
Algebraic Topology III

MAT4580/MAT9580 Spring 2023

Chromatic Homotopy Theory

John Rognes

Department of Mathematics, University of Oslo, Norway
Email address: rognes@math.uio.no





Contents

List of Figures vii

Chapter 1. Introduction 1
1.1. Homotopy theory 1
1.2. Stable homotopy theory 3
1.3. Bordism 6
1.4. Formal group laws 7
1.5. The height filtration 9
1.6. Automorphisms and deformations 12

Chapter 2. The Steenrod algebra and its dual 15
2.1. Cohomology and Eilenberg–MacLane spaces 15
2.2. Cohomology operations 16
2.3. Steenrod operations 16
2.4. The Steenrod algebra 19
2.5. Modules over the Steenrod algebra 21
2.6. Bialgebras 22
2.7. The dual Steenrod algebra 26
2.8. The structure of A∗ 29

Chapter 3. Classifying spaces 33
3.1. Equivariant topology 33
3.2. Principal G-bundles 34
3.3. Classifying spaces 35
3.4. Fiber bundles 36
3.5. Direct sum and tensor product of vector bundles 38
3.6. Geometric realization of categories 39
3.7. Simplicial sets 42
3.8. Singular simplicial sets 44
3.9. Products 44
3.10. The bar construction 46

Chapter 4. Characteristic classes 49
4.1. Characteristic classes for line bundles 49
4.2. Characteristic classes for real vector bundles 51
4.3. Characteristic classes for complex vector bundles 53
4.4. Thom complexes 55
4.5. Euler classes 57
4.6. The Thom isomorphism 58
4.7. The Gysin sequence 59

iii



iv CONTENTS

4.8. Cohomology of BU(n) 60
4.9. Cohomology of BO(n) 63
4.10. (Co-)homology of BO and BU as a bipolynomial bialgebras 66
4.11. Symmetric functions 67

Chapter 5. Topological K-theory 71
5.1. The Grothendieck group of vector bundles 71
5.2. Bott periodicity 75
5.3. The Chern character 78
5.4. Topological K-theory spectra 80
5.5. Adams operations 83
5.6. Hopf invariant one 85
5.7. Stable Adams operations 86
5.8. The image-of-J spectrum 89

Chapter 6. Smooth bordism 91
6.1. Bordism classes of manifolds 91
6.2. Bordism theories 93
6.3. Thom spectra 94
6.4. The Pontryagin–Thom construction and transversality 96
6.5. Unoriented bordism 97
6.6. Complex bordism 100
6.7. Framed bordism 104

Chapter 7. Sequential and orthogonal spectra 105
7.1. Sequential and orthogonal spectra 105
7.2. Sequential and orthogonal spaces 107
7.3. Model category structures 111
7.4. Stability and triangulated structure 114
7.5. Truncation structure 118
7.6. Smash products and function spectra 119
7.7. Orthogonal ring and module spectra 122
7.8. The smash product in the stable homotopy category 123
7.9. Spectral homology and cohomology 127
7.10. Hopf algebroids 129
7.11. Spanier–Whitehead duality 134

Chapter 8. Spectral sequences 135
8.1. Sequences of spectra and exact couples 135
8.2. The spectral sequence associated to an exact couple 138
8.3. The additive Atiyah–Hirzebruch spectral sequence 141
8.4. The additive Whitehead tower spectral sequence 145
8.5. Pairings of sequences and Cartan–Eilenberg systems 146
8.6. The multiplicative Atiyah–Hirzebruch spectral sequence 150
8.7. The multiplicative Whitehead tower spectral sequence 152

Chapter 9. Formal group laws 155
9.1. Complex oriented cohomology theories 155
9.2. Formal group laws 160
9.3. The Lazard ring 163



CONTENTS v

9.4. Moduli of formal group laws 167
9.5. Quillen’s theorem 170
9.6. Formal groups 175

Chapter 10. The height filtration 177
10.1. Logarithms 177
10.2. Endomorphism rings 179
10.3. The height of a formal group law 181
10.4. The height filtration 183
10.5. Infinite height 189
10.6. Finite height 192
10.7. Morava stabilizer groups 193
10.8. Closed and open substacks 199

Chapter 11. Morava K- and E-theory 201
11.1. Spectral realizations 201
11.2. Morava K-theory 203
11.3. Morava E-theory 205
11.4. Nilpotence theorems 208
11.5. Quasi-coherent sheaves 211
11.6. Invariant ideals and coherent rings 214
11.7. Landweber’s exact functor theorem 216

Chapter 12. Chromatic localization 221
12.1. The chromatic filtration of the stable homotopy category 221
12.2. Closed substacks 222
12.3. Open substacks 224
12.4. Hereditary torsion theories 226
12.5. Bousfield localization 229
12.6. Bousfield classes 233
12.7. The chromatic tower 238
12.8. Monochromatic fibers 241
12.9. The chromatic filtration for MU 243
12.10. The chromatic spectral sequence 245
12.11. The Morava change-of-rings isomorphism 247

Chapter 13. Telescopic localization 253
13.1. The thick subcategory theorem 253
13.2. The periodicity theorem 257
13.3. Finite localizations 261
13.4. The telescope conjecture 266

Chapter 14. Galois extensions 269
14.1. Lubin–Tate spectra 269
14.2. The stabilizer group action 272
14.3. The Devinatz–Hopkins Galois extensions 277
14.4. ((ETC: Unfinished business)) 279

Appendix A. The Adams spectral sequence 281
A.1. The E-based Adams spectral sequence 281



vi CONTENTS

A.2. Pairings of Adams spectral sequences 287
A.3. The cobar resolution 288
A.4. The classical Adams spectral sequence 290
A.5. The Adams–Novikov spectral sequence 290

Bibliography 291



List of Figures

4.1 Map of Mayer–Vietoris sequences 59

5.1 Bott equivalences 78

5.2 Adams spectral sequence chart for the fundamental domain of π∗(J/2) 90

12.1Adams–Novikov spectral sequence chart for L1S/p 250

12.2Adams–Novikov spectral sequence chart for L2V (1) 251

vii





CHAPTER 1

Introduction

Chromatic homotopy theory is the name given by Doug Ravenel to the study
of the stable homotopy category of spectra through its relation

Ho(Sp) −→ QCoh(Mfg)

to the category of quasi-coherent sheaves on the moduli stack of formal groups. The
chromatic filtration of stable homotopy theory corresponds to the height filtration of
this moduli stack. In more elementary algebraic terms, these quasi-coherent sheaves
correspond to comodules for the Hopf algebroid (MU∗,MU∗MU) associated to
complex bordism.

Bordism
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1.1. Homotopy theory

In homotopy theory we study properties of based topological spaces that are
invariant under weak homotopy equivalences. Letting T denote the category of
based spaces and basepoint preserving maps, the homotopy category Ho(T ) is the
localization

T −→ Ho(T )

that turns all weak homotopy equivalences into isomorphisms. We write

[X,Y ] = Ho(T )(X,Y )

for the morphisms sets in this category. If Xc → X is a CW approximation, then
[X,Y ] can be calculated as the homotopy classes of maps Xc → Y . We then have
useful isomorphisms

Hn(X;G) ∼= [X,K(G,n)] and πn(Y ) ∼= [Sn, Y ] ,

where K(G,n) is an Eilenberg–MacLane complex of type (G,n), and Sn is the n-
dimensional sphere. We can view a space Y as a single geometric object underlying
the sequence of (sets and) groups

π0(Y ), π1(Y ), π2(Y ), . . . .

1



2 1. INTRODUCTION

Conversely, we can reconstruct a (simple) space Y from its homotopy groups and
additional information, called Postnikov k-invariants, which are cohomology classes.
Many questions in topology can be formulated as

extension problems A

i

��

// Y

X

>> or lifting problems E

p

��

X

??

// B ,

and these can be resolved in the homotopy category if i is a “good” inclusion (a
cofibration) or if p is a “good” projection (a fibration).

The category T can be enriched, in the sense that there is a mapping space
Map(Y,Z) of maps Y → Z, such that composition is continuous. Moreover, there
is a natural bijection

{X ∧ Y −→ Z}
∼=←→ {X −→ Map(Y, Z)} ,

called an adjunction, where

X ∧ Y =
X × Y
X ∨ Y

is the smash product of spaces. This product is associative and unital, with unit
S0, and there is a symmetry isomorphism

τ : X ∧ Y ∼= Y ∧X .

We say that ∧, S0 and Map make T a closed symmetric monoidal category.
Each map f : X → Y is equivalent to a cofibration

i : X −→Mf = Y ∪X X ∧ I+ ,

where I = [0, 1] and Mf is called the mapping cylinder of f . The cofiber Cf =
Mf/X = Y ∪X X ∧ I is called the mapping cone, or homotopy cofiber, of f , and
X ∧ I = CX is the cone on X. The inclusion j : Y → Cf is already a cofibration,
so its homotopy cofiber Cj is equivalent to its cofiber Cf/Y ∼= X ∧ S1 = ΣX,
i.e., the suspension of X. Moreover, the homotopy cofiber Ck of the projection
k : Cf → ΣX is equivalent to ΣY . The resulting Puppe cofiber sequence

X
f−→ Y

j−→ Cf
k−→ ΣX

−Σf−→ ΣY

is coexact, in the sense that

[X,Z]
f∗←− [Y,Z]

j∗←− [Cf,Z]
k∗←− [ΣX,Z]

−Σf∗←− [ΣY,Z]

is exact for each space Z, and can be extended arbitrarily far to the right. (Here
exactness means that the image of one function equals the preimage of 0 for the
next function.) This often allows computation of [Cf,Z]∗ from [X,Z]∗ and [Y,Z]∗,
where

[X,Z]n = [ΣnX,Z]

for n ≥ 0. These sets are groups for n ≥ 1, which are abelian for n ≥ 2. We might
say that the Puppe cofiber sequences make Ho(T ) a proto-triangulated category.

Dually, each map g : Y → Z is equivalent to a fibration

p : Ng = Y ×Z Map(I+, Z)→ Z .
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The fiber Fg = p−1(∗) = Y ×Z Map(I, Z) is called the homotopy fiber of g,
and PZ = Map(I, Z) is the path space of Z. The projection q : Fg → Y is al-
ready a fibration, so its homotopy fiber Fq is equivalent to its fiber q−1(∗) ∼=
Map(S1, Z) = ΩZ, i.e., the loop space of Z. Moreover, the homotopy fiber of the
inclusion r : ΩZ → Fg is equivalent to ΩY . The resulting Puppe fiber sequence

ΩY
−Ωg−→ ΩZ

r−→ Fg
q−→ Y

g−→ Z

is exact, in the sense that

[X,ΩY ]
−Ωg∗−→ [X,ΩZ]

r∗−→ [X,Fg]
q∗−→ [X,Y ]

g∗−→ [X,Z]

is exact for each space X, and can be extended arbitrarily far to the left. Again,
this often allows computation of [X,Fg]∗ from [X,Y ]∗ and [X,Z]∗. Note that

[ΣnX,Z] ∼= [X,ΩnZ]

in view of the natural bijection {X ∧ Sn → Z} ∼= {X → Map(Sn, Z)}. We can say
that the Puppe fiber sequences make the opposite Ho(T )op a proto-triangulated
category.

The Freudenthal suspension theorem implies that the Puppe cofiber sequence
is partially exact, in the sense that

[T,X]
f∗−→ [T, Y ]

j∗−→ [T,Cf ]
k∗−→ [T,ΣX]

−Σf∗−→ [T,ΣY ]

is exact when X and Y are k-connected and dim(T ) ≤ 2k. Under these conditions,
the suspension homomorphisms

Σ: [T,X] −→ [ΣT,ΣX] and Σ: [T, Y ] −→ [ΣT,ΣY ]

are isomorphisms, and we say that these mapping sets are in the stable range. Note
that further suspensions will not take us out of the stable range, and if dim(T ) is
finite then some finite number of suspensions will bring us into the stable range.

Exercise: Prove that im(f∗) = j−1
∗ (0) when Σ from [T,X] is surjective and Σ

from [T, Y ] is injective.
References: See [Hatcher, §4.3].

1.2. Stable homotopy theory

Stable homotopy theory studies the target of a stabilization functor

Σ∞ : Ho(T ) −→ Ho(Sp)
that turns all suspension homomorphisms Σ into isomorphisms. Extension and
lifting problems that occur in the stable range, such as the “Hopf invariant one”,
“Vector fields on spheres” and “Kervaire invariant one” problems, can equally well
be resolved in the stable homotopy category Ho(Sp).

For finite CW complexes X and Y , the stabilization functor Σ∞ satisfies

Ho(Sp)(Σ∞X,Σ∞Y ) = colim
n

[ΣnX,ΣnY ] ,

where the colimit is formed over the suspension homomorphisms

. . . −→ [ΣnX,ΣnY ]
Σ−→ [Σn+1X,Σn+1Y ] −→ . . . .

Note that these colimits are abelian groups. Historically, the first approximation
to the stable homotopy category was the Spanier–Whitehead (1953) category SW,
with (integer shifts of) finite CW complexes as objects and the abelian groups
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Ho(Sp)(Σ∞X,Σ∞Y ) as morphisms. It is closed symmetric monoidal, with a smash
product pairing ∧ satisfying

Σ∞X ∧ Σ∞Y ∼= Σ∞(X ∧ Y )

and unit the sphere spectrum S = Σ∞S0. It admits function objects F (Σ∞Y,Σ∞Z)
such that there are natural isomorphisms

{Σ∞X → F (Σ∞Y,Σ∞Z)} ∼= {Σ∞X ∧ Σ∞Y → Σ∞Z}

of morphism groups. Moreover, the Spanier–Whitehead category is triangulated,
with distinguished triangles given by Puppe cofiber sequences.

While concrete, this category is too small to be really useful. Boardman (1965,
unpublished) constructed a closed symmetric monoidal and triangulated category
Ho(Sp), containing the Spanier–Whitehead category as a full subcategory, but large
enough to contain “all interesting” constructions. This is (still) what we mean by
the stable homotopy category. We write

[D,E] = Ho(Sp)(D,E)

for the abelian group of morphisms D → E in this category. It is stable in the
sense that

Σ: [D,E]
∼=−→ [ΣD,ΣE]

is always an isomorphism.
Adams (1974, Part III) gave a more elementary presentation of Ho(Sp) as a

category of spectra and suitable morphisms. To first approximation a spectrum

E = (En, σ)n

is a sequence of spaces En and structure maps

σ : ΣEn −→ En+1 ,

for n ≥ 0. Its homotopy groups are given for k ∈ Z by the colimit

πk(E) = colim
n

πk+n(En) ,

formed over the suspension homomorphisms

. . . −→ πk+n(En)
Σ−→ πk+n+1(ΣEn)

σ∗−→ πk+n+1(En+1) −→ . . .

(ranging over the n with k + n ≥ 0 or k + n ≥ 2). We write π∗(E) or E∗ for the
resulting graded abelian group.

The stabilization functor Σ∞ takes X to the suspension spectrum Σ∞X given
by the sequence of spaces (Σ∞X)n = ΣnX and the identity maps

id: Σ(ΣnX)
=−→ Σn+1X .

The groups πkΣ∞X = colimn πk+n(ΣnX) are the stable homotopy groups of X.
Other examples are given by the Eilenberg–MacLane spectra HG, with n-th space
HGn = K(G,n) and structure map

σ : ΣK(G,n) −→ K(G,n+ 1)

adjoint to an equivalence

σ̃ : K(G,n)
'−→ ΩK(G,n+ 1) .



1.2. STABLE HOMOTOPY THEORY 5

Here π∗HG = G is concentrated in degree 0. For nontrivial G, these are never
suspension spectra. Following Whitehead (1962), this category is large enough to
(co-)represent ordinary homology and cohomology:

H̃k(X;G) ∼= πk(HG ∧ Σ∞X) = [ΣkS,HG ∧ Σ∞X]

H̃k(X;G) ∼= π−kF (Σ∞X,HG) = [Σ∞X,ΣkHG] .

Moreover, by Brown’s representability theorem (1962), each generalized cohomol-

ogy theory X 7→ Ẽ∗(X) is represented by a spectrum E, so that

Ẽk(X) ∼= [Σ∞X,ΣkE] .

The associated homology theory X 7→ Ẽ∗(X) is then given by

Ẽk(X) = πk(E ∧ Σ∞X) .

The unreduced theories are given by Ek(X) = Ẽk(X+) and Ek(X) = Ẽk(X+).
The coefficient groups of these theories are recovered as

πk(E) ∼= Ek(∗) ∼= Ẽk(S0) ∼= E−k(∗) ∼= Ẽ−k(S0) .

Any natural transformation of cohomology theories f∗ : D̃∗(X)→ Ẽ∗(X) arises
from a morphism f : D → E in Ho(Sp), so that f∗ takes x : Σ∞X → ΣkD to Σkf ◦
x : Σ∞X → ΣkE. Let Fp denote the field with p elements, for any prime p. Steenrod

constructed cohomology operations Sqi : H̃∗(X;F2) → H̃∗+i(X;F2), arising from
morphisms

Sqi : HF2 −→ ΣiHF2

in Ho(Sp), and similarly for odd p. These generate a graded non-commutative

Fp-algebra A, called the Steenrod algebra, and H̃∗(X;Fp) naturally becomes a left
A-module for each space X. In particular,

A ∼= H∗(HFp;Fp) = [HFp, HFp]−∗
is the graded endomorphism ring of HFp in Ho(Sp). The module theory and
homological algebra over Fp is very simple, but that over A is very complicated.
Nonetheless, if H∗(E;Fp) is a free A-module, one can represent its generators by a
set of morphisms {gα : E → ΣnαHFp}α and often deduce that their product

g : E −→
∏
α

ΣnαHFp

is an equivalence, inducing an isomorphism π∗(E) ∼=
∏
α ΣnαFp. Hence, in these

favorable cases one can pass from cohomology as an A-module to homotopy. Dually,
H̃∗(X;Fp) becomes a left A∗-comodule, where A∗ denotes the coalgebra dual to
the Steenrod algebra, given in Ho(Sp) as

A ∼= H∗(HFp;Fp) = π∗(HFp ∧HFp) .

Its structure (as a Hopf algebra) was determined by Milnor (1958). For example,
for p = 2 there is an isomorphism

A∗ ∼= F2[ζi | i ≥ 1]

where |ζi| = 2i − 1. Working with homology as an A∗-comodule often avoids
unnecessary finiteness hypotheses that would arise from a double dualization when
working with cohomology as an A-module.

References: See [Hatcher, §4.E, §4.F and §4.L].
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1.3. Bordism

Thom (1954) developed ideas of Poincaré to construct a new homology theory,
now denoted X 7→MO∗(X) and called (unoriented) bordism. Here

MOk(X) = {f : Mk −→ X}/ '

where M is a closed, smooth k-manifold, f is a continuous map, and f ' g : Nk →
X if there exists a bordism F : W k+1 → X, i.e., a compact, smooth (k + 1)-
manifold W and a continuous map F , with a diffeomorphism ∂W ∼= M

∐
N such

that F |M = f and F |N = g. The k-th coefficient group

MOk = {closed, smooth k-manifolds M}/ '

of this theory is the set of bordism classes of closed, smooth k-manifolds, so its
determination is already an interesting problem in manifold topology. The pair-
ings induced by disjoint union and cartesian product of manifolds make MO∗ a
graded commutative F2-algebra. To determine its structure, Thom viewed MO∗ =
π∗(MO) as the homotopy groups of a ring spectrum MO = {n 7→ MOn, σ}, now
called a Thom spectrum, and calculated these by first computing

H∗(MO;F2) = colim
n

H̃∗+n(MOn;F2) ∼= F2[ak | k ≥ 1]

as an A∗-comodule algebra. Here H̃∗+n(MOn;F2) ∼= H∗(BO(n);F2) is known from
the theory of Stiefel–Whitney characteristic classes, and |ak| = k. It turns out that
the dual H∗(MO;F2) is free as a left A-module, so that the proof strategy above
applies, and

π∗(MO) ∼= F2[zk | k 6= 2i − 1]

with zk in degree |zk| = k. For example, π3(MO) = 0, so each closed, smooth
3-manifold is the boundary of a compact, smooth 4-manifold. Note that this strat-
egy depends on thinking of the bordism ring MO∗ as the coefficient groups of a
homology theory, represented by a spectrum, so that it makes sense to also talk
about the (co-)homology groups of that spectrum.

As is often the case, algebra works out better over algebraically closed ground
fields. Milnor (1960) and Novikov studied the homology theory X 7→ MU∗(X),
called (almost) complex bordism, where each manifold in the theory comes equipped
with a complex structure on its stable normal bundle, i.e., on the formal negative
of its tangent (real vector) bundle. The representing ring spectrum MU = {n 7→
MUn, σ} plays a central role in chromatic homotopy theory. Here

H∗(MU) = colim
n

H̃∗+2n(MU2n) ∼= Z[bk | k ≥ 1]

is again an A∗-comodule algebra. Now H̃∗+2n(MU2n) ∼= H∗(BU(n)) is known from
the theory of Chern characteristic classes, and |bk| = 2k. This time H∗(MU ;Fp) is
not free as a left A-module, but it is induced up from a well-understood (exterior)
subalgebra of the Steenrod algebra. A refinement of Thom’s argument above, called
the Adams spectral sequence, applies to show that

π∗(MU) ∼= Z[xk | k ≥ 1] ,

with |xk| = 2k.
Already in the 1930s, Pontryagin studied (stably) framed bordism, where each

stable normal (or tangent) bundle is assumed to come with a trivialization. He
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showed that the associated homology theory is the same as that given by the (unre-
duced) stable homotopy groups, X 7→ S∗(X) ∼= π∗Σ

∞(X+), hence is represented by
the sphere spectrum S. In this case the homological algebra behind the A-module

H∗(S;Fp) ∼= Fp
is maximally complicated, so that the Adams spectral sequence

E∗,∗2 = ExtA(Fp,Fp) =⇒ π∗(S)∧p

is far from fully understood. The framed bordism classification of k-manifolds,
or equivalently, the calculation of the stable homotopy groups πk(S) of spheres,
is a fundamental open problem in stable homotopy theory, and is often used as
a yardstick for measuring progress in the computational aspects of the theory.
Nonetheless, it is perhaps similar to the problem of enumerating all prime numbers,
which may not be the best formulation of the issue at hand. For the time being
there are other, more conceptual, questions and results whose answers seem to be
more enlightening. The chromatic homotopy connection between stable homotopy
and formal group laws is one example of this.

1.4. Formal group laws

Novikov (1967) proposed to replace mod p cohomology and the algebra of
Steenrod operations, used for the analysis of homotopy groups through the Adams
spectral sequence, by complex cobordism MU∗(X) viewed as a left module over
the algebra

MU∗(MU) = [MU,MU ]−∗

of MU -cohomology operations. In hindsight it is better to work with the homology
theory MU∗(X) as an MU∗-module with a left coaction

ν : MU∗(X) −→MU∗(MU)⊗MU∗ MU∗(X)

by the (almost) coalgebra

MU∗(MU) = π∗(MU ∧MU) ∼= MU∗[bk | k ≥ 1]

of MU∗-homology cooperations.
More precisely, MU∗MU = MU∗(MU) is a Hopf algebroid, with left and right

unit homomorphisms

ηL : MU∗ →MU∗MU and ηR : MU∗ →MU∗MU

induced by the maps MU ∼= MU ∧ S → MU ∧ MU and MU ∼= S ∧ MU →
MU ∧MU , respectively. In algebro-geometric terms, the MU∗-module MU∗(X) is
the same as a quasi-coherent sheaf

MU∗(X)∼ ↓ Spec(MU∗)

over the affine scheme Spec(MU∗). From the functor of points perspective, this
scheme is the functor taking any commutative ring R to the set Hom(MU∗, R) of
ring homomorphisms θ : MU∗ → R. The MU∗MU -coaction ν corresponds to a
(coherent) isomorphism

η∗LMU∗(X)∼
ν̄∼= η∗RMU∗(X)∼ ↓ Spec(MU∗MU)

of the quasi-coherent sheaves obtain by pullback along the two maps

ηL, ηR : Spec(MU∗MU) −→ Spec(MU∗) .
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Equivalently, the coaction ν shows that MU∗(X)∼ descends to, i.e., is pulled back
from, a quasi-coherent sheaf MU∗(X)≈ over a quotient (pre-)stack that we might
denote

Spec(MU∗)
π−→ Spec(MU∗)/(ηL ∼ ηR) .

The target of π is the functor that takes any commutative ring R to the groupoid
G(R) with objects

objG(R) = Hom(MU∗, R)

and morphisms

morG(R) = Hom(MU∗MU,R) .

The source and target functions s, t : morG(R) → objG(R) are induced by ηL
and ηR, respectively, and the Hopf algebroid coproduct induces the composition of
morphisms.

A fundamental insight of Quillen is that objG(R) can be reinterpreted as the set
of (commutative, 1-dimensional) formal group laws F defined over R, and morG(R)
can be identified with the set of strict isomorphisms h : F → F ′ between such formal
group laws. Hence R 7→ G(R) equals the moduli (pre-)stack Mfgl of formal group
laws and strict isomorphisms, and for each space or spectrum X the MU∗MU -
comodule MU∗(X) corresponds directly to the quasi-coherent sheaf

MU∗(X)≈ ↓ Mfgl .

Here, a formal group law F over R is a formal power series

F (y1, y2) ∈ R[[y1, y2]]

such that

• F (y1, y2) = F (y2, y1) (commutativity),
• F (y1, 0) = y1 (unitality) and
• F (F (y1, y2), y3) = F (y1, F (y2, y3)) (associativity).

The associated R-algebra homomorphism

R[[y]] −→ R[[y1, y2]] ∼= R[[y1]⊗̂RR[[y2]]

y 7−→ F (y1, y2)

specifies an abelian group structure on the formal affine line over Spec(R) given by
the colimit

Â1
R = Spf(R[[y]]) = colim

n
Spec(R[y]/(yn+1)) ,

which is a formal neighborhood of the origin Spec(R) in the affine line A1
R =

Spec(R[y]). We write ĜF for this formal group. A strict isomorphism h : F → F ′

over R is a formal power series

h(y) ∈ R[[y]]

such that

• h(y) ≡ y mod y2 (strictness) and
• h(F (y1, y2)) = F ′(h(y1), h(y2)) (additivity).

The associated R-algebra homomorphism

R[[y]] −→ R[[y]]

y 7−→ h(y)
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specifies a group isomorphism ĜF → ĜF ′ , restricting to the identity on the tangent
space Spec(R[y]/(y2)).

Some examples of formal group laws are given by the additive formal group law

Fa(y1, y2) = y1 + y2 ,

the multiplicative formal group law

Fm(y1, y2) = (1 + y1)(1 + y2)− 1 = y1 + y2 + y1y2

and Lazard’s universal formal group law

FL(y1, y2) = y1 + y2 +
∑
i,j≥1

aijy
i
1y
j
2

defined over a ring L = Z[aij | i, j ≥ 1]/(∼) that Quillen identified as MU∗. There
is a strict isomorphism h : F → Fa for any formal group law F of the form

F (y1, y2) = h−1(h(y1) + h(y2)) ,

in which case h(y) = logF (y) is called the logarithm of F .
The algebraic geometry of Mfgl was studied by Dieudonné and by Lazard

(1955), and translated into algebraic topology by Morava and Landweber. This
motivated a set of conjectures formulated by Ravenel (1977/1984), many of which
were proved by Devinatz, Hopkins and Smith. Very roughly speaking, these assert
that the functor

MU∗ : Ho(Sp) −→ {MU∗MU -comodules} ' QCoh(Mfgl)

X 7−→MU∗(X)↔MU∗(X)≈

is an equivalence up to nilpotence. An almost injectivity part of Ravenel’s conjec-
tures is the following.

Theorem 1.4.1 (Devinatz–Hopkins–Smith nilpotence theorem (1988)). Let

f : ΣdX −→ X

be a degree d self map of a finite CW spectrum. If MU∗(f) = 0, then f is nilpotent,
i.e., fN ' 0 for some N > 0.

This includes Nishida’s nilpotence theorem (1973), that any class f ∈ π∗(S) of
degree 6= 0 is nilpotent. Hence the space Spec(π∗(S)) is homeomorphic to Spec(Z),
and does not know anything about the higher homotopy groups of spheres.

1.5. The height filtration

Let F be a formal group law defined over R. Multiplication by any integer k
in the abelian group structure ĜF is represented by a formal power series

[k]F (y) ∈ R[[y]] ,

such that [k]F (y) ≡ ky mod y2, called the k-series of F . Fix a prime p, and suppose
that R is a Z(p)-algebra. Then [`]F (y) is an isomorphism for all primes ` 6= p, but
the p-series [p]F (y) is either zero, or of the form

[p]F (y) = vn(F ) · yp
n

+ . . .

for some well-defined integer n ≥ 0 and nonzero element vn(F ) ∈ R. Here n is called
the height of the formal group law F . It measures how exceptional the formal group
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is, or how closely it approximates the additive formal group law. Clearly n = 0 if
p 6= 0 in R. The multiplicative formal group law has height 1 over Fp, since

[p]Fm(y) = (1 + y)p − 1 = yp ∈ Fp[[y]] .

There are universal elements vn ∈ MU∗ for n ≥ 0, with |vn| = 2pn − 2, such that
the homomorphism representing F ∈ objG(R) ∼= Hom(MU∗, R) sends vn to vn(F ):

MU∗ −→ R

vn 7−→ vn(F )

Let In = (v0, v1, . . . , vn−1) ⊂MU∗ be the ideal generated by the first n of these uni-
versal elements. It is invariant under the left MU∗MU -coaction. We let G≥n(R) ⊂
G(R) be the full subgroupoid generated by the formal group laws of height ≥ n.
The sequence

G(R) ⊃ · · · ⊃ G≥n(R) ⊃ G≥n+1(R) ⊃ · · · ⊃ G∞(R)

then defines a filtration of Mfgl by closed substacks

Mfgl ⊃ · · · ⊃ M≥nfgl ⊃M
≥n+1
fgl ⊃ · · · ⊃ M∞fgl ,

called the height filtration. Here

objG≥n(R) = Hom(MU∗/In, R)

and
morG≥n(R) = Hom(MU∗MU/In, R)

(suitably interpreted).
For each n ≥ 1, Lubin and Tate (1965) constructed a formal group law over

Zp with p-series [p](y) = py + yp
n

. Its mod p reduction to Fp is usually called

the height n Honda (1970) formal group law Hn, with p-series [p]Hn(y) = yp
n

. Let
Fp ⊂ F̄p be the algebraic closure. Lazard (1955) had proved that any height n formal
group law over F̄p is strictly isomorphic to Hn. In our graded situation, we view
Hn as the formal group law over Fp[v±1

n ] corresponding to the ring homomorphism

θ : MU∗ −→ Fp[v±1
n ]

vn 7−→ vn ,

with p-series [p]Hn(y) = vn · yp
n

. The map

Spec(F̄p[v±1
n ]) −→ Spec(MU∗) −→Mfgl

then gives a geometric point in Mn
fgl ⊂ M

≥n
fgl \ M

≥n+1
fgl that is essentially unique

up to (non-unique) isomorphism.
The n-th Morava K-theory spectrum K(n) is a ring spectrum defining a multi-

plicative homology theory X 7→ K(n)∗(X), with coefficient ring K(n)∗ = Fp[v±1
n ],

and there is a ring spectrum map MU → K(n) inducing the homomorphism
θ : MU∗ → K(n)∗ above representing the Honda formal group law Hn.

For n = 0 we set K(0) = HQ. For n = 1, K(1) is a direct summand of mod p
complex K-theory, i.e., KU/p, which may be the origin of the name “Morava K-
theory”. In general, K(n) is close to a spectral field at the prime p and height n.
Beware, however, that K(n) is not commutative in the structured sense, i.e., does
not admit an E∞ ring structure.

We say that a p-local finite CW spectrum X has (chromatic) type n if n is
minimal such that K(n)∗(X) 6= 0. Then K(m)∗(X) = 0 for all m < n, and Ravenel
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(1984) proved that K(m)∗(X) 6= 0 for all m > n. In this case the quasi-coherent

sheaf MU∗(X)≈ ↓ Mfgl is supported on the closed substack M≥nfgl , meaning that
its restriction to the open complement

Mfgl \M≥nfgl

is zero.
Let SW≥n be the full subcategory of Ho(Sp) generated by the p-local finite

CW spectra of type ≥ n. Then SW≥n is a thick subcategory, i.e., a triangulated
subcategory that is closed under passage to homotopy cofibers and retracts. The
filtration

SW ⊃ · · · ⊃ SW≥n ⊃ SW≥n+1 ⊃ · · · ⊃ SW∞

of the p-local Spanier–Whitehead category by thick subcategories matches the
height filtration of Mfgl.

Theorem 1.5.1 (Hopkins–Smith thick subcategory theorem (1998)). The thick

subcategories of SW are precisely the SW≥n for 0 ≤ n ≤ ∞.

Multiplication by vn defines an MU∗MU -comodule homomorphism

vn : Σ2pn−2MU∗/In −→MU∗/In ,

hence acts on any quasi-coherent sheaf over M≥nfgl . An almost surjectivity part of
Ravenel’s conjectures is the following.

Theorem 1.5.2 (Hopkins–Smith periodicity theorem (1998)). Let X be a fi-
nite CW complex of type n. Then there exists a self map f : ΣdX → X inducing
multiplication by vNn on K(n)∗(X) for some N > 0.

For example, the mapping cone

S
p−→ S

i−→ Cp
j−→ ΣS

defines the mod p Moore spectrum Cp = S/p, which has type 1. For p = 2 it
admits a self map

f : Σ8S/2 −→ S/2

inducing multiplication by v4
1 on K(1)∗(S/2), while for p odd it admits a self map

f : Σ2p−2S/p −→ S/p

inducing multiplication by v1 on K(1)∗(S/p). These maps were first constructed
by Adams (1966). Each power fN induces a nontrivial isomorphism K(1)∗(f

N ),
so fN is never null-homotopic. In other words, f is a periodic self map. For p odd
the α-family (the first Greek letter family)

αk ∈ π(2p−2)k−1(S)

consists of the composites

αk : Σ(2p−2)kS
i−→ Σ(2p−2)kS/p

fk−→ S/p
j−→ ΣS

for k ≥ 1. The homotopy colimit

S/p
f−→ Σ−2p+2S/p

f−→ . . .
f−→ Σ−(2p−2)iS/p

f−→ . . . −→ v−1
1 S/p

is called the telescopic localization of S/p. The periodicity theorem extends these
constructions to all higher types/heights n.
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1.6. Automorphisms and deformations

The geometric point

Spec(F̄p[v±1
n ]) −→ Spec(K(n)∗) −→Mn

fgl

given by the Honda formal group law Hn over F̄p spans a substack, corresponding to
the groupoid Gn(F̄p) of height n formal group laws over F̄p and their isomorphisms.
Its classifying space is connected, but has a fundamental group given by the group
Aut(Hn) consisting of the automorphisms h : Hn → Hn. These are all defined
over Fpn , and the extended Morava stabilizer group

Gn = Aut(Fpn , Hn)

is the profinite group of pairs (g, h), where g ∈ Gal(Fpn/Fp) ∼= Z/n and h : Hn →
g∗Hn.

We cannot realize the elements (g, h) of Gn as self maps of K(n). However,
Lubin and Tate (1966) showed that there is a universal deformation LTn of Hn,
which is a formal group law defined over a (complete noetherian) local ring

LT (Hn,Fpn) = W (Fpn)[[u1, . . . , un−1]]
π−→ Fpn

with π∗(LTn) = Hn. Here W (Fpn) denotes the ring of Witt vectors, which is a
degree n unramified extension of Zp. This defines a formal neighborhood

Spec(Fpn) −→ Spf(LT (Hn,Fpn)) −→Mfgl

of the closed point given by Hn, and by the Landweber exact functor theorem
there exists a homology theory X 7→ (En)∗(X) and spectrum En = E(Hn,Fpn)
with coefficient ring

π∗(En) = W (Fpn)[[u1, . . . , un−1]][u±1]

where |u| = 2. Moreover, there is a ring spectrum map MU → En inducing the
homomorphism MU∗ → π∗(En) representing the Lubin–Tate universal deformation
of the Honda formal group law. It maps

v0 −→ p

vm −→ umu
pm−1

vn −→ up
n−1 ,

so LTn is supported at all heights 0 ≤ m ≤ n.
The following result lifts flat or étale topological features of Mfgl to stable

homotopy theory. It requires a better underlying category Sp of spectra, with
homotopy category Ho(Sp), than that provided by Adams. Following Bousfield
(1979), a spectrum E is K(n)-local if E∗(Z) = 0 for all Z with K(n)∗(Z) = 0.
There is a K(n)-localization functor LK(n), left adjoint to the forgetful functor
from K(n)-local spectra to Ho(Sp).

Theorem 1.6.1 (Hopkins–Miller (Rezk 1998), Goerss–Hopkins (2004)). The
Lubin–Tate spectrum En is a K(n)-local E∞ ring spectrum, and the Morava stabi-
lizer group Gn acts on En through E∞ ring maps.

When n = 1, the Morava stabilizer group is G1
∼= Z×p , with k ∈ Z− (p) ⊂ Z×p

corresponding to [k]H1
∈ G1. The Lubin–Tate deformation ring is LT (H1,Fp) =
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Zp → Fp, and E1 = KU∧p is p-complete complex K-theory. The action by k ∈ Z×p
on E1 is the action by the Adams operation ψk on KU∧p . Its homotopy fixed points

LK(1)S = J∧p = (KU∧p )hZ
×
p

is the p-complete image-of-J spectrum. The homotopy groups π∗(KU
∧
p ) = Zp[u±1]

and the action ψk(u) = ku by the Adams operations are well known, so π∗(J
∧
p )

and π∗(J/p) are also well known.
The following theorem compares the telescopic and chromatic localizations at

height 1.

Theorem 1.6.2 (Mahowald (1981), Miller (1981)).

v−1
1 S/p

'−→ LK(1)S/p

so (for p odd)
v−1

1 π∗(S/p) ∼= π∗(J/p) ∼= Λ(α1)⊗ Fp[v1] .

Ravenel’s telescope conjecture (published 1984) asserts that for X of type n
the map

v−1
n X −→ LK(n)X

from the telescopic to the chromatic localization is an equivalence. Since 1990, it
has been expected that the telescope conjecture is false for n ≥ 2, cf. Mahowald–
Ravenel–Shick (2001), but no definitive (dis-)proof has been found. Beaudry–
Behrens–Bhattacharya–Culver–Xu (2021) is a recent contribution suggesting that
the conjecture fails for n = 2 and p = 2.

MU // MU(p)
// LnMU //

%%

L1MU //

$$

MUQ

En KU∧p

S

OO

//

��

S(p)

OO

//

��

LnS

OO

//

%%

L1S

OO

//

$$

HQ

OO

LK(n)S

Gn

OO

J∧p

Z×p
OO

HZ // HZ(p)
// HQ





CHAPTER 2

The Steenrod algebra and its dual

2.1. Cohomology and Eilenberg–MacLane spaces

See [Hat02, §4.3] and [May99, Ch. 22].
Let G be an abelian group. For each n ≥ 0 let K(G,n) be an Eilenberg–

MacLane complex of type (G,n), i.e., a CW complex such that

πkK(G,n) ∼=

{
G for k = n,

0 else.

Concrete examples include K(Z, 1) ' S1, K(Z/2, 1) ' RP∞, K(Z/p, 1) ' L∞

(mod p lens spaces) and K(Z, 2) ' CP∞. The latter three arise as orbit spaces of
the contractible space S∞. The adjoint structure map

σ̃ : K(G,n)
'−→ ΩK(G,n+ 1)

is an equivalence. By the universal coefficient and Hurewicz theorems there are
isomorphisms

Hn(K(G,n);G) ∼= Hom(Hn(K(G,n)), G) ∼= Hom(πnK(G,n), G) ∼= Hom(G,G) .

The class

ιn ∈ Hn(K(G,n), G)

corresponding to id: G → G is called the fundamental class. Each map f : X →
K(G,n) induces a homomorphism

f∗ : Hn(K(G,n);G) −→ Hn(X;G)

that only depends on [f ].

Theorem 2.1.1 (Eilenberg–MacLane (1940/1954)). The homomorphism

[X,K(G,n)]
∼=−→ Hn(X;G)

[f ] 7−→ f∗(ιn)

is a natural isomorphism. The adjoint structure map induces the suspension iso-
morphism

Hn(X;G)
Σ
∼=

//

∼=
��

Hn+1(ΣX;G)

∼=
��

[X,K(G,n)]
σ̃∗
∼=
// [X,ΩK(G,n+ 1)] ∼=

// [ΣX,K(G,n+ 1)] .

The proof is by a comparison of cohomology theories.

15
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2.2. Cohomology operations

By a cohomology operation of type (G,n)− (G′, n′) we mean a natural trans-
formation

θ : Hn(X;G) −→ Hn′(X;G′)

of functors from spaces X to sets. Examples include

α : Hn(X;G) −→ Hn(X;G′)

induced by a given group homomorphism α : G→ G′, the Bockstein homomorphism

βG : Hn(X;G′′) −→ Hn+1(X;G′)

associated to a group extension G′ → G→ G′′, and the cup squaring operation

ξ : Hn(X;R) −→ H2n(X;R)

x 7−→ x2 = x ∪ x

defined for rings R. The latter is a homomorphism if 2 = 0 in R. By the Yoneda
lemma, any natural transformation

θ : [X,K(G,n)] −→ [X,K(G′, n′)]

is induced by composition with a map

θ : K(G,n) −→ K(G′, n′) ,

corresponding to a cohomology class

[θ] ∈ Hn′(K(G,n);G′) .

The classification of all cohomology operations of type (G,n) − (G′, n′) is thus

equivalent to the computation of Hn′(K(G,n);G′).

2.3. Steenrod operations

See [Hat02, §4.L], [Ste62].
Let F2 = Z/2. Steenrod (1947/1962) constructed cohomology operations Sqi

of type (F2, n)− (F2, n+ i) for all n ≥ 0. These are natural transformations

Sqi : Hn(X;F2) −→ Hn+i(X;F2)

corresponding to cohomology classes

Sqi ∈ Hn+i(K(F2, n);F2)

for all i ≥ 0 and n ≥ 0. Let β = βZ/4 denote the Bockstein for the group extension
F2 → Z/4→ F2.

Theorem 2.3.1 (Steenrod, Cartan).

(1) Sq0 = id.
(2) Sq1 = β.
(3) Sqi(x) = x2 for i = |x|.
(4) Sqi(x) = 0 for i > |x| (instability).
(5)

Sqk(x ∪ y) =
∑
i+j=k

Sqi(x) ∪ Sqj(y)

(Cartan formula).
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The potentially nonzero operations on x ∈ Hn(X;F2) are the Sqi(x) for 0 ≤
i ≤ n, of degree less than or equal to that of x2, so the Sqi are often called the
reduced squaring operations. The inhomogeneous sum

Sq(x) =
∑
i≥0

Sqi(x) ∈ H∗(X;F2)

is called the total squaring operation, and the Cartan formula can be written as

Sq(x ∪ y) = Sq(x) ∪ Sq(y) .

It follows from the Cartan formula that

Sqi(Σx) = ΣSqi(x) : Hn(X;F2) −→ Hn+i+1(ΣX;F2) ,

so that the Sqi for varying n are compatible. This is why we leave “n” out of the
notation. This also means that the collection of operations Sqi for all n defines a
morphism of cohomology theories

Sqi : H∗(X;F2) −→ H∗+i(X;F2)

represented by a degree −i map of Eilenberg–MacLane spectra

Sqi : HF2 −→ ΣiHF2 .

Recall that H∗(RP∞;F2) = F2[x] with |x| = 1.

Lemma 2.3.2. The Steenrod operation

Sqi : H∗(RP∞;F2) −→ H∗+i(RP∞;F2)

is given by

Sqi(xn) =

(
n

i

)
xn+i .

Proof. By instability, Sq(x) = x + x2 = x(1 + x), so by the Cartan formula
Sq(xn) = (x+x2)n = xn(1+x)n. In degree n+i we read off that Sqi(xn) = xn·

(
n
i

)
xi,

from the binomial theorem. Here the binomial coefficient is read mod 2. �

We outline a construction of the Steenrod squares. Let Km = K(F2,m) for all
m ≥ 0. The smash product (= reduced cross product) in cohomology

Hn(X;F2)⊗Hn(Y ;Fn)
∧−→ H2n(X ∧ Y ;F2)

is induced by composition with a map

µ : Kn ∧Kn −→ K2n

representing ιn ∧ ιn. Let C2 = {±1} act antipodally on S∞, and by the symmetry
isomorphism on Kn ∧Kn. Form the balanced smash product

D2(Kn) = S∞+ ∧C2
Kn ∧Kn

by setting (s, p, q) ∼ (−s, q, p) for s ∈ S∞, p, q ∈ Kn. This is also known as the
“quadratic construction” on Kn. Note that Kn ∧Kn

∼= S0
+ ∧C2

Kn ∧Kn. Commu-
tativity of the cup product implies that µ extends (uniquely, up to homotopy) to a
map µ̄, as below.

Kn ∧Kn
//

µ
((

S1
+ ∧C2

Kn ∧Kn
//

��

D2(Kn)

µ̄
ww

K2n
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The diagonal map ∆: Kn → Kn ∧Kn extends to a map

∆̄: RP∞+ ∧Kn −→ D2(Kn)

sending ([s], p) to [(s, p, p)]. The composite µ̄∆̄ : RP∞+ ∧ Kn → K2n represents a
class in

H2n(RP∞+ ∧Kn;F2) ∼=
n⊕
i=0

Hn−i(RP∞;F2)⊗Hn+i(Kn;F2) .

Writing this as

[µ̄∆̄] =

n∑
i=0

xn−i ⊗ Sqi

specifies well-defined classes

Sqi ∈ Hn+i(Kn;F2)

for all 0 ≤ i ≤ n. Composition with the corresponding maps Sqi : Kn → Kn+i

induces the Steenrod cohomology operation Sqi.
For odd primes p, let Fp = Z/p. Steenrod also constructed reduced power

operations P i of type (Fp, n)− (Fp, n+ (2p− 2)i). These are stable natural trans-
formations

P i : Hn(X;Fp) −→ Hn+(2p−2)i(X;Fp)
for all n ≥ 0, represented by a degree −(2p− 2)i map

P i : HFp −→ Σ(2p−2)iHFp
of Eilenberg–MacLane spectra.

Theorem 2.3.3 (Steenrod, Cartan).

(1) P 0 = id.
(2) P i(x) = xp for 2i = |x|.
(3) P i(x) = 0 for 2i > |x|.
(4)

P k(x ∪ y) =
∑
i+j=k

P i(x) ∪ P j(y) .

Let β = βZ/p2 be the Bockstein for the extension Fp → Z/p2 → Fp. Recall that
H∗(L∞;Fp) = Λ(x)⊗ Fp[y] with |x| = 1, |y| = 2, β(x) = y and β(y) = 0.

Lemma 2.3.4. The Steenrod operation

P i : H∗(L∞;Fp) −→ H∗+(2p−2)i(L∞;Fp)

is given by

P i(yn) =

(
n

i

)
yn+(p−1)i

P i(xyn) =

(
n

i

)
xyn+(p−1)i .

Proof. The total power operation P =
∑
i≥0 P

i is given by P (x) = x and

P (y) = y+yp = y(1+yp−1), so P (yn) = yn(1+yp−1)n and P i(yn) = yn ·
(
n
i

)
y(p−1)i.

Here
(
n
i

)
is read mod p. Moreover, P (xyn) = xP (yn), so P i(xyn) = xP i(yn). �
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One construction of Steenrod’s power operations involves the p-th extended
power construction

Dp(Kn) = EΣp+ ∧Σp K
∧p
n

where EΣp+ is a contractible space with free Σp-action.

2.4. The Steenrod algebra

The Steenrod squares generate an associative F2-algebra under composition,
called the mod 2 Steenrod algebra A . We might write A = A (2) to emphasize
the prime 2, or A = A ∗ to emphasize the cohomological grading. It turns out that
only composites

Sqi1Sqi2 · · ·Sqi`

with i1 ≥ 2i2, . . . , i`−1 ≥ 2i` are needed to obtain an additive basis for A , in view
of the following Adem relations.

Theorem 2.4.1 (Adem (1952)). If a < 2b then

SqaSqb =

[a/2]∑
j=0

(
b− 1− j
a− 2j

)
Sqa+b−jSqj .

For example, Sq1Sq1 = 0, Sq1Sq2 = Sq3, Sq2Sq2 = Sq3Sq1 and Sq3Sq2 = 0.
Very briefly, this arises from noting that the source of the composite

D2(D2(Kn))
D2(µ̄)−→ D2(K2n)

µ̄−→ K4n

involves the wreath product C2 o C2 of order 8, and can be extended over a con-
struction involving the symmetric group Σ4 of order 24. The extra symmetry forces
certain relations, which can be rewritten as above.

For I = (i1, i2, . . . , i`) a finite sequence of positive integers we write

SqI = Sqi1Sqi2 · · ·Sqi` .

We say that I is admissible if is ≥ 2is+1 for each 1 ≤ s < `. The admissible basis
for A begins

1

Sq1

Sq2

Sq3, Sq2Sq1

Sq4, Sq3Sq1

Sq5, Sq4Sq1

Sq6, Sq5Sq1, Sq4Sq2

Sq7, Sq6Sq1, Sq5Sq2, Sq4Sq2Sq1

Sq8, Sq7Sq1, Sq6Sq2, Sq5Sq2Sq1

in degrees 0 ≤ ∗ ≤ 8.
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Serre inductively calculated the mod 2 cohomology algebra of each Eilenberg–
MacLane complex, by means of the Serre spectral sequence

E∗,∗2 = H∗(K(F2, n+ 1);H∗(K(F2, n);F2))

=⇒ H∗(PK(F2, n+ 1);F2) ∼= F2

associated to the fibre sequence

K(F2, n) −→ PK(F2, n+ 1)
p−→ K(F2, n+ 1) .

The excess of I is e(I) = i1 − (i2 + · · ·+ i`).

Theorem 2.4.2 (Serre (1952)).

H∗(K(F2, n);F2) = F2[SqI(ιn) | I admissible with e(I) < n]

is the polynomial algebra on the classes SqI(ιn), where I ranges over the admissible
sequences of excess < n.

The induction begins with H∗(K(F2, 1);F2) = F2[ι1], which is the known case
K(F2, 1) ' RP∞. It follows that every cohomology operation of type (F2, n) −
(F2, n

′) can be presented as a polynomial, with respect to the cup product algebra
structure, of (some of) the iterated Steenrod operations SqI .

Since suspension annihilates cup products, it follows that

F2{SqI | I admissible}
∼=−→ lim

n
Hn+∗(K(F2, n);F2)

SqI 7−→ (SqI(ιn))n

is an isomorphism, so that the mod 2 Steenrod algebra is precisely the algebra of
all stable cohomology operations in mod 2 cohomology:

A ∼= (HF2)∗(HF2) = [HF2, HF2]−∗ .

(Until we construct the stable homotopy category, the middle and right hand sides
here can be viewed as notation for the limit in the previous display.)

For odd primes p, the Bockstein and the Steenrod power operations generate
an associative Fp-algebra under composition, called the mod p Steenrod algebra
A = A (p). An additive basis is given by the admissible composites

βε1P i1βε2P i2 · · ·βε`P i`

with εs ∈ {0, 1}, εs + (2p− 2)is > 0 and is ≥ εs+1 + pis+1 for each 1 ≤ s < `. We
write P I for this composite, where I = (ε1, i1, ε2, i2, . . . , ε`, i`). These monomial
suffice, in view of the following Adem relations.

Theorem 2.4.3 (Adem (1953)). If a < pb then

P aP b =
∑
j

(−1)a+j

(
(p− 1)(b− j)− 1

a− pj

)
P a+b−jP j .

If a ≤ pb then

P aβP b =
∑
j

(−1)a+j

(
(p− 1)(b− j)− 1

a− pj

)
βP a+b−jP j

−
∑
j

(−1)a+j

(
(p− 1)(b− j)− 1

a− pj − 1

)
P a+b−jβP j .



2.5. MODULES OVER THE STEENROD ALGEBRA 21

The admissible basis for A begins

1

β

P 1

βP 1, P 1β

βP 1β

. . .

P p

βP p, P pβ

βP pβ

P p+1, P pP 1

βP p+1, P p+1β, βP pP 1, P pP 1β

βP p+1β, βP pP 1β

in degrees 0 ≤ ∗ ≤ 2p2.

Theorem 2.4.4 (Cartan (1954)). H∗(K(Fp, n);Fp) is the free graded commuta-
tive Fp-algebra on the classes P I(ιn) for admissible I, subject to an excess condition
depending on n.

(We omit to introduce the notation needed for the excess condition at odd
primes.) It follows that

Fp{P I | I admissible}
∼=−→ lim

n
Hn+∗(K(Fp, n);Fp)

P I 7−→ P I(ιn)

is an isomorphism, so that the mod p Steenrod algebra is equal the algebra of stable
mod p cohomology operations:

A ∼= (HFp)∗(HFp) = [HFp, HFp]−∗ .

2.5. Modules over the Steenrod algebra

By construction, the evaluation of a cohomology operation on a cohomology
class defines a natural pairing

λ : A ⊗H∗(X;F2) −→ H∗(X;F2)

SqI ⊗ x 7−→ SqI(x)

making H∗(X;F2) a left A -module, for each space X. Since the Steenrod oper-
ations are stable, this also applies for each spectrum X, in which case the action
above can be expressed as the composition pairing

[HF2, HF2]−∗ ⊗ [X,HF2]−∗ −→ [X,HF2]−∗

[θ]⊗ [f ] 7−→ [θf ] .

The resulting contravariant functor

H∗(−;F2) : Ho(Sp) −→ (A−Mod)op

X 7−→ H∗(X;F2)
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to the (abelian) category of (graded) A -modules carries far more information about
a spectrum X than the underlying mod 2 cohomology functor to graded F2-vector
spaces.

Theorem 2.5.1. Let n ≥ 1. Then

(1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (6)

where

(1) n ∈ {1, 2, 4, 8}.
(2) Rn admits a division algebra structure over R.
(3) Sn−1 is parallelizable.
(4) Sn−1 admits an H-space structure.
(5) There is a map S2n−1 → Sn of Hopf invariant ±1.
(6) n is a power of 2.

Proof (Adem, 1952) of (5) =⇒ (6). If f : S2n−1 → Sn has Hopf invariant
±1, then

H∗(Cf ;F2) = F2[x]/(x3)

with |x| = n, so Sqn(x) = x2 6= 0. If n is not a power of n then Sqn is decomposable
as a sum of products of operations Sqi with 0 < i < n, by the Adem relations. But
Sqi(x) = 0 for each such i, giving a contradiction. �

Likewise, for each odd prime p the mod p cohomology H∗(X;Fp) of a space (or
a spectrum) X is naturally left module over the mod p Steenrod algebra A .

2.6. Bialgebras

The external version

Sqk(x ∧ y) =
∑
i+j=k

Sqi(x) ∧ Sqj(y)

of the Cartan formula extends over F2{Sqk | k ≥ 0} ⊂ A as follows.

Lemma 2.6.1 (Milnor (1958)). Let p be any prime. There is a unique algebra
homomorphism

ψ : A −→ A ⊗A

given by

Sqk 7−→
∑
i+j=k

Sqi ⊗ Sqj

for p = 2, and by

β 7−→ β ⊗ 1 + 1⊗ β

P k 7−→
∑
i+j=k

P i ⊗ P j
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for p odd, making

A ⊗H∗(X;Fp)⊗H∗(Y ;Fp)
id⊗∧
∼=

//

ψ⊗id⊗ id

��

A ⊗H∗(X ∧ Y ;Fp)

λ

��

A ⊗A ⊗H∗(X;Fp)⊗H∗(Y ;Fp)

(23) ∼=
��

H∗(X ∧ Y ;Fp)

A ⊗H∗(X;Fp)⊗A ⊗H∗(Y ;Fp)
λ⊗λ
// H∗(X;Fp)⊗H∗(Y ;Fp)

∧∼=

OO

commute. Here (23) = id⊗τ ⊗ id.

Definition 2.6.2. Let k be a (graded) commutative ring, and write ⊗ = ⊗k.
A k-algebra is a (graded) k-module A with a unit map

η : k −→ A

and a (multiplication =) product map

φ : A⊗A −→ A

satisfying left and right unitality

k ⊗A
η⊗id

//

∼=
$$

A⊗A

φ

��

A⊗ k
id⊗η
oo

∼=
zz

A

and associativity

A⊗A⊗A
φ⊗id

//

id⊗φ
��

A⊗A

φ

��

A⊗A
φ

// A .

The algebra is commutative if

A⊗A τ
∼=

//

φ
""

A⊗A

φ
||

A

commutes. A k-algebra homomorphism from A to B is a k-module homomorphism
α : A→ B (of degree 0) such that

k
η

��

η

��

A
α // B

and

A⊗A

φ

��

α⊗α
// B ⊗B

φ

��

A
α // B
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commute. The tensor product A ⊗ B of two k-algebras A and B is the k-algebra
with unit

k ∼= k ⊗ k η⊗η−→ A⊗B
and product

A⊗B ⊗A⊗B (23)−→ A⊗A⊗B ⊗B φ⊗φ−→ A⊗B .
It is commutative if A and B are commutative, in which case it is the coproduct
(= categorical sum) of A and B in the category of commutative k-algebras.

Definition 2.6.3. Let A be a k-algebra. A left A-module is a (graded) k-
module M with an action map

λ : A⊗M −→M

satisfying unitality

k ⊗M
∼=

%%

η⊗id
// A⊗M

λ

��

M

and associativity

A⊗A⊗M id⊗λ
//

φ⊗id

��

A⊗M

λ

��

A⊗M λ // M .

An A-module homomorphism from M to N is a k-module homomorphism f : M →
N (of degree 0) such that

A⊗M

λ

��

id⊗f
// A⊗N

λ

��

M
f

// N

commutes. The category of leftA-modules is abelian, with ker(f) ⊂M , M/ ker(f) =
coim(f) ∼= im(f) ⊂ N and cok(f) = N/ im(f) defined in the usual way at the level
of (k-modules or) graded abelian groups. There are analogous definitions for right
A-modules.

Definition 2.6.4. A k-coalgebra is a (graded) k-module C with a counit map
(= augmentation)

ε : C −→ k

and a (comultiplication =) coproduct map

ψ : C −→ C ⊗ C

satisfying left and right counitality

C

ψ

��

∼=

zz

∼=

$$

k ⊗ C C ⊗ C
ε⊗id
oo

id⊗ε
// C ⊗ k



2.6. BIALGEBRAS 25

and coassociativity

C
ψ

//

ψ

��

C ⊗ C

ψ⊗id

��

C ⊗ C
id⊗ψ

// C ⊗ C ⊗ C .

The coalgebra is cocommutative if

C
ψ

{{

ψ

##

C ⊗ C τ
∼=

// C ⊗ C

commutes. A k-coalgebra homomorphism from C to D is a k-module homomor-
phism γ : C → D (of degree 0) such that

C
γ

//

ε
��

D

ε
��

k

and

C
γ

//

ψ

��

D

ψ

��

C ⊗ C
γ⊗γ
// D ⊗D

commute. The tensor product C⊗D of two k-coalgebras C and D is the k-coalgebra
with counit

C ⊗D ε⊗ε−→ k ⊗ k ∼= k

and coproduct

C ⊗D ψ⊗ψ−→ C ⊗ C ⊗D ⊗D (23)−→ C ⊗D ⊗ C ⊗D .

It is cocommutative if C and D are cocommutative.

Definition 2.6.5. Let C be a k-algebra. A left C-comodule is a (graded)
k-module M with a coaction map

ν : M −→ C ⊗M

satisfying counitality

M
ν //

∼=
##

C ⊗M

ε⊗id

��

k ⊗M
and coassociativity

M
ν //

ν

��

C ⊗M

id⊗ν
��

C ⊗M
ψ⊗id

// C ⊗ C ⊗M .
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A C-comodule homomorphism from M to N is a k-module homomorphism f : M →
N (of degree 0) such that

M
f

//

ν

��

N

ν

��

C ⊗M
id⊗f

// C ⊗N

commutes. If C is flat as a k-module, so that C⊗k (−) is an exact functor, then the
category of C-comodules is abelian. Flatness is needed for the existence of kernels
within this category, since it ensures that C ⊗ ker(f)→ C ⊗M is injective, so that
there is a unique dashed arrow making the following diagram commute.

0 // ker(f) //

��

M
f

//

ν

��

N

ν

��

0 // C ⊗ ker(f) // C ⊗M
id⊗f

// C ⊗N

Definition 2.6.6. A k-bialgebra is a (graded) k-module B that is both a k-
algebra and a k-coalgebra, and these structures are compatible in the sense that
ε : B → k and ψ : B → B ⊗B are k-algebra homomorphisms.

k
η

��

id

��
B

ε // k

B ⊗B ε⊗ε
//

φ

��

k ⊗ k
∼=
��

B
ε // k

k

η

��

∼= // k ⊗ k

η⊗η
��

B
ψ
// B ⊗B

B ⊗B

φ

��

ψ⊗ψ
// B ⊗B ⊗B ⊗B

(23)

∼=
))

B ⊗B ⊗B ⊗B

φ⊗φ
��

B
ψ

// B ⊗B
This is equivalent to asking that η : k → B and φ : B ⊗ B → B are k-coalgebra
homomorphisms.

A k-bialgebra homomorphism from B′ to B is a k-module homomorphism
β : B′ → B that is both a k-algebra homomorphism and a k-coalgebra homomor-
phism. A left B-module is a left module over the underlying k-algebra of B. A left
B-comodule is a left comodule over the underlying k-coalgebra of B′.

Corollary 2.6.7 (Milnor (1958)). Let p be any prime. The mod p Steenrod
algebra A is a cocommutative bialgebra over Fp, with product φ given by composition
of operations and coproduct ψ given as above.

2.7. The dual Steenrod algebra

For k-modules M and N write Hom(M,N) = Homk(M,N) for the k-module
of (graded) k-linear homomorphisms, let M∨ = Hom(M,k) denote the linear dual,
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and let f∨ : N∨ → M∨ be the homomorphism dual to f : M → N . There is a
natural transformation

θ : M∨ ⊗N∨ −→ (M ⊗N)∨

given by

θ(f ⊗ g)(x⊗ y) = (−1)|g||x|f(x)g(y)

for f ∈M∨, g ∈ N∨, x ∈M and y ∈ N . It is an isomorphism, for example, if k is
a field and both M and N are bounded below and of finite type.

Lemma 2.7.1. The dual C∨ of a k-coalgebra C is a k-algebra, with unit map

η : k ∼= k∨
ε∨−→ C∨

and product

φ : C∨ ⊗ C∨ θ−→ (C ⊗ C)∨
ψ∨−→ C∨ .

The dual M∨ of a left C-comodule M is a left C∨-module, with action map

λ : C∨ ⊗M∨ θ−→ (C ⊗M)∨
ν∨−→M∨ .

Lemma 2.7.2. Let A be a k-algebra such that θ : A∨ ⊗ A∨ → (A ⊗ A)∨ is an
isomorphism. Then the dual A∨ is a k-coalgebra, with counit map

ε : A∨
η∨−→ k∨ ∼= k

and coproduct

ψ : A∨
φ∨−→ (A⊗A)∨

θ−1

−→ A∨ ⊗A∨ .
Furthermore, let M be a left A-module such that θ : A∨ ⊗M∨ → (A ⊗M)∨ is an
isomorphism. Then the dual M∨ is a left A∨-comodule, with coaction map

ν : M∨
λ∨−→ (A⊗M)∨

θ−1

−→ A∨ ⊗M∨ .

The (mod p Steenrod) cocommutative bialgebra A is connected (hence bounded
below) and of finite type over Fp. Hence its dual A ∨ is a commutative bialgebra.
More directly, the colimit

A∗ = colim
n

H∗+n(K(Fp, n);Fp) ∼= (HFp)∗(HFp) = π∗(HFp ∧HFp)

is connected and of finite type over Fp. By the universal coefficient theorem, its
dual is

(A∗)
∨ = (colim

n
H∗+n(K(Fp, n);Fp))∨

∼= lim
n

(H∗+n(K(Fp, n);Fp)∨)

∼= lim
n
H∗+n(K(Fp, n);Fp) ∼= A .

Therefore A∗ is isomorphic to its double dual (A ∨∗ )∨ ∼= A ∨, which we just saw is
a commutative bialgebra. Adapting Milnor’s work, we shall soon make its algebra
and coalgebra structures explicit.

For any space (or spectrum) X, we shall construct a natural A∗-coaction

ν : H∗(X;Fp) −→ A∗ ⊗H∗(X;Fp)
making H∗(X;Fp) a left A∗-comodule. The dual A -action

A ∨∗ ⊗H∗(X;Fp)∨ −→ H∗(X;Fp)∨
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is the usual left A -module structure

λ : A ⊗H∗(X;Fp) −→ H∗(X;Fp)

from the construction of A as an algebra of cohomology operations. Hence, if
H∗(X;Fp) is bounded below and of finite type, then we can recover (or introduce)
the A∗-coaction ν on H∗(X;Fp) as the dual

H∗(X;Fp)∨ −→ A ∨ ⊗H∗(X;Fp)∨

of the left A -action on H∗(X;Fp). The conclusion will be that the lift of the
mod p cohomology functor can be refined one step further as the covariant homology
functor

H∗(−;Fp) : Ho(Sp) −→ A∗− coMod

X 7−→ H∗(X;Fp)

followed by the contravariant dualization functor

(−)∨ : A∗− coMod −→ (A−Mod)op .

When H∗(X;Fp) has finite type, the two approaches are equivalent, but for general
X working with the homology as an A∗-comodule is more powerful.

The Cartan formula and Milnor’s lemma dualize to prove that the A∗-coaction
is compatible with the smash product of spaces (and spectra), via the Künneth
isomorphism. This means that for an H-space or ring spectrum X, the homology
H∗(X,Fp) is an A∗-comodule algebra.

Lemma 2.7.3. The diagram

H∗(X;Fp)⊗H∗(Y ;Fp)
ν⊗ν
//

∧ ∼=
��

A∗ ⊗H∗(X;Fp)⊗A∗ ⊗H∗(Y ;Fp)

(23)∼=
��

H∗(X ∧ Y ;Fp)

ν

��

A∗ ⊗A∗ ⊗H∗(X;Fp)⊗H∗(Y ;Fp)

φ⊗id⊗ id

��

A∗ ⊗H∗(X ∧ Y ;Fp) A∗ ⊗H∗(X;Fp)⊗H∗(Y ;Fp)
id⊗∧
∼=

oo

commutes.

More generally, the Steenrod operations can be viewed as giving an action
by A or a coaction by A∗, from the left or from the right, on homology or on
cohomology. This leads to a total of eight incarnations, all discussed by Boardman
in [Boa82]. Four of these involve the conjugation = involution = antipode χ on
the Steenrod algebra and its dual, which makes these bialgebras into Hopf algebras
(to be discussed later). The four that do not require χ are the following left or right
actions or coactions.

λ = φL : A ⊗H∗(X;Fp) −→ H∗(X;Fp)
ν = ψL : H∗(X;Fp) −→ A∗ ⊗H∗(X;Fp)
ρ = φR : H∗(X;Fp)⊗A −→ H∗(X;Fp)

λ∗ = ψR : H∗(X;Fp) −→ H∗(X;Fp) ⊗̂A∗ .
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For each θ ∈ A the homomorphism

θ· = φL(θ ⊗−) : H∗(X;Fp) −→ H∗(X;Fp)

is the dual of the homomorphism

·θ : φR(−⊗ θ) : H∗(X;Fp) −→ H∗(X;Fp)

up to the usual sign:

〈θ · x, α〉 = (−1)|θ|〈x, α · θ〉
for θ ∈ A , x ∈ H∗(X;Fp) and α ∈ H∗(X;Fp). The sign is (−1)|θ|(|x|+|α|) = (−1)|θ|,
since |θ|+ |x| = |α| for ordinary (co-)homology. If θ· = Sqi or P i one usually writes
Sqi∗ or P i∗ for ·θ, so that (SqaSqb)∗ = Sqb∗Sq

a
∗ , and so on. The (formal) right

copairing λ∗ = ψR is the dual of the pairing φR. Hence we have the identities

〈θ · x, α〉 = 〈θ ⊗ x, ν(α)〉 = (−1)|θ|〈x, α · θ〉 = (−1)|θ|〈λ∗(x), α⊗ θ〉 .

Milnor observes that the Cartan formula (discussed for λ and ν in Lemmas 2.6.1
and 2.7.3, respectively) has two further interpretations. The result for λ∗ = ψR is
particularly convenient for elementwise calculations.

Lemma 2.7.4. For any space X,

ρ : H∗(X;Fp)⊗A −→ H∗(X;Fp)

is a coalgebra homomorphism with respect to the diagonal coproduct ∆∗ in homology,
and

λ∗ : H∗(X;Fp)→ H∗(X;Fp) ⊗̂A∗

is an algebra homomorphism with respect to the cup product ∪ = ∆∗ in cohomology.

2.8. The structure of A∗

Consider p = 2. Recall that K(F2, 1) ' RP∞ with H∗(RP∞;F2) = F2[x] with
|x| = 1, and let

H∗(RP∞;F2) ∼= F2{αn | n ≥ 0}
with αn in degree n dual to xn. The left and right A -actions are given by

Sqi(xn) =

(
n

i

)
xi+n and Sqi∗(αm) =

(
m− i
i

)
αm−i .

Definition 2.8.1. Let ζk ∈ A∗ in degree |ζk| = 2k − 1 be characterized by the
identity

λ∗(x) = ψR(x) =
∑
k≥0

x2k ⊗ ζk = x⊗ 1 + x2 ⊗ ζ1 + x4 ⊗ ζ2 + . . .

in H∗(RP∞;F2) ⊗̂A∗. In particular ζ0 = 1.

This is the original notation from [Mil58], but many later authors write ξk
in place of ζk. Some of these then use ζk to denote the so-called conjugate class
χ(ξk) = ξ̄k, which can be confusing.

Lemma 2.8.2. The right A∗-coaction λ = ψR on H∗(RP∞;F2) satisfies

λ∗(xn) =
∑

i1,...,in≥0

x2i1+···+2in ⊗ ζi1 · · · ζin .
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Proof. Clearly

λ∗(xn) = (
∑
k≥0

x2k ⊗ ζk)n =
∑

i1,...,in≥0

x2i1 · · ·x2in ⊗ ζi1 · · · ζin

since λ∗ = ψR is an algebra homomorphism. �

Lemma 2.8.3 ([Swi73]). Let Z =
∑
k≥0 ζk = 1 + ζ1 + ζ2 + . . . . The left

A∗-coaction ν = ψL on H∗(RP∞;F2) is given by

ν(αm) =

m∑
n=0

(Zn)m−n ⊗ αn

for each m ≥ 0, where (Zn)m−n denotes the homogeneous degree (m − n) part of
the n-th power Zn. In particular,

ν(α2k) = ζk ⊗ α1 + · · ·+ 1⊗ α2k

for each k ≥ 0.

Proof. Note that Zn =
∑
i1,...,in≥0 ζi1 · · · ζin so that

(Zn)m−n =
∑

2i1+···+2in=m

ζi1 · · · ζin .

Hence ν(αm) is characterized by

〈θ ⊗ xn, ν(αm)〉 = 〈λ∗(xn), αm ⊗ θ〉

=
∑

i1,...,in≥0

〈x2i1+···+2in , αm〉 · 〈θ, ζi1 · · · ζin〉

=
∑

2i1+···+2in=m

〈θ, ζi1 · · · ζin〉 = 〈θ, (Zn)m−n〉

for all θ ∈ A and n ≥ 0. Comparing coefficients, this implies

ν(αm) =
∑
n

(Zn)m−n ⊗ αn .

�

Lemma 2.8.4. For each k ≥ 0 the class ζk ∈ A∗ is the image of α2k ∈
H2k(RP∞;F2) under the structure homomorphism

H∗+1(RP∞;F2) −→ colim
n

H∗+n(K(F2, n);F2) ∼= A∗

α2k 7−→ ζk .

Proof. The structure homomorphism is A∗-colinear, so the diagram

H∗+1(RP∞;F2)
ν //

��

A∗ ⊗H∗+1(RP∞;F2)

��

A∗
ψ

//

id
))

A∗ ⊗A∗

id⊗ε
��

A∗

commutes. In ν(α2k) the summand ζk ⊗ α1 maps to ζk ∈ A∗, while the other
summands map to 0. Hence the left hand vertical map takes α2k to ζk. �
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Lemma 2.8.5. For admissible sequences I = (i1, . . . , i`),

〈SqI , ζk〉 =

{
1 if I = (2k−1, 2k−2, . . . , 2, 1),

0 otherwise.

Proof. This follows from

SqI(x) =

{
x2k if I = (2k−1, 2k−2, . . . , 2, 1),

0 otherwise

in H∗(RP∞;F2). �

Theorem 2.8.6 (Milnor (1958)).

A∗ ∼= F2[ζk | k ≥ 1]

is a polynomial algebra on the generators ζk for k ≥ 1.

Sketch proof. Milnor shows that evaluation of the Serre–Cartan admissible
basis elements SqI for A on the monomials

ζR = ζr11 ζr22 · · ·

in A∗, for finite length sequences R = (r1, r2, . . . ), gives a triangular, hence invert-
ible, matrix in each degree. Hence the latter form a basis for A∗. �

The basis for A that is dual to the monomial basis for A∗ is called the Mil-
nor basis. It is different from the Serre–Cartan basis, and admits a non-recursive
description of its product, which is convenient for machine calculations (such as
Bruner’s ext).

Theorem 2.8.7 (Milnor (1958)). The bialgebra coproduct

ψ : A∗ −→ A∗ ⊗A∗

is the algebra homomorphism given by

ψ(ζk) =
∑
i+j=k

ζ2j

i ⊗ ζj

= ζk ⊗ 1 + ζ2
k−1 ⊗ ζ1 + · · ·+ ζ2k−1

1 ⊗ ζk−1 + 1⊗ ζk .

Notice how the non-commutativity of the composition product in A is reflected
in the non-cocommutativity of ψ acting on A∗.

Proof. By coassociativity of the right coaction λ∗ on H∗(RP∞;F2) the sum

(λ∗ ⊗ id)λ∗(x) = (λ∗ ⊗ id)
∑
i

x2i ⊗ ζi

=
∑
j

(
∑
i

x2i ⊗ ζi)2j ⊗ ζj =
∑
i,j

x2i+j ⊗ ζ2j

i ⊗ ζj

is equal to

(id⊗ψ)λ∗(x) = (id⊗ψ)
∑
k

x2k ⊗ ζk =
∑
k

xk ⊗ ψ(ζk) .

Comparing the coefficients in A∗ ⊗A∗ of x2k gives the result. �
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To summarize, the combined Steenrod operations on mod 2 (co-)homology
exhibit H∗(X;F2) as a left comodule over the commutative bialgebra

A∗ = F2[ζ1, ζ2, ζ3, . . . ]

with coproduct ψ given by

ψ(ζ1) = ζ1 ⊗ 1 + 1⊗ ζ1
ψ(ζ2) = ζ2 ⊗ 1 + ζ2

1 ⊗ ζ1 + 1⊗ ζ2
ψ(ζ3) = ζ3 ⊗ 1 + ζ2

2 ⊗ ζ1 + ζ4
1 ⊗ ζ2 + 1⊗ ζ3

. . .

We shall later reinterpret

Spec(A∗) = Spec(F2[ζ1, ζ2, ζ3, . . . ])

as the group scheme of automorphisms of the additive formal group law over F2.
((ETC: For p odd, α2pk 7→ τk and βpk 7→ ξk. Requires K(Fp, 1), K(Z, 2) and

maybe K(Fp, 2).))

Theorem 2.8.8 (Milnor (1958)). For p an odd prime,

A∗ ∼= Λ(τk | k ≥ 0)⊗ Fp[ξk | k ≥ 1]

is a free graded commutative algebra on odd degree generators τk and even degree
generators ξk, with |τk| = 2pk − 1 and |ξk| = 2pk − 2. The bialgebra coproduct

ψ : A∗ −→ A∗ ⊗A∗

is the algebra homorphism given by

ψ(τk) = τk ⊗ 1 +
∑
i+j=k

ξp
j

i ⊗ τj

and
ψ(ξk) =

∑
i+j=k

ξp
j

i ⊗ ξj ,

where ξ0 = 1.



CHAPTER 3

Classifying spaces

See [Ste51], [Hus66, Part I], [Seg68] and Hatcher (2003).

3.1. Equivariant topology

Let G be a topological group, with unit element e and multiplication m : G ×
G→ G. A left G-space is a space X with a unital and associative left G-action

λ : G×X −→ X

(g, x) 7−→ gx .

If X has a base point x0, then we assume that gx0 = x0 for all g ∈ G. The G-fixed
points of X is the subspace

XG = {x ∈ X | gx = x for all g ∈ G}

of X, and the G-orbits of X is the quotient space

X/G = X/{x ∼ gx for all x ∈ X, g ∈ G} .

(If one needs to deal with both left and right G-actions, it might be better to write
G\X for this orbit space.) For G-spaces X and Y , a G-map from X to Y is a map
f : X → Y that is G-equivariant, in the sense that

G×X λ //

id×f
��

X

f

��

G× Y λ // Y

commutes, i.e., such that f(gx) = gf(x). We give X ∧ Y the diagonal G-action,
with

g(x ∧ y) = gx ∧ gy ,

and we give Map(X,Y ) the conjugate G-action, with

(gf)(x) = gf(g−1x) .

The homeomorphism

Map(X ∧ Y,Z) ∼= Map(X,Map(Y,Z))

f ↔ f ′ ,

where f(x ∧ y) = f ′(x)(y), is then G-equivariant. Moreover, the G-fixed points
Map(X,Y )G is the space of G-maps f : X → Y .

33
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Definition 3.1.1. A G-CW complex is a G-space X with an exhaustive skele-
ton filtration

∅ = X(−1) ⊂ X(0) ⊂ · · · ⊂ X(n−1) ⊂ X(n) ⊂ · · · ⊂ X

where ∐
αG/Hα × ∂Dn //

φ

��

∐
αG/Hα ×Dn

Φ
��

X(n−1) // X(n)

is a pushout for each n. Here each Hα ⊂ G is a closed subgroup.

We say that G is a free G-CW complex if each Hα = {e} is trivial.

3.2. Principal G-bundles

Definition 3.2.1. Let P be a G-space. The projection

π : P −→ P/G = X

is a principal G-bundle if each point x ∈ X has a neighborhood U such that there
exists a G-equivariant homeomorphism

tU : π−1(U)
∼=−→ U ×G

over U . Here π−1(U) is a sub G-space of P , U × G has the G-action g(u, g′) =
(u, gg′), and the “over U” condition asks that

π−1(U)
tU
∼=

//

π
##

U ×G

pr
||

U

commutes, where pr(u, g′) = u.

We say that tU is a local trivialization of π : P → X over U . Note that the
G-action on P must be free, in the sense that gp = p for p ∈ P only if g = e, since
this is the case for the G-action on U × G. For point set topological reasons we
should assume that the covering of X by the neighborhoods U admits a partition
of unity, but this is no condition for reasonable X.

A map of principal G-bundles from π : P → X to π : Q → Y is a G-map

f̂ : P → Q. We write f : X → Y for the induced map of base spaces, so that the
diagram

P
f̂

//

π

��

Q

π

��

X = P/G
f
// Q/G = Y

commutes. Conversely, given a principal G-bundle π : Q → Y and a map f : X →
Y , let

f∗Q = X ×Y Q = {(x, q) ∈ X ×Q | f(x) = π(q)}



3.3. CLASSIFYING SPACES 35

be the fiber product, with the G-action g(x, q) = (x, gq). The map

f∗π : f∗Q −→ X

(x, q) 7−→ x

is then a principal G bundle, called the pullback of π : Q→ Y . If f is the inclusion
of a subspace, we write Q|X → X for the pullback, then called the restriction.

The local trivializations tU show that locally over X a principal G-bundle
π : P → X and the product bundle pr : X × G → X are isomorphic, but this
will often not be true globally over X.

We write

BunG(X) = {principal G-bundles π : P → P/G ∼= X}/ ∼=

for the (set of) isomorphism classes of principal G-bundles over a fixed base spaceX.
The pullback construction makes this a contravariant functor of X. It is a homotopy
functor, because of the following lemma.

Lemma 3.2.2 ([Ste51, §11]). Let π : Q → X × [0, 1] be a principal G-bundle
over a cylinder. Then the restricted bundles

Q|X × {0} ∼= Q|X × {1}

are isomorphic.

3.3. Classifying spaces

Definition 3.3.1. A principal G-bundle π : P → X is said to be universal if P
is (non-equivariantly) contractible. We write π : EG → BG to denote a universal
principal G-bundle, and call BG a classifying space for the group G.

We postpone the proof that universal principal G-bundles exist. Examples
include R→ S1 for G = Z, S∞ → RP∞ for G = Z/2, S∞ → L∞ for G = Z/p, and
S∞ → CP∞ for G = S1.

Theorem 3.3.2 ([Ste51, §19]). Let π : EG → BG be a universal principal
G-bundle. The natural function

[X,BG]
∼=−→ BunG(X)

[f ] 7−→ [f∗π : f∗EG→ X]

is a bijection for all CW complexes X.

f∗EG
f̂
//

f∗π

��

EG

π

��

X
f
// BG

Proof. We first prove surjectivity. Let π : P → X be a given principal G-
bundle. Then P admits the structure of a free G-CW complex, with P (n) =
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π−1(X(n)). Suppose by induction on n that there is a G-map f̂n−1 : P (n−1) → EG.∐
αG× ∂Dn //

∐
α φα
��

∐
αG×Dn

Φ
��

P (n−1) //

f̂n−1
//

P (n)

f̂n

%%

EG

The obstruction to extending it over the pushout to a G-map f̂n : P (n) → EG is
the α-indexed collection of homotopy classes of G-maps

f̂n−1φα : G× ∂Dn −→ EG .

These correspond bijectively to homotopy classes of (non-equivariant) maps ∂Dn →
EG, all of which lie in the trivial group πn−1(EG). Hence there is no obstruction,

and we obtain a G-map f̂ : P → EG. Let f : X → BG be the map of G-orbits.
Then P ∼= f∗EG over X.

The proof of injectivity is similar, starting with a map f0tf1 : X×{0, 1} → BG
and an isomorphism f∗0π

∼= f∗1π of principal G-bundles over X. This lifts to a G-

map f̂0 t f̂1 : P × {0, 1} → EG, and there is no obstruction to extending it to

a G-map F̂ : P × [0, 1] → EG giving a G-homotopy from f̂0 to f̂1. The map
F : X × [0, 1]→ BG of G-orbits gives the desired homotopy f0 ' f1. �

Corollary 3.3.3. Any two universal principal G-bundles are weakly homotopy
equivalent.

Proof. They represent isomorphic functors. �

Lemma 3.3.4. There is a homotopy equivalence

G ' Ω(BG) ,

so the classifying space BG is a (connected) delooping of G.

Proof. Consider the Puppe fiber sequence

ΩEG −→ ΩBG
'−→ G −→ EG

π−→ BG ,

where EG is contractible by assumption. �

3.4. Fiber bundles

Let F be a fixed space.

Definition 3.4.1. An F -bundle, or a bundle with fiber F , is a map

π : E → X

from the total space E to the base space X, together with local trivializations

tU : π−1(U)
∼=−→ U × F

for all U in an open cover of X. Here tU is a homeomorphism over U .

It is also common to write B (in place of X) for the base space. This is the
origin of the notations EG and BG. Let G be a group acting on F .
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Definition 3.4.2. An F -bundle π : E → X has structure group G if each
composite

(U ∩ V )× F
t−1
V |−→ π−1(U ∩ V )

tU |−→ (U ∩ V )× F
has the form

(x, f) 7−→ (x, gUV (x)f)

for x ∈ U ∩ V , f ∈ F and a map

gUV : U ∩ V −→ G ,

satisfying the cocycle condition

gUV | ◦ gVW | = gUW | : U ∩ V ∩W −→ G

for all U , V , W in the open cover. If G acts effectively on F , so that only the unit
element g = e acts as the identity map, then the cocycle condition is automatically
satisfied.

Example 3.4.3. Every bundle with fiber F admits Homeo(F ) as a structure
group.

Example 3.4.4. A principal G-bundle is a bundle with fiber G and structure
group G, for the left action G×G→ G given by the group multiplication.

Example 3.4.5. Let GLn(R) act by linear transformations on Rn, and let
the orthogonal group O(n) act as the subgroup of Euclidean isometries. An Rn-
bundle with structure group GLn(R) is a real vector bundle of rank n. A choice
of Euclidean inner product on the vector bundle is equivalent to a reduction of the
structure group to O(n).

Example 3.4.6. Let GLn(C) act by linear transformations on Cn, and let the
unitary group U(n) act as the subgroup of Hermitian isometries. A Cn-bundle
with structure group GLn(C) is a complex vector bundle of rank n. A choice of
Hermitian inner product on the vector bundle is equivalent to a reduction of the
structure group to U(n).

Definition 3.4.7. Let F be a G-space. To each principal G-bundle π : P → X
we associate an F -bundle π : E → X with structure group G by setting

E = (P × F )/G

and π : [p, f ] = π(p). Here G acts diagonally on P × F , so

(p, f) ∼ (gp, gf)

are identified in E for all p ∈ P , f ∈ F and g ∈ G. If tU : π−1(U) ∼= U × G is a
local trivialization for the principal G-bundle, then

(tU × F )/G : π−1(U)
∼=−→ (U ×G× F )/G ∼= U × F

is a local trivialization over U for the associated F -bundle.

If we view the left G-space P as a right G-space via the action through the
group inverse, defined by pg = g−1p, then

E = P ×G F
where ×G denotes the balanced product, given by the equivalence classes with
respect to

(pg, f) ∼ (p, gf) .
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Let

BunF,G(X) = {F -bundles π : E → X with structure group G}/ ∼=
be the set of isomorphism classes of F -bundles over X with structure group G.

Proposition 3.4.8. Let F be a G-space. The associated bundle functor defines
a natural bijection

BunG(X)
∼=−→ BunF,G(X)

[π : P → X] 7−→ [π : E = P ×G F → X] .

Hence BG is also a classifying space for F -bundles with structure group G.

Example 3.4.9. The inclusion O(n) → GLn(R) is a homotopy equivalence,
with homotopy inverse given by the Gram–Schmidt process. Hence BO(n) →
BGLn(R) is also a homotopy equivalence, and the classification of principal O(n)-
bundles is the same as the classification of principal GLn(R)-bundles. Hence the
classification of real vector bundles over a CW complex X is the same as the
classification of Euclidean vector bundles, i.e., real vector bundles with a continuous
choice of Euclidean inner product on each fiber. We write

Vectn(X) = VectRn(X) = BunRn,O(n)(X)

for the set of isomorphism classes of Rn-bundles over X, which is in bijective cor-
respondence with

BunO(n)(X) = [X,BO(n)] .

Example 3.4.10. The inclusion U(n) → GLn(C) is a homotopy equivalence,
with homotopy inverse given by the Gram–Schmidt process. Hence BU(n) →
BGLn(C) is also a homotopy equivalence, and the classification of principal U(n)-
bundles is the same as the classification of principal GLn(C)-bundles. Hence the
classification of complex vector bundles over a CW complex X is the same as
the classification of Hermitian vector bundles, i.e., complex vector bundles with a
continuous choice of Hermitian inner product on each fiber. We write

Vectn(X) = VectCn(X) = BunCn,U(n)(X)

for the set of isomorphism classes of Cn-bundles over X, which is in bijective cor-
respondence with

BunU(n)(X) = [X,BU(n)] .

3.5. Direct sum and tensor product of vector bundles

Let ξ be an Rn-bundle π : E → X and let η be an Rm-bundle π : F → Y . Their
product bundle, or external direct sum, is the Rn+m-bundle ξ × η = ξ⊕̂η given by

π × π : E × F −→ X × Y .

The fiber above (x, y) ∈ X×Y is the direct sum of vector spaces Ex⊕Fy = Ex×Fy.
The external tensor product of ξ and η is the Rnm-bundle ξ⊗̂η with fiber Ex⊗R Fy
over (x, y).

If X = Y we can pull ξ× η back along ∆: X → X ×X, to obtain the Whitney
sum, or internal direct sum,

ξ ⊕ η = ∆∗(ξ × η)
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with fiber Ex⊕Fx over x ∈ X. We also restrict ξ⊗̂η along the diagonal, giving the
(internal) tensor product ξ ⊗ η with fiber Ex ⊗ Fx over x.

Let ξ be an Cn-bundle π : E → X and let η be an Cm-bundle π : F → Y . Their
product bundle, or external direct sum, is the Cn+m-bundle ξ × η = ξ⊕̂η given by

π × π : E × F −→ X × Y .
The fiber above (x, y) ∈ X×Y is the direct sum of vector spaces Ex⊕Fy = Ex×Fy.
The external tensor product of ξ and η is the Cnm-bundle ξ⊗̂η with fiber Ex⊗C Fy
over (x, y).

If X = Y we can pull ξ× η back along ∆: X → X ×X, to obtain the Whitney
sum, or internal direct sum,

ξ ⊕ η = ∆∗(ξ × η)

with fiber Ex⊕Fx over x ∈ X. We also restrict ξ⊗̂η along the diagonal, giving the
(internal) tensor product ξ ⊗ η with fiber Ex ⊗ Fx over x.

These operations induce natural pairings of isomorphism classes

× = ⊕̂ : Vectn(X)×Vectm(Y ) −→ Vectn+m(X × Y )

⊗̂ : Vectn(X)×Vectm(Y ) −→ Vectnm(X × Y )

with internal variants

⊕ : Vectn(X)×Vectm(Y ) −→ Vectn+m(X)

⊗ : Vectn(X)×Vectm(Y ) −→ Vectnm(X) .

In the real case these are classified by maps

µ⊕n,m : BO(n)×BO(m) −→ BO(n+m)

µ⊗n,m : BO(n)×BO(m) −→ BO(nm) .

In the complex case they are classified by maps

µ⊕n,m : BU(n)×BU(m) −→ BU(n+m)

µ⊗n,m : BU(n)×BU(m) −→ BU(nm) .

Their effect on (co-)homology will be studied later.

3.6. Geometric realization of categories

We will construct the spaces BG and EG as the “geometric picture” of certain
categories BG and EG. Following [Seg68] this will be encoded using simplicial
methods, which generalize the classical study of simplicial complexes, and the par-
tial generalization called ∆-complexes in [Hat02]. These ideas go back to the
Eilenberg–MacLane bar construction, where “bar” refers to the notation [g|f ]a ap-
pearing below.

Given a (small) category C, we shall form a space |NC| called its geometric
realization. We start with a point []a for each object a on C. We view each
morphism f : a→ b in C as a relation between a and b, and exhibit this by adding
an edge [f ]a to |NC| connecting []a and []b.

[]b []a
[f ]a
oo

(Note that this geometric edge can be traversed in either direction, even if the
categorical morphism is not an isomorphism.) If g : b → c is a second morphism,



40 3. CLASSIFYING SPACES

so that gf : a→ c is defined, we now have the boundary of a triangle, with vertices
[]a, []b and []c and edges [f ]a, [g]b and [gf ]a, and we record this in our space by
filling in any such triangle with a 2-simplex denoted [g|f ]a.

[]a

[f ]a

��

[gf ]a

��

[]c []b
[g]b

oo

Given a third morphism h : c → d, associativity of composition in C implies that
we have assembled the boundary of a tetrahedron. We fill this in with a 3-simplex,
denoted [h|g|f ]a.

[]a

[f ]a

��
[gf ]a

��

[hgf ]a

��

[]b

[g]b

��

[hg]b

��

[]d []c
[h]c

oo

In the definition of a category, coherence for the cartesian product of sets ensures
that no further axioms are required regarding q-fold compositions of morphisms
for q ≥ 4, but in our geometric picture we need to make these higher coherences
explicit. Therefore, for each q ≥ 0 and each sequence

c0
f1←− c1

f2←− . . .←− cq−1
fq←− cq

of q composable morphisms in C we add a q-simplex denoted

σ = [f1|f2| . . . |fq]cq
to our space |NC|. It is to be glued to the previously constructed union of simplices
of dimensions < q by identifying the i-th face, opposite to the i-th vertex, with the
(q − 1)-simplex

di(σ) = [f1| . . . |fifi+1| . . . |fq]cq
associated to the (q − 1)-tuple of morphisms

c0
f1←− . . .←− ci−1

fifi+1←− ci+1 ←− . . .
fq←− cq

obtained by deleting the object ci and composing the morphisms fi+1 and fi. Here
0 < i < q. In the case with i = 0 no composition is required; we simply forget f1.

d0(σ) = [f2| . . . |fq]cq
In the case with i = q we forget fq and replace cq with cq−1 as the “initial source”
object.

dq(σ) = [f1| . . . |fq−1]cq−1

We also want to take the unitality property of the identity morphisms into account,
by collapsing the edge [id]a associated to id: a→ a, which so far appears as a loop
from []a to itself, to a single point. More generally, if fj+1 = id in a chain

c0
f1←− . . . fj←− cj

id←− cj+1
fj+2←− . . . fq←− cq ,
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for some 1 ≤ j + 1 ≤ q, we squash the q-simplex

sj(τ) = [f1| . . . |fj | id |fj+2| . . . |fq]cq

down to the (q − 1)-simplex

τ = [f1| . . . |fj |fj+2| . . . |fq]cq

associated to

c0
f1←− . . . fj←− (cj = cj+1)

fj+2←− . . . fq←− cq .
The resulting space is the geometric realization |NC| of the category C.

To formalize the construction above, we let

[q] = {0 < 1 < · · · < q − 1 < q}

be the linearly ordered set with (q+ 1) elements. (This is a different notation than
the bar notation []a, [f ]a, [f |g]a, . . . used just above.) We view this as a category,
with a unique morphism i ← j for each i ≤ j. A functor σ : [q] → C is then a
diagram

c0 ← c1 ← · · · ← cq−1 ← cq

in C, corresponding precisely to the q-simplices in our construction. Let α : [p]→ [q]
be any order-preserving function, meaning that α(i) ≤ α(j) for all i ≤ j. In terms
of categories, this is the same as a functor from [p] to [q]. Right composition with
α takes a q-simplex σ : [q]→ C as above to the p-simplex σα : [p]→ C given by the
diagram

cα(0) ← cα(1) ← · · · ← cα(p−1) ← cα(p) .

When α equals the (order-preserving) injection

δi : [q − 1] −→ [q]

that does not contain i in its image, this encodes the deletion-of-object operation

σ 7−→ di(σ) = (δi)∗(σ)

that specified how the i-th face of σ was to be identified with a (q − 1)-simplex.
When α equals the (order-preserving) surjection

σj : [q] −→ [q − 1]

that maps j and j + 1 to the same element, it encodes the insertion-of-identity
operation

τ 7−→ sj(τ) = (σj)∗(τ)

that specified how q-simplices involving identity morphisms were to be flattened
down to (q − 1)-simplices. Any order-preserving α : [p] → [q] is a composition of
these face (δi) and degeneracy (σj) operators, and the former give a convenient
formalization of the composition laws satisfied by the latter.

... [2]
σ0 //

σ1 //
[1]

δ0
oo

δ1oo

δ2
oo

σ0 // [0]
δ0
oo

δ1
oo
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3.7. Simplicial sets

As the notation suggests, the geometric realization |NC| of a category is formed
in two steps. First we form a simplicial setX = NC called the nerve of C. Thereafter
we form the geometric realization |X| of this simplicial set. We discuss these two
steps in turn. See [May67] and [GJ99] for treatments of simplicial sets.

Definition 3.7.1. Let ∆ be the category with one object

[q] = {0 < 1 < · · · < q − 1 < q}

for each integer q ≥ 0, and morphisms

∆([p], [q]) = {order-preserving α : [p]→ [q]} .

Definition 3.7.2. A simplicial set is a (contravariant) functor

X : ∆op −→ Set

[q] 7−→ Xq

(α : [p]→ [q]) 7−→ (α∗ : Xq → Xp) .

We call Xq the set of q-simplices in X, and sometimes write X• to indicate the
position of the simplicial degree. A map of simplicial sets from X to Y is a natural
transformation

f : X −→ Y

fq : Xq −→ Yq

of such functors. We write sSet for the category of simplicial sets.
More generally, a simplicial object in a category E is a functor

X : ∆op −→ E ,

and a map of simplicial objects is a natural transformation. We write sE for the
category of simplicial objects in E .

Definition 3.7.3. The nerve of a category C is the simplicial set NC = N•C
with q-simplices

NqC = Fun([q], C)

= {c0
f1←− c1 ←− . . .←− cq−1

fq←− cq} .

For each α : [p]→ [q] the simplicial operator α∗ : NqC → NpC is given by composi-
tion

α∗ : Fun([q], C) −→ Fun([p], C)
σ 7−→ α∗(σ) = σα .

Let Cat be the category of (small) categories and functors. We can view ∆ as
the full subcategory of Cat generated by the objects [q] for q ≥ 0. The nerve NC
is then the restriction to ∆op of the functor Fun(−, C) : Catop → Set represented
by C.

Let F : C → D be a functor of categories. The induced map of nerves

NF : NC −→ ND
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has q-th component given by the composition

NqF = F∗ : Fun([q], C) −→ Fun([q],D)

σ 7−→ F∗(σ) = Fσ .

Definition 3.7.4.

∆q = {(t0, t1, . . . , tq) |
q∑
i=0

ti = 1, each ti ≥ 0}

be the standard geometric q-simplex in Rq+1, for each q ≥ 0, spanned by the vertices
v0, . . . , vq. For each α : [p]→ [q] in ∆ let

α∗ : ∆p −→ ∆q

vi 7−→ vα(i)

be the affine linear map taking the i-th vertex to the α(i)-th vertex. If α = δi, this
is the inclusion of the i-th face. If α = σj , this is the projection that collapses the
edge [vj−1, vj ] to a point.

Let U denote the category of (unbased) topological spaces. The rule [q] 7→ ∆q

defines a (covariant) functor ∆• : ∆ → U , which is an example of a cosimplicial
space.

Definition 3.7.5. The geometric realization of a simplicial set X is the quo-
tient space

|X| =
∐
q≥0

Xq ×∆q/ ∼

where

(α∗(x), ξ) ∼ (x, α∗(ξ))

for all α : [p]→ [q], x ∈ ∆q and ξ ∈ ∆p. A map f : X → Y of simplicial sets defines
a map

|f | : |X| −→ |Y |
[x, ξ] 7−→ [fq(x), ξ]

for all q ≥ 0, x ∈ Xq and ξ ∈ ∆q. Geometric realization defines a functor

| − | : sSet −→ U .

Proposition 3.7.6. Let X be a simplicial set. The geometric realization |X|
is a CW complex, with n-skeleton

|X|(n) =

n∐
q=0

Xq ×∆q/ ∼

and one n-cell with characteristic map

Φx : Dn ∼= ∆n −→ |X|(n)

ξ 7−→ [x, ξ]

for each non-degenerate n-simplex x, i.e., each x ∈ Xn not of the form sj(y) for
any 1 ≤ j ≤ n− 1, y ∈ Xn−1.
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Corollary 3.7.7. The geometric realization |NC| of the nerve of a category C
is a CW complex, with one q-cell [f1| . . . |fq]cq for each chain of q composable non-
identity morphisms

c0
f1←− . . . fq←− cq

in C.

Example 3.7.8. The nerve of C = [1] = {0 < 1} has q-simplices

Nq[1] = Fun([q], [1]) = ∆([q], [1]) .

The 0-simplices are given by the objects 0 and 1, corresponding to δ1 : [0] → [1]
and δ0 : [0] → [1], respectively. The only non-degenerate 1-simplex is given by the
morphism

0←− 1 ,

corresponding to id: [1] → [1]. Hence the geometric realization |N [1]| is ∆1 =
[v0, v1], with the CW structure with 0-skeleton {v0, v1}. More generally, the geo-
metric realization of (the nerve) of C = [q] is ∆q.

3.8. Singular simplicial sets

Definition 3.8.1. Let Y be a space. The singular simplical set sing(Y ) has
set of q-simplices

sing(Y )q = {maps σ : ∆q −→ Y }
equal to the set of singular q-simplices in Y . The simplicial operators are

α∗ : sing(Y )q −→ sing(Y )p

σ 7−→ α∗(σ) = σα∗ ,

where σα∗ is the composite

∆p α∗−→ ∆q σ−→ Y .

Proposition 3.8.2. |− | is left adjoint to sing, meaning that there is a natural
bijection

U(|X|, Y ) ∼= sSet(X, sing(Y ))

for simplicial sets X and topological spaces Y . The adjunction counit

ε : | sing(Y )| ∼−→ Y

is a weak homotopy equivalence, and provides a functorial CW approximation to
any space Y .

3.9. Products

In addition to accounting for the unitality of identity morphisms, the degener-
acy operators σj in ∆ are also needed for | − | to respect products. The product of
two simplicial sets X and Y is given by

(X × Y )q = Xq × Yq
with simplicial operators α∗ × α∗.

Theorem 3.9.1 ([Mil57]). The natural map

|X × Y |
∼=−→ |X| × |Y |

is a homeomorphism.
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Sketch proof. The key case to check is X = N [p] and Y = N [q], in which
case X × Y = N([p]× [q]), where [p]× [q] has the product partial ordering.

(0, q)

��

(p, q)oo

{{ ��

(0, 0) (p, 0)oo

Passing to classifying spaces, |N([p]× [q])| presents the product ∆p×∆q = |N [p]|×
|N [q]| as a union of ∆p+q-simplices, indexed by the

(
p+q
p

)
shuffle permutations of

type (p, q). �

Let C and D be categories, F,G : C → D functors, and θ : F → G a natural
transformation. We can view θ as a functor

H : C × [1] −→ D
(c, 0) 7−→ G(c)

(c, 1) 7−→ F (c)

where

H(f, 0) = G(f) : G(a)→ G(b)

H(f, 1) = F (f) : F (a)→ F (b)

H(c, 0 < 1) = θc : F (c)→ G(c)

for f : a→ b and c in C.

Lemma 3.9.2. Let θ : F → G be a natural transformation of functors F,G : C →
D. The composite

NC ×N [1] ∼= N(C × [1])
NH−→ ND ,

with H as above, induces a homotopy

|NC| × [0, 1] ∼= |NC| × |N [1]| ∼= |NC ×N [1]| |NH|−→ |ND|

from |NF | : |NC| → |ND| to |NG| : |NC| → |ND|.

Notice that even if we only have a natural transformation in one direct, the
resulting homotopy goes both ways, in the sense that it can be viewed as a path
that can be reversed.

Corollary 3.9.3. Suppose that F : C → D and G : D → C are mutually in-
verse equivalences of categories, or more generally form an adjoint pair. Then
|NF | : |NC| → |ND| and |NG| : |ND| → |NC| are mutually inverse homotopy
equivalences. Hence equivalent categories have homotopy equivalent geometric real-
izations.

Proof. The adjunction unit η : id → GF and counit ε : FG → id induce
homotopies id ' |NG| ◦ |NF | and |NF | ◦ |NG| ' id. �
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3.10. The bar construction

Definition 3.10.1. Let G be a topological group and X a left G-space. We
view each point x ∈ X as an object in a topological category C = B(G,X), and
each pair (g, x) ∈ G×X as a morphism

gx
g←− x .

Hence

obj C = X

mor C = G×X .

The source and target rules are

s, t : mor C −→ obj C
s(g, x) = x

t(g, x) = gx ,

while the identity rule is

id : obj C −→ mor C
id(x) = (e, x) .

The composition of two morphisms

ghx
g←− hx h←− x

is

ghx
gh←− x ,

so the composition rule is

◦ : mor C ×obj C mor C −→ mor C
(g, hx) ◦ (h, x) = (gh, x) .

Example 3.10.2. When X = {x0} is a one-point space, we can omit x ∈ X
from the notation. The category BG = B(G, {x0}) has a single object, and the
group G as the morphism space

BG(x0, x0) = G .

All morphisms are automorphisms of x0.

x0

h
||

g

--

gh

FF

Example 3.10.3. When X = G with left G-action given by the group mul-
tiplication, the category EG = B(G,G) has object space G and there is a unique
morphism

h
hg−1

←− g

from any object g to any other object h. Note that there the right action of G on
X = G, also given by the group multiplication, defines a right action of G on the
category EG.
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Lemma 3.10.4. The category EG is equivalent to the category E{e}, i.e., the
terminal category with only one object {e} and only one morphism id : e→ e.

Proof. There is a (unique) natural transformation θ from the composite func-
tor

EG −→ E{e} ⊂ EG
to the identity of EG, with components

θg : e
g−→ g .

�

The nerve NB(G,X) is the simplicial space with q-simplices

NqB(G,X) = Gq ×X
= {[g1| . . . |gq]x | g1, . . . , gq ∈ G, x ∈ X}

the space of diagrams

g1g2 · · · gqx
g1←− g2 · · · gqx

g2←− . . . gq−1←− gqx
gq←− x .

Example 3.10.5. When X = {x0}, the nerve NBG is the simplicial space with
q-simplices

NqBG = Gq

= {[g1| . . . |gq] | g1, . . . , gq ∈ G}
viewed as a chain of q automorphisms of x0.

Example 3.10.6. When X = G, the nerve NEG is the simplicial space with
q-simplices

NqEG = Gq ×G
= {[g1| . . . |gq]g | g1, . . . , gq, g ∈ G} .

The right G-action on X = G commutes with the simplicial structure maps, and
makes this a simplicial right G-space. The right action is given by

NqEG×G −→ NqEG
([g1| . . . |gq]g, k) 7−→ [g1| . . . |gq]gk

The right G-action is free, in the sense that [g1| . . . |gq]g = [g1| . . . |gq]gk only if
k = e.

Lemma 3.10.7. There is a natural isomorphism of simplicial spaces

NEG×G X ∼= NB(G,X) .

In particular, (NEG)/G ∼= NBG.

Definition 3.10.8. Let X be a left G-space. The bar construction

B(G,X) = |B(G,X)|
is the geometric realization of (the nerve of) the category B(G,X). When X = ∗
is a one-point space we call

BG = B(G, ∗)
the (bar construction of the) classifying space of G. When X = G, the bar con-
struction

EG = B(G,G)
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is contractible. The right G-action on X induces a free right G-action on EG, and
there is a natural homeomorphism

EG×G X ∼= B(G,X) .

In particular, EG/G = EG×G ∗ ∼= BG, and the projection

π : EG −→ BG

is a universal principal G-bundle.

To be precise, some mild topological hypotheses on (G, e) are required for
EG → BG to be locally trivial. It suffices that G is a CW complex with cellular
multiplication. If desired, the right G-action on EG can be converted to a left
G-action, via the group inverse.

Example 3.10.9. If G and X are discrete, the bar construction B(G,X) is a
CW complex with one q-cell for each

[g1| . . . |gq]x ∈ Gq ×X
with gi 6= e for each 1 ≤ i ≤ q. In particular the classifying space BG is a CW
complex with one q-cell for each

[g1| . . . |gq] ∈ Gq

with gi 6= e for each 1 ≤ i ≤ q, and EG is a free G-CW complex with one G-
equivariant q-cell covering each q-cell in BG.

((Orbits and homotopy orbits.))
((Čech covers, hypercovers.))



CHAPTER 4

Characteristic classes

See [Hus66, Part III], [MS74], [May99, Ch. 23] and Hatcher (2003).

4.1. Characteristic classes for line bundles

Definition 4.1.1. Let G be a topological group and R an abelian group. A
fixed cohomology class

c ∈ H∗(BG;R)

specifies an R-valued characteristic class for principal G-bundles, or for F -fiber
bundles with structure group G. Writing ξ for π : P → X or π : E → X, this is the
natural transformation

BunG(X) ∼= [X,BG] −→ H∗(X;R)

ξ ↔ [f ] 7−→ f∗(c) = c(ξ) ,

assigning to ξ the cohomology class c(ξ) = f∗(x), where

f∗ : H∗(BG;R) −→ H∗(X;R)

is the homomorphism induced by the classifying map f : X → BG.

Example 4.1.2. For G = O(1) with EO(1) ' S∞ and BO(1) ' RP∞ '
K(F2, 1) each class

xn ∈ Hn(RP∞;F2)

defines an F2-valued characteristic class for real line bundles. The case n = 1 is
most interesting, when x = ι1 is the fundamental class, so that

Vect1(X) ∼= [X,BO(1)]
∼=−→ H1(X;F2)

[f ] 7−→ f∗(x)

is a natural bijection. Here Vect1(X) = VectR1 (X) = BunR,O(1)(X) ∼= BunO(1)(X)
denotes the set of isomorphism classes of real line bundles over X. This character-
istic class is called the first Stiefel–Whitney class, and usually denoted

w1(ξ) ∈ H1(X;F2) .

The bijection shows that real line bundles are classified up to isomorphism by the
first Stiefel–Whitney class.

Lemma 4.1.3. The fiberwise tensor product ξ⊗ η of two line bundles over X is
again a line bundle over X. The first Stiefel–Whitney classes satisfy

w1(ξ ⊗ η) = w1(ξ) + w1(η)

in H1(X;F2).

49
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Proof. Let γ1 = γ1
R denote the tautological line bundle

E(γ1) = S∞ ×O(1) R −→ RP∞

with w1(γ1) = x, and let ε1 = ε1R : R∞ × R → RP∞ denote the trivial line bundle
with w1(ε1) = 0. Then the external tensor product

γ1⊗̂γ1 = pr∗1(γ1)⊗ pr∗2(γ1)

over RP∞ × RP∞ is classified by a map

m : RP∞ × RP∞ −→ RP∞ .

In terms of the bar construction, m is the map

BO(1)⊗BO(1) ∼= B(O(1)×O(1)) −→ BO(1)

induced by the (commutative) group multiplication O(1) × O(1) → O(1). Since
γ1 ⊗ ε1 ∼= γ1 ∼= ε1 ⊗ γ1 it follows that m restricted to RP∞ × ∗, or to ∗ × RP∞, is
homotopic to the identity. This implies that

m∗(x) = x× 1 + 1× x ∈ H1(RP∞ × RP∞;F2) = F2{x× 1, 1× x} .

Let f : X → RP∞ and g : X → RP∞ classify ξ and η, respectively. Then ξ ⊗ η is
classified by

X
∆−→ X ×X f×g−→ RP∞ × RP∞ m−→ RP∞ ,

so

w1(ξ ⊗ η) = ∆∗(f∗ × g∗)m∗(x) = f∗(x) ∪ 1 + 1 ∪ g∗(x) = w1(ξ) + w1(η) .

�

Example 4.1.4. For G = U(1) with EU(1) ' S∞ and BU(1) ' CP∞ '
K(Z, 2) each class

yn ∈ H2n(CP∞) = H2n(CP∞;Z)

defines a Z-valued characteristic class for real line bundles. The case n = 1 is most
interesting, when y = ι2 is the fundamental class, so that

Vect1(X) ∼= [X,BU(1)]
∼=−→ H2(X) = H2(X;Z)

[f ] 7−→ f∗(y)

is a natural bijection. Here Vect1(X) = VectC1 (X) = BunC,U(1)(X) ∼= BunU(1)(X)
denotes the set of isomorphism classes of complex line bundles over X. This char-
acteristic class is called the first Chern class, and usually denoted

c1(ξ) ∈ H2(X) .

The bijection shows that complex line bundles are classified up to isomorphism by
the first Chern class.

Lemma 4.1.5. The fiberwise tensor product ξ⊗ η of two line bundles over X is
again a line bundle over X. The first Chern classes satisfy

c1(ξ ⊗ η) = c1(ξ) + c1(η)

in H2(X).
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Proof. Let γ1 = γ1
C denote the tautological line bundle

E(γ1) = S∞ ×U(1) C −→ CP∞

with c1(γ1) = y, and let ε1 = ε1C : C∞ × C → CP∞ denote the trivial line bundle
with c1(ε1) = 0. Then the external tensor product

γ1⊗̂γ1 = pr∗1(γ1)⊗ pr∗2(γ1)

over CP∞ × CP∞ is classified by a map

m : CP∞ × CP∞ −→ CP∞ .

In terms of the bar construction, m is the map

BU(1)⊗BU(1) ∼= B(U(1)× U(1)) −→ BU(1)

induced by the (commutative) group multiplication U(1) × U(1) → U(1). Since
γ1 ⊗ ε1 ∼= γ1 ∼= ε1 ⊗ γ1 it follows that m restricted to CP∞ × ∗, or to ∗ × CP∞, is
homotopic to the identity. This implies that

m∗(y) = y × 1 + 1× y ∈ H2(CP∞ × CP∞) = Z{y × 1, 1× y} .
Let f : X → CP∞ and g : X → CP∞ classify ξ and η, respectively. Then ξ ⊗ η is
classified by

X
∆−→ X ×X f×g−→ CP∞ × CP∞ m−→ CP∞ ,

so

c1(ξ ⊗ η) = ∆∗(f∗ × g∗)m∗(y) = f∗(y) ∪ 1 + 1 ∪ g∗(y) = c1(ξ) + c1(η) .

(There is a choice of sign convention here, namely whether c1(γ1) is y or −y, which
is related to whether the fundamental class of CPn is dual to (−y)n or yn.) �

4.2. Characteristic classes for real vector bundles

Fix n ≥ 0. The Stiefel space

Vn(R∞) = {(v1, . . . , vn) | vi ∈ R∞, 〈vi, vj〉 = δij}
of orthogonal n-frames in R∞ is contractible. Viewing it as the space of isometries
v : Rn → R∞ it has a free (right) O(n)-action (v,A) 7→ vA given by precomposition
by any isometry A : Rn → Rn. The orbit space

Grn(R∞) = Vn(R∞)/O(n) = {V ⊂ R∞ | dimR(V ) = n}
is the Grassmannian of n-dimensional real subspaces of R∞. Hence

π : Vn(R∞) −→ Grn(R∞)

(v1, . . . , vn) −→ R{v1, . . . , vn}
is a universal principal O(n)-bundle, and Grn(R∞) ' BO(n) is a classifying space
for O(n)-bundles, hence also for GLn(R)-bundles, Rn-vector bundles and Euclidean
Rn-vector bundles. The associated Rn-bundle

π : Vn(R∞)×O(n) Rn −→ Grn(R∞)

is isomorphic to the tautological vector bundle γn = γnR , with total space

E(γn) = {(V, x) | V ∈ Grn(R∞), x ∈ V } .
When n = 1, Gr1(RP∞) = RP∞ classifies real line bundles, as discussed before.

The R-valued characteristic classes of real vector bundles correspond to ele-
ments of H∗(BO(n);R) ∼= H∗(Grn(R∞);R). This is best understood for R = F2
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and R = Z[1/2], separately, and we focus on the first of these. Let O(1)n ⊂ O(n)
be the diagonal subgroup, which is elementary abelian of order 2n. The inclusion
induces a map

in : (RP∞)n ' BO(1)n −→ BO(n) ' Grn(R∞)

classifying the external direct sum of n real line bundles. In other words,

i∗n(γn) ∼= γ1 × · · · × γ1

with n copies of γ1. We obtain an induced homomorphism

i∗n : H∗(BO(n);F2) −→ H∗(BO(1);F2) ∼= F2[x]⊗ · · · ⊗ F2[x] ∼= F2[x1, . . . , xn] ,

where we have used the Künneth theorem, there are n copies of H∗(RP∞;F2) =
F2[x], and

xi = 1⊗ · · · ⊗ 1⊗ x⊗ 1⊗ · · · ⊗ 1

with x in the i-th entry, for 1 ≤ i ≤ n. Each x and xi has cohomological degree 1.
Each permutation σ ∈ Σn in the symmetric group on n letters acts on O(1)n by
permuting the n factors. (This is the Weyl group action for O(1)n inside O(n),
since the normalizer of O(1)n is Σn n O(1)n = Σn o O(1) ⊂ O(n), where we view
Σn as a group of permutation matrices, within O(n).) The induced map

σ : (RP∞)n ' BO(1)n → BO(1)n ' (RP∞)n

also acts by permuting the factors. Hence

σ∗(ξ1 × · · · × ξn) ∼= ξσ(1) × · · · × ξσ(n)

for any n line bundles ξ1, . . . , ξn. In particular, when ξ1 = · · · = ξn = γ1, we get an
isomorphism

σ∗(γ1 × · · · × γ1) ∼= γ1 × · · · × γ1 .

This means that the triangle

BO(1)n
σ //

in %%

BO(1)n

inyy

BO(n)

commutes up to homotopy, so that

H∗(BO(n);F2)

i∗n

vv

i∗n

((

H∗(BO(1);F2)
σ∗ // H∗(BO(1);F2)

commutes. In other words, i∗n factors through the Σn-invariants

H∗(BO(n);F2)
ĩ∗n−→ H∗(BO(1)n;F2)Σn ∼= F2[x1, . . . , xn]Σn ⊂ F2[x1, . . . , xn] .

These invariants are the symmetric polynomials in x1, . . . , xn.

Definition 4.2.1. For 1 ≤ k ≤ n let

ek(x1, . . . , xn) =
∑

1≤i1<···<ik≤n

xi1 · · ·xik
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be the k-th elementary symmetric polynomial. (Milnor and Stasheff write σk in
place of ek.) If each xi has degree 1, then ek(x1, . . . , xn) has degree k. In par-
ticular, e1(x1, . . . , xn) = x1 + · · · + xn, e2(x1, . . . , xn) = x1x2 + · · · + xn−1xn and
en(x1, . . . , xn) = x1 · · ·xn.

The following theorem on symmetric polynomials is classical.

Theorem 4.2.2.

F2[e1, . . . , en] = F2[x1, . . . , xn]Σn .

where ek = ek(x1, . . . , xn).

Theorem 4.2.3 ([Bor53]).

ĩ∗n : H∗(BO(n);F2)
∼=−→ F2[x1, . . . , xn]Σn ∼= F2[e1, . . . , en]

is an isomorphism.

Definition 4.2.4. For 1 ≤ k ≤ n the k-th Stiefel–Whitney class

wk ∈ Hk(BO(n);F2)

is characterized by

i∗n(wk) = ek(x1, . . . , xn) .

Hence

H∗(BO(n);F2) = F2[w1, . . . , wn]

with wk in degree k.

4.3. Characteristic classes for complex vector bundles

Fix n ≥ 0. The Stiefel space

Vn(C∞) = {(v1, . . . , vn) | vi ∈ C∞, 〈vi, vj〉 = δij}

of unitary n-frames in C∞ is contractible. Viewing it as the space of isometries
v : Cn → C∞ it has a free (right) U(n)-action (v,A) 7→ vA given by precomposition
by any isometry A : Cn → Cn. The orbit space

Grn(C∞) = Vn(C∞)/U(n) = {V ⊂ C∞ | dimC(V ) = n}

is the Grassmannian of n-dimensional complex subspaces of C∞. Hence

π : Vn(C∞) −→ Grn(C∞)

(v1, . . . , vn) −→ C{v1, . . . , vn}

is a universal principal U(n)-bundle, and Grn(C∞) ' BU(n) is a classifying space
for U(n)-bundles, hence also for GLn(C)-bundles, Cn-vector bundles and Hermitian
Cn-vector bundles. The associated Cn-bundle

π : Vn(C∞)×U(n) Cn −→ Grn(C∞)

is isomorphic to the tautological vector bundle γn = γnC , with total space

E(γn) = {(V, x) | V ∈ Grn(C∞), x ∈ V } .

When n = 1, Gr1(CP∞) = CP∞ classifies complex line bundles, as discussed
before.
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The integer valued characteristic classes of complex vector bundles correspond
to elements of H∗BU(n) ∼= H∗Grn(C∞). Let U(1)n ⊂ U(n) be the diagonal torus.
The inclusion induces a map

in : (CP∞)n ' BU(1)n −→ BU(n) ' Grn(C∞)

classifying the external direct sum of n complex line bundles. In other words,

i∗n(γn) ∼= γ1 × · · · × γ1

with n copies of γ1. We obtain an induced homomorphism

i∗n : H∗BU(n) −→ H∗BU(1) ∼= Z[y]⊗ · · · ⊗ Z[y] ∼= Z[y1, . . . , yn] ,

where we have used the Künneth theorem, there are n copies of H∗(CP∞) = Z[y],
and

yi = 1⊗ · · · ⊗ 1⊗ y ⊗ 1⊗ · · · ⊗ 1

with y in the i-th entry, for 1 ≤ i ≤ n. Each y and yi has cohomological degree 2.
Each permutation σ ∈ Σn in the symmetric group on n letters acts on U(1)n by
permuting the n factors. (This is the Weyl group action for U(1)n inside U(n),
since the normalizer of U(1)n is Σn n U(1)n = Σn o U(1) ⊂ U(n), where we view
Σn as a group of permutation matrices, within U(n).) The induced map

σ : (CP∞)n ' BU(1)n → BU(1)n ' (CP∞)n

also acts by permuting the factors. Hence

σ∗(ξ1 × · · · × ξn) ∼= ξσ(1) × · · · × ξσ(n)

for any n line bundles ξ1, . . . , ξn. In particular, when ξ1 = · · · = ξn = γ1, we get an
isomorphism

σ∗(γ1 × · · · × γ1) ∼= γ1 × · · · × γ1 .

This means that the triangle

BU(1)n
σ //

in %%

BU(1)n

inyy

BU(n)

commutes up to homotopy, so that

H∗BU(n)

i∗n

xx

i∗n

&&

H∗BU(1)
σ∗ // H∗BU(1)

commutes. In other words, i∗n factors through the Σn-invariants

H∗BU(n)
ĩ∗n−→ H∗(BU(1)n)Σn ∼= Z[y1, . . . , yn]Σn ⊂ Z[y1, . . . , yn] .

These invariants are the symmetric polynomials in y1, . . . , yn.

Definition 4.3.1. For 1 ≤ k ≤ n let

ek(y1, . . . , yn) =
∑

1≤i1<···<ik≤n

yi1 · · · yik
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be the k-th elementary symmetric polynomial. (Milnor and Stasheff write σk in
place of ek.) If each yi has degree 2, then ek(y1, . . . , yn) has degree 2k. In par-
ticular, e1(y1, . . . , yn) = y1 + · · · + yn, e2(y1, . . . , yn) = y1y2 + · · · + yn−1yn and
en(y1, . . . , yn) = y1 · · · yn.

The following theorem on symmetric polynomials is classical.

Theorem 4.3.2.
Z[e1, . . . , en] = Z[y1, . . . , yn]Σn .

where ek = ek(y1, . . . , yn).

Theorem 4.3.3 ([Bor53]).

ĩ∗n : H∗BU(n)
∼=−→ Z[y1, . . . , yn]Σn ∼= Z[e1, . . . , en]

is an isomorphism.

Definition 4.3.4. For 1 ≤ k ≤ n the k-th Chern class

ck ∈ H2kBU(n)

is characterized by
i∗n(ck) = ek(y1, . . . , yn) .

Hence
H∗BU(n) = Z[c1, . . . , cn]

with ck in degree 2k.

4.4. Thom complexes

Definition 4.4.1. Let ξ be an Euclidean Rn-bundle π : E = E(ξ) → X, with
fibers Ex = E(ξ)x = π−1(x). Let π : P → X be the associated principal O(n)-
bundle, so that E = P ×O(n) Rn. We write

D(ξ) = {v ∈ E | ‖v‖ ≤ 1} = P ×O(n) D
n

and
S(ξ) = {v ∈ E | ‖v‖ = 1} = P ×O(n) S

n−1

for the unit disc and sphere subbundles of ξ. We have inclusions

S(ξ) ⊂ D(ξ) ⊂ E
of fiber bundles over X, all with structure group O(n). Let

Th(ξ) = D(ξ)/S(ξ)

be the Thom space of ξ.

The disc and sphere bundles, and the Thom space, are natural for maps of
Euclidean vector bundles.

Definition 4.4.2. Let R be a commutative ring. An R-orientation class of ξ
is an element

U = Uξ ∈ H̃n(Th(ξ);R) ∼= Hn(D(ξ), S(ξ);R)

whose restriction to

Hn(D(ξ)x, S(ξ)x;R) ∼= Hn(Dn, Sn−1;R) ∼= R

is a unit for each x ∈ X. Here D(ξ)x = D(ξ) ∩ Ex and S(ξ)x = S(ξ) ∩ Ex are the
fibers of D(ξ) and S(ξ) over x.



56 4. CHARACTERISTIC CLASSES

Lemma 4.4.3. A choice of Z-orientation class Uξ ∈ H̃n(Th(ξ);Z) is equivalent
to a continuous choice of orientations of the fiber vector spaces Ex. There is a
unique choice of F2-orientation Uξ ∈ H̃n(Th(ξ);F2).

Sketch proof. If X is a CW complex, then (D(ξ), S(ξ)) is a relative CW
complex with one (k + n)-cell for each k-cell of X. Hence Th(ξ) is a based CW
complex with one (k + n)-cell for each k-cell of X, in addition to the base point

0-cell. It follows that H̃∗(Th(ξ)) = 0 for ∗ < n.
In neighborhoods on X where ξ admits a trivialization, the result follows from

the Künneth isomorphism. Let A,B ⊂ X. The Mayer–Vietoris sequence

0→ Hn(D(ξ|A∪B), S(ξ|A∪B)) −→ Hn(D(ξ|A), S(ξ|A))⊕Hn(D(ξ|B), S(ξ|B))

−→ Hn(D(ξ|A ∩B), S(ξ|A ∩B))

shows that choices of orientation classes Uξ|A and Uξ|B over A and B, respectively,
can be (uniquely) extended to an orientation class Uξ|A∪B if and only if their re-
strictions over A ∩ B agree, and this compatibility is what a choice of orientation
provides. �

The Thom complex is monoidal for the external direct sum of vector bundles.

Lemma 4.4.4. Let ξ be as above, let η be an Euclidean Rm-bundle π : E(η)→ Y ,
and let ξ×η be the external direct sum Rn+m-bundle E(ξ)×E(η)→ X×Y . There
is a homotopy equivalence

Th(ξ) ∧ Th(η) ' Th(ξ × η)

that is natural up to (coherent) homotopy. If ξ and η are R-oriented, then the
smash product homomorphism

H̃n(Th(ξ);R)⊗R H̃m(Th(η);R)
∧−→ H̃n+m(Th(ξ × η);R)

takes Uξ ⊗ Uη to an R-orientation class

Uξ×η = Uξ ∧ Uη
for ξ × η.

Sketch proof. There is an O(n)×O(m)-equivariant homeomorphism

Dn ×Dm ∼= Dn+m

that scales each vector by a positive factor, so as to restrict to a homeomorphism

Sn−1 ×Dm ∪Dn × Sm−1 ∼= Sn+m−1 .

�

Example 4.4.5. For each complex n-dimensional vector space V , the under-
lying real 2n-vector space has a canonical orientation, given by the ordered real
basis

(v1, ivi, . . . , vn, ivn) ,

where (v1, . . . , vn) is any choice of complex basis for V . Hence the underlying
R2n-bundle of any Cn-bundle η has a preferred integral orientation class Uη ∈
H̃2n(Th(η);Z).
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4.5. Euler classes

There is a homotopy cofiber sequence

S(ξ)
π−→ X

z−→ Cπ = Th(ξ)

expressing Th(ξ) as the mapping cone of the sphere bundle projection π : S(ξ)→ X.
The map z : X → Th(ξ) is the composite qs0 of the zero-section

s0 : X −→ D(ξ) ⊂ E(ξ)

mapping each x ∈ X to the zero vector 0 ∈ Ex in the (unit disc and) vector space
fiber over x, followed by the collapse map

q : D(ξ) −→ D(ξ)/S(ξ) = Th(ξ) .

(Transversality of maps SN → Th(ξ) with respect to z : X → Th(ξ) plays a key
role in Thom’s classification of manifolds up to bordism.)

Definition 4.5.1. The Euler class of an R-oriented Rn-bundle ξ is the pullback

e(ξ) = z∗(Uξ) ∈ Hn(X;R)

of the orientation class along the zero-section.

Remark 4.5.2. The Euler class for Z-oriented Rn-bundles is a characteristic
class for oriented real vector bundles, i.e., Rn-bundles with structure group

SO(n) = {A ∈ O(n) | det(A) = 1} ⊂ O(n) .

The classifying space

BSO(n) ' G̃rn(R∞)

is equivalent to the Grassmannian of oriented n-dimensional real subspaces of R∞,
which is the universal (double) cover of Grn(R∞). The universal (integral) Euler
class is thus an element

e ∈ Hn(BSO(n);Z) .

Theorem 4.5.3 ([MS74, Cor. 11.12]). Let M be a smooth, closed and oriented
n-manifold, with tangent bundle τM and fundamental class [M ] ∈ Hn(M ;Z). Then

〈e(τM ), [M ]〉 = χ(M)

is equal to the Euler characteristic of M .

Remark 4.5.4. The universal F2-valued Euler class for (not necessarily ori-
ented) Rn-bundles is an element

ē ∈ Hn(BO(n);F2) .

Proposition 4.5.5. Let ξ and η be oriented Rn- and Rm-bundles over X and
Y , respectively. The Euler classes of ξ, η and the external direct sum ξ × η satisfy

e(ξ × η) = e(ξ)× e(η) .

If X = Y and ξ⊕ η = ∆∗(ξ× η) is the fiberwise direct sum (= Whitney sum), then

e(ξ ⊕ η) = e(ξ) ∪ e(η) .
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Proof. The zero-sections are compatible, and induce the following commuta-
tive square.

H̃n Th(ξ)⊗ H̃m Th(η)
∧ //

z∗⊗z∗

��

H̃n+m Th(ξ × η)

z∗

��

Hn(X)⊗Hm(Y )
×

// Hn+m(X × Y )

Chasing Uξ ⊗ Uη both ways gives the result for ξ × η. The result for ξ ⊕ η (when
X = Y ) follows by pullback along ∆: X → X ×X. �

Example 4.5.6. The group isomorphism U(1) ∼= SO(2) induces an equivalence
BU(1) ∼= BSO(2), and the universal Euler class e ∈ H2(BSO(2);Z) corresponds
to the first Chern class c1 ∈ H2(BU(1);Z). The universal F2-valued Euler class
ē ∈ H1(BO(1);F2) equals the first Stiefel–Whitney class w1 ∈ H1(BO(1);F2).

4.6. The Thom isomorphism

Theorem 4.6.1 ([Tho54]). Let ξ be an Rn-bundle π : E → X, with R-orientation

class Uξ ∈ Hn(D(ξ), S(ξ);R) ∼= H̃n(Th(ξ);R).
(a) The cup product with Uξ defines an isomorphism

Hi(X;R) ∼= Hi(D(ξ);R)
∼=−→ Hi+n(D(ξ), S(ξ);R) ∼= H̃i+n(Th(ξ);R)

x 7−→ x ∪ Uξ

for each i, combining to the (cohomological) Thom isomorphism

Φξ : H∗(X;R)
∼=−→ H̃∗+n(Th(ξ);R) .

(b) The cap product with Uξ defines an isomorphism

H̃n+i(Th(ξ);R) ∼= Hn+i(D(ξ), S(ξ);R)
∼=−→ Hi(D(ξ);R) ∼= Hi(X;R)

α 7−→ Uξ ∩ α

for each i, combining to the (homological) Thom isomorphism

Φξ : H̃∗+n(Th(ξ);R)
∼=−→ H∗(X;R) .

Sketch proof. (a) In neighborhoods on X where ξ admits a trivialization,
this follows from the Künneth isomorphism. Let A,B ⊂ X. The map of Mayer–
Vietoris sequences induced by cup product with R-orientation classes, see Fig-
ure 4.1, and the five-lemma, give the inductive step from the case of ξ|A, ξ|B and
ξ|A ∩B to ξ|A ∪B.

(b) The same proof works, using the map of Mayer–Vietoris sequences induced
by cap product with R-orientation classes. �

The relative cup product can be replaced by the external smash product fol-
lowed by pullback along the Thom diagonal map

Th(ξ) −→ D(ξ)+ ∧ Th(ξ) ' X+ ∧ Th(ξ)

taking v to π(v) ∧ v for v ∈ D(ξ). This is the base point when v ∈ S(ξ).
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Hi−1(A)⊕Hi−1(B)
Φξ|A⊕Φξ|B

//

��

H̃i−1+n(Th(ξ|A);R)⊕ H̃i−1+n(Th(ξ|B);R)

��

Hi−1(A ∩B)
Φξ|A∩B

//

δ

��

H̃i−1+n(Th(ξ|A ∩B);R)

δ

��

Hi(A ∪B)
Φξ|A∪B

//

��

H̃i+n(Th(ξ|A ∪B);R)

��

Hi(A)⊕Hi(B)
Φξ|A⊕Φξ|B

//

��

H̃i+n(Th(ξ|A);R)⊕ H̃i+n(Th(ξ|B);R)

��

Hi(A ∩B)
Φξ|A∩B

// H̃i+n(Th(ξ|A ∩B);R)

Figure 4.1. Map of Mayer–Vietoris sequences

4.7. The Gysin sequence

Theorem 4.7.1 ([Gys42]). Let ξ be an R-oriented Rn-bundle π : E → X, with
Euler class e(ξ) ∈ Hn(X;R).

(a) The long exact cohomology sequence of the pair (D(ξ), S(ξ)) is isomorphic
to the (cohomological) Gysin sequence

· · · → Hi(X;R)
−∪e(ξ)−→ Hi+n(X;R)

π∗−→ Hi+n(S(ξ);R) −→ Hi+1(X;R)→ . . . .

(b) The long exact homology sequence of the same pair is isomorphic to the
(homological) Gysin sequence

· · · → Hi+1(X;R) −→ Hn+i(S(ξ);R)
π∗−→ Hn+i(X;R)

e(ξ)∩−−→ Hi(X;R)→ . . . .

Proof.

Hi(X)

π∗ ∼=
��

−∪e(ξ)

((

Hi+n−1(S(ξ))

66

// Hi(D(ξ)) //

−∪Uξ ∼=
��

Hi+n(X)
π∗ //

π∗

��

∼=

Hi+n(S(ξ))

Hi+n−1(S(ξ))
δ //

((

Hi+n(D(ξ), S(ξ)) // Hi+n(D(ξ)) //

s∗0

OO

Hi+n(S(ξ))

H̃i+n(Th(ξ))

∼=

OO

q∗

66

�



60 4. CHARACTERISTIC CLASSES

4.8. Cohomology of BU(n)

Consider the linear action of U(n) on S2n−1 = S(Cn). The subgroup U(n− 1)
fixes the last unit vector en = (0, . . . , 0, 1), so that

U(n)/U(n− 1)
∼=−→ S2n−1

A · U(n− 1) 7−→ Aen .

Hence we have an equivalence

BU(n− 1) = EU(n− 1)/U(n− 1)
'−→ EU(n)/U(n− 1)

∼= EU(n)×U(n) U(n)/U(n− 1) ∼= EU(n)×U(n) S
2n−1 = S(γn)

where γn = γnC is the tautological Cn-bundle over BU(n) ' Grn(C∞). The inclu-
sion ι : BU(n− 1)→ BU(n) corresponds to the projection π : S(γn)→ BU(n).

The underlying R2n-bundle of the Cn-bundle γn is canonically Z-oriented, so
we have a long exact Gysin sequence

· · · → HiBU(n)
−∪e(γn)−→ Hi+2nBU(n)

ι∗−→ Hi+2nBU(n−1) −→ Hi+1BU(n)→ . . . .

Note that ι∗ is an isomorphism for i+ 2n ≤ 2n− 2, i.e., for i ≤ −2.

Definition 4.8.1. Suppose, by induction on n ≥ 1, that the Chern classes

ck ∈ H2k(BU(n− 1);Z)

have been defined for 1 ≤ k < n. Then we define

ck ∈ H2k(BU(n);Z)

for 1 ≤ k < n by the condition ι∗(ck) = ck. Finally, we define

cn ∈ H2n(BU(n);Z)

to be equal to the Euler class e(γn) of the canonically oriented R2n-bundle under-
lying the tautological Cn-bundle over BU(n).

Proposition 4.8.2.

Z[c1, . . . , cn]
∼=−→ H∗BU(n) .

Proof. Assume, by induction, that Z[c1, . . . , cn−1] ∼= H∗BU(n−1). Then the
ring homomorphism ι∗ is surjective, so the Gysin sequence breaks up into a short
exact sequence

0→ H∗−2nBU(n)
·cn−→ H∗BU(n)

ι∗−→ H∗BU(n− 1)→ 0 .

It follows by induction on degrees that this is isomorphic to

0→ Σ2nZ[c1, . . . , cn]
·cn−→ Z[c1, . . . , cn] −→ Z[c1, . . . , cn−1]→ 0 .

�

Proposition 4.8.3.

ĩ∗n : H∗BU(n) −→ Z[y1, . . . , yn]Σn

ck 7−→ ek(y1, . . . , yn)

maps ck to the k-th elementary symmetric polynomial

ek(y1, . . . , yn) =
∑

1≤i1<···<ik≤n

yi1 · · · yik .
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Proof. For 1 ≤ k < n this follows by induction, since

H∗BU(n)
ĩ∗n //

ι∗

��

Z[y1, . . . , yn]Σn

yn 7→0

��

H∗BU(n− 1)
ĩ∗n−1

// Z[y1, . . . , yn−1]Σn−1

commutes and the right hand vertical map is an isomorphism below degree 2n,
sending ek(y1, . . . , yn) to ek(y1, . . . , yn−1) for each 1 ≤ k < n. It remains to prove
that

ĩ∗n(cn) = y1 · · · yn = y × · · · × y ∈ H∗(BU(1)n)Σn .

It suffices to prove that that

i∗n(cn) = y × · · · × y ∈ H∗(BU(1)n) .

This follows from cn = e(γn), i∗n(γn) = γ1 × · · · × γ1 and the product formula for
the Euler class:

i∗n(cn) = i∗ne(γ
n) = e(i∗nγ

n) = e(γ1 × · · · × γ1)

= e(γ1)× · · · × e(γ1) = y × · · · × y .

�

Theorem 4.3.3 follows, in view of Theorem 4.3.2.

Remark 4.8.4. At this point, we have available the “splitting principle” for
characteristic classes of complex vector bundles. To prove a statement about a natu-
ral class c(ξ) ∈ H∗(X;R) for a Cn-bundle over X, it suffices by naturality to handle
the case of c = c(γn) ∈ H∗(BU(n);R). To verify an identity in H∗(BU(n);R) it
suffices to verify it after applying the injective ring homomorphism

i∗n : H∗(BU(n);R) −→ H∗(BU(1)n;R) ∼= R[y1, . . . , yn] .

Hence it suffices to check the condition for c(ξ) = i∗n(c) in the case of

ξ = i∗n(γn) = γ1 × · · · × γ1 = pr∗1 γ
1 ⊕ · · · ⊕ pr∗n γ

1 ,

which is a Whitney sum of n complex line bundles over BU(1)n ' (CP∞)n. Hence
we may effectively assume that ξ splits as a direct sum of line bundles.

For a Cn-bundle ξ we set c0(ξ) = 1 and ck(ξ) = 0 for k > n, and write
c(ξ) =

∑
k≥0 ck(ξ) for the total Chern class of ξ. The Whitney sum formula for

Chern classes follows.

Theorem 4.8.5. Let ξ and η be complex vector bundles over X. Then

ck(ξ ⊕ η) =
∑
i+j

ci(ξ) ∪ cj(η) ∈ H2k(X)

Hence

c(ξ ⊕ η) = c(ξ) ∪ c(η) ∈ H∗(X) .

Proof. By naturality, it suffices to prove that

ck(γn × γm) =
∑
i+j=k

ci(γ
n)× ck(γm) ∈ H2k(BU(n)×BU(m)) .
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This can be verified using the injectivity of i∗n : H∗BU(n) → H∗BU(1)n for all n,
i.e., by the splitting principle. The diagram

BU(1)n ×BU(1)m
in×im //

∼=
��

BU(n)×BU(m)

µn,m

��

BU(1)n+m
in+m

// BU(n+m)

commutes, where the right hand vertical map µn,m = µ⊕n,m is induced by the block

sum inclusion U(n)×U(m)→ U(n+m) mapping (A,B) to (A 0
0 B ), and represents

the external direct sum γn × γm. Then

(in × im)∗ck(γn × γm) = i∗n+mck = ek(y1, . . . , yn+m)

and

(in × im)∗
∑
i+j=k

ci(γ
n)× cj(γm) =

∑
i+j=k

i∗nci × i∗mcj

=
∑
i+j=k

ei(y1, . . . , yn)× ej(yn+1, . . . , yn+m) .

The claim thus follows from the identity

ek(y1, . . . , yn+m) =
∑
i+j=k

ei(y1, . . . , yn)ej(yn+1, . . . , yn+m)

in Z[y1, . . . , yn, yn+1, . . . , yn+m]. �

As in Milnor’s lemma on the Cartan formula for the Steenrod operations, we can
express the Whitney sum formula for Chern classes as a coproduct homomorphism.

Corollary 4.8.6. µn,m : BU(n)×BU(m)→ BU(n+m) induces

µ∗n,m : H∗BU(n+m) −→ H∗(BU(n)×BU(m)) ∼= H∗BU(n)⊗H∗BU(m)

ck 7−→
∑
i+j=k

ci ⊗ cj .

Example 4.8.7. Let τCPn , γ1
n and ε1 be the tangent bundle, tautological line

bundle and trivial line bundle over CPn, respectively. Let γ∗ = Hom(γ1
n, ε

1) be
the linear dual of the tautological line bundle. There is a canonical short exact of
complex vector bundles

0→ ε1 −→ Hom(γ1
n, ε

n+1) −→ τCPn → 0 ,

so that τCPn ⊕ ε1 ∼= (n+ 1)γ∗. Hence the total Chern classes satisfy

c(τCPn) = c(τCPn ⊕ ε1) = c((n+ 1)γ∗) = c(γ∗)n+1

in H∗(CPn) ∼= Z[y]/(yn+1). With the convention c1(γ1
n) = y we have c1(γ∗) = −y

and c(γ∗) = 1−y, so that c(τCPn) = (1−y)n+1 = 1+(n+1)(−y)+· · ·+(n+1)(−y)n.
Hence

ci(τCPn) =

(
n+ 1

i

)
(−y)i

for 1 ≤ i ≤ n. In particular, 〈(−y)n, [CPn]〉 = 1 with this convention. For this
reason, many authors change the sign of y, so that y = c1(γ∗), c(τCPn) = (1 + y)n

and ci(τCPn) =
(
n+1
i

)
yi.
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4.9. Cohomology of BO(n)

Consider the linear action of O(n) on Sn−1 = S(Rn). The subgroup O(n− 1)
fixes the last unit vector en = (0, . . . , 0, 1), so that

O(n)/O(n− 1)
∼=−→ Sn−1

A ·O(n− 1) 7−→ Aen .

Hence we have an equivalence

BO(n− 1) = EO(n− 1)/O(n− 1)
'−→ EO(n)/O(n− 1)

∼= EO(n)×O(n) O(n)/O(n− 1) ∼= EO(n)×O(n) S
n−1 = S(γn)

where γn = γnR is the tautological Rn-bundle over BO(n) ' Grn(R∞). The inclu-
sion ι : BO(n− 1)→ BO(n) corresponds to the projection π : S(γn)→ BO(n).

The Rn-bundle γn is canonically F2-oriented, so we have a long exact Gysin
sequence

· · · → Hi(BO(n);F2)
−∪ē(γn)−→ Hi+n(BO(n);F2)

ι∗−→ Hi+n(BO(n− 1);F2) −→ Hi+1(BO(n);F2)→ . . . .

Note that ι∗ is an isomorphism for i+ n ≤ n− 2, i.e., for i ≤ −2.

Remark 4.9.1. At this point, an argument is needed for why ι∗ : Hn−1(BO(n);F2)→
Hn−1(BO(n − 1);F2) is an isomorphism, in the case corresponding to i = −1 in
the Gysin sequence above. It is clearly injective, and by exactness, surjectivity
is equivalent to knowing that ē(γn) 6= 0 in Hn(BO(n);F2). Milnor and Stasheff
[MS74] resolve this by directly constructing the classes wk ∈ Hk(BO(n);F2) using
Thom’s formula

wk = Φ−1
ξ (Sqk(Uξ)) ∈ H̃k+n(Th(ξ);F2)

in the universal case ξ = γn, and checking that ι∗(wk) = wk for all 1 ≤ k < n.
((ETC: We omit to discus this in more detail.))

Definition 4.9.2. Suppose, by induction on n ≥ 1, that the Stiefel–Whitney
classes

wk ∈ Hk(BO(n− 1);F2)

have been defined for 1 ≤ k < n. Then we define

wk ∈ Hk(BO(n);F2)

for 1 ≤ k < n by the condition ι∗(wk) = wk. Finally, we define

wn ∈ Hn(BO(n);F2)

to be equal to the F2-valued Euler class ē(γn) associated to the canonical F2-
orientation of γn.

Proposition 4.9.3.

F2[w1, . . . , wn]
∼=−→ H∗BO(n) .

Proof. Assume, by induction, that F2[w1, . . . , wn−1] ∼= H∗BO(n − 1). Then
the ring homomorphism ι∗ is surjective, so the Gysin sequence breaks up into a
short exact sequence

0→ H∗−nBO(n)
·wn−→ H∗BO(n)

ι∗−→ H∗BO(n− 1)→ 0 .
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It follows by induction on degrees that this is isomorphic to

0→ ΣnF2[w1, . . . , wn]
·wn−→ F2[w1, . . . , wn] −→ F2[w1, . . . , wn−1]→ 0 .

�

Proposition 4.9.4.

ĩ∗n : H∗BO(n) −→ F2[x1, . . . , xn]Σn

wk 7−→ ek(x1, . . . , xn)

maps wk to the k-th elementary symmetric polynomial

ek(x1, . . . , xn) =
∑

1≤i1<···<ik≤n

xi1 · · ·xik .

Proof. For 1 ≤ k < n this follows by induction, since

H∗BO(n)
ĩ∗n //

ι∗

��

F2[x1, . . . , xn]Σn

xn 7→0

��

H∗BO(n− 1)
ĩ∗n−1

// F2[x1, . . . , xn−1]Σn−1

commutes and the right hand vertical map is an isomorphism below degree n,
sending ek(x1, . . . , xn) to ek(x1, . . . , xn−1) for each 1 ≤ k < n. It remains to prove
that

ĩ∗n(wn) = x1 · · ·xn = x× · · · × x ∈ H∗(BO(1)n)Σn .

It suffices to prove that that

i∗n(wn) = x× · · · × x ∈ H∗(BO(1)n) .

This follows from wn = ē(γn), i∗n(γn) = γ1 × · · · × γ1 and the product formula for
the Euler class:

i∗n(wn) = i∗nē(γ
n) = ē(i∗nγ

n) = ē(γ1 × · · · × γ1)

= ē(γ1)× · · · × ē(γ1) = x× · · · × x .

�

Theorem 4.2.3 follows, in view of Theorem 4.2.2.
For a Rn-bundle ξ we set w0(ξ) = 1 and wk(ξ) = 0 for k > n, and write

w(ξ) =
∑
k≥0 wk(ξ) for the total Stiefel–Whitney class of ξ.

The Whitney sum formula for Stiefel–Whitney classes follows.

Theorem 4.9.5. Let ξ and η be real vector bundles over X. Then

wk(ξ ⊕ η) =
∑
i+j

wi(ξ) ∪ wj(η) ∈ Hk(X;F2)

Hence

w(ξ ⊕ η) = w(ξ) ∪ w(η) ∈ H∗(X;F2) .

Proof. By naturality, it suffices to prove that

wk(γn × γm) =
∑
i+j=k

wi(γ
n)× wk(γm) ∈ Hk(BO(n)×BO(m);F2) .
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This can be verified using the injectivity of i∗n : H∗(BO(n);F2)→ H∗(BO(1)n;F2)
for all n, i.e., by the splitting principle. The diagram

BO(1)n ×BO(1)m
in×im //

∼=
��

BO(n)×BO(m)

µn,m

��

BO(1)n+m
in+m

// BO(n+m)

commutes, where the right hand vertical map µn,m = µ⊕n,m is induced by the block

sum inclusion O(n)×O(m)→ O(n+m) mapping (A,B) to (A 0
0 B ), and represents

the external direct sum γn × γm. Then

(in × im)∗wk(γn × γm) = i∗n+mwk = ek(x1, . . . , xn+m)

and

(in × im)∗
∑
i+j=k

wi(γ
n)× wj(γm) =

∑
i+j=k

i∗nwi × i∗mwj

=
∑
i+j=k

ei(x1, . . . , xn)× ej(xn+1, . . . , xn+m) .

The claim thus follows from the identity

ek(x1, . . . , xn+m) =
∑
i+j=k

ei(x1, . . . , xn)ej(xn+1, . . . , xn+m)

in F2[x1, . . . , xn, xn+1, . . . , xn+m]. �

As in Milnor’s lemma on the Cartan formula for the Steenrod operations, we
can express the Whitney sum formula for Stiefel–Whitney classes as a coproduct
homomorphism.

Corollary 4.9.6. µn,m : BO(n)×BO(m)→ BO(n+m) induces

µ∗n,m : H∗BO(n+m) −→ H∗(BO(n)×BO(m)) ∼= H∗BO(n)⊗H∗BO(m)

wk 7−→
∑
i+j=k

wi ⊗ wj .

Example 4.9.7. Let τRPn , γ1
n and ε1 be the tangent bundle, tautological line

bundle and trivial line bundle over RPn, respectively. Let γ∗ = Hom(γ1
n, ε

1) be the
linear dual of the tautological line bundle, which in this (real) case is isomorphic
to γ1

n. There is a canonical short exact of real vector bundles

0→ ε1 −→ Hom(γ1
n, ε

n+1) −→ τRPn → 0 ,

so that τRPn ⊕ ε1 ∼= (n+ 1)γ∗. Hence the total Stiefel–Whitney classes satisfy

w(τRPn) = w(τRPn ⊕ ε1) = w((n+ 1)γ∗) = w(γ∗)n+1

in H∗(RPn;F2) = F2[x]/(xn+1). Here w1(γ1
n) = w1(γ∗) = x, so that w(τRPn) =

(1 + x)n+1 = 1 + (n+ 1)x+ · · ·+ (n+ 1)xn. Hence

wi(τRPn) =

(
n+ 1

i

)
xi

for 1 ≤ i ≤ n, read modulo 2.
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4.10. (Co-)homology of BO and BU as a bipolynomial bialgebras

Definition 4.10.1. Let

O =
⋃
n

O(n)

U =
⋃
n

U(n)

be the infinite rank orthogonal and unitary groups. Their classifying spaces are

BO ' Gr∞(R∞) = colim
n

Grn(R∞)

BU ' Gr∞(C∞) = colim
n

Grn(C∞) .

The maps µn,m induce pairings

BO ×BO ' colim
n,m

Grn(R∞)×Grm(R∞)
µ−→ colim

n,m
Grn+m(R∞ ⊕ R∞) ' BO

and

BU ×BU ' colim
n,m

Grn(C∞)×Grm(C∞)
µ−→ colim

n,m
Grn+m(C∞ ⊕ C∞) ' BU ,

which are unital, associative and commutative up to homotopy. ((ETC: These
define E∞ structures on BO and BU , in these sense of spaces with operad actions.))

Theorem 4.10.2. H∗(BO;F2) ∼= F2[wk | k ≥ 1] is a bicommutative F2-
bialgebra with coproduct ψ = µ∗ given by

ψ(wk) =
∑
i+j=k

wi ⊗ wj

where w0 = 1.

Theorem 4.10.3. H∗BU ∼= Z[ck | k ≥ 1] is a bicommutative Z-bialgebra with
coproduct ψ = µ∗ given by

ψ(ck) =
∑
i+j=k

ci ⊗ cj

where c0 = 1.

Proof. This follows by a passage to limits from the results for H∗BU(n),
since

H∗BU ∼= lim
n
H∗BU(n)

maps isomorphically to H∗BU(n) for ∗ ≤ 2n+ 1. �

Definition 4.10.4. Let αk ∈ Hk(BO(1);F2) be dual to xk ∈ Hk(BO(1);F2),
and let βk ∈ H2k(BU(1);Z) be dual to yk ∈ H2k(BU(1);F2), so that

H∗(BO(1);F2) = F2{αk | k ≥ 0}
H∗(BU(1);Z) = Z{βk | k ≥ 0} .
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Let ak = ι∗(αk) ∈ Hk(BO;F2) be the image of αk, and let bk = ι∗(βk) ∈
H2k(BU ;Z) be the image of βk, under the homomorphisms

ι∗ : Hk(BO(1);F2) −→ Hk(BO;F2)

αk 7−→ ak

ι∗ : Hk(BU(1);Z) −→ Hk(BU ;Z)

βk 7−→ bk

induced by ι : BO(1)→ BO and ι : BU(1)→ BU , respectively.

The corresponding results in homology follow by (non-trivial) algebraic dual-
ization. See [Mil60, §3], [Liu62, §3], [MS74, §16] and [MP12, Thm. 21.4.3] for
expositions of this classical result. Note that

∆∗(αk) =
∑
i+j=k

αi ⊗ αj

∆∗(βk) =
∑
i+j=k

βi ⊗ βj

inH∗(BO(1);F2) andH∗(BU(1);Z), respectively, where ∆: X → X×X generically
denotes the diagonal map.

Theorem 4.10.5. H∗(BO;F2) ∼= F2[ak | k ≥ 1] is a bipolynomial F2-bialgebra
with coproduct ψ = ∆∗ given by

ψ(ak) =
∑
i+j=k

ai ⊗ aj

where a0 = 1. Here 〈wk1 , ak〉 = 1, while 〈wI , ak〉 = 0 for any other monomial

wI = wi11 · · ·w
i`
` of Stiefel–Whitney classes.

Theorem 4.10.6. H∗BU ∼= Z[bk | k ≥ 1] is a bipolynomial Z-bialgebra with
coproduct ψ = ∆∗ given by

ψ(bk) =
∑
i+j=k

bi ⊗ bj

where b0 = 1. Here 〈ck1 , bk〉 = 1, while 〈cI , bk〉 = 0 for any other monomial cI =

ci11 · · · c
i`
` of Chern classes.

Here a “bipolynomial” bialgebra B means one such that both the underlying
algebra B and the dual B∨ of the underlying coalgebra are polynomial algebras.
In particular, such B are bicommutative.

4.11. Symmetric functions

Definition 4.11.1. For k ≥ 1 let

pk =
∑
i≥1

yki = yk1 + yk2 + · · · ∈ Z[[y1, y2, . . . ]] .

be the k-th formal power-sum series. It projects to the k-th power-sum symmetric
polynomial

pk(y1, . . . , yn) =

k∑
i=1

yki ∈ Z[y1, . . . , yn]Σn ∼= H∗BU(n)
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for each n, hence defines a class pk ∈ H2kBU .

Theorem 4.11.2 (Girard (1629), Newton (1666)). p1 = c1, p2 = c21 − 2c2 and

pn = pn−1c1 − pn−2c2 + · · ·+ (−1)np1cn−1 − (−1)nncn .

By a partition of k we mean an unordered sequence T = {t1, . . . , tn} of positive
integers with t1 + · · ·+ tn = k.

Definition 4.11.3. Two monomials in y1, y2, . . . are equivalent if some permu-
tation of these variables takes one to the other. For any partition T = {t1, . . . , tn}
let

pT =
∑

yt11 · · · ytnn ∈ H∗BU

be the (formal) sum of all monomials that are equivalent to yt11 · · · ytnn . For example,
p{k} = pk and p{1,...,1} = ck (where {1, . . . , 1} has k copies of 1).

The classes pT give a Z-basis for H∗BU , different from that given by the
monomials cI in the Chern classes.

Lemma 4.11.4.

H∗BU = Z{pT | T any partition} .

The concatenation of two partitions R = {r1, . . . , r`} and S = {s1, . . . , sm} is
the partition RS = {r1, . . . , r`, s1, . . . , sm}.

Lemma 4.11.5 (Thom, [MS74, Lem. 16.2]). For any partition T ,

ψ(pT ) =
∑
RS=T

pR ⊗ pS

in H∗BU ⊗ H∗BU , where the sum ranges over all pairs (R,S) of partitions with
concatenation T .

Proof. Given T = {t1, . . . , tn} we can detect ψ(pT ) in H∗BU(n)⊗H∗BU(n),
hence also in H∗BU(1)n ⊗H∗BU(1)n.

H∗BU
ψ

//

��

H∗BU ⊗H∗BU

��

H∗BU(2n)
µ∗n,n

//

��

i∗2n
��

H∗BU(n)⊗H∗BU(n)
��

i∗n⊗i
∗
n

��

Z[y1, . . . , y2n]
∼= // Z[y1, . . . , yn]⊗ Z[yn+1, . . . , y2n] .

Any monomial in y1, . . . , y2n that is equivalent to yt11 · · · ytnn corresponds under the
lower isomorphism to the tensor product of a monomial equivalent to yr11 · · · y

r`
` and

a monomial equivalent to ys1n+1 · · · y
sm
2n , where R = {r1, . . . , r`} and S = {s1, . . . , sm}

range over all possible partitions with RS = T . Hence pT =
∑
RS=T pR ⊗ pS . �

A class x ∈ C in a coalgebra is primitive if ψ(x) = x⊗ 1 + 1⊗ x.

Corollary 4.11.6. The coalgebra primitives in H∗BU are

Z{pk | k ≥ 1} .
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Proof. The partition {k} can only be written as the concatenation of {k} and
{}, in either order. �

((ETC: We may discuss coalgebra primitives, and the dual notion of algebra
indecomposables, in more detail later, perhaps in the context of Tor1 and Ext1.))

Proof of Theorem 4.10.6. The monomial basis {pT | T any partition} for
H∗BU determines a dual basis {p∨T | T any partition} for (H∗BU)∨. The coprod-
uct from Lemma 4.11.5 dualizes to the product

p∨R · p∨S = p∨RS .

Hence
p∨T = p∨{t1} · · · p

∨
{tn}

for T = {t1, . . . , tn}, and the p∨k = p∨{k} freely generate (H∗BU)∨ as a (graded)

commutative ring (= Z-algebra). In other words

Z[p∨k | k ≥ 1] = (H∗BU)∨ ∼= H∗BU .

In fact, p∨k = bk. This follows from the calculation

〈pT , bk〉 = 〈pT , ι∗(βk)〉 = 〈ι∗pT , βk〉 =

{
1 if T = {k},
0 otherwise,

where ι∗pT = 0 if n ≥ 2, and ι∗pT = yt1 if n = 1. The formula for ψ(bk) follows by
naturality for the one for ψ(βk). �

Remark 4.11.7. To each finite sequence I = (i1, . . . , i`) of non-negative in-
tegers we assign the partition R = {r1, . . . , rn} where u occurs iu times, for each
1 ≤ u ≤ `. This gives a bijective correspondence. For example, I = (0, . . . , 0, 1)
(with 1 in the k-th position) corresponds to the partition T = (k), and I = (k)
corresponds to the partition T = {1, . . . , 1} (with k copies of 1). If I corresponds to
R, J corresponds to S and K = I+J is the coordinatewise sum of finite sequences,
then K corresponds to the concatenation T = RS.





CHAPTER 5

Topological K-theory

See [Ati67], [Hus66, Part II], [May99, Ch. 24] and Hatcher (2003).

5.1. The Grothendieck group of vector bundles

We work in the category U of unbased topological spaces.

Definition 5.1.1. For a connected CW complex X let

Vect(X) =
∐
n≥0

Vectn(X)

be the set of isomorphism classes of (real or complex) finite-dimensional vector
bundles over X. (There is also a story for quaternionic bundles, which we mostly
omit to discuss.) Then

VectR(X) ∼= [X,
∐
n≥0

BO(n)]

VectC(X) ∼= [X,
∐
n≥0

BU(n)] .

For non-connected X we take the right hand side as the definition of Vect(X). This
is the set of isomorphism classes of (real or complex) vector bundles over X, where
the fiber dimension is allowed to vary between the components of X. Let

V =
∐
n≥0

BO(n) or V =
∐
n≥0

BU(n)

according to the case.

The Whitney sum of vector bundles defines a pairing

⊕ : Vect(X)×Vect(X) −→ Vect(X) ,

written additively, making Vect(X) a commutative monoid (= group without neg-
atives). The neutral element is the class of the 0-dimensional bundle. This pairing
is induced by a unital, associative and homotopy commutative map

µ⊕ : V × V −→ V

where µ⊕ =
∐
n,m µ

⊕
n,m.

The tensor product of vector bundles defines another pairing

⊗ : Vect(X)×Vect(X) −→ Vect(X) ,

written multiplicatively, making Vect(X) a commutative semiring (= ring without
negatives). The neutral element is the class of the trivial 1-dimensional bundle.
This pairing is induced by a unital, associative and homotopy commutative map

µ⊗ : V × V −→ V

71
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where µ⊗ =
∐
n,m µ

⊗
n,m. The homotopy multiplication µ⊗ distributes over µ⊕ up

to homotopy, making V a commutative ring space up to homotopy.
There is a theory of E∞ spaces, and E∞ ring spaces, where coherent choices of

these commuting homotopies have been made. These were said to be “homotopy
everything”, and the E stands for “everything”. Calling these E∞ semiring spaces
might have been more consistent. The E∞ (ring) spaces admitting additive inverses
up to homotopy are usually said to be grouplike. See work by Boardman–Vogt
and May.

Calculations in commutative monoids or semirings are simplified by the intro-
duction of additive inverses, turning these into abelian groups or rings. This idea
was introduced by Grothendieck (1957) in the context of algebraic vector bundles,
for his generalization of the (Hirzebruch–)Riemann–Roch theorem. The idea was
adapted to topological vector bundles by Atiyah–Hirzebruch [AH59].

Let CMon and Ab denote the categories of commutative monoids and abelian
groups, respectively.

Lemma 5.1.2. The full inclusion Ab→ CMon has a left adjoint

(−)gp : CMon −→ Ab
M 7−→Mgp ,

called group completion, or the Grothendieck construction. The adjunction unit

ι : M −→Mgp

is the initial monoid homomorphism from M to an abelian group.

Proof.

Mgp = (M ×M)/ ∼
where (a, b) ∼ (c, d) if there exists an e ∈ M with a + d + e = b + c + e. We
formally write a − b for the class [a, b] of (a, b). The adjunction unit maps a to
a− 0 = [a, 0]. �

The group completion Rgp of a commutative semi-ring R is a commutative ring,
with product [a, b] · [c, d] = [ac+ bd, ad+ bc].

Definition 5.1.3. For a finite CW complex X let

KO(X) = VectR(X)gp

KU(X) = VectC(X)gp

be the commutative ring of virtual (real or complex) vector bundles over X. We
write ξ − η = [ξ, η] for the formal difference between (the classes of) ξ and η.

Many authors write K in place of KU ; I prefer to reserve K for algebraic
K-theory.

Example 5.1.4. If X = ∗ is a single point then Vect(∗) ∼= N0 via the vector
space dimension, and KO(∗) = Z and KU(∗) = Z.

Example 5.1.5. When X = S2 = CP 1, we have

VectCn(S2) ∼= [S2, BU(n)] ∼= π1U(n) ∼=

{
0 for n = 0,

Z for n ≥ 1,
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so that
VectC(S2) ∼= {0} t

∐
n≥1

Z .

For n = 1 we use that U(1) = S1. The claim for n ≥ 2 follows by induction, using
the exact sequence

π2S
2n−1 −→ π1U(n− 1) −→ π1U(n) −→ π1S

2n−1 .

A generator for VectC1 (CP 1) ∼= Z is the class of the Hopf line bundle γ1
1 = γ1|CP 1.

Hence VectCn(CP 1) is generated by γ1
1 + (n− 1) for each n ≥ 1. It follows that

KU(S2) ∼=
∐
n∈Z

Z ∼= Z× Z .

is freely generated by the classes of γ1
1 and 1 = ε1.

Proposition 5.1.6. KU(S2) = Z[u]/(u2) where u = γ1
1 − 1.

Proof. Additively, KU(S2) = Z{1, γ1
1} = Z{1, u} with u ∈ K̃U(S2). Cup

products of reduced classes vanish in the (cohomology and) K-theory of any sus-
pension, since

S2 ∆−→ S2 × S2 q−→ S2 ∧ S2

is nullhomotopic, so u2 = u ∪ u = 0. Alternatively, one can construct an isomor-
phism

γ1
1 ⊕ γ1

1
∼= γ1

1 ⊗ γ1
1 ⊕ ε1

of C2-bundles over S2. �

Lemma 5.1.7. Let X be a finite CW complex. For each vector bundle η over X
there exists a vector bundle ζ over X such that η ⊕ ζ is trivial.

Proof. Suppose X is connected and n = dim(η). We discuss the complex
case. The classifying map f : X → BU(n) ' Grn(C∞) for η, for which f∗(γn) ∼=
η, factors through Grn(Cn+m) for some finite m. The tautological bundle γnn+m

over Grn(Cn+m) is a subbundle of the trivial Cn+m bundle, hence has a unitary
complement (γnn+m)⊥. Let ζ = f∗((γnn+m)⊥). �

Lemma 5.1.8. Let X be a finite CW complex. Each element of KO(X) or
KU(X) has the form ξ − k for some ξ ∈ Vect(X) and k ≥ 0. Moreover, ξ − k is
equal to η − ` if and only if ξ + `+m = η + k +m for some m ≥ 0.

Proof. Here k denotes the class of the trivial bundle εk. The virtual bundle
ξ − η is equal to (ξ + ζ)− (n+m) if η⊕ ζ ∼= εn+m. Similarly, ξ + `+ ζ ∼= η+ k+ ζ
for some ζ if and only if ξ + `+m ∼= η + k +m for some m ≥ 0. �

Corollary 5.1.9. Let X be a finite CW complex. The group completion
ι : Vect(X)→ Vect(X)gp = KO(X) or KU(X) equals the localization that inverts
the stabilization ξ 7→ ξ + 1:

colim (Vect(X)
+1−→ Vect(X)

+1−→ . . . ) ∼= Vect(X)gp .

Recall the notation V =
∐
n≥0BO(n) or

∐
n≥0BU(n). The stabilization ξ 7→

ξ + 1 is represented by the map

ι : V =
∐
n≥0

BO(n)
∐
ι−→
∐
n≥0

BO(n+ 1) =
∐
n≥1

BO(n) ⊂
∐
n≥0

BO(n) = V
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or its complex analogue.

Definition 5.1.10. Let Z×BO or Z×BU be the (homotopy) colimit

colim (V
ι−→ V

ι−→ . . . ) .

The structural maps

V =
∐
n≥0

BO(n) −→ Z×BO

V =
∐
n≥0

BU(n) −→ Z×BU

are given on the n-th summands by the inclusions BO(n) ⊂ BO and BU(n) ⊂ BU .
The maps µ⊕ : V ×V → V and µ⊗ : V ×V → V extend to maps making Z×BO and
Z × BU grouplike commutative ring spaces up to homotopy, and these structures
can be made E∞ coherent.

Proposition 5.1.11. There are natural isomorphisms of commutative rings

KO(X) ∼= [X,Z×BO]

KU(X) ∼= [X,Z×BU ]

for all finite CW complexes X.

When X is infinite, we shall hereafter take this as the definition of KO(X) and
KU(X). This is called represented K-theory.

Remark 5.1.12. Using the Atiyah–Hirzebruch spectral sequence, we will ex-
tend Proposition 5.1.6 to calculate that

KU(CPn) ∼= Z[t]/(tn+1) and KU(CP∞) ∼= Z[[t]] ,

where t = γ1 − 1.

((ETC: Could also define or describe Z × BO as ΩB⊕V where B⊕V denotes
the bar construction on V =

∐
n≥0BO(n) with the additive topological monoid

structure given by µ⊕ : V × V → V . Likewise in the complex case. This uses the
group completion theorems of Segal and McDuff.))

Proposition 5.1.13.

π∗(Z×BU) ∼= (Z, 0,Z, 0,Z, . . . )
π∗(Z×BO) ∼= (Z,Z/2,Z/2, 0, . . . )
π∗(Z×BSp) ∼= (Z, 0, 0, 0,Z, . . . ) .

Proof. Since BU is connected, we have π0(Z× BU) ∼= Z and πi(Z× BU) ∼=
πi−1U for i ≥ 1. The map S1 ∼= U(1) → U is 2-connected, so π0U = 0, π1U = Z
and π2U = 0. The fiber sequence SU → U → U(1) admits a section, and S3 ∼=
SU(2)→ SU is 4-connected, so π3U ∼= Z.

Since BO is connected, we have π0(Z×BU) ∼= Z and πi(Z×BO) ∼= πi−1O for
i ≥ 1. The map O(3) → O is 2-connected. The fiber sequence SO(3) → O(3) →
O(1) admits a section, and the universal cover S3 ∼= Spin(3)→ SO(3) is a double
covering, so π0O = Z/2, π1O = Z/2 and π2O = 0.

Since BSp is connected, we have π0(Z×BSp) ∼= Z and πi(Z×BSp) ∼= πi−1Sp
for i ≥ 1. The map S3 ∼= Sp(1) → Sp is 6-connected, so π0Sp = 0, π1Sp = 0,
π2Sp = 0 and π3Sp ∼= Z. �
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The calculation of the homomorphisms

Z ∼= π3O(3)→ π3O(4)→ π3O(5) ∼= π3O

is interesting; see [Ste51, §23].

5.2. Bott periodicity

A first glimpse of chromatic periodicity, beyond algebra, is given by the Bott
periodicity theorem [Bot57]. In its complex version this is a homotopy equivalence

U ' Ω2U

while in its real and symplectic version it is a pair of homotopy equivalences

O ' Ω4Sp and Sp ' Ω4O ,

which combine to homotopy equivalences

O ' Ω8O and Sp ' Ω8Sp .

Here is a more definite formulation, in terms of K-theory.

Theorem 5.2.1 (Bott periodicity). The external tensor product induces iso-
morphisms

⊗̂ : KU(X)⊗KU(S2)
∼=−→ KU(X × S2)

⊗̂ : KO(X)⊗KO(S8)
∼=−→ KO(X × S8) .

For based spaces X we define the reduced K-groups by

K̃U(X) = ker(KU(X)→ KU(∗))

K̃O(X) = ker(KO(X)→ KO(∗)) .

Then KU(X) ∼= Z ⊕ K̃U(X), KU(S2) ∼= Z ⊕ K̃U(S2) and KU(X × S2) ∼=
Z⊕ K̃U(X)⊕ K̃U(S2)⊕ K̃U(X ∧ S2), since the cofiber sequence

X ∨ S2 −→ X × S2 −→ X ∧ S2

splits after a single suspension. Hence we can rewrite the periodicity theorem as
follows.

Theorem 5.2.2. The reduced external tensor product induces isomorphisms

⊗̂ : K̃U(X)⊗ K̃U(S2)
∼=−→ K̃U(X ∧ S2)

⊗̂ : K̃O(X)⊗ K̃O(S8)
∼=−→ K̃O(X ∧ S8) .

Recall that KU(S2) = KU(CP 1) = Z{1, γ1
1}, so that K̃U(S2) = Z{γ1

1 − 1}.
(There are similar results for KO(S8).)

Definition 5.2.3. Let u = γ1
1 − 1 ∈ K̃U(S2) ∼= Z and B ∈ K̃O(S8) ∼= Z

denote generators.

Theorem 5.2.4. Product with the generators u ∈ K̃U(S2) and B ∈ K̃O(S8)
induces isomorphisms

u : K̃U(X)
∼=−→ K̃U(Σ2X)

B : K̃O(X)
∼=−→ K̃O(Σ8X) .
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Working in based spaces, we have K̃U(X) = [X,Z × BU ] and K̃O(X) ∼=
[X,Z×BO], so the theorem asserts that there are natural isomorphisms

u : [X,Z×BU ]
∼=−→ [Σ2X,Z×BU ]

B : [X,Z×BO]
∼=−→ [Σ8X,Z×BO] .

The right hand sides are [X,Ω2(Z × BU)] and [X,Ω8(Z × BO)], so yet another
reformulation of Bott’s theorem is that multiplication with u : S2 → Z × BU and
B : S8 → Z×BO induce (weak) homotopy equivalences

u : Z×BU '−→ Ω2(Z×BU)

B : Z×BO '−→ Ω8(Z×BO) .

Their left adjoints are the composites

ū : (Z×BU) ∧ S2 1∧u−→ (Z×BU) ∧ (Z×BU)
µ⊗−→ Z×BU

B̄ : (Z×BO) ∧ S8 1∧B−→ (Z×BO) ∧ (Z×BO)
µ⊗−→ Z×BO .

Since Ω(Z × BU) = ΩBU ' U it suffices to prove that Z × BU ' ΩU . Here
π1U = Z and the universal cover of U is SU = colimn SU(n) where

SU(n) = {A ∈ U(n) | det(A) = 1} ,
so the key point in the complex case is to prove that BU ' ΩSU . This is what
Bott originally proved.

Definition 5.2.5. Let

D(t) =

(
eiπtIn 0

0 e−iπtIn

)
for t ∈ [0, 1] define a path in SU(2n) from I2n to −I2n. Let

un : Grn(C2n) ∼=
U(2n)

U(n)× U(n)
−→ ΩSU(2n)

[C] 7−→
(
t 7→ [C,D(t)] = CD(t)C−1D(t)−1

)
map C ∈ U(2n) to the indicated loop in SU(2n). If C = (A 0

0 B ) then C and D(t)
commute, so the loop un(C) only depends on the coset [C] of C in U(2n)/(U(n)×
U(n)). The identification with Grn(C2n) takes C to C{Ce1, . . . , Cen} ⊂ C2n. The
maps un and un+1 are compatible under suitable stabilization maps.

Theorem 5.2.6 (Bott). The map un : Grn(C2n) → ΩSU(2n) is (2n + 1)-
connected. Hence

u : BU ' Gr∞(C∞)
'−→ ΩSU

is a (weak) homotopy equivalence. Hence

Ωi(Z×BU) '

{
Z×BU for i even,

U for i odd.

Raoul Bott’s original proof [Bot59] is an application of Morse theory for the
energy functional on a space of piecewise smooth paths in SU(2n). The critical
points are given by geodesic curves. This gives a cell complex of the homotopy type
of that space of loops, containing Grn(C2n) as a subcomplex, with all remaining
cells of dimensions ∗ ≥ 2n+ 2. John Milnor’s exposition [Mil63] is recommended.
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The loop space ΩSU has the homotopy type of a CW complex by [Mil59], so u is
in fact a homotopy equivalence.

A purely homological proof of Bott’s theorem, due to John Moore, was pre-
sented by Henri Cartan in his 1959–1960 seminar. Recall that H∗BU = Z[bk | k ≥
1] is a polynomial algebra on degree |bk| = 2k generators. Moreover H∗SU = Λ(ek |
k ≥ 1) is a primitively generated exterior algebra on degree |ek| = 2k+1 generators,
cf. [Hat02, Prop. 3D.4]. The Eilenberg–Moore spectral sequence for the loop–path

fibration ΩSU → PSU → SU collapses at the E2-term CotorH∗SU∗,∗ (Z,Z) = Z[ωek |
k ≥ 1], with |ωek| = 2k. A compatibility check then shows that BU → ΩSU is a ho-
mology isomorphism of 1-connected spaces, hence is a weak homotopy equivalence.
See also [MP12, §21.6].

A more analytic proof (for X compact) was given by Atiyah–Bott [AB64],
cf. [Ati67, §2.3] and Hatcher (2003, §2.1). They view vector bundles over X × S2

as being glued together from bundles E ×D2
+ → X ×D2

+ and E ×D2
− → X ×D2

−
along X × S1, where S2 = D2

+ ∪D2
+ and D2

+ ∩D2
− = S1. The gluing is specified

by a continuous clutching function f that assigns to each (x, z) ∈ X × S1 a linear
automorphism of Ex. By Fejér’s theorem one may replace f by a Cesàro mean g of
Fourier polynomial approximations, where g(x, z) =

∑
n an(x)zn now is a Laurent

polynomial in z ∈ S1. Linear algebra manipulations lets one reduce to the case
where g(x, z) = b0(x) + b1(x)z is linear in z. For such clutching functions there is a
canonical splitting of E as a sum of vector bundles over X, and this gives the two
components in K(X)⊗K(S2).

Mark Behrens [Beh02], [Beh04] gave a proof of Bott periodicity using explicit
quasi-fibrations.

In the real case, the eight steps in the periodicity are as follows. We have
inclusions

O
c−→ U −→ Sp

induced by R ⊂ C ⊂ H and

Sp −→ U
r−→ O

induced by H ∼= C2 and C ∼= R2. The homogeneous spaces U/O, Sp/U , U/Sp and
O/U are formed with respect to these inclusions.

Theorem 5.2.7 (Bott). There are homotopy equivalences as in Figure 5.1.
Hence

Ωi(Z×BO) '



Z×BO for i ≡ 0 mod 8,

O for i ≡ 1 mod 8,

O/U for i ≡ 2 mod 8,

U/Sp for i ≡ 3 mod 8,

Z×BSp for i ≡ 4 mod 8,

Sp for i ≡ 5 mod 8,

Sp/U for i ≡ 6 mod 8,

U/O for i ≡ 7 mod 8.

Corollary 5.2.8. For i ≥ 0

K̃U(Si) ∼= πi(Z×BU) ∼= (Z, 0, . . . )
repeats with period 2, so that

π∗(Z×BU) ∼= Z[u]
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Z×BO '−→ Ω(U/O)

U/O
'−→ Ω(Sp/U)

Sp/U
'−→ ΩSp

Sp
'−→ Ω(Z×BSp)

Z×BSp '−→ Ω(U/Sp)

U/Sp
'−→ Ω(O/U)

O/U
'−→ ΩO

O
'−→ Ω(Z×BO) .

Figure 5.1. Bott equivalences

with |u| = 2. Similarly,

K̃O(Si) ∼= πi(Z×BO) ∼= (Z,Z/2,Z/2, 0,Z, 0, 0, 0, . . . )
repeats with period 8, so that

π∗(Z×BO) ∼= Z[η,A,B]/(2η, η3, ηA,A2 = 4B)

with |η| = 1, |A| = 4 and |B| = 8.

Complexification c : Z → BO → Z × BU takes A to 2u2 and B to u4, which
implies the relation A2 = 4B.

5.3. The Chern character

A first glimpse of transchromatic phenomena, connecting different periodicities,
is given by the Chern character [Hir56, §10].

Definition 5.3.1. For n ≥ 0 let the Chern character

ch = n+
∑
k≥1

pk
k!
∈
∏
k≥1

H2k(BU(n);Q)

be the characteristic class specified by

i∗n(ch) =

n∑
i=1

∑
k≥0

yki
k!

=

n∑
i=1

eyi ∈ Q[[y1, . . . , yn]] .

It is represented by a map

{n} ×BU(n)
ch−→

∏
k≥1

K(Q, 2k) .

Lemma 5.3.2. Let ξ and η be complex vector bundles over X. Then

ch(ξ ⊕ η) = ch(ξ) + ch(η)

ch(ξ ⊗ η) = ch(ξ) ∪ ch(η) ,

so the Chern character extends to a natural ring homomorphism

KU(X)
ch−→

∏
k≥0

H2k(X;Q)
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represented by a map

Z×BU ch−→
∏
k≥0

K(Q, 2k)

of ring spaces up to homotopy.

Proof. We have ch(γn × γm) = ch(γn)× 1 + 1× ch(γm) in∏
k≥0

H2k(BU(n)×BU(m))

since
∑n+m
i=1 eyi =

∑n
i=1 e

yi ⊗ 1 + 1⊗
∑m
j=1 e

yj in∏
k≥0

H2k(BU(1)n+m;Q) ∼= Q[[y1, . . . , yn+m]] .

Hence ch(ξ×η) = ch(ξ)×1+1× ch(η) by naturality, and ch(ξ⊕η) = ch(ξ)+ ch(η)
by restriction to the diagonal.

(Recall that c1(ξ ⊗ η) = c1(ξ) + c1(η).) For line bundles ξ and η we have

ch(ξ ⊗ η) = ec1(ξ⊗η) = ec1(ξ)+c1(η) = ec1(ξ) ∪ ec1(η) = ch(ξ) ∪ ch(η) .

By additivity of ch, the same formula holds for ξ and η sums of line bundles, and
the general case then follows by the splitting principle. �

Proposition 5.3.3. For X = S2n, the Chern character

ch : KU(S2n) −→
∏
k≥1

H2k(S2n;Q)

maps K̃U(S2n) = Z{un} isomorphically to Z{ι2n} = H2n(S2n;Z) ⊂ H2n(S2n;Q).
Hence the n-th Chern class

cn : K̃U(S2n) −→ H2n(S2n;Z)

maps un to (n− 1)! times a generator.

Proof. When n = 1, K̃U(S2) = Z{u} where u = γ1
1 − 1, c1(γ1

1) = ι2 ∈
H2(S2;Z) and c1(1) = 0, so ch(u) = ch(γ1

1)− ch(1) = eι2 −1 = ι2. The cases n ≥ 2
follow by multiplicativity of the Chern character. By the Girard–Newton formula

n! · ch = pn = −(−1)nn · cn ∈ H2n(S2n;Z)

so n · cn(un) is n! times a generator, as claimed. �

An almost complex structure on a smooth manifold M is a complex vector
bundle structure on its tangent bundle τM . The dimension of M must obviously
be even. It is classical that S2 = CP 1 and S6, but not S4, admit almost complex
structures. Borel–Serre (1953) showed that there are no further examples. It is a
famous open problem whether S6 admits a complex structure.

Theorem 5.3.4 ([BS53, Prop. 15.1]). S2n cannot admit an almost complex
structure if n ≥ 4.

Proof. We have
〈e(τS2n), [S2n]〉 = χ(S2n) = 2 .

If τS2n = ηR is the underlying real vector bundle of a complex vector bundle η, then
e(τS2n) = ±cn(η), so

〈cn(η), [S2n]〉 = ±2 .
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But cn(η) is a multiple of cn(un), hence is divisible by (n−1)!, so this is impossible
if n ≥ 4. �

Proposition 5.3.5. The Chern character induces an isomorphism

KU(X)⊗Q
∼=−→
∏
k≥0

H2k(X;Q)

for all finite CW complexes X.

Sketch proof. This follows from the fact that the ring homomorphism

π∗(ch) : π∗(Z×BU) = Z[u] −→ π∗(
∏
k≥0

K(Q, 2k)) = Q{ι2k | k ≥ 0}

induces an isomorphism upon rationalization, i.e., after tensoring with Q. �

Remark 5.3.6. It follows by a passage to limits that the map in : BU(1)n →
BU(n) induces an injective homomorphism

KU(BU(n)) −→ KU(BU(1)n)

for each n, leading to a splitting principle also for topological K-theory.

Remark 5.3.7. For each prime p, the first Morava K-theory, K(1), captures
the mod p behavior of KU , which is not seen by the Chern character.

5.4. Topological K-theory spectra

Working in the category T of based spaces, we can define the negative half of

a reduced cohomology theory K̃U
∗
(X) by setting

K̃U
−m

(X) = K̃U(ΣmX) = [ΣmX,Z×KU ] ∼= [X,Ωm(Z×KU)]

for all m ≥ 0 and spaces X. By the Bott periodicity theorem, this functor only
depends on m mod 2, hence can be extended periodically to a full cohomology
theory, as follows.

Definition 5.4.1. For based spaces X, let

K̃U
n
(X) =

{
[X,Z×BU ] for n even,

[X,U ] for n odd,

where n ranges over all integers. This defines a contravariant homotopy functor,
called the reduced complex K-theory, or K-cohomology, of X. There are suspension
isomorphisms

σ : K̃U
n
(X) ∼= K̃U

n+1
(ΣX)

given by the Bott equivalence

[X,Z×BU ] ∼= [X,ΩU ] ∼= [ΣX,U ]

for n even, and by the elementary equivalence

[X,U ] ∼= [X,Ω(Z×BU)] ∼= [ΣX,Z×BU ]

for n odd. For unbased spaces X, let KUn(X) = K̃U
n
(X+) be the unreduced

complex K-theory of X. Here X+ denotes X with a disjoint base point. Note that

KU(X) = KU0(X) and K̃U
0
(X) = K̃U(X). We write K̃U

∗
(X) and KU∗(X) for

the combined graded abelian groups.
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Definition 5.4.2. For based spaces X, let

K̃O
n
(X) = [X,Ωi(Z×BO)]

where n = 8k − i with 0 ≤ i ≤ 7 and k an integer. This defines a contravariant
homotopy functor, called the reduced real K-theory, or K-cohomology of X. There
are suspension isomorphisms

σ : K̃O
n
(X) ∼= K̃O

n+1
(ΣX)

given by the Bott equivalence

[X,Z×BO] ∼= [X,Ω8(Z×BO)] = [X,ΩΩ7(Z×BO)] ∼= [ΣX,Ω7(Z×BO)]

for i = 0, and by the identification

[X,Ωi(Z×BU)] ∼= [X,ΩΩi−1(Z×BU)] ∼= [ΣX,Ωi−1(Z×BU)]

for 1 ≤ i ≤ 7. For unbased spaces X, let KOn(X) = K̃O
n
(X+) be the unreduced

real K-theory of X. Note that KO(X) = KO0(X) and K̃O
0
(X) = K̃O(X). We

write K̃O
∗
(X) and KO∗(X) for the combined graded abelian groups.

Remark 5.4.3. The essential data allowing the definition of KU∗(X) is the
sequence of spaces KUn, for n ≥ 0, with

KUn =

{
Z×BU for n even,

U for n odd,

together with the homotopy equivalences

σ̃ : KUn
'−→ Ω(KUn+1) .

The latter correspond to (non-equivalences)

σ : Σ(KUn) −→ KUn+1 .

This data defines a (sequential) spectrum, which corresponds to a new object in the
stable homotopy category Ho(Sp). This is the complex K-theory spectrum KU . It
is not of the form Σ∞X or HG for any space X or abelian group G.

Likewise, the real K-theory spectrum KO is the sequence of spaces KOn, for
n ≥ 0, with

KOn = Ωi(Z×BO)

for n = 8k − i with 0 ≤ i ≤ 7, together with the homotopy equivalences

σ̃ : KOn
'−→ Ω(KOn+1)

or their adjoints
σ : Σ(KOn) −→ KOn+1 .

Remark 5.4.4. The product structures in KU(X) and KO(X) extend to prod-
uct structures in KU∗(X) and KO∗(X), which are induced by maps

φn,m : KUn ∧KUm −→ KUn+m

φn,m : KOn ∧KOm −→ KOn+m

that are suitably compatible with the structure maps σ. These define products
φ : KU ∧ KU → KU and φ : KO ∧ KO → KO, making KU and KO into ring
spectra. These can be viewed as the objects in Ho(Sp) that represent multiplicative
cohomology theories, i.e., cohomology theories with a natural product, but with the
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modern categories of spectra they can also be viewed as coherently structured ring
spectra, with well-behaved module categories, etc.

Lemma 5.4.5. The coefficient groups π∗(KU) = KU∗ = KU−∗ form the graded
ring

KU∗ = Z[u±1]

with |u| = 2. The coefficient groups π∗(KO) = KO∗ = KO−∗ form the graded ring

KO∗ = Z[η,A,B±1]/(2η, η3, ηA,A2 = 4B)

with |η| = 1, |A| = 4 and |B| = 8.

((Chern character as a map KU →
∨
k Σ2kHQ '

∏
k Σ2kHQ.))

Remark 5.4.6. Complexification V 7→ cV = C⊗R V induces group homomor-
phisms O(n)→ U(n), maps BO(n)→ BU(n) and Z×BO → Z×BU and natural

transformations c : VectRn(X)→ VectCn(X) and c : KO∗(X)→ KU∗(X). The latter
is represented by a map c : KO → KU of topological K-theory ring spectra. The
induced homomorphism of coefficient groups is the ring homomorphism given by

c : KO∗ −→ KU∗

η 7−→ 0

A 7−→ 2u2

B 7−→ u4 .

Realification W 7→ rW = WR induces group homomorphisms U(n) → O(2n),
maps BU(n) → BO(2n) and Z × BU → Z × BO and natural transformations

r : VectCn(X)→ VectR2n(X) and r : KU∗(X)→ KO∗(X). The latter is represented
by a map r : KU → KO of (KO-module) spectra. The induced homomorphism of
coefficient groups is the KO∗-module homomorphism given by

r : KU∗ −→ KO∗

1 7−→ 2

u 7−→ η2

u2 7−→ A

u3 7−→ 0 .

((Wood’s theorem: There is a homotopy cofiber sequence

ΣKO
η−→ KO

c−→ KU
Σ2r◦u−1

−→ Σ2KO

of KO-modules. This is a reinterpretation of the Bott equivalence Ω(U/O) '
Z×BO.))

((Also mention complex conjugation V 7→ tV , where z ∈ C acts on tV as z̄
acts on V , inducing group homomorphisms U(n)→ U(n), maps BU(n)→ BU(n)

and Z × BU → Z × BU and natural transformations t : VectCn(X) → VectCn(X)
and t : KU∗(X) → KU∗(X). The induced ring homomorphism t : KU∗ → KU∗ is
given by t(u) = −u. In each case t ◦ t = id. We note that t ◦ c = c and r ◦ t = r.
Together with a self-conjugate K-theory KT (X), these form the united K-theory
of Bousfield.))
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5.5. Adams operations

Topological K-theory gains in power when enriched by natural operations,
much in the same way as mod p cohomology becomes more powerful when viewed
as a module or algebra over the mod p Steenrod algebra.

((ETC: We focus on the complex case. The real case is entirely similar, and
the natural transformations c : KO(X) → KU(X), r : KU(X) → KO(X) and
t : KU(X) → KU(X) are compatible with the (real and complex) Adams opera-
tions.))

Definition 5.5.1. The k-th exterior power of a complex vector space V is the
space of coinvariants

ΛkV = (V ⊗ · · · ⊗ V )⊗Σk C(sgn)

where Σk acts from the right on V ⊗· · ·⊗V = V ⊗k by permuting the tensor factors,
and from the left on C(sgn) by the sign representation. We write

v1 ∧ · · · ∧ vk
for the image of v1 ⊗ · · · ⊗ vk ⊗ 1, so that vσ(1) ∧ · · · ∧ vσ(k) = sgn(σ) v1 ∧ · · · ∧ vk.

If {v1, . . . , vn} is a basis for V then the
(
n
k

)
elements

{vi1 ∧ · · · ∧ vik | 1 ≤ i1 < · · · < ik ≤ n}

form a basis for ΛkV . In particular, Λ0V = C{1}, Λ1V = V and ΛkV = 0 for
k > n = dimV . We call ΛnV = C{v1 ∧ · · · ∧ vn} the determinant line of V , since a
linear map A : V → V induces det(A) : ΛnV → ΛnV . The direct sum

Λ∗V =
⊕
k≥0

ΛkV

is the exterior algebra on V , of total dimension 2n.

Lemma 5.5.2. There are natural isomorphisms

Λk(V ⊕W ) ∼=
⊕
i+j=k

ΛiV ⊗ ΛjW

and

Λk(V1 ⊕ · · · ⊕ Vn) ∼=
⊕

1≤i1<···<ik≤n

Vi1 ⊗ · · · ⊗ Vik ,

where we assume dimV1 = · · · = dimVn = 1 in the latter formula.

Definition 5.5.3. The k-th exterior power λkξ of a Cn-bundle π : E → X is
given by the fiberwise k-exterior powers, so that

E(λkξ)x = ΛkE(ξ)x

for all x ∈ X. This defines a natural operation

λk : Vectn(X) −→ Vect(nk)
(X) .

Lemma 5.5.4. Let ξ be a Cn-bundle and η a Cm-bundle over the same base
space X. Then λ0ξ = ε1, λ1ξ = ξ, λkξ = 0 for k > n = dim ξ,

λk(ξ ⊕ η) ∼=
⊕
i+j=k

λiξ ⊗ λjη
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and

λk(ξ1 ⊕ · · · ⊕ ξn) ∼=
⊕

1≤i1<···<ik≤n

ξi1 ⊗ · · · ⊗ ξik ,

where we assume that each ξi is a complex line bundle.

One can use this sum formula to extend λk to virtual bundles, i.e., to formal
differences ξ − η, giving a non-additive operation

λk : KU(X) −→ KU(X) .

((Grothendieck or earlier?)) Taking a cue from the power-sum polynomials pk
and Chern character ch, expressed in terms of Chern classes ck, we instead follow
Adams [Ada62, §4] and construct an additive operation

ψk : KU(X) −→ KU(X)

that will also be multiplicative. We use notation from [MS74, §16].

Definition 5.5.5. For each 1 ≤ k ≤ n let sk(e1, . . . , ek) be the polynomial
determined by

pk = sk(e1, . . . , ek) ∈ Z[y1, . . . , yn]Σn ,

where pk and ek denote the k-th power-sum and elementary symmetric polynomials,
respectively.

The polynomial sk does not depend on n, as long as n ≥ k. For example,
s1(e1) = e1, s2(e1, e2) = e2

1 − 2e2 and sk(e1, 0, . . . , 0) = ek1 for all k. Note that
sk(c1, . . . , ck) = pk in H∗BU(n).

Definition 5.5.6. For k ≥ 1 and ξ any vector bundle over X, let

ψk(ξ) = sk(λ1ξ, . . . , λkξ) ∈ KU(X) .

This defines an operation

ψk : Vect(X) −→ KU(X) .

Lemma 5.5.7. ψ1(ξ) = ξ for any vector bundle ξ. If ξ = ξ1 ⊕ · · · ⊕ ξn, where
the ξi are line bundles, then

ψkξ = ξk1 + · · ·+ ξkn

is the class of ξ⊗k1 ⊕ · · · ⊕ ξ⊗kn .

Proof. In the second case we have λkξ = ek(ξ1, . . . , ξn) for each k, so

ψk(ξ) = sk(λ1ξ, . . . , λkξ) = pk(ξ1, . . . , ξn) = ξk1 + · · ·+ ξkn .

�

Lemma 5.5.8. ψk(ξ ⊕ η) = ψk(ξ) + ψk(η) and ψk(ξ ⊗ η) = ψk(ξ) · ψk(η).

Proof. For additivity, we appeal to the K-theory splitting principle and as-
sume that ξ = ξ1 ⊕ · · · ⊕ ξn and η = ξn+1 ⊕ · · · ⊕ ξn+m, where each ξi is a line
bundle. Then

ψk(ξ ⊕ η) =

n+m∑
i=1

ξki
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is equal to the sum

ψk(ξ) + ψk(η) =

n∑
i=1

ξki +

m∑
j=1

ξkn+j .

For multiplicativity, we may assume ξ and η are line bundles, in which case

ψk(ξ ⊗ η) = (ξ ⊗ η)k = ξkηk = ψk(ξ) · ψk(η) .

�

Definition 5.5.9. The k-th Adams operation

ψk : KU(X) −→ KU(X)

is the unique ring homomorphism

ψk(ξ − η) = ψk(ξ)− ψk(η)

extending the semi-ring homomorphism ψk : Vect(X)→ KU(X) defined above.

Recall from Proposition 5.1.6 that KU(S2) = Z[u]/(u2).

Proposition 5.5.10. The k-th Adams operation satisfies

ψk(u) = ku

in K̃U(S2) ∼= π2KU , and ψk(un) = knun in K̃U(S2n) ∼= π2nKU .

Proof. Since u = γ1
1 − 1 and u2 = 0, we have

ψk(u) = ψk(γ1
1)− ψk(1) = (γ1

1)k − 1 = (u+ 1)k − 1

= uk + kuk−1 + · · ·+ ku+ 1− 1 = ku

in K̃U(S2). The case of un follows (for all integers n) by multiplicativity. �

5.6. Hopf invariant one

Let n = 2m be an even positive integer. Recall that the Hopf invariant of a
map f : S2n−1 → Sn is the integer H(f) defined by

a2 = H(f)b ∈ H2n(Cf)

where Cf = Sn∪f e2n is the mapping cone of f , a ∈ Hn(Cf) restricts to a generator
of Hn(Sn) and b ∈ H2n(Cf) is the image of a (chosen) generator of H2n(S2n). This
defines a homomorphism

H : π2n−1(Sn) −→ Z .
The cofiber sequence

Sn
j−→ Cf

k−→ S2n

and the Chern character induce a map of short exact sequences

0 // K̃U(S2n)
k∗ //

ch

��

K̃U(Cf)
j∗

//

ch

��

K̃U(Sn) //

ch

��

0

0 // H2n(S2n;Q)
k∗ // H̃∗(Cf ;Q)

j∗
// Hn(Sn;Q) // 0 .

Here K̃U(Sn) = Z{um} and K̃U(S2n) = Z{u2m}, so K̃U(Cf) = Z{α, β} with

j∗(α) = um and k∗(u2m) = β .
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Then ch(α) ≡ a mod b and ch(β) = b, so

α2 = H(f)β ∈ K̃U(Cf) .

In other words, H(f) can equally well be computed using topological K-theory.

Lemma 5.6.1. ψkψ`(ξ) = ψk`(ξ) and

ψp(ξ) ≡ ξp mod p

for any prime p.

Proof. Both claims are clear when ξ is a line bundle, and follow in general
since all terms are additive in ξ. This uses the congruence

(ξ + η)p ≡ ξp + ηp mod p

which follows from p |
(
p
i

)
for 0 < i < p. �

Here follows the Adams–Atiyah “postcard proof” from [AA66] of the Hopf in-
variant one theorem, first proved by Adams in [Ada60] using secondary cohomol-
ogy operations, refining Adem’s proof [Ade52] (using primary Steenrod operations)
that n must be a power of 2. Topological K-theory, with its product structure and
Adams operations, is remarkably useful for this problem.

Theorem 5.6.2. Let f : S2n−1 → Sn. If H(f) = ±1 then n ∈ {1, 2, 4, 8}.

Proof. If n is odd then a2 = 0 unless n = 1. If n = 2m is even then

ψk(α) = kmα+ µkβ and ψk(β) = k2mβ

in K̃U(Cf), for some integer µk depending on f . If H(f) is odd then µ2 must be
odd, since

2mα+ µ2β = ψ2(α) ≡ α2 = H(f)β mod 2 .

For any k we calculate

ψ2ψk(α) = ψ2(kmα+ µkβ) = km(2mα+ µ2β) + µk22mβ

ψkψ2(α) = ψk(2mα+ µ2β) = 2m(kmα+ µkβ) + µ2k
2mβ .

These are both equal to ψ2k, so kmµ2 + µk22m = 2mµk + µ2k
2m, which we rewrite

as

2m(2m − 1)µk = km(km − 1)µ2 .

If k is odd, it follows that 2m | km − 1, so that km ≡ 1 mod 2m. We may assume
m ≥ 2. Taking k = 3 (or k = 5), the order of k in (Z/2m)× ∼= Z/2 × Z/2m−2 is
2m−2, so this implies 2m−2|m, which only happens for m ∈ {2, 4}. �

5.7. Stable Adams operations

Let ψk : Z × BU → Z × BU be a map of ring spaces representing the natural

operation ψk : K̃U(X)→ K̃U(X). Since ψk(u) = ku the square

S2 u //

k

��

Z×BU

ψk

��

S2 u // Z×BU
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commutes up to homotopy, where k : S2 → S2 denotes a map of degree k. Hence
so do

(Z×BU) ∧ S2 σ2
//

ψk∧k
��

Z×BU

ψk

��

(Z×BU) ∧ S2 σ2
// Z×BU

and

Z×BU σ̃2

'
//

ψk·k
��

Ω2(Z×BU)

Ω2(ψk)

��

Z×BU σ̃2

'
// Ω2(Z×BU)

In order to extend ψk to a natural transformation KU∗(X) → KU∗(X) of coho-
mology theories, or a map of spectra KU → KU , we need to be able to divide by k,
so that ψk ' Ω2(ψk · 1/k), and more generally ψk ' Ω2n(ψk · 1/kn) for all n ≥ 0.

For any abelian group A we call the colimit

A[1/k] = colim (A
k−→ A

k−→ A→ . . . )

the localization of A away from k. Since localization away from k is exact, the
functor X 7→ KU∗(X)[1/k] defines a cohomology theory, which is represented by a
spectrum KU [1/k] with π∗(KU [1/k]) = (π∗KU)[1/k]. The spaces of this spectrum
are localizations

KU [1/k]2n = (Z×BU)[1/k] and KU [1/k]2n−1 = U [1/k]

that can be constructed using Postnikov sections (following Sullivan [Sul74]) or by
cosimplicial methods (following Bousfield–Kan [BK72]).

Definition 5.7.1. Let the stable Adams operation

ψk : K̃U
∗
(X)[1/k] −→ K̃U

∗
(X)[1/k]

be the morphism of cohomology theories induced by

ψk · 1/kn : (Z×BU)[1/k] −→ (Z×BU)[1/k]

for ∗ = 2n and by Ω(ψk · 1/kn) for ∗ = 2n− 1. The corresponding map of spectra

ψk : KU [1/k] −→ KU [1/k]

has components (ψk)2n = ψk · 1/kn and (ψk)2n−1 = Ω(ψk · 1/kn).

Let p be a prime, and let A(p) = A[1/q | q 6= p] be the localization of A at p,
i.e., away from all primes q 6= p. There are then stable Adams operations

ψk : K̃U
∗
(X)(p) −→ K̃U

∗
(X)(p)

for all k ≥ 1 relatively prime to p, induced by maps of p-localized spectra

ψk : KU(p) −→ KU(p) ,

with ψ1 = id and ψkψ` = ψk` (at least up to homotopy). Note that ψp is not
a stable operation at p, so the (essentially 2-local) Adams–Atiyah argument is
intrinsically unstable.
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For any abelian group A we call the limit

A∧p = lim (· · · → A/p3A→ A/p2A→ A/pA)

the p-completion of A. Let Zp = Z∧p denote the ring of p-adic integers. When A is
finitely generated, A⊗ Zp ∼= A∧p , so

X 7→ KU∗(X)⊗ Zp ∼= KU∗(X)∧p

behaves as a cohomology theory for finite CW complexes X. To define this coho-
mology theory for general X we need to perform a construction in the category of
spectra. Let

...

��

...

��

...

��

...

��

KU
pn+1

//

p

��

KU //

id

��

KU/pn+1 //

��

ΣKU

p

��

KU
pn
//

��

KU //

��

KU/pn //

��

ΣKU

��

...
...

...
...

be a tower of Puppe cofiber sequences in spectra, where pn : KU → KU represents
multiplication by pn. We define the p-completion of KU

KU∧p = holim
n

KU/pn

as the homotopy limit of this tower. The same construction works to define E∧p for
any spectrum E.

Adams showed that for a fixed n the operation ψk mod pn only depends on the
congruence class of k mod pm, for some m. Hence there are Adams operations ψk

for all p-adic integers k ∈ Zp, acting compatibly on mod pn topological K-theory,
hence also on p-complete topological K-theory. See e.g. Atiyah–Tall [AT69, §I.5,
§III.2]. This gives Adams operations

ψk : KU∧p (X) −→ KU∧p (X)

for all k ∈ Zp. In particular, ψ−1 = t equals the complex conjugation operation.
For k relatively prime to p, so that k ∈ Z×p is a p-adic unit, these define stable
Adams operations, induced by maps of p-completed (ring) spectra

ψk : KU∧p −→ KU∧p .

This action of ψk on KU∧p for k ∈ Z×p equals the action of the first Morava stabilizer
group S1 = G1 on the first Morava E-theory = Lubin–Tate spectrum E1, and is
generalized to general heights n by the work of Hopkins–Miller and Goerss–Hopkins.
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5.8. The image-of-J spectrum

For odd p, let g be a topological generator of Z×p . The continuous Z×p -homotopy
fixed points of KU∧p is then the homotopy equalizer

J∧p // KU∧p

ψg
//

id
// KU

∧
p

of ψg : KU∧p → KU∧p and the identity id = 1. We get a homotopy (co-)fiber
sequence

Σ−1KU∧p
∂−→ J∧p −→ KU∧p

ψg−1−→ KU∧p .

There is a unit map S → J∧p , and Adams ((ETC: or Milnor–Kervaire?)) proved
that π∗(S

∧
p ) → π∗(J

∧
p ) is surjective in degrees ∗ ≥ 0, split by the Whitehead J-

homomorphism. For any spectrum X let X/p = X ∧ S/p denote the homotopy
cofiber of p : X → X. By a theorem of Miller, π∗(S/p)→ π∗(J/p) = Λ(α1)⊗Fp[v1]
is the localization homomorphism inverting a self-map v1 : Σ2p−2S/p → S/p, so
that

v−1
1 π∗(S/p)

∼=−→ π∗(J/p) .

When p = 2, the group Z×2 ∼= Z/2 × Z2 requires two (topological) generators,
e.g., −1 and 3. Taking homotopy fixed points for the Z/2-action by ψ−1 on KU∧2
gives KO∧2 , so the continuous Z×2 homotopy fixed points of KU∧2 is the homotopy
equalizer

J∧2 // KO∧2

ψ3

//

id
// KO

∧
2

of ψ3 : KO∧2 → KO∧2 and the identity id = 1. We get a homotopy (co-)fiber
sequence

Σ−1KO∧2
∂−→ J∧2 −→ KO∧2

ψ3−1−→ KO∧2 .

There is again a unit map S → J∧2 , and the Adams conjecture, proved by Quillen
(and Sullivan, Becker–Gottlieb), shows that π∗(S

∧
2 )→ π∗(J

∧
2 ) is split surjective in

degrees ∗ ≥ 2. By a theorem of Mahowald, π∗(S/2) → π∗(J/2) is the localization
homomorphism inverting a self-map v4

1 : Σ8S/2→ S/2, so that

v−1
1 π∗(S/2)

∼=−→ π∗(J/2) .

Here π∗(KO/2) ∼= (. . . ,Z/2,Z/2,Z/4,Z/2,Z/2, 0, 0, 0, . . . ) starting in degree 0
and repeating 8-periodically, so π∗(J/2) ∼= (. . . ,Z/2, (Z/2)2,Z/2 ⊕ Z/4,Z/4 ⊕
Z/2, (Z/2)2,Z/2, 0, 0, . . . ), starting in degree −1 and also repeating 8-periodically.

These results correspond to the cases n = 1 of Ravenel’s (overly optimistic)
telescope conjecture. At each height n ≥ 1, the continuous homotopy fixed points
for the action of the extended Morava stabilizer group Gn on the Lubin–Tate spec-
trum En recovers the Bousfield localization LK(n)S of the sphere spectrum S with
respect to the n-th Morava K-theory K(n). The homotopy fiber sequences above
turn into a descent spectral sequence

Es,t2 = Hs
c (Gn;πtEn) =⇒ πt−sLK(n)S

and the target provides invariants of the vn-periodic homotopy of (finite spectra
closely related to) S.
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Figure 5.2. Adams spectral sequence chart for the fundamental
domain of π∗(J/2)



CHAPTER 6

Smooth bordism

See [Tho54], [Ati61], [CF64], [Sto68], [MS74], [MM79, Ch. 1], [May99,
Ch. 25].

6.1. Bordism classes of manifolds

Definition 6.1.1. Let M and N be closed, smooth d-manifolds. A bordism
from M to N is a compact, smooth (d+ 1)-manifold W such that

∂W ∼= M tN .

If such a bordism exists, we say that M and N are cobordant. This defines an
equivalence relation. Let Nd = ΩOd be the set of cobordism classes of closed,
smooth d-manifolds, and let N∗ = ΩO∗ denote the associated graded set.

Lemma 6.1.2. The disjoint union and Cartesian product of manifolds make
N∗ = ΩO∗ a graded commutative F2-algebra.

Proof. The sum and product are given by [M ]+[N ] = [MtN ] and [M ]·[N ] =
[M × N ]. Let I = [0, 1]. Since ∂(M × I) ∼= M tM we have [M ] + [M ] = 0 for
each M . �

Theorem 6.1.3 (Thom (1954)). N∗ ∼= F2[ãi | i 6= 2j−1] = F2[ã2, ã4, ã5, ã6, ã8, . . . ]
with |ãi| = i.

We may also consider manifolds with additional structure, such as an orien-
tation, an almost complex structure, or a stable framing. We assume that the
boundary of such a manifold again has such a structure, with

∂(M × I) ∼= M t (−M) .

Here −M denotes the opposite structure of that of M . Moreover, we assume that
the disjoint union and Cartesian product of two such structured manifolds again
has this structure.

Example 6.1.4. An orientation of a d-manifold M is equivalent to an orienta-
tion of the tangent Rd-bundle τM , or of the normal Rn-bundle νM for any choice
of embedding M → Rd+n. Here

E(νM )x = Rd+n/TxM .

Any two choices of embeddings become isotopic for n sufficiently large, so the stable

class of νM ∈ K̃O(M) is well-defined. An orientation of νM amounts to a lift of

91
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the classifying map M → BO(n) through EO(n)/SO(n) ' BSO(n).

BSO(n)

����

M
f
//

g
;;

BO(n)

We write Ωd = ΩSOd for the group of cobordism classes of closed, oriented, smooth
d-manifolds, with additive inverse −[M ] = [−M ], and Ω∗ = ΩSO∗ for the associated
graded commutative ring.

Theorem 6.1.5 (Thom, Milnor, Averbuch). Ω∗[
1
2 ] ∼= Z[ 1

2 ][yi | i ≥ 1] with
|yi| = 4i.

The precise structure of the 2-torsion was determined by Wall (1960).

Example 6.1.6. An almost complex structure on a manifold M is given by a
complex structure on the normal bundle νM , for any choice of embedding M →
Rd+n. Here n = 2m must be even, so νM = r(η) = ηR for some Cm-bundle η
over M . A complex structure on νM corresponds to a lift of the classifying map
M → BO(2m) through EO(2m)/U(m) ' BU(m).

BU(m)

r
����

M
f
//

g
;;

BO(2m)

We write ΩUd for the group of cobordism classes of almost complex d-manifolds, and
ΩU∗ for the associated graded commutative ring. Every (smooth, closed) complex
manifold is almost complex, but the converse does not hold for d = 4. Shing-Tung
Yau has conjectured that for even d ≥ 6 each almost complex d-manifold admits a
complex structure. This is unknown for M = S6.

Theorem 6.1.7 (Milnor (1960), Novikov (1960)). ΩU∗
∼= Z[xi | i ≥ 1] with

|xi| = 2i.

In particular, each odd-dimensional almost complex manifold is a boundary.

Example 6.1.8. A stable framing of M is given by a trivialization νM ∼= εnM
of the normal bundle of any embedding M → Rd+n. This is equivalent to giving a
stable trivialization τM⊕εn ∼= εd+n for some n. A stable framing of M is equivalent
to giving a nullhomotopy of the classifying map M → BO(n), or a lift through the
contractible space EO(n) ' B{e}.

EO(n)

π
����

M
f
//

g
<<

BO(n)

We write Ωfr
d for the group of cobordism classes of stably framed d-manifolds, and

Ωfr
∗ for the associated graded commutative ring.

Theorem 6.1.9 (Pontryagin (1936/1950)). Ωfr
∗
∼= π∗(S) = (Z,Z/2,Z/2, . . . ).



6.2. BORDISM THEORIES 93

((ETC: Other bordism theories. h- and s-cobordism theorems. Exotic spheres.))

6.2. Bordism theories

Following Atiyah (1961) we can realize the rings ΩO∗ , ΩSO∗ , ΩU∗ , Ωfr
∗ etc. as coef-

ficient rings of multiplicative homology theories ΩO∗ (−), ΩSO∗ (−), ΩU∗ (−), Ωfr
∗ (−) =

πS∗ ((−)+) etc.

Definition 6.2.1. For a space X, consider maps

σ : M −→ X and τ : N −→ X

from closed, smooth unoriented (resp. oriented, almost complex, stably framed,
etc.) d-manifolds M and N to X, and say that (M,σ) is cobordant to (N, τ) if
there exists a map

φ : W −→ X

from a compact, smooth (d + 1)-manifold unoriented (resp. oriented, almost com-
plex, stably framed, etc.) W to X, such that ∂W ∼= M tN and φ|∂W ∼= σt τ . Let
ΩOd (X) (resp. ΩSOd (X), ΩUd (X), Ωfr

d (X), etc.) be the set of cobordism classes [M,σ]
of such maps σ : M → X. Given f : X → Y let f∗ : ΩOd (X) → ΩOd (Y ) map [M,σ]
to [M,fσ].

For a pair (X,A) consider maps of pairs

σ : (M,∂M) −→ (X,A) and τ : (N, ∂N) −→ (X,A)

from compact, smooth unoriented (resp. oriented, almost complex, stably framed,
etc.) d-manifolds M and N to X, and say that these are cobordant if there exists
a map of pairs

φ : (W,∂W ) −→ (X,A)

where ∂W ∼= M∪∂MV ∪∂NN with φ|∂W ∼= σ∪ψ∪τ . Let ΩOd (X,A) (resp. ΩSOd (X,A),
ΩUd (X,A), Ωfr

d (X,A), etc.) be the set of cobordism classes of such maps of pairs.
Given f : (X,A) → (Y,B) let f∗ : ΩOd (X,A) → ΩOd (Y,B) map [M,σ] to [M,fσ].
Let ∂ : ΩOd (X,A) → ΩOd−1(A) map the bordism class of σ : (M,∂M) → (X,A) to
the bordism class of σ|∂M : ∂M → A.

Proposition 6.2.2. The functor (X,A) 7→ ΩO∗ (X,A) (resp. ΩSOd (X,A), ΩUd (X,A),
Ωfr
d (X,A), etc.) defines a multiplicative homology theory, called unoriented (resp. ori-

ented, almost complex, stably framed, etc.) bordism.

Proof. The operations [M,σ]+[N, τ ] = [M tN, σtτ ] and −[M,σ] = [−M,σ]
give ΩOd (X) a group structure. To prove homotopy invariance use W = M × I.
Transversality for smooth maps implies that there is a natural isomorphism

ΩOd (X,A) ∼= ΩOd (X ∪ CA, ∗) ,

which implies excision.
For τ : N → Y the operation [M,σ] · [N, τ ] = [M ×N, σ × τ ] defines a bilinear

pairing ΩOd (X) × ΩOe (Y ) → ΩOd+e(X × Y ). In the case Y = ∗, this makes ΩO∗ (X)

a (right or left) ΩO∗ -module. There are also relative pairings, compatible with the
boundary homomorphisms, making ΩO∗ (−) a multiplicative homology theory.

The oriented, almost complex, stably framed, etc. cases work the same way. �
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6.3. Thom spectra

Recall that Th(ξ) = D(ξ)/S(ξ) denotes the Thom complex of a Euclidean
vector bundle ξ : E → X, and that

Th(ξ × η) ∼= Th(ξ) ∧ Th(η)

if η : F → Y is a second Euclidean vector bundle. In the special case η = ε1 over
Y = ∗ we have ξ × η = ξ ⊕ ε1 and Th(η) = D1/S0 ∼= S1, so

Th(ξ ⊕ ε1) ∼= Th(ξ) ∧ S1 = Σ Th(ξ) .

For a bundle map

E(ξ)
f̂
//

��

E(η)

��

X
f
// Y ,

with ξ ∼= f∗η, we write Th(f) : Th(ξ) → Th(η) for the induced map of Thom
complexes.

Definition 6.3.1. Let γn = γnR denote the tautological Rn-bundle

π : E(γn) = EO(n)×O(n) Rn −→ BO(n) .

Recall that γn+1|BO(n) ∼= γn ⊕ ε1, where we view ι : BO(n) → BO(n + 1) as the
inclusion of a subspace. Let

MO(n) = Th(γn) =
EO(n)×O(n) D

n

EO(n)×O(n) Sn−1
∼= EO(n)+ ∧O(n) S

n .

Here O(n) acts on Dn/Sn−1 ∼= Sn as on the one-point compactification Rn ∪ {∞}.
Let MO denote the unoriented Thom spectrum, with n-th space MOn = MO(n)
and n-th structure map ΣMOn →MOn+1 given by the composite

σ : Σ Th(γn) ∼= Th(γn ⊕ ε1) ∼= Th(γn+1|BO(n))
Th(ι)−→ Th(γn+1) .

Definition 6.3.2. Let γ̃n denote the tautological oriented Rn-bundle

π : E(γ̃n) = ESO(n)×SO(n) Rn −→ BSO(n) .

Let

MSO(n) = Th(γ̃n) ∼= ESO(n)+ ∧SO(n) S
n .

Let MSO denote the oriented Thom spectrum, with n-th space MSOn = MSO(n)
and n-th structure map ΣMSOn →MSOn+1 given by the composite

σ : Σ Th(γ̃n) ∼= Th(γ̃n ⊕ ε1) ∼= Th(γ̃n+1|BSO(n))
Th(ι)−→ Th(γ̃n+1) .

Definition 6.3.3. Let γn = γnC denote the tautological Cn-bundle

π : E(γn) = EU(n)×U(n) Cn −→ BU(n) .

Recall that γn+1|BU(n) ∼= γn ⊕ ε1, where ε1 = ε1C and we view ι : BU(n) →
BU(n+ 1) as the inclusion of a subspace. Let

MU(n) = Th(γn) =
EU(n)×U(n) D

2n

EU(n)×U(n) S2n−1
∼= EU(n)+ ∧U(n) S

2n .
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Here U(n) acts onD2n/S2n−1 ∼= S2n as on the one-point compactification Cn∪{∞}.
Let MU denote the complex Thom spectrum, with 2n-th space MU2n = MU(n),
(2n+1)-th space MU2n+1 = ΣMU(n), 2n-th structure map the identity ΣMU2n =
MU2n+1, and (2n + 1)-th structure map ΣMU2n+1 = Σ2MU2n → MU2n+2 given
by the composite

σ : Σ2 Th(γn) ∼= Th(γn ⊕ ε1) ∼= Th(γn+1|BU(n))
Th(ι)−→ Th(γn+1) .

Definition 6.3.4. The tautological Rn-bundle over B{e} = ∗ is π : Rn → ∗,
with Thom complex Dn/Sn−1 ∼= Sn. The framed bordism Thom spectrum M{e}
has n-th space M{e}n = Sn and n-th structure map ΣM{e}n → M{e}n+1 equal
to the identity ΣSn = Sn+1. Hence M{e} = S is equal to the sphere spectrum.

The Thom spectrum MO (resp. MSO, MU , S, etc.) defines a reduced homol-
ogy theory MO∗(−) by

M̃Od(X) = colim
n

πd+n(MOn ∧X) ,

where the colimit is formed over the homomorphisms

πd+n(MOn ∧X)
Σ−→ πd+n+1Σ(MOn ∧X)

∼= πd+n+1(ΣMOn ∧X)
σ∗−→ πd+n+1(MOn+1 ∧X) .

The suspension isomorphism ΣM̃Od(X) ∼= M̃Od+1(ΣX) is given by

colim
n

πd+n(MOn ∧X)
∼=−→ colim

n
πd+n+1Σ(MOn ∧X)

∼= colim
n

πd+1+n(MOn ∧ ΣX) .

The associated unreduced homology theory is defined by MOd(X) = M̃Od(X+)

and MOd(X,A) = M̃Od(X ∪ CA).
The bundle map

E(γn)× E(γm)
µ̂n,m

//

��

E(γn+m)

��

BO(n)×BO(m)
µn,m

// BO(n+m)

induces a pairing

MOn ∧MOm = Th(γn) ∧ Th(γm)
Th(µn,m)−→ Th(γn+m) = MOn+m

that makes MO into a ring spectrum.
Likewise, the Thom spectra MSO, MU , M{e} = S, etc. are ring spectra that

define multiplicative homology theories MSO∗(−), MU∗(−), S∗(−), etc. Note that

Sd(X) = colim
n

πd+n(Sn ∧X+) ∼= πSd (X+) ,

so that S∗(−) is given by the unreduced stable homotopy groups.
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6.4. The Pontryagin–Thom construction and transversality

Theorem 6.4.1. There are natural isomorphisms of multiplicative homology
theories

ΩO∗ (X,A) ∼= MO∗(X,A)

ΩSO∗ (X,A) ∼= MSO∗(X,A)

ΩU∗ (X,A) ∼= MU∗(X,A)

Ωfr
∗ (X,A) ∼= S∗(X,A)

etc. In particular

N∗ = ΩO∗
∼= π∗(MO)

Ω∗ = ΩSO∗
∼= π∗(MSO)

ΩU∗
∼= π∗(MU)

Ωfr
∗
∼= π∗(S) .

The case of framed bordism is due to Pontryagin (ca. 1936), that of unoriented
and oriented bordism is due to Thom [Tho54].

Proof. We discuss the case (X,A) = (∗, ∅) for complex bordism.
Let [M ] ∈ ΩUd be represented by an almost complex d-manifold M ⊂ Rd+2n.

Its normal bundle νM is classified by a map g : M → BU(n), which is covered by a
bundle map

E(νM )
ĝ
//

��

E(γn)

��

M
g
// BU(n) .

The disc bundle can be embedded as a tubular neighborhood D(νM ) ⊂ Rd+2n ⊂
Sd+2n of M . Let

Sd+2n ℘−→ Sd+2n

Sd+2n \ (D(νM ) \ S(νM ))
∼=
D(νM )

S(νM )
= Th(νM )

be the Pontryagin–Thom collapse map, taking the complement of the open disc
bundle D(νM ) \ S(νM ) to the base point. The composite

Sd+2n ℘−→ Th(νM )
Th(g)−→ Th(γn) = MU2n

determines a homotopy class in

πd(MU) = colim
n

πd+2nMU2n .

Conversely, let [f ] ∈ πd(MU) be represented by a map f : Sd+2n → MU2n =
Th(γn). It may be deformed slightly to become transverse to the zero-section

z = qs0 : BU(n)
s0−→ D(γn)

q−→ Th(γn) ,

whose normal bundle is isomorphic to γn. Let

M = f−1(BU(n)) ⊂ Rd+2n ⊂ Sd+2n
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be the preimage of this zero-section, which is then a closed, smooth d-manifold (by
a generalization of the regular level set theorem). Moreover, there is a bundle map

E(νM )
f̂
//

��

E(γn)

��

M
f |M

// BU(n) ,

which implies that νM ∼= (f |M)∗(γn) has a complex structure. Hence M is almost
complex, and determines a bordism class in ΩUd .

To complete the proof, one verifies that these two constructions define mutual
inverses

ΩUd
∼=←→ πd(MU) .

�

Remark 6.4.2. Thom worked with smooth (DIFF) manifolds, in order to have
transversality available. For piecewise-linear (PL) manifolds, or topological (TOP)
manifolds in dimension d 6= 4, transversality will hold in sufficiently large codimen-
sion by results of Williamson (1966) and Kirby–Siebenmann (1977).

See [Swi75, Lem. 14.40] or [May99, §25.5] for the proof that ℘ has degree 1,
which we can state as follows. (In the unoriented case, this must be interpreted
with F2-coefficients.)

Proposition 6.4.3. The Hurewicz image of the Pontryagin–Thom collapse
map corresponds under the Thom isomorphism to the fundamental class of M :

πd+2n(Th(νM ))
h−→ H̃d+2n(Th(M))

Φν∼= Hd(M)

[℘] 7−→ Φνh([℘]) = [M ] .

6.5. Unoriented bordism

To calculate the commutative F2-algebra N∗ = ΩO∗
∼= π∗(MO), Thom com-

pared the homology of MO with the homology of spectra X such that π∗(X) is
known, namely (wedge sums of suspensions of) Eilenberg–MacLane spectra. The
argument was streamlined by Liulevicius, using the multiplicative structure. Note
that [Liu62, (3.27)] is corrected in [Liu68, Prop. 9] and improved by [Swi73,
Thm. 1(i)].

Recall that A∗ = F2[ζk | k ≥ 1] with |ζk| = 2k − 1. Let

H∗(MO;F2) = colim
n

H∗+n(MOn;F2) ,

with the induced A∗-coaction. The F2-linear dual

H∗(MO;F2) = lim
n
H∗+n(MOn;F2)

has the dual A -action.

Theorem 6.5.1 ([Tho54], [Liu62]). The A∗-comodule algebra

H∗(MO;F2) ∼= F2[am | m ≥ 1]
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is isomorphic to A∗ ⊗ PH∗(MO;F2), where PH∗(MO;F2) ⊂ H∗(MO;F2) is the
subalgebra of A∗-comodule primitives. Here

PH∗(MO;F2) ∼= F2[ãm | m 6= 2k − 1] ,

with ãm ≡ am modulo algebra decomposables for all m 6= 2k − 1.

Proof. Recall that

H∗(BO;F2) = F2[am | m ≥ 1]

is generated as a commutative algebra by the images of the additive generators αm
of H̃∗(BO(1);F2) = F2{αm | m ≥ 1} under the inclusion RP∞ ' BO(1) → BO.
The colimit over n of the Thom isomorphisms

Uγn ∩ − : H̃∗+n(MOn;F2) = H̃∗+n(Th(γn);F2)
∼=−→ H∗(BO(n);F2)

defines a stable Thom isomorphism

Φ: H∗(MO;F2)
∼=−→ H∗(BO;F2) .

We first calculate the A∗-coaction on H̃∗+1(MO1;F2). Note that S(γ1) =
EO(1)×O(1) S

0 ∼= EO(1) ' ∗ is contractible, so in the homotopy cofiber sequence

S(γ1)
π−→ BO(1)

z−→ Th(γ1) = MO1

the zero-section z is a homotopy equivalence. It follows that z∗ maps αm+1 ∈
H̃m+1(BO(1);F2) to the generator z∗(αm+1) of H̃m+1(MO1;F2) that corresponds
to αm ∈ Hm(BO(1);F2) under the Thom isomorphism Uγ1∩−, and which therefore
stabilizes to am ∈ Hm(MO;F2).

H̃∗+1(BO(1);F2)
z∗
∼=
// H̃∗+1(MO1;F2)

Uγ1∩−
∼=
//

��

H∗(BO(1);F2)

��

H̃∗+n(MOn;F2)
Uγn∩−
∼=
//

��

H∗(BO(n);F2)

��

H∗(MO;F2)
Φ
∼=

// H∗(BO;F2)

From [Swi73], see Chapter 2, Lemma 8.3, we know that ν : H∗(BO(1);F2)→
A∗ ⊗H∗(BO(1);F2) satisfies

ν(αm+1) =

m∑
n=0

(Zn+1)m−n ⊗ αn+1 ,

where Z = 1+ζ1+ζ2+. . . is a formal sum in A∗. This implies that ν : H∗(MO;F2)→
A∗ ⊗H∗(MO;F2) satisfies

ν(am) =

m∑
n=0

(Zn+1)m−n ⊗ an ,

where a0 = 1. Modulo decomposable products, this equals

ν(am) ≡

{
ζk ⊗ 1 + 1⊗ am if m = 2k − 1,

1⊗ am otherwise.
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Let f : H∗(MO;F2)→ F2[ām | m 6= 2k−1] be the algebra homomorphism given by

f(am) =

{
0 if m = 2k − 1,

ām otherwise.

The composite

φ : H∗(MO;F2)
ν−→ A∗ ⊗H∗(MO;F2)

1⊗f−→ A∗ ⊗ F2[ām | m 6= 2k − 1]

is then a left A∗-comodule algebra homomorphism

F2[am | m ≥ 1] −→ F2[ζk | k ≥ 1]⊗ F2[ām | m 6= 2k − 1]

satisfying

φ(am) ≡

{
ζk ⊗ 1 if m = 2k − 1,

1⊗ ām otherwise

modulo decomposables, and is therefore an isomorphism. Let

PH∗(MO;F2) = {x ∈ H∗(MO;F2) | ν(x) = 1⊗ x}
be the subalgebra of A∗-comodule primitives. It maps isomorphically by Pφ to

P (A∗ ⊗ F2[ām | m 6= 2k − 1]) = F2[ām | m 6= 2k − 1] ,

hence has the form

PH∗(MO;F2) = F2[ãm | m 6= 2k − 1] ⊂ H∗(MO;F2)

where ãm ≡ am modulo decomposables, for each m 6= 2k − 1. �

Corollary 6.5.2. H∗(MO;F2) ∼= A ⊗PH∗(MO;F2)∨ is a free A -module of
finite type, with basis dual to the monomial basis for PH∗(MO;F2) = F2[ãm | m 6=
2k − 1].

Theorem 6.5.3 ([Tho54]). The mod 2 Hurewicz homomorphism

h : π∗(MO) −→ H∗(MO;F2)

maps the F2-algebra π∗(MO) ∼= ΩO∗ isomorphically to

PH∗(MO;F2) = F2[ãm | m 6= 2k − 1] .

Proof. Let {ãI}I be the monomial basis for PH∗(MO;F2), and let {ã∨I }I be
the dual basis, corresponding to an A -module basis for H∗(MO;F2). For each I
let |I| denote the degree of ã∨I , and let

gI : MO −→ Σ|I|HF2

be a map of spectra representing ã∨I . Let∏
I

gI : MO −→
∏
I

Σ|I|HF2

be the product of these maps. Since there are only finitely many basis elements
below any given degree, the inclusion∨

I

Σ|I|HF2
'−→
∏
I

Σ|I|HF2

is an equivalence of spectra. The resulting chain of maps

g : MO −→
∏
I

Σ|I|HF2 '
∨
I

Σ|I|HF2



100 6. SMOOTH BORDISM

induces an isomorphism of A -modules

H∗(g;F2) :
⊕
I

H∗(Σ|I|HF2) ∼=
∏
I

H∗(Σ|I|HF2) = H∗(
∨
I

Σ|I|HF2;F2)

g∗−→ H∗(MO;F2) ,

and can therefore be shown to be an equivalence. It must therefore also induce an
isomorphism in homotopy

π∗(g) : π∗(MO)
∼=−→ π∗(

∨
I

Σ|I|HF2)

∼=
⊕
I

π∗(Σ
|I|HF2) = F2{ãI}I = PH∗(MO;F2) .

�

6.6. Complex bordism

To calculate the graded commutative ring ΩU∗ = π∗(MU), Milnor [Mil60]
and Novikov [Nov60] again compared the homology of MU with the homology of
spectra X such that π∗(X) is known. More precisely, they follow Adams [Ada58]
and resolve MU by a tower of spectra

. . .
α−→ Ys+1

α−→ Ys
α−→ . . .

α−→ Y0 'MU

such that each cofiber

Ys+1
α−→ Ys

β−→ Ks
γ−→ ΣYs+1

is a wedge sum of suspensions of Eilenberg–MacLane spectra. This leads to a
case of the Adams spectral sequence. A posteriori, this amounts to a comparison
with (wedge sums of suspensions of) the Brown–Peterson spectra BP , one for each
prime p.

We discuss the odd-primary case (the case p = 2 is similar), so that

A∗ = Λ(τi | i ≥ 0)⊗ Fp[ξi | i ≥ 1]

with |τi| = 2pi − 1 and |ξi| = 2pi − 2. Note that

E∗ = Λ(τi | i ≥ 0)

is a primitively generated quotient bialgebra of A∗, and

P∗ = Fp[ξi | i ≥ 1] = A∗ �E∗ Fp
is a sub bialgebra of A∗. Dually,

E = Λ(Qi | i ≥ 0)

is a primitively generated sub bialgebra of A , and

P = A ⊗E Fp
is a quotient bialgebra, sometimes denoted P = A //E . The classes Qi ∈ E ⊂ A
are called the Milnor primitives, and can be iteratively defined by Q0 = β (the
Bockstein homomorphism) and

Qi+1 = [P p
i

, Qi] = P p
i

Qi −QiP p
i

for i ≥ 0.
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Let

H∗(MU ;Fp) = colim
n

H∗+n(MUn;Fp)

with the induced A∗-coaction. The Fp-linear dual

H∗(MU ;Fp) = lim
n
H∗+n(MUn;Fp)

has the dual A -action.

Theorem 6.6.1. The A∗-comodule algebra

H∗(MU ;Fp) ∼= Fp[bm | m ≥ 1]

is isomorphic to P∗ ⊗ PH∗(MU ;Fp), where PH∗(MU ;Fp) ⊂ H∗(MU ;Fp) is the
subalgebra of A∗-comodule primitives. Here

PH∗(MU ;Fp) ∼= Fp[b̃m | m 6= pk − 1] ,

with b̃m ≡ bm modulo algebra decomposables for all m 6= pk − 1.

Proof. Recall that

H∗(BU ;Fp) = Fp[bm | m ≥ 1]

is generated as a commutative algebra by the images of the additive generators βm
of H̃∗(BU(1);Fp) = Fp{βm | m ≥ 1} under the inclusion CP∞ ' BU(1) → BU .
The colimit over n of the Thom isomorphisms

Uγn ∩ − : H̃∗+2n(MU2n;Fp) = H̃∗+2n(Th(γn);Fp)
∼=−→ H∗(BU(n);Fp)

defines a stable Thom isomorphism

Φ: H∗(MU ;Fp)
∼=−→ H∗(BU ;Fp) .

We first calculate the A∗-coaction on H̃∗+2(MU2;Fp). Note that S(γ1) =
EU(1)×U(1) S

1 ∼= EU(1) ' ∗ is contractible, so in the homotopy cofiber sequence

S(γ1)
π−→ BU(1)

z−→ Th(γ1) = MU2

the zero-section z is a homotopy equivalence. It follows that z∗ maps βm+1 ∈
H̃2m+2(BU(1);Fp) to the generator z∗(βm+1) of H̃2m+2(MU2;Fp) that corresponds
to βm ∈ H2m(BU(1);Fp) under the Thom isomorphism Uγ1∩−, and which therefore
stabilizes to bm ∈ H2m(MU ;Fp).

H̃∗+2(BU(1);Fp)
z∗
∼=
// H̃∗+2(MU2;Fp)

Uγ1∩−
∼=
//

��

H∗(BU(1);Fp)

��

H̃∗+2n(MU2n;Fp)
Uγn∩−
∼=
//

��

H∗(BU(n);Fp)

��

H∗(MU ;Fp)
Φ
∼=

// H∗(BU ;Fp)

From [Swi73, Thm. 1(ii)] we know that ν : H∗(BU(1);Fp)→ A∗⊗H∗(BU(1);Fp)
satisfies

ν(βm+1) =

m∑
n=0

(Xn+1)2m−2n ⊗ βn+1 .
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where X = 1+ξ1 +ξ2 + . . . . This implies that ν : H∗(MU ;Fp)→ A∗⊗H∗(MU ;Fp)
satisfies

ν(bm) =

m∑
n=0

(Xn+1)2m−2n ⊗ bn ,

where b0 = 1. Modulo decomposable products, this equals

ν(bm) ≡

{
ξk ⊗ 1 + 1⊗ bm if m = pk − 1,

1⊗ bm otherwise.

In particular, the A∗-coaction factors as

H∗(MU ;Fp)
ν̃−→P∗ ⊗H∗(MU ;Fp) ⊂ A∗ ⊗H∗(MU ;Fp) ,

making H∗(MU ;Fp) a P∗-comodule algebra.
Let f : H∗(MU ;Fp) → Fp[b̄m | m 6= pk − 1] be the algebra homomorphism

given by

f(bm) =

{
0 if m = pk − 1,

b̄m otherwise.

The composite

φ : H∗(MU ;Fp)
ν̃−→P∗ ⊗H∗(MU ;Fp)

1⊗f−→P∗ ⊗ Fp[b̄m | m 6= pk − 1]

is then a left P∗-comodule algebra homomorphism

Fp[bm | m ≥ 1] −→ Fp[ξk | k ≥ 1]⊗ Fp[b̄m | m 6= pk − 1]

satisfying

φ(bm) ≡

{
ξk ⊗ 1 if m = pk − 1,

1⊗ b̄m otherwise

modulo decomposables, and is therefore an isomorphism. Let

PH∗(MU ;Fp) = {x ∈ H∗(MU ;Fp) | ν(x) = 1⊗ x}

be the subalgebra of A∗-comodule primitives, which is equal to the subalgebra of
P∗-comodule primitives. It maps isomorphically by Pφ to

P (P∗ ⊗ Fp[b̄m | m 6= pk − 1]) = Fp[b̄m | m 6= pk − 1] ,

hence has the form

PH∗(MU ;Fp) = Fp[b̃m | m 6= pk − 1] ⊂ H∗(MU ;Fp)

where b̃m ≡ bm modulo decomposables, for each m 6= pk − 1. �

Recall that P = A ⊗E Fp = A //E is a cyclic A -module algebra.

Corollary 6.6.2. H∗(MU ;Fp) ∼= P⊗PH∗(MU ;Fp)∨ is a free P-module of

finite type, with basis dual to the monomial basis for PH∗(MU ;Fp) = Fp[b̃m | m 6=
pk − 1].

Theorem 6.6.3.

π∗(MU∧p ) ∼= Zp[vi | i ≥ 1]⊗Zp Zp[b̃m | m 6= pk − 1]

where |vi| = 2pi − 2 for each i ≥ 1, and the mod p Hurewicz homomorphism
h : π∗(MU)→ H∗(MU ;Fp) maps π∗(MU∧p ) onto PH∗(MU ;Fp).
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Proof. This is easiest seen using the mod p Adams spectral sequence. Let
{b̃I}I be the monomial basis for PH∗(MU ;Fp), and let {b̃∨I }I be the dual basis.
We obtain isomorphisms of A∗-comodule algebras

H∗(MU ;Fp)
∼=−→
⊕
I

Σ|I|P∗

and of A -module coalgebras⊕
I

Σ|I|P
∼=−→ H∗(MU ;Fp) .

Hence the Adams spectral sequence, in its homological form

Es,t2 = Exts,tA∗
(Fp, H∗(MU ;Fp)) =⇒s πt−s(MU∧p )

or its cohomological form

Es,t2 = Exts,tA (H∗(MU ;Fp),Fp) =⇒s πt−s(MU∧p )

is an algebra spectral sequence with E2-term

E∗,∗2 = Ext∗,∗A∗
(Fp,P∗)⊗ PH∗(MU ;Fp) ∼= Ext∗,∗A (P,Fp)⊗ PH∗(MU ;Fp) .

Since A is a bialgebra and E a sub bialgebra, [MM65, Thm. 4.4, Thm. 4.7] imply
that A is free a left E -module, and A∗ is cofree as a left E∗-comodule, so there are
change-of-rings isomorphisms

Ext∗,∗A∗
(Fp,P∗) = Ext∗,∗A∗

(Fp,A∗ �E∗ Fp) ∼= Ext∗,∗E∗
(Fp,Fp)

Ext∗,∗A (P,Fp) = Ext∗,∗A (A //E ,Fp) ∼= Ext∗,∗E (Fp,Fp) .

Since E∗ = Λ(τi | i ≥ 0) and E∗ = Λ(Qi | i ≥ 0), standard homological algebra
shows that

Ext∗,∗E∗
(Fp,Fp) = Ext∗,∗E (Fp,Fp) = Fp[qi | i ≥ 0]

with qi ∈ Ext1,2pi−1(Fp,Fp) representing an extension detected by Qi. Hence

E∗,∗2
∼= Fp[qi | i ≥ 0]⊗ PH∗(MU ;Fp)

is concentrated in even topological degrees t−s. There is therefore no room for non-
zero differentials, since these decrease the topological degree by 1. Hence E∗,∗2 =
E∗,∗∞ . Since the E∞-term is free as a graded commutative Fp-algebra, there can only
be additive extensions, with multiplication by p in the abutment being represented
by multiplication by q0 in the E∞-term, and it follows that

π∗(MU∧p ) ∼= Zp[vi | i ≥ 1]⊗Zp Zp[b̃m | m 6= pk − 1]

with vi in degree |vi| = 2pi − 2 being detected by qi, for each i ≥ 1. �

Note that as a Zp-algebra, π∗(MU∧p ) has one polynomial generator in each

positive even degree 2m, which is of the form vi if 2m = 2pi−2, and of the form b̃m
otherwise. Serre proved that π∗(S)⊗Q ∼= Q, so

π∗(MUQ) = π∗(MU)⊗Q ∼= H∗(MU ;Q) ∼= H∗(BU ;Q) ∼= Q[bk | k ≥ 1]
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is also polynomial on one generator in each positive even degree. Further work with
the arithmetic square

MU //

��

MUQ

��

MU∧ // (MU∧)Q ,

whereMUQ = MU [1/2, . . . , 1/p, . . . ] denotes the rationalization ofMU andMU∧ =∏
pMU∧p denotes its profinite completion, leads to the following integral result.

Theorem 6.6.4 ([Mil60], [Nov60]).

ΩU∗ = π∗(MU) ∼= Z[xi | i ≥ 1]

where |xi| = 2i for each i ≥ 1.

Theorem 6.6.5. The Hurewicz homomorphism

h : π∗(MU) −→ H∗(MU)

satisfies

h(xm) ≡

{
pbm if m = pi − 1 for some prime p,

bm otherwise,

modulo decomposables, for each m ≥ 1.

Note that m+ 1 ≥ 2 can be equal to a prime power pi for at most one prime p.

6.7. Framed bordism

The A∗-comodule algebra H∗(S;Fp) = Fp has the trivial coaction (via the
coaugmentation η : Fp → A∗), and dually the A -module coalgebra H∗(S;Fp) = Fp
has the trivial action (via the augmentation ε : A → Fp).

Theorem 6.7.1. The mod p Adams spectral sequence

Es,t2 = Exts,tA∗
(Fp,Fp) = Exts,tA (Fp,Fp) =⇒s πt−s(S

∧
p )

converges to the p-completion of Ωfr
∗ = π∗(S).

This spectral sequence is only partially understood.



CHAPTER 7

Sequential and orthogonal spectra

Stable homotopy theory was developed by Spanier and J.H.C. Whitehead [SW53],
[SW55], and expressed in terms of spectra, in the sense of algebraic topology, by
Lima [Lim59] and G. Whitehead [Whi60], [Whi62]. The Spanier–Whitehead
homotopy category SW was extended by Boardman (1965, cf. Vogt [Vog70]) to
contain representing objects for all cohomology theories, cf. Brown [Bro62]. A pop-
ular exposition of Boardman’s homotopy category B was given by Adams [Ada74,
Part III]. The resulting homotopy category is triangulated by Puppe cofiber se-
quences, cf. Verdier’s 1967 thesis [Ver96], and has a symmetric monoidal smash
product. This allows the study of ring spectra up to homotopy, and module spec-
tra up to homotopy over these, but is not sufficient to give a triangulated structure
on these module categories. More structured versions of ring and module spec-
tra were studied by May and collaborators [May77], [May80] under the names
of I∗-prefunctors and I∗-prespectra, but these were then only viewed as a source
of examples, rather than as a fully fledged model for the stable homotopy category.
Instead, coherent structures were expressed in terms of operad actions, e.g. in the
context of Lewis–May spectra [LMSM86].

This changed with the insight by Jeff Smith (1994, see Hovey–Shipley–Smith
[HSS00]) that by adding symmetric group actions to the Lima–Whitehead (sequen-
tial) spectra, one obtains a stable and symmetric monoidal model category SpΣ

of symmetric spectra, whose homotopy category Ho(SpΣ) is equivalent to Board-
man’s. It was soon realized that one could equally well use orthogonal groups
in place of symmetric groups, and that this would recover May’s I∗-prespectra.
Another approach refining Lewis–May spectra was developed at the same time by
Elmendorf–Kriz–Mandell–May [EKMM97]. The different theories were compared
by Mandell–May–Schwede–Shipley [MMSS01]. In the orthogonal case, the sta-
ble equivalences are the same as the π∗-isomorphisms, whereas this relationship
is more subtle for symmetric spectra. Hence we shall focus on the category SpO
of orthogonal spectra as our stable and closed symmetric monoidal model for the
stable homotopy category.

7.1. Sequential and orthogonal spectra

We work in the category T of based (compactly generated weak Hausdorff)
spaces and basepoint-preserving maps.

Definition 7.1.1. A sequential spectrum X is a sequence of spaces Xn for
n ≥ 0 and structure maps σ : ΣXn = Xn ∧ S1 → Xn+1. A map f : X → Y of
sequential spectra is a sequence of maps fn : Xn → Yn such that fn+1σ = σ(fn∧S1)
for all n ≥ 0. Let SpN be the topological category of sequential spectra.

105
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Let O(n) denote the n-th orthogonal group, acting on Rn by isometries, which
extend to the one-point compactification Sn = Rn ∪ {∞}. We view O(n) × O(m)
as a subgroup of O(n + m), compatibly with the isometry R ⊕ Rm ∼= Rn+m and
homeomorphism Sn ∧ Sm ∼= Sn+m. (A coordinate-free approach, using isometries
between Euclidean inner product spaces, is often more convenient for equivariant
applications.)

Definition 7.1.2. An orthogonal spectrum X is a sequence of O(n)-spaces Xn

for n ≥ 0 and structure maps σ : ΣXn = Xn ∧ S1 → Xn+1, such that the m-fold
iterate

σm : ΣmXn = Xn ∧ Sm −→ Xn+m

is O(n) × O(m)-equivariant, for all n,m ≥ 0. A map f : X → Y of orthogonal
spectra is a sequence of O(n)-equivariant maps fn : Xn → Yn such that fn+1σ =
σ(fn∧S1) for all n ≥ 0. Let SpO be the topological category of orthogonal spectra.

We shall see that sequential spectra are the same as right S-modules in a
symmetric monoidal category (T N, U,⊗, γ) of sequential spaces, while orthogo-
nal spectra are the same as right S-modules in a symmetric monoidal category
(T O, U,⊗, γ) of orthogonal spaces. In the sequential case S is a non-commutative
monoid, while in the orthogonal case it is commutative. This is why we cannot
expect X ∧ Y = X ⊗S Y to be an S-module in the sequential setting, while it will
be an S-module in the orthogonal context.

((ETC: Consider writing � in place of ⊗ for the convolution products in the
categories T N, T O SpN and SpO, so that X ∧ Y = X �S Y .))

Definition 7.1.3. The homotopy groups π∗(X) of a sequential spectrum X is
the graded abelian group with

πk(X) = colim
n

πk+n(Xn)

in degree k ∈ Z. Here πk+n(Xn) → πk+n+1(Xn+1) maps the homotopy class of
g : Sk+n → Xn to the class of σ(g ∧ S1). The homomorphism f∗ : πk(X)→ πk(Y )
maps the homotopy class of g to the class of fng. This defines a functor

π∗ : SpN −→ grAb .

There is a forgetful functor

U : SpO −→ SpN

and the homotopy groups π∗(X) of an orthogonal spectrum are defined to be the
homotopy groups of the underlying sequential spectrum.

Definition 7.1.4. A map f : X → Y of sequential or orthogonal spectra is
a π∗-isomorphism if the induced homomorphism π∗(f) : π∗(X) → π∗(Y ) is an iso-
morphism.

Let WN ⊂ SpN be the subcategory of π∗-isomorphisms. The stable homotopy
category Ho(SpN) of sequential spectra is the localization of SpN away from the
π∗-isomorphisms, i.e., the target of the initial functor

SpN −→ SpN[W−1
N ] = Ho(SpN)

from SpN that maps each π∗-isomorphism to an isomorphism.
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Likewise, let WO ⊂ SpO be the subcategory of π∗-isomorphisms. The stable
homotopy category Ho(SpO) of orthogonal spectra is the localization of SpO away
from the π∗-isomorphisms, i.e., the target of the initial functor

SpO −→ SpO[W−1
O ] = Ho(SpO)

from SpO that maps each π∗-isomorphism to an isomorphism.

It is not obvious that such initial functors exist, but if they do then they are
uniquely determined up to unique isomorphism, by the usual argument involving a
universal property. Quillen’s theory of model categories [Qui67], [Hov99] provides
a way of exhibiting such initial functors, both for sequential and orthogonal spectra.
Moreover, the forgetful functor U is part of a Quillen equivalence, so that the (total
right derived) induced functor

RU : Ho(SpO)
'−→ Ho(SpN)

is an equivalence of categories. By the stable homotopy category we shall mean
either one of these two equivalent categories.

7.2. Sequential and orthogonal spaces

Definition 7.2.1. A symmetric monoidal category is a category C with a unit
object U and a pairing

⊗ : C × C −→ C
X,Y 7−→ X ⊗ Y ,

together with natural unitality, associativity and commutativity isomorphisms

U ⊗ Y ∼= Y ∼= Y ⊗ U
(X ⊗ Y )⊗ Z ∼= X ⊗ (Y ⊗ Z)

γ : X ⊗ Y ∼= Y ⊗X ,

satisfying some coherence axioms, including γ2 = id. We call γ the symmetry
isomorphism. The category is closed if there is a functor

Hom: Cop × C −→ C
X,Y 7−→ Hom(X,Y )

and a natural bijection

C(X ⊗ Y,Z) ∼= C(X,Hom(Y, Z)) ,

i.e., if the functor (−)⊗ Y admits a right adjoint Hom(Y,−), for each Y in C. The
adjunction counit ε : Hom(Y,Z)⊗ Y → Z is called evaluation.

See e.g. [Mac71, Ch. VII] for the coherence diagrams.

Definition 7.2.2. A monoid in C is an object R with unit and product maps
η : U → R and φ : R ⊗ R → R such that unitality and associativity diagrams
commute. It is commutative if

R⊗R
γ

//

φ
##

R⊗R

φ
{{

X
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commutes. A right R-module in C is then an object M with an action map ρ : M ⊗
R→M such that unitality and associativity diagrams commute.

Definition 7.2.3. Let N be the discrete category with objects the integers
n ≥ 0 and only identity morphisms. The usual pairing

N× N −→ N
m,n 7→ m+ n

is symmetric monoidal, with unit element 0 ∈ N.
Let O be the topological category with objects the integers n ≥ 0 and morphism

spaces

O(m,n) =

{
O(n) for m = n,

∅ otherwise.

Composition is given by matrix multiplication. The block sum pairing

O×O −→ O
m,n 7−→ m+ n

A,B 7−→ A⊕B =

(
A 0
0 B

)
is symmetric monoidal, with symmetry isomorphism χm,n : m + n → n + m given
by

χm,n =

(
0 In
Im 0

)
This is natural, because(

0 In
Im 0

)(
A 0
0 B

)
=

(
B 0
0 A

)(
0 In
Im 0

)
.

Definition 7.2.4. Let

T N = Fun(N, T )

be the topological category of N-spaces, i.e., sequences of based spacesX = (Xn)n≥0.
A map f : X → Y is a sequence of base-point preserving maps (fn : Xn → Yn)n≥0.
Let

T N × T N −→ T N

X,Y 7−→ X ⊗ Y

be the Day convolution product, given by

(X ⊗ Y )n =
∨

i+j=n

Xi ∧ Yj

for each n ≥ 0. It is the left Kan extension of

N× N X×Y−→ T × T ∧−→ T

along +: N × N → N. Let U ∈ T N be given by U0 = S0 and Un = ∗ for n > 0.
Then (T N, U,⊗, γ) is closed symmetric monoidal, with symmetry given by

γn : (X ⊗ Y )n
∼=−→ (Y ⊗X)n

x ∧ y 7−→ y ∧ x
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for i+ j = n = j + i, x ∈ Xi and y ∈ Yj . Let the sphere N-space S ∈ T N be given
by Sn = Sn for each n ≥ 0, let η : U → S be given by η0 = id, and let φ : S⊗S → S
be given by

φn :
∨

i+j=n

Si ∧ Sj −→ Sn

x ∧ y 7−→ x ∧ y

for i+ j = n, x ∈ Si, y ∈ Sj and x ∧ y ∈ Si ∧ Sj = Sn. The internal Hom functor
is given by

Hom(Y,Z)i =
∏

i+j=n

Map(Yj , Zn) .

Lemma 7.2.5. (S, η, φ) is a non-commutative monoid in T N.

Proof. Unitality and associativity is straightforward. The pairings φ and
φγ : S ⊗ S → S map x ∧ y ∈ Si ∧ Sj ⊂ (S ⊗ S)n, for i+ j = n, to x ∧ y and y ∧ x
in Sn = Sn, which are not generally equal, so S is not commutative. �

Lemma 7.2.6. The category SpN of sequential spectra is isomorphic to the cat-
egory of right S-modules in N-spaces.

Proof. Let X be a sequential spectrum. The underlying N-space has the right
S-module structure

σ : X ⊗ S −→ X

given in degree n by the map

σn : (X ⊗ S)n =
∨

i+j=n

Xi ∧ Sj −→ Xn

given by the composite structure maps

σj : Xi ∧ Sj
σ∧id−→ . . .

σ−→ Xi+j = Xn .

Each right S-module arises this way, by the associativity of the right action. �

Definition 7.2.7. Let

T O = Fun(O, T )

be the topological category of O-spaces, i.e., sequences X = (Xn)n≥0, where Xn is
a based O(n)-space for each n ≥ 0. A map f : X → Y is a sequence of base-point
preserving maps (fn : Xn → Yn)n≥0, where fn : Xn → Yn is O(n)-equivariant for
each n ≥ 0. Let

T O × T O −→ T O

X,Y 7−→ X ⊗ Y

be the Day convolution product, given by

(X ⊗ Y )n =
∨

i+j=n

O(n)+ ∧O(i)×O(j) Xi ∧ Yj

for each n ≥ 0. It is the (continuous) left Kan extension of

O×O X×Y−→ T × T ∧−→ T
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along +: O×O→ O. Let U ∈ T O be given by U0 = S0 and Un = ∗ for n > 0, with
the only possible O(n)-actions. Then (T O, U,⊗, γ) is closed symmetric monoidal,
with symmetry given by

γn : (X ⊗ Y )n
∼=−→ (Y ⊗X)n

A ∧ x ∧ y 7−→ Aχj,i ∧ y ∧ x

for A ∈ O(n), x ∈ Xi, y ∈ Yj and i + j = n = j + i. Let the sphere O-space
S ∈ T O be given by Sn = Sn = Rn ∪ {∞} with the O(n)-action extending the
action by isometries on Rn for each n ≥ 0. Let η : U → S be given by η0 = id, and
let φ : S ⊗ S → S be given by the O(n)-equivariant map

φn :
∨

i+j=n

O(n)+ ∧O(i)×O(j) S
i ∧ Sj −→ Sn

A ∧ x ∧ y 7−→ A(x ∧ y)

for i + j = n, A ∈ O(n), x ∈ Si, y ∈ Sj and x ∧ y ∈ Si ∧ Sj = Sn. The internal
Hom functor is given by

Hom(Y, Z)i =
∏

i+j=n

Map(Yj , Zn)O(j) ,

with the O(i)-action from O(i)→ O(i)×O(j) ⊂ O(n).

Lemma 7.2.8. (S, η, φ) is a commutative monoid in T O.

Proof. Unitality and associativity is straightforward. The pairings φ and
φγ : S ⊗ S → S map

A ∧ x ∧ y ∈ O(n)+ ∧O(i)×O(j) S
i ∧ Sj ⊂ (S ⊗ S)n ,

for i + j = n, to A(x ∧ y) and Aχj,i(y ∧ x) in Sn = Sn, which are exactly equal.
Hence S is commutative. �

Lemma 7.2.9. The category SpO of orthogonal spectra is isomorphic to the
category of right S-modules in O-spaces.

Proof. Let X be an orthogonal spectrum. The underlying O-space has the
right S-module structure

σ : X ⊗ S −→ X

given in degree n by the O(n)-equivariant map

σn : (X ⊗ S)n =
∨

i+j=n

O(n)+ ∧O(i)×O(j) Xi ∧ Sj −→ Xn

with components

O(n)+ ∧O(i)×O(j) Xi ∧ Sj −→ Xn

that are left adjoint to the O(i)×O(j)-equivariant composite structure maps

σj : Xi ∧ Sj
σ∧id−→ . . .

σ−→ Xi+j = Xn .

Each right S-module arises this way, by the associativity of the right action. �
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7.3. Model category structures

Let C be a category with all colimits and limits, and let W be a subcategory of
weak equivalences. A model structure [Qui67], [Hov99] on C is given by two addi-
tional subcategories, of cofibrations and fibrations, satisfying a list of axioms. These
ensure that the localization Ho(C) = C[W−1] can be constructed with morphism
sets

[X,Y ] = {morphisms Xc → Y f in C}/∼

where Xc → X and Y → Y f are so-called cofibrant and fibrant replacements, and
∼ denotes homotopy classes of maps.

Lemma 7.3.1. The categories T N, T O, SpN and SpO have all (small) colimits
and limits.

Proof. Any diagram α 7→ X(α) of N-spaces, resp. O-spaces, has colimit and
limit

(colim
α

X(α))n = colim
α

(X(α)n)

(lim
α
X(α))n = lim

α
(X(α)n)

formed “pointwise” in spaces, resp. O(n)-spaces. If this is a diagram of right S-
modules, then the colimit and limit have right S-module structures given by

(colim
α

X(α))⊗ S ∼= (colim
α

X(α)⊗ S)
colimα σ−→ colim

α
X(α)

and

(lim
α
X(α))⊗ S κ−→ (lim

α
X(α)⊗ S)

limα σ−→ colim
α

X(α)

for a canonical exchange map κ. �

Lemma 7.3.2. The topological categories C = T N, T O, SpN and SpO are ten-
sored and cotensored over T . There are natural homeomorphisms

Map(T, C(X,Y )) ∼= C(T ∧X,Y ) ∼= C(X ∧ T, Y ) ∼= C(X,Map(T, Y )) .

Proof. Given an N-space, resp. O-space, X and a space T ∈ T define T ∧X,
X ∧ T and Map(T,X) so that

(T ∧X)n = T ∧Xn

(X ∧ T )n = Xn ∧ T
Map(T,X)n = Map(T,Xn)

in spaces, resp. O(n)-spaces. If X is a right S-module, then these have right S-
module structures given by

(T ∧X)⊗ S ∼= T ∧ (X ⊗ S)
T∧σ−→ T ∧X

(X ∧ T )⊗ S ∼= (X ⊗ S) ∧ T σ∧T−→ X ∧ T

Map(T,X)⊗ S κ−→ Map(T,X ⊗ S)
Map(T,σ)−→ Map(T,X)

for a canonical exchange map κ. �
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Definition 7.3.3. For X in C = T N, T O, SpN or SpO, let CX = X ∧ I,
ΣX = X ∧ S1 and ΩX = Map(S1, X) be the cone, suspension and loop space or
spectrum. There are natural homeomorphisms

ΩC(X,Y ) ∼= C(S1 ∧X,Y ) ∼= C(ΣX,Y ) ∼= C(X,ΩY ) .

For f : X → Y a map of diagram spaces or spectra, let the mapping cone of f be
the pushout

Cf = Y ∪X CX .

We call the diagram

X
f−→ Y

j−→ Cf
k−→ ΣX

the Puppe cofiber sequence generated by f .

Lemma 7.3.4. For each m ≥ 0 there are free functors

Fm : T −→ T N

Fm : T −→ T O

Σ∞m : T −→ SpN

Σ∞m : T −→ SpO

that are left adjoint to the forgetful functors from T N, T O, SpN and SpO mapping
X to the (non-equivariant) space Xm.

Proof. Let

Fm(T )n =

{
T for m = n,

∗ otherwise

in the sequential case, and let

Fm(T )n =

{
O(n)+ ∧ T for m = n,

∗ otherwise

in the orthogonal case. In either case, let Σ∞mT = Fm(T )⊗S with the evident right
S-module structure, so that

(Σ∞mT )n =

{
T ∧ Sn−m for n ≥ m
∗ for n < m

in the sequential case, and

(Σ∞mT )n =

{
O(n)+ ∧O(n−m) (T ∧ Sn−m) for n ≥ m
∗ for n < m

in the orthogonal case. �

Definition 7.3.5. Let Σ∞ = Σ∞0 denote the suspension spectrum functor,
from T to SpN or SpO. Then

(Σ∞T )n = T ∧ Sn = ΣnT ,

with the standard O(n)-action on Sn in the orthogonal case. The structure maps

σ : Σ(Σ∞T )n −→ (Σ∞T )n+1

are the identity maps.
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Definition 7.3.6. For m ≥ 0 let Sm = Σ∞Sm and S−m = Σ∞mS
0 as sequential

or orthogonal spectra. For m = 0 these definitions agree, and S0 = Σ∞S0 = S is
the sphere spectrum.

Lemma 7.3.7. The canonical maps ΣSm → Sm+1 are isomorphisms for m ≥ 0,
and π∗-isomorphisms for m < 0.

Proof. This is easy in the sequential case, and amounts to a key calculation
in the orthogonal case. As a representative case, consider λ : ΣS−1 = Σ∞1 S

1 → S,
given at level n by the O(n)-map

λn : O(n)+ ∧O(n−1) S
1 ∧ Sn−1 −→ Sn

left adjoint to the O(n − 1)-equivariant identity S1 ∧ Sn−1 = Sn. The source is
the Thom complex of an Rn-bundle over O(n)/O(n− 1) ∼= Sn−1, and the map is a
(2n− 1)-connected retraction. Hence

πk(λ) = colim
n

πk+n(λn)

is an isomorphism for each k ∈ Z. �

Remark 7.3.8. For symmetric spectra, λ should be a (stable, weak) equiva-
lence, but is not a π∗-isomorphism. Hence more maps than the π∗-isomorphisms
need to be inverted to pass from SpΣ to Ho(SpΣ) ' B.

Definition 7.3.9. Given a map φ : Sm−1 → X, we say that Cφ = X ∪CSm−1

is obtained fromX by attaching anm-cell along φ. A spectrum that can be obtained
from ∗ by attaching (transfinitely) many cells is called a cell spectrum. ((ETC: Also
allow ΣiSj−1 as source of φ?))

Definition 7.3.10. A sequential or orthogonal spectrum X is called an Ω-
spectrum if the adjoint structure map

σ̃ : Xn −→ ΩXn+1

is a weak homotopy equivalence, for each n ≥ 0.

If X is an Ω-spectrum, then each space Xm is an infinite loop space, in the
sense that there is an infinite sequence of weak equivalences

Xm ' ΩXm+1 ' · · · ' ΩnXm+n ' . . . .

Theorem 7.3.11 ([BF78, Thm. 2.3], [MMSS01, Thm. 9.2]). There is a model
structure on the category of sequential, resp. orthogonal, spectra, with weak equiv-
alences given by the π∗-isomorphisms, such that cell spectra are cofibrant and Ω-
spectra are fibrant.

Hence the homotopy category Ho(SpN) = SpN[W−1
N ], resp. Ho(SpO) = SpO[W−1

O ],
exists, and

[X,Y ] = {Xc → Y f}/'
where Xc → X is a π∗-equivalence from a cell spectrum, Y → Y f is a π∗-equivalence
to an Ω-spectrum, and ' denotes homotopy classes of spectrum maps Xc → Y f .

Proposition 7.3.12. There is a natural isomorphism

πk(Y ) ∼= [Sk, Y ]

for each sequential, resp. orthogonal, spectrum Y .
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Proof. Note that

Sk =

{
Σ∞Sk for k ≥ 0,

Σ∞−kS
0 for k ≤ 0

is a cell spectrum, hence its own cofibrant replacement. Let Y → Y f be a fibrant
replacement, i.e., a π∗-isomorphism to an Ω-spectrum. It suffices to prove that
πk(Y f ) ∼= [Sk, Y f ]. Here

[Sk, Y f ] = {Sk → Y f}/' ∼=

{
πk(Y f0 ) for k ≥ 0,

π0(Y f−k) for k ≤ 0,

which indeed is isomorphic to πk(Y f ). �

Theorem 7.3.13 ([MMSS01, Thm. 10.4]). The model categories of sequential
and orthogonal spectra are Quillen equivalent, so that

RU : Ho(SpO)
'−→ Ho(SpN)

is an equivalence of categories.

This uses that the underlying sequential spectra USm of orthogonal sphere
spectra are π∗-isomorphic to the corresponding sequential sphere spectra. Hereafter
we write Ho(Sp) for either one of these equivalent categories.

7.4. Stability and triangulated structure

The model structures on SpN and SpO are stable, which implies that the ho-
motopy category Ho(Sp) is triangulated.

Theorem 7.4.1. The suspension and loop functors induce inverse equivalences

Σ: Ho(Sp)
∼=
� Ho(Sp) : Ω

In particular, the adjunction unit η : X → ΩΣX and counit ε : ΣΩY → Y are both
π∗-isomorphisms.

For one proof, using that the cyclic permutation of S1 ∧ S1 ∧ S1 is homotopic
to the identity, see [Rognes, MAT9580/2021, Spectral Sequences, §9.3].

Lemma 7.4.2. Loop composition gives each morphism set

[X,Y ] ∼= [Σ2X,Σ2Y ] ∼= [X,Ω2Σ2Y ]

the structure of an abelian group, and composition of morphisms is bilinear.

We say that Ho(Sp) is an Ab-category. An additive category is an Ab-category
with all finite sums (= coproducts). It follows that it has all finite products, and
that the canonical map from any finite sum to the corresponding finite product is
an isomorphism. We now give May’s version [May01] of Verdier’s axioms.

Definition 7.4.3. A triangulated category is an additive category C with an
additive equivalence Σ: C → C and a collection ∆ of diagrams

(7.1) X
f−→ Y

f ′−→ Z
f ′′−→ ΣX ,

called distinguished triangles. We assume that:
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(1) (a) For each object X in C the triangle

X
id−→ X −→ 0 −→ ΣX

is distinguished. (b) For each morphism f : X → Y in C there exists a dis-
tinguished triangle (7.1). (c) Any diagram isomorphic to a distinguished
triangle is also a distinguished triangle.

(2) For each distinguished triangle (7.1) its rotation

Y
f ′−→ Z

f ′′−→ ΣX
−Σf−→ ΣY

is a distinguished triangle.
(3) Consider the following braid diagram.

X

h

""

f
  

Z

g′

##

h′

��

W

j′′

$$

g′′

""

ΣU

Y

g
??

f ′
��

V

j′
==

h′′

!!

ΣY

Σf ′

<<

U

j
??

f ′′

<<ΣX

Σf

<<

Assume that h = gf and j′′ = (Σf ′)g′′, and that

X
f−→ Y

f ′−→ U
f ′′−→ ΣX

Y
g−→ Z

g′−→W
g′′−→ ΣY

X
h−→ Z

h′−→ V
h′′−→ ΣX

are distinguished. Then there exist maps j and j′ such that the diagram
commutes and

U
j−→ V

j′−→W
j′′−→ ΣU

is distinguished.

The braid axiom is usually known as the octahedral axiom, since the four
distinguished triangles and the four commuting triangles can be viewed as the eight
faces of an octahedron. The two commuting squares then appear in the interior of
the octahedron.

The following fill-in lemma was taken as an axiom by Puppe and (unnecessarily
so) by Verdier.

Lemma 7.4.4. If the rows are distinguished and the left hand square commutes
in the following diagram

X
f
//

i

��

Y
g
//

j

��

Z
h //

k

��

ΣX

Σi

��

X ′
f ′
// Y ′

g′
// Z ′

h′ // ΣX ′
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then there exists a map k making the remaining two squares commute.

It is a consequence of the following 3×3-lemma, which is proved by comparing
the braid diagrams for the compositions jf and for f ′i.

Lemma 7.4.5. Assume that jf = f ′i and the two top rows and two left columns
are distinguished in the following diagram.

X
f
//

i
��

Y
g
//

j

��

Z
h //

k
��

ΣX

Σi
��

X ′
f ′
//

i′

��

Y ′
g′
//

j′

��

Z ′
h′ //

k′

��

ΣX ′

Σi′

��

X ′′
f ′′
//

i′′

��

Y ′′
g′′
//

j′′

��

Z ′′
h′′ //

k′′

��

(−)

ΣX ′′

Σi′′

��

ΣX
Σf
// ΣY

Σg
// ΣZ

Σh // Σ2X

Then there is an object Z ′′ and maps f ′′, g′′, h′′, k, k′ and k′′ such that the diagram
is commutative, except for its bottom right hand square, which commutes up to the
sign −1, and all four rows and columns are distinguished.

In all cases, no uniqueness is assumed for these existence statements. This
makes it difficult to glue together triangulated categories. This issue can be resolved
by working with richer structures, i.e., stable ∞-categories.

The fill-in lemma implies that distinguished triangles are exact and coexact.

Proposition 7.4.6. For any distinguished triangle

X
f−→ Y

g−→ Y
h−→ ΣX

and object T , in a triangulated category C, the sequences

C(T,X)
f∗−→ C(T, Y )

g∗−→ C(T,Z)
h∗−→ C(T,ΣX)

and

C(ΣX,T )
h∗−→ C(Z, T )

g∗−→ C(Y, T )
f∗−→ C(X,T )

are exact.

In view of stability and rotation invariance, these extend in both directions to
long exact sequences. Recall the mapping cone Cf = Y ∪ CX.

Theorem 7.4.7. The stable homotopy category Ho(Sp) is triangulated, with
distinguished triangles the diagrams that are isomorphic to the Puppe cofiber se-
quences

X
f−→ Y

j−→ Cf
k−→ ΣX .
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Sketch proof. The braid axiom may be unfamiliar. We may assume that
U = Cf , W = Cg and V = C(gf). There is then a commuting diagram

Y
g

//

��

Z //

��

Cg

'
��

Cf
j
//

��

C(gf) //

��

Cj

��

ΣX
id // ΣX // CΣX

of vertical cofiber sequences and horizontal homotopy cofiber sequences, formed in
SpN or SpO. The map Cg → Cj is an equivalence, since CΣX ' ∗. �

Corollary 7.4.8. For any map f : X → Y of (sequential or orthogonal) spec-
tra there is a long exact sequence

· · · → πk(X)
f∗−→ πk(Y ) −→ πk(Cf)

∂−→ πk−1(X)→ . . . .

This could also be proved directly from Theorem 7.4.1. Following G. White-
head [Whi60], each spectrum defines a (generalized) homology and cohomology
theory on spaces.

Theorem 7.4.9. (a) Let E be a (sequential or orthogonal) spectrum. The
functors

T 7→ Ẽk(T ) = πk(E ∧ T )

and the suspension isomorphisms

Ẽk(T ) = πk(E ∧ T )
∼=−→ πk+1(E ∧ ΣT ) = Ẽk+1(ΣT )

define a reduced homology theory on all based spaces T .
(b) The functors

X 7→ Ek(X) = [X,ΣkE]

and the suspension isomorphisms

Ek(X) = [X,ΣkE]
∼=−→ [ΣX,Σk+1E] = Ek+1(X) ,

for k ∈ Z, define a cohomology theory on all spectra X, which restricts to a reduced
cohomology theory on all based spaces T via

Ẽk(T ) = Ek(Σ∞T ) = [Σ∞T,ΣkE] .

We will extend the homology theory E∗(−) to all spectra after defining the
smash product of orthogonal spectra.

Definition 7.4.10. Let A ∗E = E∗E = E∗(E) be the E-based Steenrod algebra.

Proposition 7.4.11. The composition pairing

EiE ⊗ Ej(X) = [E,ΣiE]⊗ [X,ΣjE]
◦−→ [X,Σi+jE] = Ei+j(X)

gives E∗(X) a natural left E∗E-module structure. The multiplication in E∗E cor-
responds to the case X = E.
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In the case E = HFp we recover the mod p Steenrod algebra, and its natural
left action on H∗(X;Fp). The structure of A ∗MU = MU∗(MU) was determined
by Novikov [Nov67a] (announced at the 1966 ICM) and Landweber [Lan67],
cf. [Ada74, Part I]. Its action on MU∗(X) naturally is that of a topological ring
acting continuously on a topological module. Following Adams [Ada69, Lec. III]
we shall instead view A MU

∗ = MU∗(MU) as a generalized coalgebra, called a Hopf
algebroid, with a natural coaction on MU∗(X). This avoids the technical issues
about topological actions.

7.5. Truncation structure

The method of killing homotopy groups shows that for each spectrum X there
exists a Postnikov tower

X → · · · → τ≤tX → τ≤t−1X → . . .

where πi(X) → πi(τ≤tX) is an isomorphism for each i ≤ t, while πi(τ≤tX) = 0
for all i > t. We say that τ≤tX is t-coconnective (omitting t when t = 0), or
t-truncated. It follows that

X ' holim
t

τ≤tX

(the mapping microscope). We may write τ<tX for τ≤t−1X.
There is a homotopy cofiber sequence

τ>tX −→ X −→ τ≤tX −→ Στ>tX

for each t ∈ Z. Writing τ≥t+1X for τ>tX, we obtain a Whitehead tower

· · · → τ≥t+1X → τ≥tX → · · · → X

where πi(τ≥tX) → πi(X) is an isomorphism for each i ≥ t, while πi(τ≥tX) = 0
for all i < t. We say that τ≥tX is t-connective, omit t when t = 0, and say that
τ≥0X → X is the connective cover of X. It follows that

hocolim
t

X ' X

(the mapping telescope).

Example 7.5.1. The spectra S, MO, MSO, MU , HA are connective, for any
abelian group A. The connective covers of KO and KU are denoted ko and ku,
respectively, with

π∗(ku) = Z[u]

and

π∗(ko) = Z[η,A,B]/(2η, η3, ηA,A2 = 4B) .

The formal properties of Postnikov towers were axiomatized by Beilinson–
Bernstein–Deligne.

Definition 7.5.2 ([BBD82, §1.3]). A t-structure (= truncation structure, I
presume) on a triangulated category C is a pair of full subcategories C≥0 and C≤0.
With the notations C≥t = ΣtC≥0 and C≤t = ΣtC≤0 we assume that:

(1)

· · · ⊂ C≥1 ⊂ C≥0 ⊂ . . . and · · · ⊂ C≤0 ⊂ C≤1 ⊂ . . . .
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(2) For each object Y in C there exists a distinguished triangle

X −→ Y −→ Z −→ ΣX

with X ∈ C≥1 and Z ∈ C≤0.
(3) If X ∈ C≥1 and Z ∈ C≤0 then C(X,Z) = 0.

Definition 7.5.3. An abelian category is an additive category such that

(1) each morphism has a kernel and a cokernel,
(2) each monomorphism is a kernel, and each epimorphism is a cokernel.

For each morphism f : A→ B in an abelian category, there is an exact sequence

0→ ker(f) −→ A
f−→ B −→ cok(f)→ 0 ,

and A/ ker(f) = coim(f) ∼= im(f). Abelian categories are convenient settings for
homological algebra.

Theorem 7.5.4. The heart C♥ = τ≥0C ∩ τ≤0C of a t-structure is an abelian
category.

Proposition 7.5.5. The categories Ho(Sp)≥0 of connective spectra and Ho(Sp)≤0

of coconnective spectra define a t-structure on the stable homotopy category, with
heart the abelian category of abelian groups.

Sketch proof. If X is 1-connective and Z is 0-coconnective, then [X,Z] = 0
by induction over a CW structure on X.

The heart Ho(Sp)♥ = Ho(Sp)≥0∩Ho(Sp)≤0 consists of the spectra with π∗(X)
concentrated in degree 0, i.e., the Eilenberg–MacLane spectra HA for all abelian
groups A. �

The derived category D(Z) of chain complexes of abelian groups, up to quasi-
isomorphism, is another triangulated category with t-structure, having the same
heart as Ho(Sp). ((ETC: Realize D(Z) as Ho(ModHZ), with base change along
S → HZ defining a functor Ho(Sp) = Ho(ModS)→ Ho(ModHZ).))

7.6. Smash products and function spectra

We now make use of the fact that S is a commutative monoid in O-spaces to
define a smash product

X ∧ Y = X ⊗S Y
and a function object

F (Y,Z) = HomS(Y, Z)

for orthogonal spectra, i.e., right S-modules, X, Y and Z.

Definition 7.6.1. Given right S-modules X, Y and Z let X ∧ Y = X ⊗S Y
be the coequalizer

X ⊗ S ⊗ Y
σ⊗id

//

id⊗σ′
// X ⊗ Y

π // X ⊗S Y

in T O, where σ′ = σγ : S ⊗ Y → Y defines a left S-action on Y . Let F (Y,Z) =
HomS(Y, Z) be the equalizer

HomS(Y,Z)
ι // Hom(Y, Z)

σ∗ //

σ∨
// Hom(Y ⊗ S,Z)
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in T O, where σ∨ has left adjoint

Hom(Y, Z)⊗ Y ⊗ S ε⊗id−→ Z ⊗ S σ−→ Z .

Then X ∧ Y has a right S-module structure making the square

X ⊗ Y ⊗ S id⊗σ
//

π⊗id

��

X ⊗ Y

π

��

(X ∧ Y )⊗ S // X ∧ Y

commute, while F (Y, Z) has a right S-module structure making the rectangle

F (Y,Z)⊗ S //

ι⊗id

��

F (Y,Z)

ι

��

Hom(Y,Z)⊗ S κ // Hom(Y,Z ⊗ S)
σ∗ // Hom(Y,Z)

commute. Here κ has left adjoint

Hom(Y,Z)⊗ S ⊗ Y id⊗γ−→ Hom(Y,Z)⊗ Y ⊗ S ε⊗id−→ Z ⊗ S .

Remark 7.6.2. More explicitly, the smash product X ∧ Y is given at level n
by the coequalizer of two maps∨

a+b+c=nO(n)+ ∧O(a)×O(b)⊗O(c) Xa ∧ Sb ∧ Yc

����∨
i+j=nO(n)+ ×O(i)×O(j) Xi ∧ Yj .

A map of orthogonal spectra µ : X ∧ Y → Z is equivalent to a collection of O(i)×
O(j)-equivariant maps

µi,j : Xi ∧ Yj −→ Zi+j

for i, j ≥ 0, making the bilinearity diagram

Xa ∧ S1 ∧ Yc
id∧γ
∼=
//

σ∧id

��

Xa ∧ Yc ∧ S1

µa,c∧id

''

id∧σ
��

Xa+1 ∧ Yc
µa+1,c

��

Xa ∧ Yc+1

µa,c+1

��

Za+c ∧ S1

σ
ww

Za+1+c

(Ia⊕χ1,c)·
∼=

// Za+c+1

commute, for all a, c ≥ 0. Note the appearance of the action of Ia⊕χ1,c ∈ O(a+1+c)
on Za+1+c, which is not available for sequential spectra. See [Schwede, Symmetric
Spectra, diagram (5.1)].

Theorem 7.6.3. The category SpO of orthogonal spectra is closed symmetric
monoidal, with unit object S, monoidal pairing X,Y 7→ X ∧ Y , symmetry isomor-
phism

γ : X ∧ Y ∼= Y ∧X
and internal function object F (Y, Z).
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Sketch proof. The diagram

X ⊗ S ⊗ S
σ⊗id

//

id⊗φ
// X ⊗ S

σ // X

is a split coequalizer, which shows that X ∧S ∼= X. Left unitality and associativity
admits similar proofs. The symmetry isomorphism is induced by γ : X⊗Y ∼= Y ⊗X.
The natural adjunction homeomorphism

T O(X ∧ Y,Z) ∼= T O(X,F (Y,Z))

lifts to a natural isomorphism

F (X ∧ Y,Z) ∼= F (X,F (Y,Z)) .

�

This smash product of orthogonal spectra extends that of based spaces.

Lemma 7.6.4. There are natural isomorphisms

Σ∞T ∧ Σ∞T ′ ∼= Σ∞(T ∧ T ′)

in SpO, for T, T ′ ∈ T .

Proof. Σ∞T ∧ Σ∞T ′ = T ∧ S ∧ T ′ ∧ S ∼= T ∧ T ′ ∧ S ∧ S ∼= T ∧ T ′ ∧ S =
Σ∞(T ∧ T ′). �

We give the category grAb of graded abelian groups the usual symmetric
monoidal structure, with symmetry

γ : A⊗B ∼= B ⊗A

taking x⊗y to (−1)|x||y|y⊗x. A lax monoidal functor Φ: C → D between symmetric
monoidal categories comes with a natural transformation · : Φ(X)⊗Φ(Y )→ Φ(X⊗
Y ) and a morphism U → Φ(U), and takes monoids to monoids and modules to
modules. It is symmetric if

Φ(X)⊗ Φ(Y )
γ
//

·
��

Φ(Y )⊗ Φ(X)

·
��

Φ(X ⊗ Y )
Φ(γ)

// Φ(Y ⊗X)

commutes, in which case it takes commutative monoids to commutative monoids.
((ETC: Properly define lax (symmetric) monoidal and closed functors?))

Theorem 7.6.5. There is natural pairing

· : π∗(X)⊗ π∗(Y ) −→ π∗(X ∧ Y )

α⊗ β 7−→ α · β

and a homomorphism Z→ π∗(S) that make π∗ a closed and lax symmetric monoidal
functor from (SpO, S,∧) to (grAb,Z,⊗).

Proof. See [Rognes, MAT9580/2017, Stable Homotopy Theory, Thm. 6.8].
Let X and Y be orthogonal spectra, and let ιn,m : Xn ∧ Ym → (X ∧ Y )n+m be
the O(n) × O(m)-equivariant components of the identity map of X ∧ Y . Given
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α ∈ πk(X) and β ∈ π`(Y ), represented by f : Sk+n → Xn and g : S`+m → Ym,
respectively, we can form the composite

f ∗ g : Sk+n ∧ S`+m f∧g−→ Xn ∧ Ym
ιn,m−→ (X ∧ Y )n+m .

Its homotopy class in πk+n+`+m((X ∧ Y )n+m) only depends on [f ] and [g], so we
can let [f ] ∗ [g] = [f ∗ g]. Let

f ′ = σ(f ∧ id) : Sk+n+1 → Xn+1

g′ = σ(g ∧ id) : S`+m+1 → Ym+1

(f ∗ g)′ = σ(f ∗ g ∧ id) : Sk+n+`+m+1 → (X ∧ Y )n+m+1

denote the stabilized maps. The bilinearity diagram shows that

f ∗ g′ = (f ∗ g)′ and (f ∗ g)′(id∧γ) = (In ⊕ χ1,m)(f ′ ∗ g) .

Here γ : S1∧S`+m → S`+m∧S1 has degree (−1)`+m, and multiplication by In⊕χ1,m

has degree (−1)m, so it follows that

[f ∗ g′] = [(f ∗ g)′] = (−1)`[f ′ ∗ g] .

To compensate for the sign (−1)` that appears when n is incremented, we let

[f ] · [g] = (−1)`n[f ∗ g]

in πk+`+n+m((X ∧ Y )m+n). We define α · β to be its stable class in πk+`(X ∧ Y ),
which only depends on the stable classes α and β. �

If ` ≥ 0, then the sign (−1)`n is realized by γ : S` ∧ Sn ∼= Sn ∧ S`, so [f ] · [g] is
the homotopy class of the composite

f · g : Sk+`+n+m = Sk ∧ S` ∧ Sn ∧ Sm id∧γ∧id−→ Sk ∧ Sn ∧ S` ∧ Sm

f∧g−→ Xn ∧ Ym
ιn,m−→ (X ∧ Y )n+m .

This suffices, e.g., to present the right π∗(S)-action on π∗(X).

7.7. Orthogonal ring and module spectra

Definition 7.7.1. An orthogonal ring spectrum, also called an S-algebra, is a
monoid in (SpO, S,∧), i.e., an orthogonal spectrum R with a unit map η : S → R
and product map φ : R ∧R→ R, satisfying unitality and associativity.

A commutative orthogonal ring spectrum, or commutative S-algebra, is a com-
mutative monoid in SpO, meaning that φ = φγ : R ∧R→ R.

A right R-module spectrum is a right R-module in SpO, i.e., an orthogonal
spectrum M with a right action map ρ : M ∧ R → M satisfying unitality and
associativity. A left R-module spectrum is a left R-module in SpO, i.e., an orthog-
onal spectrum N with a left action map λ : R ∧ N → N satisfying unitality and
associativity.

With M and N as above, the relative smash product M ∧RN is the coequalizer

M ∧R ∧N
ρ∧id

//

id∧λ
// M ∧N

π // M ∧R N

in SpO. If R is commutative, then left and right R-actions are interchangeable, and
M ∧R N is again an R-module.

((ETC: Can also discuss FR(M,N).))



7.8. THE SMASH PRODUCT IN THE STABLE HOMOTOPY CATEGORY 123

Lemma 7.7.2. If R is an orthogonal ring spectrum, then π∗(R) is a graded ring.
If R is commutative, then π∗(R) is graded commutative. If M is a right R-module,
then π∗(M) is a right π∗(R)-module. If N is a left R-module, then π∗(N) is a left
π∗(R)-module. There is a natural homomorphism

π∗(M)⊗π∗(R) π∗(N)
·−→ π∗(M ∧R N) .

((ETC: Also π∗FR(M,N)→ Homπ∗(R)(π∗(M), π∗(N)).))

Proof. The lax monoidal pairing π∗(M)⊗π∗(N)→ π∗(M∧N)→ π∗(M∧RN)
equalizes the two homomorphisms from π∗(M) ⊗ π∗(R) ⊗ π∗(N), hence factors
through π∗(M)⊗π∗(R) π∗(N). �

Example 7.7.3. The spectra S, MO, MSO, MU , KO, KU and HR for any
commutative ring R admit models as commutative orthogonal ring spectra. For
example, the multiplication µ : MO ∧MO →MO is given by the maps

µi,j : MO(i) ∧MO(j) −→MO(i+ j)

obtained by Thomification from the Whitney sum map BO(i)×BO(j)→ BO(i+j).
Each

MO(n) = EO(n)+ ∧O(n) S
n = B(O(n), Sn)

(using the bar construction from Chapter 3, Definition 10.8) comes with a left
O(n)-action, given by conjugation on the group O(n) and the standard action on
Sn, and µi,j becomes O(i)×O(j)-equivariant. The spectrum MU is most naturally
a unitary spectrum, but is π∗-isomorphic to an orthogonal spectrum with n-th space
ΩnMU(n), equipped with the multiplication

ΩiMU(i) ∧ ΩjMU(j) −→ Ωi+j(MU(i) ∧MU(j))
Ωi+jµC

i,j−→ Ωi+jMU(i+ j) .

See [Schwede, Symmetric Spectra, Example 1.18].

((ETC: Discuss (orthogonal) ring spectrum maps S →MU → KU later.))

7.8. The smash product in the stable homotopy category

The model structure on SpO is monoidal, satisfying a so-called pushout-product
axiom. This implies that for any cofibrant replacements Xc → X, Y c → Y and
fibrant replacement Z → Zf the induced maps

Xc ∧ Y '←− Xc ∧ Y c '−→ X ∧ Y c

and

F (Y c, Z)
'−→ F (Y c, Zf )

'←− F (Y, Zf )

are π∗-isomorphisms. Hence the closed symmetric monoidal structure on SpO de-
scends to Ho(SpO), giving a (derived) smash product

∧ : Ho(SpO)×Ho(SpO) −→ Ho(SpO)

X,Y 7−→ Xc ∧ Y c

and (derived) function spectrum

F : Ho(SpO)op ×Ho(SpO) −→ Ho(SpO)

Y,Z 7−→ F (Y c, Zf )
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making Ho(SpO) closed symmetric monoidal. In particular, there are compatible
isomorphisms

S ∧ Y ∼= Y ∼= Y ∧ S
(X ∧ Y ) ∧ Z ∼= X ∧ (Y ∧ Z)

γ : X ∧ Y ∼= Y ∧X
F (X ∧ Y,Z) ∼= F (X,F (Y,Z))

in Ho(SpO). The symmetric monoidal part of this structure was developed “by
hand” on pages 158–190 of [Ada74].

The closed symmetric monoidal and triangulated structures on Ho(Sp) are
compatible.

Lemma 7.8.1. (a) For each distinguished triangle

X
f−→ Y

g−→ Z
h−→ ΣX

and spectrum W the triangles

W ∧X id∧f−→ W ∧ Y id∧g−→ W ∧ Z id∧h−→ Σ(W ∧X)

X ∧W f∧id−→ Y ∧W g∧id−→ Z ∧W (id∧γ)(h∧id)−→ Σ(X ∧W )

F (W,X)
F (id,f)−→ F (W,Y )

F (id,g)−→ F (W,Z)
κ−1F (id,h)−→ ΣF (W,X)

Σ−1F (X,W )
−F (h,id)−→ F (Z,W )

F (g,id)−→ F (Y,W )
F (f,id)−→ F (X,W )

are distinguished.
(b) The composite

ΣS1 = S1 ∧ S1 γ−→ S1 ∧ S1 = ΣS1

is multiplication by −1.

Note the minus sign in −F (h, id). Mapping out of a cofiber sequence de-
fines a fiber sequence, which stably differs by this sign from a cofiber sequence.
May [May01] gives more compatibility conditions satisfied in Ho(Sp). The full
compatibility story is perhaps best accounted for by presentably symmetric monoidal
stable ∞-categories.

The symmetric monoidal and truncation structures on Ho(Sp) are also com-
patible.

Lemma 7.8.2. (a) S is connective, with Z ∼= π0(S).
(b) If X and Y are connective, then so is X ∧ Y , with π0(X) ⊗ π0(Y ) ∼=

π0(X ∧ Y ).

Proof. (a) This is a consequence of the Hurewicz theorem.
(b) There are cofibrant replacements Xc → X and Y c → Y where Xc and Y c

are CW spectra with cellular complexes ending with the exact sequences

C1(Xc)
∂−→ C0(Xc) −→ π0(X) −→ 0

C1(Y c)
∂−→ C0(Y c) −→ π0(Y ) −→ 0 .
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Then Xc ∧ Y c is a CW spectrum with cellular complex ending with an exact se-
quence

C1(Xc)⊗ C0(Y c)⊕ C0(Xc)⊗ C1(Y c)
∂⊗id + id⊗∂−→ C0(Xc)⊗ C0(Y c)

−→ π0(X ∧ Y ) −→ 0 .

This implies that π0(X)⊗ π0(Y ) ∼= π0(X ∧ Y ). �

((ETC: Can also note that π0(X) ∼= H0(X) for connective X, and appeal to
the Künneth theorem in homology.))

Example 7.8.3. For abelian groups A and B the 0-truncation

HA ∧HB −→ τ≥0(HA ∧HB) ' H(A⊗B)

of the smash product of two Eilenberg–MacLane spectra is the Eilenberg–MacLane
spectrum of the tensor product. In general, this map is not an equivalence. For
instance, π∗(HFp ∧HFp) = A∗ is the mod p Steenrod algebra.

Lemma 7.8.4. Let R be an orthogonal ring spectrum, M a right R-module and
N a left R-module.

(a) If π∗(M) ∼= π∗(R){gα}α is free as a right π∗(R)-module then

M '
∨
α

Σ|gα|R

as right R-modules, and π∗(M)⊗π∗(R) π∗(N) ∼= π∗(M ∧R N).
(b) More generally, there is a natural strongly convergent Tor-spectral sequence

E2
∗,∗ = Torπ∗(R)

∗,∗ (π∗(M), π∗(N)) =⇒ π∗(M ∧R N) .

Proof. (a) We represent the module generator gα by maps

gα : S|gα| −→M

and extend these using the R-action to obtain maps

Σ|gα|R ∼= S|gα| ∧R gα∧id−→ M ∧R ρ−→M .

Their direct sum g over α induces the assumed isomorphism⊕
α

Σ|gα|π∗(R) ∼= π∗(
∨
α

Σ|gα|R)
∼=−→ π∗(M) ,

hence is an equivalence. It follows that∨
α

Σ|gα|N ∼=
∨
α

Σ|gα|R ∧R N
g∧Rid−→ M ∧R N

also is an equivalence, and here

π∗(
∨
α

Σ|gα|N) ∼=
⊕
α

Σ|gα|π∗(R)⊗π∗(R) π∗(N) ∼= π∗(M)⊗π∗(R) π∗(N) .

(b) Any free π∗(R)-module resolution

. . . −→ F1 −→ F0 −→ π∗(M) −→ 0

can be spectrally realized by the associated graded of a filtered R-module spectrum

∗ −→M0 −→M1 −→ . . . −→M∞

with M∞ ' M . Apply − ∧R N to this filtration, and consider the associated
spectral sequence. See [EKMM97, §IV.5] for the details. �
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Corollary 7.8.5. Let R be a ring, M a right R-module and N a left R-module,
so that HR is an orthogonal ring spectrum, HM a right HR-module and HN a
left HR-module. Then

π∗(HM ∧HR HN) ∼= TorR∗ (M,N) .

((ETC: Can also discuss FR(M,N) and the Ext spectral sequence.))

Corollary 7.8.6. Let R be a ring, and M and N right R-modules, so that HR
is an orthogonal ring spectrum, and HM and HN are right HR-modules. Then

π−∗(FHR(HM,HN)) ∼= Ext∗R(M,N) .

Remark 7.8.7. Before the invention of symmetric and orthogonal spectra, the
term “ring spectrum” meant a monoid in the stable homotopy category Ho(Sp) '
B, i.e., a spectrum R with morphisms η : S → R and φ : R ∧ R → R such that
the unitality and associativity diagrams commute in Ho(Sp), i.e., up to homo-
topy. Similarly, a “module spectrum” meant a module in Ho(Sp), with a morphism
ρ : M ∧ R → M such that the unitality and associativity diagrams commute up
to homotopy. This makes π∗(R) a graded ring and π∗(M) a right π∗(R)-module,
but does not suffice to define M ∧R N . Nonetheless, if π∗(M) is free as a right
π∗(R)-module, then M is equivalent to a wedge sum of suspensions of R, as in the
first part of Lemma 7.8.4(a).

Definition 7.8.8. We refer to monoids and modules in Ho(Sp) as ring spectra
up to homotopy, and module spectra up to homotopy, respectively.

Example 7.8.9. Let p be a prime, and let the mod p Moore spectrum S/p = Cp
be the mapping cone of the multiplication-by-p map p : S → S. The smash product
of S/p with the homotopy cofiber sequence

S
p−→ S

i−→ S/p
j−→ ΣS

is a homotopy cofiber sequence

S/p ∧ S id∧p−→ S/p ∧ S id∧i−→ S/p ∧ S/p id∧j−→ Σ(S/p ∧ S)

which is isomorphic to

S/p
p−→ S/p

i′−→ S/p ∧ S/p′ j′−→ ΣS/p .

If p is odd then [S/p, S/p] ∼= Z/p and the map p : S/p → S/p is null-homotopic.
Hence there exists a retraction S/p ∧ S/p→ S/p in the stable homotopy category.
This is left and right unital up to homotopy, and turns out to be associative up to
homotopy if p 6= 3. Hence S/p is a ring spectrum up to homotopy for p ≥ 5, while
S/3 is a “non-associative” ring spectrum up to homotopy.

If p = 2 then [S/2, S/2] ∼= Z/4 and the map 2: S/2 → S/2 is essential. Hence
there is no (left or right) unital pairing S/2 ∧ S/2 → S/2, and S/2 is not a ring
spectrum. One way to see this, due to Barratt, is to use that H∗(S/2;F2) ∼=
F2{1, Sq1} and

H∗(S/2 ∧ S/2;F2) ∼= F2{1, Sq1} ⊗ F2{1, Sq1}
with Sq2(1 ⊗ 1) = Sq1 ⊗ Sq1 6= 0 by the Cartan formula. This would have to be
zero if S/2 were a retract up to homotopy of S/2 ∧ S/2.

The following recent result was contrary to every expectation.
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Theorem 7.8.10 (Burklund (arXiv:2203.14787)). The Moore spectra S/8 and
S/p2, for any odd prime p, can be realized as (strictly unital and associative) or-
thogonal ring spectra.

7.9. Spectral homology and cohomology

We now extend G. Whitehead’s Theorem 7.4.9.

Theorem 7.9.1. Let E be a spectrum. The functors

X 7→ Ek(X) = πk(E ∧X)

and the suspension isomorphisms

Ek(X) = πk(E ∧X)
∼=−→ πk+1(E ∧ ΣX) = Ek+1(ΣX)

define a homology theory on all spectra X.

Theorem 7.9.2. Let E be a ring spectrum in the homotopy category. There
are natural pairings

Ei(X) ∧ Ej(Y ) −→ Ei+j(X ∧ Y )

and

Ei(X) ∧ Ej(Y ) −→ Ei+j(X ∧ Y )

making E∗(−) a multiplicative homology theory and E∗(−) a multiplicative coho-
mology theory. In particular, E∗(Y ) is naturally a left E∗(S) = π∗(E)-module and
E∗(Y ) is naturally a left E∗(S) = π−∗(E)-module.

Sketch proof. The composition

πi(E ∧X)⊗ πj(E ∧ Y )
·−→ πi+j(E ∧X ∧ E ∧ Y )

∼=−→ πi+j(E ∧ E ∧X ∧ Y )

φ∗−→ πi+j(E ∧X ∧ Y )

defines the homology pairing. The composition

[X,ΣiE]⊗ [Y,ΣjE]
∧−→ [X ∧ Y,ΣiE ∧ ΣjE] ∼= [X ∧ Y,Σi+j(E ∧ E)]

φ∗−→ [X ∧ Y,Σi+jE]

defines the cohomology pairing. The left module actions correspond to the case
X = S. �

Next we follows Adams [Ada69, Lec. III] and interpret E∗(X) as an E∗E-
comodule, subject to a flatness condition on E.

Definition 7.9.3. Let (E, η, φ) be a ring spectrum in the homotopy category.
We briefly write

E∗ = π∗(E) and E∗E = E∗(E) = π∗(E ∧ E) .

Then E∗ is a graded ring, and E∗E is an E∗-E∗-bimodule, with left E∗-action
induced by

E ∧ E ∧ E φ∧id−→ E ∧ E
and right E∗-action induced by

E ∧ E ∧ E id∧φ−→ E ∧ E .
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Moreover, E∗E is a graded ring, with multiplication induced by

E ∧ E ∧ E ∧ E id∧γ∧id−→ E ∧ E ∧ E ∧ E φ∧φ−→ E ∧ E .
The left E∗-action on E∗E is then given by λ(a⊗b) = ηL(a)·b, where ηL : E∗ → E∗E
is the left unit homomorphism induced by

E ∼= E ∧ S id∧η−→ E ∧ E ,
and the right E∗-action on E∗E is given by ρ(b⊗c) = b·ηR(c), where ηR : E∗ → E∗E
is the right unit homomorphism induced by

E ∼= S ∧ E η∧id−→ E ∧ E .
The ring spectrum multiplication φ : E∧E → E induces an augmentation ε : E∗E →
E∗, with ε ◦ ηL = id = ε ◦ ηR.

In the case E = HFp we have E∗ = Fp and E∗E = A∗, the mod p dual Steen-
rod algebra. The left and right units are both the degree zero inclusion Fp → A∗.
In general, the left and right units ηL, ηR : E∗ → E∗E will be different homomor-
phisms. If E is homotopy commutative, i.e., a commutative ring spectrum in the
homotopy category, then E∗ and E∗E are graded commutative, and the conjugation
(= antipode/involution) isomorphism

χ : E∗E
∼=−→ E∗E

induced by the symmetry γ : E ∧ E ∼= E ∧ E satisfies χ2 = id and χ ◦ ηL = ηR.
Hence the left E∗-module E∗E is isomorphic via χ to the right E∗-module E∗E.

Definition 7.9.4. Let E be a commutative ring spectrum in the homotopy
category. We say that E is flat if E∗E is flat as a left (or, equivalently, right)
E∗-module.

The map

E ∧ E ∧ E ∧X id∧φ∧id−→ E ∧ E ∧X
induces a pairing

E∗E ⊗ E∗(X) −→ π∗(E ∧ E ∧X)

which equalizes the two usual homomorphisms from E∗E⊗E∗⊗E∗(X) and therefore
factors uniquely through E∗E ⊗E∗ E∗(X).

Lemma 7.9.5. If E is flat, then

E∗E ⊗E∗ E∗(X)
·−→ π∗(E ∧ E ∧X)

is an isomorphism, for each spectrum X.

Proof. Since E∗E is flat as a right E∗-module, this is a morphism of homology
theories that is an isomorphism for X = S. It follows that it is an isomorphism for
all X. (If E∗E is free as a right E∗-module, then one can also prove this using a
splitting of E ∧ E as a wedge sum of suspensions of E.) �

Definition 7.9.6. If E is flat, let

ν : E∗(X) −→ E∗E ⊗E∗ E∗(X)

be the composite homomorphism

π∗(E ∧X) = π∗(E ∧ S ∧X)
(id∧η∧id)∗−→ π∗(E ∧ E ∧X) ∼= E∗E ⊗E∗ E∗(X) .
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In the case X = E, we write

ψ : E∗E −→ E∗E ⊗E∗ E∗E

for this homomorphism. Note that in the target the tensor product is formed with
respect to the right E∗-action on the left hand copy of E∗E and with respect to
the left E∗-action on the right hand copy of E∗E.

Lemma 7.9.7. If E is flat, then the left E∗-module E∗(X) is naturally a left
E∗E-comodule, in the sense that the diagrams

E∗(X)
ν //

∼=
''

E∗E ⊗E∗ E∗(X)

ε⊗id

��

E∗ ⊗E∗ E∗(X)

and

E∗(X)
ν //

ν

��

E∗E ⊗E∗ E∗(X)

id⊗ν
��

E∗E ⊗E∗ E∗(X)
ψ⊗id

// E∗E ⊗E∗ E∗E ⊗E∗ E∗(X)

commute.

Let E∗E− coMod = coModE∗E denote the category of E∗E-comodules. The
E∗E-coaction ν defines a lift

E∗E− coMod

U
��

Ho(Sp)

(E∗(−),ν)
77

E∗(−)
// E∗−Mod

of the E-homology functor X 7→ E∗(X), also keeping track of the E∗E-coaction,
or cooperations.

Example 7.9.8. When E = HFp, so that E∗ = Fp and E∗E = A∗, the left
A∗-coaction

ν : H∗(X;Fp) −→ A∗ ⊗H∗(X;Fp)
is now naturally defined for arbitrary spectra X, and agrees with that obtained
earlier, under suitable finiteness hypotheses, by dualization from the left A -module
action λ on H∗(X;Fp).

7.10. Hopf algebroids

Definition 7.10.1. Let A E
∗ = E∗E = E∗(E) be the E-based dual Steenrod

algebra.

So far we have only discussed comodules over coalgebras (and bialgebras), but
in general E∗E is not a coalgebra in the classical sense. We shall now pin down its
precise bialgebraic structure. This will involve structure on the pair (E∗, E∗E).

Theorem 7.10.2 ([Ada69, Lec. III]). If E is flat, then (E∗, E∗E) is a Hopf
algebroid.
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This means that E∗ and E∗E are graded commutative rings, there are ring
homomorphisms

ηL : E∗ −→ E∗E

ηR : E∗ −→ E∗E

ε : E∗E −→ E∗

ψ : E∗E −→ E∗E ⊗E∗ E∗E
χ : E∗E −→ E∗E ,

these satisfy the relations

εηL = id = εηR

ψηL = (id⊗ηL)ηL and ψηR = (ηR ⊗ id)ηR

(ε⊗ id)ψ = id = (id⊗ε)ψ
(ψ ⊗ id)ψ = (id⊗ψ)ψ

χ2 = id and χηL = ηR ,

and there are dashed arrows making the diagram

E∗E ⊗ E∗E

��

χ⊗id

vv

id⊗χ

((

E∗E ⊗ E∗E

φ

��

E∗E ⊗E∗ E∗E

vv ((

E∗E ⊗ E∗E

φ

��

E∗E E∗E

ψ

OO

ε

��

E∗E

E∗

ηR

hh

ηL

66

commute. See [Rav86, Def. A1.1.1]. The terminology “Hopf algebroid” is due to
Haynes Miller, and can be motivated by Grothendieck’s functor of points perspec-
tive, as we now discuss. The appendix [Rav86, A1] is a standard reference for
Hopf algebroids and their homological algebra.

Definition 7.10.3. Let k be a (graded) commutative ring. A k-Hopf algebra
is a k-bialgebra (H, ε, ψ) with a k-linear homomorphism χ : H → H, called the
conjugation (or antipode) such that

H ⊗k H

χ⊗id

��

H

ε

��

ψ
oo

ψ
// H ⊗k H

id⊗χ

��

k

η

��

H ⊗k H
φ
// H H ⊗k H

φ
oo

commutes.



7.10. HOPF ALGEBROIDS 131

A bialgebra admits at most one conjugation χ, so being a Hopf algebra is a
property of bialgebras. If H is commutative, then χ is a k-algebra isomorphism
with χ2 = id.

Proposition 7.10.4. Let CAlgk be the category of commutative k-algebras.
(a) A commutative k-algebra A corepresents a functor

Spec(A) : CAlgk −→ Set

R 7−→ CAlgk(A,R)

to the category of sets.
(b) If (B, ε, ψ) is a commutative k-bialgebra, then Spec(B) lifts to a functor

Spec(B) : CAlgk −→Mon

to the category of monoids, with unit e ∈ Spec(B) corresponding to ε and multipli-
cation Spec(B)× Spec(B)→ Spec(B) corresponding to ψ.

(c) For a commutative k-bialgebra (H, ε, ψ) the functor Spec(H) lifts to a func-
tor

Spec(H) : CAlgk −→ Gp

to the category of groups if and only if H is a Hopf k-algebra. In this case the
conjugation χ corepresents the group inverse Spec(H)→ Spec(H).

Proof. (a) Clear. (b) We have a natural bijection

CAlgk(B ⊗k B,R) ∼= CAlgk(B,R)× CAlgk(B,R)

so the k-algebra B⊗kB corepresents Spec(B)×Spec(B), while k itself corepresents
∗. Hence ψ : B → B ⊗k B and ε : B → k induce a natural pairing on Spec(B)(R)
and a preferred element. The counitality and coassociativity axioms for a bialgebra
show that these define a natural monoid structure on Spec(B)(R), so that Spec(B)
lifts through the forgetful functor Mon→ Set.

(c) The identities φ(χ ⊗ id)ψ = ηε = φ(id⊗χ)ψ show that for each k-algebra
homomorphism g : H → R in the monoid Spec(H)(R) the composite gχ represents
a group inverse. �

Remark 7.10.5. We can view Spec(A) as a representable contravariant functor
from CAlgopk to Set, i.e., as an affine presheaf on CAlgopk . It satisfies faithfully flat
descent (meaning that there are equalizer diagrams

Spec(A)(R)
ι // Spec(A)(T )

//

// Spec(A)(T ⊗R T )

for R→ T faithfully flat), hence is a flat, étale, Nisnevich and Zariski sheaf defined
over Spec(k). We may refer to it as an affine (étale) sheaf. In the situation of the
proposition, Spec(B) is then an affine monoid sheaf and Spec(H) is an affine group
sheaf.

Recall that a (small) groupoid is a (small) category in which each morphism
is invertible, i.e., an isomorphism. Given any morphism f : X → Y we refer to
X = s(f) and Y = t(f) as the source and target of f .
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Proposition 7.10.6. Let E be a flat homotopy commutative ring spectrum.
The (graded) commutative rings E∗ and E∗E corepresent functors

O = Spec(E∗) : CRing −→ Set

R 7−→ CRing(E∗, R)

M = Spec(E∗E) : CRing −→ Set

R 7−→ CRing(E∗E,R)

that constitute the object and morphism components of a functor

G : CRing −→ Gpd
R 7−→ G(R)

to the category of (small) groupoids. In other words, G(R) is a groupoid with

objG(R) = O(R) = CRing(E∗, R)

morG(R) =M(R) = CRing(E∗E,R)

for all (graded) commutative rings R. The left unit ηL : E∗ → E∗E corepresents
the target t : M(R)→ O(R), the right unit ηR : E∗ → E∗E corepresents the source
s : M(R) → O(R), the augmentation ε : E∗E → E∗ corepresents the identity mor-
phism id : O(R)→M(R), the coproduct ψ : E∗E → E∗E⊗E∗ E∗E corepresents the
composition law

◦ : M(R)×O(R)M(R) −→M(R) ,

and the conjugation χ : E∗E → E∗E corepresents the passage to inverse M(R) →
M(R). The relations and commuting diagram from Theorem 7.10.2 express the
axioms for composition and existence of inverses in a groupoid.

Remark 7.10.7. The point of Miller’s terminology is thus that the Hopf alge-
broid (E∗, E∗E) corepresents the affine groupoid presheaf

R 7−→ G(R) =


O(R) = CRing(E∗, R)

M(R) = CRing(E∗E,R)

plus structure maps,

and this is in fact an affine groupoid sheaf, i.e., a contravariant functor CRingop →
Gpd satisfying suitable descent properties. Since a groupoid is more than a set, these
descent properties are better described by applying the nerve functor to simplicial
sets, and ask that the simplicial presheaf R 7→ NG(R) satisfies descent. (This means
that the coaugmentation from NG(R) to the homotopy limit (= totalization) of the
(pre-)cosimplicial diagram

NG(T )
//

// NG(T ⊗R T )
//

//

//
NG(T ⊗R T ⊗R T )

//

//

//

//

. . .

is a homotopy equivalence, for all covers R→ T in the relevant topology.)

Example 7.10.8. When E = HFp, so that E∗ = Fp and E∗E = A∗, the
conjugation

χ : A∗ −→ A∗
is characterized by the relation φ(id⊗χ)ψ = ηε, meaning that∑

i+j=k

ζ2j

i χ(ζj) = 0
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for k ≥ 1 when p = 2, and

τk +
∑
i+j=k

ξp
j

i χ(τj) = 0

for k ≥ 0 and ∑
i+j=k

ξp
j

i χ(ξj) = 0

for k ≥ 1 when p odd. This uses Milnor’s Theorems 8.7 and 8.8 from Chapter 2.
These formulas recursively determine χ on the algebra generators, and χ2 = id.

Remark 7.10.9. The groupoid G(R) has a single object O(R) = CRing(Fp, R)
for each graded commutative Fp-algebra R (and is otherwise empty), and a group
M(R) = CRing(A∗, R) of automorphisms of this object. When p = 2, so that
A∗ = F2[ζi | i ≥ 1], a homomorphism θ : A∗ → R corresponds to a sequence of
elements bi = θ(ζi) in R, for i ≥ 1. These sequences in turn correspond to formal
power series

f(x) =
∑
i≥0

bix
2i ∈ x+ x2R[[x]]

with b0 = 1. The composition law inM(R) takes (θ′, θ′′) corresponding to ((b′i)i, (b
′′
j )j)

and (f ′, f ′′) to the homomorphism

θ : A∗
ψ−→ A∗ ⊗A∗

θ′⊗θ′′−→ R⊗R φ−→ R

corresponding to the sequence

bk =
∑
i+j=k

(b′i)
2j b′′j

for k ≥ 1 and the formal power series

f(x) =
∑
k≥0

bkx
2k =

∑
i,j≥0

(b′i)
2j b′′j x

2i+j ,

which is also equal to the formal composition

f ′′(f ′(x)) = f ′′(
∑
i≥0

b′ix
2i) =

∑
j≥0

b′′j (
∑
i≥0

b′ix
2i)2j .

Hence G(R) = B(M(R)) is the one-object groupoid associated to

M(R) ∼= {f(x) =
∑
i≥0

bix
2i} ⊂ x+ x2R[[x]]

with the group structure (f ′, f ′′) 7→ f ′′ ◦ f ′ given by composition of certain formal

power series. These power series f(x) = x+
∑
i≥1 bix

2i are precisely those satisfying
the functional equation

f(x) + f(y) = f(x+ y) .

In other words, these f(x) are the strict automorphisms f : Fa → Fa of the additive
formal group law Fa(x, y) = x + y over F2. The groupoid sheaf for E = HF2 is
thus isomorphic

GHF2
∼= BAuts(Fa/F2)

to the classifying sheaf for the strict automorphism group sheaf of Fa over F2. The
corresponding result for E = MU is central to chromatic homotopy theory.
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((ETC: Harder to say this for odd p?))
((ETC: Can add grading, or interpret that in terms of Gm-bundles.))

7.11. Spanier–Whitehead duality

((ETC: For finite cell spectra Y let DY = F (Y, S). Then κ : DY ∧Z → F (Y,Z)
is an equivalence, so [X ∧ Y,Z] ∼= [X,DY ∧Z] and Y ' DDY . In particular, there
are natural isomorphisms E−k(Y ) ∼= Ek(DY ) and Ek(Y ) ∼= E−k(DY ). Lift to
account for E-based Steenrod operations?))



CHAPTER 8

Spectral sequences

Given a map f : X → Y of spectra, we can use the long exact sequence of
homotopy groups

· · · → π∗+1(Cf)
∂−→ π∗(X)

f∗−→ π∗(Y ) −→ π∗(Cf)
∂−→ π∗−1(X)→ . . .

to attempt to calculate π∗(Y ) from π∗(X) and π∗(Cf). By exactness at π∗(Y ),
these two graded abelian groups give an upper bound for π∗(X). By also tak-
ing into account exactness at π∗(X) and at π∗(Cf) we can replace π∗(X) by
cok(∂ : π∗+1(Cf) → π∗(X)), and replace π∗(Cf) by ker(∂ : π∗(Cf) → π∗−1(X)),
and still have an exact sequence

0→ cok(∂) −→ π∗(Y ) −→ ker(∂)→ 0 .

This then gives a precise upper bound for π∗(Y ), determining this graded abelian
group up to extension. We now aim to extend this discussion from the case of
f : X → Y to longer sequences of maps, possibly continuing without bound to the
left, to the right, or in both directions.

8.1. Sequences of spectra and exact couples

Let

· · · → Ys+2
α−→ Ys+1

α−→ Ys
α−→ Ys−1 → . . .

be a sequence of spectra. We call s ∈ Z the filtration index.
Let the mapping telescope, or sequential homotopy colimit Y−∞ = hocolims Ys

be the homotopy coequalizer of the two maps

∨
s Ys

id //

α∨
//

∨
s Ys

where

Ys
α //

ins

��

Ys−1

ins−1

��∨
s Ys

α∨ //
∨
s Ys

commutes for each s. We get a homotopy cofiber sequence∨
s

Ys
id−α∨−→

∨
s

Ys
ι−→ Y−∞ ,

where ⊕
s

π∗(Ys)
id−α∨∗−→

⊕
s

π∗(Ys)

135



136 8. SPECTRAL SEQUENCES

is injective with cokernel colims π∗(Ys). Hence the long exact sequence in homotopy
breaks up into short exact sequences, and

ι : colim
s

π∗(Ys) ∼= π∗(Y−∞) .

Let the mapping microscope, or sequential homotopy limit Y∞ = holims Ys be
the homotopy equalizer of the two maps∏

s Ys
id //

αΠ

//

∏
s Ys

where ∏
s Ys

αΠ
//

prs+1

��

∏
s Ys

prs

��

Ys+1
α // Ys

commutes for each s. We get a homotopy (co-)fiber sequence

Y∞
π−→
∏
s

Ys
id−αΠ

−→
∏
s

Ys

where ∏
s

π∗(Ys)
id−αΠ

∗−→
∏
s

π∗(Ys)

has kernel lims π∗(Ys) and cokernel Rlims π∗(Ys). Here Rlims = lim1
s is the (first)

right derived functor of the sequential limit. The long exact sequence in homotopy
yields short exact sequences

0→ Rlim
s

π∗+1(Ys)
∂−→ π∗(Y∞)

π−→ lim
s
π∗(Ys)→ 0 .

For r ≥ 1 define Ys,r be the homotopy cofiber sequence

Ys+r
αr−→ Ys −→ Ys,r −→ ΣYs+r .

In particular, for r = 1 we have the homotopy cofiber sequence

Ys+1
α−→ Ys

β−→ Ys,1
γ−→ ΣYs+1

which we can draw as a distinguished triangle

Ys+1
α // Ys

β

��

Ys,1

γ

bb

for each s. The dashed arrow means a morphism to the suspension of the indicated
target. We get one long exact sequence in homotopy for each s, which fit together
as in the following diagram

. . . // π∗(Ys+2)
α∗ // π∗(Ys+1)

α∗ //

β∗

��

π∗(Ys)
α∗ //

β∗

��

π∗(Ys−1) //

β∗

��

. . .

π∗(Ys+1,1)

γ∗

ff

π∗(Ys,1)

γ∗

ff

π∗(Ys−1,1)

γ∗

ff
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This is called an (unrolled) exact couple [Mas52], [Boa99]. We aim to determine
π∗(Y−∞) from information about the π∗(Ys,1) for all s, concentrating on cases when
π∗(Y∞) = 0.

Example 8.1.1. Let X be a CW complex, with skeleton filtration

· · · ⊂ X(s−1) ⊂ X(s) ⊂ . . . ,

and E any spectrum. The sequence of spectra

. . . // F (X/X(s), E)
α // F (X/X(s−1), E) //

β

��

. . .

F (X(s)/X(s−1), E)

γ

hh

with

Ys =

{
F (X/X(s−1), E) for s ≥ 0,

F (X+, E) for s ≤ 0

has homotopy colimit Y−∞ ' F (X+, E) and homotopy limit Y∞ ' F (X/X,E) ' ∗.
We have

Ys,1 ' F (X(s)/X(s−1), E) '
∏

ΩsE

for each s ≥ 0, where the product ranges over the set of s-cells in X. Hence the
starting data in this case are the graded abelian groups

π∗(Ys,1) ∼= E−∗(X(s), X(s−1)) ∼= CsCW (X;Es+∗)

given by the cellular cochains of X with coefficients in E∗. The aim is to calculate
π∗F (X+, E) = E−∗(X).

Example 8.1.2. Let X be any space, and let

· · · → τ≥s+1E → τ≥sE → . . .

be the Whitehead tower of E, with hocolims τ≥sE ' E and holims τ≥sE ' ∗. We
have Puppe cofiber sequences

τ≥s+1E −→ τ≥sE −→ ΣsHπs(E) −→ Στ≥s+1E .

The sequence of spectra

. . . // F (X+, τ≥s+1E)
α // F (X+, τ≥sE) //

β

��

. . .

F (X+,Σ
sHπs(E))

γ

ii

with

Ys = F (X+, τ≥sE)

for all s ∈ Z has homotopy colimit Y−∞ ' F (X+, E) ((ETC: this uses that each
ΣkX is bounded below)) and homotopy limit Y∞ ' F (X+, ∗) = ∗. Hence the
starting data in this case are the graded abelian groups

π∗(Ys,1) = π∗F (X+,Σ
sHπs(E)) ∼= Hs−∗(X;πs(E))

and the aim is to calculate π∗F (X+, E) = E−∗(X).



138 8. SPECTRAL SEQUENCES

Example 8.1.3. Let Y be any spectrum, let (E, η, φ) be a ring spectrum up
to homotopy, define I by the homotopy cofiber sequence

I −→ S
η−→ E −→ ΣI ,

and let I∧s = I ∧ · · · ∧ I be the s-fold smash power. Consider the sequence of
spectra

. . . // I∧s+1 ∧ Y α // I∧s ∧ Y //

β

��

. . .

E ∧ I∧s ∧ Y
γ

gg

with

Ys =

{
I∧s ∧ Y for s ≥ 0,

Y for s ≤ 0.

Additional hypotheses are needed to ensure that Y∞ = holims Ys will be trivial,
but clearly Y ' Y−∞ = hocolims Ys. Suppose now that E is flat, so that

· · · → E∗(Ys+1)
α∗−→ E∗(Ys)

β∗−→ E∗(Ys,1)
γ∗−→ E∗−1(Ys+1)→ . . .

is an exact sequence of E∗E-comodules. Here β∗ is split injective as an E∗-module
homomorphism, with left inverse

π∗(φ ∧ id) : E∗(E ∧ Ys) = E∗(Ys,1) −→ E∗(Ys)

induced by the ring spectrum multiplication, so α∗ = 0 and the long exact sequence
breaks up into short exact sequences. Letting s vary, these can be spliced into a
resolution

0→ E∗(Y )
β∗−→ E∗(Y0,1)

β∗γ∗−→ E∗−1(Y1,1)
β∗γ∗−→ E∗−2(Y2,1)→ . . .

of E∗(Y ) in the category of E∗E-comodules. Moreover,

π∗(Ys,1)
∼=−→ HomE∗E(E∗, E∗(Ys,1))

[f ] 7−→ f∗ = E∗(f)

is an isomorphism for each s. Hence the starting data in this case are the graded
abelian groups HomE∗E(E∗, E∗(Ys,1)), where E∗(Ys,1) is part of an E∗E-comodule
resolution of E∗(Y ), and the aim is to calculate π∗(Y ), at least when π∗(Y∞) = 0.

The first two examples both lead to the Atiyah–Hirzebruch spectral sequence
from [AH61], while the third example leads to the E-based Adams spectral se-
quence. In the case H = HFp this is the classical mod p Adams spectral se-
quence [Ada58], while for E = MU it is the Adams–Novikov spectral sequence
from [Nov67b].

8.2. The spectral sequence associated to an exact couple

Definition 8.2.1. A spectral sequence is a sequence (Er, dr)r≥1 of bigraded
abelian groups Er = (Es,∗r )s and differentials

dr : Es,∗r −→ Es+r,∗r
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increasing the filtration degree s by r (and reducing the homotopical/homological
degree by 1), together with isomorphisms

Es,∗r+1
∼= Hs(E∗,∗r , dr) =

ker(dr : Es,∗r → Es+r,∗r )

im(dr : Es−r,∗r → Es,∗r )
.

(The usual notation is (Er, dr), but we write E here to distinguish spectral
sequence Er-terms from E-(co-)homology for a spectrum E.)

For each r′ ≥ r ≥ 1 the Er′ -term is a subquotient of the Er-term, so we can
view the E1-term as an initial upper bound for the target of a computation, which
is gradually improved by the Er-terms as r grows.

Consider any exact couple

(8.1) . . . // As+2 α // As+1 α //

β

��

As
α //

β

��

As−1 //

β

��

. . .

Es+1
1

γ

cc

Es1

γ

aa

Es−1
1

γ

aa

where each As and each Es1 is a graded abelian group, α and β have degree 0, γ
has (homotopical/homological) degree −1, and each triangle is exact. We shall
associate a spectral sequence (Er, dr) to this exact couple.

For each s, we find one decreasing and one increasing family of subgroups
within Es1 :

0 = Bs1 ⊂ Bs2 ⊂ · · · ⊂ Bsr ⊂ · · · ⊂ Zsr ⊂ · · · ⊂ Zs2 ⊂ Zs1 = Es1 .

To define these, let r ≥ 1 and consider the following subdiagram.

As+r+1 α // As+r
αr−1

//

β

��

As+1 α // As
αr−1

//

β

��

As−r+1 α // As−r

β

��

Es+r1

γ

dd

Es1

γ

aa

Es−r1

γ

dd

Let

Zsr = γ−1(im(αr−1)) and Bsr = β(ker(αr−1))

be the r-th (co-)cycles and (co-)boundaries in filtration degree s. These are then
nested as claimed. We let

Esr = Zsr/B
s
r

be the filtration degree s part of the Er-term. Let

dr : Esr −→ Es+rr

[x] 7−→ [β(y)]

map the coset of x ∈ Zsr to the coset of β(y) ∈ Zs+rr , where αr−1(y) = γ(x). In
particular, d1 = βγ.

Lemma 8.2.2. ker(dr) = Zsr+1/B
s
r and im(dr) = Bsr+1/B

s
r , so Hs(E∗r , dr) ∼=

Esr+1.

Hence we have the terms and differentials of a spectral sequence (Er, dr), for
1 ≤ r <∞. We use the following notation for its limiting term as r →∞.
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Definition 8.2.3. Let the graded abelian groups

Zs∞ =
⋂
r

Zsr and Bs∞ =
⋃
r

Bsr

be the infinite (co-)cycles and (co-)boundaries in filtration degree s, so that

0 = Bs1 ⊂ · · · ⊂ Bsr ⊂ · · · ⊂ Bs∞ ⊂ Zs∞ ⊂ · · · ⊂ Zsr ⊂ · · · ⊂ Zs1 = Es1 .

Let

Es∞ = Zs∞/B
s
∞

be the filtration degree s component of the E∞-term of the spectral sequence.

Let A−∞ = colimsA
s, A∞ = limsA

s and RA∞ = RlimsA
s. We aim to

calculate the graded abelian group G = A−∞, under the assumption that A∞ = 0
and RA∞ = 0. More realistically, we aim to identify the associated graded for a
good filtration of G with the spectral sequence E∞-term.

Definition 8.2.4. Let

F sG = im(As −→ A−∞)

for each s ∈ Z, so that

· · · ⊂ F s+1G ⊂ F sG ⊂ · · · ⊂ G

is a decreasing filtration of G = A−∞ = colimsA
s. We say that the filtration is

exhaustive if colims F
sG = G, it is Hausdorff if lims F

sG = 0, and it is complete
if Rlims F

sG = 0. The filtration subquotients (F sG/F s+1G)s form a bigraded
abelian group, called the associated graded of the filtration.

The group G is often called the abutment of the spectral sequence, and we
write

Es1 =⇒s G or Es2 =⇒s G

to present information about the E1- or E2-term and the abutment, and to indicate
that s is the filtration index.

Lemma 8.2.5. There is a natural injective homomorphism

ζs :
F sG

F s+1G
−→ Es∞

[ξ] 7−→ [β(η)]

for each s ∈ Z, where η ∈ As maps to ξ ∈ F sG under As → A∞.

Definition 8.2.6. If ξ ∈ F sG \ F s+1G then its coset [ξ] ∈ F sG/F s+1G is
nonzero, hence corresponds to a nonzero class x = ζs([ξ]) ∈ Es∞. We say that x
detects ξ, and that ξ is detected by (or represents) x. (This terminology is not
standardized.) Note that any other class ξ′ ∈ ξ+F s+1G in the same coset as ξ will
be detected by the same class x.

Definition 8.2.7. The spectral sequence (Er, dr) converges strongly to the
filtered group G if

(1) ζ = (ζs)s is an isomorphism of bigraded abelian groups, and
(2) {F sG}s is an exhaustive complete Hausdorff filtration of G.
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Lemma 8.2.8. If {F sG}s is an exhaustive complete Hausdorff filtration of G
then

colim
a

lim
b

F aG

F bG
∼= G ∼= lim

b
colim
a

F aG

F bG
,

so that G can be algebraically recovered from the finite filtration quotients F aG/F bG
for −∞ < a < b <∞.

Hence strong convergence lets us recover G from E∞, assuming that we can in-
ductively resolve the extension problem of determining F aG/F s+1G from F aG/F sG
and F sG/F s+1G ∼= Es∞, using the short exact sequence

0→ F sG

F s+1G
−→ F aG

F s+1G
−→ F aG

F sG
→ 0 .

A convenient criterion for strong convergence was given by Boardman in a
preprint circulating from ca. 1981 [Boa99].

Definition 8.2.9. The exact couple (8.1) (and its associated spectral sequence)
is conditionally convergent if A∞ = 0 and RA∞ = 0.

Note that for As = π∗(Ys) we have conditional convergence if and only if
π∗(Y∞) = 0, where Y∞ = holims Ys.

Definition 8.2.10. Let REs∞ = Rlimr Z
s
r for each s.

If there is a finite r′ such that dr = 0 for all r ≥ r′ then Er′ = E∞ and we
say that the spectral sequence collapses at the Er′ -term. This is certainly sufficient
to ensure that RE∞ = 0. A little more generally, the derived limit vanishes in
bidegree (s, t) if only finitely many of the dr-differentials from Es,tr are nonzero.

See [Boa99, (8.7)] or [HR19] for the definition

W = colim
s

Rlim
r

K∞ imr As

of Boardman’s whole-plane obstruction group W .

Theorem 8.2.11 ([Boa99, §6, §7, §8]). (a) (Exiting differentials) Suppose that
As = 0 for all s > 0, so that the spectral sequence is concentrated in the half-plane
s ≤ 0. Then the spectral sequence is strongly convergent to the colimit G.

(b) (Entering differentials) Suppose that Es1 = 0 for all s < 0, and that the
spectral sequence is conditionally convergent. Then the spectral sequence is strongly
convergent to G if (and only if) RE∞ = 0.

(c) (Whole-plane spectral sequence) Suppose that the spectral sequence is con-
ditionally convergent. Then the spectral sequence is strongly convergent to G if
RE∞ = 0 and W = 0.

8.3. The additive Atiyah–Hirzebruch spectral sequence

The unrolled exact couple associated to the sequence of spectra from Exam-
ple 8.1.1 has the form

E∗(X,X(s+1))
α // E∗(X,X(s))

α //

β

��

E∗(X,X(s−1))
α //

β

��

E∗(X,X(s−2))

β

��

E∗(X(s+1), X(s))

γ

gg

E∗(X(s), X(s−1))

γ

hh

E∗(X(s−1), X(s−2))

γ

hh
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(continuing to the left and the right), so the associated (cohomologically graded)
Atiyah–Hirzebruch spectral sequence has E1-term

Es,∗1 = E∗(X(s), X(s−1)) = CsCW (X;E∗)

given by the cellular cochains with coefficients in the graded abelian group E∗ =
π−∗(E). Moreover, the d1-differential is the composite

d1 = βγ : E∗(X(s), X(s−1)) −→ E∗(X(s+1), X(s)) ,

which is equal to the cellular coboundary

δ : CsCW (X;E∗) −→ Cs+1
CW (X;E∗) .

Hence the E2-term is

Es,∗2 = Hs(E∗,∗1 , d1) = Hs(X;E∗) ,

i.e., the (cellular = singular) cohomology groups of X with coefficients in E∗. Note
that hocolims F (X/X(s−1), E) ' F (X+, E) and holims F (X/X(s−1), E) ' ∗, so
the limiting terms of the exact couple are G = A−∞ = E∗(X), A∞ = 0 and
RA∞ = 0. We therefore have a conditionally convergent spectral sequence (with
entering differentials)

Es,∗2 = Hs(X;E∗) =⇒s E
∗(X) .

By Boardman’s theorem, this spectral sequence is strongly convergent if (and only
if) RE∞ = 0.

We now make the bigrading more explicit. In addition to the (decreasing)
filtration degree s we let t denote the complementary (= internal) degree, so that
s+ t is the total cohomological degree preserved by α and β and incremented by 1
by γ. The E1-term is then

Es,t1 = Es+t(X(s), X(s−1)) = CsCW (X;Et)

in view of the suspension isomorphism Es+t(Ds, ∂Ds) ∼= Ẽs+t(Ss) ∼= Ẽt(S0) = Et.
The dr-differential dr : Es,∗r → Es+r,∗r is derived from

Es+t+1(X,X(s+r−1))

β

��

αr−1
// Es+t+1(X,X(s))

Es+t+1(X(s+r), X(s+r−1)) Es+t(X(s), X(s−1))

γ

ii

hence has components

dr : Es,tr −→ Es+r,t−r+1
r

of cohomological bidegree (r, 1− r), for all s and t. In particular, d1 : Es,t1 → Es+1,t
1 ,

as indicated for δ above.
The abutment Gn = En(X) in total degree n is exhaustively filtered by

F sGn = im(En(X,X(s−1))→ En(X))
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with F 0Gn = Gn, and the comparison homomorphism ζs has components derived
from

En(X,X(s−1)) //

β

��

En(X)

En(X(s), X(s−1))

that can be written

F sGn

F s+1Gn
−→ Es,n−s∞ or

F sGs+t

F s+1Gs+t
−→ Es,t∞ .

The latter is more common, and we usually express the bigrading of the spectral
sequence and its abutment as follows:

Es,t2 = Hs(X;Et) =⇒s E
s+t(X) .

Here is part of the E2-term and the d2-differentials, drawn in the left half of
the (−s,−t)-plane:

H4(X;E−2) H3(X;E−2) H2(X;E−2) H1(X;E−2) H0(X;E−2)

H4(X;E−1) H3(X;E−1) H2(X;E−1)

kk

H1(X;E−1)

kk

H0(X;E−1)

kk

H4(X;E0) H3(X;E0) H2(X;E0)

kk

H1(X;E0)

kk

H0(X;E0)

kk

H4(X;E1) H3(X;E1) H2(X;E1)

kk

H1(X;E1)

kk

H0(X;E1)

kk

H4(X;E2) H3(X;E2) H2(X;E2)

kk

H1(X;E2)

kk

H0(X;E2)

kk

Replacing each Es,t2 = Hs(X;Et) with Es,t3 = Hs,t(E∗,∗2 , d2) = ker(d2)s,t/ im(d2)s,t

we obtain the E3-term, here shown with the d3-differentials.

E4,−2
3 E3,−2

3 E2,−2
3 E1,−2

3 E0,−2
3

E4,−1
3 E3,−1

3 E2,−1
3 E1,−1

3 E0,−1
3

E4,0
3 E3,0

3 E2,0
3 E1,0

3

ii

E0,0
3

ii

E4,1
3 E3,1

3 E2,1
3 E1,1

3

ii

E0,1
3

ii

E4,2
3 E3,2

3 E2,2
3 E1,2

3

ii

E0,2
3

ii
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In the end we are left with the E∞-term.

E4,−2
∞ E3,−2

∞ E2,−2
∞ E1,−2

∞ E0,−2
∞

E4,−1
∞ E3,−1

∞ E2,−1
∞ E1,−1

∞ E0,−1
∞

E4,0
∞ E3,0

∞ E2,0
∞ E1,0

∞ E0,0
∞

E4,1
∞ E3,1

∞ E2,1
∞ E1,1

∞ E0,1
∞

E4,2
∞ E3,2

∞ E2,2
∞ E1,2

∞ E0,2
∞

In total degree n, the associated graded groups F sEn(X)/F s+1En(X) of the fil-
tration of En(X)

. . . // // F 4En(X) // //

����

F 3En(X) // //

����

F 2En(X) // //

����

F 1En(X) // //

����

En(X)

����

F 4En(X)

F 5En(X)

F 3En(X)

F 4En(X)

F 2En(X)

F 3En(X)

F 1En(X)

F 2En(X)

En(X)

F 1En(X)

map to the groups Es,n−s∞ in the E∞-term, which lie on the dashed line of slope
−1 in total degree s+ t = n. When the spectral sequence is (strongly) convergent,
these maps are isomorphisms, so that we can think of the group Es,t∞ as the filtration
quotient F sEs+t(X)/F s+1Es+t(X) for each s ≥ 0 and t ∈ Z.

Example 8.3.1. If π0(E) = A and π∗(E) = 0 for ∗ 6= 0 then the Atiyah–
Hirzebruch spectral sequence

Es,t2 =

{
Hs(X;A) for t = 0,

0 otherwise

is concentrated on the line t = 0. Each differential dr : Es,tr → Es+r,t−r+1
r for r ≥ 2

maps from or to a trivial group (or both), so the spectral sequence collapses at the
E2-term, hence is strongly convergent to Es+t(X). In total degree n the groups
Es,n−s∞ are trivial, except in the one case n − s = 0, so there are no extension

problems and En(X) ∼= En,0∞ = En,02 = Hn(X;A). Hence E represents ordinary
cohomology with coefficients in A and E ' HA.

Example 8.3.2. Suppose that H∗(X) = H∗(X;Z) is free in each even degree,
and trivial in each odd degree. This is the case, for instance, when X = CPm,
CP∞ = BU(1), (CP∞)n = BU(1)n, BU(n) or BU . Suppose also that E is even,
in the sense that E∗ is trivial in odd degrees. This is the case, for instance, when
E = KU or MU . The Atiyah–Hirzebruch E2-term

Es,t2 = Hs(X;Et) ∼= Hom(Hs(X), Et)

is then concentrated in bidegrees (s, t) with s and t even. In particular, Es,t2 is zero
if s+ t is odd. Since dr : Es,tr → Es+r,t−r+1

r maps total degree s+ t to total degree
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(s+ r) + (t− r+ 1) = s+ t+ 1, its source or target is trivial for each r ≥ 2, so the
spectral sequence collapses at the E2-term. It is therefore strongly convergent, so
En(X) = 0 for n odd, and for n even there is a complete Hausdorff filtration

· · · ⊂ F 4En(X) ⊂ F 2En(X) ⊂ F 0En(X) = En(X)

with filtration quotients

F 2mEn(X)/F 2m+2En(X) ∼= H2m(X;En−2m) .

For example, when X = CP∞ and E = KU we have a complete Hausdorff
filtration

· · · ⊂ F 4KUn(CP∞) ⊂ F 2KUn(CP∞) ⊂ KUn(CP∞)

for each even n, with filtration quotients

F 2mKUn(CP∞)/F 2m+2KUn(CP∞) ∼= H2m(CP∞;KUn) ∼= Z .

Since Z is free, it follows by induction on m that

KUn(CP∞)/F 2m+2KUn(CP∞) ∼=
m⊕
i=0

Z ∼=
m∏
i=0

Z ,

and, by passage to the limit over m,

KUn(CP∞) ∼=
∞∏
i=0

Z .

On the other hand, KUn(CP∞) = 0 for n odd.

8.4. The additive Whitehead tower spectral sequence

The unrolled exact couple associated to the sequence of spectra from Exam-
ple 8.1.2 has the form

. . . // π∗F (X+, τ≥s+1E)
α // π∗F (X+, τ≥sE) //

β

��

. . .

π∗F (X+,Σ
sHEs) ,

γ

hh

where Es = πs(E), so the associated spectral sequence has E1-term

Es,∗1 = H∗(X;Es) .

The limiting terms of the exact couple are G = A−∞ = colims(τ≥sE)∗(X) ∼=
E∗(X), A∞ = 0 and RA∞ = 0. We therefore have a conditionally convergent spec-
tral sequence (with entering differentials). By Boardman’s theorem it is strongly
convergent to E∗(X) if (and only if) RE∞ = 0.

The abutment Gn = En(X) in total degree n is exhaustively filtered by

F sGn = im(π−nF (X+, τ≥sE)→ π−nF (X+, E))

so in order to have n = s+ t, with complementary degree t, we must have

Es,t1 = π−s−tF (X+,Σ
sHEs) = H2s+t(X;Es) .
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The dr-differential is then derived from

π−s−t−1F (X+, τ≥s+rE)
αr−1

//

β

��

π−s−t−1F (X+, τ≥s+1E)

π−s−t−1F (X+,Σ
s+rHEs+r) π−s−tF (X+,Σ

sHEs) ,

γ

OO

hence has components dr : Es,tr → Es+r,t−r+1
r of cohomological bidegree (r, 1 − r).

In other words, we have a cohomologically (bi-)graded spectral sequence

Es,t1 = H2s+t(X;Es) =⇒s E
s+t(X) .

Here is part of the E1-term and the d1-differentials, drawn in the (−s,−t)-plane:

H4(X;E3) H2(X;E2)oo H0(X;E1)oo 0 0

H5(X;E3) H3(X;E2)oo H1(X;E1)oo 0 0

H6(X;E3) H4(X;E2)oo H2(X;E1)oo H0(X;E0)oo 0

H7(X;E3) H5(X;E2)oo H3(X;E1)oo H1(X;E0)oo 0

H8(X;E3) H6(X;E2)oo H4(X;E1)oo H2(X;E0)oo H0(X;E−1)oo

This Whitehead tower spectral sequence is isomorphic to the Atiyah–Hirzebruch
spectral sequence, up to a reindexing of the terms, taking the Es,tr -term and dr-

differential of the former to the E2s+t,−s
r+1 -term and dr+1-differential of the latter.

This was first proved by Maunder [Mau63], who showed that the Whitehead tower
exact couple is isomorphic to the derived Atiyah–Hirzebruch exact couple, in the
sense of [Mas52]. By reference to a later construction due to Deligne (in the con-
text of filtered chain complexes), it is now common to call the Whitehead tower
spectral sequence the décalage of the Atiyah–Hirzebruch spectral sequence.

8.5. Pairings of sequences and Cartan–Eilenberg systems

If Y = Y−∞ is a ring spectrum, we may hope to use the homotopy spectral
sequence

Es1 = π∗(Ys,1) =⇒s π∗(Y )

to access the ring structure on π∗(Y ). If Y = F (X+, E) with E a ring spectrum,
this is the same as the cup product structure on π∗(Y ) = E−∗(X), induced by the
diagonal ∆: X → X ×X and the product φ : E ∧E → E. More generally, we may
consider pairings µ : Y ∧ Y ′ → Y ′′ and study µ∗ : π∗(Y )⊗ π∗(Y ′)→ π∗(Y

′′).
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Definition 8.5.1. Let

· · · → Ys+2
α−→ Ys+1

α−→ Ys
α−→ Ys−1 → . . .

· · · → Y ′s′+2
α−→ Y ′s′+1

α−→ Y ′s′
α−→ Y ′s′−1 → . . .

· · · → Y ′′s′′+2
α−→ Y ′′s′′+1

α−→ Y ′′s′′
α−→ Y ′′s′′−1 → . . .

be three sequences of orthogonal spectra, briefly denoted Y?, Y
′
? and Y ′′? . A pairing

µ : Y? ∧ Y ′? → Y ′′? of sequences of orthogonal spectra is a collection of maps

µs,s′ : Ys ∧ Y ′s′ −→ Y ′′s+s′

in SpO, such that the squares

Ys+1 ∧ Y ′s′
α∧id //

µs+1,s′

��

Ys ∧ Y ′s′

µs,s′

��

Ys ∧ Y ′s′+1
id∧αoo

µs,s′+1

��

Y ′′s+s′+1
α // Y ′′s+s′ Y ′′s+s′+1

αoo

commute for all s, s′ ∈ Z.

Given a pairing µ : Y?∧Y ′? → Y ′′? as above, the following 3-dimensional diagram
commutes in SpO.
(8.2)

Ys+1 ∧ Y ′s′
α∧id //

µs+1,s′

��

Ys ∧ Y ′s′

µs,s′

��

Ys+1 ∧ Y ′s′+1

id∧α
77

α∧id //

µs+1,s′+1

��

Ys ∧ Y ′s′+1

id∧α
88

µs,s′+1

��

Y ′′s+s′+2
α // Y ′′s+s′+1

α // Y ′′s+s′

Recall the notation Ys,1 = Ys ∪α CYs+1. A homotopy class x ∈ πn(Ys,1) can be
represented by a map of pairs

f : (Dn, Sn−1) −→ (Ys, Ys+1)

where Dn = CSn−1. Given maps f and f ′ representing x ∈ πn(Ys,1) and x′ ∈
πn′(Y

′
s′,1) we obtain a map

f ∧ f ′ : (Dn ∧Dn′ , Sn−1 ∧Dn′ ∪Dn ∧ Sn
′−1)

−→ (Ys ∧ Y ′s′ , Ys+1 ∧ Y ′s′ ∪ Ys ∧ Y ′s′+1) ,

where the source is isomorphic to (Dn+n′ , Sn+n′−1). Composing with µ we obtain
a map

µ(f ∧ f ′) : (Dn+n′ , Sn+n′−1) −→ (Y ′′s+s′ , Y
′′
s+s′+1)

representing a class µ∗(x⊗ x′) in πn+n′(Y
′′
s+s′,1). This defines a pairing

µ∗ : π∗(Ys,1)⊗ π∗(Y ′s′,1) −→ π∗(Y
′′
s+s′,1) .
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Definition 8.5.2. Let (Er, dr), (′Er, ′dr) and (′′Er, ′′dr) be three spectral se-
quences. A pairing µ : (Er, ′Er)→ ′′Er of spectral sequences is a collection of chain
maps

µr : Er ⊗ ′Er −→ ′′Er ,
where the source has the boundary operator dr ⊗ 1 + 1⊗ ′dr and the target has the
boundary operator ′′dr, such that the diagram

Er+1 ⊗ ′Er+1

µr+1
//

∼=
��

′′Er+1

∼=

��

H∗(Er, dr)⊗H∗(′Er, ′dr)

⊗
��

H∗(Er ⊗ ′Er, dr ⊗ 1 + 1⊗ ′dr)
H∗(µr)

// H∗(′′Er, ′′dr)
commutes.

The condition that µr is a chain map is a form of the Leibniz rule:
′′dr(µr(x⊗ x′)) = µr(dr(x)⊗ x′ + (−1)|x|x⊗ ′dr(x′)) .

Note that a pairing of spectral sequences is determined by its initial component µ1,
but not every bilinear pairing of E1-terms will induce chain complex pairings of
(Er, dr)-terms for all r ≥ 1.

Definition 8.5.3. Let (F sG)s, (F s
′
G′)s′ and (F s

′′
G′′)s′′ , be filtered graded

abelian groups. A pairing µ : G⊗G′ → G′′ is filtration-preserving if

µ(F sG⊗ F s
′
G′) ⊂ F s+s

′
G′′

for all s, s′ ∈ Z. It then induces pairings

µ̄ :
F sG

F s+1G
⊗ F s

′
G′

F s′+1G′
−→ F s+s

′
G′′

F s+s′+1G′′
.

A pairing µ : (Er, ′Er)→ ′′Er of spectral sequences, with abutments G, G′ and G′′,
is compatible with the filtration-preserving pairing µ if the diagram

F sG

F s+1G
⊗ F s

′
G′

F s′+1G′
µ̄
//

ζ⊗ζ
��

F s+s
′
G′′

F s+s′+1G′′

ζ

��

E∞ ⊗ ′E∞
µ∞ // ′′E∞

commutes.

Since ζ is injective, the pairing µ∞ determines µ̄, which in turn determines
µ : G⊗G′ → G′′ modulo the given filtrations.

Theorem 8.5.4. Let µ : Y? ∧ Y ′? → Y ′′? be a pairing of sequences of orthogonal
spectra, and let

(Er, dr) = (Er(Y ), dr) , (′Er, ′dr) = (Er(Y ′), dr) and (′′Er, ′′dr) = (Er(Y ′′), dr)
be the spectral sequences associated to Y?, Y ′? and Y ′′? , respectively. Then there is a
(unique) pairing of spectral sequences µ : (Er, ′Er) → ′′Er with µ1 = µ∗. It is com-
patible with the filtration-preserving pairing µ : π∗(Y−∞)⊗ π∗(Y ′−∞)→ π∗(Y

′′
−∞).
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Sketch proof. See e.g. [Hedenlund–Rognes, arXiv:2008.09095, Thm. 4.27].
The proof uses Cartan–Eilenberg systems [CE56, §XV.7] in an essential way, which
are intermediate between sequences of spectra and exact couples. There is a useful
notion of pairings of Cartan–Eilenberg systems, which induce pairings of spectral
sequences. (The definition in [Mas54] of pairings of exact couples is too close to
tautological to be useful.) �

Some authors only assume that the two squares in Definition 8.5.1 commute
up to homotopy, i.e., they work in the 1-category Ho(Sp), in which case the 3-
dimensional diagram (8.2) also commutes in Ho(Sp). However, this will not be
sufficient to obtain a pairing of spectral sequences, since (at least) a 2-categorical
compatibility between given choices of commuting homotopies for the front faces

Ys+1 ∧ Y ′s′+1

α∧id
''

µs+1,s′+1

��

α∧α // Ys ∧ Y ′s′

µs,s′

��

Ys ∧ Y ′s′+1

id∧α

99

µs,s′+1

��

Y ′′s+s′+2
α // Y ′′s+s′+1

α // Y ′′s+s′

and the back faces

Ys+1 ∧ Y ′s′+1

id∧α
''

µs+1,s′+1

��

α∧α // Ys ∧ Y ′s′

µs,s′

��

Ys+1 ∧ Y ′s′
α∧id

88

µs+1,s′

��

Y ′′s+s′+2
α // Y ′′s+s′+1

α // Y ′′s+s′ ,

is required to prove the Leibniz rule, i.e., that µr takes dr ⊗ 1 + 1 ⊗ ′dr to ′′dr.
One should therefore assume that the 3-dimensional diagram (8.2) commutes in
a k-category of spectra, for 2 ≤ k ≤ ∞. (Any discussion internal to the stable
homotopy category will contain a gap.) Our assumption that it commutes strictly
in the topological category of orthogonal spectra is certainly sufficient.

We often apply the theorem in the case where the three sequences are the same,
so that we have an internal pairing. If this is unital and associative, then we say
that we have an algebra spectral sequence.

Corollary 8.5.5. Let Y? be a multiplicative sequence of orthogonal spectra,
i.e., a sequence with a pairing µ : Y? ∧ Y? → Y?, and let

Es1 = π∗(Ys,1) =⇒s π∗(Y−∞)

be the associated spectral sequence. Then there is a (unique) pairing of spectral
sequences µ : (Er, Er) → Er with µ1 = µ∗. It is compatible with the filtration-
preserving pairing µ : π∗(Y−∞)⊗ π∗(Y−∞)→ π∗(Y−∞).
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8.6. The multiplicative Atiyah–Hirzebruch spectral sequence

Let X be a CW complex and E a spectrum with a pairing φ : E ∧E → E, e.g.,
a ring spectrum up to homotopy or an orthogonal ring spectrum. The diagonal
map

∆: X −→ X ×X
rarely preserves the skeleton filtration, but by cellular approximation it is homotopic
to a cellular map

D : X −→ X ×X .

In particular,

D(X(s+s′−1)) ⊂ (X ×X)(s+s′−1) ⊂ (X(s−1) ×X) ∪ (X ×X(s′−1)) .

so that D induces a map

D̄ :
X

X(s+s′−1)
−→ X

X(s−1)
∧ X

X(s′−1)
.

Let Ys = F (X/X(s−1), E) as before. The composite maps

µ : F (X/X(s−1), E) ∧ F (X/X(s′−1), E)

∧−→ F (X/X(s−1) ∧X/X(s′−1), E ∧ E)
F (D̄,µ)−→ F (X/X(s+s′−1), E)

then define a pairing of sequences of orthogonal spectra.
Hence the Atiyah–Hirzebruch spectral sequence

Es,t1 = CsCW (X;Et) =⇒s E
s+t(X)

admits a pairing µ : (Er, Er)→ Er that is given at the E1-term by

CsCW (X;Et)⊗ Cs
′

CW (X;Et
′
)
D∗−→ Cs+s

′

CW (X;Et ⊗ Et
′
)
φ∗−→ Cs+s

′

CW (X;Et+t
′
)

and at the E2-term by the E-cohomology cup product

Es,t2 ⊗ E
s′,t′

2 = Hs(X;Et)⊗Hs′(X;Et
′
)
∪−→ Hs+s′(X;Et+t

′
) = Es+s

′,t+t′

2 ,

converging to the cup product

En(X)⊗ En
′
(X)

∪−→ En+n′(X) .

Note that the E1-term and the pairing µ1 depend on the CW structure on X and
the cellular approximation D to ∆, while for r ≥ 2 the Er-term and the pairing
µr are homotopy invariants. If E is a ring spectrum up to homotopy, then the
Atiyah–Hirzebruch spectral sequence

Es,t2 = Hs(X;Et) =⇒s E
s+t(X)

is an algebra spectral sequence. If E is homotopy commutative, then the Er-terms
for r ≥ 2 are graded commutative, and we have an E∗-algebra spectral sequence.

Example 8.6.1. Consider the case X = CP∞ with E a homotopy commutative
ring spectrum. Let H∗(CP∞) = Z[y] with |y| = 2. The Atiyah–Hirzebruch spectral
sequence

E∗,∗2 = H∗(CP∞;E∗) =⇒ E∗(CP∞)

then has E2-term

E∗,∗2 = Z[y]⊗ E∗ = E∗[y]
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with y ∈ E2,0
2 and E0,t

2 = Et for all t. We now suppose that E is even, so that
E2 = E∞, the spectral sequence is strongly convergent, and

F sEn(CP∞)

F s+1En(CP∞)
∼= Es,n−s∞

for all s and n. Choose a class η ∈ F 2E2(CP∞) \ F 3E2(CP∞) whose coset [η]
corresponds to y under the isomorphism above. Then ηm ∈ F 2mE2m(CP∞), so
there is an E∗-algebra homomorphism

E∗[η]/(ηm) = Z[η]/(ηm)⊗ E∗ −→ E∗(CP∞)/F 2mE∗(CP∞)

for each m ≥ 0. In fact each of these is an isomorphism, which we can prove by
induction on m using the diagram

0

��

0

��

Z{ηm} ⊗ E∗
∼= //

��

F 2mE∗(CP∞)

F 2m+2E∗(CP∞)

��

E2m,∗
∞

∼=oo

Z[η]/(ηm+1)⊗ E∗ //

��

E∗(CP∞)

F 2m+2E∗(CP∞)

��

Z[η]/(ηm)⊗ E∗ //

��

E∗(CP∞)

F 2mE∗(CP∞)

��

0 0

Passing to limits over m, we obtain an E∗-algebra isomorphism

E∗(CP∞) ∼= E∗[[η]] ,

where

E∗[[η]] = lim
m
E∗[η]/(ηm)

denotes the E∗-algebra of formal power series in η. In cohomological degree n it
has elements of the form

∞∑
m=0

emη
m

with em ∈ En−2m. If the spectrum E is bounded above, i.e., t-truncated for some
finite t, then em = 0 for 2m− n > t, in which case each such formal sum is finite.

Hereafter we shall generally simply write y in place of η for a choice of class in
F 2E2(CP∞) = Ẽ2(CP∞) that is detected by y ∈ E2,0

∞ = H2(CP∞;E0).

Similar arguments show:
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Proposition 8.6.2. If E is a commutative ring spectrum up to homotopy, with
E∗ concentrated in even degrees, then there are E∗-algebra isomorphisms

E∗(CPm) ∼= E∗[y]/(ym+1)

E∗(CP∞) ∼= E∗[[y]]

E∗((CP∞)n) ∼= E∗[[y1, . . . , yn]]

E∗(BU(n)) ∼= E∗[[c1, . . . , cn]]

E∗(BU) ∼= E∗[[ck | k ≥ 1]] .

Remark 8.6.3. These calculations show that the E∗-algebra structure of E∗(CP∞)
(or any of the other algebras listed) does not carry any more information about E
than the coefficients ring E∗. However, we shall see that the E∗-algebra homomor-
phism

E∗[[y]] ∼= E∗(CP∞)
m∗−→ E∗(CP∞ × CP∞) ∼= E∗[[y1, y2]]

y 7−→ FE(y1, y2)

(induced by the map m : CP∞ × CP∞ → CP∞ classifying the tensor product of
complex line bundles) often carries significantly more information about E. Here

FE(y1, y2) = y1 + y2 +
∑
i,j≥1

ai,jy
i
1y
j
2

is a formal group law.

((ETC: Also homological Atiyah–Hirzebruch spectral sequence

E2
s,t = Hs(X;Et) =⇒s Es+t(X) ,

and evaluation pairing.))

8.7. The multiplicative Whitehead tower spectral sequence

The Whitehead tower approach to the Atiyah–Hirzebruch spectral sequence
also gives a multiplicative spectral sequence, but this requires 2-categorical flexibil-
ity.

Let X be a CW complex and E a ring spectrum, with product φ : E ∧E → E.
For each pair (s, s′) consider the diagram

τ≥sE ∧ τ≥s′E //

φs,s′

��

E ∧ E

φ

��

Σ−1τ<s+s′E // τ≥s+s′E //

Cs,s′

4<

E // τ<s+s′E .

Here τ≥sE ∧ τ≥s′E is (s+ s′)-connective and τ<s+s′E is (s+ s′ − 1)-coconnective,
so the mapping space Map(τ≥sE∧τ≥s′E, τ<s+s′E) is contractible. Hence the space
of pairs (φs,s′ , Cs,s′), where φs,s′ is a map and Cs,s′ is a commuting homotopy,
is (nonempty and) contractible. For simplicity, let us assume that each map in
the Whitehead tower is a fibration, so that we may take Cs,s′ to be the constant
homotopy, i.e., so that φs,s′ makes the square commute “on the nose”.
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It follows that the two composite maps around the square

τ≥s+1E ∧ τ≥s′E //

φs+1,s′

��

τ≥sE ∧ τ≥s′E

φs,s′

��

τ≥s+1+s′E //

Hs,s′

2:

τ≥s+s′E

both make the square

τ≥s+1E ∧ τ≥s′E //

��

E ∧ E

φ

��

Σ−1τ<s+s′E // τ≥s+s′E // E // τ<s+s′E

commute, which implies that these two maps are homotopic, since also the mapping
space Map(τ≥s+1E ∧ τ≥s′E, τ<s+s′E) is contractible. Let Hs,s′ be such a “horizon-
tal” homotopy, which we may assume projects to the constant homotopy of maps
τ≥s+1E ∧ τ≥s′E → E. A similar argument applies for the two composite maps
around the square

τ≥sE ∧ τ≥s′+1E //

φs,s′+1

��

τ≥sE ∧ τ≥s′E

φs,s′

��

τ≥s+s′+1E //

Vs,s′

2:

τ≥s+s′E .

Let Vs,s′ be a “vertical” homotopy connecting them, projecting to the constant
homotopy of maps τ≥sE∧τ≥s′+1E → E. We now need a 2-homotopy connecting the
front composite homotopy Hs,s′+1 ∗Vs,s′ to the back composite homotopy Vs+1,s′ ∗
Hs,s′ , both of which connect

τ≥s+1E ∧ τ≥s′+1E
φs+1,s′+1−→ τ≥s+s′+2E −→ τ≥s+s′E

to

τ≥s+1E ∧ τ≥s′+1E −→ τ≥sE ∧ τ≥s′E
φs,s′−→ τ≥s+sE ,

and which project to the constant homotopy of maps τ≥s+1E ∧ τ≥s′+1E → E.
The existence of this 2-homotopy now follows from the fact that Map(τ≥s+1E ∧
τ≥s′+1E, τ<s+s′E) is contractible.

The diagonal ∆: X → X × X makes F (X+,−) a lax monoidal functor. Ap-
plying it to all of these spectra, maps, homotopies and 2-homotopies, we obtain a
map

µs,s′ : Ys ∧ Ys′ = F (X+, τ≥sE) ∧ F (X+, τ≥s′E)

F (∆,φs,s′ )−→ F (X+, τ≥s+s′E) = Ys+s′

for each s, s′ ∈ Z, making each square in (8.2) commute up to homotopy, so that
the combined homotopies are connected by a 2-homotopy.

Hence the Whitehead tower spectral sequence

Es,t1 = H2s+t(X;Es) =⇒s E
s+t(X)

is an algebra spectral sequence, with product on the E1-term given by the cup
product with coefficients in E∗, converging to the E-cohomology cup product.





CHAPTER 9

Formal group laws

See Adams [Ada74, Part II] for an early but standard exposition of Quillen’s
work on formal group laws and complex bordism. The appendix [Rav86, A2] is
another standard reference on formal group laws for algebraic topologists.

For many ring spectra E the computation of the cohomology rings E∗(CPm),
E∗(CP∞), E∗(BU(n)) and E∗(BU), and of the homology algebras E∗(BU) and
E∗(MU), follow the same lines as in the case of ordinary cohomology, and the
results carry no additional information beyond the coefficient ring π∗(E). However,
the map m : CP∞ × CP∞ → CP∞ classifying the tensor product of complex line
bundles, induced by the (abelian) group multiplication U(1)× U(1)→ U(1), often
induces a completed Hopf algebra structure

m∗ : E∗(CP∞) −→ E∗(CP∞) ⊗̂E∗ E∗(CP∞) ,

and it is an insight of Novikov and Quillen that this carries significant additional
information about the ring spectrum E. These completed Hopf algebras will corep-
resent commutative one-dimensional formal groups, and can, with a choice of co-
ordinate, be presented as formal group laws. We can thus draw on the algebraic
theory of formal groups to shed light on stable homotopy theory.

9.1. Complex oriented cohomology theories

((ETC: Cite seminar by Dold.)) Let E be a homotopy commutative ring spec-
trum. An E-orientation of a Cn-bundle ξ : E → X is a class

Uξ ∈ Ẽ∗+2n(Th(ξ)) ∼= E∗+2n(D(ξ), S(ξ))

that, for each x ∈ X, restricts to a generator of

E∗+2n(D(ξ)x, S(ξ)x) ∼= Ẽ∗+2n(S2n) ∼= E∗

as a free E∗-module, i.e., as a unit of the graded commutative ring E∗. If X is
connected, it suffices to verify this for one x ∈ X. If the universal line bundle
γ1 : E(γ1)→ CP∞ = BU(1) admits an E-orientation

Uγ1 ∈ Ẽ∗(Th(γ1)) = Ẽ∗(MU(1))

then so does each other complex line bundle, by pullback, and it turns out that this
also determines an E-orientation of each finite-dimensional complex vector bundle.
The composite

S2 ∼= CP 1 ⊂ CP∞ z−→ Th(γ1)

is homotopic to the inclusion of a slice S2 ∼= D(γ1)x/S(γ1)x → Th(γ1), since
the Euler class e(γ1) generates H2(CP∞). Moreover, the zero-section map z is a
homotopy equivalence, since S(γ1) = S∞ ' ∗. Hence an E-orientation of γ1 is the
same as a Thom class

yE ∈ Ẽ∗+2(CP∞)

155
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whose restriction to

Ẽ∗+2(CP 1) ∼= Ẽ∗+2(S2) ∼= E∗

is a unit in E∗. Some authors, including Adams [Ada74, §II.2], take this to be
the definition of a complex orientation yE of the cohomology theory E. We shall
instead work with strict complex orientations, where we assume that the unit in
E∗ is the unit element 1 ∈ E0.

Definition 9.1.1. Let E be a homotopy commutative ring spectrum. A (strict)
complex orientation of E is a choice of class

yE ∈ Ẽ2(CP∞)

whose restriction to Ẽ2(CP 1) ∼= E0 is the unit element 1 ∈ E0. A complex oriented
ring spectrum is a pair (E, yE) as above. A ring spectrum is complex orientable if
it admits a complex orientation.

((ETC: This definition excludes some examples, like E = MU/2 and E = K(n)
at p = 2 for 1 ≤ n < ∞, which are ring spectra up to homotopy such that E∗ is
graded commutative, but which are not homotopy commutative. In these examples
there is a class yE with the required restriction, but an additional argument is
required to see that E∗ is central in E∗(CP∞), so that E∗(CP∞) ∼= E∗[[yE ]] as an
E∗-algebra. What is a good level of generality here?))

Example 9.1.2. Let R be a commutative ring. Ordinary cohomology with
R-coefficients has a unique complex orientation

yHR ∈ H̃2(CP∞;R) ∼= H̃2(CP 1;R) ∼= H̃2(S2;R)

corresponding to Σ2(1) ∈ H̃2(S2;R).

Example 9.1.3. Let KU denote complex K-theory. The class

[γ1]− 1 ∈ K̃U
0
(CP∞)

restricts to the generator

u = [γ1
1 ]− 1 ∈ K̃U

0
(CP 1) ∼= Z{u}

and would hence give a complex orientation of KU in the lax sense. We instead
normalize it, by setting

yKU = u−1([γ1]− 1) ∈ K̃U
2
(CP∞) ,

which restricts to the unit u−1u = 1 in K̃U
2
(CP 1) ∼= Z.

Example 9.1.4. Let MU denote complex bordism. The identity Th(γ1) =
MU(1) = MU2 has left adjoint

ω : Σ−2CP∞ ' Σ−2MU(1) = Σ∞2 MU(1) −→MU

whose restriction to S ' Σ−2CP 1 is homotopic to the unit map η : S → MU . Its
homotopy class defines a tautological class

yMU = [ω] ∈MU0(Σ−2MU(1)) ∼= M̃U
2
(CP∞)

whose restriction to M̃U
2
(CP 1) ∼= MU0 is the ring unit.
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Example 9.1.5. Any even ring spectrum, i.e., one with E∗ concentrated in
even degrees, admits a complex orientation, since the Atiyah–Hirzebruch spectral
sequence

Es,t2 = Hs(CP∞;Et) =⇒s E
s+t(CP∞)

collapses at the E2-page for degree reasons. Any choice of class yE ∈ E2(CP∞)

detected by y ∈ E2,0
∞ = E2,0

2 = H2(CP∞;E0) is then a complex orientation.

Example 9.1.6. The sphere spectrum S, the real K-theory spectrum KO, and
the image-of-J-spectrum J∧p , are not complex orientable. This is because in CP 2

the 4-cell is attached to the 2-cell by the Hopf fibration η : S3 → S2, which is
detected by a nontrivial Sq2 in H̃∗(Cη;F2) = H̃∗(CP 2;F2) = F2{y, y2}, and η is
detected in π1(S), π1(KO) and π1(J∧2 ), so there is a nonzero Atiyah–Hirzebruch
differential

d2(y) = y2η

in each of these cases. Hence y does not survive to E∞, and cannot detect a complex
orientation yE . For odd primes p the 2p-cell in CP p is (stably only) attached to
the 2-cell by a map α1 : S2p−1 → S2, which is detected by a nontrivial P 1 in
H̃∗(CP p;Fp) → H̃∗(Cα1;Fp) = Fp{y, yp}, and α1 is detected in π2p−3(S) and
π2p−3(J∧p ), so there is a nonzero Atiyah–Hirzebruch differential

d2p−2(y) = ypα1

in both of these cases. Hence y does not survive to E∞ and cannot detect a complex
orientation of (S or) J∧p .

Proposition 9.1.7. Let (E, yE) be complex oriented. The Atiyah–Hirzebruch
spectral sequences

E∗,∗2 = H∗(CPm;E∗) = Z[y]/(ym+1)⊗ E∗ =⇒ E∗(CPm)

E∗,∗2 = H∗(CP∞;E∗) = Z[y]⊗ E∗ =⇒ E∗(CP∞)

E∗,∗2 = H∗(CPm × CPn;E∗) = Z[y1, y2]/(ym+1
1 , yn+1

2 )⊗ E∗ =⇒ E∗(CPm × CPn)

E∗,∗2 = H∗(CP∞ × CP∞;E∗) = Z[y1, y2]⊗ E∗ =⇒ E∗(CP∞ × CP∞)

E∗,∗2 = H∗(BU(1)n;E∗) = Z[y1, . . . , yn]⊗ E∗ =⇒ E∗(BU(1)n)

E∗,∗2 = H∗(BU(n);E∗) = Z[c1, . . . , cn]⊗ E∗ =⇒ E∗(BU(n))

E∗,∗2 = H∗(BU ;E∗) = Z[ck | k ≥ 1]⊗ E∗ =⇒ E∗(BU)

collapse at the E2-term, and converge strongly to

E∗(CPm) ∼= E∗[yE ]/((yE)m+1)

E∗(CP∞) ∼= E∗[[yE ]]

E∗(CPm × CPn) ∼= E∗[yE1 , y
E
2 ]/((yE1 )m+1, (yE2 )n+1)

E∗(CP∞ × CP∞) ∼= E∗[[yE1 , y
E
2 ]]

E∗(BU(1)n) ∼= E∗[[yE1 , . . . , y
E
n ]]

E∗(BU(n)) ∼= E∗[[cE1 , . . . , c
E
n ]]

E∗(BU) ∼= E∗[[cEk | k ≥ 1]] .
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Proof. Consider the case of CP∞, with H∗(CP∞) = Z[y]. The class yE ∈
Ẽ2(CP∞) is detected by y ⊗ 1 ∈ E2,0

2 , which is therefore an infinite cycle (so that
dr(y ⊗ 1) = 0 for all r ≥ 2). The spectral sequence algebra structure implies that
ym ⊗ 1 is also an infinite cycle, for all m ≥ 0. Since these generate the E2-term
as an E∗-module, and the differentials are E∗-linear, it follows that dr = 0 for all
r ≥ 2, and the spectral sequence collapses. We then prove by induction on m that

E∗(CP∞)

F 2m+1E∗(CP∞)
∼= E∗[yE ]/((yE)m+1)

so that

E∗(CP∞) = lim
m

E∗(CP∞)

F 2m+1E∗(CP∞)
∼= lim

m
E∗[yE ]/((yE)m+1) = E∗[[yE ]] .

In the case of BU(n), recall that

i∗n : H∗(BU(n)) = Z[c1, . . . , cn] −→ H∗(BU(1)n) = Z[y1, . . . , yn]

is injective (with image the symmetric polynomials). Hence in : BU(1)n → BU(n)
induces a morphism of Atiyah–Hirzebruch spectral sequences

E∗,∗2 = H∗(BU(n);E∗) = Z[c1, . . . , cn]⊗ E∗

−→ ′E∗,∗2 = H∗(BU(1)n;E∗) = Z[y1, . . . , yn]⊗ E∗

that is injective at the E2-term. Since dr = 0 for all r ≥ 2 in the target spectral
sequence, it follows by induction on r that the same holds in the source spectral
sequence, so also the Atiyah–Hirzebruch spectral sequence for BU(n) collapses at
the E2-term. ((ETC: Does it follow that we can choose cEk ∈ E2k(BU(n)) to map
to the k-th elementary symmetric polynomial in yE1 , . . . , y

E
n ∈ E∗(BU(1)n)?)) �

The E-cohomology Chern class cEn ∈ E2n(BU(n)) lifts to an orientation class

UEγn ∈ Ẽ2n(MU(n)), hence provides natural E-(co-)homology Thom isomorphisms

ΦEξ : E∗(X)
∼=−→ Ẽ∗+2n(Th(ξ))

ΦEξ : Ẽ∗+2n(Th(ξ))
∼=−→ E∗(X)

for all Cn-bundles ξ.

Corollary 9.1.8. Let (E, yE) be complex oriented. The Atiyah–Hirzebruch
spectral sequences

E2
∗,∗ = H∗(CP∞;E∗) = Z{βk | k ≥ 0} ⊗ E∗ =⇒ E∗(CP∞)

E2
∗,∗ = H∗(BU ;E∗) = Z[bk | k ≥ 1]⊗ E∗ =⇒ E∗(BU)

E2
∗,∗ = H∗(MU ;E∗) = Z[bk | k ≥ 1]⊗ E∗ =⇒ E∗(MU)

collapse at the E2-term, and converge strongly to

E∗(CP∞) ∼= E∗{βEk | k ≥ 0}
E∗(BU) ∼= E∗[b

E
k | k ≥ 1]

E∗(MU) ∼= E∗[b
E
k | k ≥ 1] .

Here 〈(yE)i, βEj 〉 = δij and βEk 7→ bEk under E∗(CP∞) → E∗(BU) ∼= E∗(MU).

Equivalently, βEk+1 7→ bEk under Ẽ∗+2(CP∞) ∼= Ẽ∗+2(MU(1))→ E∗(MU).
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Remark 9.1.9. When (E, yE) is complex oriented, the tower of graded com-
mutative E∗-algebras

E∗ = E∗(CP 0)←− . . .←− E∗(CPm)←− . . .←− E∗(CP∞)

corepresents a sequence of affine schemes

Spec(E∗) −→ . . . −→ Spec(E∗(CPm)) −→ . . . −→ Spec(E∗(CP∞))

over Spec(E∗), where

Spec(E∗(CPm))(R) = CAlgE∗(E∗(CPm), R)

∼= CAlgE∗(E∗[y]/(ym+1), R) = {y ∈ R | ym+1 = 0}

for each R ∈ CAlgE∗ . The colimit of this sequence, in sheaves, is the formal scheme

Spf(E∗(CP∞)) = colim
m

Spec(E∗(CPm))

given by

Spf(E∗(CP∞))(R) = colim
m

Spec(E∗(CPm))(R)

= colim
m
{y ∈ R | ym+1 = 0} = {y ∈ R | y is nilpotent} .

This formal scheme maps to, but is not isomorphic to the scheme Spec(E∗(CP∞)).
See Strickland’s notes [Str] for (much) more on formal schemes. By passing to
(pre-)sheaves we extend the category of affine schemes by building in additional
colimits. Only the colimits given by covers in the topology are preserved.

The affine line A1 over Spec(E∗) is the affine scheme Spec(E∗[y]). The ideal
I = (y) ⊂ E∗[y] corresponds to the closed subscheme

Spec(E∗[y]/I) ∼= Spec(E∗) ,

which is viewed as the origin (or zero-section) 0 ∈ A1. The ideal Im+1 = (ym+1) ⊂
E∗[y] then corresponds to the m-th order infinitesimal neighborhood

Spec(E∗[y]/Im+1) ∼= Spec(E∗(CPm))

of the origin in A1. The formal colimit

colim
m

Spec(E∗[y]/Im+1) ∼= Spf(E∗(CP∞))

is the union of all of the m-th order infinitesimal neighborhoods, and is called the
formal neighborhood Â1 of 0 in A1 over Spec(E∗). Hence a choice of complex
orientation defines an isomorphism

Spf(E∗(CP∞)) ∼= Â1

over Spec(E∗), expressing Spf(E∗(CP∞)) as a formal line over this base.

A complex orientable ring spectrum E will typically admit multiple different
choices of complex orientations. Let

y, y′ ∈ Ẽ2(CP∞)

be two such choices. We can then use y to calculate the right hand side, and write
y′ in terms of this answer. We find

Ẽ∗(CP∞) = (y) = yE∗[[y]]
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inside E∗(CP∞) = E∗[[y]], and

y′ =
∑
k≥0

bky
k+1

for some sequence of coefficients bk ∈ E∗. Considering degrees, we find that bk ∈
E−2k = E2k for each k. The condition that y′ (and y) restricts to the unit element

in Ẽ2(CP 1) ∼= E0 is equivalent to the condition b0 = 1, but otherwise the sequence
{bk ∈ E2k}k≥1 can be freely chosen. We will often write

y′ = h(y) = y +
∑
k≥1

bky
k+1 .

9.2. Formal group laws

Definition 9.2.1. Let R be a (graded) commutative ring. A (commutative,
one-dimensional) formal group law over R is a formal power series

F (y1, y2) ∈ R[[y1, y2]] ,

satisfying

(1) F (0, y) = y = F (y, 0),
(2) F (y1, y2) = F (y2, y1),
(3) F (F (y1, y2), y3) = F (y1, F (y2, y3)).

It can be denoted

F (y1, y2) = y1 + y2 +
∑
i,j≥1

ai,jy
i
1y
j
2

with ai,j = aj,i for all i, j ≥ 1, but further relations between the ai,j are required
to ensure that the series will satisfy (3). If R is graded we assume that y1, y2 and
F (y1, y2) are all homogeneous of cohomological degree 2, in which case ai,j has
cohomological degree 2(1− i− j), or homological degree 2(i+ j−1). We sometimes
write

y1 +F y2 = F (y1, y2)

for the sum of y1 and y2 with respect to F .

The group multiplication U(1) × U(1) → U(1) induces a map m : BU(1) ×
BU(1) ∼= B(U(1)×U(1))→ BU(1). It classifies the tensor product of complex line
bundles, so that m∗(γ1) ∼= γ1 ⊗̂ γ1, and can also be written as m : CP∞×CP∞ →
CP∞.

Proposition 9.2.2. Let (E, yE) be a complex oriented ring spectrum. The
homomorphism

E∗[[y]] ∼= E∗(CP∞)
m∗−→ E∗(CP∞ × CP∞) ∼= E∗[[y1, y2]]

maps y = yE to a formal group law

m∗(y) = FE(y1, y2) ∈ E∗[[y1, y2]]

over E∗.

If need be, we write F(E,y) for this formal group law.
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Proof. The external tensor product of complex line bundles is unital, com-
mutative and associative up to isomorphism, so m is unital, commutative and
associative up to homotopy. This implies that FE(y1, y2) satisfies the conditions
for being a formal group law. �

Lemma 9.2.3. For each formal group law F (y1, y2) over R there exists a unique
formal power series i(y) = iF (y) ∈ R[[y]] with F (y, i(y)) = 0, called the formal
negative. It satisfies i(y) ≡ −y mod (y2). We sometimes write

−F y = iF (y)

for the negative of y with respect to F .

Example 9.2.4. For a commutative ring R, let y = yHR be the unique complex
orientation. Then

FHR(y1, y2) = m∗(y) = y1 + y2

in H2(CP∞ × CP∞;R) = R{y1, y2}. Each ai,j = 0 for i, j ≥ 0, since these live in
trivial groups. This is equal to the additive formal group law

Fa(y1, y2) = y1 + y2

over R. It expresses addition in coordinates near 0.

Example 9.2.5. With E = KU , recall that yKU = y = u−1(γ1 − 1), so that
γ1 = 1 + uy (with implicit passage to isomorphism classes). Hence

m∗(γ1) = γ1 ⊗̂ γ1 = (1 + uy)⊗ (1 + uy) = 1 + uy1 + uy2 + u2y1y2

in KU0(CP∞ × CP∞), and

FKU (y1, y2) = m∗(y) = u−1(m∗(γ1)− 1)

= u−1(1 + uy1 + uy2 + u2y1y2 − 1) = y1 + y2 + uy1y2

in KU2(CP∞ × CP∞). Here a1,1 = u, while the remaining ai,j are zero. This
equals the multiplicative formal group law

Fm(y1, y2) = y1 + y2 + uy1y2

defined over KU∗ = Z[u±1]. It expresses multiplication in coordinates near 1.

Example 9.2.6. With the notation e(x) = ex − 1, the rewriting e(x1 + x2) =
e(x1) + e(x2) + e(x1)e(x2) of ex1+x2 = ex1ex2 is equivalent to the addition formula∫ y1

0

dt

1 + t
+

∫ y2

0

dt

1 + t
=

∫ F (y1,y2)

0

dt

1 + t
,

for `(y) =
∫ y

0
dt/(1 + t) = log(1 + y), with

F (y1, y2) = y1 + y2 + y1y2

equal to the multiplicative formal group law.
The addition formula

sin(x1 + x2) = sin(x1)

√
1− sin2(x2) + sin(x2)

√
1− sin2(x1)

(for x1 and x2 with non-negative cosine) is equivalent to the addition formula∫ y1

0

dt√
1− t2

+

∫ y2

0

dt√
1− t2

=

∫ F (y1,y2)

0

dt√
1− t2
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for arcsin(y) =
∫ y

0
dt/
√

1− t2, with

F (y1, y2) = y1

√
1− y2

2 + y2

√
1− y2

1

= y1 + y2 −
1

2
(y2

1y2 + y1y
2
2) + . . . .

Euler (written 1751, published 1761) obtained a similar addition theorem∫ y1

0

dt√
1− t4

+

∫ y2

0

dt√
1− t4

=

∫ F (y1,y2)

0

dt√
1− t4

for the elliptic integral
∫ y

0
dt/
√

1− t4 (related to arc length on ellipses), with

F (y1, y2) =
y1

√
1− y4

2 + y2

√
1− y4

1

1 + y2
1y

2
2

= y1 + y2 −
1

2
(y4

1y2 + y1y
4
2)− (y3

1y
2
2 + y2

1y
3
2) + . . . .

The formal power series expansions of the latter two expressions F (y1, y2) define
formal group laws over Q. The latter is an example of an elliptic formal group law.
Addition theorems for general elliptic integrals, and even more general hyperelliptic
integrals, were among the famous achievements of Abel (ca. 1827), sometimes in
competition with Jacobi.

Definition 9.2.7. Let R be a (graded) commutative ring, and let F (y1, y2)
and F ′(y1, y2) be formal group laws defined over R. A homomorphism

h : F −→ F ′

defined over R is a formal power series h(y) ∈ R[[y]] satisfying

(1) h(0) = 0,
(2) h(F (y1, y2)) = F ′(h(y1), h(y2)).

It can be written

h(y) =
∑
k≥0

bky
k+1

with |bk| = 2k. We can rewrite (2) as

h(y1 +F y2) = h(y1) +F ′ h(y2) .

The identity homomorphism id: F → F is the formal power series id(y) = y. The
composite h′ ◦ h = h′h of two homomorphisms h : F → F ′ and h′ : F ′ → F ′′ is the
composite formal power series h′(h(y)) ∈ R[[y]].

Lemma 9.2.8. Let R be a (graded) commutative ring. The formal group laws
defined over R are the objects of a small category FGL(R), with morphisms from
F to F ′ given by the homomorphisms defined over R.

objFGL(R) = {F (y1, y2) ∈ R[[y1, y2]] | F is a formal group law}
FGL(R)(F, F ′) = {h(y) ∈ R[[y]] | h : F → F ′ is a homomorphism} .

Lemma 9.2.9. A homomorphism h : F → F ′ over R, with h(y) =
∑
k≥0 bky

k+1,

is an isomorphism if and only if b0 = h′(0) is a unit in R. In this case F and F ′



9.3. THE LAZARD RING 163

mutually determine one another, by

F ′(y1, y2) = h(F (h−1(y1), h−1(y2)))

F (y1, y2) = h−1(F ′(h(y1), h(y2))) .

Here h′(0) denotes the formal derivative of h at y = 0.

Definition 9.2.10. A strict isomorphism h : F → F ′ is a homomorphism with
h′(0) = 1, so that h(y) ≡ y mod (y2). Let

FGLs(R) ⊂ FGLi(R) ⊂ FGL(R)

be the subcategories of all strict isomorphisms, and all isomorphisms, in FGL(R).
These are both groupoids. ((ETC: These notations are not standardized.))

Proposition 9.2.11. Let y and y′ be two (strict) complex orientations of the
same ring spectrum E, with y′ = h(y). Let F (y1, y2) = m∗(y) and F ′(y′1, y

′
2) =

m∗(y′) be the associated formal group laws. Then h : F → F ′ is a strict isomorphism
defined over E∗.

If need be, we can spell out this strict isomorphism as

h : F(E,y)

∼=−→ F(E,h(y)) .

Proof. We saw earlier that h(y) = y +
∑
k≥1 bky

k+1 with bk ∈ E−2k. We
calculate

h(F (y1, y2)) = h(m∗(y)) = m∗(h(y))

= m∗(y′) = F ′(y′1, y
′
2) = F ′(h(y1), h(y2)) ,

using that m∗ is a continuous ring homomorphism. �

9.3. The Lazard ring

We now consider the functorial dependence of complex orientations on the ring
spectrum E, and of formal groups and their homomorphisms on the ring R.

Definition 9.3.1. Let g : R→ T be a homomorphism of (graded) commutative
rings. For each formal group law

F (y1, y2) = y1 + y2 +
∑
i,j≥1

ai,jy
i
1y
j
2

defined over R we define the pullback g∗F to be the formal group law

(g∗F )(y1, y2) = y1 + y2 +
∑
i,j≥1

g(ai,j)y
i
1y
j
2

defined over T . For each homomorphism h : F → F ′ between formal group laws
defined over R, with

h(y) = y +
∑
k≥1

bky
k+1 ,

we define g∗h : g∗F → g∗F ′ to be the homomorphism

(g∗h)(y) = y +
∑
k≥1

g(bk)yk+1 .

Here g(ai,j), g(bk) ∈ T denote the respective images of ai,j , bk ∈ R under g. The
terminology and notation is that of algebraic geometry, where we think of g as a
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map g : Spec(T ) → Spec(R), so that g∗F is obtained by pulling back an object
over Spec(R) along g to give an object over Spec(T ), and similarly for g∗h.

Lemma 9.3.2. Pullback along any ring homomorphism g : R → T defines a
function

g∗ : objFGL(R) −→ objFGL(T ) .

Pullback along the identity induces the identity, and

k∗ ◦ g∗ = (kg)∗ : objFGL(R) −→ objFGL(U)

for any second ring homomorphism k : T → U , so

objFGL : CRing −→ Set

R 7−→ objFGL(R)

is a covariant functor. Writing Aff = CRingop, it defines a presheaf

objFGL : Affop −→ Set

Spec(R) 7−→ objFGL(R) .

Proof. This says that g∗F is again a formal group law, that id∗ F = F , and
that k∗(g∗(F )) = (kg)∗(F ), all of which are obvious. �

Passing from sets to small groupoids, we have the following extension of Lemma 9.3.2,
which also accounts for the strict isomorphisms between formal group laws.

Lemma 9.3.3. Pullback along any g : R→ T defines a functor

g∗ : FGLs(R) −→ FGLs(T )

F 7−→ g∗F

h 7−→ g∗h .

Pullback along the identity induces the identity, and

k∗ ◦ g∗ = (kg)∗ : FGL(R) −→ FGL(U)

for any k : T → U , so

FGLs : CRing −→ Gpd
R 7−→ FGLs(R)

is a covariant functor.

Proof. This says that g∗h is again a strict isomorphism, that g∗(h′h) =
(g∗h′)(g∗h), that id∗ h = h, and that k∗(g∗(h)) = (kg)∗(h), all of which are ob-
vious. �

Definition 9.3.4. Identifying CRing with Affop, the functor FGLs defines a
presheaf of small groupoids

Mfgl = FGLs : Affop −→ Gpd
Spec(R) 7−→ FGLs(R) ,

which we call the moduli prestack of formal group laws.
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Remark 9.3.5. To say that FGLs is a prestack means that for any two formal
group laws F and F ′ over the same base the set of strict isomorphisms F → F ′

satisfies descent. It is not a stack because a local system of formal group laws may
not glue together to a global formal group law. We write

Mfgl = FGLs
when we think of this presheaf of groupoids as a moduli prestack. For each graded
commutative ring R the prestack 1- and 2-morphisms

Spec(R) −→Mfgl

constitute the groupoid FGLs(R) of formal group laws and strict isomorphisms
over R. ((ETC: Working in the ungraded context, one would allow all isomor-
phisms.))

The pullback function appears naturally in topology. Given a map g : D → E
of homotopy commutative ring spectra, with induced ring homomorphism g : D∗ →
E∗, and given a complex orientation y ∈ D̃2(CP∞) of D, the image

gy = g∗(y) ∈ Ẽ2(CP∞)

is a complex orientation of E. Here, if y is the homotopy class of Σ−2CP∞ → D,
then gy is the class of the composite

Σ−2CP∞ y−→ D
g−→ E .

Example 9.3.6. Let n ∈ Z×p . The Adams operation ψn : KU∧p → KU∧p is a

map of ring spectra, taking the complex orientation y = yKU = u−1(γ1 − 1) to

ψny = (nu)−1((1 + uy)n − 1) ,

which in this case is a second complex orientation y′ = hn(y) of the same ring
spectrum. This defines a strict isomorphism hn : Fm → ψnFm. When composed
with the isomorphism ny : ψnFm → Fm it corresponds to the n-series automorphism

[n]Fm(y) = u−1((1 + uy)n − 1)

of Fm over KU∗ = Zp[u±1].

Lemma 9.3.7. Let F (y1, y2) = m∗(y) be the formal group law over D∗ associ-
ated to (D, y). Then the formal group law over E∗ associated to (E, gy) is equal to
the pullback (g∗F )(y1, y2).

If y′ = h(y) is a second complex orientation of D, then the strict isomorphism
over E∗ associated to the two complex orientations gy and gy′ of E is equal to the
pullback (g∗h)(y). �

If need be, we can spell out these identifications as

F(E,gy) = g∗F(D,y) and (g∗h : F(E,gy)
'→ F(E,gy′)) = g∗(h : F(D,y)

'→ F(D,y′)) .

Following Lazard [Laz55], it is not so difficult to see that the set-valued functor

objFGL : R 7−→ {formal group laws F over R}

from Lemma 9.3.2 is corepresentable, i.e., equal to Spec(L) for a suitable graded
commutative ring L, so that objFGL(R) ∼= CRing(L,R).
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Definition 9.3.8. Let L̃ = Z[ãi,j | i, j ≥ 1] and

F̃ (y1, y2) = y1 + y2 +
∑
i,j≥1

ãi,jy
i
1y
j
2 ∈ L̃[[y1, y2]] ,

define coefficients bi,j,k ∈ L̃ by

F̃ (F̃ (y1, y2), y3)− F̃ (y1, F̃ (y2, y3)) =
∑

i,j,k≥0

bi,j,ky
i
1y
j
2y
k
3 ∈ L̃[[y1, y2, y3]] ,

and let Ĩ ⊂ L̃ be the ideal generated by ãi,j − ãj,i for all i, j ≥ 1 and bi,j,k for

all i, j, k ≥ 0. The ring L̃ is homologically graded with |ãi,j | = 2(i + j − 1),

and Ĩ is a homogeneous ideal with ãi,j − ãj,i in degree 2(i + j − 1) and bi,j,k in
degree 2(i+ j + k − 1). Let

L = L̃/Ĩ = Z[ãi,j | i, j ≥ 1]/Ĩ

be the (evenly graded) quotient ring, let ai,j ∈ L be the image of ãi,j under the
canonical projection, and define

FL(y1, y2) = y1 + y2 +
∑
i,j≥1

ai,jy
i
1y
j
2

to be the image of F̃ (y1, y2) in L[[y1, y2]]. Then FL(y1, y2) is a formal group law
defined over L. If y1 and y2 have homological degree −2 (and cohomological de-
gree 2), then so does FL(y1, y2). We call L the Lazard ring, and FL(y1, y2) the
Lazard formal group law.

Proposition 9.3.9. The Lazard formal group law FL over the Lazard ring L
is universal, in the sense that

CRing(L,R)
∼=−→ objFGL(R)(

g : L→ R
)
7−→ g∗FL

defines a natural bijection for all (graded) commutative rings R. Hence FL repre-
sents an isomorphism of sheaves

Spec(L)
∼=−→ objFGL .

Proof. This asserts that for each formal group law

F (y1, y2) = y1 + y2 +
∑
i,j≥1

āi,jy
i
1y
j
2 ∈ R[[y1, y2]]

over a ring R there exists a unique ring homomorphism g : L → R such that F =
g∗FL. It is obviously given by mapping ãi,j ∈ L̃ to the given āi,j ∈ R, and noting
that this descends to a ring homomorphism g : L → R because the generators of
the ideal Ĩ all map to zero, since F is assumed to be a formal group law. The ring
homomorphism g thus classifies the formal group law F . �

Remark 9.3.10. Direct calculation shows that

Ĩ = (ã1,2 − ã2,1, ã1,3 − ã3,1, 2ã1,1ã1,2 + 3ã1,3 − 2ã2,2, . . . )

so that in degrees ∗ ≤ 6 the Lazard ring is freely generated by x1 = a1,1, x2 = a1,2

and x3 = a2,2− a1,3. These calculations quickly become complicated. Nonetheless,
Lazard was able to determine the structure of L.
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Theorem 9.3.11 ([Laz55]). There exists an isomorphism

L ∼= Z[xi | i ≥ 1]

of graded commutative rings, with |xi| = 2i.

A proof, following Frölich (1968), is given in [Ada74, Thm. II.7.1]. See also
Pstragowski (2021), “Finite height chromatic homotopy theory”, Thm. 6.8. We
will comment on the proof later, in connection with the Hurewicz homomorphism
~ : π∗(MU)→ H∗(MU).

9.4. Moduli of formal group laws

A strict isomorphism h : F → F ′ of formal group laws over R is uniquely
determined by the formal group law F (y1, y2) and the strict isomorphism h(y), since
F ′(y1, y2) = h(F (h−1(y1), h−1(y2)) as in Lemma 9.2.9, so the set-valued functor

morFGL : R 7−→ {strict isomorphisms h : F → F ′ over R}

implicit in Lemma 9.3.3 is also corepresentable.

Definition 9.4.1. Let

B = Z[bk | k ≥ 1]

LB = L[bk | k ≥ 1] ∼= L⊗B

be homologically graded with |bk| = 2k, with canonical inclusions ηL : L→ LB and
ι : B → LB, and let

h(y) = y +
∑
k≥1

bky
k+1 ∈ B[[y]] .

Let

η∗LFL(y1, y2) = y1 + y2 +
∑
i,j≥1

ηL(ai,j)y
i
1y
j
2 ∈ LB[[y1, y2]]

and

ι∗h(y) = y +
∑
k≥1

ι(bk)yk+1 ∈ LB[[y]]

be the base changes to LB of FL and h.

Lemma 9.4.2. The target of the strict isomorphism ι∗h : η∗LFL → F ′ is a for-
mal group law defined over LB, hence is equal to η∗RFL for a well-defined ring
homomorphism

ηR : L −→ LB .

Proof. We require that

η∗RFL(y1, y2) = (ι∗h)−1(η∗LFL((ι∗h)(y1), (ι∗h)(y2))) .

Omitting ηL and ι from the notation, this asks that

η∗RFL(y1, y2) = h−1(FL(h(y1), h(y2))) .

Hence ηR : L → LB must map ai,j to the coefficient of yi1y
j
2 in the formal power

series expansion of the right hand side. �
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Remark 9.4.3. With x1, x2 and x3 as before, one finds

ηR(x1) = x1 + 2b1

ηR(x2) = x2 + x1b1 + (3b2 − 2b21)

ηR(x3) = x3 + (2x2 + x2
1)b1 + x1(4b2 − b21) + (2b3 + 2b1b2 − 2b31) .

Again, these calculations quickly become complicated.

Proposition 9.4.4. The strict isomorphism ι∗h : η∗LFL → η∗RFL over LB is
universal, in the sense that

CRing(LB,R)
∼=−→ morFGLs(R)(

g : LB → R
)
7−→

(
g∗ι∗h : g∗η∗LFL → g∗η∗RFL

)
=
(
g∗h : g∗FL → g∗η∗RFL

)
defines a natural bijection for all (graded) commutative rings R. Hence h : FL →
η∗RFL represents an isomorphism of sheaves

Spec(LB)
∼=−→ morFGLs .

Proof. Given a strict isomorphism h : F → F ′ over R there are unique ring
homomorphisms g0 : L→ R and g1 : B → R classifying F and h, so that

F (y1, y2) = y1 + y2 +
∑
i,j≥1

g0(ai,j)y
i
1y
j
2

h(y) = y +
∑
k≥1

g1(bk)yk+1 .

Then g : LB → R is characterized by gηL = g0 and gι = g1. �

The series expansion h′(h(y)) of the composite h′h : F → F ′′ of two strict
isomorphisms h : F → F ′ and h′ : F ′ → F ′′ of formal group laws can be calculated
without reference to F , F ′ or F ′′. Hence B corepresents a functor to groups, and B
acquires the structure of a Hopf algebra.

Definition 9.4.5. Set b0 = 1. Let

εB : B −→ Z
ψB : B −→ B ⊗B
χB : B −→ B

be the ring homomorphisms sending bk to the coefficient of yk+1 in id(y) = y,
h′′(h′(y)) and h−1(y), respectively, where h′(y) =

∑
i≥0(bi ⊗ 1)yi+1, h′′(y) =∑

j≥0(1⊗ bj)yj+1, and h(y) =
∑
k≥0 bky

k+1.

Lemma 9.4.6 ([Ada74, Prop. II.7.5, Thm. II.11.3]). εB(bk) = 0 for k ≥ 1,

ψB(bk) =
∑
j≥0

(∑
i≥0

bi

)j+1

2(k−j)
⊗ bj

and

χB(bk) =
1

k + 1

(∑
i≥0

bi

)−k−1

2k
,

where (−)mn denotes the degree n homogeneous component of (−)m.
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Proof. See the proofs in [Ada74, Part II]. �

Remark 9.4.7. Direct calculation shows that

ψ(b1) = b1 ⊗ 1 + 1⊗ b1
ψ(b2) = b2 ⊗ 1 + 2b1 ⊗ b1 + 1⊗ b2
ψ(b3) = b3 ⊗ 1 + (b21 + 2b2)⊗ b1 + 3b1 ⊗ b2 + 1⊗ b3

and

χ(b1) = −b1
χ(b2) = 2b21 − b2
χ(b3) = −5b31 + 5b1b2 − b3 .

Note that this coproduct is different from that on the bipolynomial Hopf algebra
H∗(BU), and that the conjugation takes integral values, in spite of the division
by k + 1.

Proposition 9.4.8. The pair (L,LB) is a Hopf algebroid corepresenting the
functor

FGLops : CRing −→ Gpd
R 7−→ FGLs(R)op .

The left and right units

ηL : L −→ LB and ηR : L −→ LB

corepresent the source (= opposite target) and target (= opposite source) of

ι∗h : η∗LFL
∼=−→ η∗RFL .

The augmentation
ε = id⊗εB : LB −→ L

corepresents the identity homomorphism. The coproduct

ψ = id⊗ψB : LB = L⊗B −→ L⊗B ⊗B ∼= LB ⊗L LB
corepresents composition. The conjugation

χ : LB −→ LB

satisfies χηL = ηR and χι = ιχB, and corepresents the inverse.

Remark 9.4.9. This kind of Hopf algebroid is said to be split. It is formed
as a semi-direct or twisted tensor product, from a Hopf algebra B and a right B-
comodule algebra L, with G = Spec(B) a group scheme acting from the right on
the scheme X = Spec(L), so that (L,LB) corepresents the “translation” groupoid
scheme B(X,G) from Chapter 3.

Remark 9.4.10. Writing h•h′ = h′◦h for the opposite composition, the moduli
prestack Mfgl = FGLs : Affop → Gpd is an affine groupoid scheme, with object
scheme Spec(L), morphism scheme Spec(LB) and structure maps

Spec(L) id // Spec(LB)
soo

t
oo

i

��

Spec(LB)×Spec(L) Spec(LB)
•oo
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dual to the graded commutative rings and homomorphisms

L

ηL //

ηR
//
LBεoo

ψ
//

χ

��

LB ⊗L LB .

((ETC: To avoid the passage to the opposite category, it might be better to corep-
resent the homomorphism h−1 : F ′ → F with h−1(y) = y +

∑
k≥1mky

k+1, where

mk = χ(bk).))
The R-valued points of the canonical map

π : Spec(L) −→Mfgl

is the inclusion objFGLs(R)→ FGLs(R), viewing the object set as a subgroupoid
with only identity morphisms. There is a 2-categorical pullback square

Spec(LB)
t //

s

��

Spec(L)

π

��

Spec(L)
π
//

4<

Mfgl

and the corresponding diagram of nerves (which are simplicial sets, or spaces) is a
homotopy pullback square.

9.5. Quillen’s theorem

Recall the tautological complex orientation yMU ∈ M̃U
2
(CP∞) represented by

the composite

ω : Σ−2CP∞ ' Σ−2MU(1) −→MU .

It defines a formal group law FMU (y1, y2) over MU∗ = MU−∗. Quillen showed that
MU∗ (together with the formal group law FMU ) has the same universal property
in (graded) commutative rings as the Lazard ring.

Theorem 9.5.1 ([Qui69], [Qui71]). The ring homomorphism

q0 : L
∼=−→MU∗

classifying the formal group law FMU is an isomorphism. Hence FMU over MU∗
is the universal formal group law.

Adams showed that MU (together with the complex orientation yMU ) also has
a universal property, this time in the category of ring spectra up to homotopy, i.e.,
of monoids in (Ho(Sp), S,∧).

Lemma 9.5.2 ([Ada74, Lem. II.4.6]). Let E be a homotopy commutative ring
spectrum up to homotopy. The function

{ring spectrum maps g : MU → E}
∼=−→ {complex orientations y ∈ Ẽ2(CP∞)}

g 7−→ gyMU

is a bijection. Hence each complex orientation of E comes from unique ring spec-
trum map MU → E in the stable homotopy category.
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Proof. If E is not complex orientable, then both of these sets are empty.
Otherwise, E∗(MU) ∼= E∗[bk | k ≥ 1] is free as a left E∗-module, which implies
((ETC: via the universal coefficient theorem or Ext-spectral sequence)) that

[MU,E] ∼= HomE∗(E∗(MU), E∗)

(degree-preserving homomorphisms). Similarly, [S,E] ∼= HomE∗(E∗, E∗) and

[MU ∧MU,E] ∼= HomE∗(E∗(MU)⊗E∗ E∗(MU), E∗) ,

from which it follows that

{ring spectrum maps MU → E} ∼= AlgE∗(E∗(MU), E∗)

∼= AlgE∗(E∗[bk | k ≥ 1], E∗)

∼= HomE∗(E∗{bk | k ≥ 1}, E∗)

⊂ HomE∗(E∗(Σ
−2CP∞), E∗) ∼= Ẽ2(CP∞)

corresponds to the subset of (strict) complex orientations of E. Here we use that
yMU : Σ−2CP∞ ' Σ−2MU(1)→ MU induces Σ−2βk+1 7→ bk in E-homology, and
E∗(Σ

−2CP∞) = E∗{Σ−2βk+1 | k ≥ 0}. �

Let (E, yE) be a complex oriented ring spectrum, temporarily let ηL = id∧η : E ∼=
E ∧ S → E ∧MU and ηR = η ∧ id : MU ∼= S ∧MU → E ∧MU , and let

yL = ηLy
E : Σ−2CP∞ yE−→ E

ηL−→ E ∧MU

yR = ηRy
MU : Σ−2CP∞ yMU−→ MU

ηR−→ E ∧MU

be two complex orientations of E ∧ MU . Recall the classes bEk ∈ E2k(MU) =
(E ∧ MU)2k, coming from βEk ∈ E2k(CP∞) → E2k(BU) ∼= E2k(MU), or from

βEk+1 ∈ Ẽ2k+2(CP∞) ∼= Ẽ2k+2(MU(1))→ E2k(MU).

Lemma 9.5.3 ([Ada74, Lem. II.6.3]). In (E∧MU)2(CP∞) we have yR = h(yL)
where

h(y) = y +
∑
k≥1

bEk y
k+1 ∈ (E ∧MU)∗[[y]] .

Hence h is a strict isomorphism

h : F(E∧MU,yL)

∼=−→ F(E∧MU,yR)

of formal group laws over (E ∧MU)∗ = E∗(MU).

Sketch proof. Chase yE and yMU through the diagram

[CP∞, E]∗
(ηL)∗

//

∼=
��

[CP∞, E ∧MU ]∗

∼=
��

[CP∞,MU ]∗
(ηR)∗

oo

tt

HomE∗(E∗(CP∞), E∗)
(ηL)∗

// HomE∗(E∗(CP∞), E∗(MU)) .

�

We apply this in the case E = MU . Then ηL : MU → MU ∧ MU and
ηR : MU →MU∧MU induce the homomorphisms previously denoted ηL : MU∗ →
MU∗MU and ηR : MU∗ →MU∗MU .
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Theorem 9.5.4. The ring homomorphism

q : LB
∼=−→MU∗MU

classifying the strict isomorphism

h : η∗LFMU

∼=−→ η∗RFMU

is an isomorphism. Hence h over MU∗MU is the universal strict isomorphism
between formal group laws.

Proof. Since the source of h is η∗LFMU , the restriction of q over ηL is Quillen’s
isomorphism q0 : L → MU∗ ⊂ MU∗MU . Moreover, by Lemma 9.5.3 (in the case
E = MU), q restricts over ι to the homomorphism

q1 : B −→ Z[bMU
k | k ≥ 1] ⊂MU∗MU

bk 7−→ bMU
k ,

which is obviously an isomorphism. This implies that q is an isomorphism. �

Remark 9.5.5. With this, we have recovered the calculation of the MU -based
Steenrod algebra AMU = MU∗(MU) due to Novikov [Nov67a] and Landwe-
ber [Lan67], in the dual form of the Hopf algebroid (MU∗,MU∗MU) ∼= (L,LB)
recommended by Adams, reaching the conclusion that it is the Hopf algebroid
corepresenting the functor R 7→ FGLs(R)op taking any commutative ring to (the
opposite of) the groupoid of formal group laws and strict isomorphisms defined
over R.

The explicit formulas are hard to work with. There is a p-local version of
the theory, for each fixed prime p, involving the Brown–Peterson spectrum BP
with H∗(BP ;Fp) = A //E = P and p-typical formal group laws, for which more
manageable (but still recursive) formulas for ηR, ψ and χ are available.

In the special case E = HZ, Adams’ lemma shows that the universal formal
group law FMU over MU∗ becomes strictly isomorphic to the additive formal group
law when base changed along the Hurewicz homomorphism ~ : MU∗ → H∗(MU) ∼=
H∗(BU) = Z[bk | k ≥ 1]. This gives a fairly explicit formula for ~∗FMU , and
since ~ : MU∗ → H∗(MU) is injective, this formula determines FMU (y1, y2) ∈
MU∗[[y1, y2]].

Lemma 9.5.6. The formal power series

expMU (y) = y +
∑
k≥1

bky
k+1 ∈ H∗(MU)[[y]]

defines a strict isomorphism

expMU : Fa
∼=−→ ~∗FMU

over H∗(MU). Letting

logMU (y) = exp−1
MU (y) = y +

∑
k≥1

mky
k+1

denote its inverse, it follows that

~∗FMU (y1, y2) = expMU (logMU (y1) + logMU (y2))

in H∗(MU)[[y1, y2]].
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Proof. This is the case E = HZ of Lemma 9.5.3, noting that FHZ = Fa
remains the additive formal group law after base change to H∗(MU). The logarithm
coefficients mk = χ(bk) were calculated in Lemma 9.4.6. �

Remark 9.5.7. To prove Lazard and Quillen’s theorems, one uses the formula

F ′(y1, y2) = exp(log(y1) + log(y2)) ,

with exp(y) = y +
∑
k≥1 bky

k+1 and log(y) = exp−1(y), to define a formal group

law F ′ over B = Z[bk | k ≥ 1], which is classified by a ring homomorphism g : L→
B. The discussion for MU and HZ ∧MU gives a commutative square

L
g

//

q0

��

B

q′

��

MU∗
~ // H∗(MU) .

Letting I ⊂ L and J ⊂ B be the augmentation ideals (= the positive-degree classes),
Lazard proves that

Z{xk | k ≥ 1} = I/I2 g−→ J/J2 = Z{bk | k ≥ 1}

is given by

xk 7−→

{
pbk if k + 1 is a power of p,

bk otherwise.

Quillen shows that q′ is an isomorphism, and compares with Milnor’s calculation
of ~ to deduce that q0 is also an isomorphism.

Example 9.5.8. The complex orientation yH = y ∈ H̃2(CP∞) corresponds
to the ring spectrum map MU → τ≤0MU ' HZ. The induced homomorphism
MU∗ = L→ Z corepresents the additive formal group law

Fa(y1, y2) = y1 + y2

over Z.

The complex orientation yKU = u−1(γ1− 1) ∈ K̃U
2
(CP∞) is represented by a

map yKU : Σ−2CP∞ −→ KU , corresponding to a ring spectrum map g : MU −→
KU in the stable homotopy category. (Both yKU and g factor uniquely over
the connective cover ku = τ≥0KU → KU .) The induced ring homomorphism
g : MU∗ ∼= L −→ KU∗ corepresents the multiplicative formal group law

Fm(y1, y2) = y1 + y2 + uy1y2

over KU∗ = Z[u±1]. Here

g(ai,j) =

{
u for (i, j) = (1, 1),

0 otherwise.
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Following up on Lemma 9.5.6, we have the commutative diagram

HZ
ηL // HZ ∧MU

id∧g
��

MU
ηRoo

g

��

HZ
ηL //

��

HZ ∧KU

'
��

KU
ηRoo

HQ
ηL // HQ ∧KU KU

ηRoo

of ring spectra. Adams shows ((ETC: Reference?)) that the Bott map u : Σ2ku→
ku induces a nilpotent homomorphism u∗ : H∗(Σ

2ku;Fp) → H∗(ku;Fp) in mod p

homology. (In fact up−1
∗ = 0, for each prime p.) Passing to the colimit along

ku
u−→ Σ−2ku

u−→ Σ−4ku −→ . . . −→ KU

we deduce that H∗(KU ;Fp) = 0, so that multiplication by p on H∗(KU) is in-
vertible. Hence H∗(KU) is already rational and HZ ∧ KU → HQ ∧ KU is an
equivalence. The strict isomorphism

expMU : Fa
∼=−→ ~∗FMU

over H∗(MU) base changes along H∗(MU)→ H∗(KU) to a strict isomorphism

g∗ expMU : Fa
∼=−→ Fm

defined over H∗(KU) ∼= HQ∗(KU) = KU∗ ⊗ Q = Q[u±1]. Over any Q-algebra
there is a unique strict isomorphism from the additive to the multiplicative formal
group law, namely

g∗ expMU (y) =
euy − 1

u
= y +

∑
k≥1

uk

(k + 1)!
yk+1 .

Its formal inverse is

g∗ logMU (y) =
log(1 + uy)

u
= y +

∑
k≥1

(−1)k
uk

k + 1
yk+1 .

Hence g : H∗(MU)→ H∗(KU) is given by

g(bk) =
uk

(k + 1)!
and g(mk) = (−1)k

uk

k + 1

for each k ≥ 1.

((ETC: Relate KU → HZ ∧ KU ' HQ ∧ KU '
∏
i∈Z Σ2iHQ to the Chern

character ch: KU0(X) → Hev(X;Q) =
∏
iH

2i(X;Q). Relate ch ◦g : MU →
KU →

∏
i∈Z Σ2iHQ to the Todd genus. Mention Mischenko’s theorem ±[CP k] =

(k + 1)mk, the Conner–Floyd theorem KU∗(X) ∼= KU∗ ⊗MU∗ MU∗(X), and the
Hattori–Stong theorem on KU∗(MU).))
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9.6. Formal groups

To each complex orientable ring spectrum E we have assigned the graded com-
mutative E∗-algebra

E∗(CP∞) ∼= lim
m
E∗(CPm)

with its augmentation ε : E∗(CP∞)→ E∗ and completed coproduct

m∗ : E∗(CP∞) −→ E∗(CP∞ × CP∞) ∼= E∗(CP∞) ⊗̂E∗ E∗(CP∞) .

The corepresented sheaf

ĜE = Spf(E∗(CP∞)) = colim
m

Spec(E∗(CPm))

over Spec(E∗) is an abelian group object in this category, with neutral element

Spec(E∗)
Spf(ε)−→ Spf(E∗(CP∞)) = ĜE

and multiplication

ĜE ×Spec(E∗) ĜE = Spf(E∗(CP∞))×Spec(E∗) Spf(E∗(CP∞))

Spf(m∗)−→ Spf(E∗(CP∞)) = ĜE .

This is an example of a formal group (not formal group law) over Spec(E∗).

Only when we fix a choice of complex orientation y ∈ Ẽ2(CP∞) do we spec-
ify an isomorphism E∗(CP∞) ∼= E∗[[y]] and obtain a formal group law m∗(y) =
FE(y1, y2) ∈ E∗(CP∞×CP∞) ∼= E∗[[y1, y2]]. Different choices of complex orienta-
tions give formal group laws that only agree up to (canonical) strict isomorphism.
We therefore want each formal group law to specify a formal group, but also want
strictly isomorphic formal group laws to specify the same formal group. A formal
group is therefore, roughly, what we obtain from a formal group law by forgetting
the choice of coordinate.

Definition 9.6.1. Let R be a (graded) commutative ring. A (commutative,

one-dimensional) formal group Ĝ over Spec(R) is an abelian group object in sheaves
over Spec(R) whose underlying object pointed at the unit is locally isomorphic to
Spf(R[[y]]) pointed at y = 0.

Here “locally isomorphic” means that Spec(R) is covered by Zariski open sub-

schemes Spec(T ) such that Ĝ(T ) ∼= Spf(T [[y]]) is the underlying formal group of a
formal group law over T , but also that the local choices of coordinates y need not
extend to a global coordinate over R. This means that a formal group over Spec(R)
is a locally defined notion, as is required for these to form the R-valued points of
a stack (not prestack) of formal groups. See Naumann [Nau07, Thm. 33(i)] and
Goerss [Goe, Thm. 2.34] for expositions of this and related stacks of relevance to
algebraic topology.

Theorem 9.6.2. The stack Mfg of formal groups is the stackification of the
prestack Mfgl presented by the Hopf algebroid (L,LB).

The canonical morphism Mfgl → Mfg extends the class of objects, since not
all formal groups admit a global coordinate, and identifies some strictly isomorphic
formal group laws by forgetting the choice of coordinate.

We obtain the following diagram of categories and functors, where U : (E, y) 7→
E forgets the complex orientation, V maps F (y1, y2) ∈ R[[y1, y2]] to the formal
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scheme Spf(R[[y]]) with the associated group structure, F : (E, y) 7→ FE(y1, y2) =

m∗(y) is the associated formal group law over E∗, and Ĝ : E 7→ ĜE = Spf(E∗(CP∞))
is the (Quillen) formal group over Spec(E∗). Each even ring spectrum E is complex
orientable, since the Atiyah–Hirzebruch spectral sequence for E∗(CP∞) collapses.

even ring spectra

��

complex oriented ring spectra
U //

F

��

complex orientable ring spectra

Ĝ
��

formal group laws
V // formal groups

The right hand objects are more intrinsic, while the left hand objects may be more
amenable to calculation.

It is an interesting question to ask which formal groups can be realized as the
Quillen formal group of a complex orientable ring spectrum. A sufficient crite-
rion will be given by Landweber’s exact functor theorem [Lan76]. One source of

(commutative, one-dimensional) formal groups are the formal completions Ĉ of the
(commutative, one-dimensional) group schemes given by elliptic curves C. These
are quite often Landweber exact, and are then realized by complex orientable ring
spectra known as elliptic cohomology theories [LRS95].

Other sources of (commutative, one-dimensional) formal groups are given by
formal deformations of Brauer groups of K3-surfaces, or more general cohomology
groups of higher-dimensional Calabi–Yau varieties [Art74], [AM77]. The resulting
K3-cohomology [Szy10], [Szy11] and Calabi–Yau cohomologies seem not to be well
understood.

A more refined question asks which diagrams of formal groups can be realized
by diagrams (of the same shape) of complex orientable ring spectra, and whether
this realization can take place in ring spectra up to homotopy, orthogonal ring
spectra, or commutative orthogonal ring spectra. This includes questions about
group actions, since a G-action corresponds to a BG-shaped diagram. Theorems
of Hopkins–Miller and Goerss–Hopkins resolve the second and third forms of this
question in interesting cases. It is then possible to form the limit of the resulting
diagram of (commutative) orthogonal ring spectra, which has led to the construction
of topological modular forms and other higher real K-theories.



CHAPTER 10

The height filtration

To understand the Hopf algebroid (L,LB) ∼= (MU∗,MU∗MU) corepresenting
the moduli prestackMfgl of formal group laws and strict isomorphisms, we make a
closer study of the latter. Since (L,LB) is defined over Z, we may look at the fibers
over the closed points i : Spec(Fp)→ Spec(Z), where p ranges over all primes, and
the open point j : Spec(Q)→ Spec(Z).

Mfgl ⊗Q //

��

Mfgl

��

Mfgl ⊗ Fpoo

��

Spec(Q)
j
// Spec(Z) Spec(Fp)

ioo

It can also be convenient to work locally at a single prime, i.e., over Spec(Z(p)), or
completed at that prime, i.e., over Spec(Zp).

Formal group laws in characteristic 0 are canonically isomorphic, via their
logarithm, to the additive formal group law. In classical terms they correspond to
addition theorems. The classification of formal groups in prime characteristic p is
much richer. Each such has a height n ∈ {1, 2, . . . ,∞}, and over separably closed
fields the height is a perfect invariant.

10.1. Logarithms

For a formal group law F (y1, y2) = y1 + y2 +
∑
i,j≥1 ai,jy

i
1y
j
2 and homomor-

phism h(y) = b0y +
∑
k≥1 bky

k+1 (with no condition on b0) let us write

F1(y1, y2) =
∂F (y1, y2)

∂y1
= 1 +

∑
i,j≥1

ai,jiy
i−1
1 yj2

for the formal partial derivative with respect to the first variable, and

h′(y) =
∂h(y)

∂y
= b0 +

∑
k≥1

bk(k + 1)yk

for the formal derivative.

Lemma 10.1.1. Let h : F → F ′ be a homomorphism of formal group laws
over R. If h′(0) = 0, then h′(y) = 0.

Proof. Apply ∂
∂y1

∣∣∣
(0,y)

to h(F (y1, y2)) = F ′(h(y1), h(y2)) to obtain

h′(y)F1(0, y) = F ′1(0, h(y))h′(0) .

Since F1(0, y) ≡ 1 mod y has a multiplicative inverse in R[[y]], the lemma follows.
�

177
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Proposition 10.1.2. Suppose Q ⊂ R and let F be a formal group law over R.
Then

logF (y) =

∫ y

0

dt

F1(0, t)

is the unique strict isomorphism logF : F → Fa to the additive formal group law
over R. Hence ∫ y1

0

dt

F1(0, t)
+

∫ y2

0

dt

F1(0, t)
=

∫ F (y1,y2)

0

dt

F1(0, t)
.

By analogy with the theory for Lie groups, the expression

d logF (y) =
dy

F1(0, y)

can be interpreted as an invariant differential (= 1-form) on the underlying formal
group of F . (The following arguments are probably quite close to those of Euler
and Abel, verifying an identity by first passing to derivatives.)

Proof. In order to have a strict isomorphism h : F → Fa we must have
h(F (y1, y2)) = h(y1) + h(y2). Applying ∂

∂y1
we obtain

h′(F (y1, y2))F1(y1, y2) = h′(y1) .

Setting y1 = 0 this gives.

h′(y2)F1(0, y2) = h′(0) = 1 .

Hence h′(y2) = 1/F1(0, y2), and we must have

h(y) =

∫ y

0

h′(y2) dy2 =

∫ y

0

dy2

F1(0, y2)
,

as claimed.

Conversely, apply ∂
∂y0

∣∣∣
(0,y1,y2)

to F (F (y0, y1), y2) = F (y0, F (y1, y2)) to obtain

F1(y1, y2)F1(0, y1) = F1(0, F (y1, y2)) .

Hence h′(y) = 1/F1(0, y) implies

h′(F (y1, y2))F1(y1, y2) = h′(y1) ,

and applying
∫ y

0
(−) dy1 we recover

h(F (y1, y2)) = h(y1) + h(y2) .

We need Q ⊂ R in order to be able to formally integrate, since this will typically
introduce denominators. �

We write expF = log−1
F : Fa → F for the inverse strict isomorphism.

Example 10.1.3. If F = Fm defined over Q[u] with F (y1, y2) = y1 +y2 +uy1y2

then Fm,1(0, y2) = 1 + uy2 and

logFm(y) =

∫ y

0

dt

1 + ut
= u−1 log(1 + uy) = y +

∑
k≥1

(−1)k
uk

k + 1
yk+1 ,

while

expFm(y) = u−1(exp(uy)− 1) = y +
∑
k≥1

uk

(k + 1)!
yk+1 .
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Example 10.1.4. If F = FL defined over L⊗Q then

logFL(y) = logMU (y) = y +
∑
k≥1

mky
k+1

and

expFL(y) = expMU (y) = y +
∑
k≥1

bky
k+1

with bk,mk ∈ H∗(MU) ⊂ H∗(MU ;Q) ∼= L⊗Q.

The fact that every formal group law over a ring R ⊃ Q admits a unique
logarithm (or exponential) has the following interpretation in terms of classifying
objects.

Corollary 10.1.5. The function

m(y) = y +
∑
k≥1

mky
k+1 7−→ F (y1, y2) = m−1(m(y1) +m(y2))

is corepresented by ~ : L ∼= π∗(MU) → H∗(MU) = Z[mk | k ≥ 1](= Z[bk | k ≥ 1]),
and becomes an isomorphism

L⊗Q
∼=−→ H∗(MU ;Q)

after rationalization.

An equivalence of Hopf algebroids is defined precisely so as to corepresent a
natural equivalence of groupoids, see [Mor85, §1.2] and [Bau08, §2]. It will then
induce an equivalence of comodule categories and an isomorphism of comodule Ext
groups. ((ETC: Spell this out.))

Proposition 10.1.6. For each commutative Q-algebra R the inclusion

∗ = {id : Fa → Fa}
'−→ FGLs(R)

is an equivalence of groupoids. Hence there is an equivalence of Hopf algebroids

(Q,Q)
'←− (L⊗Q, LB ⊗Q)

and of moduli prestacks

Spec(Q)
'−→Mfgl ⊗Q .

10.2. Endomorphism rings

Let F be a formal group law defined over R. Recall that the formal negative
i(y) is characterized by F (y, i(y)) = 0.

Definition 10.2.1. The set of homomorphisms h : F → F defined over R forms
the (generally non-commutative) endomorphism ring

End(F/R) = {h : F → F with h(y) ∈ R[[y]]} .

Here

(h1 + h2)(y) = F (h1(y), h2(y)) = h1(y) +F h2(y)

−h(y) = i(h(y))

(h1h2)(y) = h1(h2(y)) .
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Note that

Aut(F/R) = {h ∈ End(F/R) | h′(0) ∈ R×}
Auts(F/R) = {h ∈ End(F/R) | h′(0) = 1} .

Definition 10.2.2. The ring homomorphism

Z −→ End(F/R)

n 7−→ [n]F (y)

defines the n-series [n]F (y) ≡ ny mod y2 for each integer n, so that [0]F (y) = 0
and

[n]F (y) = y +F · · ·+F y

[−n]F (y) = i(y) +F · · ·+F i(y)

with n copies of y or i(y), for each n > 0.

For example, [2]F (y) = F (y, y) and [−1]F (y) = i(y). For any homomorphism
h : F → F ′ the diagram

F
h //

[n]F

��

F ′

[n]F ′

��

F
h // F ′

commutes.

Lemma 10.2.3. Suppose Q ⊂ R. Then

End(F/R)
∼=−→ R

h(y) 7−→ h′(0)

is a ring isomorphism, so that Auts(F/R) = {id} is trivial.

Proof. It is clear that this is a ring homomorphism. To check that it is
an isomorphism, we may conjugate by logF and assume F = Fa, in which case
h(y) = ry defines an endomorphism Fa → Fa with h′(y) = r, for each r ∈ R. This
characterizes h by Lemma 10.1.1, since h′(y) = 0 implies h(y) = 0 when Q ⊂ R. �

Example 10.2.4. Let F = Fm be the multiplicative formal group law defined
over Z[u]. Its n-series satisfies

1 + u[n]Fm(y) = (1 + uy)n =
∑
i≥0

(
n

i

)
(uy)i

so that

[n]Fm(y) = ny +
∑
k≥1

(
n

k + 1

)
ukyk+1 .

If we base change to Zp[u], this formula extends to all p-adic integers n ∈ Zp, since
for each k and e the residue class of

(
n
k+1

)
modulo pe only depends on the residue

class of n modulo some (other) power of p. The extended ring homomorphism

Zp
∼=−→ End(Fm/Zp[u])

n 7−→ [n]Fm
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is an isomorphism. This follows since

j∗ : End(Fm/Zp[u]) ⊂ End(Fm/Qp[u])

∼= End(Fa/Qp[u]) ∼= Qp .

Here n ∈ Qp corresponds to the endomorphisms [n]Fa(y) = ny : Fa → Fa and
[n]Fm(y) = expFm(n logFm(y)) = u−1((1 + uy)n − 1) : Fm → Fm, both defined
over Qp[u], and the latter is defined over Zp[u] if and only if n ∈ Zp.

The base change homomorphism

i∗ : End(Fm/Zp[u]) −→ End(Fm/Fp[u])

is injective, because if [n]Fm(y) ≡ y mod p then n ≡ 1 mod p and
(
n
k+1

)
≡ 0

mod p for each k ≥ 1, which implies n = 1 by Lucas’ theorem. ((ETC: Justify that
i∗ is also surjective.)) It follows that

Aut(Fm/R) ∼= Z×p and Auts(Fm/R) ∼= 1 + pZp
for R = Zp[u] = π∗(ku

∧
p ) and Fp[u] = π∗(ku/p), and likewise over R = Zp[u±1] =

π∗(KU
∧
p ) and Fp[u±1] = π∗(KU/p). Lazard [Laz55, Prop. 9] proves that this

holds of Fp is replaced by any field of characteristic p, i.e., that there are no further
automorphisms of Fm with coefficients outside of Fp.

10.3. The height of a formal group law

Definition 10.3.1. Let p be a prime and suppose that Fp ⊂ R. Let σ : R→ R

denote the Frobenius (ring) homomorphism, with σ(x) = xp. We write F (1) = σ∗F
for the pullback

F (1)(y1, y2) = y1 + y2 +
∑
i,j≥1

api,jy
i
1y
j
2

of F (y1, y2) = y1 + y2 +
∑
i,j≥1 ai,jy

i
1y
j
2 along σ : Spec(R) → Spec(R). More

generally, let F (n) = (σn)∗F be the pullback along σn : Spec(R)→ Spec(R).

((ETC: In the graded case, σ is not degree-preserving, which may cause some
confusion here. We only use the copy of R over which F is defined to explicitly
grade the coefficients of formal group laws and homomorphisms.))

Lemma 10.3.2. Let F be a formal group law defined over R containing Fp.
The formula ϕ(y) = yp ∈ R[[y]] defines a (relative) Frobenius (formal group law)
homomorphism ϕ : F → F (1) = σ∗F . More generally, ϕn(y) = yp

n

defines a
homomorphism ϕn : F → F (n) = (σn)∗F .

Proof. The identity

F (y1, y2)p = (y1 + y2 +
∑
i,j≥1

ai,jy
i
1y
j
2)p

= yp1 + yp2 +
∑
i,j≥1

api,jy
ip
1 y

jp
2 = F (1)(yp1 , y

p
2)

in R[[y1, y2]] shows that ϕ(y) = yp satisfies ϕ(F (y1, y2)) = F (1)(ϕ(y1), ϕ(y2)). �

Definition 10.3.3. Consider F and F ′ defined over R containing Fp. For n ≥ 0
we say that a homomorphism h : F → F ′ has height ≥ n if it admits a factorization

h = h(n) ◦ ϕn : F −→ F (n) = (σn)∗F −→ F ′
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through ϕn. It has height ∞ if it has height ≥ n for all n ∈ N.

...

σ

��

...
...

Spec(R)

σ
��

R

σ

OO

F (n)

ϕ

OO

h(n)

��

...

σ

��

...

σ

OO

...

ϕ

OO

Spec(R)

σ

��

R

σ

OO

F (1)

ϕ

OO

Spec(R) R

σ

OO

F

ϕ

OO

h
// F ′

In particular, we say that a formal group law F (defined over R ⊃ Fp) has height
≥ n if its p-series [p]F : F → F has height ≥ n. In a factorization

F (n)

[p]
(n)
F

!!
F

ϕn
==

[p]F
// F

we call ϕn : F → F (n) the (n-th) relative Frobenius and [p]
(n)
F : F (n) → F the (n-th)

Verschiebung, often denoted F = F(n) and V = V(n), respectively.

Lemma 10.3.4. Assume Fp ⊂ R. A homomorphism h : F → F ′ factors through

ϕ : F → F (1) if and only if h′(0) = 0.

Proof. Let h(y) = b0y +
∑
k≥1 bky

k+1 with b0 = h′(0). By Lemma 10.1.1,

h′(0) = 0 implies h′(y) = 0 in R[[y]]. This means that bk(k + 1) = 0 ∈ R for all
k ≥ 0, so that bk = 0 unless p | k + 1. Hence

h(y) =
∑
i≥1

bip−1y
ip = h(1)(ϕ(y)) = h(1)(yp)

for

h(1)(y) =
∑
i≥1

bip−1y
i .

Here h(1) : F (1) → F ′ is a homomorphism because

h(1)(F (1)(yp1 , y
p
2)) = h(1)(F (y1, y2)p) = h(F (y1, y2))

= F ′(h(y1), h(y2)) = F ′(h(1)(yp1), h(1)(yp2))

in R[[yp1 , y
p
2 ]] ⊂ R[[y1, y2]], which implies that

h(1)(F (1)(y1, y2)) = F ′(h(1)(y1), h(1)(y2)) .

Conversely, ϕ′(y) = pyp−1 = 0, so h = h(1)ϕ only if h′(y) = 0. �
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It follows that the height of a formal group law F defined over R ⊃ Fp is never
zero, since [p]F (y) ≡ py mod y2 = 0 mod y2 in R[[y]].

Corollary 10.3.5. Let F be defined over R ⊃ Fp. If F has height ≥ n ≥ 1,
then

[p]F (y) = h(n)(ϕn(y)) = h(n)(yp
n

) = vn(F )yp
n

+ · · · ∈ R[[y]]

where
h(n)(y) = vn(F )y + . . .

for a uniquely determined element

vn(F ) ∈ R
of degree 2pn − 2. Moreover, F has height ≥ n + 1 if and only if h(n) : F (n) →
F admits a further factorization through ϕ : F (n) → F (n+1), i.e., if and only if
vn(F ) = 0.

Definition 10.3.6. Let F be defined over R ⊃ Fp. We say that F has height
equal to n if it has height ≥ n and vn(F ) is a unit in R. This implies that F does
not have height ≥ n+ 1, and is equivalent to it if R is a graded field.

Example 10.3.7. The additive formal group law Fa(y1, y2) = y1 + y2 over
R ⊃ Fp has height ∞, since [p]Fa(y) = py = 0.

Example 10.3.8. The multiplicative formal group law Fm(y1, y2) = y1 + y2 +
uy1y2 over R ⊃ Fp[u] has height ≥ 1, since

1 + u[p]Fm(y) = (1 + uy)p = 1 + upyp

implies
[p]Fm(y) = up−1yp ,

so that v1(Fm) = up−1 6= 0. It has height equal to 1 over R ⊃ Fp[u±1].

Example 10.3.9. Let C be an elliptic curve defined over a field R ⊃ Fp. A

choice of coordinate on the associated formal group Ĉ defines an elliptic formal
group law FC over R, which has height 1 if C is ordinary and height 2 if C is
supersingular. (The projective closure in P2 ⊃ A2 of) the curve

y2 + y = x3

defined over F2 is an example of a supersingular elliptic curve.

Example 10.3.10. The formal Brauer group [Art74], [AM77] of a K3 surface
is a commutative formal group (law) of height n ∈ {1, 2, . . . , 9, 10,∞}.

10.4. The height filtration

Recall that FL denotes the universal formal group law defined over the Lazard
ring L ∼= Z[xi | i ≥ 1].

Definition 10.4.1. Fix a prime p and let v0 = p ∈ L. Suppose by induction
on n ≥ 1 that

v1 ∈ L/(p)
v2 ∈ L/(p, v1)

. . .

vn−1 ∈ L/(p, v1, . . . , vn−2)
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have been defined so that

Fn = π∗nFL

has height ≥ n, where

πn : L −→ L/(p, v1, . . . , vn−1)

is the n-th canonical projection. Then

[p]Fn(y) = vny
pn + . . .

for a well-defined class vn ∈ L/(p, v1, . . . , vn−1). Moreover, Fn+1 = π∗n+1FL has
height ≥ n + 1, where πn+1 : L → L/(p, v1, . . . , vn−1, vn) is the next canonical
projection, and the induction continues.

It follows that |vn| = 2pn − 2 for each n ≥ 0. Let

In = Ip,n = (p, v1, . . . , vn−1) ⊂ L

be the ideal generated by the n first classes v0 = p, . . . , vn−1, so that Fn is defined
over L/In. Also let

I∞ = Ip,∞ = (p, v1, . . . , vn, . . . ) ⊂ L

be the ideal generated by all of the p-primary vn-classes.

Example 10.4.2. For the Lazard formal group law we have

[2](y) = 2y + a1,1y
2 + 2a1,2y

3 + (2a1,3 + a2,2)y4 + . . .

and

[3](y) = 3y + 3a1,1y
2 + (a2

1,1 + 8a1,2)y3 + . . . .

With the conventions from ((ETC: Chapter 9, Remark 3.9)) it follows that v1 =
a1,1 = x1 mod (2) and v2 = a2,2 ≡ x3 mod (2, v1) for p = 2, while v1 = a2

1,1 +

8a1,2 ≡ a2
1,1 − a1,2 = x2

1 − x2 mod (3) for p = 3.

L/In+1 F
(n+1)
n+1

��

L/In // L/In+1

σ

OO

F
(n)
n

Y 7→vnY+...

  

F
(n)
n+1

ϕ

OO

##

L
πn // L/In

σn

OO

// L/In+1

σn

OO

Fn

ϕn

OO

[p]Fn

// Fn Fn+1

ϕn

OO

[p]Fn+1

// Fn+1

Lemma 10.4.3. (a) A formal group law F defined over R ⊃ Fp has height
≥ n if and only if the classifying ring homomorphism g : L → R factors over
πn : L→ L/In as g = ḡπn, i.e., if and only if

g(p) = g(v1) = · · · = g(vn−1) = 0

in R, in which case ḡ(vn) = vn(F ).
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(b) It has height = n if and only if ḡ : L/In → R factors further over jn : L/In →
v−1
n L/In as ḡ = ¯̄gjn, i.e., if and only if vn(F ) is a unit in R.

L
πn //

g
!!

L/In
jn //

ḡ

��

v−1
n L/In

¯̄g
yy

R

Proof. (a) We use induction on n. Base change of [p]Fn(y) = vny
pn + · · · ∈

L/In[[y]] along ḡ : L/In → R gives [p]F (y) = ḡ(vn)yp
n

+ · · · ∈ R[[y]], so that
ḡ(vn) = vn(F ). Hence F has height ≥ n+ 1 if and only if vn(F ) = 0 if and only if
ḡ maps vn to 0 if and only if g factors over πn+1.

Claim (b) is straightforward. �

Lemma 10.4.4. A formal group law F of height ≥ n, classified by g : L →
L/In → R, admits a restriction k∗F of height = n if vn(F ) ∈ R is not nilpotent.
It admits a restriction k∗F of height ≥ n+ 1 if vn(F ) ∈ R is not a unit.

Proof. The intersection of all prime ideals in R is the nilradical Nil(R), con-
sisting of the nilpotent elements in R. The union of the maximal ideals is the set
R \ R× of nonunits in R. Hence there is a ring homomorphism k : R → T with
k(vn(F )) a unit if and only if vn(F ) /∈ Nil(R), and a nonzero ring homomorphism
k : R→ T with k(vn(F )) = 0 if and only if vn(F ) /∈ R×. �

Remark 10.4.5. There are various strategies (due to Hazewinkel, Araki and
others) for specifying elements vn ∈ L or vn ∈ L(p) = L⊗ Z(p) that reduce mod In
to the elements defined above. Note that the ideals In ⊂ L are well-defined, even
without a further specification of such choices.

Definition 10.4.6. (a) For each prime p, height n ∈ {1, 2, . . . ,∞} and com-
mutative ring R ⊃ Fp let

FGL≥n(R) = FGLp,≥n(R) ⊂ FGL(R)

be the full subcategory generated by the formal group laws F defined over R of
height ≥ n. Let

FGL≥ns (R) ⊂ FGL≥ni (R) ⊂ FGL≥n(R)

be the subcategories of strict isomorphisms, and all isomorphisms, in FGL≥n(R).
These are both groupoids.

(b) Let FGLn(R) ⊂ FGL≥n(R) be the full subcategory generated by the F
of height = n, and let FGLns (R) ⊂ FGLni (R) ⊂ FGLn(R) be the subcategories of
strict isomorphisms, and all isomorphisms. Again the latter two are groupoids.

Proposition 10.4.7. (a) The height ≥ n formal group law Fn = π∗nFL over
L/In is universal, in the sense that

CAlgFp(L/In, R)
∼=−→ objFGL≥n(R)(

ḡ : L/In → R
)
7−→ ḡ∗Fn

defines a natural bijection for all (graded) commutative Fp-algebras R. Hence Fn
represents an isomorphism of sheaves

Spec(L/In)
∼=−→ objFGL≥n .
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(b) The height = n formal group law Fn = j∗nπ
∗FL over v−1

n L/In is universal,
in the sense that

CAlgFp(v−1
n L/In, R)

∼=−→ objFGLn(R)(
¯̄g : v−1

n L/In → R
)
7−→ ¯̄g∗Fn

defines a natural bijection for all (graded) commutative Fp-algebras R. Hence Fn
represents an isomorphism of sheaves

Spec(v−1
n L/In)

∼=−→ objFGLn .
�

Lemma 10.4.8. (a) Let 1 ≤ n ≤ ∞. Any base change of a formal group law of
height ≥ n has height ≥ n, so

FGL≥ns : CAlgFp −→ Gpd

R 7−→ FGL≥ns (R)

defines a subfunctor of FGLs restricted to CAlgFp ⊂ CRing. Equivalently, this
defines a presheaf

M≥nfgl = FGL≥ns : (Aff/Spec(Fp))op −→ Gpd

Spec(R) 7−→ FGL≥ns (R)

of small groupoids (in fact, a prestack), which is a sub-presheaf (or sub-prestack)
of Mfgl ⊗ Fp, i.e., of Mfgl = FGLs restricted to Aff/Spec(Fp).

(b) Any base change of a formal group law of height = n has height = n, so

FGLns : CAlgFp −→ Gpd
R 7−→ FGLns (R)

defines a subfunctor of FGL≥ns . Equivalently, this defines a presheaf

Mn
fgl = FGLns : (Aff/Spec(Fp))op −→ Gpd

Spec(R) 7−→ FGLns (R)

of small groupoids (in fact, a prestack), which is a sub-presheaf (or sub-prestack)

of M≥nfgl = FGL≥ns .

Remark 10.4.9. For each prime p the chain of ideals

(0) ⊂ I1 = (p) ⊂ I2 = (p, v1) ⊂ · · · ⊂ In = (p, v1, . . . , vn−1) ⊂ · · · ⊂ I∞
in L corresponds to a tower of ring homomorphisms

L −→ L/p −→ L/(p, v1) −→ . . . −→ L/In −→ . . . −→ L/I∞

and a sequence of closed subschemes

Spec(L) ⊃ Spec(L/p) ⊃ Spec(L/(p, v1)) ⊃ · · · ⊃ Spec(L/In) ⊃ · · · ⊃ Spec(L/I∞)

which is isomorphic to the sequence of subsheaves

objFGL ⊃ objFGL≥1 ⊃ objFGL≥2 ⊃ · · · ⊃ objFGL≥n ⊃ · · · ⊃ objFGL∞ .

This defines the height filtration on formal group laws. For each n ≥ 1, the closed
subsheaves Spec(L/In+1) ⊂ Spec(L/In) and objFGL≥n+1 ⊂ objFGL≥n are divi-
sors cut out by the condition vn = 0. The subsheaves Spec(v−1

n L/In) ⊂ Spec(L/In)
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and objFGLn ⊂ objFGL≥n are the open complements of these divisors. This
means that

Spec(L/In)(R) ∼= Spec(v−1
n L/In)(R)

∐
Spec(L/In+1)(R)

as sets if R is a (graded) field, but not for more general R, cf. Lemma 10.4.4.
((ETC: Add figure of finite codimension subschemes of Spec(L/p) over Spec(Fp) ⊂

Spec(Z), with ordinary and supersingular elliptic formal group laws at heights 1
and 2, and heights≥ 3 at higher codimension. Also show geometric points Spec(Hn)
covering Mfgl ⊗ Fp.))

Next, we shall see that the sequence of groupoid presheaves

FGLs ⊃ FGL≥1
s ⊃ · · · ⊃ FGL

≥n
s ⊃ · · · ⊃ FGL∞s ,

also known as the sub-prestacks

Mfgl ⊃Mfgl ⊗ Fp =M≥1
fgl ⊃ · · · ⊃ M

≥n
fgl ⊃ · · · ⊃ M

∞
fgl ,

is corepresented by a tower of Hopf algebroids

(L,LB) −→ (L/p, LB/p) −→ . . . −→ (L/In, LB/In) −→ . . . −→ (L/I∞, LB/I∞)

so that each inclusion of prestacksM≥n+1
fgl ⊂M≥nfgl is in fact a closed inclusion. Its

open complement Mn
fgl is corepresented by the localized Hopf algebroid

(v−1
n L/In, v

−1
n LB/In) .

Again, this means that

FGL≥ns (R) ∼= FGLns (R)
∐
FGL≥n+1

s (R)

as groupoids when R is a graded field, but not in general. After stackification, we
obtain the p-primary height filtration

Mfg ⊃M≥1
fg ⊃ · · · ⊃ M

≥n
fg ⊃ · · · ⊃ M

∞
fg

of the moduli stack of formal groups, withMn
fg the complement inM≥nfg ofM≥n+1

fg .

One may say that Mfg ⊗ Fp = M≥1
fg is cut out as an effective Cartier divisor in

Mfg ⊗ Z(p) ⊂ Mfg by p, while M≥n+1
fg is cut out as an effective Cartier divisor

in M≥nfg by vn.

Lemma 10.4.10. Let h : F → F ′ be a strict isomorphism of height ≥ n formal
group laws defined over R ⊃ Fp. Then vn(F ) = vn(F ′) ∈ R. Hence strictly
isomorphic formal group laws have the same height, and vn(F ) ∈ R only depends

on the underlying formal group ĜF of F .

Proof. Let h(y) = b0y +
∑
k≥1 bky

k+1 specify any isomorphism h : F
∼=−→ F ′.

The diagram

F
[p]F

//

h

��

F

h

��

F ′
[p]F ′ // F ′

commutes, so

[p]F ′(y) = h([p]F (h−1(y))) ≡ h(vn(F )h−1(y)p
n

)

≡ b0vn(F )(b−1
0 y)p

n

= b1−p
n

0 vn(F )yp
n

mod (yp
n+1) .
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Hence vn(F ′) = b1−p
n

0 vn(F ). When h is strict, so that b0 = 1, this is equal to
vn(F ). �

Recall the universal strict isomorphism ι∗h : η∗LFL
∼=−→ η∗RFL defined over LB.

Definition 10.4.11. Let

LB/In = LB ⊗L L/In
and define ηR : L/In → LB/In and ε : LB/In → L/In by the pushout squares

L
ηR //

πn

��

LB
ε //

πn

��

L

πn

��

L/In
ηR // LB/In

ε // L/In

of graded commutative rings.

Lemma 10.4.12. There are unique ring homomorphisms

ηL : L/In −→ LB/In

ψ : LB/In −→ LB/In ⊗L/In LB/In
χ : LB/In −→ LB/In

making the diagrams

L
ηL //

πn

��

LB

πn

��

L/In
ηL // LB/In

LB
ψ

//

πn

��

LB ⊗L LB

πn⊗πn
��

LB/In
ψ
// LB/In ⊗L/In LB/In

LB
χ

//

πn

��

LB

πn

��

LB/In
χ
// LB/In

commute. In particular

LB/In
∼=−→ L/In ⊗L LB ⊗L L/In .

Proof. This follows from Lemma 10.4.10, since in each case one needs to
extend some ring homomorphism g : L → R over πn : L → L/In, and this lemma
ensures that the formal group law in question has height ≥ n. �

Remark 10.4.13. The defining property of ηL : L/In → LB/In can be rewrit-
ten as

L
ν //

πn

��

LB ⊗L L

id⊗πn
��

L/In
ν // LB ⊗L L/In ,

saying that L → L/In is a quotient LB-comodule, or that In ⊂ L is a sub LB-
comodule of L. We also say that In is an invariant ideal of L.

Proposition 10.4.14. (a) The pair (L/In, LB/In), with structure maps as

above, is a Hopf algebroid corepresenting the functor FGL≥ns .
(b) The localized pair (v−1

n L/In, v
−1
n LB/In) is a Hopf algebroid corepresent-

ing FGLns .
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Proof. (a) We know that L/In corepresents formal group laws of height ≥ n,
and ring homomorphisms g : LB/In = LB⊗L L/In → R corepresent strict isomor-
phisms h : F → F ′ with F ′ of height ≥ n, which is the same as strict isomorphisms
with both F and F ′ of height ≥ n. These are the morphisms in FGL≥ns .

(b) This follows from the isomorphism

v−1
n LB/In ∼= v−1

n L/In ⊗L LB ⊗L v−1
n L/In ,

with the right hand side corepresenting strict isomorphisms F → F ′ where both F
and F ′ have height = n. �

Remark 10.4.15. We can topologically realize the ring L/In (resp. v−1
n L/In)

as E∗ for a flat ring spectrum E = MU/In (resp. E = v−1
n MU/In) in the homo-

topy category. Replacing MU by BP this ring spectrum is denoted P (n) = BP/In
(resp. B(n) = v−1

n BP/In). The ring LB/In (resp. v−1
n LB/In) is then a sub-

ring of E∗E, but the latter will also contain (at least for p odd) an exterior alge-
bra Λ(τ̄0, . . . , τ̄n−1), with τ̄i, arising from reducing modulo vi twice, cf. [JW75],
[Wür77] and [Nas02]. The topological realization is thus in a sense richer than
the algebraic model, only recovering the latter by reduction modulo nilpotent ele-
ments. ((ETC: The construction of MU/In, v−1

n MU/In, P (n) and B(n) used to
rely on the Baas–Sullivan theory of bordism with singularities, but is easy in the
modern categories of MU -module spectra.))

10.5. Infinite height

Lazard showed that any formal group law F (y1, y2) of height ≥ n, defined over
R ⊃ Fp, is strictly isomorphic to one that agrees with Fa(y1, y2) = y1 + y2 modulo

(yi1y
j
2 | i+ j ≥ pn). The following is a special case.

Proposition 10.5.1 ([Laz55, Prop. 6]). Let F be a formal group law defined
over R ⊃ Fp. The following are equivalent.

(1) F is strictly isomorphic to Fa.
(2) [p]F = 0.
(3) F has infinite height.

In these cases the ring homomorphism Z → End(F/R) factors through Z →
Z/p, so we may call such a formal group (law) a formal Z/p-module.

Lemma 10.5.2. Let R ⊃ Fp. The general homomorphism h : Fa → Fa defined
over R has the form

h(y) =
∑
i≥0

tiy
pi = t0y + t1y

p + t2y
p2

+ . . .

with ti ∈ R for each i ≥ 0. Hence

End(Fa/R) ∼= CAlgFp(Fp[ti | i ≥ 0], R)

and

Auts(Fa/R) ∼= CAlgFp(T,R) ,
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where T = Fp[ti | i ≥ 1] with |ti| = 2pi−2. The composition of strict automorphisms
is corepresented by the coproduct

ψ : T −→ T ⊗Fp T

ψ(tk) =
∑
i+j=k

ti ⊗ tp
i

j ,

where t0 = 1, making T a Hopf algebra over Fp.

Proof. For h(y) =
∑
k≥0mky

k+1 we have h(y1 + y2) = h(y1) + h(y2) if and

only if
(
k+1
i

)
mk = 0 in R for all 0 < i < k+ 1, which is equivalent to mk = 0 for all

k + 1 not a power of p. ((ETC: There is a lemma here about the greatest common
divisor of these binomial coefficients.)) �

Remark 10.5.3. This formula for the coproduct in T should be compared with
Milnor’s formula

ψ(ξ̄k) =
∑
i+j=k

ξ̄i ⊗ ξ̄p
i

j

for the coproduct on ξ̄k = χ(ξk) in the dual Steenrod algebra A∗ at an odd prime p,
cf. Chapter 2, Theorem 8.8. The exterior generators τ̄k = χ(τk) are not as easy to
interpret in terms of formal group laws.

We can identify the full subcategory of FGL∞s (R) generated by Fa with the
one-object groupoid BAuts(Fa/R).

Proposition 10.5.4. For each commutative Fp-algebra R the inclusion

BAuts(Fa/R)
'−→ FGL∞s (R)

is an equivalence of groupoids. Hence there is an equivalence of Hopf algebroids

(Fp, T )
'←− (L/I∞, LB/I∞)

and of moduli prestacks

BAuts(Fa)
'−→M∞fgl .

Proof. All objects in the groupoid FGL∞s (R) are isomorphic, so the displayed
inclusion is fully faithful and essentially surjective, hence an equivalence. �

In fact, a natural inverse equivalence FGL∞s (R) → BAuts(Fa/R) can be cho-
sen, as follows.

Proposition 10.5.5 ([Qui71, Prop. 7.3], [Mit83, Prop. 1.2]). Every formal
Z/p-module F over R ⊃ Fp admits a unique (normalized) logarithm nogF : F → Fa
of the form

nogF (y) = y +
∑
k≥1

nky
k+1

with nk = 0 whenever k + 1 = pi is a power of p.

Proof. To each formal power series `(y) =
∑
k≥0mky

k+1 defined over R ⊃ Fp
we assign its “p-typification”

`(y) =
∑
j≥0

mpj−1y
pj = m0y +mp−1y

p +mp2−1y
p2

+ . . . ,
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which is an endomorphism ¯̀: Fa → Fa. For any other endomorphism h(y) =∑
i≥0 tiy

pi of Fa we have h` = h`, since the summands in

h(`(y)) =
∑
i≥0

ti(
∑
k≥0

mky
k+1)p

i

=
∑
i,k≥0

tim
pi

k y
pi(k+1)

where pi(k + 1) is a power of p are the same as those where k + 1 is a power of p,
so that

h`(y) =
∑
i,j≥0

tim
pi

pj−1y
pi+j = h(`(y)) .

Letting ` : F → Fa be any strict isomorphism, we let nog = `
−1
` : F → Fa, so

that ` = `nog.

F
nog

//

`
��

Fa

`~~

Fa

Then ` = ` nog = `nog, which implies nog = id. This makes nog a normalized
logarithm, as claimed.

If ` : F → Fa is another strict isomorphism with ` = id then ` = hnog for some
h : Fa → Fa, and id = ` = hnog = hnog = h id, so that h = id and ` = nog. Hence
nogF = nog is uniquely defined. �

Proposition 10.5.6. Let N = Fp[nk | k + 1 6= pi], and define

nog(y) = y +
∑
k≥1

k+1 6=pi

nky
k+1

and
FN (y1, y2) = nog−1(nog(y1) + nog(y2))

over N , so that FN has infinite height and nog : FN → Fa is its normalized loga-
rithm. Then the classifying homomorphism

ḡ : L/I∞
∼=−→ N

is an isomorphism.

Proof. For each R ⊃ Fp, the function

ḡ∗ : CAlgFp(N,R) −→ CAlgFp(L/I∞, R)

is the bijection, implied by the previous proposition, from the formal group laws
over R with a normalized logarithm to the formal group laws over R of infinite
height. �

Corollary 10.5.7. For any choices of lifts ṽn ∈ L and ñk ∈ L with ṽn 7→
vn ∈ L/In and ñk 7→ nk ∈ L/I∞ ∼= N , we have

Z(p)[ṽn, ñk | n ≥ 1, k + 1 6= pi]
∼=−→ L(p) .

Proof. It suffices to check that the induced homomorphism of Z(p)-algebra
indecomposables

Z(p){ṽn, ñk | n ≥ 1, k + 1 6= pi} −→ Z(p){xi | i ≥ 1}
is an isomorphism, and we know this is true after reduction mod p. �
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((ETC: This justifies thinking of the ṽn as coordinates on Spec(L/p)→Mfg⊗
Fp, so that the Spec(L/In) are codimension n linear subspaces, rather than more
general (higher degree) subvarieties.))

((ETC: Explain how this lets us concentrate on Z(p)[ṽn | n ≥ 1] ⊂ L(p).))
((ETC: Note parallel, for p = 2, with Thom’s calculation of N∗ = π∗MO.))

Remark 10.5.8. The normalized logarithm is somewhat related to the Artin–
Hasse exponential

Ep(y) = exp
(
y +

∑
j≥1

yp
j

pj

)
,

defined over Z(p), where
∑
j≥0 y

pj/pj is the p-typification of
∑
k≥0 y

k+1/(k + 1) =

− log(1− y). See also [Hon70, §5.4].

10.6. Finite height

Fix a prime p and a height 1 ≤ n < ∞, i.e., a finite height. Let Fp[vn] denote
the polynomial ring over Fp on a generator in degree |vn| = 2pn−2. Its localization
Fp[v±1

n ] is a graded field.

Lemma 10.6.1. There exists a formal group law Fn defined over Fp[vn] with
p-series

[p]Fn(y) = vny
pn + . . . ,

where the remaining terms lie in (y2pn).

Proof. With the notation from Corollary 10.5.7, let

g : L ⊂ L(p)
∼= Z(p)[ṽm, ñk | m ≥ 1, k + 1 6= pi] −→ Fp[vn]

be given by mapping ṽn 7→ vn and sending the other polynomial generators to 0.
Then g factors through πn : L → L/In and classifies a formal group law Fn with
p-series as claimed. �

Hence Fn has height ≥ n, but not height ≥ n+1, and its base change to Fp[v±1
n ]

has height = n. Taira Honda gave a more refined construction, of a formal group
law Hn defined over Fp with p-series exactly [p]Hn(y) = yp

n

. We state the graded
version of his result, introducing the power of vn needed to make the degrees match.

Theorem 10.6.2 ([Hon68, Thm. 2]). Fix a prime p and a finite height n.
(a) Let

logH̃n(y) =
∑
j≥0

v
pjn−1
pn−1
n

pj
yp

jn

= y +
vn
p
yp

n

+
vp

n+1
n

p2
yp

2n

+
vp

2n+pn+1
n

p3
yp

3n

+ . . .

and

H̃n(y1, y2) = log−1

H̃n
(logH̃n(y1) + logH̃n(y2))

= y1 + y2 −
vn
p

pn−1∑
i=1

(
pn

i

)
yi1y

pn−i
2 + . . . .
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Then H̃n is a formal group law defined over Z[vn], and logH̃n : H̃n → Fa is a strict

isomorphism defined over Z[1/p, vn].

(b) Let Hn = π∗H̃n be the base change along π : Z[vn]→ Fp[vn]. Then

[p]Hn(y) = vny
pn .

Honda proves that H̃n is in fact defined over Z[vn], not just over Z[1/p, vn],
and that [p]H̃n(y) ≡ vny

pn mod (p). ((ETC: Is Hn uniquely determined by being

p-typical with the given p-series?))

Remark 10.6.3. The localization Fp[v±1
n ] is a graded field. The n-th Morava

K-theory spectrum K(n) will be defined to be a complex oriented ring spectrum
withK(n)∗ = Fp[v±1

n ] and associated formal group law FK(n) = Hn. By convention,
K(0) = HQ and K(∞) = HFp, with associated formal group laws Fa = H0 over
Q and Fa = H∞ over Fp.

Theorem 10.6.4 ([Laz55, Thm. IV]). Two formal group laws F and F ′ over
the same separably closed (graded) field of characteristic p are isomorphic if and
only if they have the same height.

We have already seen that isomorphic formal group laws have the same height,
and that any formal group law over R ⊃ Fp of infinite height is strictly isomor-
phic to Fa. The new assertion is thus that any two formal group laws of finite
height = n become isomorphic after base change to a separably closed (graded)
field. To construct such an isomorphism F ∼= F ′, Lazard needs to solve algebraic
equations [Laz55, (4.29)] over the base ring, which can always be done when the
base is algebraically closed. These equations are ((ETC: apparently)) always sepa-
rable, so it suffices that the base field is separably closed.

Proposition 10.6.5. For each separably closed (graded) Fp-algebra R the in-
clusion

BAuts(Hn/R)
'−→ FGLns (R) =Mn

fgl(R)

is an equivalence of groupoids, for each n ≥ 1, so that

M≥1
fgl (R) = FGL≥1

s (R) '
∐

1≤n≤∞

BAuts(Hn/R) .

((ETC: Can we state this as an equivalence of prestacks, restricted to the subcate-
gory of separably closed R ⊃ F̄p?))

10.7. Morava stabilizer groups

This leads us to study Auts(Hn/R) ⊂ End(Hn/R) for (graded) Fp-algebras R.
It turns out that the case R = Fpn [vn] is the most interesting. We follow Morava’s
summary [Mor85, §2.1.2].

Remark 10.7.1. Let Qp = Zp[1/p] denote the field of p-adic numbers. The field
extension Qp ⊂ Qp(ω) given by adjoining a primitive (pn − 1)-th root of unity ω is
an unramified cyclic Galois extension of degree n. The extension of valuation rings

Zp ⊂ Zp[ω] = W (Fpn)

is given by the ring of Witt vectors of the finite field Fpn , the ideal (p) remains prime
in this extension, and Zp[ω]/(p) = W (Fpn)/(p) ∼= Fpn . In particular, the group
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homomorphism Zp[ω]× = W (Fpn)× → F×pn is split surjective, with ω mapping to a

generator of F×pn ∼= Z/(pn−1), which we also denote as ω. The n Galois conjugates

{ω, σ(ω) = ωp, . . . , σn−1(ω) = ωp
n−1

}

generate Zp[ω] = W (Fpn) as a free Zp-module, and their images give a basis for
Fpn as an Fp-vector space.

Lemma 10.7.2. Consider the base change of H̃n along Z → Zp[ω] = W (Fpn),
and the related base change of Hn along Fp → Fpn , and their graded analogues.
The identity

logH̃n(ωy) = ω logH̃n(y)

holds over W (Fpn)[vn], so

[ω]H̃n(y) = ωy

defines an endomorphism [ω]H̃n : H̃n → H̃n over W (Fpn)[vn]. Its base change de-
fines an endomorphism

[ω] = [ω]Hn : Hn −→ Hn

over Fpn [vn].

Proof.

logH̃n(ωy) =
∑
j≥0

v
pjn−1
pn−1
n

pj
(ωy)p

jn

= ω logH̃n(y)

since ωp
jn

= ω inW (Fpn) for all j ≥ 0. It follows that the homomorphism ωy : Fa →
Fa defined over W (Fpn) corresponds to the endomorphism

[ω]H̃n(y) = log−1

H̃n
(ω logH̃n(y)) = ωy

of H̃n. �

This defines a ring homomorphism

Zp[ω] = W (Fpn) −→ End(Hn/Fpn [vn])

ω 7−→ [ω] ,

extending the usual homomorphism from Zp given by the m-series m 7−→ [m] =
[m]Hn .

Since Hn is defined over Fp[vn], it is equal to its (ring) Frobenius pullback

σ∗Hn = H
(1)
n along σ = id: Fp → Fp, so that the (formal group law) Frobenius ho-

momorphism ϕ : Hn → H
(1)
n = Hn given by ϕ(y) = yp is in fact an endomorphism.

Lemma 10.7.3.

ϕ ◦ [ω] = [ωp] ◦ ϕ and [p] = ϕn

in End(Hn/Fpn [vn]).

Proof. (ωy)p = ωpyp and [p]Hn(y) = yp
n

. �

Theorem 10.7.4. (a) Fix a prime p and finite height n. The natural homo-
morphisms

W (Fpn){1, ϕ, . . . , ϕn−1}
∼=−→ End(Hn/Fpn)
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is an isomorphism of Zp-algebras, where the (noncommutative) multiplication in
the source is given as in Lemma 10.7.3, so that ϕ ·w = wp ·ϕ and p = ϕn, for each
root of unity w ∈ Zp[ω] = W (Fpn).

(b) For any field R containing Fpn , such as the algebraic closure F̄p, the inclu-
sion

End(Hn/Fpn)
∼=−→ End(Hn/R)

is an isomorphism. Hence Auts(Hn/Fpn) ∼= Auts(Hn/R).

Morava [Mor85, §2.1.2] cites Frölich [Frö68, II §2 Prop. 3] for this fact.
Ravenel cites Dieudonné and Lubin, and gives a proof in [Rav86, A2.2.17]. Part (a)
says that the endomorphisms we have constructed so far give the whole story
over Fpn , while part (b) says that no new endomorphisms appear if the base field
is extended further. This is in contrast to the case n = ∞, where Auts(Fa/R) ∼=
CAlgFp(T,R) varies with R.

Definition 10.7.5. The profinite group Sn = Aut(Hn/Fpn) is called (in topo-
logical circles) the Morava stabilizer group at the prime p and finite height n. The
subgroup S0

n = Auts(Hn/Fpn) is the strict Morava stabilizer group.

1→ S0
n −→ Sn −→ F×pn → 1 .

Definition 10.7.6. Let

Dn = Qp(ω){1, ϕ, . . . , ϕn−1}
where ω is a primitive (pn − 1)-th root of unity, ϕω = ωpϕ and ϕn = p. Then
Dn is the central simple Qp-algebra of Hasse invariant 1/n ∈ Q/Z ∼= Br(Qp). Its
left action on itself, with respect to the basis displayed above, defines a faithful
representation by n × n matrices over Qp(ω) = W (Fpn)[1/p]. Its determinant
defines the (multiplicative, surjective) reduced norm homomorphism

Nrd: Dn −→ Qp .

Then On = Nrd−1(Zp) is the maximal Zp-order in Dn.

Lemma 10.7.7. (a) Nrd(p) = pn, Nrd(ϕ) = (−1)n−1p and

On = Nrd−1(Zp) = W (Fpn){1, ϕ, . . . , ϕn−1} .
(b)

O×n = Nrd−1(Z×p ) = W (Fpn)×{1} ⊕W (Fpn){ϕ, . . . , ϕn−1}
is the group of units in the maximal Zp-order. It is a profinite group, i.e., a filtered
limit of finite groups.

(c)

D×n = Nrd−1(Q×p ) = Dn \ {0}
is the group of (all) units in Dn.

Proposition 10.7.8. (a)

End(Hn/Fpn) ∼= On = Nrd−1(Zp)
is isomorphic as a Zp-algebra to the maximal Zp-order in Dn.

(b) The Morava stabilizer group

Sn = Aut(Hn/Fpn) ∼= O×n = Nrd−1(Z×p )

is isomorphic to the (profinite) group of units in the maximal Zp-order in Dn.
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(c) The strict Morava stabilizer group

S0
n = Auts(Hn/Fpn) ∼= Nrd−1(1 + pZp)

= (1 + pW (Fpn)){1} ⊕W (Fpn){ϕ, . . . , ϕn−1}

is a pro-p-group, i.e., a filtered limit of finite p-groups.

Remark 10.7.9. The analysis of Sn and S0
n continues [Rav76b, Thm. 2.10] by

letting S1
n = Nrd−1(1) = ker(S0

n → 1+pZp), so that there are short exact sequences

0

��

0

��

0 // S1
n

// S0
n

//

��

1 + pZp //

��

0

0 // S1
n

// Sn //

��

Z×p //

��

0

F×p

��

F×p

��

0 0 .

If p is odd then 1 + pZp ∼= Zp, while if p = 2 then 1 + 2Z2 = Z×2 ∼= Z/2⊕ Z2.

Definition 10.7.10. Consider the category with objects (Φ, k) where k is a
field of characteristic p and Φ is a formal group law of height n defined over k. In
this “extended” category a morphism (h, γ) : (Φ, k)→ (Φ′, k′) is a pair consisting of
a ring homomorphism γ : k → k′ and a formal group law homomorphism h : γ∗Φ→
Φ′. Its composite with a second morphism (h′, γ′) : (Φ′, k′) → (Φ′′, k′′) is (h′ ◦
(γ′)∗h, γ′ ◦ γ). The extended automorphism group Aut(Φ, k) thus consists of pairs
(h, γ) with γ : k → k a ring automorphism and h : γ∗Φ → Φ a formal group law
isomorphism. We get a short exact sequence

1→ Aut(Φ/k) −→ Aut(Φ, k) −→ Gal(k/Fp)→ 1

(h, γ) 7−→ γ .

When Φ is defined over Fp, this sequence is split by γ 7→ (id, γ), and

Aut(Φ, k) ∼= Aut(Φ/k) o Gal(k/Fp)

is the semidirect product for the left action of Gal(k/Fp) on Aut(Φ/k) given by
γ · h = γ∗h.

Definition 10.7.11. The profinite group

Gn = Aut(Fpn , Hn)

is called the extended Morava stabilizer group (at the prime p and finite height n).
The short exact sequence

1→ Sn −→ Gn −→ Gal(Fpn/Fp)→ 1
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is split, so that Gn ∼= Sn o Gal(Fpn/Fp), where Gal(Fpn/Fp) ∼= Z/n acts on h ∈
Sn ⊂ Fpn [[y]] by pullback, i.e., via the Galois action on Fpn . We may also consider
the fully extended group

Gnr
n = Aut(F̄p, Hn) ∼= Sn o Gal(F̄p/Fp) ,

where Gal(F̄p/Fp) ∼= Ẑ is the group of profinite integers.

Remark 10.7.12. The profinite group Gnr
n is in a sense the absolute (unram-

ified = non ramifié) Galois group of the K(n)-local sphere spectrum. Devinatz–
Hopkins [DH04] constructed a K(n)-local Gnr

n -pro-Galois extension LK(n)S →
Enr
n , in the sense of the author [Rog08]. In particular, continuous homotopy fixed

points can be defined so that

LK(n)S ' EhGnn ' (Enr
n )hG

nr
n

and there is a homotopy fixed point spectral sequence

Es,t2 = Hs
c (Gn;πt(En)) =⇒s πt−s(E

hGn
n ) ∼= πt−s(LK(n)S) .

The group action here is discussed in [DH95]. Baker–Richter [BR08b] proved
that no further connected Galois extensions of Enr

n exist (at least for p odd). This
has recently been strengthened into a “chromatic Nullstellensatz” by Burklund–
Schlank–Yuan [BSY], for Lubin–Tate spectra such as Enr

n .

Enr
n

En

nẐ
99

E
hZ/n
n

Z/n
::

(Enr
n )hSn

Sn

OO

EhSnn

Sn

OO

nẐ

::

LK(n)S

OO

Gn

II

Z/n

::

(The dashed arrow is not Galois.)

Let ordp : Q×p → Z denote the p-order homomorphism.

Proposition 10.7.13 ([Mor85, §2.1.3]). There is a vertical map of split ex-
tensions

1 // Nrd−1(Z×p ) //

∼=
��

D×n
ordp Nrd

//

ϕ7→σ

��

Z //

17→σ
��

0

1 // Sn // Gn // Gal(Fpn/Fn) // 1 ,
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inducing an isomorphism

D×n /pZ
∼=−→ Gn

that extends the isomorphism Nrd−1(Z×p ) ∼= Aut(Hn/Fpn) = Sn by the surjection
Z→ Z/n ∼= Gal(Fpn/Fn).

Proof. The composite ordp Nrd is split by 1 7→ ϕ, sending n to ϕn = p, and

the conjugation action in D×n by ϕ on Nrd−1(Z×p ) corresponds to the Galois action
by σ on Sn, which is the same as the conjugation action in Gn by σ. �

Remark 10.7.14. It follows that Gnr
n is the profinite completion of the unit

group D×n , hence plays the role of a non-abelian Weil group, analogous to how the
group of units L× in a p-adic number field L ⊃ Qp is dense in the absolute Galois
group Gal(L̄/L), by local class field theory.

Example 10.7.15. When n = 2,

D2 =

(
p, ω

Qp

)
∼= Qp(ω){1, ϕ}

is the quaternion algebra over Qp. Here ω is a primitive (p2 − 1)-th root of unity.
When also p = 2, this is

D2
∼= Q2{1, i, j, k}

with i2 = j2 = −1 and ij = k = −ji. The maximal Z2-order is the Z2-algebra of
Hurwitz integers

End(H2/F4) ∼= Z2

{
1, i, j,

1 + i+ j + k

2

}
,

which contains Z{1, i, j, k} as a submodule of index 2. The Morava stabilizer group
S2 = Aut(H2/F4) is the profinite group of units in this ring. It has a maximal finite

subgroup Q8 o Z/3 ∼= SL2(F3) ∼= Â4 of order 24 given by the Hurwitz units

Â4 =
{
±1,±i,±j,±k, ±1± i± j ± k

2

}
∼= A4 ×SO(3) Spin(3) ,

also known as the binary tetrahedral group, since it is the double cover of the group
A4 ⊂ SO(3) of orientation-preserving isometries of the regular tetrahedron. This is
also the automorphism group of the unique supersingular elliptic curve over a field
of characteristic 2, namely y2+y = x3+x. Let G48 = Â4oZ/2 be the corresponding
maximal finite subgroup of the extended stabilizer group G2 = S2 o Z/2, where in
both cases Z/2 = Gal(F4/F2). Hopkins–Miller defined the higher real K-theory
spectrum

EO2 = EG48
2

to be the homotopy fixed points for its action on the Lubin–Tate spectrum E2, and
identified this with the K(2)-local topological modular forms spectrum

EO2 ' LK(2) TMF .

The homotopy fixed point spectral sequence

Es,t2 = Hs
gp(G48;πt(E2)) =⇒ πt−s(EO2) = πt−s(LK(2) TMF)
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is more manageable than that for the full S2- or G2-action, and has been analyzed by
Henn. ((ETC: Many other contributions along these lines should be mentioned.))

E2

E
hZ/2
2

Z/2
::

EhÂ4
2

Â4

OO

EO2

OO
G48

DD

Z/2

;;

EhS2
2

OO

LK(2)S

OO

Z/2
;;

(The dashed arrows are not Galois.)

Remark 10.7.16. The Morava stabilizer groups S0
n ⊂ Sn contain an element of

order pm if and only if pm−1(p−1) divides n. If p−1 | n then H2∗
c (S0

n;Fp) has Krull
dimension 1, hence is unbounded. If p − 1 - n then Sn has finite p-cohomological
dimension, and is in fact a Poincaré duality group. See [Mor85, §2.2]. This
is analogous to properties of absolute Galois groups for global and local number
fields.

10.8. Closed and open substacks

Fix a prime p, and consider the base change Mfg ⊗ Z(p) classifying formal

group laws over commutative Z(p)-algebras R. For n ≥ 1 the closed substackM≥nfg

is presented by the Hopf algebroid (L/In, LB/In). A map Spec(R)→Mfg factors
through the closed inclusion

i : M≥nfg −→Mfg ⊗ Z(p)

if and only if the classifying homomorphism g : L→ R extends over πn : L→ L/In,

i.e., if and only if RIn = 0. Note that M≥nfg is covered by a single affine chart

Spec(L/In)→M≥nfg .

Let the open substack M≤nfg of Mfg ⊗ Z(p) be the complement of M≥n+1
fg . A

map Spec(R)→Mfg ⊗ Z(p) factors through the open inclusion

j : M≤nfg −→Mfg ⊗ Z(p)

if and only if the base change L/In+1 ⊗L R = R/RIn+1 of R along πn+1 : L →
L/In+1 is zero, i.e., if and only if RIn+1 = R. In other words, the images of
p, v1, . . . , vn generate the unit ideal in R. The collection of affine charts

Fm : Spec(v−1
m L/Im) −→M≤nfg

for 0 ≤ m ≤ n covers M≤nfg . The collection of affine charts

Hm : Spec(Fp[v±1
m ]) −→M≤nfg
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for 0 ≤ m ≤ n also covers each (geometric) point of M≤nfg . For n ≥ 1 there

is not a canonical (single) affine chart covering this open substack, but there are
non-canonical choices.

((ETC: Discuss how Spec(E(n)∗) → M≤nfg is a cover, or presentation, where

E(n)∗ = Z(p)[v1, . . . , vn−1, v
±1
n ] is the Johnson–Wilson form of Morava’s E-theory.))



CHAPTER 11

Morava K- and E-theory

11.1. Spectral realizations

The following constructions used to rely on Baas–Sullivan theory of bordism
with singularities [Baa73a], [Baa73b], but is simplified by working in the module
category over a commutative orthogonal ring spectrum. This was first carried out
in [EKMM97, Ch. 5].

Definition 11.1.1. Let R be a commutative orthogonal ring spectrum and let
M be an orthogonal R-module. Let x ∈ π∗(R) = R∗ have degree |x|. Let the
R-module M/x be the homotopy cofiber of the multiplication-by-x map, so that
there is a homotopy cofiber sequence

Σ|x|M
x−→M

ix−→M/x
jx−→ Σ|x|+1M .

Given x1, . . . , x` ∈ R∗, let

M/(x1, . . . , x`) = M ∧R R/x1 ∧R · · · ∧R R/x` ,
so that there is a homotopy cofiber sequence

Σ|x`|M/(x1, . . . , x`−1)
x`−→M/(x1, . . . , x`−1)

−→M/(x1, . . . , x`) −→ Σ|x`|+1M/(x1, . . . , x`−1) .

For a general family of elements xα ∈ R∗ for α ∈ J , let M/(xα | α ∈ J) be the
colimit over finite subsets {α1, . . . , α`} ⊂ J of the R-modules M/(xα1 , . . . , xα`).

Definition 11.1.2. An element x ∈ R∗ is not a zero-divisor if multiplication
by x acts injectively on R∗. A (finite or infinite) sequence (x1, x2, . . . ) of elements in
R∗ is a regular sequence if multiplication by xi acts injectively on R∗/(x1, . . . , xi−1)
for each i ≥ 1.

Lemma 11.1.3. If x ∈ R∗ is not a zero-divisor, then

R∗/(x) ∼= π∗(R/x) ,

where (x) = R∗x ⊂ R∗. More generally, if (x1, x2, . . . ) is a regular sequence, then

R∗/(x1, x2, . . . ) ∼= π∗(R/(x1, x2, . . . )) ,

where (x1, x2, . . . ) ⊂ R∗ is the ideal generated by the listed elements.

Proof. By induction on `, we can assume that

R∗/(x1, . . . , xi−1) ∼= π∗(R/(x1, . . . , xi−1)) .

If xi acts injectively on this R∗-module, then the long exact sequence in homotopy
for the displayed homotopy cofiber sequence simplifies to short exact sequences

0→ Σ|xi|R∗/(x1, . . . , xi−1)
xi−→ R∗/(x1, . . . , xi−1) −→ π∗(R/(x1, . . . , xi))→ 0 .

201
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Definition 11.1.4. Let R be a commutative orthogonal ring spectrum and
let M be an orthogonal R-module. Let y ∈ π∗(R) = R∗ have degree |y|. Let the
R-module y−1M = M [1/y] = M [y−1] be the homotopy colimit of the sequence

M
y−→ Σ−|y|M

y−→ Σ−2|y|M −→ . . . −→ y−1M .

Theorem 11.1.5 ([EKMM97, Thm. VIII.2.2]). The R-module y−1R is equiv-
alent to an essentially unique commutative R-algebra.

The commutative R-algebra in question is realized as the Bousfield localization
of R in commutative R-algebras, with respect to the homology theory in R-modules
given by y−1R.

Theorem 11.1.6 ([Str99, Thm. 2.6]). Let R be a commutative orthogonal
ring spectrum with π∗(R) = R∗ concentrated in even degrees. If A∗ is a localized
regular quotient of R∗, and 1/2 ∈ A∗, then there exists a unique (strong realization)
homotopy commutative R-ring spectrum A with π∗(A) ∼= A∗.

((ETC: Recall “strong realization”.))
For similar results about localizations of En ring spectra, see Lurie’s “Higher

Algebra” (for n = 1) and Mathew–Naumann–Noel [MNN15, App. A] (for n ≥ 2).
In general, there is extensive literature on the problem of finding A∞ = E1- or higher
En-realizations of a given (ring) spectrum, or proving that such more structured
products do not exist.

We apply Strickland’s theorem in the case R = MU , in which case R∗ = MU∗
is integral, so that no x 6= 0 divides zero.

Definition 11.1.7. For each prime p and height 1 ≤ n <∞ let

MU/In = MU/(p, v1, . . . , vn−1)

be the MU -module with π∗(MU/In) ∼= π∗(MU)/In ∼= L/In, and similarly for
n =∞. Let

v−1
n MU/In

be the localized MU -module with π∗(v
−1
n MU/In) ∼= v−1

n π∗(MU)/In ∼= v−1
n L/In.

By Strickland’s theorem, MU/In and v−1
n MU/In admit unique structures as

homotopy commutative MU -ring spectra, as long as p 6= 2. ((ETC: For p = 2,
there are two (opposite) structures as homotopy associative MU -ring spectra.))

Proposition 11.1.8. MU/In and v−1
n MU/In are flat ring spectra, with

(MU/In)∗(MU/In) ∼= LB/In ⊗ Λ(τ̄0, . . . , τ̄n−1)

and
(v−1
n MU/In)∗(v

−1
n MU/In) ∼= v−1

n LB/In ⊗ Λ(τ̄0, . . . , τ̄n−1) .

Here τ̄i in degree 2pi − 1 maps under MU/In → HFp to the class with the same
name in (HFp)∗(HFp) = A∗.

Remark 11.1.9. The flat ring spectrum D = MU/In is a spectral realization of

objFGL≥ns , but its associated Hopf algebroid (D∗, D∗D) is a nilpotent thickening of

the Hopf algebroid (L/In, LB/In) classifying FGL≥ns . Likewise, E = v−1
n MU/In is

a flat spectral realization of objFGLns , but its associated Hopf algebroid (E∗, E∗E)
is a nilpotent thickening of the Hopf algebroid (v−1

n L/In, v
−1
n LB/In) classifying



11.2. MORAVA K-THEORY 203

FGLns . In other words, the algebraic Hopf algebroids are the reductions (modulo
nilpotent elements) of these non-reduced topological Hopf algebroids.

11.2. Morava K-theory

In the early in 1970s, Morava introduced spectra K(n) giving topological re-
alizations of the Honda formal group law Hn, giving the (unique) geometric point
in Mn

fg. Let

(vi, b̃m | i 6= n,m 6= pk − 1) = (p, . . . , vn−1, vn+1, . . . , b̃m | m 6= pk − 1)

be a regular sequence (ordered by degree, say) generating the kernel of the homo-
morphism L→ Fp[vn] ⊂ Fp[v±1

n ] classifying Hn.

Definition 11.2.1. For each prime p and height 1 ≤ n < ∞ let the n-th
connective and periodic Morava K-theory spectra be the MU -module spectra

k(n) = MU/(vi, b̃m | i 6= n,m 6= pk − 1)

and

K(n) = v−1
n k(n) = v−1

n MU/(vi, b̃m | i 6= n,m 6= pk − 1)

with

π∗k(n) ∼= Fp[vn] and π∗K(n) ∼= Fp[v±1
n ] ,

respectively. Then

H∗(k(n);Fp) ∼= Λ(τ̄j | j 6= n)⊗ Fp[ξi | i ≥ 1]

and

H∗(k(n);Fp) ∼= A //Λ(Qn) = A /A {Qn} .

By Strickland’s theorem, k(n) and K(n) admit unique structures as homotopy
commutative MU -ring spectra, as long as p 6= 2. ((ETC: For p = 2, there are two
(opposite) structures as homotopy associative MU -ring spectra.))

Robinson [Rob89, Thm. 2.3] developed an obstruction theory to show that
K(n) admits the structure of an A∞ = E1-ring spectrum, and Angeltveit [Ang11]
showed that K(n) is uniquely determined up to equivalence in this category, i.e.,
as an associative orthogonal ring spectrum. For 1 ≤ n < ∞ is does not admit an
E2-ring structure, as can be seen from the Dyer–Lashof operations in its homology.

When n = 1, there are splittings

ku/p '
p−2∨
i=0

Σ2ik(1) and KU/p '
p−2∨
i=0

Σ2iK(1) ,

so K(1) is a direct summand of mod p complex K-theory. By convention, we let
K(0) = HQ and K(∞) = HFp, matching the definitions of H0 and H∞.

Remark 11.2.2. There are ring spectrum maps MU → K(n) inducing the ring
homomorphisms L ∼= MU∗ → K(n)∗ = Fp[v±1

n ] classifying the Honda formal group
law Hn. The corresponding maps

Spec(K(n)∗)
Hn−→ Spec(L) −→Mfg ,

for all p and 0 ≤ n ≤ ∞, then realize all geometric points of Mfg. In particular,
those for a fixed p realize all geometric points of Mfg ⊗ Z(p), and those for n ≥ 1

realize all geometric points of Mfg ⊗ Fp =M≥1
fg .
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Morava K-theory is about as accessible to calculation as (co-)homology with
field coefficients, because of the following Künneth and universal coefficient isomor-
phisms.

Theorem 11.2.3. For any spectra X and Y the canonical maps

K(n)∗(X)⊗K(n)∗ K(n)∗(Y )
∼=−→ K(n)∗(X ∧ Y )

and

K(n)∗(X)
∼=−→ HomK(n)∗(K(n)∗(X),K(n)∗)

are isomorphisms.

Proof. This follows from the Tor- and Ext-spectral sequences for K(n) ∧
X ∧K(n) K(n) ∧ Y ' K(n) ∧ X ∧ Y and FK(n)(K(n) ∧ X,K(n)) ' F (X,K(n)),
since K(n)∗ is a graded field, so that each K(n)∗-module is free. �

Remark 11.2.4. Since K(n)∗ = Fp[v±1
n ] is a graded field, each K(n)∗-module

is free, so (for p odd) K(n) is a flat ring spectrum. ((ETC: Discuss relation of the
associated Hopf algebra (K(n)∗,K(n)∗K(n)) to the one classifying BAuts(Hn/R)
over R = F̄p. Also for E(n)∗E(n), later. Cleaner for (Kn)∗(Kn) or (En)∗(En).))

Remark 11.2.5. A key feature of K(n) is that its complex orientation, corre-
sponding to a ring spectrum map MU → K(n) in the homotopy category, defines
the Honda formal group law Hn, with p-series

[p]K(n)(y) = [p]Hn(y) = vny
pn ∈ K(n)∗[[y]] .

This means that in the fiber sequence

BCp −→ CP∞ [p]−→ CP∞ ,

where [p] classifies (γ1)⊗p, the induced homomorphism

K(n)∗(BCp)←− K(n)∗(CP∞) ∼= K(n)∗[[y]]

maps vny
pn to zero. It follows from the Gysin sequence in K(n)-cohomology (com-

pare Chapter 4, Thm. 7.1) that

K(n)∗(BCp) ∼= K(n)∗[[y]]/(vny
pn) ∼= K(n)∗[y]/(yp

n

)

is a pn-dimensional K(n)∗-algebra. (For complex cobordism, this calculation goes
back to Stong or Landweber around 1970.) On one hand, this illustrates how the
formal group law or p-series enters in calculations. It also shows that the structure
of K(n)∗(BCp) depends on the height n, interpolating between

K(0)∗(BCp) = H∗(BCp;Q) = Q

and

K(∞)∗(BCp) = H∗(BCp;Fp) =

{
F2[x] for p = 2,

Λ(x)⊗ Fp[y] for p odd.
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11.3. Morava E-theory

In the early 1970s (cf. Morava: “The moduli variety for formal groups”, No-
vember 22, 1972), Morava interpreted the Lubin–Tate deformation theory [LT66]
for formal group laws of finite height as exhibiting a normal bundle, or formal
neighborhood, at the point Hn : Spec(Fp) → M≥nfg ⊂ Mfg. This led to a ring
spectrum E, now called Morava E-theory, with a map

E −→ K(n)

corresponding to the inclusion of Hn in (a universal covering space of) this formal
neighborhood. Other mathematicians at the time preferred to reformulate this
in more traditional terms, leading to a version E(n) of Morava E-theory with
coefficient ring

E(n)∗ = Z(p)[v1, . . . , vn−1, v
±1
n ]

having K(n)∗ as a residue field at the maximal ideal In = (p, . . . , vn−1).
The later work of Devinatz–Hopkins and Goerss–Hopkins–Miller led to ver-

sion En of Morava E-theory that is an E∞ ring spectrum, i.e., a commutative
orthogonal ring spectrum, with

π∗(En) = W (Fpn)[[u1, . . . , un−1]][u±1]

having the finite extension π∗(Kn) = Fpn [u±1] of K(n)∗ as its residue field. Here
π0(En) = W (Fpn)[[u1, . . . , un−1]] is the commutative ring classifying Lubin–Tate’s
universal deformation, and Morava’s original E-theory E ' EGal

n is realized as the
homotopy fixed points for an action on En by the Galois group Gal = Gal(Fpn/Fp) ∼=
Z/n. ((ETC: Here we suppress a distinction between 2-periodic and (2pn − 2)-
periodic theories.))

Since the rings E(n)∗ can be presented using only the subset of algebra gener-
ators for π∗(MU)(p) given by the classes vm for m ≥ 0, it is tempting to simplify
the algebra by discarding all the other algebra generators. This can be achieved
using the Brown–Peterson spectrum BP .

Recall from Chapter 6, Theorem 6.1, that

H∗(MU ;Fp) ∼= P∗ ⊗ Fp[b̃m | m 6= pk − 1]

and

π∗(MU)(p)
∼= Z(p)[vi | i ≥ 1]⊗ Z(p)[b̃m | m 6= pk − 1] ,

where

P∗ = Fp[ξi | i ≥ 1] ⊂ A∗

is the sub Hopf algebra dual to the quotient algebra P = A //E generated by the
Steenrod power operations P i for i ≥ 1, and

Fp[b̃m | m 6= pk − 1] = PH∗(MU ;Fp) ⊂ H∗(MU ;Fp)

is the subalgebra of A∗-comodule primitives. Brown–Peterson [BP66] constructed
a spectrum (now denoted) BP such that H∗(BP ;Fp) ∼= P∗ as A∗-comodules.
Equivalently, H∗(BP ;Fp) ∼= P ∼= A //E as A -modules. We can now realize BP
as an MU -module by setting

BP = MU(p)/(b̃m | m 6= pk − 1) .

Then

BP∗ = π∗(BP ) ∼= Z(p)[v1, v2, . . . ] =: V .
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It then follows that

MU(p) '
∨
b̃I

Σ|b̃
I |BP

where b̃I ranges over a monomial basis for Fp[b̃m | m 6= pk − 1]. In particular,
MU(p)∗(X) = 0 if and only if BP∗(X) = 0, for any spectrum X.

By Strickland’s theorem, BP is a homotopy commutative ring spectrum, at
least for p odd. Quillen gave a more specific construction of BP as the image of a
homotopy idempotent ring spectrum map e : MU(p) →MU(p), i.e., as the homotopy
colimit of

MU(p)
e−→MU(p)

e−→MU(p) −→ . . . −→ BP .

The ring homomorphism MU∗ →MU(p)∗ → BP∗ = π∗(BP ) classifies the universal
p-typical formal group law, in the sense of Cartier ((ETC: reference)), and BP∗ →
MU(p)∗ classifies the p-typification of the p-localized Lazard formal group law.

Basterra–Mandell [BM13] showed that BP admits a unique E4 ring structure,
hence is an orthogonal ring spectrum that is homotopy commutative, while Law-
son [Law18] and Senger ((ETC: arXiv:1710.09822)) showed that BP cannot be
realized as an E∞ ring spectrum, hence also not as a commutative orthogonal ring
spectrum.

((ETC: Discuss Hopf algebroid structure of (BP∗, BP∗BP ) ∼= (V, V T ), classi-
fying the full subgroupoid of FGLs(R) generated by p-typical formal group laws
over R, for any commutative Z(p)-algebra R. Here V = Z(p)[vi | i ≥ 1], T =

Z(p)[tk | k ≥ 1] and V T = V ⊗ T = V [tk | k ≥ 1], with |tk| = 2pk − 2.))

The following BP -analogues of MU/In and v−1
n MU/In were discussed by

Johnson–Wilson [JW75]. As a mnemonic, the letter B contains both P and the
inverse/upside-down P .

Definition 11.3.1. Let

P (n) = MU/In ∧MU BP ' BP/In
be the MU - and BP -module spectrum with

π∗P (n) ∼= Fp[vn, vn+1, . . . ] .

Then

H∗(P (n);Fp) ∼= Λ(τ̄0, . . . , τ̄n−1)⊗ Fp[ξi | i ≥ 1]

and

H∗(P (n);Fp) ∼= A //Λ(Qn, Qn+1, . . . ) .

Also let

B(n) = v−1
n MU/In ∧MU BP ' v−1

n BP/In

be the MU - and BP -module spectrum with

π∗B(n) ∼= Fp[v±1
n , vn+1, . . . ] .

The Morava E-theory, complementary to MU → v−1
n MU/In at MU → K(n),

can also be viewed as being complementary to BP → v−1
n BP/In = B(n), and more-

or-less realized by the theory E(n) = v−1
n BP 〈n〉 discussed in [JW73] and [JY80].

Definition 11.3.2. Let the n-th truncated Brown–Peterson spectrum

BP 〈n〉 = BP/(vn+1, vn+2, . . . )
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be an MU - and BP -module spectrum with

π∗BP 〈n〉 ∼= Z(p)[v1, . . . , vn] .

Then

H∗(BP 〈n〉;Fp) ∼= Λ(τ̄n+1, τ̄n+2, . . . )⊗ Fp[ξi | i ≥ 1]

and

H∗(BP 〈n〉;Fp) ∼= A //Λ(Q0, . . . , Qn) .

Let

E(n) = v−1
n BP 〈n〉 = v−1

n BP/(vn+1, vn+2, . . . )

be an MU - and BP -module spectrum with

π∗E(n) ∼= Z(p)[v1, . . . , vn−1, v
±1
n ] .

Again, these are homotopy commutative ring spectra by Strickland’s theorem,
except for p = 2, for which one should see [Nas02].

When n = 1, there are splittings

ku(p) '
p−2∨
i=0

Σ2iBP 〈1〉 and KU(p) '
p−2∨
i=0

Σ2iE(1) ,

and the p-local Adams summands ` = BP 〈1〉 and L = E(1) of ku(p) and KU(p) all
admit unique E∞ ring structures [BR05], [BR08a].

After p-completion, Angeltveit–Lind [AL17] showed that the spectrum BP 〈n〉
is uniquely determined by its cohomology A -module.

One should beware that there are many different possible choices of regular se-
quences (vn+1, vn+2, . . . ), so that the spectra BP 〈n〉 and E(n) are not well-defined,
especially as MU - or BP -ring spectra. ((ETC: One might speak of a “form” of
BP 〈n〉 or E(n).))

Hahn–Wilson [HW22] recently proved that for each prime p and height n there
exists an E3 BP -algebra structure on BP 〈n〉. This makes sense, because BP has
an E4 ring structure. In particular, BP 〈n〉 admits an E3 ring structure.

In the following diagram of ring spectra, each square induces a pushout square
of (evenly graded) commutative rings after passage to homotopy rings.

MU //

&&

��

BP //

%%

��

BP 〈n〉

##

��

MU/In //

��

P (n) //

��

k(n)

��

v−1
n MU //

&&

v−1
n BP //

&&

E(n)

$$

v−1
n MU/In // B(n) // K(n)
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11.4. Nilpotence theorems

Here are two classical theorems about π∗(S) as a graded abelian group, and as
a graded commutative ring.

Theorem 11.4.1 (Hurewicz, Serre [Ser51]).

πd+n(Sn) ∼=


0 for d < 0,

Z for d = 0,

Z⊕ (finite) for d = n− 1, n even

(finite) otherwise.

Hence

πd(S) ∼=


0 for d < 0,

Z for d = 0,

(finite) otherwise.

In particular the Hurewicz homomorphism π∗(S) → Z is a rational isomorphism,
with torsion kernel and trivial cokernel.

Serre’s proof uses the Serre spectral sequence for fibrations related to the White-
head covers of Sn.

Theorem 11.4.2 (Nishida [Nis73]). Each f ∈ πd(S) with d 6= 0 is nilpotent
in π∗(S). Hence the kernel of the Hurewicz homomorphism is the nilradical of
π∗(S), so that π∗(S)red ∼= Z.

Nishida’s proof uses the structured (H∞) commutativity of the sphere spec-
trum, which shows that suitable extended j-fold powers of spheres admit a retrac-
tion to the (ordinary) j-fold smash power of that sphere.

One way to interpret Nishida’s theorem is to say that any map f : ΣdS → S
that induces zero in integral (or rational) homology is nilpotent with respect to
composition, in the sense that

fN = f ◦ · · · ◦ f : ΣNdS −→ S

is null-homotopic for N � 0. On the other hand, Adams [Ada66] had exhibited
maps

v1 : Σ2p−2S/p −→ S/p

for odd primes p (and v4
1 : Σ8S/2 → S/2 at p = 2) that induce zero in integral

homology, but induce nonzero isomorphisms

v∗1 : KU∗(S/p)
∼=−→ KU∗(Σ2p−2S/p) ,

in topological K-theory, and which are therefore not nilpotent with respect to
composition. (This follows, since (vN1 )∗ is a nonzero isomorphism, for each N .)

Based on calculations [MRW77] with the (MU - or BP -based) Adams–Novikov
spectral sequence, Ravenel (lecture at 1977 Evanston conference, published as
[Rav84, Conj. 10.1]) conjectured that inducing zero in complex bordism would
be sufficient to ensure that a map

f : ΣdX −→ X ,

with X a finite CW complex or spectrum, is nilpotent.
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Several years later, this conjecture was famously proved by Devinatz–Hopkins–
Smith. Both of the following two statements generalize Nishida’s nilpotence theo-
rem.

Theorem 11.4.3 (Devinatz–Hopkins–Smith [DHS88, Thm. 1, Cor. 2]).
(a) Let R be a ring spectrum (not necessarily associative) in the homotopy

category. The kernel of the MU Hurewicz homomorphism

hMU : π∗(R) −→MU∗(R)

consists of nilpotent elements.
(b) Let f : ΣdX → X be a self-map of a finite spectrum. If MU∗(f) = 0 then

f is nilpotent.

See also [Rav92a, Ch. 9].

Brief outline of thumbnail sketch of proof. Here (b) is deduced from (a)
by considering the endomorphism ring spectrum

R = F (X,X) ' X ∧DX ,

where DX = F (X,S) denotes the Spanier–Whitehead dual. It suffices to prove (a)
when R is an orthogonal ring spectrum that is connective of finite type. In this
case, Devinatz–Hopkins–Smith use the Thom (E2 ring) spectra

X(n) = Th(ξ ↓ ΩSU(n))

of the virtual complex vector bundles classified by the (double loop) maps

ξ : ΩSU(n)→ ΩSU ' BU .

Here S = X(1) and X(∞) = MU , and the MU Hurewicz homomorphism factors
as a chain

π∗(R) −→ . . . −→ X(n)∗(R) −→ X(n+ 1)∗(R) −→ . . . −→MU∗(R) .

There is a Thom isomorphism

H∗(ΩSU(n)) ∼= H∗(X(n)) ∼= Z[b1, . . . , bn−1] ,

compatible with the Thom isomorphism H∗(BU) ∼= H∗(MU) ∼= Z[bk | k ≥ 1] that
we discussed in Chapter 6. Let f ∈ π∗(R). The inductive step is then to prove that
hX(n)(f) ∈ X(n)∗(R) is nilpotent if (and only if) hX(n+1)(f) ∈ X(n + 1)∗(R) is
nilpotent. This is then addressed by interpolating between ΩSU(n) and ΩSU(n+1)
by means of homotopy pullbacks

ΩSU(n) //

��

J̃mS
2n //

��

ΩSU(n+ 1)

��

∗ // JmS
2n // ΩS2n+1

over the standard filtration of the James construction model for ΩS2n+1 ' JS2n,
and letting FmX(n+ 1) = Th(ξ ↓ J̃mS2n) for 0 ≤ m ≤ ∞. Here

H∗(J̃mS
2n;Fp) ∼= H∗(FmX(n+ 1);Fp) ∼= Fp[b1, . . . , bn−1]{1, bn, . . . , bmn }

is coalgebraically best behaved when m = pk − 1 for some k ≥ 0. Note that
X(n) = F0X(n+ 1). The proof proceeds in three steps:
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(1) If the image of f inX(n+1)∗(R) is nilpotent, then Fpk−1X(n+1)∧f−1R ' ∗
for k sufficiently large. This follows from a vanishing line in the X(n + 1)-based
Adams spectral sequence.

(2) If Fpk−1X(n+ 1) ∧ f−1R ' ∗ then Fpk−1−1X(n+ 1) ∧ f−1R ' ∗, for each
k ≥ 1. More precisely, the class of acyclic spectra for Fpk−1X(n + 1)-homology is
the same for all values of k. (This is the hard part, uses the Snaith splitting of
Ω2S2m+1, and connects to the theory of Bousfield classes.)

(3) If X(n) ∧ f−1R ' ∗ then the image of f in X(n)∗(R) is nilpotent. �

The Devinatz–Hopkins–Smith nilpotence theorem expresses how the functor
X 7→ MU∗(X) to MU∗-modules (or MU∗MU -comodules) is almost faithful on
(endo-)morphisms on the subcategory of finite spectra

Ho(Spω) ⊂ Ho(Sp) MU∗(−)−→ MU∗MU− coMod→MU∗−Mod ,

where “almost” means up to nilpotence. ((ETC: Define the full subcategory Ho(Spω) '
SW of finite spectra.))

It is often difficult to fully calculate complex bordism groups, while Morava
K-groups are easier to compute, mainly because their coefficient rings are graded
fields, leading to universal coefficient and Künneth theorems. Recall that K(0) =
HQ, K(n)∗ = Fp[v±1

n ] and K(∞) = HFp. Hence the following extension of the
nilpotence theorem can be more effective.

Theorem 11.4.4 (Hopkins–Smith [HS98, Thm. 3]).
(a) Let R be a p-local ring spectrum. An element f ∈ π∗(R) is nilpotent if (and

only if) hK(n)(f) ∈ K(n)∗(R) is nilpotent for each 0 ≤ n ≤ ∞.

(b) Let f : ΣdX → X be a self-map of the p-localization of a finite spectrum.
Then f is nilpotent if (and only if) K(n)∗(f) is nilpotent for each 0 ≤ n ≤ ∞.

This has the following cute consequence.

Definition 11.4.5. A spectral (skew-)field is a non-contractible ring spec-
trum R such that R∗(X) is a free R∗-module for all spectra X.

Proposition 11.4.6 ([HS98, Prop. 1.9]). Let R be a spectral field. Then R
has the homotopy type of a wedge sum of suspensions of K(n) for some 0 ≤ n ≤ ∞.

Proof. Since 1 ∈ π∗(R) is not nilpotent, there exists a prime p and a height
0 ≤ n ≤ ∞ such that 1 ∈ K(n)∗(R) is not nilpotent. Hence K(n) ∧ R is not
contractible. Since K(n) and R are spectral fields, a suspension of R is a retract
of K(n) ∧ R, which is a wedge sum of suspensions of K(n). It follows (cf. [HS98,
Prop. 1.10]) that R is also such a wedge sum of suspensions. �

In the presence of sufficiently much commutativity, the additional strength of
complex bordism over ordinary homology is no longer needed. The following result
was conjectured by Peter May in [BMMS86, Conj. II.2.7]. An H∞ ring structure
is slightly weaker than an E∞ ring structure, which is essentially the same as
commutativity for orthogonal ring spectra.

Theorem 11.4.7 (Mathew–Naumann-Noel [MNN15, Thm. A]). Suppose that
R is an H∞ ring spectrum and f ∈ π∗(R) is in the kernel of the Hurewicz homo-
morphism h = hZ : π∗(R)→ H∗(R;Z). Then f is nilpotent.
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11.5. Quasi-coherent sheaves

Let A be a commutative ring. Each A-module M determines a quasi-coherent
sheaf M∼ over Spec(A), with sections over g : Spec(R) → Spec(A) equal to the
R-module given by the base change (= pullback)

M∼(R) = g∗(M) = R⊗AM .

Here A acts (from the right) on R via the ring homomorphism g : A → R. It
follows that for any A-algebra homomorphism k : R → T the induced T -module
homomorphism

T ⊗RM∼(R)
∼=−→M∼(T )

is an isomorphism, which is the defining condition for this module sheaf to be quasi-
coherent. Conversely, each quasi-coherent sheaf over Spec(A) is isomorphic to M∼

for an A-module M , so there is an equivalence of categories

A−Mod
'−→ QCoh(Spec(A))

M 7−→M∼ .

Both sides of this equivalence depend covariantly onA, or contravariantly on Spec(A),
so that a ring homomorphism g : A → B takes the A-module M to the B-module
B ⊗AM , and (B ⊗AM)∼ ∼= g∗(M∼).

The base change g∗ along g : Spec(B) → Spec(A) is left adjoint to the re-
striction functor g∗ : B −Mod→ A−Mod (or QCoh(Spec(B))→ QCoh(Spec(A))
taking a B-module N to the same abelian group with the A-module structure given
by the composite

A⊗N g⊗id−→ B ⊗N λ−→ N .

The moduli prestack Mfgl represents the groupoid-valued functor

Affop −→ Gpd
Spec(R) 7−→ {Spec(R)→Mfgl} ∼= FGLs(R) .

The nerve functor C 7→ NC gives a full and faithful embedding of (categories or)
groupoids in simplicial sets, so we can also think about the simplicial set-valued
functor

Affop −→ sSet

Spec(R) 7−→ N FGLs(R) ,

where N FGLs(R) is isomorphic to the simplicial set

Hom(L,R) // Hom(LB,R)oo

oo //

// Hom(LBB,R)
oo

oo

oo //

//

//
. . . .

oo

oo

oo

oo

It is represented by the simplicial affine scheme

Spec(L) // Spec(LB)oo

oo //

// Spec(LBB)
oo

oo

oo //

//

//
. . . .

oo

oo

oo

oo

Here some of the face operators are given by ηL : L → LB, ηR : L → LB and
ψ : LB → LB ⊗L LB = LBB, while one of the degeneracy operators is given
by ε : LB → L. The remaining operators are obtained from these by tensoring
with identity morphisms. The nerve construction takes (the moduli prestack Mfgl

or) moduli stack Mfg to the homotopy colimit of this simplicial scheme. Since
the simplicial scheme is generated by the Hopf algebroid structure maps, relating
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simplicial degrees q ∈ {0, 1, 2}, this homotopy (or ∞-categorical) colimit is in fact
a 2-categorical colimit.

Passing to sheaves, we define the category

QCoh(Mfg)

of quasi-coherent sheaves onMfg to be the corresponding homotopy (or∞-categorical)
limit of the diagram of categories

QCoh(Spec(L))
//

// QCoh(Spec(LB))oo

//

//

//
QCoh(Spec(LBB))oo

oo

//

//

//

//

. . . ,
oo

oo

oo

which is in fact the 2-categorical limit. In more elementary terms, this is the limit
of the diagram of categories

L−Mod
//

// LB −Modoo

//

//

//
LBB −Modoo

oo

//

//

//

//

. . . .
oo

oo

oo

This is a cosimplicial diagram, with some of the coface operators given by base
change along ηL, ηR and ψ and one of the codegeneracy operators given by base
change along ε.

An object in this limit can be given as a sequence of objects

M0 ∈ L−Mod ,

M1 ∈ LB −Mod ,

M2 ∈ LBB −Mod , . . .

together with isomorphisms

M0 ∼= ε∗M1 ,

M1 ∼= η∗LM
0
ν̄∼= η∗RM

0 ∼= (ε⊗ id)∗M2 ∼= (id⊗ε)∗M2 ,

M2 ∼= (ηL ⊗ id)∗M1 ∼= ψ∗M1 ∼= (id⊗ηR)∗M1 , . . .

subject to coherence conditions. The key data here are the L-module M = M0 and
the LB-module isomorphism

ν̄ : η∗LM
∼=−→ η∗RM ,

making the (L- and LBB-module) diagrams

ε∗η∗LM
ε∗ν̄ // ε∗η∗RM

M
id // M

and

(id⊗ηL)∗η∗LM
(id⊗ηL)∗ν̄

// (id⊗ηL)∗η∗RM (ηR ⊗ id)∗η∗LM

(ηR⊗id)∗ν̄

��

ψ∗η∗LM
ψ∗ν̄

// ψ∗η∗RM (ηR ⊗ id)∗η∗RM

commute. In other notation, we can write the LB-module isomorphism as

ν̄ : M ⊗L LB
∼=−→ LB ⊗LM
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and the second coherence condition as

LB ⊗LM ⊗L LB
id⊗ν̄

))

M ⊗L LB ⊗L LB

ν̄⊗id
55

ψ∗ν̄
// LB ⊗L LB ⊗LM .

By the η∗L–ηL∗ adjunction, the LB-module homomorphism ν̄ corresponds to a
unique L-module homomorphism

ν : M −→ ηL∗η
∗
RM = LB ⊗LM .

Here the tensor product LB⊗LM is formed using the right unit ηR : L→ LB, and
is viewed as an L-module using the left unit ηL : L→ LB. In these terms, the two
coherence conditions are equivalent to the counitality

M
ν //

∼=
$$

LB ⊗LM

ε⊗id

��

L⊗LM

and coassociativity

LB ⊗LM
id⊗ν

((

M

ν

::

ν
$$

LB ⊗L LB ⊗LM

LB ⊗LM
ψ⊗id

66

conditions required for ν to define an (L,LB)-coaction on M , i.e., an LB-comodule
structure on M .

Recall that π : Spec(L) → Mfgl → Mfg denotes a presentation of the moduli
stack of formal groups. Then, to any quasi-coherent sheaf M∼ over Mfg we can
associate the L-module M corresponding to the quasi-coherent sheaf π∗(M∼) over
Spec(L). It comes equipped with an LB-module isomorphism ν̄ : η∗LM

∼= η∗RM ,
which is left adjoint to an LB-coaction ν : M → LB ⊗LM . This functor

QCoh(Mfg)
'−→ LB− coMod

M∼ 7−→ (M,ν)

is then the advertised equivalence. ((ETC: Explain why the left adjoint ν̄ of any
coaction ν is an isomorphism. This uses the existence of inverses in FGLs(R), or
the conjugation in B.))

The same argument applies for any Hopf algebroid.

Theorem 11.5.1 (Hovey [Hov02, Thm. 2.2]). Suppose (A,Γ) is a Hopf alge-
broid. Then there is an equivalence of categories between Γ-comodules and quasi-
coherent sheaves over [Spec(A) ⇔ Spec(Γ)].

We now have the terminology available to formulate the basic object of study
in chromatic homotopy theory.



214 11. MORAVA K- AND E-THEORY

Definition 11.5.2. To each spectrumX we assign its complex bordismMU∗(X),
viewed as an (MU∗,MU∗MU) ∼= (L,LB)-comodule,

Sp −→MU∗MU− coMod ' QCoh(Mfg)

X 7−→ MU∗(X) ↔MU∗(X)∼ ,

which in turn is equivalent to a quasi-coherent sheaf MU∗(X)∼ over the moduli
stack Mfg of formal groups.

11.6. Invariant ideals and coherent rings

Morava and Landweber [Lan73a], [Lan73b] observed that the (quasi-)coherent
sheaves on Mfg only realize a small subset of all (quasi-)coherent sheaves on
Spec(MU∗), i.e., that the (finitely presented) MU∗MU -comodules are quite special
among the plethora of (finitely presented) MU∗-modules. After all, every count-
ably generated commutative ring arises as MU∗/I for some ideal I ⊂ MU∗, but
fortunately relatively few of these ideals are MU∗MU -comodules.

Recall the Hopf algebroid (L,LB) ∼= (MU∗,MU∗MU).

Definition 11.6.1. Let M be an LB-comodule, with coaction ν : M → LB⊗L
M . We say that x is LB-comodule primitive if ν(x) = 1⊗x, and write P (M) ⊂M
for the subgroup of LB-comodule primitives. There are canonical isomorphisms

P (M) ∼= HomLB−coMod(L,M) ∼= L�LB M .

Let Ann(x) = {λ ∈ L | λx = 0 ∈ M} ⊂ L be the annihilator ideal of x. We say
that an ideal I ⊂ L is invariant if it is an LB-subcomodule.

Lemma 11.6.2. I ⊂ L is invariant if and only if ηL(I) · LB = LB · ηR(I).

Proof. The ideal is an LB-subcomodule if and only if the composite ηL : L
ν−→

LB ⊗L L ∼= LB takes I into LB ⊗L I ∼= LB · ηR(I), so that ηL(I) ⊂ LB · ηR(I),
which implies ηL(I) · LB ⊂ LB · ηR(I). Applying the conjugation χ then implies
the opposite inclusion. �

Lemma 11.6.3. Let x ∈M have degree d. The L-submodule ΣdL/Ann(x) ∼= Lx
of M is an LB-subcomodule if and only if x is LB-comodule primitive and Ann(x)
is invariant.

Proof. If Lx ⊂M is an LB-subcomodule, then ν(x) lies in LB⊗L Lx, hence
is 1 ⊗ x for degree reasons, so x is LB-comodule primitive. Moreover, ηL(λ) ⊗
x = ν(λx) = 0 in LB ⊗L Lx ∼= ΣdLB/LB · ηR(Ann(x)) for λ ∈ Ann(x) implies
ηL(λ) ∈ LB · ηR(Ann(x)), so Ann(x) is invariant.

Conversely, if x is LB-comodule primitive then λ 7→ λx defines an LB-comodule
homomorphism ΣdL → M , which factors as such over ΣdL → Lx if Ann(x) is
invariant. �

If M is nonzero and bounded below, then each lowest-degree class is LB-
comodule primitive. Recall the ideals Ip,n = (p, v1, . . . , vn−1) and Ip,∞ = (p, v1, . . . , vn, . . . )
in L.

Lemma 11.6.4. For each prime p and height 1 ≤ n ≤ ∞ the ideal Ip,n ⊂ L is
an invariant prime ideal. The zero ideal (0) ⊂ L is also invariant and prime.
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Proof. For each prime p we have ηL(In) ⊂ LB · ηR(In) by Chapter 10,
Lemma 4.12, since (strictly) isomorphic formal group laws have the same height.
Hence each In is invariant.

The quotient ring

L/In ∼= Fp[ṽm, ñk | m ≥ n, k + 1 6= pi]

is an integral domain by Chapter 10, Corollary 5.7, so each In is prime. �

Definition 11.6.5. Let R be a (graded) commutative ring. An R-module M
is finitely presented if there exists a short exact sequence

F1 −→ F0 −→M −→ 0

with F0 and F1 finitely generated free R-modules. The finitely presented R-
modules are the compact objects in the category of R-modules, i.e., those for which
HomR(M,−) commutes with filtered colimits.

A commutative ring R is coherent if each finitely generated ideal I ⊂ R is
finitely presented. A coherent module is a finitely generated module such that
(it and) each finitely generated submodule is finitely presented. A module over a
coherent ring is coherent if and only if it is finitely presented.

Lemma 11.6.6. The Lazard ring L ∼= Z[xi | i ≥ 1] ∼= MU∗ is coherent.

Proof. Each finitely generated ideal in L is generated over some subring
Z[x1, . . . , xn], and is finitely presented over that noetherian subring. The full Lazard
ring is flat over that subring, so the finite presentation can be extended up. �

Definition 11.6.7. We say that an LB-comodule is finitely presented if its
underlying L-module is finitely presented (= coherent). Let

LB− coModfp ⊂ LB− coMod

denote the full subcategory of finitely presented LB-comodules. ((ETC: The cat-

egory of LB-comodules is abelian, and LB− coModfp is a thick abelian subcate-
gory.)) We write

Coh(Mfg) ⊂ QCoh(Mfg)

for the corresponding full subcategory of coherent sheaves, under the equivalence

LB− coMod ∼= MU∗MU− coMod ' QCoh(Mfg) .

Definition 11.6.8. Let Spω denote the category of finite spectra, i.e., the full
subcategory of Sp generated by spectra that are equivalent to finite cell (or CW)
spectra. Its homotopy category Ho(Spω) is equivalent to the Spanier–Whitehead
category SW of formal integer suspensions of finite CW complexes.

The superscript ω indicates the first infinite ordinal, giving the strict upper
bound for the number of cells allowed in a CW (or cell) structure on these spectra.
Each spectrum is a filtered homotopy colimit of finite spectra, but practically none
of the cohomology theories we have discussed so far are represented by finite spectra.

Proposition 11.6.9 (Conner–Smith [CS69, Thm. 1.3∗]). If X is a finite spec-
trum, then MU∗(X) is a finitely presented MU∗-module.

This follows by induction over the number of cells in X, via standard closure
properties for coherent modules. We could also say that MU∗(X) is a finitely
presented MU∗MU -comodule, for each finite spectrum X.
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11.7. Landweber’s exact functor theorem

Theorem 11.7.1 (Landweber [Lan73b, Thm. 3.3’]). Each finitely presented

LB-comodule M (an object in LB− coModfp) admits a finite length filtration

0 = M(0) ⊂M(1) ⊂ · · · ⊂M(`) = M

by finitely presented LB-subcomodules, such that

M(s)/M(s− 1) ∼= ΣdsL/J(s)

for each 1 ≤ s ≤ `, where J(s) ⊂ L is some finitely generated invariant prime ideal
and ds is some integer.

The proof uses primary decomposition, as in [AM69, Ch. 4], extended from
ideals to modules and from noetherian rings to coherent rings.

Theorem 11.7.2 (Morava, Landweber [Lan73a, Prop. 2.11]). The LB-comodule
primitives in L/Ip,n are

P (L/Ip,n) = Fp[vn] ⊂ L/Ip,n
for each prime p and height 1 ≤ n <∞.

We already know that vn is LB-comodule primitive in L/Ip,n, since vn ≡ ηR(vn)
mod Ip,n, which implies that each power of vn is LB-comodule primitive since
L/Ip,n is an LB-comodule algebra. Seeing that there are no further LB-comodule
primitives relies on the strong nontriviality of the coaction, i.e., the significant
difference between ηL : L → LB and ηR : L → LB. This requires some detailed
calculation. See also [Rav92a, Thm. B.5.18]. ((ETC: I believe there are more
approaches/references.))

It follows that there are no other invariant prime ideals than the ones we have
already discussed, so that the subquotients in a Landweber filtration are always of
a familiar kind.

Theorem 11.7.3 (Morava, Landweber [Lan73a, Prop. 2.7]). The invariant
prime ideals J ⊂ L are (precisely) the ideals Ip,n for primes p and heights 1 ≤ n ≤
∞, together with the zero ideal (0).

Proof. If J 6= (0) then J ∩Z = (p) for some prime p ((ETC: why?)), and then
(p) = Ip,1 ⊂ J ⊂ Ip,∞. Suppose Ip,n ⊂ J but vn /∈ J for some 1 ≤ n < ∞. Then
vin /∈ J for each i ≥ 1, since J is a prime ideal. Hence J/Ip,n ⊂ L/Ip,n contains no
nonzero LB-comodule primitive elements, by Theorem 11.7.2, and must therefore
be zero. This proves that Ip,n = J . �

The partially ordered set of invariant prime ideals in L thus matches the set of
geometric points of Mfg, partially ordered by specialization.

Let R be a ring spectrum, with coefficient ring R∗ = π∗(R), and E∗ an R∗-
module. The functor

X 7−→ E∗ ⊗R∗ R∗(X)

is a homotopy functor with a suspension isomorphism satisfying Milnor’s wedge
axiom, but it might not be exact, since tensoring E∗ over R∗ with the long exact
sequence

. . .
∂−→ R∗(X)

i−→ R∗(Y )
j−→ R∗(Y/X)

∂−→ . . .
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might not give an exact sequence. It would suffice that E∗ is a flat R∗-module, but
from this point of view the following theorem is surprising, since Z[u±1] ∼= KU∗ is
not a flat MU∗-module.

Theorem 11.7.4 (Conner–Floyd [CF66, Ch. II]). Let Td: MU∗ → Z[u±1] ∼=
KU∗ be the homomorphism sending the bordism class of an almost complex 2n-
manifold M to its Todd genus times un. Then there is a natural isomorphism of
(multiplicative) homology theories

KU∗ ⊗MU∗ MU∗(X) ∼= KU∗(X) .

In particular,

KU∗ ⊗MU∗ MU∗(X) ∼= KU∗(X)

for all finite spectra X.

The conclusion in cohomology follows from that in homology using Spanier–
Whitehead duality, sinceMU−∗(X) = π∗F (X,MU) ∼= π∗(MU∧DX) = MU∗(DX)
for finite X, and similarly for KU , where DX = F (X,S) is the Spanier–Whitehead
dual of X.

The key to this result is the Landweber filtration theorem, telling us that not
all MU∗-modules arise as MU∗(X), since the associated prime ideals must all be
invariant. Let Ip,0 = (0).

Definition 11.7.5. Let E∗ be an L-module. We say that (p, v1, v2, . . . ) is an
E∗-regular sequence if all of the homomorphisms

Σ|vn|E∗/Ip,n
vn−→ E∗/Ip,n

for n ≥ 0 are injective.

In particular, we ask that p : E∗ → E∗ is injective, v1 : Σ2p−2E∗/(p)→ E∗/(p)

is injective, v2 : Σ2p2−2E∗/(p, v1) → E∗/(p, v1) is injective, and so on. If at some
stage E∗/Ip,n = 0, then all of the remaining homomorphisms are automatically
injective.

Example 11.7.6. If E∗ = L⊗Q, then p : E∗ → E∗ is an isomorphism for each p,
so E∗/Ip,1 = 0 and (p, v1, v2, . . . ) is an E∗-regular sequence for each prime p.

Example 11.7.7. If E∗ = Z[u±1] with v1 acting as multiplication by up−1

for each p, then p : E∗ → E∗ is injective, E∗/(p) = Fp[u±1], v1 : Σ2p−2Fp[u±1] →
Fp[u±1] is an isomorphism, and E∗/Ip,2 = 0. Hence (p, v1, v2, . . . ) is an E∗-regular
sequence for each prime p.

Theorem 11.7.8 (Landweber [Lan76, Thm. 2.6MU ]). Let E∗ be an L-module.
The functor

LB− coModfp −→ grAb
M 7−→ E∗ ⊗LM

is exact if and only if for each prime p the sequence (p, v1, v2, . . . ) is an E∗-regular
sequence.

Proof. Let I0 = (0) and v0 = p. The short exact sequences

0→ Σ|vn|L/In
vn−→ L/In −→ L/In+1 → 0
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for n ≥ 0 induce long exact sequences

· · · → TorL1 (E∗, L/In) −→ TorL1 (E∗, L/In+1)

∂−→ E∗ ⊗L Σ|vn|L/In
id⊗vn−→ E∗ ⊗L L/In → . . . .

Note that TorL1 (E∗, L) = 0. Suppose, by induction on n ≥ 0, that TorL1 (E∗, L/In) =

0. Then TorL1 (E∗, L/In+1) = 0 if (and only if) vn : Σ|vn|E∗/In → E∗/In is injective.

Hence TorL1 (E∗, L/In) = 0 for all 0 ≤ n < ∞, if (p, v1, v2, . . . ) is an E∗-regular
sequence.

Consider a Landweber filtration

0 = M(0) ⊂M(1) ⊂ · · · ⊂M(`) = M .

The short exact sequences

0→M(s− 1) −→M(s) −→ ΣdsL/J(s)→ 0 ,

with J(s) = Ins for some 0 ≤ ns <∞, induce long exact sequences

· · · → Tor1
L(E∗,M(s− 1)) −→ Tor1

L(E∗,M(s)) −→ Tor1
L(E∗,Σ

dsL/Ins)→ . . .

for 1 ≤ s ≤ `. Clearly Tor1
L(E∗,M(0)) = 0. Suppose, by induction on 1 ≤ s ≤ `,

that Tor1
L(E∗,M(s−1)) = 0. By the assumption of E∗-regularity, Tor1

L(E∗,Σ
dsL/Ins) =

0, so that Tor1
L(E∗,M(s)) = 0. Hence Tor1

L(E∗,M) = 0.
For any short exact sequence

0→M ′ −→M −→M ′′ → 0

in LB− coModfp we have a long exact sequence

· · · → TorL1 (E∗,M
′′)

∂−→ E∗ ⊗LM ′ −→ E∗ ⊗LM −→ E∗ ⊗LM ′′ → 0 .

By Theorem 11.7.1, M ′′ admits a Landweber filtration, so that TorL1 (E∗,M
′′) = 0.

Hence this is in fact a short exact sequence, and E∗⊗L (−) defines an exact functor
on finitely presented LB-comodules. �

Theorem 11.7.9 (Landweber [Lan76, Cor. 2.7]). Let E∗ be an MU∗-module.
The functor

X 7−→ E∗(X) := E∗ ⊗MU∗ MU∗(X)

defines a homology theory if and only if for each prime p the sequence (p, v1, v2, . . . )
is an E∗-regular sequence.

Proof. We must show that E∗(−) is exact. The composite

Spω ⊂ Sp E∗(−)−→ grAb

factors as

Spω MU∗(−)−→ LB− coModfp E∗⊗L(−)−→ grAb ,
which is exact by Theorem 11.7.8. Any spectrum is a filtered homotopy colimit
of finite spectra, E∗(−) maps filtered homotopy colimits to filtered colimits, and
passage to filtered colimits of graded abelian groups is an exact functor. Hence
E∗(−) is also exact. �
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Remark 11.7.10. Miller–Ravenel [MR77, Lem. 2.11] show that eachMU∗MU =
LB-comodule is a filtered colimit of finitely presented LB-comodules, so that
Landweber’s Theorem 11.7.8 is also valid if we allow M to range over all LB-
comodules, not just the finitely presented ones. (To be precise, these authors work
with BP∗BP = V T -comodules, but the proof is the same.) Granting this, the
proof of Theorem 11.7.9 becomes even easier.

Remark 11.7.11. Consider the case where E∗ is a commutative L-algebra,
via a ring homomorphism g : L → E∗. Hopkins (see Miller [Mil19]) and Hollan-
der [Hol09] have explained how Landweber’s E∗-regularity condition, and exact-
ness for M 7→ E∗ ⊗L M , are both equivalent to the algebro-geometric assertion
that

Spec(E∗)
g−→ Spec(L)

π−→Mfg

is a flat morphism of stacks, even if g alone is far from flat.

Definition 11.7.12. If E∗ is an MU∗-module such that (p, v1, v2, . . . ) is an E∗-
regular sequence for each prime p, then we say that E∗ and the associated homology
theory X 7→ E∗(X) are Landweber exact.

Corollary 11.7.13. Let E∗ be Landweber exact. Then

X 7−→ E∗(X) = E∗ ⊗MU∗ MU∗(X)

is represented by a spectrum E, so that E∗(X) ∼= π∗(E ∧X). ((ETC: What more
can we say about E? Is it an MU -module spectrum? Is it unique? What is E∗ is
an MU∗-algebra?))

Lemma 11.7.14. If E∗ is Landweber exact, then

E∗E ∼= E∗ ⊗MU∗ MU∗MU ⊗MU∗ E∗
∼= E∗ ⊗L LB ⊗L E∗

is a flat E∗-module. Hence E is flat, if it is a homotopy commutative ring spectrum.

Proof. From

E∗(MU) ∼= E∗ ⊗MU∗ MU∗(MU)

we obtain MU∗(E) ∼= MU∗MU ⊗MU∗ E∗. Then

E∗(E) ∼= E∗ ⊗MU∗ MU∗(E) ∼= E∗ ⊗MU∗ MU∗MU ⊗MU∗ E∗ .

To show that E∗E is flat as a (right) E∗-module, we show that

M 7→ E∗E ⊗E∗ M ∼= E∗ ⊗L LB ⊗L E∗ ⊗E∗ M ∼= E∗ ⊗L (LB ⊗LM)

is exact as a functor from E∗-modules. Here M 7→ LB ⊗LM defines the extended
LB-comodule associated to the underlying L-module of M , and is exact because LB
is (free, hence) flat as a right L-module. The functor E∗⊗L (−) from LB-comodules
is exact by Landweber exactness, extended as per Remark 11.7.10. �

Example 11.7.15. Let E(n)∗ = Z(p)[v1, . . . , vn−1, v
±1
n ] and choose a ring ho-

momorphism g : L→ E(n)∗ sending (p to p and) vm ∈ L/Im to

vm ∈ E(n)∗/Im ∼= Fp[vm, . . . , vn−1, v
±1
n ]

for each 1 ≤ m ≤ n. Then (p, v1, v2, . . . ) is an E(n)∗-regular sequence, E(n)∗/In ∼=
Fp[v±1

n ] ∼= K(n)∗, and E(n)∗/In+1 = 0. Hence the Johnson–Wilson version E(n)
of Morava E-theory is Landweber exact, and can be constructed directly this way.
((ETC: Discuss E(n)∗E(n).))
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Proposition 11.7.16. E(m) ∧K(n) ' ∗ for 0 ≤ m < n ≤ ∞.

Proof. Since

E(n)∗(MU) ∼= E(n)∗ ⊗L LB ∼= E(n)∗[bk | k ≥ 1]

is free as an E(n)∗-module, it follows by reduction modulo In that K(n)∗(MU) ∼=
K(n)∗ ⊗L LB and MU∗(K(n)) ∼= LB ⊗L K(n)∗. Hence

E(m)∗(K(n)) ∼= E(m)∗ ⊗MU∗ MU∗(K(n)) ∼= E(m)∗ ⊗L LB ⊗L K(n)∗ .

If nonzero, this ring would admit a ring homomorphism

E(m)∗ ⊗L LB ⊗L K(n)∗ −→ R

to a graded fieldR, classifying a strict isomorphism h : F → F ′ with F of height≤ m
and F ′ of height n. This is impossible for m < n, since (strictly) isomorphic formal
group laws have the same height. Thus E(m)∗(K(n)) must be the zero ring. �

((ETC: Johnson–Wilson: Only invariant prime ideal in B(n)∗ is (0), so

B(n)∗(X) ∼= B(n)∗ ⊗K(n)∗ K(n)∗(X)

is free and K(n)∗(X) = K(n)∗ ⊗B(n)∗ B(n)∗(X). Hence v−1
m (MU/Im)∗(X) = 0 iff

B(m)∗(X) = 0 iff K(m)∗(X) = 0.))



CHAPTER 12

Chromatic localization

12.1. The chromatic filtration of the stable homotopy category

Implicitly localize at a fixed prime p. The height filtration of formal group laws
leads to complementary closed and open substacks

M≥n+1
fg

i−→Mfg
j←−M≤nfg

and base change (= pullback) functors between their abelian categories of quasi-
coherent sheaves

QCoh(M≥n+1
fg )

i∗←− QCoh(Mfg)
j∗−→ QCoh(M≤nfg ) .

These admit right adjoint direct image functors

QCoh(M≥n+1
fg )

i∗−→ QCoh(Mfg)
j∗←− QCoh(M≤nfg ) ,

with the adjunction counit ε : j∗j∗ → id being an isomorphism, so that j∗ exhibits
QCoh(M≤nfg ) as a reflective subcategory of QCoh(Mfg). This makes the reflector
j∗ a localization functor, given algebro-geometrically by restriction to heights ≤ n,
ignoring all difficulties with greater heights. Any choice of Johnson–Wilson theory
E(n), with flat Hopf algebroid (E(n)∗, E(n)∗E(n)), gives an equivalence

QCoh(M≤nfg )
'−→ E(n)∗E(n)− coMod

such that the composite

Ho(Sp) MU∗(−)∼−→ QCoh(Mfg)
j∗−→ QCoh(M≤nfg ) ' E(n)∗E(n)− coMod

is equal to the composite

Ho(Sp) MU∗(−)−→ LB− coMod
E(n)∗⊗L(−)−→ E(n)∗E(n)− coMod ,

i.e., the E(n)∗E(n)-comodule valued homology theory X 7→ E(n)∗(X). The local-
ization j∗ thus annihilates (the quasi-coherent sheaf associated to) all spectra Z
with E(n)∗(Z) = 0, i.e., the E(n)-acyclic spectra. There is a full stable subcate-
gory LnSp ⊂ Sp of so-called E(n)-local spectra, and Bousfield constructed a left
adjoint localization functor j∗ : Sp → LnSp to the inclusion functor j∗, so that j∗

221
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annihilates precisely the E(n)-acyclic spectra.

Ho(Sp)
j∗

//

MU∗(−)

��

Ho(LnSp)

E(n)∗(−)

��

LB− coMod
E(n)∗⊗L(−)

//

'

��

E(n)∗E(n)− coMod

QCoh(Mfg)
j∗

// QCoh(M≤nfg )

'

OO

Letting n vary, the resulting tower

(12.1) Ho(Sp) −→ . . . −→ Ho(LnSp) −→ Ho(Ln−1Sp) −→ . . . −→ Ho(L0Sp)

of localization functors between the full subcategories

(12.2) Ho(Sp) ⊃ · · · ⊃ Ho(LnSp) ⊃ Ho(Ln−1Sp) ⊃ · · · ⊃ Ho(L0Sp)

defines the chromatic filtration of (p-local) stable homotopy theory. Applied to a
spectrum X, this gives the chromatic tower

(12.3) X −→ . . . −→ LnX −→ Ln−1X −→ . . . −→ L0X

in Ho(Sp).

12.2. Closed substacks

The stack Mfg and its closed substack M≥n+1
fg are corepresented by the flat

Hopf algebroids (L,LB) and (L/In+1, LB/In+1), respectively, with the closed in-
clusion i corresponding to the Hopf algebroid homomorphism

π = πn+1 : (L,LB) −→ (L/In+1, LB/In+1)

and the base change i∗ corresponding to

π∗ : LB− coMod −→ LB/In+1− coMod

M 7−→ L/In+1 ⊗LM = M/In+1M .

Lemma 12.2.1. Let ν : M → LB ⊗L M be the LB-coaction on M . Then the
LB/In+1-coaction on L/In+1 ⊗LM = M/In+1M is given by the composite

L/In+1 ⊗LM
id⊗ν−→ L/In+1 ⊗L LB ⊗LM
∼= LB/In+1 ⊗LM
∼= LB/In+1 ⊗L/In+1

L/In+1 ⊗LM .

The following diagram commutes, where U denotes the forgetful functor corre-
sponding to base change along Spec(L)→Mfg or Spec(L/In+1)→M≥n+1

fg .

LB/In+1− coMod

U

��

LB− coMod
π∗oo

U

��

L/In+1−Mod L−Mod
π∗oo
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At the level of modules, the base change π∗ admits a right adjoint

π∗ : L/In+1−Mod −→ L−Mod

N 7−→ N ,

where the L-action on π∗(N) = N is the composite

L⊗N π⊗id−→ L/In+1 ⊗N −→ N .

In other words, the L/In+1-action is restricted to an L-action along π : L→ L/In+1.
This extends to the case of comodules, where

π∗ : LB/In+1− coMod −→ LB− coMod

N 7−→ N

is right adjoint to the comodule base change functor π∗.

Lemma 12.2.2. Let ν : N → LB/In+1 ⊗L/In+1
N be the LB/In+1-coaction

on N . Then the LB-coaction on π∗(N) = N is given by the composite

N
ν−→ LB/In+1 ⊗L/In+1

N

∼= LB ⊗L L/In+1 ⊗L/In+1
N

∼= LB ⊗L N .

The following diagram commutes, where LB ⊗L (−) denotes the right adjoint
of U defining the extended LB-comodule associated to an L-module, and similarly
for LB/In+1 ⊗L/In+1

(−).

LB/In+1− coMod
π∗
// LB− coMod

L/In+1−Mod

LB/In+1⊗L/In+1
(−)

OO

π∗
// L−Mod .

LB⊗L(−)

OO

A categorical fact called conjugation ensures that any commuting square of left
adjoints leads to a commuting square of right adjoints.

Lemma 12.2.3. The adjunction counit ε : π∗π∗ → id is an isomorphism, both in
the L/In+1-module and the LB/In+1-comodule case. Hence π∗ embeds L/In+1−Mod
as a full subcategory of L−Mod, and embeds LB/In+1− coMod as a full subcategory
of LB− coMod.

These are reflective subcategories, in the following sense.

Definition 12.2.4. Let G : D ⊂ C be the inclusion of a full subcategory. We
say that D is a reflective subcategory of C if G admits a left adjoint F : C → D.
In this case, the adjunction counit ε : FG → idD is a natural isomorphism. We
call F a reflector. The adjunction unit η : idC → GF defines a natural morphism
`X : X → GFX for each X in C.

The left adjoint π∗ commutes with colimits, hence is right exact, but has left
derived functors Lsπ

∗ = TorLs (L/In+1,−). ((ETC: At least for L-modules. What
happens for LB-comodules?)) The right adjoint π∗ is exact.



224 12. CHROMATIC LOCALIZATION

12.3. Open substacks

The open substack M≤nfg is not affine, but is covered by affines Spec(R) where

g : L → R satisfies RIn+1 = R. Any choice of Johnson–Wilson theory E(n) is
classified by a ring homomorphism g : L = MU∗ → E(n)∗ satisfying this condition,
since vn ∈ In+1 is a unit in E(n)∗. Hence we have map

[Spec(E(n)∗) ⇔ Spec(E(n)∗E(n))]
g̃−→M≤nfg

from the stack corepresented by the flat Hopf algebroid (E(n)∗, E(n)∗E(n)), and
base change along g̃ defines a functor

QCoh(M≤nfg )
g̃∗−→ E(n)∗E(n)− coMod .

Proposition 12.3.1 (Naumann [Nau07, Thm. 26]).

g̃ : [Spec(E(n)∗) ⇔ Spec(E(n)∗E(n))]
'−→M≤nfg

is an equivalence of stacks, so that

g̃∗ : QCoh(M≤nfg )
'−→ E(n)∗E(n)− coMod

is an equivalence of (tensor) abelian categories.

A key point is that g : L → E(n)∗ = Z(p)[v1, . . . , vn−1, v
±1
n ] admits specializa-

tions of all heights m ≤ n, via E(n)∗ → v−1
m E(n)∗/Im, so that g̃ is surjective on

geometric points. The Landweber exactness of E(n)∗, or flatness of g, ensures that
its image in Mfg is closed under generalization, from height n to all lesser heights.

The composite inclusion g = jg̃ then corresponds to the Hopf algebroid homo-
morphism

g : (L,LB) −→ (E(n)∗, E(n)∗E(n))

associated to the Landweber exact L-algebra E(n)∗, and induces a localization
functor

g∗ : QCoh(Mfg) ' LB− coMod −→ E(n)∗E(n)− coMod

M 7−→ E(n)∗ ⊗LM
that serves as a (non-canonical) replacement for j∗.

Lemma 12.3.2. Let ν : M → LB ⊗L M be the LB-coaction on M . Then the
E(n)∗E(n)-coaction on E(n)∗ ⊗LM is given by the composite

E(n)∗ ⊗LM
id⊗ν−→ E(n)∗ ⊗L LB ⊗LM
∼= E(n)∗ ⊗L LB ⊗L L⊗LM
id⊗g⊗id−→ E(n)∗ ⊗L LB ⊗L E(n)∗ ⊗LM
∼= E(n)∗E(n)∗ ⊗LM
∼= E(n)∗E(n)⊗E(n)∗ E(n)∗ ⊗LM .

The following diagram commutes, where U denotes the forgetful functors.

LB− coMod
g∗
//

U

��

E(n)∗E(n)− coMod

U

��

L−Mod
g∗

// E(n)∗−Mod
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At the level of modules, the base change g∗ admits a right adjoint

g∗ : E(n)∗−Mod −→ L−Mod

N 7−→ N ,

where the L-action on g∗(N) = N is the composite

L⊗N g⊗id−→ E(n)∗ ⊗N −→ N .

In other words, the E(n)∗-action is restricted to an L-action along g : L→ E(n)∗.
The extension to comodules is now less obvious, but discussed in [MR77, (1.2)]

and [Hov04, Prop. 1.2.3]. The tensor product

MU∗E(n) ∼= LB ⊗L E(n)∗

is simultaneously a left LB-comodule and a right E(n)∗E(n)-comodule. For a left
E(n)∗E(n)-comodule N , the cotensor product

MU∗E(n) �E(n)∗E(n) N

is defined to be the equalizer of the two homomorphisms

MU∗E(n)⊗E(n)∗ N
ν′⊗id

//

id⊗ν
// MU∗E(n)⊗E(n)∗ ⊗E(n)∗E(n)⊗E(n)∗ N .

The left LB-coaction on MU∗E(n) carries over to MU∗E(n) �E(n)∗E(n) N .

Lemma 12.3.3. The comodule direct image functor

g∗ : E(n)∗E(n)− coMod −→ LB− coMod

N 7−→MU∗E(n) �E(n)∗E(n) N

is right adjoint to the comodule base change functor g∗.

By conjugation the following diagram commutes, where LB⊗L (−) denotes the
right adjoint of U defining the extended LB-comodule associated to an L-module,
and similarly for E(n)∗E(n)⊗E(n)∗ (−).

LB− coMod E(n)∗E(n)− coMod
g∗
oo

L−Mod

LB⊗L(−)

OO

E(n)∗−Mod .
g∗

oo

E(n)∗E(n)⊗E(n)∗ (−)

OO

Note that this forces the relation

g∗(E(n)∗E(n)⊗E(n)∗ N) ∼= LB ⊗L N ∼= MU∗E(n)⊗E(n)∗ N

for any E(n)∗-module N , which is indeed satisfied by the functor g∗ defined in
terms of the cotensor product.

Lemma 12.3.4. The adjunction counit ε : g∗g∗ → id is an isomorphism, both in
the E(n)∗-module and the E(n)∗E(n)-comodule case. Hence g∗ embeds E(n)∗−Mod
as a (full) reflective subcategory of L−Mod, and embeds E(n)∗E(n)− coMod as a
(full) reflective subcategory of LB− coMod.

Proof. This follows from E(n)∗ ⊗L N ∼= N for any E(n)∗-module N , and
E(n)∗ ⊗LMU∗E(n) �E(n)∗E(n) N ∼= N for any E(n)∗E(n)-comodule N . �
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In the case of LB-comodules, the left adjoint g∗ is exact, by Landweber’s
exact functor theorem. The right adjoint g∗ commutes with all limits, hence is left
exact, but has right derived functors Rsg∗ = CotorsE(n)∗E(n)(MU∗E(n),−). ((ETC:

Compare with [HS05b].))
In view of the equivalence g̃∗ from Proposition 12.3.1, the base change

j∗ : QCoh(Mfg) −→ QCoh(M≤nfg )

is an exact left adjoint exhibiting QCoh(M≤nfg ) as a reflective abelian subcategory

of QCoh(Mfg). In this case we call j∗ a localization functor. ((ETC: Is there a
standard general definition?))

12.4. Hereditary torsion theories

The localization functors

j∗ : QCoh(Mfg) −→ QCoh(M≤nfg )

g∗ : LB− coMod −→ E(n)∗E(n)− coMod

are determined up to equivalence by the full subcategories of

QCoh(Mfg) ' LB− coMod

that they annihilate, i.e.. map to the zero object. Such full subcategories of abelian
categories are known as localizing subcategories, or hereditary torsion theories, and
characterize the localization functor (if it exists) up to equivalence. See [HS05a,
§1].

Definition 12.4.1. A localization functor of an abelian category C is an exact
functor F : C → D with fully faithful right adjoint G : D → C. We view G as the
inclusion of a reflective abelian subcategory. The adjunction counit ε : FG → idD
is then a natural isomorphism.

Definition 12.4.2. A Serre class in an abelian category C is a full subcategory
T that is closed under subobjects, quotient objects and extensions. In other words,
for each short exact sequence

0→M ′ −→M −→M ′′ → 0

the objects M ′ and M ′′ lie in T if and only if M lies in T . A hereditary torsion
theory in C (with arbitrary coproducts) is a Serre class T that is also closed under
coproducts.

((ETC: If C is graded, with a suspension operator, we also assume that T is
closed under this operator and its inverse.))

Definition 12.4.3. Let T be a hereditary torsion theory in an abelian cate-
gory C. A morphism f : X → Y in C is a T -equivalence if ker(f) and cok(f) are
both in T . An object N ∈ C is T -local if

C(f,N) : C(Y,N)
∼=−→ C(X,N)

is an isomorphism for each T -equivalence f : X → Y . Let LT C ⊂ T denote the full
subcategory of T -local objects.
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Proposition 12.4.4. Let F : C → D be a localization functor. Let

T = {Z ∈ C | F (Z) ∼= 0}
be (the full subcategory generated by) the class of objects annihilated by F . Then T
is a hereditary torsion theory. The composite

LT C ⊂ C
F−→ D

is an equivalence, identifying G : D → C with the inclusion LT C ⊂ C. The adjunc-
tion counit η : idC → GF defines, for each object M ∈ C, a T -equivalence

ηM : M −→ GF (M) = LTM

to a T -local object.

((ETC: Conversely, choices of T -equivalences M → LTM to T -local objects
determine the localization functor F , and are unique up to isomorphism if they
exist.))

Example 12.4.5. The Landweber exact base change functor

g∗ : LB− coMod −→ E(n)∗E(n)− coMod

is a localization functor, with associated hereditary torsion theory

Tn = {Z ∈ LB− coMod | E(n)∗ ⊗L Z = 0} .
The LB-comodule L/In+1 lies in Tn, since vn ∈ In+1 is a unit in E(n)∗, so that
E(n)∗ ⊗L L/In+1 = 0. ((ETC: Discuss when an LB-comodule M is T -local.))

The hereditary torsion theory Tn associated to g : L→ E(n)∗ also has a differ-
ent characterization. This coincidence in the current context of abelian categories
can be viewed, when lifted to the stable homotopy category, as leading to the
(in)famous Telescope Conjecture in [Rav84].

Proposition 12.4.6 ([HS05a, Prop. 3.2]). The hereditary torsion theory gen-
erated by L/In+1 is equal to Tn, when restricted to p-local LB-comodules.

This is an application of Landweber’s work.
The short exact sequence

0→ Σ|vn|L/In −→ L/In −→ L/In+1 → 0

shows that L/In+1 lies in the (Serre class and) hereditary torsion theory generated
by L/In, so that we have the infinite chain of such full subcategories

{0} ⊂ · · · ⊂ Tn ⊂ Tn−1 ⊂ · · · ⊂ T0

inside p-local LB-comodules, which we denote as T−1. In particular, E(n)∗⊗LZ = 0
implies that E(n− 1)∗ ⊗L Z = 0.

Since Tn is the “kernel” of the Tn-localization functor

LTn : LB− coMod −→ LTn(LB− coMod)

it follows that we have a similar infinite tower of localization functors between
abelian categories

LB− coMod −→ . . . −→ LTn(LB− coMod) −→ LTn−1(LB− coMod) −→
. . . −→ LT0

(LB− coMod) ,
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equivalent to the tower

LB− coMod −→ . . . −→ E(n)∗E(n)− coMod −→ E(n− 1)∗E(n− 1)− coMod

. . . −→ E(0)∗E(0)− coMod .

Writing g = gn : L→ E(n), the diagrams

LB− coMod

g∗n
��

g∗n−1 **

E(n)∗E(n)− coMod // E(n− 1)∗E(n− 1)− coMod

and

LB− coMod

E(n)∗E(n)− coMod

gn∗

OO

E(n− 1)∗E(n− 1)− coModoo

gn−1∗
jj

commute for all n ≥ 1. We omit to write down formulas for the horizontal
functors, since we do not have a direct homomorphism (E(n)∗, E(n)∗E(n)) →
(E(n− 1)∗, E(n− 1)∗E(n− 1)) of Hopf algebroids.

Proposition 12.4.7 ([HS05a, Prop. 3.3]). If T is a hereditary torsion theory
of p-local LB-comodules, and L/In /∈ T , then T ⊂ Tn.

The last two propositions imply the following partial classification of hereditary
torsion theories in p-local LB-comodules, hence also of localization functors from
such LB-comodules onto reflective additive subcategories.

Theorem 12.4.8 ([HS05a, Thm. 3.1]). Let T be a hereditary torsion theory
of p-local LB-comodules, containing some nonzero comodule that is coherent, i.e.,
finitely presented over L(p). Then T = Tn for some n ≥ −1.

In particular, any two choices of ring homomorphism g : L→ E(n)∗ specifying
a Landweber exact Johnson–Wilson theory give localization functors g∗ that anni-
hilate the same hereditary torsion theory T = Tn, which implies that the associated
categories of Tn-local LB-comodules and/or E(n)∗E(n)-comodules are independent
of those choices.

More generally, for any Landweber exact g : L → E∗, Hovey–Strickland define
the height of E∗ to be the maximal n such that E∗/In 6= 0. (This is also the
maximal height of a specialization k∗FE of the formal group law FE , for a homo-
morphism k : E∗ → R to a graded field R.) Then (E∗, E∗E) is a flat Hopf algebroid,
g∗ : LB− coMod→ E∗E− coMod is a localization functor annihilating a hereditary
torsion theory TE , and L/In /∈ TE while L/In+1 ∈ TE . This implies TE = Tn, by
Theorem 12.4.8, so TE and g∗ only depend on the height of n.

For E = E(n)∗, of height n, this recovers our definition of Tn as TE(n).

Applied with E∗ = v−1
n L, so that E∗(X) = v−1

n MU∗(X), it shows that Tn
is the class of vn-power torsion LB-comodules, i.e., those LB-comodules M such
that for each x ∈ M there exists an N � 0 such that vNn x = 0. Moreover, each
vn-power torsion module (resp. element) is vm-power torsion for each 0 ≤ m ≤ n,
cf. [JY80, Lem. 2.3].
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Example 12.4.9. When n = 0, E(0) = HQ and (E(0)∗, E(0)∗E(0)) = (Q,Q),
so that an E(0)∗E(0)-comodule is the same as an E(0)∗-module, i.e., a graded
Q-vector space. The functor

Ho(Sp) −→ LB− coMod
g∗0−→ Q−Mod

X 7−→ Q⊗MU∗ MU∗(X) ∼= H∗(X;Q)

is given by rational homology.

Example 12.4.10. When n = 1, E(1) = L ⊂ KU(p) is the Adams summand of
p-local complex K-theory. The Hopf algebroid (KU∗,KU∗KU) was determined by
Adams and Harris, cf. [AHS71], [Ada74, Part II, §13], and can be used to recast
Adams’ work [Ada66] on the e-invariant and the image-of-J , cf. [Swi75, Ch. 17,
Ch. 19]. Ravenel [Rav84, Thm. 7.6] shows, for p an odd prime, that the category
of p-power torsion E(1)∗E(1)-comodules is equivalent to that of Z/(2p− 2)-graded
torsion Λ-modules, where

Λ = Zp[[S0
1]] ∼= Zp[[t]]

is the Iwasawa algebra, known from the theory of cyclotomic extensions. Here
S0

1 = 1 + pZp ⊂ Z×p is the strict Morava stabilizer group. The classification of
Λ-modules is fairly well understood.

One may now hope to obtain a gradually better understanding of the category
of LB-comodules, or quasi-coherent sheaves overMfg, by localizing along gn : L→
E(n)∗ and studying E(n)∗E(n)-comodules or quasi-coherent sheaves over M≤nfg ,
for increasing values of n.

12.5. Bousfield localization

We now aim to lift localizations from the abelian category of LB-comodules to
the triangulated category Ho(Sp). Recall that a triangulated subcategory must be
closed under cofibers and desuspensions.

Definition 12.5.1. A thick subcategory of a triangulated category C is a full
triangulated subcategory T that is closed under retracts. In other words, any
retract of an object in T is also an object in T . A localizing subcategory of C
(with arbitrary coproducts) is a triangulated subcategory that is also closed under
coproducts.

Remark 12.5.2. Any localizing subcategory is thick, by the Eilenberg swindle:
If X ∨ Y ∈ T with T localizing, then the distinguished triangle

X −→
∞∨
i=1

(X ∨ Y ) −→
∞∨
j=1

(Y ∨X) −→ ΣX

shows that X ∈ T .

Definition 12.5.3. Let T be a localizing subcategory of a triangulated cate-
gory C. A morphism f : X → Y in C is a T -equivalence if its cofiber Cf is in T .
Here

X −→ Y −→ Cf −→ ΣX

is any distinguished triangle. An object N ∈ C is T -local if

C(f,N) : C(Y,N)
∼=−→ C(X,N)
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is an isomorphism for each T -equivalence f : X → Y . Equivalently, N is T -local
if C(Z,N) = 0 for each Z ∈ T . Let G : LT C ⊂ C denote (the inclusion of) the full
triangulated subcategory of T -local objects.

Definition 12.5.4. Let T be a localizing subcategory of a triangulated cate-
gory C. A T -localization of an object M in C is a T -equivalence η : M → N to a
T -local object N .

Example 12.5.5. Let E be any spectrum, and let

TE = {Z ∈ Ho(Sp) | E∗(Z) = 0}
be (the full triangulated subcategory generated by) the class of spectra Z with
E∗(Z) = 0. We call these the E∗-acyclic spectra. Then TE is a localizing subcat-
egory of the stable homotopy category. A map f : X → Y is a TE-equivalence if
and only if f∗ : E∗(X) → E∗(Y ) is an isomorphism, in which case we say that it
is an E∗-equivalence. A spectrum N is TE-local if and only if [Z,N ] = 0 for each
E∗-acyclic spectrum, in which case we say that N is E∗-local. We write

G : Ho(LESp) = LTE Ho(Sp) ⊂ Ho(Sp)
for the full triangulated subcategory of E∗-local spectra. (As the notation suggests,
LTE Ho(Sp) arises as the homotopy category of a stable model category or stable
∞-category.) A TE-localization η : M → N is an E∗-equivalence to an E∗-local
spectrum, and will be called an E∗-localization.

Lemma 12.5.6. If a T -localization η exists, it is a terminal T -equivalence out
of M and an initial morphism to a T -local object, hence unique up to unique iso-
morphism.

Proof. Any T -equivalence M →M ′ can be continued with a unique M ′ → N
to recover η, since C(M ′, N) ∼= C(M,N). Any morphism M → N ′ to a T -local N ′

extends uniquely over η since C(N,N ′) ∼= C(M,N ′). �

One might try to construct a T -localization η : M → N by forming a colimit
over E∗-equivalences out ofM , or a limit of E∗-local spectra underM . The difficulty
is to show that these (co-)limits (over large indexing categories) exist and agree.

Theorem 12.5.7 (Bousfield [Bou79b, Thm. 1.1]). Let E be any spectrum.
Any spectrum X admits an E∗-localization

ηX : X −→ LEX .

Letting X vary, these choices assemble to a localization functor

F : Ho(Sp) −→ Ho(LESp)
left adjoint to the full inclusion G : Ho(LESp) ⊂ Ho(Sp), with adjunction unit

η : id −→ GF = LE : Ho(Sp) −→ Ho(Sp)
and adjunction counit

ε : FG
∼=−→ id .

Adams attempted to construct such localizations in [Ada74, Part III, §14],
but encountered set-theoretic issues. These were resolved by Bousfield, through
working with CW spectra as a model for the stable homotopy category and making
cardinality arguments on the number of cells needed to achieve E∗-equivalences
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and E∗-locality. The problem of realizing general localizing subcategories as the
annihilators of localization functors remains closely related to large-cardinal is-
sues [CSS05].

Lemma 12.5.8. The functor LE is exact, idempotent (LELE ∼= LE) and lax
symmetric monoidal. The class of spectra Z with LEZ ' ∗ is equal to the class of
E∗-acyclic spectra.

Proof. Exactness follows since the left adjoint F preserves cofiber sequences,
the right adjoint G preserves fiber sequences, and these are the same (up to sign)
in the stable homotopy category.

The spectrum ∗ is always E∗-local, so Z → ∗ is an E∗-localization if and only
if Z is E∗-acyclic.

It follows that f : X → Y induces a stable equivalence LEX → LEY if and only
if f is an E∗-equivalence. In particular, LEX → LELEX is a stable equivalence,
so LE is idempotent.

The E∗-localization X ∧ Y → LE(X ∧ Y ) extends uniquely (in the stable
homotopy category) over the E∗-equivalences X ∧ Y → LEX ∧ Y → LEX ∧ LEY ,
and (X → LEX and) the resulting map

LEX ∧ LEY −→ LE(X ∧ Y )

defines the lax symmetric monoidal structure. �

In particular, for any (commutative) ring spectrum up to homotopy R, the
Bousfield localization LER is a (commutative) ring spectrum up to homotopy, with
unit S → R→ LER and product

LER ∧ LER −→ LE(R ∧R)
LEφ−→ LER .

For any R-module spectrum M , the localization LEM is an LER-module spectrum,
in the homotopy category. The following was exhibited by Adams as an example
of the convenience of working in a good stable category.

Lemma 12.5.9 ([Ada71, Prop. 5.2]). If R is a ring spectrum up to homotopy,
then any R-module M is R∗-local.

Proof. If f ∈ [Z,M ], then f factors as

Z ∼= S ∧ Z η∧id−→ R ∧ Z id∧f−→ R ∧M λ−→M ,

so if R∗(Z) = 0 then it factors through R ∧ Z ' ∗ and must be zero. �

The converse does not generally hold; not every R-local spectrum is an R-
module. For example, the image-of-J spectrum is KU -local but not a KU -module
((ETC: However, this does hold for R = LnS. Give forward reference.))

Remark 12.5.10. A left Bousfield localization of a given model category (Sp,W, . . . )
of spectra, with W the subcategory of stable equivalences, is a stable model cate-
gory (Sp,V, . . . ) with the same cofibrations as before, but with a larger class V ⊃ W
of weak equivalences. See [Hir03, §3.3]. The identity functor on Sp is then a left
Quillen functor, and induces an adjunction

F : Sp[W−1] � Sp[V−1] : G

exhibiting Sp[V−1] as a reflective subcategory of Ho(Sp) = Sp[W−1]. Taking V to
be the E∗-equivalences one recovers Bousfield’s theorem recalled above.
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We often write LE : Ho(Sp)→ Ho(LESp) for the unique factorization F of LE
through G : Ho(LESp) ⊂ Ho(Sp)

Definition 12.5.11. For each prime p and n ≥ 0 let

Ho(LnSp) = Ho(LE(n)Sp)
denote the E(n)∗-local stable homotopy category and

Ln = LE(n) : Ho(Sp) −→ Ho(LnSp) ⊂ Ho(Sp)
the E(n)∗-localization functor. Let

Ho(L̂nSp) = Ho(LK(n)Sp)
denote the K(n)∗-local stable homotopy category and

L̂n = LK(n) : Ho(Sp) −→ Ho(L̂nSp) ⊂ Ho(Sp)
the K(n)∗-localization functor.

The Hovey–Strickland memoir [HS99a] contains a wealth of information about

the categories Ho(LnSp) and Ho(L̂nSp) of E(n)-local and K(n)-local spectra, re-
spectively.

Lemma 12.5.12. The diagram

Ho(Sp) Ln //

MU∗(−)

��

!!

Ho(LnSp)

E(n)∗(−)

��

// // Ho(Sp)

MU∗MU− coMod
E(n)∗⊗MU∗ (−)

// E(n)∗E(n)− coMod

commutes.

Proof. E(n)∗ ⊗MU∗ MU∗(X) ∼= E(n)∗(X) ∼= E(n)∗(LnX). �

((ETC: Any analogue for L̂nSp and K(n)∗(−)?))
The unit map S → LES is an E∗-equivalence hence so is X ∼= X ∧ S →

X ∧ LES. The localization map η : X → LEX thus extends uniquely (in the
homotopy category) over X ∧ LES.

Definition 12.5.13 ([Rav84, Def. 1.28]). A (spectrum E or) localization func-
tor LE is smashing if the natural map

X ∧ LES
'−→ LEX

is an equivalence for each X.

Theorem 12.5.14 (Hopkins–Ravenel [Rav92a, Thm. 7.5.6]). Ln = LE(n) is
smashing.

This smash product theorem was proved for n = 1 in [Rav84, Thm. 8.1],
conjectured for all n in [Rav84, 10.6] and proved in general in [Rav92a, Ch. 8]
as a consequence of the Devinatz–Hopkins–Smith nilpotence and thick subcategory
theorems. In contrast, L̂n = LK(n) is not smashing for n ≥ 1.

((ETC: Compare with p-localization M →M ⊗ Z(p)
∼= M(p) and p-completion

M → M ⊗ Zp → M∧p for abelian groups, keeping in mind that Z(p) ⊗ Z(p)
∼= Z(p)

while Zp ⊗ Zp 6∼= Zp.))
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12.6. Bousfield classes

The localization functor LE is determined by the class of E∗-acyclic spectra,
and these classes are partially ordered by (reverse) inclusion.

Definition 12.6.1. Two spectra D and E are Bousfield equivalent if

D∗(X) = 0 ⇐⇒ E∗(X) = 0

for all spectra X. Let 〈E〉 denote the Bousfield equivalence class of E, so that
〈D〉 = 〈E〉 means that the class of D∗-acyclic spectra is equal to the class of E∗-
acyclic spectra. We write 〈D〉 ≤ 〈E〉 if

D∗(X) = 0 ⇐= E∗(X) = 0 ,

i.e., if the class of D∗-acyclic spectra contains the class of E∗-acyclic spectra. This
defines a partial ordering on the collection of Bousfield equivalence classes.

In other words, we have a quasi-ordering on spectra, with D ≤ E if

{X | D∗(X) 6= 0} ⊂ {X | E∗(X) 6= 0} ,

and this induces a partial ordering 〈D〉 ≤ 〈E〉 on the associated isomorphism classes.
We can view the displayed collections as the support of D and E, respectively, in
which case ≤ denotes inclusion of support.

The relation 〈D〉 ≤ 〈E〉 asserts that E∗(−) is a stronger (or equivalent) ho-
mology theory than D∗(−). The Bousfield class of ∗ is initial, while that of S is
terminal.

Lemma 12.6.2. If D is in the localizing subcategory of Ho(Sp) generated by E,
then 〈D〉 ≤ 〈E〉.

Proof. If D can be built from E by repeated passage to homotopy cofibers,
desuspensions, retracts and coproducts, then for any X with E∗(X) = 0 we will
also have D∗(X) = 0. �

Lemma 12.6.3. Suppose 〈D〉 ≤ 〈E〉. Then each E∗-equivalence is a D∗-equivalence,
and each D∗-local spectrum is E∗-local. For each spectrum X the D∗-localization
map ηD : X → LDX factors as

X
ηE−→ LEX −→ LDX

for a unique morphism LEX → LDX in Ho(Sp), which is a D∗-equivalence. In
particular, LDX ' LDLEX ' LELDX.

Proof. If f : X → Y is an E∗-equivalence with homotopy cofiber Cf then
E∗(Cf) = 0, so that D∗(Cf) = 0 and f is a D∗-equivalence. If N is D∗-local then
[Z,N ] = 0 for each D∗-acyclic Z. In particular [Z,N ] = 0 for each E∗-acyclic Z, so
that N is E∗-local. The E∗-equivalence ηE : X → LEX is a D∗-equivalence, hence
induces a bijection η∗E : [LEX,LDX] ∼= [X,LDX], so there is a unique morphism
LEX → LDX mapping to ηD. It induces an isomorphism on D∗-homology since
both ηE and ηD have that property.

In particular, ηE : X → LEX is a D∗-equivalence and induces an equivalence
after D∗-localization. Also LDX is E∗-local so ηE : LDX → LELDX is an equiva-
lence. �
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Recall [HS05a, Def. 4.1] that the height of a Landweber exact L-module E∗
is the maximal n such that E∗/In 6= 0. The hereditary torsion theory TE of LB-
comodules M with E∗ ⊗L M∗ = 0 is then equal to Tn, by the discussion after
Theorem 12.4.8. Both E(n)∗ and v−1

n MU∗ have height n.

Proposition 12.6.4. If D∗ and E∗ are Landweber exact of the same height,
then 〈D〉 = 〈E〉.

Proof. We write D and E for the spectra representing D∗(X) = D∗ ⊗MU∗

MU∗(X) and E∗(X) = E∗ ⊗MU∗ MU∗(X), respectively. If E∗ has height n, then
E∗(X) = 0 if and only if MU∗(X) ∈ TE , and TE = Tn, so this condition on X only
depends on n. It follows that if D also has height n, then D∗(X) = 0 if and only if
E∗(X) = 0, so that 〈D〉 = 〈E〉. �

Example 12.6.5. Any nonzero L-module E∗ ⊃ Q is Landweber exact of
height 0, so that 〈E〉 = 〈HQ〉, and LEX = L0X ' X∧SQ ' X∧HQ is the rational-
ization of X, given by inverting every prime. This satisfies π∗(L0X) = π∗(X)⊗Q.
The map X → X∧HQ is an HQ∗-equivalence, since HQ ' HQ∧HQ, and X∧HQ
is HQ-local, since it is an HQ-module spectrum.

Example 12.6.6. Complex K-theory KU , p-local K-theory KU(p), and its
Adams summand E(1) are all Landweber exact of height 1, so that 〈KU(p)〉 =
〈E(1)〉 and LKU(p)

X = L1X is KU -localization for p-local spectra X. Ravenel’s

smash product theorem [Rav84, Thm. 8.1] shows that

L1X ' X ∧ L1S

for all spectra X. Here the E(1)-localization of the sphere spectrum sits in a
homotopy cofiber sequence

Σ−2HQ −→ L1S −→ J(p) ,

where (for p an odd prime) the p-local image-of-J ring spectrum J(p) is the homo-

topy fiber of ψg − 1: KU(p) → KU(p) for any integer g generating (Z/p2)×, and
Z/p∞ ∼= Z[1/p]/Z ∼= Q/Z(p)

∼= Qp/Zp. Hence

πn(L1S) ∼=



Z(p) for n = 0,

0 for n = −1,

Z/p∞ for n = −2,

Z/pv+1 for n+ 1 = (2p− 2)m with v = ordp(m),

0 otherwise.

Similar, but more elaborate, results are known for p = 2.

Example 12.6.7. The mod p Moore spectrum S/p is not Landweber exact,
but

LS/pX ' X∧p
for any spectrum X. Here

X∧p = holim
n

X/pn ' holim
n

F (S−1/pn, X) ' F (S−1/p∞, X) ,

where there is a homotopy cofiber sequence

Σ−1SZ/p∞ = S−1/p∞ −→ S −→ SZ[1/p] .
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The induced map X ' F (S,X)→ F (S−1/p∞, X) ' X∧p is a S/p-homology equiv-

alence, since S/p ∧ SZ[1/p] ' ∗, and F (S−1/p∞, X) ' X∧p is S/p-local, since

S/p ∧ Z ' ∗ implies that Z ' Z[1/p] so that Z ∧ S−1/p∞ ' ∗ and [Z,X∧p ] =

[Z,F (S−1/p∞, X)] ∼= [Z ∧ S−1/p∞, X] = 0.

Example 12.6.8. Mod p complex K-theory KU/p and its Adams summand

K(1) are not Landweber exact, but 〈KU/p〉 = 〈K(1)〉 and LKU/pX = L̂1X =
(L1X)∧p is the p-completion of the KU -localization. The map

X ∧ L̂1S −→ L̂1(X)

is an equivalence for finite (but not for general) spectra X, and

L̂1S ' J∧p
where (for p an odd prime) the p-complete image-of-J ring spectrum J∧p is the

homotopy fiber of ψg−1: KU∧p → KU∧p for any integer g generating (Z/p2)×. One
proof uses that

0← K(1)∗(S)← K(1)∗(KU)
(ψg−1)∗−→ K(1)∗(KU)← 0

is exact, since K(1)∗(KU) ∼= K(1)∗[[Z×p ]], and this can be used to obtain L1S, as
above. Hence

πn(L̂1S) ∼= πn(J∧p ) ∼=


Z∧p for n = 0 and n = −1,

Z/pv+1 for n+ 1 = (2p− 2)m with v = ordp(m),

0 otherwise.

Again, there are similar results for p = 2.

Proposition 12.6.9. (a) 〈K(n)〉 ≤ 〈E(n)〉, so there is a natural K(n)-equivalence

LnX = LE(n)X
ı̂−→ LK(n)X = L̂nX .

(b) 〈E(n− 1)〉 ≤ 〈E(n)〉, so there is a natural E(n− 1)-equivalence

LnX = LE(n)X
j−→ LE(n−1)X = Ln−1X .

Proof. (a) We can build K(n) from E(n) using homotopy cofiber sequences

Σ|vm|E(n)/Im
vm−→ E(n)/Im −→ E(n)/Im+1

for 0 ≤ m < n, so K(n) is in the (thick or) localizing subcategory generated by
E(n), and 〈K(n)〉 ≤ 〈E(n)〉. More explicitly: if E(n)∗(X) = 0 then by induction
(E(n)/Im)∗(X) = 0 for all 0 ≤ m ≤ n, using the cofiber sequences above. Since
E(n)/In = K(n) we obtain K(n)∗(X) = 0.

(b) We can build v−1
n−1E(n) from E(n) using the telescope

E(n)
vn−1−→ Σ−|vn−1|E(n)

vn−1−→ Σ−2|vn−1|E(n) −→ . . . −→ v−1
n−1E(n) ,

so v−1
n−1E(n) is in the localizing subcategory generated by E(n), and 〈v−1

n−1E(n)〉 ≤
〈E(n)〉. Here

π∗(v
−1
n−1E(n)) = v−1

n−1E(n)∗ = Z(p)[v1, . . . , vn−2, v
±1
n−1, v

±1
n ] ,

interpreted as Q[v±1
1 ] for n = 1. More explicitly: if E(n)∗(X) = 0 then by con-

struction v−1
n−1E(n)∗(X) = 0. Now we use that v−1

n−1E(n)∗ is Landweber exact of

height (n − 1), so that 〈E(n − 1)〉 = 〈v−1
n−1E(n)〉. It follows that 〈E(n − 1)〉 ≤

〈E(n)〉. �
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It follows that 〈E(n)〉 ≥ 〈E(m)〉 ≥ 〈K(m)〉 for all 0 ≤ m ≤ n.

Proposition 12.6.10. K(m) ∧K(n) ' ∗ for m 6= n.

Proof. We may suppose m < n. Then this follows from Chapter 11, Proposi-
tion 7.16, since E(m)∗(K(n)) = 0 and 〈E(m)〉 ≥ 〈K(m)〉 implies K(m)∗(K(n)) =
0. �

Lemma 12.6.11. The wedge 〈D〉∨〈E〉 = 〈D∨E〉 and smash 〈D〉∧〈E〉 = 〈D∧E〉
only depend on the Bousfield classes of D and E.

Proof. If 〈D〉 = 〈D′〉 and 〈E〉 = 〈E′〉 then (D ∨ E)∗(X) = 0 iff (D∗(X) = 0
and E∗(X) = 0) iff (D′∗(X) = 0 and E′∗(X) = 0) iff (D′ ∨ E′)∗(X) = 0. Moreover,
(D ∧ E)∗(X) = 0 iff D∗(E ∧ X) = 0 iff D′∗(E ∧ X) = 0 iff E∗(D

′ ∧ X) = 0 iff
E′∗(D

′ ∧X) = 0 iff (D′ ∧ E′)∗(X) = 0. �

With this notation,

〈E(n)〉 ≥ 〈K(0) ∨K(1) ∨ · · · ∨K(n− 1) ∨K(n)〉
= 〈K(0)〉 ∨ 〈K(1)〉 ∨ · · · ∨ 〈K(n− 1)〉 ∨ 〈K(n)〉 .

In fact, the opposite relation also holds.

Theorem 12.6.12 ([Rav84, Thm. 2.1(d)]).

〈E(n)〉 =

n∨
m=0

〈K(m)〉 .

Hence E(n)∗(X) = 0 if and only if K(m)∗(X) = 0 for each 0 ≤ m ≤ n.

Proof. A prototype for this argument is given by Johnson–Wilson in [JW75,
§5], and attributed to Morava. We must show that if K(m)∗(X) = 0 for each
0 ≤ m ≤ n, then E(n)∗(X) = 0. By an outer induction on n we may assume that
E(m)∗(X) = 0 for each 0 ≤ m < n.
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Consider the tower of (left hand) distinguished triangles and (right hand) lo-
calization maps, in Ho(Sp).

E(n)
p

// E(n)
j

//

π

��

p−1E(n)

Σ|v1|E(n)/p
v1 // E(n)/p

j
//

π
��

ii

v−1
1 E(n)/p

...

π

��

Σ|vm|E(n)/Im
vm // E(n)/Im

j
//

π

��

v−1
m E(n)/Im

Σ|vm+1|E(n)/Im+1

vm+1
// E(n)/Im+1

j
//

π
��

ii

v−1
m+1E(n)/Im+1

...

π

��

Σ|vn−1|E(n)/In−1

vn−1
// E(n)/In−1

j
//

π

��

v−1
n−1E(n)/In−1

E(n)/In = K(n)

ii

We prove by an inner, descending, induction on m that (E(n)/Im)∗(X) = 0. For
m = n this holds by the assumption K(n)∗(X) = 0. Suppose that 0 ≤ m < n and
(E(n)/Im+1)∗(X) = 0. Then

vm : Σ|vm|(E(n)/Im)∗(X)
∼=−→ (E(n)/Im)∗(X)

is an isomorphism by exactness. Hence

j : (E(n)/Im)∗(X)
∼=−→ v−1

m (E(n)/Im)∗(X)

is a colimit of isomorphisms, and is therefore also an isomorphism. Here v−1
m E(n)/Im

can be built from v−1
m E(n) using cofiber sequences, as in the proof of Proposi-

tion 12.6.9(a), so that 〈v−1
m E(n)/Im〉 ≤ 〈v−1

m E(n)〉. Moreover,

v−1
m E(n)∗ = Z(p)[v1, . . . , vm−1, v

±1
m , vm+1, . . . , vn−1, v

±1
n ]

is Landweber exact of height m, so that 〈v−1
m E(n)〉 = 〈E(m)〉. By the outer in-

duction on n we know that E(m)∗(X) = 0, since m < n, so v−1
m E(n)∗(X) =

0 and v−1
m (E(n)/Im)∗(X) = 0. The displayed isomorphism j now shows that

(E(n)/Im)∗(X) = 0, which completes the inner inductive step from m + 1 to m.
We conclude that E(n)∗(X) = (E(n)/I0)∗(X) = 0, as required. �
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Proposition 12.6.13 ([Rav84, Prop. 1.27]). LE is smashing if and only if
〈LES〉 = 〈E〉. In particular, 〈LnS〉 = 〈E(n)〉.

Proof. If LE is smashing then LES ∧ LES ' LELES ' LES (so LES is a
solid ring spectrum). Hence X → X ∧ LES is an LES-homology equivalence. The
target is an LES-module, hence is LES-local by Adams’ Lemma 12.5.9, so X∧LES
is the LES-homology localization of X. Since it is also the E∗-localization, it follows
that (LES)∗(X) = 0 if and only if E∗(X) = 0, so that 〈LES〉 = 〈E〉.

Conversely, if LES and E are Bousfield equivalent, then since the LES-module
X ∧LES is LES-local it is also E-local, so that the E∗-equivalence X → X ∧LES
must be the E-localization map. Hence LE is smashing. �

Proposition 12.6.14. K(n) ∧ Ln−1X ' ∗ for each spectrum X.

Proof. Since Ln−1X ' X∧Ln−1S it suffices to prove that K(n)∧Ln−1S ' ∗,
i.e., that (Ln−1S)∗(K(n)) = 0. Since Ln−1S and E(n − 1) are Bousfield equiva-
lent, this is equivalent to E(n − 1)∗(K(n)) = 0, which we proved in Chapter 11,
Proposition 7.16. �

12.7. The chromatic tower

For each spectrum X and prime p we have a chromatic tower

X −→ X(p) −→ . . . −→ LnX −→ Ln−1X −→ . . . −→ L1X −→ L0X → ∗
in Ho(Sp), where all but the first object lie in Ho(Sp(p)), and the part from LnX
and to the right lies in Ho(LnSp). The complexity of these categories appears to
increase with n, so one can hope for a more complete understanding of Ho(LnSp)
than of Ho(Sp), for gradually increasing values of n.

There is an induced tower of homotopy groups

π∗(X) −→ π∗(X)⊗ Z(p) −→ . . . −→ π∗(LnX) −→ π∗(Ln−1X) −→ . . .

. . . −→ π∗(L1X) −→ π∗(L0X) ∼= π∗(X)⊗Q

with potentially interesting behavior on the p-power torsion part of π∗(X)(p) =
π∗(X)⊗ Z(p).

Definition 12.7.1. The chromatic filtration of π∗(X)(p) is the descending fil-
tration defined by letting

Fn+1π∗(X)(p) = ker(π∗(X(p)) −→ π∗(LnX))

be the graded subgroup of homotopy classes that are not detected at height ≤ n.
The filtration quotient

Fnπ∗(X)(p)

Fn+1π∗(X)(p)

is then the subquotient detected at height = n, and represents the chromatic
height n elements of π∗(X)(p).

Remark 12.7.2. This is understood at height 0 by rational cohomology, at
height 1 by topological K-theory and the image-of-J , but only partially at height 2
using topological modular forms and tmf-resolutions. See work by Mark Behrens
and coauthors. The elements in π∗(S)(p) that are detected in L1S are known as the
α-family, and there is a β-family of elements detected in L2S. The non-triviality of
the γ-family at height 3 was established by Miller–Ravenel–Wilson in [MRW77].
The construction of an explicit δ-family at height 4 remains an open problem.
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Nonetheless, there is the following positive result, known as the chromatic
convergence theorem, which tells us that we can in principle recover X from its
chromatic localizations LnX (for all sufficiently high n).

Theorem 12.7.3 (Hopkins–Ravenel [Rav92a, Thm. 7.5.7]). Let X be a finite
p-local spectrum. Then the natural map

X
'−→ holim

n
LnX

is an equivalence.

This is proved in [Rav92a, Ch. 8] as a consequence of the smash product
theorem. It is also true for some other X, but false e.g. for any nontrivial X with
π∗(X) bounded above and rationally trivial, since for these spectra LnX = 0 for all
n ≥ 0. For n ≥ 1 this follows from the chromatic fracture square in Theorem 12.7.5
below, since K(n)∗(X) = 0 and L̂nX ' ∗ whenever π∗(X) is bounded above.

One might hope to inductively obtain LnX from Ln−1X by building in the
height = n information not seen in the latter. For this, one might draw inspiration
from number theory. The square of commutative rings

Z(p)
//

��

Q

��

Zp // Qp

is (both a pushout and) a pullback. It follows that

M(p)
//

��

M ⊗Q

��

M∧p // (M∧p )⊗Q

is a pullback for each finitely generated Z(p)-module M . Here M∧p = limnM/pnM
denotes the algebraic p-completion, and satisfies M ⊗Zp ∼= M∧p when M is finitely
generated (over Z or Z(p)). This idea was carried over to (simply-connected or nilpo-
tent) spaces by Sullivan (notes from ca. 1970), and to spectra by Bousfield [Bou79b,
Prop. 2.9].

Theorem 12.7.4. For any spectrum X the square

X(p)
//

��

L0X = X ∧HQ

��

X∧p // L0(X∧p ) = X∧p ∧HQ

is a homotopy pullback.

This arithmetic fracture square concerns the situation

Spec(Fp) ⊂ Spf(Zp)
ı̂−→ Spec(Z(p))

j←− Q
where Spf(Zp) is a formal neighborhood of the closed point i : Spec(Fp)→ Spec(Z(p)).
The corresponding result for

Mn
fg

i−→M≤nfg

j←−M≤n−1
fg
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is the following chromatic fracture square, presumably due to Hopkins, cf. [Hov95,
Proof of Thm. 4.3].

Theorem 12.7.5. For any spectrum X the square

LnX //

��

Ln−1X

��

L̂nX // Ln−1(L̂nX)

is a homotopy pullback.

Remark 12.7.6. Hopkins has formulated a chromatic splitting conjecture about
the right hand vertical map Ln−1X → Ln−1(L̂nX), which predicts how LnX is de-

tected by the L̂mX for 0 ≤ m ≤ n. See [Hov95] for an early paper, and [BGH22]
for recent developments.

Here is a common generalization of these theorems (as explained by Neil Strick-
land on https://mathoverflow.net/q/91057), related to [Hov95, Lem. 4.1]. Note
that

〈D〉 ≤ 〈D ∨ E〉 ≥ 〈E〉
for any spectra D and E, so we have preferred natural transformations LD∨E → LD
and LD∨E → E.

Theorem 12.7.7. Suppose that D∗(Z) = 0 implies D∗(LEZ) = 0. Then

LD∨EX //

��

LEX

��

LDX // LE(LDX)

is a homotopy pullback for any spectrum X.

Proof. Let f : X → P denote the map to the homotopy pullback. We must
show that P is (D∨E)∗-local and that f is a (D∨E)∗-equivalence. If (D∨E)∗(Z) =
D∗(Z) ⊕ E∗(Z) = 0 then [Z,LDX] = [Z,LEX] = 0 and [ΣZ,LE(LDX)] = 0, so
[Z,P ] = 0 by the Mayer–Vietoris sequence for [Z,−]∗.

The map ηD : X → LDX is a D∗-equivalence, so f : X → P is a D∗-equivalence
if and only if P → LDX is a D∗-equivalence, which by the Mayer–Vietoris sequence
for D∗(−) is equivalent to LE(ηD) : LEX → LE(LDX) being a D∗-equivalence.
The cofiber Z = CηD of ηD : X → LDX is D∗-acyclic, so by assumption LEZ is
D∗-acyclic, which implies that LE(ηD) is a D∗-isomorphism.

Finally, ηE : X → LE is an E∗-equivalence, so f : X → P is an E∗-equivalence
if and only if P → LEX is one, which by the Mayer–Vietoris sequence for E∗(−)
is equivalent to ηE : LDX → LE(LDX) being an E∗-equivalence. This is obviously
true from the definition of LE . �

Proof of Theorem 12.7.4. In the arithmetic case, we apply this to p-localX
with D = S/p and E = HQ, in which case 〈S/p ∨HQ〉 = 〈S(p)〉 and (S/p)∗(Z ⊗
HQ) = 0 (with no hypothesis on Z). �

Proof of Theorem 12.7.5. In the chromatic case, we apply it to E(n)-local
X with D = K(n) and E = E(n−1), so that 〈D∨E〉 = 〈E(n)〉 by Theorem 12.6.12.
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We must verify that if K(n)∗(Z) = 0, then K(n)∗(Ln−1Z) = 0. This follows from
the smash product theorem Ln−1S ∧ Z ' Ln−1Z. �

Remark 12.7.8. If fact, K(n)∗(Ln−1X) = 0 for all X by Proposition 12.6.14,
but the proof uses the smash product theorem. For n ∈ {1, 2} we can prove directly
that K(n)∗(Ln−1X) = 0 for all X. Namely, L0X is rational, so K(n)∗(L0X) = 0
for all n ≥ 1. This proves the case n = 1 of the chromatic fracture square. To
prove that K(n)∗(L1X) = 0 for all n ≥ 2 we use this square to reduce to proving

that K(n)∗(L̂1X) = 0. By the Künneth isomorphism, it suffices to prove that

K(n)∗(L̂1X ∧ S/p) = 0. The Adams self-map v1 : Σ2p−2S/p → S/p is a K(1)-

equivalence, hence induces a self-equivalence of the K(1)-local spectrum L̂1X ∧
S/p = L̂1X/p. On the other hand, it induces zero in K(n)-homology for n ≥ 2. This

proves that K(n)∗(L̂1X/p) = 0. See Bauer’s article [DFHH14, Ch. 6, Thm. 3.6]
for this argument.

12.8. Monochromatic fibers

Definition 12.8.1. For each spectrumX we define the n-th colocalization CnX
and the n-th monochromatic fiber MnX by the homotopy (co-)fiber sequences

CnX −→ X
η−→ LnX

MnX −→ LnX −→ Ln−1X .

Here L−1X = ∗, so C−1X = X and M0X = L0X.

Lemma 12.8.2. Let 0 ≤ m ≤ n.
(a) Both Cn and Mn are exact, i.e., preserve homotopy (co-)fiber sequences.
(b) The natural maps

LmX
'−→ LmLnX

LmX
'−→ LnLmX

are equivalences.
(c) LmCnX ' ∗ and CnLmX ' ∗.
(d) The natural maps

CmCnX
'−→ CnX

CnCmX
'−→ CnX

are equivalences.
(e) There are natural equivalences

MnX
'−→ Cn−1LnX

MnX
'−→ LnCn−1X

Proof. (a) This follows since each Ln is exact.
(b) This follows from 〈E(m)〉 ≤ 〈E(n)〉 and Lemma 12.6.3.
(c) The first case uses exactness of Lm, the second holds by definition.
(d) The first holds by definition, the second uses exactness of Cn.
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(e) This uses the maps

MnX //

��

LnX // Ln−1X

'
��

Cn−1LnX // LnX
η
// Ln−1LnX

and

MnX //

��

LnX // Ln−1X

'
��

LnCn−1X // LnX
Lnη // LnLn−1X

of homotopy cofiber sequences. �

Remark 12.8.3. By analogy with the associated quasi-coherent sheaves overMfg,
we think of CnX as the part of X supported on the closed substack of height ≥ n+1,
and of MnX as the part of LnX over the height ≤ n open substack that is sup-
ported on the height = n closed substack. Equivalently, it is the localization to the
height = n open substack of the part Cn−1X supported on the closed height ≥ n
substack.

Taking homotopy fibers of the maps from X to the chromatic tower

MnX

��

Mn−1X

��

M1X

��

M0X

'
��

. . . // LnX // Ln−1X // . . . // L1X // L0X // ∗

(with monochromatic homotopy fibers) we obtain the geometric (= spectrum level)
chromatic filtration

. . . // CnX //

η

��

Cn−1X //

η

��

. . . // C1X //

η

��

C0X //

η

��

X

η

��

Mn+1X MnX M2X M1X M0X

of X (with monochromatic homotopy cofibers). This follows from the (partial)
braid diagram

CnX
$$

$$

X

η

%%

η

##

Ln−1X

Cn−1X

::

$$

LnX

::

MnX

;;

.
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By Lemma 12.8.2(e), the maps to the cofibers in the chromatic filtration are the
E(n)-localization maps

η : Cn−1X −→ LnCn−1X 'MnX .

Let C−1X = X. We can inductively describe the geometric chromatic filtration by
setting MnX = LnCn−1X and letting CnX be the homotopy fiber of the map η
displayed above, for each n ≥ 0.

Theorem 12.8.4 (Hovey–Strickland [HS99a, Thm. 6.19]). The natural maps

MnX
'−→MnL̂nX

L̂nMnX
'−→ L̂nLnX ' L̂nX

are equivalences. Hence Mn and L̂n induce mutually inverse equivalences of cate-
gories

Mn : Ho(L̂nSp) � Ho(MnSp) : L̂n

L̂nX ↔MnX

between the K(n)-local category and the n-monochromatic category.

Proof. The chromatic fracture square of Theorem 12.7.5 and the equivalence
L̂nX ' LnL̂nX induce equivalences

MnX ' Cn−1L̂nX 'MnL̂nX .

The vanishing of L̂nLn−1X (which follows from Proposition 12.6.14) and equiv-

alence L̂nX ' L̂nLnX induce equivalences

L̂nMnX ' L̂nLnX ' L̂nX .

�

Remark 12.8.5. This is reminiscent of a recollement situation, giving an equiv-
alence between sheaves supported on a closed substack and sheaves that are com-
plete along that substack. See Barwick–Glasman (arXiv:1607.02064) for a discus-
sion of this in the context of stable ∞-categories. In their notation, the Hovey–
Strickland equivalence corresponds to X = LnSp, U = Ln−1Sp, Z∧ = L̂nSp
and Z∨ = MnSp. The inclusion j∗ : Ln−1Sp → LnSp admits the left adjoint
j∗(X) = Ln−1S ∧ X and the right adjoint j×(X) = F (Ln−1S,X), so Ln−1Sp is

reflective and coreflective in LnSp. The inclusion i∧ : L̂nSp→ LnSp has a left ad-
joint i∧ with i∧i

∧ = L̂n, hence L̂nSp is reflective. The inclusion i∨ : MnSp→ LnSp
has a right adjoint i∨ with i∨i

∨ = Mn, so MnSp is coreflective. The functors
i∧i∨ : MnSp → L̂nSp and i∨i∧ : L̂nSp → MnSp lift the inverse equivalences of
Theorem 12.8.4 to the ∞-category level.

12.9. The chromatic filtration for MU

For any spectrum X, the Adams–Novikov spectral sequence (or MU -based
Adams spectral sequence) has the form

Es,t2 = Exts,tLB(L,MU∗(X)) =⇒s πt−s(X) .

Here Ext∗,∗LB(L,M) denotes Ext formed in the abelian category of LB-comodules.
The spectral sequence is strongly convergent ifX is bounded below, but convergence
for more general X is more subtle. Nonetheless, to study π∗LnX we are led to study
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MU∗(LnX) = π∗(MU ∧LnX) ∼= π∗(LnMU ∧X), where the isomorphism uses that
Ln is smashing.

Definition 12.9.1. Let R be a ring. For an R-module M and element x ∈ R
we write ΓxM for the x-power torsion and M/x∞ for the “x-power cotorsion” of M ,
defined as the kernel and the cokernel, respectively, of the localization homomor-
phism β : M → x−1M = M [1/x] away from x.

0→ ΓxM −→M
β−→ x−1M −→M/x∞ → 0

Definition 12.9.2. Let R be a ring spectrum. For an R-module spectrum M
and element y ∈ π∗(R) we write ΓyM for the y-power torsion and M/y∞ for the
“y-power cotorsion” of M , defined as the homotopy fiber and the homotopy cofiber,
respectively, of the localization map β : M → y−1M = M [1/y] away from y.

ΓyM −→M
β−→ y−1M

M
β−→ y−1M −→M/y∞

Clearly ΣΓyM 'M/y∞.

To study the homotopy cofiber sequence

CnS −→ Cn−1S
η−→ LnCn−1S = MnS

with associated long exact sequence

· · · →MU∗(Cn−1S)
η∗−→MU∗(MnS) −→MU∗−1(CnS)→ . . .

in MU -homology, we apply MU ∧ (−) to obtain the homotopy cofiber sequence

CnMU −→ Cn−1MU −→ LnCn−1MU = MnMU

of MU -module spectra with associated long exact sequence

· · · → π∗(Cn−1MU)
η∗−→ π∗(MnMU) −→ π∗−1(CnMU)→ . . .

in homotopy. This breaks up into short exact sequences, and can be made explicit
using the cotorsion notation above.

Theorem 12.9.3 ([Rav84, Thm. 6.1]). For each n ≥ 0 there is an isomorphism

0

��

0

��

Σnπ∗(Cn−1MU)
∼= //

η∗

��

MU∗/(p
∞, . . . , v∞n−1)

β

��

Σnπ∗(MnMU)
∼= //

��

v−1
n MU∗/(p

∞, . . . , v∞n−1)

γ

��

Σn+1π∗(CnMU)
∼= //

��

MU∗/(p
∞, . . . , v∞n−1, v

∞
n )

��

0 0

of short exact sequences of MU∗MU -comodules.
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Proof. Let n ≥ 0 and assume by induction that π∗(Cn−1MU) is as stated.
Once we prove that E(n)-localization on the MU -module spectrum Cn−1MU in-
duces algebraic localization away from vn, the formulas for π∗(MnMU) and π∗(CnMU)
follow, since β is injective in each case.

For brevity, let X = Cn−1MU . We must prove that

β : X −→ v−1
n X

is an E(n)-localization. This is the colimit of many composites of (desuspensions
of) the map

X
vn−→ Σ−|vn|X ,

each of which induces the isomorphism

vn : E(n)∗(X)
∼=−→ E(n)∗+|vn|(X)

in E(n)-homology (since vn is a unit in E(n)∗). Hence β is an E(n)-equivalence. It
remains to prove that v−1

n X is E(n)-local. Let Z be a spectrum with E(n)∗(Z) = 0.
Then

F (Z, v−1
n X) ' Fv−1

n MU (v−1
n MU ∧ Z, v−1

n X)

since v−1
n X is a v−1

n MU -module spectrum. Here v−1
n MU is a Landweber exact

theory of height n, so 〈v−1
n MU〉 = 〈E(n)〉 by Proposition 12.6.4. Hence E(n)∗(Z) =

0 implies v−1
n MU ∧ Z ' ∗, so the function spectra displayed above are trivial. In

particular, [Z, v−1
n X] = 0, proving E(n)-locality. �

Corollary 12.9.4. There a short exact sequence

0→MU∗
η−→MU∗(LnS) = π∗(LnMU) −→ Σ−nMU∗/(p

∞, . . . , v∞n )→ 0

of MU∗MU -comodules for each n ≥ 0, which is split as MU∗-modules for n ≥ 1,
and as MU∗MU -comodules for n ≥ 2.

12.10. The chromatic spectral sequence

We use the notations

L/I∞n = L/(p∞, . . . , v∞n−1)

v−1
n L/I∞n = v−1

n L/(p∞, . . . , v∞n−1) .

The MU -homology exact couple associated to the chromatic filtration of S, or
equivalently, the homotopy exact couple associated to the chromatic filtration
of MU , is simply given by the short exact sequences

(12.4) 0→ L/I∞n
β−→ v−1

n L/I∞n
γ−→ L/I∞n+1 → 0

for each n ≥ 0, spliced together in the following diagram.

. . . L/(p∞, v∞1 )

β

��

L/p∞

β

��

L

β

��

v−1
2 L/(p∞, v∞1 )

γ

ff

v−1
1 L/p∞

γ

gg

p−1L

γ

dd

The resulting long exact sequence

0→ L
β−→ p−1L

βγ−→ v−1
1 L/p∞

βγ−→ v−1
2 L/(p∞, v∞1 )→ . . .
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of LB-comodules is the Cousin complex for L, in the sense of [Har66, Ch. IV, §2],
cf. Hopkins–Gross [HG94, Table 1].

This LB-comodule resolution of L was used by Miller–Ravenel–Wilson [MRW77]
to construct the chromatic spectral sequence. They were studying the Adams–
Novikov spectral sequence

Es,t2 = Exts,tMU∗MU (MU∗,MU∗) = Exts,tLB(L,L) =⇒s πt−s(S)

converging (strongly) to the stable homotopy groups of spheres, also known as the
MU -based Adams spectral sequence. (To be precise, they worked the the p-local
version, based on BP .) The E2-term is given by Ext groups in the category of
LB-comodules. Here

E0,∗
2 = HomLB(L,L) = Z ∼= π0(S) ,

while E1,∗
2 was calculated by Novikov [Nov67b] and is closely related to π∗(Jp)

(especially for odd p) and the image-of-J in π∗(S). For p = 2, π∗(J2) is not entirely

accounted for by the Novikov 1-line E1,∗
2 . However, vn-periodic phenomena do in

a sense only appear in Adams–Novikov filtrations s ≥ n, in a way we now try to
clarify.

For each n ≥ 0 the short exact sequence (12.4) of LB-modules induces a long
exact sequence

· · · → Exts,∗LB(L,L/I∞n )
β−→ Exts,∗LB(L, v−1

n L/I∞n )

γ−→ Exts,∗LB(L,L/I∞n+1)
δ−→ Exts+1,∗

LB (L,L/I∞n )→ . . .

in LB-comodule Ext. These combine to an (unrolled) exact couple

. . . // Ext∗,∗LB(L,L/I∞n+1)
α // Ext∗,∗LB(L,L/I∞n ) //

β

��

. . .

Ext∗,∗LB(L, v−1
n L/I∞n )

γ

ii

and a trigraded spectral sequence
chromEn,s,t1 = Exts,tLB(L, v−1

n L/I∞n ) =⇒n Exts+n,tLB (L,L)

called the chromatic spectral sequence. The filtration n part chromEn,∗,∗1 of its E1-
term consists of vn-periodic families, and the subquotient chromEn,∗,∗∞ that survives
to the E∞-term of the chromatic spectral sequence gives the associated graded of the
so-called vn-periodic part of Ext∗,∗LB(L,L), i.e., of the Adams–Novikov E2-term. In
turn, the corresponding subquotient of the p-local Adams–Novikov E∞-term defines
the vn-periodic part of π∗(S)(p).

In view of Theorem 12.9.3, the filtration n part of the chromatic E1-term is also
the Adams–Novikov E2-term for ΣnMnS:

Ext∗,∗LB(L, v−1
n L/I∞n ) ∼= Ext∗,∗LB(L,MU∗(Σ

nMnS))

=⇒ π∗(Σ
nMnS) .

((ETC: Discuss convergence, using Hovey–Sadofsky [HS99b, Thm. 5.3].))
The chromatic resolution, or Cousin complex, of L = MU∗ by LB = MU∗MU -

comodules, can be viewed as a resolution by LB-injective (co-)modules in the sense
of [JLY81], i.e., L-modules N such that Exts,∗L (M,N) = 0 for all LB-comodules M
and s > 0.
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12.11. The Morava change-of-rings isomorphism

Any morphism of flat Hopf algebroids (or stacks) inducing an equivalence of
categories of comodules (or quasi-coherent sheaves) will also induce an isomor-
phism between Ext-groups formed in these abelian categories. This is the basis
for the Morava change-of-rings theorem, various forms of which have been pub-
lished by Morava [Mor85, §1], Miller–Ravenel [MR77, Thm. 2.10, Thm. 3.10],
Hovey–Sadofsky [HS99b, Thm. 3.1], Hovey–Strickland [HS05a, §4] and Nau-
mann [Nau07, §5]. In particular, this applies to the morphism of Hopf algebroids
induced by the ring spectrum map v−1

n MU → E(n).

Theorem 12.11.1 (Miller–Ravenel [MR77, Thm. 3.10], Hovey–Strickland [HS05a,
(4.9)]). There is a natural isomorphism

Ext∗,∗LB(L, v−1
n M) ∼= ExtE(n)∗E(n)(E(n)∗, E(n)∗ ⊗L v−1

n M)

for each LB-comodule v−1
n M on which vn acts invertibly. In particular,

Ext∗,∗LB(L, v−1
n L/I∞n ) ∼= ExtE(n)∗E(n)(E(n)∗, E(n)∗/I

∞
n ) .

There are short exact sequences of LB-comodules

0→ v−1
n L/(p, . . . , vm, v

∞
m+1, . . . , v

∞
n−1) −→ v−1

n L/(p, . . . , vm−1, v
∞
m , . . . , v

∞
n−1)

vm−→ Σ−|vm|v−1
n L/(p, . . . , vm−1, v

∞
m , . . . , v

∞
n−1)→ 0

for 0 ≤ m < n, giving rise to long exact sequences connecting the groups

Ext∗,∗LB(L, v−1
n L/(p, . . . , vm−1, v

∞
m , . . . , v

∞
n−1))

∼= Ext∗,∗E(n)∗E(n)(E(n)∗, E(n)∗/(p, . . . , vm−1, v
∞
m , . . . , v

∞
n−1))

for 0 ≤ m ≤ n. These can be viewed as a sequence of n algebraic vm-Bockstein
spectral sequences, starting with

(12.5) Ext∗,∗LB(L, v−1
n L/In) ∼= Ext∗,∗E(n)∗E(n)(E(n)∗, E(n)∗/In)

for m = n and ending with the chromatic E1-term

Ext∗,∗LB(L, v−1
n L/I∞n ) ∼= Ext∗,∗E(n)∗E(n)(E(n)∗, E(n)∗/I

∞
n )

for m = 0.

Remark 12.11.2. A Smith–Toda complex of type n is a finite spectrum V (n−1)
with MU∗(V (n − 1)) ∼= MU∗/In. Its homology then satisfies H∗(V (n − 1);Fp) ∼=
Λ(τ0, . . . , τn−1). We have V (−1) = S and V (0) = S/p for each prime p. The
spectra V (1) exist for p ≥ 3, the spectra V (2) exist for p ≥ 5, and the spectra V (3)
exist for p ≥ 7, cf. [Smi71], [Tod71]. No spectra V (n− 1) for n ≥ 5 are known to
exist for any prime, cf. [Rav86, (5.6.13)].

When V (n) exists, there exists a map vn : Σ2pn−2V (n−1)→ V (n−1) inducing
multiplication by vn in MU -homology, with homotopy cofiber V (n). We write
v−1
n V (n − 1) for the mapping telescope. Since (E(n − 1)∗V (n − 1) = 0, so that)
Cn−1V (n− 1) ' V (n− 1) there is a canonical map

v−1
n V (n− 1) −→MnV (n− 1) ' LnV (n− 1) ,

inducing an isomorphism in MU -homology. The starting point (12.5) for the n
algebraic Bockstein spectral sequences is thus also the Adams–Novikov E2-term for
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v−1
n V (n− 1) and for LnV (n− 1), when these spectra exist:

Ext∗,∗LB(L, v−1
n L/In) ∼= Ext∗,∗LB(L,MU∗(v

−1
n V (n− 1)))

∼= Ext∗,∗LB(L,MU∗(LnV (n− 1))) .

Convergence to π∗(LnV (n−1)) is known by [HS99b, Thm. 5.3], while convergence
to π∗(v

−1
n V (n − 1)) = v−1

n π∗V (n − 1) is equivalent to the telescope conjecture at
height n, which is no longer expected to hold for n ≥ 2.

In (12.5) we have E(n)∗/In = K(n)∗, and since E(n)∗E(n) is flat over E(n)∗,
there is a further change-of-rings isomorphism

Ext∗,∗E(n)∗E(n)(E(n)∗, E(n)∗/In) ∼= Ext∗,∗Σ(n)∗
(K(n)∗,K(n)) .

Here

Σ(n)∗ := K(n)∗(E(n)) = K(n)∗ ⊗L LB ⊗L E(n)∗ ∼= K(n)∗ ⊗L LB ⊗L K(n)∗

since In is invariant.

Definition 12.11.3. Let

Σ(n)∗ = K(n)∗(E(n)) ∼= K(n)∗ ⊗L LB ⊗L K(n)∗

be the n-th Morava stabilizer algebra, which is a graded commutative Hopf algebra
over K(n)∗. (This does not contain the n exterior classes present in K(n)∗(K(n)).
See Remark 12.11.6.) Let

Σ(n)∗ = K(n)∗(E(n)) ∼= HomK(n)∗(Σ(n)∗,K(n)∗)

be the (Cartier) dual Hopf algebra.

Using formulas from [Rav76a] for the Hopf algebroid structure maps in the
p-typical version of (L,LB), modulo the invariant prime ideal In, Ravenel made
the Hopf algebra structure of Σ(n) explicit. It is a sequential colimit of finite étale

extensions of the form A → A[ti]/(vnt
pn

i = vp
i

n ti). ((ETC: Ignoring the grading,

and setting vn = 1, this reads A→ A[ti]/(t
pn

i = ti), which is étale of degree pn.))

Proposition 12.11.4 (Ravenel [Rav76b, Prop. 1.3, Thm. 2.3]). There are
algebra isomorphisms

Σ(n)∗ = K(n)∗[ti | i ≥ 1]/(vnt
pn

i = vp
i

n ti)

and

Σ(n)∗ ⊗ Fpn ∼= K(n)∗[[S0
n]]⊗ Fpn

(up to grading), where S0
n is the strict Morava stabilizer group of Hn.

Remark 12.11.5. This can be deduced from the Devinatz–Hopkins K(n)-local

pro-Gn-Galois extension L̂nS = LK(n)S → En, since the sub-extension L̂nE(n)→
En with Galois group (Fpn)× o Gal, and its mod In reduction K(n) → Kn, gives
isomorphisms

E∗n(En) ∼= E∗n〈〈Gn〉〉
E∗n(E(n)) ∼= E∗n〈〈S0

n〉〉
K∗n(E(n)) ∼= K∗n〈〈S0

n〉〉
K(n)∗(E(n))⊗ Fpn ∼= K(n)∗[[S0

n]]⊗ Fpn .
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The last step amounts to taking F×pn -invariants, and does not properly preserve the
grading.

To summarize: The E2-term of the Adams–Novikov spectral sequence

Es,t2 = Exts,∗LB(L,L) =⇒s π∗(S)

is the abutment of the chromatic spectral sequence
chromEn,∗,∗1 = Ext∗,∗LB(L, v−1

n L/I∞n ) =⇒n Ext∗,∗LB(L,L) .

Here layer n of the E1-term is the abutment of a sequence of n Bockstein spectral
sequences starting with

Ext∗,∗LB(L, v−1
n L/In) ∼= ExtE(n)∗E(n)(E(n)∗,K(n)∗) ∼= ExtΣ(n)∗(K(n)∗,K(n)∗) ,

where Σ(n)∗ = K(n)∗E(n) is the Morava stabilizer algebra. After a small field
extension (and some regrading) this is isomorphic to the continuous group coho-
mology

Ext∗,∗Σ(n)∗
(K(n)∗,K(n)∗)⊗ Fpn ∼= H∗c (S0

n;Fpn)⊗K(n)∗

of the strict Morava stabilizer group.
((ETC: Truncating the chromatic spectral sequence to the part chromEm,∗,∗1 with

0 ≤ m ≤ n calculates the E2-term Ext∗,∗LB(L,MU∗(LnS)) of the Adams–Novikov
spectral sequence for π∗(LnS).))

Remark 12.11.6. Tobias Barthel and Piotr Pstragowski (arXiv:2111.06379)
recently proved conditional convergence of theK(n)-based Adams spectral sequence

Es,t2 = ExtK(n)∗K(n)(K(n)∗,K(n)∗(X)) =⇒s πt−s(L̂nX)

for all spectra X, and strong convergence for K(n)-locally (strongly) dualizable X,
including X = S.

12.11.1. Height one. For n = 1, S0
1 = 1 + pZp, so its group cohomology is

easily calculated, recovering Novikov’s results for p > 2 and for p = 2.

Proposition 12.11.7.

H∗c (S0
1;Fp) ∼= H∗c (1 + pZp;Fp) ∼=

{
Λ(ζ1) for p odd,

Λ(ζ1)⊗ F2[ρ1] for p = 2,

where ζ1 and ρ1 lie in H1
c , corresponding to homomorphisms 1 + pZp → Fp. Hence

Ext∗,∗Σ(1)∗
(K(1)∗,K(1)∗) ∼=

{
Λ(ζ1)⊗K(1)∗ for p odd,

Λ(ζ1)⊗ F2[ρ1]⊗K(1)∗ for p = 2,

with K(1)∗ = Fp[v±1
1 ], where ζ1 and ρ1 lie in Ext1,0 and v1 lies in Ext0,2p−2.

Corollary 12.11.8. For p odd,

π∗(L1S/p) ∼= Λ(ζ1)⊗ Fp[v±1
1 ] = Λ(α1)⊗ Fp[v±1

1 ] ∼= π∗(J/p) ,

where ζ1 has degree −1 and α1 = ζ1v1 has degree 2p− 3.

((ETC: For p = 2 there is an Adams–Novikov differential d3(v2
1) = η3 leaving

E∞ = Λ(ζ1)⊗ F2{1, η, η2} ⊗ F2{1, v1} ⊗ F2[v±4
1 ] ,

with η = ρ1v1. Draw the chart. This is the associated graded of π∗(L1S/2) ∼=
π∗(J/2). Note the difference in filtrations compared to the Adams spectral sequence
for π∗(j/2). See Chapter 5, Section 8, Figure 2.))
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ζ1v
−1
1 ζ1 . ζ1v1 ζ1v

2
1

. v−1
1 . . . 1 . . . v1 . . . v2

1

−q−1 −q −1 0 q−1 q 2q−1 2q

Figure 12.1. Adams–Novikov spectral sequence chart for L1S/p,
with p odd and q = 2p− 2; multiplications by α1 ∈ {ζ1v1} drawn
as solid lines

The passage from ExtLB(L, v−1
1 L/p) ∼= ExtΣ(1)∗(K(1)∗,K(1)∗) to

ExtLB(L, v−1
1 L/p∞) ∼= ExtE(1)∗E(1)(E(1)∗, E(1)∗/p

∞)

was essentially done by Novikov, suffices to determine π∗(L̂1S) and π∗(L1S), and

confirms that L̂1S ' J∧p at all primes p.

12.11.2. Height two. For n = 2, the cohomology of the pro-p-group S0
2 was

calculated in [Rav77, Thms. 3.2, 3.3, 3.4] for the cases p ≥ 5, p = 3 (corrected
in the second edition of Ravenel’s green book [Rav86, §6.3], following Henn), and
p = 2 (up to possible multiplicative extensions).

Proposition 12.11.9. For p ≥ 5,

Ext∗,∗Σ(2)∗
(K(2)∗,K(2)∗) ∼= Λ(ζ2)⊗ Fp{1, h10, h11, g0, g1, h10g1 = g0h11} ⊗K(2)∗

with K(2)∗ = Fp[v±1
2 ], where

ζ2 ∈ Ext1,0

h10 = [t1] ∈ Ext1,2p−2

h11 = [tp1] ∈ Ext1,2p2−2p

g0 = 〈h10, h11, h10〉 ∈ Ext2,2p2+2p−4

g1 = 〈h11, h10, h11〉 ∈ Ext2,4p2−2p−2

h10g1 = g0h11 ∈ Ext3,4p2−4

v2 ∈ Ext0,2p2−2 .

For odd primes p the passage from

Exts,∗LB(L, v−1
2 L/(p, v1)) ∼= Exts,∗Σ(2)∗

(K(2)∗,K(2)∗)

to

Exts,∗LB(L, v−1
2 L/(p, v∞1 )) ∼= Exts,∗E(2)∗E(2)(E(2)∗, E(2)∗/(p, v

∞
1 ))

is carried out by Miller–Ravenel–Wilson [MRW77, §5] for s = 0, and partially for
s = 1, using the LB-comodule extension

0→ v−1
2 L/(p, v1) −→ v−1

2 L/(p, v∞1 )
v1−→ Σ−|v1|v−1

2 L/(p, v∞1 )→ 0 .

The further passage to

Exts,∗LB(L, v−1
2 L/(p∞, v∞1 )) ∼= Exts,∗E(2)∗E(2)(E(2)∗, E(2)∗/(p

∞, v∞1 ))
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−4 •

−3 • • •

−2 • • g0 g1

−1 ζ2 h10 h11

0 1

−1 0 q − 1 pq − 1 (2p+ 2)q − 3

Figure 12.2. Adams–Novikov spectral sequence chart for
L2V (1), with p ≥ 5 and q = 2p − 2, omitting K(2)∗ = Fp[v±1

2 ];
multiplications by α1 ∈ {h10} are drawn as solid lines, those by
β′1 ∈ {h11} as dashed lines

is carried out for s = 0 in [MRW77, §6], using the LB-comodule extension

0→ v−1
2 L/(p, v∞1 ) −→ v−1

2 L/(p∞, v∞1 )
p−→ v−1

2 L/(p∞, v∞1 )→ 0 .

The case p = 2 of these calculations is carried out by Shimomura in [Shi81].
For primes p ≥ 5, Shimomura–Yabe [SY95] determine these Ext groups for

all s, which suffices to determine π∗(L̂2S) and π∗(L2S) at these primes. This
amazingly complex calculation was revisited by Behrens in [Beh12].

The paper [SW02a] by Shimomoura–Wang obtains these results for p = 3.
The paper [SW02b] by Shimomoura–Wang obtains the Adams–Novikov E2-term
for π∗(L2S) at p = 2. At p = 2, recent papers by Beaudry, Bobkova, Goerss
and Henn ((ETC: and others?)) make progress towards calculating π∗(L2S/2) and
π∗(L2S).

12.11.3. Height three. For n = 3 and p ≥ 5, the cohomology of S0
3 was ad-

ditively determined in [Rav77, Thm. 3.8]. Its algebra structure for p ≥ 3 was cal-
culated by Yamaguchi [Yam92]. Some deductions are made by Kato–Shimomura
in [KS12]. See also Gu–Wang–Wu [GWW21].





CHAPTER 13

Telescopic localization

13.1. The thick subcategory theorem

Implicitly, suppose that all spectra are p-local, for a fixed prime p.
The stable homotopy category Ho(Sp) is a triangulated category, with Puppe

cofiber sequences as its distinguished triangles. The analogues of Serre classes and
hereditary torsion theories for triangulated categories are called thick and localizing
subcategories, respectively. The full subcategory Ho(Spω) of finite spectra is also
triangulated, but does not admit infinite coproducts.

Definition 13.1.1 ([HS99a, Def. 1.3]). A thick subcategory T of a trian-
gulated category C is a full subcategory that closed under cofiber sequences and
retracts, meaning that

• if X → Y → Z → ΣX is a distinguished triangle and two of X, Y and Z
are in T , then so is the third, and

• if X is a retract of Y and Y is in T , then X is in T .

A property of objects of C is said to be generic if the class of objects with
that property is closed under cofiber sequences and retracts, i.e., spans a thick
subcategory.

A localizing subcategory T of a triangulated category C (with all coproducts)
is a thick subcategory that is closed under coproducts, meaning that

• if {Xα}α∈J is a set of objects in T , then
∐
α∈J Xα is an object in T .

The n-th term LnX = LE(n)X in the chromatic tower

X −→ . . . −→ LnX −→ Ln−1X −→ . . . −→ L0X

of localization functors is the left adjoint in an adjunction

Ln : Ho(Sp) � Ho(LnSp) : U .

It annihilates the localizing subcategory

Ho(Sp≥n+1) := {Z | LnZ ' ∗} = {Z | E(n)∗(Z) = 0} ⊂ Ho(Sp)

of (p-local) E(n)-acyclic spectra. When restricted to (p-local) finite spectra F , it
annihilates the thick subcategory

Ho(Spω≥n+1) := {F | LnF ' ∗} = {F | E(n)∗(F ) = 0} ⊂ Ho(Spω)

of finite E(n)-acyclic spectra. These full subcategories are the preimages under
MU∗(−) : Ho(Sp)→ LB− coMod of the hereditary torsion theory Tn.

253
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Ho(Spω≥n+1) // //

** **

Ho(Spω)
**

**

��
Ho(Sp≥n+1) // //

��

Ho(Sp) Ln //

MU∗(−)

��

Ho(LnSp)

E(n)∗(−)

��

LB− coModfp

**

Tn // LB− coMod
g∗n // E(n)∗E(n)− coMod

Definition 13.1.2. A finite (p-local) spectrum F has type ≥ n if E(n −
1)∗(F ) = 0, i.e., if F ∈ Ho(Spω≥n). It has type = n if E(n − 1)∗(F ) = 0 and

E(n)∗(F ) 6= 0.

Example 13.1.3. A Smith–Toda complex V (n − 1) has type = n, when it
exists.

Stephen Mitchell proved that there are finite spectra of each (chromatic) type.
Let A(n) ⊂ A denote the finite subalgebra generated by Sq1, . . . , Sq2n for p =

2, or by β, P 1, . . . , P p
n−1

for p odd. It contains the exterior algebra Λ(Q0, . . . , Qn)
on the first Milnor primitives.

Theorem 13.1.4 (Mitchell [Mit85, Thm. B]). For each prime p and integer
n ≥ 0 there exists a finite spectrum F (n) such that

• H∗(F (n);Fp) is a (finitely generated) free module over A(n− 1),
• K(m)∗(F (n)) = 0 for 0 ≤ m < n, and
• K(n)∗(F (n)) 6= 0,

so that F (n) has type = n.

The proof uses the Steinberg idempotent from representation theory to split
F (n) off as a summand of the suspension spectrum of a homogeneous space SO(2n)/(Z/2)n

for p = 2 or U(pn)/(Z/p)n for p odd.

Lemma 13.1.5. Let F be a finite p-local spectrum. If F is not contractible, then
F has type = n for some finite 0 ≤ n <∞. Otherwise, F has type ≥ n for all n.

Proof. The homology H∗(F ;Fp) = 0 is concentrated in a finite range 0 ≤ ∗ ≤
d. Choose n so large that |vn| = 2pn−2 ≥ d. Then the Atiyah–Hirzebruch spectral
sequence

E2
s,t = Hs(F ;K(n)t) =⇒s K(n)s+t(F )

collapses at the E2-term for bidegree reasons. Hence K(n)∗(F ) = 0 if and only if
H∗(F ;Fp) = 0. For finite p-local F this happens if and only if F is contractible.
Hence, for non-contractible F there exist n such that K(n)∗(F ) 6= 0. The minimal
such n is then the exact type of F , which is finite. �

Let Ho(Spω≥0) be the category of all p-local finite spectra, and let Ho(Spω≥∞)
be the category of all contractible finite spectra, so that there are proper inclusions

Ho(Spω(p)) = Ho(Spω≥0) ) · · · ) Ho(Spω≥n) ) Ho(Spω≥n+1) ) · · · ) Ho(Spω≥∞) .

The Hopkins–Smith thick subcategory theorem asserts that these account for all
the thick subcategories of the category of finite spectra.

Theorem 13.1.6 (Hopkins–Smith [HS98, Thm. 7]). If T ⊂ Ho(Spω) is a thick
subcategory of the triangulated category of p-local finite spectra, then T = Ho(Spω≥n)
for some 0 ≤ n ≤ ∞.
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This is proved as a consequence of the Devinatz–Hopkins–Smith nilpotence
theorem (Chapter 11, Theorem 4.3 or 4.4). See also [Rav92a, Ch. 5]. As a hint
of how thick subcategories/generic properties are related to nilpotence, note that if
f : ΣdX → X is a self-map and X lies in a thick subcategory T , then Cf also lies
in T . Conversely, if Cf lies in T , then the braid diagram

Σ2dX

f2

$$

Σdf

##

X
%%

##

Cf

ΣdX

f
;;

##

C(f2)

<<

ΣdCf

;;

shows that C(f2) lies in T . By induction, C(f2i) lies in T for all i ≥ 0. If we now

assume that f is nilpotent, so that f2i ' ∗ for some i, then C(f2i) ' X ∨Σ2id+1X
contains X as a retract, which implies that X also lies in T .

Remark 13.1.7. An algebraic analogue of the thick subcategory theorem, clas-
sifying the Serre subcategories of LB− coModfp, is stated as [Rav92a, Thm. 3.4.2].

Working p-locally, these are the full subcategories LB− coModfp
≥n of vn−1-power tor-

sion comodules, for 0 ≤ n ≤ ∞. The proof is corrected in [JLR96, Thm. 1.6], and
is an application of the Landweber filtration theorem (Chapter 11, Theorems 7.1
and 7.2.).

Remark 13.1.8. The Hopkins–Ravenel smash product theorem (Chapter 11,
Theorem 5.14) is proved [Rav92a, §8] using the thick subcategory theorem. One
needs to prove that the E(n)-local sphere LnS is E(n)-nilpotent, i.e., lies in the
thick ideal of Ho(Sp) generated by E(n). The full category of finite spectra F for
which LnF is E(n)-nilpotent is a thick subcategory, so to prove that it contains S
it suffices to show that it contains some rationally nontrivial spectrum F with this
property. This is then carried out.

The coherent sheaves MU∗(F )∼ associated to finite spectra F have “closed”
support that is invariant under specialization (to greater heights), in the following
sense.

Theorem 13.1.9 (Ravenel [Rav84, Thm. 2.11]). Let F be a finite spectrum.
Then

dimK(n)∗ K(n)∗(F ) ≤ dimK(n+1)∗ K(n+ 1)∗(F )

for all n ≥ 0. In particular, K(n)∗(F ) 6= 0 implies K(n + 1)∗(F ) 6= 0, while
K(n + 1)∗(F ) = 0 implies K(n)∗(F ) = 0. Hence K(n)∗(F ) = 0 if and only if
E(n)∗(F ) = 0.

Proof. Consider theMU -module spectrum E = E(n+1)/In = E/(p, . . . , vn−1),
with coefficient ring E∗ = Fp[vn, v±1

n+1]. (For n = 0, this is to be read as E∗ =

E(1)∗ = Z(p)[v
±1
1 ].) Since E∗ is a graded PID (= principal ideal domain) and F is

finite, E∗(F ) is a finite direct sum of cyclic E∗-modules, i.e., of a free summands
E∗ and b torsion summands E∗/v

k
n for k ≥ 1, up to suspensions.
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The number a of free summands is the same as the dimension of v−1
n E∗(F ) over

v−1
n E∗ = Fp[v±1

n , v±1
n+1], which by Johnson–Wilson [JW75, Thm. 3.1], is the same

as dimK(n)∗ K(n)∗(F ). ((ETC: This uses that B(n)∗(F ) is a free B(n)∗-module,
which follows since there are no invariant ideals in B(n)∗ other than (0) and (1).))

The cofiber sequence Σ|vn|E
vn−→ E −→ K(n+1) induces a universal coefficient

short exact sequence

0→ K(n+ 1)∗ ⊗E∗ E∗(F )→ K(n+ 1)∗(F )→ TorE∗1 (K(n+ 1)∗, E∗−1(F ))→ 0 .

Each free summand E∗ contributes a copy of K(n+1)∗ to the left hand term. Each
vn-power torsion summand E∗/v

k
n contributes one copy of K(n + 1)∗ at the left

hand side and one copy at the right hand side. Hence dimK(n+1)∗ K(n+ 1)∗(F ) =
a + 2b ≥ a = dimK(n)∗ K(n)∗(F ). ((ETC: If F were not finite, then E∗(F ) could

contain uniquely vn-divisible summands such as v−1
n E∗, which would contribute to

K(n)∗(F ) but not to K(n+ 1)∗(F ).))
The final claim follows from 〈E(n〉 = 〈K(0)〉 ∨ · · · ∨ 〈K(n)〉. �

Corollary 13.1.10. A finite p-local spectrum has type ≥ n if and only if
K(n−1)∗(F ) = 0. It has type = n if and only if K(n−1)∗(F ) = 0 and K(n)∗(F ) 6=
0.

This does not explicitly refer to Johnson–Wilson E(n)-theory, and is the more
usual way of defining (chromatic) type ≥ n, but relies on Theorem 13.1.9 to make
good sense.

Example 13.1.11. A finite p-local spectrum F has type 0 if and only ifH∗(F ;Q) ∼=
π∗(F ) ⊗ Q is nonzero. It has type ≥ 1 if and only if H∗(F ;Q) ∼= π∗(F ) ⊗ Q = 0.
In that case it has type = 1 if and only if K(1)∗(F ) 6= 0, which is equivalent to
KU∗(F ) 6= 0. It has type ≥ 2 if and only if K(0)∗(F ) = 0 and K(1)∗(F ) = 0, which
is equivalent to KU∗(F ) = 0. The Moore spectrum F = V (0) = S/p = S ∪p e1 has
type 1, while (for p odd) the cofiber V (1) = S/(p, v1) = S∪pe1∪α1 e

2p−1∪pe2p of the
Adams self-map v1 : Σ2p−2S/p→ S/p has type ≥ 2, since KU∗(S/p) = KU∗/p 6= 0
while KU∗(S/(p, v1)) = 0.

Example 13.1.12. In Chapter 11, Remark 2.5 we saw that dimK(n)∗ K(n)∗(BCp)
is finite, and grows with n, even if BCp is not a finite spectrum. In the K(n)-local

category the spectra L̂nΣ∞BG+ are in fact dualizable, for all finite groups G, hence
are somewhat close to being finite in that category [Rav82], [HS99a, Cor. 8.7].

In contrast to Ravenel’s result for finite spectra F , Jeremy Hahn proved that
H∞ ring spectra R (and even less ring structure is needed) have “open” support
that is invariant under generalization (to lower heights).

Theorem 13.1.13 (Hahn (arXiv:1612.04386)). Let R be an H∞ ring spectrum.
If K(n)∗(R) = 0 for some n ≥ 0, then K(n+ 1)∗(R) = 0. Hence K(n+ 1)∗(R) 6= 0
implies K(n)∗(R) 6= 0.

The orthogonality result K(n)∗(K(m)) = 0 for n 6= m (Chapter 12, Proposi-
tion 6.10) shows that for general p-local spectra X the support

{n ≥ 0 | K(n)∗(X) 6= 0}
can be arbitrary, often being invariant neither under specialization nor under gen-
eralization.
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13.2. The periodicity theorem

Definition 13.2.1. Let F be a finite p-local spectrum and n ≥ 0. A map
v : ΣdF → F is said to be a vn self-map if

K(m)∗(v) : K(m)∗(Σ
dF ) −→ K(m)∗(F )

is multiplication by a power of vn for m = n, and zero otherwise.

Multiplication by p defines a v0 self-map p : F → F for any F in Ho(Spω(p)).
The Adams self-maps v1 : Σ2p−2S/p→ S/p (for p odd) and v4

1 : Σ8S/2→ S/2 (for
p = 2) are v1 self-maps. Sometimes one refines the terminology, and calls v a
vkn self-map if K(n)∗(v) is multiplication by vkn, and says vn-power self-map if the
exponent k is not specified. If a vn-power self-map exists, one may always find one
where the exponent k = pN is a power of p.

Hopkins–Smith [HS98, §3] show that the property of admitting a vn self-map,
for a fixed n ≥ 0, is generic. In other words, the collection of such F generates a
thick subcategory of Ho(Spω(p)). By the thick subcategory theorem it must therefore

be Ho(Spω≥m) for some 0 ≤ m ≤ ∞. In fact, m = n.

Theorem 13.2.2 (Hopkins–Smith [HS98, Thm. 9]). Let p be a prime and
n ≥ 0 an integer. A finite p-local spectrum admits a vn self-map if and only if it
has (chromatic) type ≥ n.

Outline of proof. One implication is easy: Let v : ΣdF → F be a vn self-
map, with homotopy cofiber Cv. The case m = n of the long exact sequence

(13.1) · · · → K(m)∗(Σ
dF )

K(m)∗(v)−→ K(m)∗(F ) −→ K(m)∗(Cv)→ . . .

shows that K(n)∗(Cv) = 0, since K(n)∗(v) is an isomorphism. If F had type
m < n then the sequence would also show that K(m)∗(Cv) ∼= K(m)∗(F ) ⊕
K(m)∗(Σ

d+1F ) 6= 0, since K(m)∗(v) = 0 and K(m)∗(F ) 6= 0. This contradicts
Theorem 13.1.9 for the finite spectrum Cv.

It follows that the thick subcategory of spectra admitting vn self-maps is con-
tained in Ho(Spω≥n). To prove equality, it suffices to exhibit a single finite spec-

trum of type n admitting a vn self-map. This is done in [HS98, §4] and [Rav92a,
App. C]. Jeff Smith used idempotents in the group rings of symmetric groups to
construct a spectrum with particular cohomology as a module over the Steenrod
algebra ((ETC: and more)), and the Adams spectral sequence is then used to con-
struct the vn self-map.

Once this one type n spectrum with a vn self-map has been constructed, it
follows from the thick subcategory theorem that every spectrum if type ≥ n admits
such maps. This is a powerful existence result. �

Note that E(m)∗(F ) = 0 if and only if v−1
m MU∗(F ) = 0, since E(m)∗ and

v−1
m MU∗ are both Landweber exact of height m, so a finite spectrum F has type
≥ n if and only if the LB-comodule MU∗(F ) satisfies v−1

n−1MU∗(F ) = 0.
The periodicity theorem has the following algebraic precursor.

Proposition 13.2.3 ([Rav92a, Cor. 3.3.9]). Let M be a finitely presented LB-
comodule. Then vkn : Σk|vn|M → M is an LB-comodule homomorphism for some
k > 0 if and only if v−1

n−1M = 0.
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Proof. The proof uses the Landweber filtration theorem (Chapter 11, Theo-
rems 7.1 and 7.3), giving a filtration

0 = M(0) ⊂ · · · ⊂M(s− 1) ⊂M(s) ⊂ · · · ⊂M(`) = M

by finitely presented LB-comodules, where M(s)/M(s− 1) = ΣdsL/Ins .
If vkn : Σk|vn|M →M commutes with the LB-coaction, then so does its restric-

tion to M(s) for each s, hence also its corestriction to M(s)/M(s− 1). But multi-
plication by vkn acts as an LB-comodule homomorphism on L/Im only for m ≥ n,
by the calculation P (L/Im) = Fp[vm] of LB-comodule primitives (Chapter 11,

Theorem 7.2). Hence ns ≥ n for each 1 ≤ s ≤ `, which implies v−1
n−1L/Ins = 0,

v−1
n−1M(s) = 0 and v−1

n−1M = 0.

Conversely, if v−1
n−1M = 0 then ns ≥ n for each 1 ≤ s ≤ `. It follows that M is

annihilated by I`n. By the invariance of vn under strict isomorphisms (Chapter 10,
Lemma 4.10)

ηL(vn) ≡ ηR(vn) mod LB · In ,
which implies that

ηL(vp
`−1

n ) ≡ ηR(vp
`−1

n ) mod LB · I`n .

It follows that vkn = vp
`−1

n is LB-comodule primitive in LB/I`n, and acts on M as
an LB-comodule homomorphism. �

Lemma 13.2.4. If F has type = n and v : ΣdF → F is a vn self-map then Cf
has type = n+ 1.

Proof. We have K(m)∗(F ) = 0 for m < n and K(m)∗(F ) 6= 0 for m ≥ n.
Moreover, K(m)∗(v) is an isomorphism for m = n and zero for m > n. By (13.1)
it follows that K(m)∗(Cv) = 0 for m ≤ n and K(m)∗(Cv) 6= 0 for m > n. �

Example 13.2.5. The periodicity theorem provides an alternative approach to
the existence Theorem 13.1.4 (but Smith’s construction is no easier than Mitchell’s).
To start an induction, let F (0) = S. For n ≥ 0, suppose we have constructed a

type n finite spectrum F (n) = S/(pi0 , vi11 , . . . , v
in−1

n−1 ), with is ≥ 1 for 0 ≤ s < n and

MU∗(S/(p
i0 , vi11 , . . . , v

in−1

n−1 )) ∼= L/(pi0 , vi11 , . . . , v
in−1

n−1 )

as an L-module. (It will also be an LB-comodule, so (pi0 , vi11 , . . . , v
in−1

n−1 ) ⊂ L will be
an invariant ideal.) These are sometimes called generalized Moore spectra. By the
periodicity theorem, there exists a vn self-map v : ΣdF (n)→ F (n) inducing multi-
plication by vkn in K(n)-homology. Since p, . . . , vn−1 are nilpotent in MU∗(F (n))
we may arrange that v induces multiplication by vinn in MU -homology, for some
in > 0. Let

F (n+ 1) = S/(pi0 , vi11 , . . . , v
in−1

n−1 , v
in
n ) = Cv

be the homotopy cofiber of this vn self-map.
The degree p map p : S → S is a v0 map for each prime p, so we may take i0 = 1

and F (1) = V (0) = S/p. For odd p the Adams self-map v1 : Σ2p−2S/p → S/p
corresponds to i1 = 1, so we can form the type 2 Smith–Toda complex F (2) =
V (1) = S/(p, v1). For p = 2, the Adams self-map v4

1 : Σ8S/2 → S/2 realizes the
smallest possible value i1 = 4, so we can form F (2) = S/(2, v4

1). ((ETC: Also survey
v1 self-maps of S/pi0 for i0 ≥ 2.))
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For p ≥ 5 the Smith–Toda [Smi71], [Tod71] self-map v2 : Σ2p2−2S/(p, v1) →
S/(p, v1) realizes i2 = 1, with homotopy cofiber F (3) = V (2) = S/(p, v1, v2).
For p = 3, Behrens–Pemmaraju [BP04] proved the existence of a v9

2 self-map
v9

2 : Σ144S/(3, v1)→ S/(3, v1), with homotopy cofiber F (3) = S/(p, v1, v
9
2). Belmont–

Shimomura (arXiv: 2109.01059) recently obtained a v9
2 self-map of S/(3, v8

1), which
is useful for propagating 3-torsion classes that are v8

1-torsion but not (strict) v1-
torsion. For p = 2, Behrens–Hill–Hopkins–Mahowald [BHHM08] established the
existence of a v32

2 self-map v32
2 : Σ192S/(2, v4

1) → S/(2, v4
1) with type 3 homotopy

cofiber F (3) = S/(2, v4
1 , v

32
2 ). Behrens–Mahowald–Quigley (arXiv:2011.08956) also

obtained a v32
2 self-map v32

2 : Σ192S/(8, v8
1) → S/(8, v8

1), with homotopy cofiber
S/(8, v8

1 , v
32
2 ). This is useful for propagating 8-torsion and v8

1-torsion classes. The
proofs for p ∈ {2, 3} use topological modular forms, and suffice to determine the
image of the homomorphism π∗(S)→ π∗(tmf).

For p ≥ 7, Toda [Tod71] constructed the type 4 spectrum F (4) = V (3) =

S/(p, v1, v2, v3) as the homotopy cofiber of a v3 self-map v3 : Σ2p3−2S/(p, v1, v2)→
S/(p, v1, v2). On the other hand, Lee Nave [Nav10] proved that V ((p+ 1)/2) does
not exist, so V (2) = S/(5, v1, v2) at p = 5 does not admit a strict v3 self-map. It is
not known whether V (3) admits a strict v4 self-map for any prime p.

The existence statement of the periodicity theorem is supplemented with the
following weak uniqueness statement.

Proposition 13.2.6 ([HS98, Cors. 3.7, 3.8]). Let v : ΣdF → F and v′ : Σd
′
F ′ →

F ′ be vn self-maps. There are i, i′ > 0 (with id = i′d′) such that for every map
g : F → F ′ the diagram

ΣidF

vi

��

Σidg
// Σi
′d′F ′

(v′)i
′

��

F
g

// F ′

commutes up to homotopy. In particular, if F = F ′ and g = idF then vi ' (v′)i
′
.

This has the following consequence.

Definition 13.2.7. Let F (n) be a (finite, p-local) type n spectrum, with vn
self-map v : ΣdF (n)→ F (n). The telescope

T (n) = v−1
n F (n) = hocolim(F

v−→ Σ−dF
v−→ Σ−2dF −→ . . . )

is, up to homotopy equivalence under F (n), independent of the choice of vn self-
map. Each map v is an E(n)-equivalence, so there is a factorization

F (n)
β−→ v−1

n F (n) = T (n)
τ−→ LnF (n)

of the E(n)-localization map η : F (n)→ LnF (n) = L̂nF (n).

For small n we usually take T (0) = p−1S(p) = SQ = HQ for all p, T (1) =

v−1
1 S/p for p odd and T (1) = v−4

1 S/2 for p = 2. The v1-periodic homotopy in
π∗(S/p) is fully understood, by the following theorems of Mark Mahowald and of
Haynes Miller.

Theorem 13.2.8 (Mahowald [Mah70], [Mah81], [Mah84]).

τ : v−1
1 π∗(S/2)

∼=−→ π∗(L1S/2) ∼= π∗(J/2)
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is an isomorphism. Hence T (1) = v−1
1 F (1) ' L1F (1) ' L̂1F (1) for any type 1

finite 2-local spectrum F (1).

See Chapter 5, Section 8, Figure 2 for a picture of a fundamental domain for
∼= π∗(J/2), which repeats v4

1-periodically. For any homotopy class x ∈ π∗(S/2), the
product v4N

1 x lies in the summand π∗(J/2) for all sufficiently large N .

Sketch proof. The original argument works with F (1) = S/2, but working
with F (1) = Y = S/2 ∧ S/η = Σ−3RP 2 ∧ CP 2 is a little less difficult. Here
H∗(Y ;F2) ∼= A(1)//Λ(Q1). The proof amounts to a careful analysis of the ko-based
Adams spectral sequence for F (1), using a splitting of ko ∧ ko in terms of integral
Brown–Gitler spectra, and determining differentials in a range by a comparison
along a map Th(ξ ↓ ΩS5)→ ko from a Thom spectrum over ΩS5. �

Theorem 13.2.9 (Miller [Mil81, Thm. 4.11]).

τ : v−1
1 π∗(S/p)

∼=−→ π∗(L1S/p) ∼= π∗(J/p)

is an isomorphism for odd primes p. Hence T (1) = v−1
1 F (1) ' L1F (1) ' L̂1F (1)

for any type 1 finite p-local spectrum F (1).

Let g ∈ Z×p be a topological generator. The fiber sequence

J/p −→ KU/p
ψg−1−→ KU/p

induces a long exact sequence

. . .
∂−→ π∗(J/p)

π−→ Fp[u±1]
ψg−1−→ Fp[u±1] −→ . . .

in homotopy, where (ψg− 1)(un) = (gn− 1)un. Here gn− 1 ≡ 0 mod p if and only
if n ≡ 0 mod p− 1, so we have a short exact sequence

0→ Σ−1Fp[u±(p−1)]
∂−→ π∗(J/p)

π−→ Fp[u±(p−1)]→ 0

and an algebra isomorphism

π∗(J/p) ∼= Λ(α1)⊗ Fp[v±1
1 ] ,

where α1 = ∂(up−1) and π(v1) = up−1 have degree 2p− 3 and 2p− 2, respectively.
See also Chapter 11, Section 11, Figure 1 for the v1-periodic Adams–Novikov chart
for J/p.

Sketch proof. The proof compares the (strongly convergent) Adams spectral
sequence

E∗,∗2 (S/p) = Ext∗,∗A∗ (Fp, H∗(S/p;Fp)) =⇒ π∗(S/p)

with a (potentially non-convergent) localized Adams spectral sequence

v−1
1 E

∗,∗
2 (S/p) = v−1

1 Ext∗,∗A∗ (Fp, H∗(S/p;Fp)) =⇒ v−1
1 π∗(S/p) .

A comparison via the Adams–Novikov spectral sequence is used to transfer known
d2-differentials from an algebraic May spectral sequence to the localized Adams
spectral sequence. This shows that E∗,∗∞ (S/p) above a line of slope 1/(p2−p−1), in
the usual Adams (t−s, s)-bigrading, consists only of classes detecting Λ(α1)⊗Fp[v1],
on a line of slope 1/(2p − 2). Since v1-multiplication acts parallel to the Adams
vanishing line for S/p, this suffices to deduce that there are no other v1-periodic
classes than those mentioned. �
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13.3. Finite localizations

We follow Miller’s article [Mil92], which responds to [Rav93] and [MS95].
Recall from Chapter 12, Section 4 that for any Landweber exact L-module E∗

of height n, such as E(n)∗ or v−1
n L, the full abelian subcategory

TE = {M | E∗ ⊗LM = 0} ⊂ LB− coMod

only depends on n, and is equal to the hereditary torsion theory (= Serre subcate-
gory closed under coproducts) generated by L/In+1 = L/(p, . . . , vn).

Let X and E be spectra. The (co-)fiber sequence

CEX → X → LEX

is characterized by CEX being E-acyclic and [Z,LEX] = 0 for any E-acyclic Z.
Hence the Bousfield E-localization and E-colocalization functors LE and CE are
fully determined by the full triangulated subcategory

Ho(CESp) := {Z | E∗(Z) = 0} ⊂ Ho(Sp)
of E-acyclic spectra. This is a localizing subcategory, i.e., a thick subcategory
closed under coproducts.

For any Landweber exact spectrum E of height n, such as E(n) or v−1
n MU ,

the finite p-local E-acyclic spectra

Ho(Spω(p)) ∩Ho(CESp) = Ho(Spω≥n+1)

span the thick subcategory of finite p-local spectra of type ≥ n+1. By the Hopkins–
Smith thick subcategory theorem, it is generated as a thick subcategory by any one
type = n+ 1 spectrum F (n+ 1). For example, if p and n are such that the Smith–
Toda spectrum V (n) exists, then it has type n + 1 and MU∗(V (n)) = L/In+1 is
the LB-comodule generating Tn.

Let us write

Ho(CfESp) = Loc(F (n+ 1)) ⊂ Ho(Sp)
for the localizing subcategory generated by Ho(Spω≥n+1), which is equal to the

localizing subcategory generated by any one F (n+ 1). Clearly

(13.2) Ho(CfESp) ⊂ Ho(CESp) .
Miller shows that for any spectrum X there is a (co-)fiber sequence

CfnX −→ X −→ LfnX

with CfnX in Ho(CfESp) and [Z,LfnX] = 0 for each Z ∈ Ho(CfESp). We call
LfnX and CfnX the finite E-localization and finite E-colocalization of X. The
inclusion (13.2) implies that there is a natural, unique, factorization

X
ηf−→ LfnX

τ−→ LnX

of the E-localization map η : X → LnX.

Definition 13.3.1. Let A be a set of homotopy types of finite spectra.

• A spectrum N is finitely A-local if [Z,N ]∗ = 0 for each Z ∈ A.
• A spectrum Z is finitely A-acyclic if [Z,N ]∗ = 0 for each finitely A-local

spectrum N .
• A map f : X → Y is a finite A-equivalence if its mapping cone Cf is

finitely A-acyclic.
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Clearly f : X → Y is a finite A-equivalence if and only if f∗ : [Y,N ] → [X,N ]
is a bijection for each finitely A-local N . The finitely A-acyclic spectra form a
localizing subcategory of Ho(Sp), containing each element of A. In particular, it is
closed under sequential homotopy colimits (= mapping telescopes).

Theorem 13.3.2 (Miller [Mil92, Thm. 4]). For any set A of (homotopy types

of) finite spectra and any spectrum X there is a finite A-equivalence X → LfAX to
a finitely A-local spectrum.

Proof. We may assume A is closed under (de-)suspensions. Miller constructs

LfAX as the homotopy colimit of a sequence

X = X0
i0−→ X1 −→ . . . −→ Xm

im−→ Xm+1 −→ . . . −→ LfAX = hocolim
m

Xm .

Let X0 = X and suppose that Xm has been defined. Let

Wm =
∨

f : A→Xm

A

be a wedge sum of spectra, where A ranges over all elements in A and f : A→ Xm

ranges over all homotopy classes of maps from A to Xm. The maps f combine to
a map fm : Wm → Xm, and we let Xm+1 = Cfm be its homotopy cofiber:

Wm
fm−→ Xm

im−→ Xm+1 .

Each Wm is finitely A-acyclic, since [Wm, N ]∗ ∼=
∏
f : A→Xm [A,N ]∗ vanishes if

N is finitely A-local. The homotopy cofiber of each X0 → Xm is finitely A-acyclic,

by induction on m, so the homotopy cofiber of X → LfAX is finitely A-acyclic, by
passage to the sequential homotopy colimit. Thus this map is a finiteA-equivalence.

If Z ∈ A and g : Z → LfAX is any map, then g factors

g : Z
g̃−→ Xm −→ LfAX

through some Xm, since Z is finite. Here g̃ is one of the components of fm, so img̃

is null-homotopic. Hence g is null-homotopic and [Z,LfAX] = 0, so that LfAX is
finitely A-local. �

In the resulting homotopy cofiber sequence

CfAX −→ X
ηf−→ LfAX

we call LfAX the finite A-localization of X, and CfAX the finite A-colocalization
of X. When A is the set of homotopy types of E-acyclic finite spectra, for a given
spectrum E, we say finitely E-local, finitely E-acyclic and finite E-equivalence for
finitely A-local, finitely A-acyclic and finite A-equivalence, respectively. We set

LfEX = LfAX and CfEX = CfAX.

When E = E(n) we write LfnX = LfE(n)X and CfnX = CfE(n)X for the finite

E(n)-localization and finite E(n)-colocalization of X. Since a finite p-local spec-
trum is E(n)-acyclic if and only if it is K(n)-acyclic, these are the same as the finite
K(n)-localization and finite K(n)-colocalization of X, respectively.

Proposition 13.3.3 ([Mil92, Prop. 5, Cor. 6]). A spectrum is finitely A-
acyclic if and only if it is the homotopy colimit of a sequence of maps with homotopy
cofibers that are wedge sums of integer suspensions of elements in A. Hence the
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finitely A-acyclic spectra span the localizing subcategory of Ho(Sp) generated by the
elements of A.

This follows from Miller’s proof, since X is finitely A-acyclic if and only if

LfAX ' ∗. In particular, the full subcategory of finitely E(n)-acyclic spectra is
equal to the localizing subcategory Ho(CfnSp) generated by the finite p-local spectra
of type ≥ n+ 1.

Proposition 13.3.4 ([Mil92, Prop. 9, Cor. 11]). Finite A-localization is smash-
ing, so that

LfAX ' X ∧ L
f
AS

for all spectra X. Hence LfA is Bousfield localization with respect to the ring spec-

trum LfAS.

The proof that X ∧ LfAS is finitely A-local uses Spanier–Whitehead duality.

Proposition 13.3.5 ([Mil92, Prop. 14]). If F is a type ≥ n finite p-local
spectrum, with vn self-map v : ΣdF → F , then the map

F −→ v−1F = T ' LfnF
inverting v is the finite E(n)-localization.

Proof. The mapping cone Cv is finite and E(n)-acyclic, which implies that
the homotopy cofiber of F → v−1F = T is finitely E(n)-acyclic. Hence this map is
a finite E(n)-equivalence.

Let Z be any finite E(n)-acyclic spectrum, and consider any map g : Z → T . It
factors through Σ−mdF → T for some m, since Z is finite. Write g̃ : Z → Σ−mdF
for one such lift. The trivial map 0: ΣdZ → Z is a vn self-map, so (by the weak
uniqueness result Proposition 13.2.6) the square

F

vm

��

Z
g̃

//

0

��

Σ−mdF

vi

��

Σ−idZ
Σ−idg̃

// Σ−(i+m)dF

��

T

commutes up to homotopy for some i > 0. This proves that g ' 0, so T = v−1F is
finitely E(n)-local. �

We now follow Bousfield and Mahowald–Sadofsky, to show that the finite lo-
calization Lfn can be rewritten as the Bousfield localization at T (0) ∨ · · · ∨ T (n).

Lemma 13.3.6. 〈T (n)〉 ≥ 〈K(n)〉 for each n ≥ 0. Hence

〈T (0) ∨ · · · ∨ T (n)〉 ≥ 〈K(0) ∨ · · · ∨K(n)〉 = 〈E(n)〉
and there are natural transformations

LT (n)X
τ−→ LK(n)X = L̂nX
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and
LT (0)∨···∨T (n)X

τ−→ LE(n)X = LnX .

Proof. We have K(n)∗F (n) 6= 0 since F (n) has type = n. Any choice of vn
self-map induces an isomorphism in K(n)-homology, so K(n)∗F (n) ∼= K(n)∗T (n)
is also nonzero. Hence K(n) ∧ T (n) is a wedge sum of one or more suspensions
of K(n), and contains a suspension of K(n) as a retract. If T (n)∗(Z) = 0, then
K(n) ∧ T (n) ∧ Z ' ∗, and this implies K(n)∗(Z) = 0. �

Definition 13.3.7. If 〈D〉 ∨ 〈E〉 = 〈S〉 and 〈D〉 ∧ 〈E〉 = 〈∗〉, then we say that
〈D〉 = 〈E〉c is a (Bousfield) complement of 〈E〉.

Not every Bousfield class admits a complement, but for those that do it is
unique.

Lemma 13.3.8. If 〈C〉 and 〈D〉 are complements of 〈E〉, then 〈C〉 = 〈D〉.

Proof. If C∗(X) = 0 then 〈X〉 = 〈C∧X〉∨〈E∧X〉 = 〈E∧X〉 so 〈D〉∧〈X〉 =
〈D〉 ∧ 〈E ∧X〉 = 〈D ∧E ∧X〉 = 〈∗〉 and D∗(X) = 0. Hence 〈C〉 ≥ 〈D〉. The same
argument applies with C and D switched. �

Lemma 13.3.9 (Ravenel [Rav84, Lem. 1.34]). For any self-map f : ΣdX → X
with homotopy cofiber Cf = X/f and telescope f−1X, we have

〈X〉 = 〈f−1X〉 ∨ 〈X/f〉 .
Hence

〈S〉 = 〈T (0) ∨ · · · ∨ T (n)〉 ∨ 〈F (n+ 1)〉 .

Proof. If X∗Z = 0 then (X/f)∗Z = 0 by the long exact sequence, and
f−1X∗Z = 0 by algebraic localization.

Conversely, if (X/f)∗Z = 0 then f∗ : X∗Z → X∗+dZ is an isomorphism by the
long exact sequence, so X∗Z ∼= f−1X∗Z since inverting an isomorphism has no
effect. If f−1X∗Z = 0 it then follows that X∗Z = 0. �

Lemma 13.3.10. T (m) ∧ F (n+ 1) ' ∗ for each m ≤ n. Hence

〈T (0) ∨ · · · ∨ T (n)〉 ∧ 〈F (n+ 1)〉 = 〈∗〉 ,
so that 〈F (n+ 1)〉c = 〈T (0) ∨ · · · ∨ T (n)〉 is a Bousfield complement.

Proof. Let v : ΣdF (m)→ F (m) be a vm self-map. The smash product F (m)∧
F (n + 1) has type = n + 1, so both vm ∧ id and the zero map are vm self-maps.
Hence vm∧ id is nilpotent, by Proposition 13.2.6, and its telescope T (m)∧F (n+1)
must be contractible. �

Let X be any spectrum, and consider the case A = {F (n + 1)} of Miller’s
homotopy cofiber sequence

CfAX −→ X −→ LfAX .

By the construction

X = X0 → · · · → Xm → Xm+1 → · · · → X∞ = LfAX

with Wm → Xm → Xm+1, where Wm is a wedge sum of suspensions of F (n + 1),

the finite A-colocalization CfAX is a sequential homotopy colimit along maps with
homotopy cofibers given by wedge sums of suspensions of F (n + 1). Hence it is
[F (n+1), ]∗-colocal in the sense of [Bou79a, p. 369], and is a sequential homotopy
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colimit of finite T (0)∨· · ·∨T (n)-acyclic spectra. In particular, CfAX is T (0)∨· · ·∨
T (n)-acyclic.

Moreover, [F (n + 1), LfAX]∗ = 0, so the finite A-localization LfAX is [F (n +

1), ]∗-trivial, and is equal to the [F (n + 1), ]∗-trivialization XF (n+1) of X in the
sense of [Bou79a, p. 371].

Proposition 13.3.11 (Bousfield [Bou79a, Prop. 2.9]). If F is a finite spec-

trum, then 〈F 〉 has the complement 〈F 〉c = 〈SF 〉, where SF = Lf{F}S is the [F, ]∗-

trivialization of S.

Proposition 13.3.12 (Bousfield [Bou79b, Prop. 3.5]). If F is a finite spec-
trum, then a spectrum X is (SF )∗-local if and only if [F,X]∗ = 0.

Proposition 13.3.13 (Mahowald–Sadofsky [MS95, Prop. 3.3]). (a) A spec-
trum is T (0) ∨ · · · ∨ T (n)-local if and only if it is finitely {F (n+ 1)}-local.

(b) Finite E(n)-localization, finite {F (n+1)}-localization and Bousfield T (0)∨
· · · ∨ T (n)-localization all agree:

LfnX ' L
f
{F (n+1)}X ' LT (0)∨···∨T (n)X .

(c) Every T (0) ∨ · · · ∨ T (n)-acyclic is a sequential homotopy colimit of finite
T (0) ∨ · · · ∨ T (n)-acyclics.

Proof. (a) By Lemmas 13.3.8, 13.3.10 and Proposition 13.3.11 we know that

〈T (0) ∨ · · · ∨ T (n)〉 = 〈F (n+ 1)〉c = 〈SF (n+1)〉 ,

so by Proposition 13.3.12 any spectrum X is T (0) ∨ · · · ∨ T (n)-local if and only if
[F (n+ 1), X]∗ = 0, i.e., if and only if it is finitely A-local for A = {F (n+ 1)}.

(b) The finite E(n)-acyclics are generated as a thick subcategory by F (n+ 1),
so they generate the same localizing subcategory of Ho(Sp), which implies that

LfnX = LfE(n)X agrees with Lf{F (n+1)}X. The equivalence with LT (0)∨···∨T (n)X

follows from (a).

(c) Suppose that Z is T (0)∨ · · ·∨T (n)-acyclic. Since CfAZ is T (0)∨ · · ·∨T (n)-

acyclic, it follows that LfAZ is T (0) ∨ · · · ∨ T (n)-acyclic. By (a), LfAZ is also

T (0) ∨ · · · ∨ T (n)-local, so it must be contractible. Hence Z ' CfAZ is a sequential
homotopy colimit of finite T (0) ∨ · · · ∨ T (n)-acyclic spectra. �

((ETC: Is LfnF ' LT (n)F for F finite of type n?))
By analogy with the chromatic tower from Chapter 12, (1.1), (1.2) and (1.3),

there is a telescopic tower

Ho(Sp) −→ . . . −→ Ho(LfnSp) −→ Ho(Lfn−1Sp) −→ . . . −→ Ho(Lf0Sp)

of localization functors between the full subcategories

Ho(Sp) ⊃ · · · ⊃ Ho(LfnSp) ⊃ Ho(Lfn−1Sp) ⊃ · · · ⊃ Ho(Lf0Sp)

that defines the telescopic filtration of (p-local) stable homotopy theory. Applied
to a spectrum X, this gives the telescopic tower

X −→ . . . −→ LfnX −→ Lfn−1X −→ . . . −→ Lf0X

in Ho(Sp).
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It appears to be an open problem whether telescopic convergence holds, i.e.,
whether

X −→ holim
n

LfnX

is an equivalence for finite p-local X. As was noted in [MS95, p. 114] it is a split
injection, since the composite with

τ : holim
n

LfnX −→ holim
n

LnX

is an equivalence by the chromatic convergence theorem (Chapter 12, Theorem 7.3).

13.4. The telescope conjecture

Based on the results of Mahowald and Miller (Theorems 13.2.8 and 13.2.9),
a hope to calculate the vn-periodic homotopy groups v−1

n π∗F (n) = π∗L
f
nF (n) for

n ≥ 2, and the ability to calculate the chromatically localized homotopy groups
π∗LnF (n) in some nontrivial cases (starting with n = 2 and p ≥ 5, see Chapter 12,
Proposition 11.9), Ravenel made the following conjecture around 1977:

Conjecture 13.4.1 ([Rav84, Conj. 10.5]). 〈T (n)〉 = 〈K(n)〉.

This is easy for n = 0, and follows from the cited results of Mahowald and
Miller for n = 1. Moreover, we already know that 〈T (n)〉 ≥ 〈K(n)〉 for all n. If
〈T (m)〉 = 〈K(m)〉 for all 0 ≤ m ≤ n then

〈T (0) ∨ · · · ∨ T (n)〉 = 〈K(0) ∨ · · · ∨K(n)〉 = 〈E(n)〉

so that the natural map

LfnX ' LT (0)∨···∨T (n)X
τ−→ LK(0)∨···∨K(n)X ' LnX

is an equivalence. This is the usual formulation of the height n Telescope Conjecture
for X. It is equivalent to the assertion that a spectrum X is finitely E(n)-local if
and only if it is E(n)-local. It is also equivalent to the assertion that in Ho(Sp)
the subcategory Ho(Sp≥n+1) of E(n)-acyclic spectra is generated, as a localizing
subcategory, by the (thick) subcategory Ho(Spω≥n+1) of finite E(n)-acyclic spectra.

Since both Lfn and Ln are smashing localizations, they commute with homotopy
colimits, so if the height n telescope conjecture holds for all finite (p-local) spectra F
then it holds for all (p-local) spectra X. In particular, if a counterexample exists,
then there also exists a finite (p-local) counterexample.

If the height n telescope conjecture holds for a finite spectrum F , then it also
holds for all spectra in the thick subcategory generated by F . It is trivially true
for finite F of type ≥ n + 1, The main case to consider is thus that when F has
type = n.

In the case T (2) = v−1
2 S/(p, v1) for p ≥ 5, Ravenel [Rav92b], [Rav93],

[Rav95] made calculations with a localized Adams spectral sequence (similar to
Miller’s proof strategy for n = 1), that strongly suggest that π∗T (2) = v−1

2 π∗(S/(p, v1))
is different from π∗L2S/(p, v1). The latter is a subquotient of an exterior algebra
over K(2)∗ on n2 = 4 generators, while the former appears to be a subquotient of
an exterior algebra on only

(
n+1

2

)
= 3 generators, tensored with

(
n
2

)
= 1 factor(s)

of the form K(2)∗[Q/Z(2)] = K(2)∗[Z/2∞]. The expectation is therefore that the
telescope conjecture is false for n = 2 and p ≥ 5, and most likely for all n ≥ 2 and
all p.
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Calculations for n = 2 and p = 2, leading to a similar prediction, were made by
Mahowald–Ravenel–Shick [MRS01], but these efforts did also not reach a definite
conclusion.

More recently, Beaudry–Behrens–Bhattacharya–Culver–Xu [BBB+21] made
calculations with the tmf-based Adams spectral sequence at n = 2 and p = 2 (sim-
ilar to Mahowald’s proof strategy for n = 1). For a specific type 2 spectrum Z with
H∗(Z;F2) ∼= A(2)//Λ(Q2) they obtain specific conjectures about the v2-localized
Adams spectral sequence with abutment v−1

2 π∗(Z), which would contradict the
telescope conjecture.

In contrast to these partial calculations for finite spectra, complete computa-
tions of vn-periodic homotopy have been for some infinite spectra, including alge-
braicK-theory and topological cyclic homology spectra. Bökstedt–Madsen [BM94],
[BM95] calculated

T (1)∗K(Zp) = v−1
1 V (0)∗K(Zp)

at primes p ≥ 3 to be a (finitely generated and free) K(1)∗-module of rank p+3. The
result agrees with L1V (0)∧K(Zp) ' V (0)∧Ket(Qp), confirming the Lichtenbaum–
Quillen conjecture for Qp at these primes. Ausoni–Rognes [AR02] calculated

T (2)∗K(BP 〈1〉) = v−1
2 V (1)∗K(BP 〈1〉)

at primes p ≥ 5 to be a (finitely generated and free) K(2)∗-module of rank 4p+ 4,
and Angelini-Knoll–Ausoni–Culver–Höning–Rognes (arXiv:2204.05890) calculated

T (3)∗K(BP 〈2〉) = v−1
3 V (2)∗K(BP 〈2〉)

at primes p ≥ 7 to be a (finitely generated and free) K(3)∗-module of rank 12p +
4. In the latter two cases the chromatic localizations L2V (1) ∧ K(BP 〈1〉) and
L3V (2)∧K(BP 〈2〉) are not currently known, so at the time of writing (May 2023)
the telescope conjecture remains open.





CHAPTER 14

Galois extensions

14.1. Lubin–Tate spectra

Let k be a perfect field of prime characteristic p 6= 0, and let Φ ∈ k[[y1, y2]] be
a formal group law over k of finite height n <∞. We will eventually focus on the
case k = Fpn and Φ = Hn, the Honda formal group law, which is defined over Fp,
with p-series [p]Hn(y) = yp

n

.
The classifying homomorphism L→ k for Φ corresponds to a point Spec(k)→

Spec(L)→Mfgl →Mfg in the moduli stack of formal groups. Lubin–Tate [LT66]
analyzed the formal neighborhood of this point, which is evenly covered by the
space of deformations of the formal group law Φ.

Let R be any complete Noetherian local ring. We write m ⊂ R for the maxi-
mal ideal and π : R → R/m for the canonical homomorphism to the residue field.
Completeness means that R ∼= limnR/m

n. If m is nilpotent then R is an Artinian
local ring, and vice versa.

If h : F → F ′ is a homomorphism of formal group laws over R, with F, F ′ ∈
R[[y1, y2]] and h ∈ R[[y]], then the base change π∗h : π∗F → π∗F ′ is a homo-
morphism of formal group laws over R/m, with π∗F, π∗F ′ ∈ R/m[[y1, y2]] and
π∗h ∈ R/m[[y]].

Definition 14.1.1. By a deformation (F, i) of Φ over k to R we mean a field
homomorphism i : k → R/m and a formal group law F over R such that i∗Φ = π∗F
over R/m.

Φ � i∗ // i∗Φ = π∗F F
�π∗oo

k
i // R/m R

πoo

A morphism j : (F, i) → (F ′, i′) of deformations can exist only if i = i′, in which
case it is a homomorphism j : F → F ′ of formal group laws over R that satisfies
π∗j = id: π∗F → π∗F ′. Following Lubin–Tate, we say that j is a ?-isomorphism.

π∗F

id

F

j∼=
��

�π∗oo

π∗F ′ F ′�π∗oo

R/m R
πoo

269
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Let DEF(Φ, k)(R) be the groupoid of deformations of Φ over k to R, and let

Def(Φ, k)(R) = π0DEF(Φ, k)(R)

be its set of isomorphism classes. We write [F, i] ∈ Def(Φ, k)(R) for the ?-isomorphism
class of (F, i).

Note that i = i′ implies π∗F = i∗Φ = (i′)∗Φ = π∗F ′, so that the displayed
identity morphism exists. To see that DEF(Φ, k)(R) is a groupoid, note that π∗j =
id means that j(y) ≡ y mod m[[y]], so j′(0) ≡ 1 mod m is a unit in the local ringR.

The finite height assumption has the following consequence.

Theorem 14.1.2 ([LT66, Thm. 3.1]). There is at most one morphism j : F →
F ′ between any two deformations of Φ over k to R. Hence the groupoid DEF(Φ, k)(R)
is discrete up to homotopy, and is equivalent to the set Def(Φ, k)(R) of isomorphism
classes of deformations to R.

Example 14.1.3. The multiplicative formal group law F = Fm over R = Zp is
a deformation of the multiplicative formal group law Φ = Fm over k = Fp. The only
morphism j : F → F in DEF(Fm,Fp)(Zp) is the identity, because if [n]Fm(y) ≡ y
mod p, then n = 1, as we noted in Chapter 10, Example 2.4.

Remark 14.1.4. For each R there is a pullback square

DEF(Φ, k)(R) //

��

FGLi(R)

π∗

��

CRing(k,R/m)
i 7→i∗Φ // FGLi(R/m)

of groupoids, where the set CRing(k,R/m) is viewed as a discrete category. Passing
to nerves, we obtain a pullback square of simplicial sets. The functor π∗ induces
a Kan fibration, since for any morphism in FGLi(R/m) and any choice of lift to
FGLi(R) of its (source or) target, there exists a lifting morphism in FGLi(R)
with that (source or) target. Hence the pullback square is also a (2-categorical
and) homotopy pullback. By Theorem 14.1.2, each (homotopy) fiber is homotopy
discrete, so π∗ is a covering space up to homotopy.

Moreover, Lubin–Tate show that the functor

R 7−→ Def(Φ, k)(R)

is representable, i.e., that there is a universal deformation FLT = FLT (Φ,k) of Φ
over k to a complete Noetherian local ring LT = LT (Φ, k) with residue field k.

Recall that W (k) denotes the Witt vectors of k. Since k is perfect, it has the
universal property that each field homomorphism i : k → R/m admits a unique lift
ı̂ : W (k)→ R.

Theorem 14.1.5 ([LT66, Thm. 3.1]). There is a deformation (FLT , id) of Φ
over k to the complete Noetherian local ring

LT (Φ, k) = W (k)[[u1, . . . , un−1]]

such that the natural function

CRingloc(LT (Φ, k), R)
∼=−→ Def(Φ, k)(R)

g 7−→ [g∗FLT , ḡ]

is a bijection for all complete Noetherian local rings R.
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The local ring W (k)[[u1, . . . , un−1]] has maximal ideal (p, u1, . . . , un−1) and
residue field LT (Φ, k)/(p, u1, . . . , un−1) ∼= k. We suppress the latter canonical iso-
morphism from the notation. By a local homomorphism g : LT (Φ, k)→ R we mean
a ring homomorphism mapping the maximal ideal (p, u1, . . . , un−1) to the maximal
ideal m, and we write ḡ : k → R/m for the induced homomorphism of residue fields.

Example 14.1.6. The Lubin–Tate deformation of Φ = Fm over Fp is defined
over LT (Fm,Fp) = W (Fp) = Zp, and is equal to FLT = Fm over Zp. Hence the
formal group law associated to the standard complex orientation of KU∧p is the
universal deformation of the formal group law associated to the standard complex
orientation of KU/p.

The universal property only specifies the Lubin–Tate deformation ring LT up
to isomorphism, and the Lubin–Tate formal group law FLT is only defined up to
?-isomorphism. In particular, the deformation (moduli =) parameters u1, . . . , un−1

are not canonically defined. In the case Φ = Hn, the universal deformation FLT
can be constructed so that its p-series satisfies

[p]FLT (y) ≡ uiyp
i

modulo (p, . . . , ui−1) and terms of degree > pi, for each 1 ≤ i < n. Moreover

[p]FLT (y) ≡ yp
n

modulo (p, . . . , un−1) and terms of degree > pn. Hence the classifying ring homo-
morphism g : L → LT from the Lazard ring satisfies vi 7→ ui modulo LT · Ii for
1 ≤ i < n and vn 7→ 1 modulo LT · In.

Definition 14.1.7. Let

E(Φ, k)∗ = LT (Φ, k)[u±1]

with |u| = 2, so that E(Φ, k)0 = LT (Φ, k) ∼= W (k)[[u1, . . . , un−1]]. ((ETC: For
some purposes it is better to let |u| = −2.))

There is a graded variant of the Lubin–Tate formal group law FLT , defined
over E(Φ, k)∗, such that the classifying ring homomorphism g : L = MU∗ →
E(Φ, k)∗ satisfies

vi 7−→ uiu
pi−1

vn 7−→ up
n−1

for 1 ≤ i < n. Note that this makes E(Φ, k)∗ satisfy the Landweber exact functor
theorem.

Definition 14.1.8. Let E(Φ, k) be the spectrum representing the Landweber
exact homology theory

E(Φ, k)∗(X) = E(Φ, k)∗ ⊗MU∗ MU∗(X) .

In particular, π0E(Φ, k) = E(Φ, k)0 = LT (Φ, k). In the special cases k = Fpn and
Φ = Hn, the height n Honda formal group law, we let

En = E(Hn,Fpn) .

In particular, π0En = LT (Hn,Fpn) = W (Fpn)[[u1, . . . , un−1]] and

π∗En = W (Fpn)[[u1, . . . , un−1]][u±1] .
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These spectra are known as Morava E-theory spectra, completed Johnson–Wilson
spectra, or Lubin–Tate spectra.

Example 14.1.9. E(Fm,Fp) = KU∧p = E1.

Proposition 14.1.10. Each Lubin–Tate spectrum E(Φ, k) is K(n)-local. In
particular, En is K(n)-local.

Proof sketch. Being Landweber exact of height n, these spectra are E(n)-
local. Since LT (Φ, k) is (p, u1, . . . , un−1)-complete, so that π∗E(Φ, k) is In-complete,
it follows from [HS99a, Prop. 7.10(e)] that these spectra are K(n)-local. �

Alan Robinson [Rob89] developed an obstruction theory (in terms of Hochschild
cohomology) for the existence of (associative = A∞ =) E1 ring structures on spec-
tra, and applied it to prove that each Morava K-theory spectrum K(n) admits such
structures.

Andy Baker [Bak91] applied the same obstruction theory to prove that the
completed Johnson–Wilson spectra E(n)∧In also admit unique E1 ring structures.
These are essentially the same as the Lubin–Tate spectra E(Hn,Fp).

An obstruction theory for diagrams of E1 ring spectra was developed by Mike
Hopkins and Haynes Miller, see [Rez98], and also shows that each Lubin–Tate
spectrum E(Φ, k) has a unique E1 ring structure.

Thereafter, an obstruction theory for diagrams of (commutative =) E∞ ring
spectra (in terms of André–Quillen cohomology) was developed by Paul Goerss and
Mike Hopkins [GH04]. In particular, this shows that each Lubin–Tate spectrum
E(Φ, k) has a unique E∞ ring structure. This is the “En is E∞” theorem.

((ETC: Also let Enr
n = E(Hn, F̄p).))

14.2. The stabilizer group action

The Lubin–Tate deformation FLT over LT (Φ, k) depends functorially on Φ
over k. Hence the extended Morava stabilizer group, i.e., the profinite automor-
phism group Aut(Φ, k), acts on LT (Φ, k), and this action lifts to a (continuous!)
action on E(Φ, k). In particular, Gn = Aut(Hn,Fpn) = Sn o Gal(Fpn/Fp) acts on
En = E(Hn,Fpn).

((ETC: Also Gnr
n = Aut(Hn, F̄p) = SnoGal(F̄p/Fp) acts on Enr

n = E(Hn, F̄p).))

Definition 14.2.1. An automorphism (h, γ) of (Φ, k) is a field automorphism
γ : k → k and a formal group law isomorphism h : γ∗Φ → Φ. These form the
group Aut(Φ, k), with composition law

(h1, γ1) ◦ (h2, γ2) = (h1 ◦ γ∗1h2, γ1 ◦ γ2) .

If Φ is defined over Fp ⊂ k, then γ∗Φ = Φ in each case, and

Aut(Φ, k) ∼= Aut(Φ/k) o Gal(k/Fp) .
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Φ
� γ∗2 // γ∗2Φ

h2
∼=
��

� γ∗1 // (γ1γ2)∗Φ

γ∗1h2∼=
��

Φ � γ∗1 // γ∗1Φ

h1
∼=
��

Φ

k
γ2 // k

γ1 // k

Definition 14.2.2. Let

[F, i] = [F/R, i : k → R/m]

be a deformation of Φ over k to a complete Noetherian local ring R, and let

(h, γ) = (h : γ∗Φ→ Φ, γ : k → k)

be an automorphism of (Φ, k). The natural (right) action

Def(Φ, k)(R)×Aut(Φ, k)
·−→ Def(Φ, k)(R)

is given by

[F, i] · (h, γ) = [F ′, iγ] ,

where F ′ is the source of an isomorphism ĥ : F ′ → F over R such that i∗h = π∗ĥ.

(Such lifts ĥ(y) ∈ R[[y]] exist, since π : R → R/m is surjective. Any two choices of

lifts ĥ differ by a ?-isomorphism, so the deformation class of (F ′, iγ) is well-defined.)

Φ_

γ∗

��

� (iγ)∗
// (iγ)∗Φ = π∗F ′

_

id∗

��

F ′�π∗oo
_

id∗

��

γ∗Φ

h∼=
��

� i∗ // (iγ)∗Φ = π∗F ′

i∗h=π∗ĥ
��

F ′
�π∗oo

ĥ∼=
��

Φ
� i∗ // i∗Φ = π∗F F

�π∗oo

k

γ

��

iγ
// R/m

id

R
πoo

id

k
i // R/m R

πoo

((ETC: Maybe explain the action of h ∈ Aut(Φ/k) and of γ ∈ Gal(k/Fp)
separately, when Φ is defined over Fp so that γ∗Φ = Φ.))

The action of Aut(Φ, k) on Def(Φ, k)(R) ∼= CRingloc(LT,R) is natural in R,
hence must be induced by an action on the Lubin–Tate ring LT = LT (Φ, k) through
local ring homomorphisms.
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More explicitly, (h, γ) ∈ Aut(Φ, k) takes the universal deformation [FLT , id]
to LT to the deformation [FLT , id] · (h, γ) = [F ′, γ] where F ′ is the source of an

isomorphism ĥ : F ′ → FLT over LT such that h = π∗ĥ over k. There is then
a unique local ring homomorphism g : LT → LT such that [g∗FLT , ḡ] = [F ′, γ].
This means that ḡ = γ (so that πg = γπ), and there is a (unique) ?-isomorphism
j : g∗FLT → F ′ over LT .

Φ � id∗ //
_

id∗

��

Φ = π∗FLT_

γ∗=ḡ∗

��

FLT
�π∗oo

_

g∗

��

Φ � γ∗
//

id

γ∗Φ = π∗g∗FLT

id

g∗FLT
�π∗oo

j∼=
��

Φ_

γ∗

��

� γ∗
// γ∗Φ = π∗F ′_

id∗

��

F ′�π∗oo
_

id∗

��

γ∗Φ

h∼=
��

� id∗ // γ∗Φ = π∗F ′

h=π∗ĥ
��

F ′�π∗oo

ĥ∼=
��

Φ
� id∗ // Φ = π∗FLT FLT

�π∗oo

k
id

id

k

γ=ḡ

��

LT
πoo

g

��

k

γ

��

γ
// k

id

LT
πoo

id

k
id

k LT
πoo

Replacing ĥ by ĥ ◦ j : g∗FLT → FLT , we may assume that j = id. To each
automorphism (h, γ) there thus exists a unique ring automorphism g : LT → LT

and a unique formal group law isomorphism ĥ : g∗FLT → FLT , subject to the

conditions ḡ = γ and π∗ĥ = h.

Φ � id∗ //
_

γ∗

��

Φ = π∗FLT_

γ∗=ḡ∗

��

FLT
�π∗oo

_

g∗

��

γ∗Φ

h∼=
��

� id∗ // γ∗Φ = π∗g∗FLT

h=π∗ĥ
��

g∗FLT
�π∗oo

ĥ∼=
��

Φ � id∗ // Φ = π∗FLT FLT
�π∗oo
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Recall that for a regular (= normal) covering space π : Y → X with group G
of covering transformations, there is a pullback square

Y ×G · //

pr1

��

Y

π

��

Y
π // X

so that Y ×G ∼= Y ×X Y .

Theorem 14.2.3 ([Goe, Thm. 7.16]). Let FLT : Spf(LT (Φ, k))→Mfg denote
the map representing the Lubin–Tate formal group (law) over the Lubin–Tate ring.
There is a homotopy pullback square

Spf(LT (Φ, k))×Aut(Φ, k)
· //

pr1

��

Spf(LT (Φ, k))

FLT

��

Spf(LT (Φ, k))
FLT //Mfg .

The orbit stack Spf(LT (Φ, k))//Aut(Φ, k) is the formal neighborhood of Φ/k in
Mfg.

Sketch proof. A map from Spf(R) to the (2-categorical or) homotopy pull-
back corresponds to two deformations [F, i] and [F ′, i′] of Φ/k to R, and a formal

isomorphism ĥ : F ′ → F . We may suppose that i and i′ are isomorphisms. Let

γ = i−1i′, so that iγ = i′, and let h : γ∗Φ→ Φ be determined by i∗h = π∗ĥ. Then
(h, γ) is the unique automorphism such that [F, i] · (h, γ) = [F ′, i′]. Hence the map
from Spf(R) corresponds naturally to the pair ([F, i], (h, γ)), mapping under pr1 to
[F, i] and under · to [F ′, i′]. �

For each (h, γ) ∈ Aut(Φ, k), the associated local ring homomorphism g : LT →
LT and formal group law isomorphism ĥ : g∗FLT → FLT determines a morphism

E(Φ, k)∗(X) = LT ⊗MU∗ MU∗(X)

g⊗ν−→ LT ⊗MU∗ MU∗MU ⊗MU∗ MU∗(X)

1⊗ĥ⊗1−→ LT ⊗MU∗ LT ⊗MU∗ MU∗(X)

φ⊗1−→ LT ⊗MU∗ MU∗(X) = E(Φ, k)∗(X)

of Landweber exact homology theories. (We write MU∗ and MU∗MU in place
of L and LB to avoid notational similarity with LT = LT (Φ, k) = π0E(Φ, k).)
Here ν : MU∗(X) → MU∗MU ⊗MU∗ MU∗(X) denotes the standard MU∗MU -

coaction. The ring homomorphism ĥ : MU∗MU → LT represents the isomorphism

ĥ : g∗FLT → FLT . See [Rez98, §6.7] for a discussion of how to arrange that the

graded version of ĥ is a strict isomorphism.
This morphism of homology theories is represented by a map

(h, γ) : E(Φ, k) −→ E(Φ, k)

in the stable homotopy category. This defines an action in Ho(Sp) of Aut(Φ, k) on
E(Φ, k).
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Example 14.2.4. Recall that Aut(Fm,Fp) = Aut(Fm/Fp) ∼= Z×p . For n ∈
Z×p the automorphism [n]Fm of Fm/Fp acts on E1 = KU∧p as the p-adic Adams
operation ψn.

The principal achievement of the Hopkins–Miller and Goerss–Hopkins obstruc-
tion theories is to promote this group action in Ho(Sp) to a group action on (asso-
ciative =) E1 ring spectra and (commutative =) E∞ ring spectra.

Theorem 14.2.5 (Hopkins–Miller [Rez98, Thm. 7.1]). For any two Lubin–
Tate spectra E(Φ, k) and E(Φ′, k′) the space of E1 ring maps E(Φ, k) → E(Φ′, k′)
is homotopy equivalent to the (profinite) set of morphisms (h, γ) : (Φ, k)→ (Φ′, k′),
where γ : k → k′ is a field homomorphism and h : γ∗Φ → Φ′ is a formal group law
isomorphism.

Hence the action of Aut(Φ, k) in Ho(Sp) on E(Φ, k) lifts uniquely to a (con-
tinuous) action in the category of E1 ring spectra (= associative orthogonal ring
spectra). In particular, Gn acts (continuously) on En through E1 ring spectrum
maps.

Theorem 14.2.6 (Goerss–Hopkins [GH04, Cor. 7.7]). For any two Lubin–Tate
spectra E(Φ, k) and E(Φ′, k′) the space of E∞ ring maps E(Φ, k) → E(Φ′, k′) is
homotopy equivalent to the (profinite) set of morphisms (h, γ) : (Φ, k) → (Φ′, k′),
where γ : k → k′ is a field homomorphism and h : γ∗Φ → Φ′ is a formal group law
isomorphism.

Hence the action of Aut(Φ, k) in Ho(Sp) on E(Φ, k) lifts uniquely to a (con-
tinuous) action in the category of E∞ ring spectra (= commutative orthogonal ring
spectra). In particular, Gn acts (continuously) on En through E∞ ring spectrum
maps.

Remark 14.2.7. In each case the assertion that the action is continuous re-
quires further work, see work by Daniel G. Davis, Gereon Quick and collaborators.
It can now be handled by working over suitable perfect Fp-algebras in place of per-
fect fields, as in Lurie’s account [Lur, §5]. An alternative is to work with “condensed
sets”, as in the work of Clausen–Scholze. As long as one considers finite (hence dis-
crete) subgroups of Aut(Φ, k), continuity is not an issue. See Gregoric [Gre] for a
recent approach.

As a consequence of these theorems, any diagram of finite height formal group
laws over perfect fields of characteristic p can be lifted to a diagram of (associative
or) commutative orthogonal ring spectra. Unlike in Ho(Sp), it makes good sense
to form homotopy limits of such orthogonal ring spectra. For example, for each
subgroup H ⊂ Gn we may consider the homotopy fixed points

EhHn = F (EH+, En)H

(taking the topology on H into account). There is a conditionally convergent left
half-plane homotopy fixed point spectral sequence

E2
s,t = H−sc (H;πtEn) =⇒ πt−s(E

hH
n )

which is usually (always?) strongly converent.

Example 14.2.8. Consider n = 1 with π∗E1 = π∗KU
∧
p = Zp[u±1].
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For p odd the maximal finite subgroup of G1 = Z×p is ∆ ∼= Z/(p − 1). The
homotopy fixed point spectral sequence

E2
∗,∗ = H−∗(∆;Zp[u±1]) = Zp[u±(p−1)] =⇒ π∗(E

h∆
1 )

collapses at the E2-term, and identifies Eh∆
1 with the p-complete Adams summand

L∧p = E(1)∧p of KU∧p with π∗L
∧
p = Zp[v±1

1 ].

For p = 2 the maximal finite subgroup of G1 = Z×2 is ∆ = {±1}, which acts by
sign on π2E1 = Z2{u}. The homotopy fixed point spectral sequence

E2
∗,∗ = H−∗(∆;Z2[u±1]) = Z2[η, u±2]/(2η) =⇒ π∗(E

h∆
1 )

has a nonzero differential d3(u2) = η3, and collapses at

E4
∗,∗ = E∞∗,∗ = Z2[η,A,B±1]/(2η, η3, ηA,A2 = 4B)

with A = 2u2 and B = u4. This identifies Eh∆
1 with 2-completed real K-theory

KO∧2 .

For H maximal finite in Gn, the spectra

EOn = EhHn

are sometimes known as higher real K-theory spectra.

Example 14.2.9. Early calculations with H ∼= Z/p were made by Hopkins–
Miller for n = p − 1, and written out for n = 2 and p = 3 by Goerss–Henn–
Mahowald–Rezk [GHMR05].

For n = 2 and p = 2 the extended Morava stabilizer group G2 = S2 o Z/2 has

the maximal finite subgroup G48 = Â4oZ/2 of order 48, which is also the extended
automorphism group of the unique supersingular elliptic curve over F4. This leads
to the equivalence

LK(2) TMF ' EO2 = EhG48
2

between K(2)-local topological modular forms and this case of higher real K-theory.
The structure of the homotopy fixed point spectral sequence

E2
∗,∗ = H−∗(G48;π∗E2) =⇒ π∗E

hG48
2 = π∗LK(2) TMF

has ((ETC: check)) been documented by Hans–Werner Henn. Another source for
this abutment is [BR21].

Remark 14.2.10. The precise calculation of the action of Aut(Φ, k) on LT (Φ, k),
i.e., of the extended Morava stabilizer group Gn on the coefficient ring π∗(En) of the
n-th Lubin–Tate ring spectrum, is a difficult task. In Devinatz–Hopkins [DH95]
the action is compared to a more explicit action on a “divided power envelope” of
π∗(En). In Hopkins–Gross [HG94] this is formulated in terms of a rigid-analytic
“crystalline period mapping” to a projective space. Partial results for the action by
finite subgroups, or for simpler coefficients, are of current computational interest.

14.3. The Devinatz–Hopkins Galois extensions

Recall that for a G-Galois extension R → T of commutative rings, the ho-
momorphism h : T ⊗R T →

∏
G T given by t1 ⊗ t2 7→ (t1 · g(t2) | g ∈ G) is an

isomorphism.
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By analogy with the Morava change-of-rings theorem and Theorem 14.2.3,
Devinatz–Hopkins [DH04] show that the map

h : En ∧ En −→
∏
Gn

En = F (Gn+, En)

b1 ∧ b2 7−→ (b1 · g(b2))g∈Gn

is a K(n)-local equivalence. Here the product (or function spectrum) takes the
profinite topology on Gn into account. This implies that the cosimplicial resolution
(= Amitsur complex)

S // En
//

// En ∧ En
//

//

//

oo En ∧ En ∧ En
oo

oo . . .

is K(n)-locally equivalent to the cobar construction

EhGnn
// En

//

//

∏
Gn

En

//

//

//

oo
∏
G2
n

En
oo

oo . . .

for the homotopy fixed points EhGnn = F (EGn+, En)Gn . (There are technical issues
here, regarding the continuity of the Gn-action on En and how to account for
the topology on Gn in these products, which are resolved in an ad hoc manner
in [DH04].) In the framework of [Rog08], this has the following formulation.

Theorem 14.3.1. There is a faithful K(n)-local Gn-pro-Galois extension

L̂nS = LK(n)S ' EhGnn −→ En

of E∞ ring spectra.

There is a bijective Galois correspondence [Rog08, Thm. 7.2.3, Thm. 11.2.2]
between the separable subextensions of En and subgroups of Gn.

Corollary 14.3.2. For each finite spectrum F there is a conditionally con-
vergent homotopy fixed point spectral sequence

E2
s,t = H−sc (Gn;πt(En ∧ F )) =⇒ πs+tLK(n)F .

When F has type ≥ n it agrees with the E(n)-based Adams–Novikov spectral se-

quence for LnF ' L̂nF .

See also [Gre].

Example 14.3.3. For n = 1 and p odd, the continuous Z×p -homotopy fixed
points of KU∧p agree with the homotopy equalizer of ψg and 1, where g is a topo-

logical generator of Z×p , so that

LK(1)S ' (KU∧p )hZ
×
p ' J∧p .

For n = 1 and p = 2, the continuous Z×2 -homotopy fixed points of KU∧2 agree with

the (1 + 4Z2)-homotopy fixed points of (KU∧2 )h{±1} ' KO∧2 , which in turn agrees
with the homotopy equalizer of ψ5 and 1 acting on KO∧2 , so that

LK(1)S ' (KU∧2 )hZ
×
2 ' J∧2 .

Recall the notation Enr
n = E(Hn, F̄p), with Aut(Hn, F̄p) = Gnr

n = Sn o Ẑ,

where Ẑ = Gal(F̄p/Fp). Like Theorem 14.3.1 above, there is a faithful K(n)-local
Gnr
n -Galois extension LK(n)S → Enr

n .
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Theorem 14.3.4 (Baker–Richter [BR08b]). Let p be odd and n ≥ 1. Then
Enr
n is separably closed, in the sense that it admits no proper, connected K(n)-local

Galois extension.

Hence the profinite completion Gnr
n of the unit group D×n (of the central simple

Qp-algebra of invariant 1/n, see Chapter 10, Remark 7.14) is realized as the absolute
Galois group of the K(n)-local sphere. It is the fundamental group of the formal
neighborhood of Hn over Fpn inMfg, with universal cover given by the Lubin–Tate
formal group law over Spf(π0E

nr
n ).

14.4. ((ETC: Unfinished business))

14.4.1. Stable comodule categories. Too little structure in target (abelian,
not triangulated) may mean that the chromatic localization is too weak (loses too
much information) and that a finer target, giving a stronger (telescopic) localization,
is more interesting. Derived or stable ∞-categories; Hovey, Strickland.

14.4.2. Elliptic cohomology and topological modular forms. Map from
moduli stack of (generalized) elliptic curves to (finite height) formal groups. Elliptic
cohomology.

14.4.3. Redshift. Algebraic K-theory computations using topological cyclic
homology of telescopic (rather than chromatic) homotopy groups.

14.4.4. Chromatic Nullstellensatz. Burklund–Schlank–Yuan: The chro-
matic Nullstellensatz (arXiv:2207.09929).

14.4.5. Chromatic Fourier transform. Barthel–Carmeli–Schlank–Yanovski:
The chromatic Fourier transform (arXiv:2210.12822).





APPENDIX A

The Adams spectral sequence

A.1. The E-based Adams spectral sequence

We turn to the sequence of spectra Y? from Example 1.3 of Chapter 8, and its
associated spectral sequence, namely the E-based Adams spectral sequence. Let Y
be any orthogonal spectrum, let (E, η, φ) be a ring spectrum up to homotopy, and
let Ē = Cη, so that we have a homotopy cofiber sequence

(A.1) Σ−1Ē −→ S
η−→ E −→ Ē

(with I = Σ−1Ē and ΣI = E in the notation of the cited example). We let Y0 = Y
and iteratively define Ys+1 = Σ−1Ē ∧ Ys for s ≥ 0, so that we have homotopy
cofiber sequences

Ys+1
α−→ Ys

β−→ E ∧ Ys
γ−→ ΣYs+1

given by smashing (A.1) with Ys. In particular Ys,1 = Cα = E ∧Ys and β = η∧ id.
We also let Y = Ys for s < 0, so that

Ys =

{
(Σ−1Ē)∧s ∧ Y for s ≥ 0,

Y for s ≤ 0,

and

Ys,1 =

{
E ∧ (Σ−1Ē)∧s ∧ Y for s ≥ 0,

∗ for s < 0.

Hence the chain of homotopy cofiber sequences

. . . // Y3
α // Y2

α //

β

��

Y1
α //

β

��

Y0

β

��

= // . . .

Y2,1

γ

aa

Y1,1

γ

bb

Y0,1

γ

bb

appears as follows.

. . . // (Σ−1Ē)∧3 ∧ Y α // (Σ−1Ē)∧2 ∧ Y α //

β

��

Σ−1Ē ∧ Y α //

β

��

Y

β

��

= // . . .

E ∧ (Σ−1Ē)∧2 ∧ Y

γ

hh

E ∧ Σ−1Ē ∧ Y

γ

hh

E ∧ Y

γ

ee

281
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Replacing Ys and Ys,1 by ΣsYs and ΣsYs,1, respectively, we can also draw this as
follows.

. . . // Ē∧3 ∧ Y α // Ē∧2 ∧ Y α //

β

��

Ē ∧ Y α //

β

��

Y

β

��

E ∧ Ē∧2 ∧ Y

γ

gg

E ∧ Ē ∧ Y

γ

gg

E ∧ Y
γ

ff

We think of these diagrams as spectrum level resolutions of Y by spectra of the
form E ∧ Z for some spectrum Z, which in a sense are injective to the eyes of
E-homology, or (in good cases) projective to the eyes on E-cohomology.

Applying homotopy we obtain an unrolled exact couple

. . . // π∗(Y3)
α∗ // π∗(Y2)

α∗ //

β∗

��

π∗(Y1)
α∗ //

β∗

��

π∗(Y0) = π∗(Y )

β∗

��

π∗(Y2,1)

γ∗

ee

π∗(Y1,1)

γ∗

ee

π∗(Y0,1)

γ∗

gg

with

π∗(Ys) = π∗((Σ
−1Ē)∧s ∧ Y )

π∗(Ys,1) = π∗(E ∧ (Σ−1Ē)∧s ∧ Y )

for all s ≥ 0. The associated spectral sequence is the E-based Adams spectral
sequence, which is concentrated in the half-plane s ≥ 0. Clearly Y = Y0 ' Y−∞ =
hocolims Ys, so we takeG = π∗(Y ) as the abutment of the spectral sequence, writing

Es,∗1 = π∗(Ys,1) =⇒s π∗(Y ) .

However, Y∞ = holims Ys will not generally be trivial, so (conditional) convergence
is not guaranteed. Following Bousfield, one way to achieve this is to replace Y by
its E-nilpotent completion Y ∧E , defined as the homotopy cofiber of Y∞ → Y , and
the convergence problem for the Adams spectral sequence is then to recognize this
completion.

In order to obtain an algebraic description of the E-based Adams E1- and E2-
term, we hereafter assume that E is homotopy commutative and flat, so that E∗E
is flat as a (left or right) E∗-module. The pair (E∗, E∗E) is then a Hopf algebroid,
and there is a natural left E∗E-coaction

ν : E∗(X) −→ E∗E ⊗E∗ E∗(X)

for each spectrum X. Let Homt
E∗E(E∗, E∗(X)) denote the abelian group of E∗E-

comodule homomorphisms ΣtE∗ = E∗(S
t) → E∗(X), for each t ∈ Z, and write

HomE∗E(E∗, E∗(X)) for the resulting graded abelian group.

Lemma A.1.1. The natural homomorphism

π∗(X)
d−→ HomE∗E(E∗, E∗(X))

[f : St → X] 7→ f∗ : E∗(S
t)→ E∗(X)

is an isomorphism whenever X ' E ∧ Z for some spectrum Z.

Proof. There is an equalizer diagram

HomE∗E(E∗, E∗(X))
ι // E∗(X)

ν //

ηR⊗id
// E∗E ⊗E∗ E∗(X) ,
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where ι evaluates a homomorphism at 1 ∈ E∗ and ηR ⊗ id maps x to 1 ⊗ x.
Hence HomE∗E(E∗, E∗(X)) = E∗�E∗E E∗(X) = PE∗(X) is the subgroup of E∗E-
comodule primitives in E∗(X). The fork diagram

π∗(X)
ιd // E∗(X)

ν //

ηR⊗id
// E∗E ⊗E∗ E∗(X) ,

can be rewritten as

π∗(X)
η∧id

// π∗(E ∧X)
id∧η∧id

//

η∧id∧ id
// π∗(E ∧ E ∧X) ,

and when X = E ∧ Z it extends to a split equalizer diagram

π∗(E ∧ Z)
η∧id

// π∗(E ∧ E ∧ Z)
id∧η∧id

//

η∧id∧ id
//

φ∧id

VV
π∗(E ∧ E ∧ E ∧ Z)

id∧φ∧id

WW

as in [Mac71, §IV.5]. In particular, it is then an equalizer, so that d is an isomor-
phism. �

Hence we can recover the homotopy groups Es,∗1 = π∗(Ys,1) = π∗(E ∧ Ys) from
the E∗E-comodules E∗(Ys,1). To make use of this, we apply E∗(−) to the chain of
homotopy cofiber sequences, and obtain an unrolled exact couple

. . . // E∗(Y3)
α∗ // E∗(Y2)

α∗ //

β∗

��

E∗(Y1)
α∗ //

β∗

��

E∗(Y0) = E∗(Y )

β∗

��

E∗(Y2,1)

γ∗

ee

E∗(Y1,1)

γ∗

ee

E∗(Y0,1) ,

γ∗

gg

in the (abelian) category of E∗E-comodules. Here β∗ : E∗(Ys) → E∗(Ys,1) can be
rewritten as

π∗(E ∧ Ys)
id∧η∧id−→ π∗(E ∧ E ∧ Ys)

and admits the E∗-linear retraction

π∗(E ∧ E ∧ Ys)
φ∧id−→ π∗(E ∧ Ys) ,

since φ(id∧η) = id by (right) unitality. Hence each β∗ is injective, so by exactness
α∗ = 0 and γ∗ is surjective, for each s. We can therefore redraw the diagram above
as

E∗(Σ
3Y3)
��

��

E∗(Σ
2Y2)
��

β∗

��

E∗(ΣY1)
��

β∗

��

E∗(Y0) = E∗(Y )
��

β∗

��

. . . E∗(Σ
2Y2,1)

γ∗

ffff

E∗(ΣY1,1)

γ∗

ffff

E∗(Y0,1) ,

γ∗

hhhh

consisting of the short exact sequences

0→ E∗(Ys)
β∗−→ E∗(Ys,1)

γ∗−→ E∗−1(Ys+1)→ 0
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of E∗E-comodules. Each underlying short exact sequence of E∗-modules is split by
φ ∧ id, but the splitting is usually not E∗E-(co-)linear. Now we splice these short
exact sequences to obtain a long exact sequence

. . .←− E∗(Σ2Y2,1)
β∗γ∗←− E∗(ΣY1,1)

β∗γ∗←− E∗(Y0,1)
β∗←− E∗(Y )←− 0

of E∗E-comodules. By Lemma A.1.1 we now have an isomorphism from the Adams
spectral sequence (E1, d1)-term

. . .←− π∗(Σ3Y3,1)
d2

1←− π∗(Σ2Y2,1)
d1

1←− π∗(ΣY1,1)
d0

1←− π∗(Y1,0)←− 0

to the cochain complex

. . .←− HomE∗E(E∗, E∗(Σ
3Y3,1))

β∗γ∗←− HomE∗E(E∗, E∗(Σ
2Y2,1))

β∗γ∗←− HomE∗E(E∗, E∗(ΣY1,1))
β∗γ∗←− HomE∗E(E∗, E∗(Y1,0))←− 0

Letting
Is = E∗(Σ

sYs,1) = E∗(E ∧ Ys) ∼= E∗E ⊗E∗ E∗(Ys)
and δ = β∗γ∗ we have a resolution

. . .←− I3 δ←− I2 δ←− I1 δ←− I0 β∗←− E∗(Y )←− 0

of the E∗E-comodule E∗(Y ) by extended E∗E-comodules. These are relatively
injective, in the sense that for any diagram of E∗E-comodules

0 // M∗ // //

��

N∗

}}

Is

with M∗ → N∗ split injective in the underlying category of E∗-modules, there exists
a dashed arrow making the triangle commute. With this notation, the Adams
(E1, d1)-term is isomorphic to the cochain complex

. . .←− HomE∗E(E∗, I
3)

δ←− HomE∗E(E∗, I
2)

δ←− HomE∗E(E∗, I
1)

δ←− HomE∗E(E∗, I
0)←− 0

obtained by applying the functor HomE∗E(E∗,−) the relatively injective resolu-
tion (Is, δ)s of E∗(Y ). By the comparison theorem in homological algebra, any
two relatively injective E∗E-comodule resolutions of E∗(Y ) are chain homotopy
equivalent, and give chain homotopy equivalent cochain complexes after applying
HomE∗E(E∗,−). The cohomology of this cochain complex is therefore independent
of the choice of resolution, and defines the E∗E-comodule Ext-groups

ExtsE∗E(E∗, E∗(Y )) = Hs(HomE∗E(E∗, I
∗), δ) .

As usual, Ext0
E∗E(E∗, E∗(Y )) = HomE∗E(E∗, E∗(Y )).

Theorem A.1.2. The E-based Adams spectral sequence for Y has E2-term

Es,∗2 = ExtsE∗E(E∗, E∗(Y )) =⇒s π∗(Y ) .

More precisely,
Es,t2 = Exts,tE∗E(E∗, E∗(Y )) =⇒s πt−s(Y )

with dr-differentials dr : Es,tr → Es+r,t+r−1
r of bidegree (r, r − 1).
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The image groups

F sπ∗(Y ) = im(π∗(Ys) −→ π∗(Y ))

define the decreasing Adams filtration

· · · ⊂ F s+1π∗(Y ) ⊂ F sπ∗(Y ) ⊂ · · · ⊂ F 0π∗(Y ) = π∗(Y ) ,

where s is often called the Adams grading (or cohomological degree). To keep track
of the grading of π∗(Y ), we set

Homt
E∗E(E∗, I

s) = HomE∗E(ΣtE∗, I
s)

Exts,tE∗E(E∗, H∗(Y )) = Hs(Homt
E∗E(E∗, I

s), δ) ,

so that

πn(Ys,1) = [Sn, Ys,1] ∼= [Sn+s,ΣsYs,1]

∼= HomE∗E(Σn+sE∗, E∗(Σ
sYs,1)) = Homn+s

E∗E
(E∗, I

s) .

Letting t = n + s be the internal grading (and n = t − s the topological grading)

we denote this group by Es,t1 , so that

Es,t1 = Homt
E∗E(E∗, I

s)

Es,t2 = Exts,tE∗E(E∗, E∗(Y ))

and ζs : F sπn(Y )/F s+1πn(Y )→ Es,s+n∞ . The dr-differential is derived from

πt−s−1(Ys+r)
αr−1

//

β

��

πt−s−1(Ys+1)

πt−s−1(Ys+r,1) πt−s(Ys,1)

γ

gg

hence has components dr : Es,tr → Es+r,t+r−1
r , of (s, t)-bidegree (r, r − 1), for all s

and t.
It is traditional to show the Adams spectral sequence in the (t − s, s)-plane,

called Adams bigrading, and in these coordinates the dr-differential has (t − s, s)-
bidegree (−1, r). This is an upper half-plane spectral sequence with entering dif-

ferentials. Here is the (E1, d1)-term, with Es,t1 = πt−s(Ys,1) ∼= Homt
E∗E(E∗, I

s).

π0(Y3,1) π1(Y3,1) π2(Y3,1)

π0(Y2,1) π1(Y2,1)

ii

π2(Y2,1)

ii

π0(Y1,1) π1(Y1,1)

ii

π2(Y1,1)

ii

π0(Y0,1) π1(Y0,1)

ii

π2(Y0,1)

ii
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Next is the (E2, d2)-term, with Es,t2
∼= Exts,tE∗E(E∗, E∗(Y )), writing Hom in place of

Ext0.

Ext3,3
E∗E

(E∗, E∗(Y )) Ext3,4
E∗E

(E∗, E∗(Y )) Ext3,5
E∗E

(E∗, E∗(Y ))

Ext2,2
E∗E

(E∗, E∗(Y )) Ext2,3
E∗E

(E∗, E∗(Y )) Ext2,4
E∗E

(E∗, E∗(Y ))

Ext1,1
E∗E

(E∗, E∗(Y )) Ext1,2
E∗E

(E∗, E∗(Y ))

cc

Ext1,3
E∗E

(E∗, E∗(Y ))

cc

Hom0
E∗E(E∗, E∗(Y )) Hom1

E∗E(E∗, E∗(Y ))

cc

Hom2
E∗E(E∗, E∗(Y ))

cc

Eventually we come to the E∞-term, showing Es,t∞ in bidegree (t− s, s).

E3,3
∞ E3,4

∞ E3,5
∞

E2,2
∞ E2,3

∞ E2,4
∞

E1,1
∞ E1,2

∞ E1,3
∞

E0,0
∞ E0,1

∞ E0,2
∞

n = 0 n = 1 n = 2

Regarding topological degree n, we find the groups Es,n−s∞ in the n-th column, for
s ≥ 0. When we have convergence, so that each ζs : F sπn(Y )/F s+1πn(Y ) ∼= Es,n−s∞
is an isomorphism, that column shows the associated graded of the Adams filtration
of πn(Y ), with the lower filtrations s near the bottom of the chart. The extension
problem in degree n is to inductively determine the group extensions

0→ Es,n−s∞ −→ πn(Y )

F s+1πn(Y )
−→ πn(Y )

F sπn(Y )
→ 0 .

When we have strong convergence, that filtration is complete and Hausdorff, so that
πn(Y ) = lims πn(Y )/F sπn(Y ) can be recovered from the finite stage extensions.

The edge homomorphism

πn(Y ) = F 0πn(Y )→ F 0πn(Y )/F 1πn(Y )
ζ0

−→ E0,n
∞ ⊂ E0,n

2 = Homn
E∗E(E∗, E∗(Y ))

is precisely the natural homomorphism d from Lemma A.1.1.
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A.2. Pairings of Adams spectral sequences

Given a pairing µ : Y ∧Y ′ → Y ′′ of orthogonal spectra there is a natural pairing

µr : Er(Y )⊗ Er(Y ′) −→ Er(Y ′′)

of Adams spectral sequences, given at the E2-term by the algebraic pairing

µ2 : ExtE∗E(E∗, E∗(Y ))⊗ ExtE∗E(E∗, E∗(Y
′)) −→ ExtE∗E(E∗, E∗(Y

′′)) ,

and with target the pairing

µ∗ : π∗(Y )⊗ π∗(Y ′) −→ π∗(Y
′′) .

To justify this, we assume that the canonical Adams towers Y? and Y ′? of Y and
Y ′ have been cofibrantly replaced (the projective stable model structure on such
towers), so that each Ys and Y ′s′ is a cell spectrum, and each map Ys+1 → Ys
and Y ′s′+1 → Y ′s′ is a composite of cell attachments. We may then assume that
Y−∞ =

⋃
s Ys = colims Ys and Y ′−∞ =

⋃
s′ Y

′
s′ = colims′ Y

′
s′ . Then the convolution

product (Y ∧ Y ′)? is the tower with

(Y ∧ Y ′)s′′ =
⋃

s+s′≥s′′
Ys ∧ Y ′s′ = colim

s+s′≥s′′
Ys ∧ Y ′s′ ⊂ Y−∞ ∧ Y ′−∞ .

This is again cofibrant, with filtration quotients

(Y ∧ Y ′)s′′,1 =
∨

s+s′=s′′

Ys,1 ∧ Y ′s′,1 ,

and the diagram

. . . // (Y ∧ Y ′)3
α // (Y ∧ Y ′)2

α //

β

��

(Y ∧ Y ′)1
α //

β

��

(Y ∧ Y ′)0

β

��

(Y ∧ Y ′)2,1

γ

ff

(Y ∧ Y ′)1,1

γ

gg

(Y ∧ Y ′)0,1

γ

gg

is an Adams resolution of (Y ∧ Y ′)0 ' Y ∧ Y ′, in a more general sense than the
canonical Adams resolutions we have discussed so far. ((ETC/BEWARE: This
appears to assume that E∗(Y ∧ Y ′) ∼= E∗(Y )⊗E∗ E∗(Y ′′), which holds if E∗(Y ) or
E∗(Y

′) is flat over E∗.)) This uses that each spectrum (Y ∧ Y ′)s′′,1 has the form
E ∧ Z, and that the cochain complex

. . .←− E∗(Σ2(Y ∧ Y ′)2,1)
β∗γ∗←− E∗(Σ(Y ∧ Y ′)1,1)

β∗γ∗←− E∗((Y ∧ Y ′)0,1)←− 0

is the tensor product I∗⊗E∗ ′I∗ over E∗ of the E∗-split E∗E-comodules resolutions
I∗ ' E∗(Y ) and ′I∗ ' E∗(Y ′), with cohomology E∗(Y ∧Y ′) concentrated in degree
s′′ = 0. This is equivalent to the condition that α∗ : E∗((Y ∧ Y ′)s+1) → E∗((Y ∧
Y ′)s) is zero for each s ≥ 0.

Moreover, there is a weak map of Adams towers (Y ∧ Y ′)? → Y ′′? , making the
diagram

. . . // (Y ∧ Y ′)3
α //

��

(Y ∧ Y ′)2
α //

��

(Y ∧ Y ′)1
α //

��

(Y ∧ Y ′)0

µ

��

. . . // Y ′′3
α // Y ′′2

α // Y ′′1
α // Y ′′0
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commute up to homotopy. This is constructed inductively, by noting that

(Y ∧ Y ′)s′′+1
α−→ (Y ∧ Y ′)s′′ −→ Y ′′s′′

β−→ Y ′′s′′,1 = E ∧ Y ′′s′′
is null-homotopic by a generalization of Lemma A.1.1.

The strict pairing of towers then gives a pairing of spectral sequences

Er(Y )⊗ Er(Y ′) −→ Er(Y ∧ Y ′)
as before, while the weak map of towers gives a map of spectral sequences

Er(Y ∧ Y ′)→ Er(Y ′′)
which combine to the desirect pairing of Adams spectral sequences. The spectral
sequence Er(Y ∧ Y ′) is more general than the canonical Adams spectral sequences
we have discussed here, but it agrees with the canonical Adams spectral sequence
for Y ∧ Y ′ from the E2-term and onward.

The first pairing of E1-terms can be identified with the pairing

HomE∗E(E∗, I
s)⊗HomE∗E(E∗, I

s′) −→ HomE∗E(E∗, (I
∗ ⊗ ′I∗)s+s

′
)

that induces the external pairing

ExtsE∗E(E∗, E∗(Y ))⊗ ExtE∗E s
′(E∗, E∗(Y

′)) −→ Exts+s
′

E∗E
(E∗, E∗(Y ∧ Y ′))

of E2-terms. The weak map of Adams towers then induces the standard homomor-
phism

Exts
′′

E∗E(E∗, E∗(Y ∧ Y ′)) −→ Exts
′′

E∗E(E∗, E∗(Y
′′)) ,

and these combine to the expected pairing of Adams E2-terms.
((ETC: I believe this result cannot be justify purely within the stable homotopy

category.))

A.3. The cobar resolution

Suppose, until further notice, that E is an orthogonal ring spectrum. The
Amitsur complex is the coaugmented cosimplicial diagram

S
η

// E

η∧id
//

id∧η
//
E ∧ E

η∧id∧ id
//

id∧η∧id //

id∧ id∧η
//

φoo . . .
φ∧idoo

id∧φoo

of orthogonal spectra, i.e., a functor ∆η → SpO where ∆η is the simplex category
∆ together with an initial object [−1]. The functor maps [q] = {0 < 1 · · · < q} to
E∧· · ·∧E with 1+q copies of E, the face operators/monomorphisms [p]→ [q] induce
maps invoving the unit η : S → E, and the degeneracy operators/epimorphisms
[p] → [q] induce maps involving the product φ : E ∧ E → E. More precisely

δi : [q − 1] → [q] for 0 ≤ i ≤ q is given by id∧i ∧η ∧ idq−i : E∧q → E∧1+q, while

σj : [q + 1]→ [q] for 0 ≤ j ≤ q is given by id∧j ∧φ ∧ idq−j : E∧1+q+1 → E∧1+q.
The homotopy limit (or totalization) of the unaugmented part of the diagram,

i.e., with q ≥ 0, is called an E-adic completion S∧E of S, and we obtain a completion
map η : S → S∧E .

We can smash the diagram (from the right, say) with any given orthogonal
spectrum Y and obtain an Amitsur complex

Y
η∧id

// E ∧ Y
//

//
E ∧ E ∧ Y

//

//

//

oo . . .
oo

oo
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with homotopy limit Y ∧E , together with a completion map ηY : Y → Y ∧E lifting
η ∧ id. If we smash either one of these diagrams (from the left, say) with E, then
the product φ equips the resulting diagram with an extra degeneracy operator σ−1,
or cosimplicial contraction, given by φ ∧ id∧q ∧ id : E∧2+q ∧ Y → E∧1+q ∧ Y for
q ≥ 0.

E ∧ Y
id∧η∧id

// E ∧ E ∧ Y
//

//

φ∧id

		

E ∧ E ∧ E ∧ Y
//

//

//

oo

φ∧id∧ id

��

. . .
oo

oo

φ∧id∧ id∧ id

��

This implies that E ∧ Y → (E ∧ Y )∧E is an equivalence.
The corresponding construction at the level of homotopy groups provides a

resolution of π∗(E ∧ Y ) = E∗(Y ) by extended E∗E-comodules. To effect this, we
allow E to be a ring spectrum up to homotopy, but assume that it is flat, so that
(E∗, E∗E) is a Hopf algebroid. For each q ≥ −1 let

Cq = CqE∗E(E∗E,E∗(Y )) = E∗E ⊗E∗ · · · ⊗E∗ E∗E ⊗E∗ E∗(Y )
∼=−→ π∗(E ∧ E ∧ · · · ∧ E ∧ Y )

with 1 + q copies of E∗E, and 2 + q copies of the spectrum E. Note that C−1 =
E∗(Y ). We get coface operators δi : Cq−1 → Cq for 0 ≤ i ≤ q, given by id⊗i⊗ψ ⊗
id⊗q−i for 0 ≤ i < q, while δq is given by id⊗q ⊗ν. Here ψ : E∗E ⊗E∗ E∗E is the
Hopf algebroid coproduct, and ν : E∗(Y )→ E∗E ⊗E∗ E∗(Y ) is the coaction.

E∗(Y )
δ0
// E∗E ⊗E∗ E∗(Y )

δ0
//

δ1
// E∗E ⊗E∗ E∗E ⊗E∗ E∗(Y )

δ0
//

δ1 //

δ2
//
. . .

((ETC: Get a cosimplicial graded abelian group, an extra codegeneracy, giving a
cosimplicial contraction.))

For each q ≥ 0 we can form the alternating sum

d =

q∑
i=0

(−1)iδi : Cq−1 −→ Cq .

Note that d : C−1 → C0 is ν : E∗(Y ) → E∗E ⊗E∗ E∗(Y ), while d : C0 → C1 is
ψ ⊗ id− id⊗ν. The (cosimplicial) relations satisfied by the coface operators imply
that d ◦ d = 0, so that we obtain a cochain complex

0→ E∗(Y )
η−→ C0 d−→ C1 d−→ C2 −→ . . . .

Here each Cq with q ≥ 0 is an extended, hence relatively injective, E∗E-comodule.
((ETC: Get a cochain contraction.))

((ETC: Taking into account the codegeneracies, we may pass to the normalized
sub-cocomplex where each of the inner q copies of E∗E is replaced by ker(ε : E∗E →
E∗).))

More generally, C∗Γ(M,N) can be defined for any (flat) Hopf algebroid (A,Γ),
right Γ-comodule M and left Γ-comodule N .

((ETC: Might prefer to say all this in terms of monad actions, or comonad
coactions.))

((ETC: Give cobar resolution and cobar complex for calculating Ext∗,∗E∗E(E∗,M∗)
of any E∗E-comodule M∗.
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A.4. The classical Adams spectral sequence

((ETC: Specialize to E = HFp, with

ExtA∗(Fp, H∗(Y ;Fp)) ∼= ExtA (H∗(Y ;Fp);Fp) ,
where ExtA (M,Fp) is formed in the category of A -modules, as usual, by applying
HomA (−,Fp) to any projective A -module resolution P∗ → M and passing to
cohomology.))

A.5. The Adams–Novikov spectral sequence

((ETC: Specialize to E = MU , with

ExtMU∗MU (MU∗,MU∗(Y )) =⇒ π∗(Y )

where Ext is formed in the category of MU∗MU -comodules.))
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567 (1975). MR371899
[AT69] M. F. Atiyah and D. O. Tall, Group representations, λ-rings and the J-

homomorphism, Topology 8 (1969), 253–297, DOI 10.1016/0040-9383(69)90015-9.
MR244387

[Ati61] M. F. Atiyah, Bordism and cobordism, Proc. Cambridge Philos. Soc. 57 (1961), 200–

208, DOI 10.1017/s0305004100035064. MR126856

291



292 BIBLIOGRAPHY

[Ati67] , K-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1967. Lecture notes

by D. W. Anderson. MR0224083

[Baa73a] Nils Andreas Baas, On bordism theory of manifolds with singularities, Math. Scand.
33 (1973), 279–302 (1974), DOI 10.7146/math.scand.a-11491. MR346824

[Baa73b] , On formal groups and singularities in complex cobordism theory, Math.

Scand. 33 (1973), 303–313 (1974), DOI 10.7146/math.scand.a-11492. MR346825
[Bak91] Andrew Baker, A∞ structures on some spectra related to Morava K-theories, Quart.

J. Math. Oxford Ser. (2) 42 (1991), no. 168, 403–419, DOI 10.1093/qmath/42.1.403.

MR1135302
[Bau08] Tilman Bauer, Computation of the homotopy of the spectrum tmf, Groups, homo-

topy and configuration spaces, Geom. Topol. Monogr., vol. 13, Geom. Topol. Publ.,

Coventry, 2008, pp. 11–40, DOI 10.2140/gtm.2008.13.11. MR2508200
[BBB+21] Agnès Beaudry, Mark Behrens, Prasit Bhattacharya, Dominic Culver, and Zhouli Xu,

The telescope conjecture at height 2 and the tmf resolution, J. Topol. 14 (2021), no. 4,
1243–1320, DOI 10.1112/topo.12208. MR4332490
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mogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115–207, DOI

10.2307/1969728 (French). MR51508



BIBLIOGRAPHY 293

[Bot57] Raoul Bott, The stable homotopy of the classical groups, Proc. Nat. Acad. Sci. U.S.A.

43 (1957), 933–935, DOI 10.1073/pnas.43.10.933. MR102802

[Bot59] , The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959),
313–337, DOI 10.2307/1970106. MR110104

[Bou79a] A. K. Bousfield, The Boolean algebra of spectra, Comment. Math. Helv. 54 (1979),

no. 3, 368–377, DOI 10.1007/BF02566281. MR543337
[Bou79b] , The localization of spectra with respect to homology, Topology 18 (1979),

no. 4, 257–281, DOI 10.1016/0040-9383(79)90018-1. MR551009

[Bou83] , Correction to: “The Boolean algebra of spectra” [Comment. Math. Helv. 54
(1979), no. 3, 368–377; MR0543337 (81a:55015)], Comment. Math. Helv. 58 (1983),

no. 4, 599–600, DOI 10.1007/BF02564654. MR728454

[BP04] Mark Behrens and Satya Pemmaraju, On the existence of the self map v92 on the
Smith-Toda complex V (1) at the prime 3, Homotopy theory: relations with algebraic

geometry, group cohomology, and algebraic K-theory, Contemp. Math., vol. 346,
Amer. Math. Soc., Providence, RI, 2004, pp. 9–49, DOI 10.1090/conm/346/06284.

MR2066495

[BP66] Edgar H. Brown Jr. and Franklin P. Peterson, A spectrum whose Zp cohomology is

the algebra of reduced pth powers, Topology 5 (1966), 149–154, DOI 10.1016/0040-

9383(66)90015-2. MR192494

[BR05] Andrew Baker and Birgit Richter, On the Γ-cohomology of rings of numerical poly-
nomials and E∞ structures on K-theory, Comment. Math. Helv. 80 (2005), no. 4,

691–723, DOI 10.4171/CMH/31. MR2182697

[BR08a] , Uniqueness of E∞ structures for connective covers, Proc. Amer. Math. Soc.
136 (2008), no. 2, 707–714, DOI 10.1090/S0002-9939-07-08984-8. MR2358512

[BR08b] , Galois extensions of Lubin-Tate spectra, Homology Homotopy Appl. 10

(2008), no. 3, 27–43. MR2475616
[BR21] Robert R. Bruner and John Rognes, The Adams spectral sequence for topological mod-

ular forms, Mathematical Surveys and Monographs, vol. 253, American Mathematical
Society, Providence, RI, 2021. MR4284897

[Bro62] Edgar H. Brown Jr., Cohomology theories, Ann. of Math. (2) 75 (1962), 467–484,

DOI 10.2307/1970209. MR138104
[BS53] A. Borel and J.-P. Serre, Groupes de Lie et puissances réduites de Steenrod, Amer.
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Math. Helv. 28 (1954), 17–86, DOI 10.1007/BF02566923 (French). MR61823

[Tod71] Hirosi Toda, On spectra realizing exterior parts of the Steenrod algebra, Topology 10
(1971), 53–65, DOI 10.1016/0040-9383(71)90017-6. MR271933
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