi : Xi −→ Yi is for every i ∈ I.

Definition A.7.16 Let X be an object in CI , where C is a model category and
I is opposite-simple. Then the homotopy limit holim X of X is the limit of a
fibrant replacement of X in the injective model structure. In the case of

I = (2 −→ 1←− 3),

we talk about a homotopy pullback, and in the case of

N
op = (0←− 1←− 2←− · · · ),

we speak of a sequential homotopy limit.

The homotopy limit satisfies the following properties.

• There is a natural comparison morphism lim X −→ holim X.
• If F : X −→ Y ∈ CI is a vertexwise weak equivalence of diagrams, then F

induces a weak equivalence holim X −→ holim Y .
• If our model category has functorial factorisation, then we have a functor

holim: CI −→ C. Any other functor CI −→ C with the above properties
factors over holim.

Again, we can characterise fibrant diagrams, see [Str11, Theorem 6.79]. For
an opposite-simple category I, we define I>i as the full subcategory on all ob-
jects j ∈ I with j > i.

Theorem A.7.17 Let C be a model category and I an opposite-simple cate-
gory. Assume that X ∈ CI is vertexwise fibrant. If for all i ∈ I the map

Xi −→ lim
j∈I>i

X j

is a fibration in C, then X is a fibrant diagram.
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Example A.7.18 In a very similar way to homotopy pushouts, if in a diagram

X2 −→ X1 ←− X3

all the Xi are fibrant and the arrows are fibrations, then the pullback of the
diagram is a homotopy pullback.

Example A.7.19 The case of sequential homotopy limits is, unsurprisingly,
dual to homotopy colimits, see Example A.7.9. A diagram

X = (X0
g0←− X1

g1←− X2
g2←− · · · )

is fibrant if all the gi are fibrations between fibrant objects. In a general dia-
gram, the gi can inductively be replaced with fibrations between fibrant objects
analogously to Example A.7.9.

The first lemma below says that if C is right proper, then for the homotopy
pullback, it is sufficient to replace just one leg of the diagram with a fibra-
tion. As the following lemmas are dual to the corresponding statements about
homotopy colimits, we will not include their proofs.

Lemma A.7.20 Let C be a right proper model category and

X2 −→ X1 ←− X3

be a diagram in C. If either X2 −→ X1 or X3 −→ X1 is a fibration between
fibrant objects, then the pullback of the diagram is a homotopy pullback.

Lemma A.7.21 Let C be a stable model category. Then a homotopy pullback

P
p

q

B

s

C r A

gives rise to an exact triangle in Ho(C)

P
(p,q)−→ B ×C

r−s−→ A −→ ΣP.

Remark A.7.22 The two types of exact triangles arising from Lemmas A.7.8
and A.7.21 are isomorphic as finite coproducts and finite products agree in the
homotopy category of a stable model category, see Lemma 4.4.4.

This leads to the slogan “homotopy pushouts and homotopy pullbacks agree
in a stable model category”. However, one must take care in going from a
triangle of the form

P
(p,q)−→ B ×C

r−s−→ A −→ ΣP
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in the homotopy category to a (strictly commuting) homotopy pullback square
in the model category.

The duals of Example A.7.12 and Lemma A.7.13 also hold, giving the dual
to Corollary A.7.14.

Corollary A.7.23 Let C be a stable model category and consider a diagram

X0
f0←− X1

f1←− X2
f2←− · · · .

Then for any A ∈ C, there is a natural short exact sequence

∗ −→ lim1
n[ΣA, Xn] −→ [A, holimn Xn] −→ limn[A, Xn] −→ ∗.
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Adams filtration, 90, 91, 232, 233
Adams spectral sequence, 38, 71, 86, 87, 88,

91, 92, 222, 368
Adams summand, 360, 370
Adams tower, 88, 88–91
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adjunction of two variables, 250
admissible monomial, 77, 77–80, 84–86
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arrow category, 400
augmentation, 81

Balmer spectrum, 375
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biproduct, 102
Bockstein homomorphism, 73, 75
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boundary map, 114, 114–116, 124, 125, 127,

138–145, 147, 149, 150, 244
Bousfield arithmetic square, 355, 366
Bousfield localisation, see localisation
Bousfield–Smith cardinality argument, 337
BP, 90, 369, 370

Brown Representability, 22, 71, 172, 283
Brown–Peterson spectrum, see BP

C–model category, 250, 251, 315
C–module, 249, 250, 251, 298, 307, 309, 315
candidate triangle, 161, 162

contractible, 162
exact, 162

canonical action, 174, 187
Cartan formula, 73, 74, 77, 79, 83
cell complex, 270, 337, 338, 394
cellular, 220, 298, 323, 332
chain complex, 93, 97, 101, 152, 211, 236,

241, 248, 292, 297, 298, 333, 335, 376,
380–382, 391, 397

bounded, 380, 381, 387, 397
change of rings, 288, 289, 290
Chromatic Convergence Theorem, 372, 374
chromatic homotopy theory, 371
chromatic square, 371, 374
closed C–module, see C–module
closed inclusion, 8, 393
coend, 257
cofibrant implies flat, 273, 288
cofibrant object, 380
cofibrant replacement, 381
cofibrantly generated, 40, 64, 183, 189–191,

203, 213, 215, 242, 287, 293, 295, 303,
306, 335, 395, 396–399

cofibre, 105
cofibre sequence, 113, 149
cohomological functor, 134, 135
cohomology operation, 72
cohomology theory

reduced, 19, 20, 20–28, 30, 32, 33, 35, 36,
71, 72, 170, 171, 358
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combinatorial model category, 298
commutative product, 235
commutative ring spectrum, see ring spectrum,

commutative
compact, 222, 223, 225, 227–230, 280, 282,

283, 320, 321
compactly generated, 8, 236
complex cobordism, see MU
concatenation of homotopies, 103, 111, 112,

385, 386
connected spectrum, 69, 354
connective spectrum, 69, 70, 217–219,

354–356
convolution product, 258, 259, 260
correspondence, 100, 103, 120, 121, 123, 124,

384, 385, 388
cosimplicial frame, 306
cosimplicial object, 299, 301, 305, 310, 312
cotensor, 58, 177, 189, 249, 250, 286, 298
CW-spectrum, 36, 46, 66, 159, 228–230,

372–374
cylinder object, 94, 381

decomposable, 80, 81
deformation retract, 14, 19, 62, 180, 193
degree of a map, 101
diagram spectrum, 217, 218
direct sum, 102, 129
dual Steenrod algebra, 84, 86, 88

E-acyclic, 336, 339
E-acyclic cofibration, 337, 338, 341
E-equivalence, 324, 327, 336, 337, 339
E-fibration, 337
E-local, 336, 339–343
E-local stable homotopy category, 342
E-localisation, 336, 337, 339, 342, 355
E(n), 90, 344, 360, 369, 369–372
E∗-isomorphism, see E-equivalence
Eilenberg–Mac Lane object, 88
Eilenberg–Mac Lane space, 25, 293
Eilenberg–Mac Lane spectrum, 33, 71, 88,

188, 284, 285, 297, 298, 354,
356, 372

Eilenberg–Steenrod axioms, 19
elliptic cohomology, 375
end, 257
endomorphism ring spectrum, 284, 297
enrichment, 57–59, 102, 217, 218, 249, 250,

253–259, 261, 263–267, 269, 286, 287,
297, 298, 305, 307, 315, 325

equivariant map, 174

evaluation functor, 67, 176, 177, 186, 189,
209, 268, 309

exact couple, 89
exact functor, 152, 281, 362
exact triangle, 129, 230, 281, 406
exotic object, 162, 164, 165

F -space, 218, 219
fibrant object, 380
fibrant replacement, 381
fibre, 105
fibre sequence, 113, 149
finite localisation, 320, 327, 344, 366, 371
Five Lemma, 55, 56, 134, 135, 143, 150, 223,

322, 330, 332, 363
forgetful functor, 176, 177, 187, 192, 207, 216,

219, 269, 275, 286, 291, 292, 294, 295
framing, 231, 297, 298, 306, 306–310, 312,

331
free algebra on a spectrum, 291
Freudenthal Suspension Theorem, 7, 12, 13,

14, 15, 18
functorial factorisation, 68, 306, 377, 381,

398–400, 408

G-space, 174, 221
G-spectrum, 221
generator, 222, 223, 226, 227, 297

compact, 222–225, 227, 232, 233, 297, 316,
345, 368

homotopy generator, 222
geometric realisation, 188, 213, 214, 248, 296,

379, 388, 396
graded maps, 101
Grothendieck group, 357

h-cofibration, 51, 54, 55, 61, 174, 177–179,
181, 183, 184, 200–202, 270, 273, 274,
379, 391, 392, 393

homological degree, 16, 16–18
homology isomorphism, 380
homology theory, 317, 324

reduced, 19, 20, 27, 172, 173, 278, 279
homotopy cartesian square, 60
homotopy category, 386
homotopy coequaliser, 406
homotopy cofibre, 11, 51, 51–54, 150, 178,

179, 200, 205, 271, 274, 329, 393
homotopy cofibre sequence, 51, 52
homotopy colimit, 15, 16, 35, 68, 69, 180, 196,

197, 202, 230, 270, 344, 363, 365, 400
sequential, 16, 29, 68, 230, 279, 344, 345,

400, 404–406
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homotopy excision, 10, 11, 392
homotopy fibre, 10, 51, 53, 54, 65, 150, 329,

330, 332, 333, 335, 393
homotopy fibre sequence, 51, 330
homotopy group of a spectrum, 37, 47, 48, 49,

51, 52, 54, 65, 68–70, 87, 179, 195, 197,
206, 273, 277, 278

homotopy limit, 351, 366, 372, 408
sequential, 329, 408, 409

homotopy mapping space, 307
homotopy pullback, 59–61, 64, 205, 214, 216,

330, 355, 371, 408, 409
homotopy pushout, 400, 401, 403,

404, 409
Hopf algebra, 81, 82, 84, 86
Hopf element, 92, 158, 232, 233
Hopf map, 14, 92, 101, 158–160, 162, 163,

232, 233, 359
hopfian, 162, 163, 163–165
horn, 331, 396
Hurewicz fibration, 51, 379
Hurewicz map, 88, 189
Hurewicz model structure, 9, 55, 211, 241,

379, 405

I-cell, 394
I-cof, 394
I-inj, 394
ideal, 374, 375
indecomposable, 80, 91
indeterminacy, 157, 158
infinite loop space, 69, 70, 219
injective model structure

on chain complexes, 98, 101, 211, 241, 380,
381, 397

on diagrams, 408
internal function object, 8, 27, 172, 196, 237,

238, 251, 257, 266, 267, 281, 288

Johnson-Wilson spectrum, see E(n)

k-connected, 10, 10–14, 18
k-equivalence, 10, 10–14
K-localisation, 344, 356, 359–361, 363, 364,

366, 368, 371
K-theory, 25, 32, 49, 70, 356, 358–360, 375
K(n), 344, 369, 369–374
Kan fibration, 214, 216, 380
Kelly product topology, 9, 236
Ken Brown’s Lemma, 185, 208, 389
Künneth isomorphism, 74, 76, 79, 370

Landweber exactness, 370
latching object, 302

left derived functor, 389, 390
left homotopy, 382
left Kan extension, 258, 258
left lifting property, 378
left localisation, see localisation
levelwise model structure, 37, 38, 40, 42, 43,

46, 57–60, 62, 66, 67, 174, 185, 189, 190,
192–194, 196, 199, 201, 209, 213, 215,
220, 269, 270, 274, 324, 325

lifted model structure, see lifting lemma
lifting lemma, 183, 184, 287, 291,

398
local object, 318, 318–323, 325–333, 335,

341, 367
localisation, 57, 189, 192, 220, 317, 319,

319–321, 323–325, 334, 337, 345, 356,
366, 367

localisation functor, 323
stable, 326, 326–328, 334, 336, 344

localising subcategory, 226
loop functor, 66, 95, 98

mapping cone, 11, 23, 147, 163, 180
mapping cylinder, 11, 12, 16, 61, 177, 178,

180, 193, 200, 393
mapping space, 298
Margolis’ Uniqueness Conjecture, 316
matching object, 302
model category, 376

pointed, 94
stable, 101

module over a ring spectrum, 234, 283, 285,
285–290, 295–297, 343, 345

free, 285, 286, 288
moment, 78
monoid axiom, 273, 274
monoidal product, 235
monoidal unit, 235
Moore spectrum, 49, 75, 159, 163, 233, 281,

346, 350, 360, 361, 363, 364, 368, 373
Morava K-theory, see K(n)
MU, 90, 369

N, 6
nilpotent, 372, 373, 374
non-degenerate basepoint, 9, 12–15, 20, 405
v1-self map, 361, 364, 368
vn-self map, 373

octahedral axiom, 131, 143, 322, 365
Ω-spectrum, 33, 34, 36, 38, 57, 66, 68, 69,

184, 186, 189, 192–195, 197–200, 202,
203, 205, 208–210, 213, 216, 230, 271,
325, 340, 341
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op-lax symmetric monoidal functor, 246
opposite-simple category, 408
orthogonal sequence, 255
orthogonal space, 255
orthogonal spectrum, 166, 174, 174–179,

181–186, 195, 207, 209, 210, 230, 234,
252, 261–263, 266–269, 271, 273–280,
283, 286–293, 295, 336, 337, 339, 341,
342

p-complete stable homotopy category, 349
p-completion, 87, 344, 346, 349, 349–354,

356, 371
p-local stable homotopy category, 347, 369
p-localisation, 344, 346, 347, 348, 351,

354, 356
parallelisable, 92
Patching Lemma, 62, 145, 402
path object, 94, 383
phantom maps, 173, 283
π∗-isomorphism, 37, 47, 47–50, 53–57, 61, 62,

64–68, 166, 170, 178–186, 192, 195, 197,
199, 200, 206, 208–210, 213, 214, 218,
219, 224, 229, 269–272, 277, 278, 288

positive stable model structure, 219, 234, 293,
294, 295, 296

Postnikov section, 328, 354
Postnikov tower, 354
prime ideal, 375
projective model structure

on chain complexes, 98, 101, 211, 241, 248,
297, 298, 333, 335, 380, 381, 397

on diagrams, 400, 402
prolongation functor, 176, 177, 180, 183, 185,

207, 208, 219, 268, 275, 292, 295
proper, 210, 211, 287, 293, 297, 298, 332, 333,

335
left, 211, 220, 319, 323, 335, 339, 341
right, 211, 212, 329, 330, 333, 335

Puppe sequence, 10, 23, 31, 51, 52, 89, 114,
125, 127, 159, 173, 201

pushout product, 191, 236, 237, 239, 250, 275,
313, 342

pushout product axiom, 59, 239, 240, 242,
269, 270, 273–275, 288

q-cofibration, 9, 40, 40–47, 58–62, 64–66,
180, 181, 183, 183–185, 189, 190, 191,
193, 195, 200, 202–204, 274, 338, 341,
379

Quillen equivalence, 390
Quillen functor, 388

rationalisation, 344, 347, 364, 372, 375

Recognition Theorem, 40, 190, 203, 334, 339,
396, 397

Reedy category, 301, 302, 303
Reedy model structure, 303, 311, 313
representation sphere, 221
retract, 226, 374, 376, 377
right derived functor, 389, 390
right homotopy, 383
right lifting property, 378
rigid, 231, 233, 366, 368
ring spectrum, 234, 283, 284, 284–287,

289–292, 297, 343
commutative, 284, 285, 292–295

S –modules, 219
sequential homotopy limit, see homotopy

limit, sequential
sequential space, 255
sequential spectrum, 37, 38, 38–40, 42, 46, 50,

51, 53, 57, 58, 60, 62, 64–69, 97, 101,
102, 152, 166, 167, 169, 170, 172, 174,
176, 178–180, 182, 184, 186, 187, 189,
192, 193, 207, 209, 210, 214, 216–218,
223, 224, 228, 230, 231, 250–252, 261,
263, 268, 276, 279, 280, 336, 341, 342,
366, 391

in simplicial sets, 212, 212–214, 216, 309,
311

Serre cofibration, see q-cofibration
Serre fibration, 40, 52, 379, 393
Serre model structure, 9, 41, 43, 57, 67, 209,

211, 212, 241, 270, 379, 380, 381, 396,
405

set of horns, 331
shifted suspension, 39, 48, 67, 69, 176, 177,

186, 188, 189, 209, 223, 263, 268, 270,
287, 309, 310, 325

Σ-cospectrum, 310, 310–313
simple category, 399, 400, 408
simplicial framing, 306
simplicial model category, 251, 296–299, 305,

307
simplicial object, 299
simplicial set, 97, 186, 188, 211, 212, 236,

238, 241, 251, 298–301, 303–305,
307–310, 318, 331, 333, 379, 380, 388,
391, 396

singular cohomology, 25, 72, 87
singular complex functor, 213, 214, 296, 388
singular homology, 20, 253
small (co)limit, 378
small object argument, 183, 337, 338, 398
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small with respect to I, 40, 41, 190, 203, 287,
333–335, 337, 393, 395

smash nilpotent, 373
smash product, 34, 39, 262, 266
smash product of spectra, 37, 57, 71, 234,

251–253, 262, 262–264, 267–270, 276,
277, 279, 280, 294, 295

smashing localisation, 344, 345, 348, 350,
364, 368, 371, 372

Spanier–Whitehead category, 28, 28–30, 32,
36, 168, 251, 280

Spanier–Whitehead dual, 28, 280, 281, 283
spectral model category, 315
spectrum, 24, 33, 34
spectrum of finite type, 87
sphere spectrum, 33, 35, 39, 48, 75, 88, 163,

175, 185, 187, 224, 228–230, 232,
251–253, 259, 260, 262, 278, 281, 284,
285, 291, 294, 313, 344, 345, 348, 361,
364, 368

split exact triangle, 136, 137
stable cell, 46, 159, 228, 229
stable equivalence, 193, 210, 216
stable fibration, 64, 183, 204
stable framing, 231, 313, 314, 315, 367
stable homotopy category, 7, 26–28, 32, 33,

35–38, 66, 67, 71, 72, 128, 155, 159,
166–169, 172, 174, 185, 186, 192, 207,
209, 212, 217, 219, 224, 228, 231, 232,
234, 235, 251, 252, 276, 280, 298, 309,
315–317, 336, 342, 343, 347,
369, 374

stable homotopy class, 18
stable homotopy groups, 15, 18, 20, 25, 26,

29–31, 35, 37, 47, 53, 182, 347
of spheres, 16–18, 38, 86, 158, 222, 232,

315
of the K-local sphere, 362

stable localisation, see localisation, stable
stable model category, see model category,

stable
stable model structure on spectra, 37, 38, 47,

57, 59, 61, 62, 64–68, 166, 174, 178, 180,
182–184, 186, 189, 192, 193, 195, 200,
203, 207–211, 214–216, 218, 220, 224,
273, 274, 276, 294, 324, 325, 333, 337,
343

Steenrod algebra, 71, 72, 72–74, 76, 77,
81–84, 86, 87, 91

Steenrod square, 73, 74
strongly dualisable, 281, 281–283, 350, 364

structure maps
of a sequential spectrum, 38
of a sequential spectrum in simplicial sets,

212
of a spectrum, 22, 33
of a symmetric spectrum, 187
of an orthogonal spectrum, 174

suspension functor, 66, 94, 95, 98
suspension spectrum, 33, 101, 167, 171, 173,

175, 188
symmetric monoidal category, 235, 235–238,

243, 245, 246, 255–258, 262, 266, 267,
269, 276, 283, 316, 342

closed, 196, 197, 234, 236, 237, 237–240,
242, 249–251, 257, 267, 280

symmetric monoidal functor, 296, 316
lax, 246, 246–248
op-lax, 246
strong, 246, 248, 249, 251, 268,

276, 343
symmetric monoidal model category, 234,

240, 240–243, 245, 247, 248, 250–252,
269, 270, 274, 276, 278, 315, 342

symmetric monoidal Quillen adjunction
strong, 220, 247, 248, 275, 292, 342
weak, 247, 248

symmetric monoidal Quillen equivalence,
277

weak, 297
symmetric sequence, 255
symmetric space, 255
symmetric spectrum, 186, 187, 189–193, 195,

196, 198–201, 203, 204, 207, 209, 210,
216, 230, 234, 252, 260–263, 266–269,
273–276, 280, 283, 286–293, 295, 297,
298, 336, 341, 342

in simplicial sets, 215, 216, 276, 296, 315

Telescope Conjecture, 371
tensor, 57, 177, 178, 183, 189, 191, 200, 249,

250, 286, 298, 301, 305, 308,
310

thick subcategory, 226, 227–230, 283, 374,
375

Thick Subcategory Theorem, 374
Toda bracket, 92, 128, 155, 156, 157, 158,

232, 233, 368
topological model category, 251, 392, 393
topological triangulated category, see

triangulated category, topological
transfinitely small, 333–335, 337, 338, 395,

398, 399
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triangle, 129
triangulated category, 30, 66, 128, 129,

132–134, 136–138, 146, 152, 155, 156,
161, 162, 164, 171, 222, 223, 225–227,
234, 242, 243, 316, 374

tensor-triangulated category, 245, 276, 374,
375

topological, 161, 163, 165
triangulated subcategory, 132
trivial cofibration, see acyclic cofibration
trivial fibration, see acyclic fibration
twist functor, 235

W-acyclic object, see acyclic object
W-equivalence, 318, 318–323, 325–336

W-local object, see local object
W-localisation, see localisation
W -spectrum, 217, 219
weak Hausdorff, 8, 236
weak symmetric monoidal functor, see

symmetric monoidal functor, lax
Whitney sum, 357
Wolbert’s Theorem, 345

Yoneda Lemma, 103, 113, 136, 193, 223, 253,
258, 264

Yoneda product, 87

Zariski topology, 375
zero map, 94, 99, 103, 105, 106, 117
Zorn’s Lemma, 340


