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Conditionally Convergent Spectral Sequences 

J. Michael Boardman 

ABSTRACT. Convergence criteria for spectral sequences are developed that ap-
ply more widely than the traditional concepts. In the presence of additional 
conditions that depend on data internal to the spectral sequence, they lead to 
satisfactory convergence and comparison theorems. The techniques apply to 
whole-plane as well as half-plane spectral sequences. 
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50 J. MICHAEL BOARDMAN 

Introduction 

By popular demand, this paper presents material that has long circulated in 
preprint form, along with some newer results. Historically, the convergence of 
spectral sequences was handled by imposing severe finiteness conditions; this was 
adequate for early applications, when spectral sequences occupied only the first or 
third quadrant of the plane and all filtrations of groups were finite in each degree. 
For more general spectral sequences, such as those that fill a half-plane, Cartan and 
Eilenberg [4, Chap. XV] replaced finiteness conditions by limit conditions. Today, 
there are spectral sequences of interest that fill the whole plane; for these, better 
methods are essential. 

The principle here, suggested at least by C. T. C. Wall and D. B. A. Epstein, 
is that because the limit functor of a sequence of abelian groups fails to be exact, 
whenever one encounters a limit group, one should for consistency take account of 
the associated derived limit group, which was introduced to topologists by Milnor 
[12]. This leads naturally to classes of spectral sequences that may or may not con-
verge in any ordinary sense; nevertheless, one can often deduce strong convergence 
from data purely internal to the spectral sequence. Further, there are comparison 
theorems that remain valid when even weak convergence fails. 

We begin by reviewing in §0 the construction of a spectral sequence. Part I 
introduces various algebraic and topological tools. Part II discusses convergence in 
great generality; as such generality is usually excessive, we include the significantly 
simpler cases of half-plane spectral sequences. Part III presents some common 
spectral sequences that automatically qualify, regardless of finiteness. No attempt 
is made to be comprehensive, as in McCleary's guide [11]. 

0. Spectral sequences 

We consider only spectral sequences of abelian groups. The extra structure that 
is often present is largely irrelevant to our purposes. 

Unrolled exact couples. All the spectral sequences we discuss arise from 
an unrolled (previously, unraveled) exact couple, by which we mean a diagram of 
graded abelian groups and homomorphisms of the form 

i i i 
... - As+2 --+ As+l - As - As-l - ... 

(0.1) \1\1\1 
in which each triangle --+ As+l --+ As --+ Es --+ As+l --+ is a long exact sequence. 
Each As andEs is itself a graded (or occasionally bigraded) group; but we generally 
suppress at least one grading by working in the category of graded (or bigraded) 
groups. Typically (not always), deg(i) = 0, while deg(j) and deg(k) are 0 and 1 
in either order; however, the indexing and grading are often changed for reasons of 
convenience or personal preference to suit the application, and do not concern us. 

From diagram (0.1) we extract the short exact sequence 
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CONDITIONALLY CONVERGENT SPECTRAL SEQUENCES 51 

which shows that each Es is determined up to group extension by the sequence 

(0.2) 
i i i 

. . • ------t As+ 2 ------t As+ 1 ------t As ------t As- 1 ------t . . . 

of graded groups. We find that the particular extension has little relevance here; 
what we really need to study is the sequence (0.2), which is much simpler than 
(0.1). Moreover, at this point, we can discard the grading on each As and work 
degreewise (with adjustments if deg(i) =!= 0). 

Construction of the spectral sequence. In the unrolled exact couple (0.1), 
the groups Es are the components of the initial E1-term of the spectral sequence, 
Ef = Es. For the higher terms, we define for all integers s and all r ;::: 1: 

z: = k-1(Im[i(r- 1): As+r--> As+l]), the r-th cycle subgroup of Es = Ef; 

B: = j Ker[i(r- 1): As--> As-r+l], the r-th boundary subgroup of Es = Ef; 
E: = z: / B:, a component of the Er-term; 

where i(r-1) denotes the (r-1)-fold iterate of i. Each of these is itself a graded 
group, often written with components E:·t etc. in degree s + t. (We warn that our 
indexing of z; and B; is not universally accepted, e. g. MacLane [9, Chap. 11].) 
We thus have the subgroups of Es, 

0 = Bf c B2 c B3 c · · · c Imj = Kerk c · · · c Zf1 c Z2 c Zf = Es. 

To study these, we introduce the notation 

(0.3) Imr As= Im[i(r): As+r--> As]. 

From the portion 

\I 
Es 

of diagram (0.1), we extract the two short exact sequences 

(0.4) 
zs k . 

0 ------t __ r_ ------t lmr-1 As+1 ~ Imr As ------t 0 
Kerk 

and 

(0.5) 

where the unmarked arrow is induced by lifting by i(r-1) and applying j. We splice 
these together (for various r and s), noting that Im j = Ker k, to form the ( r -1)- th 
derived exact couple of (0.1), which consists of the long exact sequences 

(0.6) 

The differential of this derived exact couple is 

k 
dr: E: ------t Imr-1 As+l ------t E:+r. 
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52 J. MICHAEL BOARDMAN 

It has degree deg(j) + deg(k) in the usual case that deg(i) = 0. We read off the 
cycles of dr as Ker dr = z:+ 1 In: and the boundaries as 

(0.7) 
ns+r zs K [I r-1 As+1 As] 

Im[d . Es --+ Es+r] = ---...!:±.!_ c:: _r_ c:: er m --+ 
r. r r ns+r - zs - Ker[Imr As+l --+As] ' 

r r+1 

and thus identify the homology of dr at E: with z:+1 / n:+1 = E:+l. We have 
the spectral sequence r ~----> ( Er, dr), defined for r 2: 1, with the requisite homology 
isomorphisms H ( Er, dr) ~ Er+l· Our main focus will be on what happens to Er 
as r ~----> oo; this is the convergence problem, and is the subject of Part II. 

Morphisms of spectral sequences. It is clear that a morphism f: As --+ iP 
etc. of unrolled exact couples (in the obvious sense) induces a morphism of spectral 
sequences, which we write as fr: Er --+ Er for r 2: 1. If fk is an isomorphism 
(typically, k = 1 or 2), so is fr for all r 2: k. We use this observation frequently. 

PART I - TOOLS 

In §1, we discuss limits and colimits of abelian groups, and in §4, we do the 
same for spectra. An important special case is §2 on filtered groups, where the 
results simplify and become more transparent. We apply this in §3 to the image 
structure of a sequence of abelian groups, which is far richer than one might expect. 

1. Limits and colimits 

We review standard material on limits and colimits, especially derived limits. 
One general reference is Eilenberg-Moore [5]. Our applications usually involve 
graded groups, although here the grading can safely be ignored. 

Given a sequence A of (graded) abelian groups As and homomorphisms i as in 
diagram (0.2), we have the limit (historically, inverse limit), which we write 

It comes equipped with homomorphisms Es: A 00 --+ As that satisfy i o Es+l = Es 

and are universal. Explicitly, an element x E A 00 may be constructed as a family 
of elements xs E As for each s that are compatible in the sense that ixs+l = xs for 
all s; then Esx = xs. The limit depends only on the portion of diagram (0.2) with 
s 2: s0 ; indeed, As need only be defined for s 2: s0 . 

Dually, we have the colimit (historically, direct limit), 

together with homomorphisms 'T}s: As --+ A-oo that satisfy 'T}s o i = 'T}s+1 and are 
universal. Explicitly, every element of A-oo has the form 'T}sa for somes and some 
a E A 8 , and rJ 8 a = 'T}tb if and only if i(s+n)a = i(t+n)b in A-n for sufficiently large 
n. The colimit depends only on the portion of diagram (0.2) with s ~ s0 ; in fact, 
As need only be defined for s ~so. 
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CONDITIONALLY CONVERGENT SPECTRAL SEQUENCES 53 

Exactness. A short exact sequence 

( 1.1) 0 ----+ A ----+ B ----+ C ----+ 0 

in the category of sequences of graded groups is simply one in which 

(1.2) 0----+ As ----+ Bs ----+ Cs ----+ 0 

is a short exact sequence of graded groups for each s. It follows easily from our 
description that the colimit functor is exact, that 

0 ----+ A ~oo ----+ B~oo ----+ c~oo ----+ 0 

is a short exact sequence. In contrast, the limit functor is only left exact. Therefore 
we introduce the derived limit RA00 = Rlims As of A; we write it this way (rather 
than the traditional lim! As) to remind that it is the first right-derived functor of 
lims. It too depends only on the portion of diagram (0.2) with s ~ s0 . (This fact can 
be deduced from Theorem 1.4 and Proposition 1.8, below.) Following Milnor [12], 
both A 00 and RA 00 are conveniently constructed by means of the exact sequence 

(1.3) 0----+ A 00 --=--. II As~ II As----+ RA00 ----+ 0, 
s s 

where the product IL As is formed degreewise and i denotes the product homo-
morphism Ils i: Ils As ---. Ils As~ I. 

THEOREM 1.4. Given the short exact sequence (1.1) of graded groups, there is 
a natural connecting homomorphism 8 : coo ---. RA 00 and a long exact sequence 

8 
( 1. 5) 0 ------+ A 00 ------+ B 00 ------+ coo ------+ RA 00 ------+ RB00 ------+ RC00 ------+ 0. 

In particular, the functor Rlim is right exact. 

COROLLARY 1.6. In diagram (1.2), assume only that the sequences 

As ----+ Bs ----+ cs ----+ 0 

are exact. If RA 00 = 0, then B 00 ---. C 00 is epic. 

PROOF. We apply the Theorem to the short exact sequences 0 ---.Is ---. Bs ---. 
cs ---. 0 and 0 ---. K 8 ---. As ---. fB ---. 0, where K 8 = Ker[As ---. Bs] and fB = 
Im[A8 ---. B 8 ], to see that RI00 = 0. D 

The Theorem may be viewed as an application to copies of (1.3) of the follow-
ing lemma, which is an exercise in diagram chasing. (In applications, it is often 
necessary to extend a given diagram by zeros.) 

LEMMA 1. 7. Suppose given the commutative diagram with exact rows 

A5 - A4 - A3 - A2 - Al 

B5 --- B4 --- B3 - B2 - Bl 

Put Ks = Ker g8 and cs = Coker gs for each s; then there is a canonical iso-
morphism between the homology of K 3 ---. K 2 ---. K 1 at K 2 and the homology of 
C5 ---. C4 ---. C 3 at C4 . 

In particular, K 3 ---. K 2 ---. K 1 is exact if and only if C5 ---. C4 ---. C 3 is 
exact. D 
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54 J. MICHAEL BOARDMAN 

Our policy is never to mention A 00 for any sequence A without also introducing 
RA=. Usually, one hopes that RA= = 0 so that (1.5) reduces to a short exact 
sequence; we need a test for this. 

PROPOSITION 1.8. Suppose that i: As+1 ----+ As is epic for all s 2: s0 . Then: 

(a) Es: A'Xl ----+As is epic for all s 2: so; 

(b) RA00 = 0. 

PROOF. In (a), we seek x E A 00 , with E8 x = xs E As given. We choose xs+n for 
n > 0 by induction on n to satisfy ixs+n = xs+n- 1, and must take xs-n = i(n) xs. 

In (b), given y E Ils As, we need to solve x- ix = y for x. We start with 
xs = 0, for some s 2: s0 . By induction on n for n > 0, we choose xs+n to satisfy 
ixs+n = xs+n-1 - ys+n-1' and must take xs-n = ys-n + ixs-n+1. D 

REMARK. Thus the vanishing of Coker i for all s implies that Coker Es = 0 
for all s and that RA 00 = 0. Otherwise, although it is clear that knowledge of 
the groups Cokeri imposes some restriction on what groups CokerE8 and RA00 are 
possible, there appears to be no simple relation. 

The following trivial consequence is rather useful. 

COROLLARY 1. 9. Suppose that i: As+ 1 ----+ As is epic for all s, and that A 00 = 0. 
Then As = 0 for all s. D 

In general, limits preserve products. It follows directly from diagram (1.3) that 
derived limits do too. Given for each .A E A a sequence A(.A) of groups A(.A)s and 
homomorphisms i as in diagram (0.2), we form the product sequence A with groups 
As= Il,x,A(.A)s and the evident homomorphisms i: As+1 ----+ As. 

PROPOSITION 1.10. For the product A of the sequences A( .A) as above, we have 
lim8 As= Il,x, lims A(.A) 8 and Rlims A 8 = Il,x, Rlims A(.A) 8 • D 

2. Filtered groups 

The derived limit of a general sequence (0.2) is admittedly difficult to interpret. 
In the special case of a filtration, however, limits, colimits and derived limits all 
become quite direct and immediately useful. Again, our applications are graded, 
but the grading may be ignored here. 

A decreasing filtration of a (graded) group G consists of subgroups F 8 = psc 
for all integers s, such that ps+1 C ps for all s. There are three desirable properties. 

DEFINITION 2.1. The filtration exhausts G (or is exhaustive) if G = Us Fs. 
The filtration is Hausdorff if ns ps = 0. The filtration is complete if every Cauchy 
sequence in G converges. (We warn that we do not require a complete filtration to 
be Hausdorff, so the limit of a Cauchy sequence need not be unique.) 

To explain the last two concepts, we topologize G by taking the cosets x + ps 
of ps for all X E G and all s as basic open sets. If ns ps = 0 and X -1- y, we choose 
s such that x - y tJ_ ps; then x + F 8 and y + ps are disjoint neighborhoods of x 
and y, and the space G is Hausdorff. Conversely, if x -1- 0 and G is Hausdorff, there 
is a neighborhood 0 + ps of 0 that does not contain x, so X 1- ns ps. A Cauchy 
sequence n ~---+ Xn is one in which Xm - Xn ----+ 0 as m, n ----+ oo. 

The next result is fundamental and relates all three concepts to the sequence 
of groups ps. We make heavy use of it, generally without comment. 
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CONDITIONALLY CONVERGENT SPECTRAL SEQUENCES 55 

PROPOSITION 2.2. Suppose we are given a decreasing filtration of G by sub-
groups ps C G. 

(a) Put p-oe = Us P 8 ; then p-oe = colims ps' TJ8 : ps --+ p-oe is the 
inclusion, and the filtration exhausts G if and only if p-oe =G. 

(b) Put poe = n P 8 • then poe = lim P 8 E8 • poe --+ P 8 is the inclusion 
s ' 8 ' . ' 

and the filtration is Hausdorff if and only if poe = 0. 
(c) Put RPoe = Rlim8 P 8 ; then the filtration is complete if and only if 

RPoe = 0. The limit of a Cauchy sequence is unique if and only if poe = 0. 

PROOF. Parts (a) and (b) are clear. For (c), take a Cauchy sequence n ~----+ Xn 

in G. For each s, Xm - Xn E P 8 for all large m and n, so that the image of Xn 

in G I P 8 is constant for large n and defines an element y8 E G I P 8 • As s varies, 
we obtain an element y E lim8 G I P 8 , and the question of convergence reduces to 
lifting y to G. We apply lim8 by Theorem 1.4 to the short exact sequence 

0 ---+ P 8 ---+ G ---+ G I P 8 ---+ 0 

to obtain the long exact sequence 

(2.3) 0 ---+ poe ---+ G ---+ lim G I P 8 ---+ RPoe ---+ 0, 
8 

which yields the whole of (c). 

There is much flexibility available in computing poe and RPoe. 

0 

PROPOSITION 2.4. Suppose given a filtered group G and a subgroup K C poe. 
Then for the quotient filtration ofGIK by the subgroups P 8 1K: 

(a) colim8(P8 I K) =p-oe I K, and exhaustiveness is unaffected; 

(b) lim8(P8 I K) =poe I K; 

(c) Rlim8 ( P 8 I K) = RPoe, and completeness is unaffected. 

PROOF. The exactness of colimits gives (a). For (b) and (c), we apply lim8 by 
Theorem 1.4 and Proposition 1.8 to the short exact sequence 

0 ---+ K ---+ P 8 ---+ P 8 I K ---+ 0. 0 

Reconstitution. One often wishes to recover the group G from its subquo-
tients pt I P 8 for t < s. The first two conditions in Definition 2.1 are obviously 
essential, while the relevance of completeness is clear from diagram (2.3). 

PROPOSITION 2.5. Suppose the filtration of G is complete Hausdorff and ex-
hausts G. Then we can reconstruct G from the subquotients pt I P 8 as 

G = limGIP8 = limcolimPtiP8 • 
8 8 t 

PROOF. The equalities come from (2.3) and Proposition 2.4(a). 0 

We also need a comparison theorem. Suppose given another group G filtered 
by subgroups P 8 G = F8 , and a filtered homomorphism f: G --+ G (in the strict 
sense that J(P 8 ) C F 8 for all s). 

THEOREM 2.6. Let f: G --+ G be a homomorphism of filtered groups such that: 

(i) both filtrations are exhaustive; 

(ii) f induces poe~ poe (e. g. if both filtrations are Hausdorff); 

(iii) G is complete. 
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56 J. MICHAEL BOARDMAN 

Suppose f induces isomorphisms F 8 I Fs+l ~ psI ps+l for all s. Then f is an 
isomorphism of filtered groups (meaning f: G ~ G and f: F 8 ~ F 8 for all s). 

PROOF. For each t, the commutative diagram of short exact sequences 

0 ---+-
Fs Ft Ft 

---+ - --o Fs+l Fs+l Fs 

t~ ! ! 
0 ---+-

ps pt pt 
ps+l ---+ 

ps+l - --o ps 

shows, by induction on s (starting from s = t + 1), that f induces Ft I F 8 ~ pt I F 8 

for all finites> t. We take colimits (unions) as t--+ -oo to obtain GIFs ~ GIF8 

for all s. Naturality of (2.3) furnishes the commutative diagram with exact rows 

Since RF00 = 0, Lemma 1. 7 shows that f: G ~ G. Hence f: F 8 ~ F8 • D 

REMARK. It was not necessary to assume G complete; this is a consequence. 

Completion. Proposition 2.5 and Theorem 2.6 are the best possible results. 
If the filtration of G is not exhaustive, we simply consider the filtration of F-oo by 
the subgroups F 8 , which is exhaustive. Similarly, if G is not Hausdorff, we replace 
it by G I F 00 , filtered by the subgroups F 8 I F 00 , without affecting the subquotients 
Ft I F 8 • If G is not complete, diagram (2.3) suggests how to make it complete. The 
proposition following shows how completeness is essential in Theorem 2.6. 

DEFINITION 2.7. Given any filtered group G, we define the completion of Gas 
G = lim8 G I F 8 • The homomorphism G --+ G induced by the projections G --+ G I F 8 

is called the completion homomorphism. 

PROPOSITION 2.8. We can filter G by the subgroups fi't = lim8 Ft I F 8 • Then: 

(a) This filtration of G is complete Hausdorff; 

(b) The completion homomorphism G --+ G is a filtered homomorphism that 
induces isomorphisms Ft I F 8 ~ fi't I fi's of subquotient groups, also G I F 8 ~ G I fi's; 

(c) We have G IF- 00 ~ G I Ut fi't; in particular, the subgroups fi't exhaust G 
if and only if the subgroups Ft exhaust G. 

PROOF. If we apply lim8 by Theorem 1.4 to the short exact sequence 

0 -----+ Ft I F 8 -----+ G I F 8 -----+ GIFt -----+ 0, 

the resulting long exact sequence (1.5) simplifies to 

(2.9) 

because Rlim8 Ft I F 8 = 0 by Proposition 1.8(b). So we may regard fi't as a subgroup 
of G, and it has the correct quotient. The rest of (b) follows easily. 
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CONDITIONALLY CONVERGENT SPECTRAL SEQUENCES 57 

Next, we apply limt to (2.9) to obtain the exact sequence 

0 --+ lim fi't --+ G --+ lim G I pt --+ Rlim fi't --+ 0. 
t t t 

By definition, G = limt G I pt, and we have (a). If instead we apply the exact 
functor colimt to (2.9), we obtain the short exact sequence 

which gives (c). 

0 --+ U pt --+ G --+ G I p-oo --+ 0, 
t 

3. Image subsequences 

0 

Given a sequence A of (graded) groups As as in (0.2), it is important to know 
whether RA00 = 0. By Proposition 1.8, this is true if each i: As+1 --+ As is epic. 

We already introduced in equation (0.3) the filtration of As by the image sub-
groups Imr As = Im[i(r): As+r --+As] (for r ~ 0). The more general Mittag-Leffier 
condition, that Imr As is independent of r for r ~ r0 (s), also ensures that RA00 = 0. 

We generalize further, by asking whether this filtration is complete or Hausdorff. 

DEFINITION 3.1. Given the sequence of groups As as in diagram (0.2), we define 
sequences Q and RQ by Qs = nrlmr As= limrlmr As and RQs = Rlimrlmr As. 

This is only the beginning of a very rich structure. 

DEFINITION 3.2. Given any sequence A as in (0.2), we define the first image 
subsequence lmA of A by (ImA)s = Im1 As, as above, with i: (ImA)s--+ (ImA)s-1 

defined by restriction. Then for any integer r ~ 0, we iterate by defining Imr+l A = 
Im(Imr A), with the result that (Imr A)s = lmr As as in equation (0.3). 

We extend the definition to any ordinal a by transfinite induction, 

{
A if a= 0; 

lm0 A = Im(Im/3 A) if a = (3 + I; 
n/3<a Im,e A if a is a limit ordinal; 

with (Im0 A)s+l --+ (Im0 A)s defined in all cases by restriction from i: As+1 --+As. 
We define the image order of A to be the smallest ordinal a such that Ima+1 A= 

Ima A. (It exists because lm0 A is a decreasing function of a.) 

Then lm0 A= Ima A for all a~ a. From now on, we write (Im0 A)s simply as 
lm0 As; in particular, Imw As= Qs. By Proposition 1.8, 

(3.3) Ima As= Im[fs: A00 --+ As]. 

These definitions are not vacuous; sequences really can be this complicated, 
and the phenomenon is not new. 

ExAMPLE. The image order a is arbitrary. Given any ordinal a, for each s ~ 0 
let As be free abelian on the set of all (s+ I)-tuples (as, as-b ... , a 1 , a 0 ), where 
the a's are any ordinals that satisfy 0 :::; as < as-1 < · · · < a 1 < a 0 < a, and 
take As = 0 for s < 0. We define i: As --+ As-1 (for s > 0) on the generators by 
omitting the first entry, 

By transfinite induction, lm0 As is generated by all (s+ I)-tuples that satisfy as ~ 
a. Thus Ima A= 0, but lm0 A -:1 0 for all a< a. 

Licensed to University I Oslo.  Prepared on Fri Aug 26 05:47:48 EDT 2016for download from IP 129.240.222.177.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



58 J. MICHAEL BOARDMAN 

EXAMPLE. Given a p-primary torsion abelian group G, where p is a prime, 
take As = G for all sand i: As+l -+As as multiplication by p. Here, Ima As is 
written p<>G, and the quotient pw<>Gjpw(a+l)G is known as the n:-th Ulm factor of 
G (e. g. Kurosh [7, §27-28]). Then p(TG is the largest divisible subgroup of G. 

The Mittag-Leffler exact sequence. It is clear by direct construction that 
lims Ima As is independent of a:. This is false for Rlims, however, as Rlims Im<7 As = 
0 by Proposition 1.8. The group Rlims Ima As can change at limit ordinals a:; we 
study only the first case, a:= w. (We refrain from writing RQ00 to avoid ambiguity.) 

THEOREM 3.4. For any sequence (0.2) of groups As and homomorphisms i: 

(a) lims Qs = lims As= A 00 ; 

(b) We have the Mittag-Leffler short exact sequence 

(3.5) 0 ~ RlimQs ~ RA00 ~ limRQs ~ 0; 
s s 

(c) Rlims RQs = 0; further, RQs+l -+ RQs is epic for all s. 

COROLLARY 3.6. If RA00 = 0, then RQs = 0 for all s. 

PROOF. We apply Corollary 1.9 to RQs. 0 

PROOF OF THEOREM. The result can be considered an application of the spec-
tral sequence of the double limit system Imr As. We offer an elementary version of 
this proof. As already noted, (a) is clear. 

First, we assume the filtration of each As by the subgroups Imr As is complete 
Hausdorff, so that Qs = RQs = 0. We have to show that RA 00 = 0. 

We introduce the double sequence of image groups 

{I t-s As_ I ['(t-s). At__, As] 'f t > 
r,t = Im[Amax(s,t) __, As] = A~ - m z . 1 _ s; 

if t :::; s; 

equipped with obvious homomorphisms p,t -+ Iu,v whenever s ;:=: u and t ;:=: v. 
For fixed t, we have Is,t = As for all large s, so that lims p,t = A 00 = 0 and 
Rlims p.t = RA 00 • Thus the defining exact sequence (1.3) reduces to 

(3.7) 
1-i 

o~pt ~pt ~RAoo ~o, 

where we write pt = fL p,t. 
On the other hand, if we fix s, p,t = lmt-s As for large t, so that by hypothesis, 

limt p,t = Rlimt p,t = 0. Then limt pt = Rlimt pt = 0 by Proposition 1.10. We 
apply limt by Theorem 1.4 to (3.7) to deduce that RA00 = 0. 

Second, we consider the general case. For each s, we take the completion Jis of 
the group As filtered by the subgroups Imr As; the exact sequence (2.3) becomes 

(3.8) o~Qs ~As ~As ~RQs ~o. 

By Proposition 2.8(a), Jis has a complete Hausdorff filtration by subgroups pr Jis. 
As s varies, the groups Jis form a sequence A. To identify Imr Jis with pr Jis, 

we apply limt by Corollary 1.6 to the exact sequence 
As+r Imr As 

Ker[i(r): As+r-+ As]~ ~ ~ 0 
Imt As+r lmr+t As ' 

to deduce that Jis+r -+ pr Jis is epic. Then the first case applies to A, to show that 
lims As = Rlims }is = 0. 
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In order to apply Theorem 1.4, we break up (3.8) into two short exact sequences 
by introducing Js =As /Qs. The short exact sequence 

0 ------t jB ------t As ------t RQS ------t 0 

yields J 00 = 0, RJ00 9:! lims RQs, and Rlims RQs = 0. The other short exact 
sequence, 

0 ------t Qs ------t As ------t J s ------t 0' 

then immediately yields (b). 
To finish (c), we apply the right exact functor Rlimr 

Imr As+l -+ Imr+l As to see that RQs+1 -+ RQs is epic. 
to the epimorphisms 

D 

REMARK. For higher limit ordinals, the situation is far more complicated. The 
homological dimension of the functor Rlim,a, where f3 runs over all ordinals less 
than a, may be arbitrarily large or even infinite. 

4. Homotopy limits and colimits of spectra 

We recall some standard material on limits and colimits of sequences of spaces 
and spectra. Much of this is presented in vastly greater generality in e. g. Vogt [14]. 
We also list some related results on localization and completion of spectra at a set 
of primes, following Bousfield [3]. 

Milnor's results. Given a sequence of inclusions is: Xs C Xs+l of spaces or 
spectra, we can construct their union X 00 , with inclusions "'s: Xs C X00 • This 
serves as the colimit colims Xs, before taking homotopy classes. 

Any spectrum M defines a generalized homology theory M* (-). (By M* (X), 
we mean the whole graded group, not a generic component of it.) Milnor [12] 
related M*(Xoo) to the groups M*(Xs) by treating the mapping telescope of the 
maps is as a pushout, to construct in effect the exact triangle of spectra 

(4.1) V 1-i v Tf 0 v X s ~ X s ------t X oo ------t Xs, 
s s s 

where TJIXs = "'s for all s, and i denotes the map 

THEOREM 4.2 (Milnor). Let X be a space or spectrum, with an increasing fil-
tration by subspaces or subspectra Xs that exhaust X, and let M be any spectrum. 
Then in homology: 

(a) The maps "'s induce an isomorphism colims Mn(Xs) = Mn(X); 
(b) colims Mn (X, Xs) = 0. 

PROOF. For (a), we apply M*(-) to the exact triangle (4.1). Since 1 - i* is 
monic, we obtain the short exact sequence 

0 ------t ffiMn(Xs) ~ ffiMn(Xs) ~ Mn(X) ------t 0, 
s s 

which identifies Mn(X) with colims Mn(Xs)· Part (b) is equivalent, by applying 
the exact functor colims to the homology exact sequence of the pair (X, X 8 ). D 
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If we apply M -cohomology M* (-) instead, we obtain the long exact sequence 

···II Mn-l(X8) ----=--=s II Mn-l(X8) __!:..__. Mn(Xoo) ~II Mn(X8) ... 
8 

Comparison with diagram (1.3) immediately yields part (a) of the following theo-
rem, with X= Xoo. 

THEOREM 4.3 (Milnor). Let X be a space or spectrum, with an increasing fil-
tration by sub spaces or subspectra X 8 that exhaust X, and let M be any spectrum. 
Then in cohomology: 

(a) We have the Milnor short exact sequence 

(4.4) 
6* ry* 

0---+ RlimMn-l(X8 )---+ Mn(X)----) limMn(X8 )---+ 0; 
8 s 

(b) lims Mn(X, Xs) = 0 and Rlims Mn(X,Xs) = 0. 

Although (b) is the obvious analogue of Theorem 4.2(b), it is unclear whether 
it is equivalent to (a). It is easy to show that (b) implies (a), by breaking up 
the cohomology exact sequence of the pair (X, Xs) into short exact sequences and 
applying Theorem 1.4 to each. The difficulty with the converse is that 8* is far 
from obvious. We defer the proof of (b) until after Proposition 4.5. 

Homotopy colimits. The presence of the Rlim term in diagram ( 4.4) shows 
that in general, Xoc is not the colimit of the Xs in the stable homotopy category. 
The diagram does show, however, that X 00 has the weak universal property: given 
compatible maps (cohomology classes) fs: Xs -.. M for each s, there exists a 
compatible map foe: X 00 -.. M, but it need not be unique. Since this is the closest 
one can expect to come to a true colimit, one calls X 00 the homotopy colimit and 
writes hocolims Xs. 

We need to be more general. Given any maps is: Xs -.. Xs+l (that preserve 
skeletons) for s 2: 0, not necessarily inclusions, we take the mapping telescope itself 
as X 00 , together with inclusions TJs: Xs C X 00 , and obtain the same exact triangle 
(4.1). We may use the triangle to define the homotopy colimit hocolims Xs as X 00 , 

uniquely up to homotopy, and parts (a) of Theorems 4.2 and 4.3 remain valid. 
Also, for each s, we form the mapping telescope T8 of 

is is+l 
Xs ---+ Xs+l ------+ Xs+2 ---+ · · · , 

which has T/s: Xs C Ts. By naturality, the commutative diagram 
i 8 is+l 

Xs ___. Xs+l --- Xs+2 -

induces a map gs: (Ts,Xs) -.. (Ts+l,Xs+I) of mapping telescopes, and hence a 
map Ys-.. Ys+l, where Ys = Ts/Xs. 

PROPOSITION 4.5. Given maps is: Xs -.. Xs+l as above, we construct the map-
ping telescopes Ts, the spectra Ys = Ts/Xs, and maps gs: Ts-.. Ts+l· Then: 

(a) Each g8 : Ts -.. Ts+l is a homotopy equivalence; 

(b) The homotopy colimit hocolims Ys is trivial; 
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(c) For any spectrum M, lim8 M*(Y8 ) = 0 and Rlim8 M*(Ys) = 0. 

PROOF. In (a), the obvious inclusion Ts+1 C Ts is a homotopy inverse to 9s· 
Form the mapping telescope T:JO of the maps g8 , so that X 00 C T00 • Then the 
mapping telescope of the spectra Ys is T 00 / X 00 • There is a retraction r: T 00 --t X 00 

that satisfies riTo = 1 (recall that To= X 00 ). From (a), TJo: To C Too is a homotopy 
equivalence; it follows that Xoo C Too is also a homotopy equivalence, and we have 
(b). For (c), we apply Theorem 4.3(a) to Y8 • D 

From (a), we see that Ys may be defined up to homotopy by the exact triangle 

(4.6) 

Hence M*(Ys) ~ M*(X00 ,X8 ), and Theorem 4.3(b) follows. 

Homotopy limits. Dually, given any sequence of maps 
i3 i2 il 

----+ x3 ---t x2----+ x1 ----+ xo 

of spectra, we define the homotopy limit spectrum xoo = holims xs, uniquely up 
to homotopy, by the exact triangle 

(4.7) 
s s s 

in which we arrange deg(~:) = 0. We often wish to cancel out X 00 • Dually to (4.6), 
we define spectra ys, uniquely up to homotopy, by the exact triangles 

(4.8) 
<" f" 

xoo ---t xs---+ ys ---t Xoo. 

We fill in maps j 8 +1: ys+l --t ys to form morphisms between these exact triangles, 
and dualize Theorem 4.3. 

THEOREM 4.9. Suppose given any maps i 8 : xs --t xs-1. Then: 

(a) For any spectrum W, we have the Milnor-type short exact sequence 

(4.10) 0----+ Rlim{W,Xs}n-1 ----+ {W,X00 }n ~ lim{W,Xs}n----+ 0. 
s s 

(b) For a good choice of the maps j 8 +1: ys+l --t ys we have holims ys = 0, 
and hence lim8 {W, ys}n = 0 and Rlim8 {W, ys}n = 0 for all W. 

PROOF. For (a), we map W into the exact triangle (4.7). For (b), we dualize 
Proposition 4.5, by turning inclusions (cofibrations), wedges and pushouts into 
fibrations, products and pullbacks. (To make this work, we choose some version 
of the stable category that has the necessary structure, such as any of the modern 
model category candidates. Even Kan's category of simplicial spectra [6] will do.) 
Note that all maps and homotopies in Proposition 4.5 are canonical and natural. D 

Localization and completion of spectra. We recall some standard tools 
from Bousfield [3, §2]. For any abelian group G, denote by L(G) the associated 
Moore spectrum, which is ( -1)-connected and has Ho(L(G)) = G as its only 
nonzero homology group. 

Given any set J of primes, denote by ZJ the ring of all rational numbers ajb E Q 
such that b has no prime factor in J. (If J is the set of all primes, ZJ reduces to 
the integers z.) The J -localization of any spectrum Y is simply Y A. L(ZJ), and is 
equipped with the localization map Y = Y A. S --t Y A. L(ZJ) = YJ, where S denotes 

Licensed to University I Oslo.  Prepared on Fri Aug 26 05:47:48 EDT 2016for download from IP 129.240.222.177.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



62 J. MICHAEL BOARDMAN 

the sphere spectrum. This map induces an isomorphism {YJ, Z} * ~ {Y, Z} * for 
any J-local spectrum Z = WJ. The most important case is the p-localization Y(p) 
of Y, when J consists of the single prime p and ZJ is written Z(p}· Two other 
important cases are Y[p-1], the localization away from p, when J consists of all 
primes except p and ZJ = z[p- 1], and the rationalization Y0 of Y, when 7l,J = IQ. 

We also need the p-completion Y(P) of Y. In the common case when 1l'n(Y) 
is finitely generated for all n, this is found to be Y 1\ S(p), where S(p) denotes the 

Moore spectrum L(Z(p)) for the p-adic integers Z(p)i for general Y, it is the function 
spectrum F(I:-1 L(Zfp00 ), Y), where 7ljp00 = z[p- 1]/Z. It is equipped with the 
completion map Y ---+ Y(p), which factors through the p-localization Y(p) because 

Y(P) is clearly p-local. It induces an isomorphism {Y(P)' Z}* ~ {Y, Z}* for any p-

complete spectrum Z = W(p)· For a set J of primes, the J-completion YJ of Y is 

simply the product TipEJ Y(p)· 
There are significant cases where completion and localization are not needed. 

PROPOSITION 4.11. Assume that 1l'n(X) is a p-primary torsion group for all n 
(e. g. if X is connective and Hn(X) is a p-primary torsion group for all n). Then 
the localization and completion maps induce isomorphisms 

{X, Y}* ~{X, Y(p)}* ~{X, Y(p)}*. 

PROOF. The arithmetic square of localization maps 

induces the Mayer-Vietoris-type exact sequence 

... {X, Y0}* ~{X, Y}* ~{X, Y(p)}* EB {X, Y[p- 1]}* ~{X, Y0}* ... 

Since x[p- 1] is trivial, {X, Y[p- 1]}* ~ {X[p- 1], Y[p- 1]}* = 0. Similarly, we find 
{X, Y0}* = 0, and the exact sequence simplifies to the first isomorphism. For the 
second, by Bousfield [3, Prop. 2.5], we need to show that {X, F(L(z[p-1]), Y)}* 
vanishes. By definition, 

{X, F(L(z[p-1]), Y)}* ={X 1\ L(z[p- 1]), Y}* = {X[p- 1], Y}* = 0. D 

PART II - CONVERGENCE 

In this Part, we study the convergence of the spectral sequence arising from 
the unrolled exact couple (0.1). In §5, we define the relevant groups and develop 
their properties. 

The generality of §5 is irrelevant to the vast majority of real-world spectral 
sequences. It also lacks transparency. We therefore show how the results simplify 
in the situations that occur most frequently. In one common graphical presentation, 
the component E:·t of E: in degree s + t is placed at the point (s, t) in the plane. 
Many spectral sequences occupy only a quadrant or at most a half-plane. In each 
case, we have a convergence theorem and a comparison theorem for morphisms of 
spectral sequences. Some examples are given in Part III. 
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In §6, we discuss half-plane spectral sequences with exiting differentials. These 
are the easiest to handle because there are no problems with limits or derived limits; 
we have nothing to add and include this section merely for completeness. 

In §7, we discuss half-plane spectral sequences with entering differentials; this 
is the case where our results are of most interest. 

In §8, we attack the general case of whole-plane spectral sequences. For many 
years, they were considered so intractable as to be virtually useless. (The material 
in the preprint editions on their convergence was highly speculative, with no appli-
cation in sight.) This attitude is changing, as significant examples now exist that 
are not amenable to elementary treatment, and more can be expected. 

5. Types of convergence 

Suppose given any spectral sequence r f-+ (En dr), defined for r 2: r0 . In order 
to discuss its convergence, we write E~ = Z~ I B~, where 0 C B~ C Z~ C E~ 0 , and 
introduce the (graded) groups: 

(5.1) 

z~ = n z: = lim z:' the group of infinite cycles; 
r 

r 

B~ = Un: = co~mB:, the group of infinite boundaries; 
r 

E~ = Z~l B~ ~ (Z~I B':n)I(B~I B':n), which form the E00 -term; 

RE8 = Rlim zs ~ Rlim(Z8 IB8 ) which form the derived E00 -term. oo r r r r m' 

The term REoo is suggested by our policy of introducing the associated derived 
limit along with every limit. The second versions of Eoo and REoo (provided by 
Proposition 2.4, for any m 2: r 0 ) show that they depend only on the terms Er of 
the spectral sequence with r ;::: m. 

Typically, one relates the term Eoo to some target graded group G, equipped 
with a decreasing filtration by subgroups F 8 = F 8 G, by comparing E'!x, with 
F 8 I F 8 +1. To indicate that the target group being considered is G, we write 

E:0 ===} G, 

without implying that the target is in any sense hit; any information on conver-
gence is to be stated separately. We have the groups F-oo, F 00 and RF00 , which 
Proposition 2.2 interprets. 

We adopt the terminology of Cartan-Eilenberg [4, Chap. XV, §2]. 

DEFINITION 5.2. Given a spectral sequence r f-+ (En dr) and a filtered target 
group G, we say the spectral sequence: 

(i) converges weakly to G if the filtration exhausts G (i.e. F-oo = G) and 
we have isomorphisms E'!x, ~ F 8 I Fs+l for all s (possibly with nonzero 
degree); 

(ii) converges toG if (i) holds and the filtration of G is Hausdorff (i.e. F 00 = 
0); 

(iii) converges strongly to G if (i) holds and the filtration of G is complete 
Hausdorff (i.e. F 00 = RF00 = 0). 
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Strong convergence allows us to reconstruct G from the term E=, up to group 
extension, by means of Proposition 2.5. It is even more useful in comparing spectral 
sequences, in view of Theorem 2.6. 

THEOREM 5.3. Suppose given a morphism f of spectral sequences, with compo-
nents fr : ( Er, dr) ---+ ( Er, dr), where ( Er, dr) converges strongly to G and ( Er, dr) 
converges to G (not necessarily strongly), together with a compatible morphism 
f: G ---+ G of filtered target groups. If fm: Em ---+ Em is an isomorphism for some 
m ::; oo, then f: G---+ G is an isomorphism of filtered groups. 0 

Two filtered groups. To say more, we assume from now on that our spectral 
sequence comes from the unrolled exact couple (0.1). There are two clear candidates 
for the target group, A-= and A=, each with an obvious filtration. Both are useful. 
(And if we apply an exact contravariant functor to the unrolled exact couple to 
obtain another one, A'Xl and A-= switch places, if we are lucky.) One generally 
tries to arrange for one of these groups to be zero; for if we replace each As by 
As EB K, the new unrolled exact couple has the same spectral sequence, but has 
A±oo replaced by A±oo EB K. 

LEMMA 5.4. Take any unrolled exact couple as in diagram (0.1). Then: 

(a) The filtration of the colimit A-oo = colims As by the subgroups ps A-oo = 
Im[17s: As ---+ A-=] exhausts A-= (but need not be complete or Hausdorff); 

(b) The filtration of the limit A 00 = lim8 A 8 by the subgroups ps A 00 = 
Ker[Es: A= ---+ As] is complete Hausdorff, and p-= A= = Ker[A00 ---+ A-=] (so 
that this filtration need not exhaust A=, but does if A-== 0). 

PROOF. Part (a) is immediate from our description of A-= in §1. 
For (b), we need to show that lims ps Aoc = Rlims ps A= = 0. We apply lims 

by Theorem 1.4 to the short exact sequence 

(5.5) 

which comes from equation (3.3), to obtain the exact sequence 

0 -----+ lim Fs A 00 -----+ A oc -----+ lim Im o- As -----+ Rlim ps A 00 -----+ 0. 
s s 

But lims Imo- As = Aoc. Finally, exactness of colimits gives 

p-oo Aoc = colimKer[Es: A00 ---+ As]= Ker[A00 ---+ A- 00 ]. 0 
s 

Both filtrations are closely related to the E=-term of the spectral sequence. 
We recall from Definition 3.1 the groups Qs = Imw As and RQs = Rlimrlmr As. 

LEMMA 5.6. We have the exact sequences 

(5.7) 
psA-oo i 

0 ---+ ---+ E~ ---+ Qs+l ---+ Qs ---+ RE~ ---+ RQs+l ---+ RQs ---+ 0 
ps+lA-= 

and 
FsA= i 

( 5. 8) 0 -----+ -----+ Im o- As+ 1 -----+ Im o- As -----+ 0. 
ps+lAoo 

PROOF. We apply limr by Theorem 1.4 to the short exact sequence (0.4) to 
obtain (with the help of Proposition 2.4) the exact sequence 

zs i 
O ______, -----""'--- ______, Q s + 1 ______, Q s ______, REs ______, RQ s + 1 ______, RQ s ______, O. 

Ker k 00 
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We splice this with the short exact sequence 
Imj zs zs 

0 ----+ -- ----+ -----""'- ----+ ~ ----+ 0 
B'bo B'bo Ker k ' 

in which Imj = Ker k and Z~/ B~ = E~. We recall that B~ = j Ker[rys: As -. 
A- 00 ], so that j: As -. Es and rys: As -. A-oo induce isomorphisms 

Imj - As - ps A-oo 
-- f--- ----+ ---,--::---
B'bo Im i + Ker[rys: As -. A -oo] ps+l A -oo · 

The short exact sequence (5.8) follows immediately from (5.5). D 

If RE00 = 0, there are significant simplifications. 

LEMMA 5.9. Suppose that the spectral sequence defined by the unrolled exact 
couple (0.1) satisfies REoo = 0. Then: 

(a) Es: A=-. qs is epic for all s and Ima As= qs (so that CJ:::; w). 
(b) The natural homomorphism RA 00 -. RQs is an isomorphism for all s. 

(c) The following conditions are equivalent: 
(i) The spectral sequence converges weakly to A-=; 

(ii) E8 : A= -.As is monic for all s; 
(iii) Es induces an isomorphism A= ~ qs for all s. 

PROOF. The exact sequence (5.7) breaks up into the exact sequence 
FSA-oo k i 

0 ----+ ----+ E~ ----+ qs+ 1 ----+ Qs ----+ 0 
ps+lA-oo 

and the isomorphism RQs+l ~ RQs. Since A 00 = lims qs, Proposition 1.8 and 
equation (3.3) give (a) and the Mittag-Leffier short exact sequence (3.5) simplifies 
to (b). Then in (c), (ii) and (iii) are equivalent by (a), and the above exact sequence 
shows that (i) and (iii) are equivalent. D 

Conditional convergence. There are two variants of our main definition. As 
already said, it is highly desirable to arrange A 00 = 0 or A -oo = 0. Our policy on 
limits suggests strengthening the first condition. 

DEFINITION 5.10. Given the unrolled exact couple (0.1), we say that there-
sulting spectral sequence converges conditionally to the colimit A -oo if A= = 0 and 
RA 00 = 0. We say the spectral sequence converges conditionally to the limit A 00 if 
A-oo = 0. 

The convergence is conditional in the sense that, in the presence of extra hy-
potheses that are often easily verified in practice, Theorems 7.1 and 8.2 deliver 
strong convergence, with all its advantages. Easy examples show that by itself, 
conditional convergence does not even guarantee weak convergence. We shall find 
that it holds in many important applications for general structural reasons, not for 
finiteness or computational reasons. Moreover, we have results for conditionally 
convergent spectral sequences that do not require or imply any of the usual forms 
of convergence. 

In this situation too, Lemma 5.6 simplifies usefully. 

LEMMA 5.11. Suppose the spectral sequence resulting from the unrolled exact 
couple (0.1) converges conditionally to the colimit A-=. Then: 

(a) RQs = 0 for all s; 
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(b) The filtration of A-oo is complete (but need not be Hausdorff); 

(c) We have the long exact sequence 

(5.12) 
FSA-oo i 

0 -----+ -----+ Es -----+ Qs+l -----+ Qs -----+ REs -----+ 0. ps+lA-oo oo oo 

PROOF. Since RA00 = 0, RQs = 0 for all s by Corollary 3.6, and diagram (5.7) 
shortens as in (c). 

For (b), we apply the right exact functor Rlims to the epimorphism rys : As --+ 

ps A-oo to obtain the epimorphism 0 = RA00 --+ RF00 • Thus RF00 = 0. 0 

6. Half-plane spectral sequences with exiting differentials 

We define these to be spectral sequences that occupy a half-plane in such a 
way that all except finitely many of the differentials leaving any point (s, t) of 
the half-plane exit the half-plane, and so automatically vanish. We trivially have 
RE00 = 0. (They were previously called left half-plane spectral sequences, but are 
often reindexed for convenience to shift them into some other half-plane.) 

Typically, they arise from an unrolled exact couple (0.1) in which Es = 0 
for all s > 0; all the derived limit groups vanish automatically, including RA 00 • 

This is the only situation we discuss in detail. (However, other exact couples can 
produce them. The results generalize appropriately, as all arguments can be carried 
out degreewise; the main difficulty is to find notation that would help rather than 
hinder the exposition.) 

THEOREM 6.1. Suppose the unrolled exact couple (0.1) satisfies Es = 0 for all 
s > 0 (equivalently, Es: A00 ~As for all s > 0), and so yields a half-plane spectral 
sequence with exiting differentials. 

(a) If A00 = 0, the spectral sequence converges strongly to the colimit G = 
A-oo with isomorphisms FsG/Fs+lG C>! Es · 

' - ex:>' 

(b) If A-oo = 0, the spectral sequence converges strongly to the limit G = 
A 00 , with isomorphisms FsG/F8 +1G ~ E':x:,. 

PROOF. In either case, the filtration of G is trivially complete Hausdorff, since 
F 1G = 0, and exhausts G by Lemma 5.4. 

In (a), As = 0 for all s > 0, hence Qs = 0 for all s. Then diagram (5.7) reduces 
to the desired isomorphism. 

In (b), we have 

Imr As = Im[i(r): As+r --+ As] = {As if S ~ 1; 
Iml-s As if s :::; 1 and r ~ 1-s. 

Thus Ima A 8 = Qs for all s. Now we compare diagrams (5.8) and (5.7). 0 

No new comparison theorem is needed for such spectral sequences, because 
Theorem 5.3 is entirely satisfactory. 

1. Half-plane spectral sequences with entering differentials 

We define these to be spectral sequences that occupy a half-plane in such a 
way that all except finitely many of the differentials that arrive at any point (s, t) 
of the half-plane originate at points outside the half-plane, and so automatically 
vanish. (They were previously called right half-plane spectral sequences.) 

Licensed to University I Oslo.  Prepared on Fri Aug 26 05:47:48 EDT 2016for download from IP 129.240.222.177.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



CONDITIONALLY CONVERGENT SPECTRAL SEQUENCES 67 

Typically, they arise from an unrolled exact couple in which Es = 0 for all 
s < 0, so that i: As ~ As-l ~ ... ~ A-oo for all s:::; 0, and this is the only case 
we discuss in detail. (Again, other unrolled exact couples can produce them. The 
results remain valid when appropriately modified, as all arguments can be carried 
out degreewise; the difficulty is to find notation that helps rather than hinders.) 

Conditional convergence. We state our main theorems. 

THEOREM 7.1. Suppose the unrolled exact couple (0.1) satisfies E 8 = 0 for all 
s < 0 (equivalently, 1]8 : As ~ A -oo for all s :::; 0), and that the resulting half-plane 
spectral sequence converges conditionally to the colimit A -oo or the limit A 00 (see 
Definition 5.10). If REoo = 0, the spectral sequence converges strongly. 

This theorem follows directly from the more detailed Theorems 7.3 and 7.4 
for the two cases, which differ somewhat; both clearly demonstrate the role of the 
condition REoo = 0. 

REMARK. It is often easy to verify that RE00 = 0. This holds trivially if the 
spectral sequence collapses for any reason ( dr = 0 for all r ~ 2, or merely for 
r ~ r 0 ). More generally, it holds if, for each s and t, only finitely many of the 
differentials dr: E~·t ---t E~+r,t-r+l are nonzero. This is certainly true if each E~,t 
is finite for some r (which is allowed to depend on sand t) or satisfies a descending 
chain condition. These observations cover many of the standard applications. 

In effect, this result divides the question of strong convergence into two parts. 
The first, conditional convergence, is a structural condition that holds for large 
classes of spectral sequences, regardless of the size or nature of the objects that 
appear. The second, REoo = 0, depends by definition only on data internal to 
the spectral sequence and cannot be expected to hold in general, unless we impose 
finiteness conditions so severe as to render all convergence questions moot. 

If we have a morphism of such spectral sequences, we can hope for strong 
convergence so that Theorem 5.3 applies. We can do better, and obtain as good a 
result without it. 

THEOREM 7.2. Suppose given a morphism f: As ---t .its etc. of unrolled exact 
couples (0.1) in which Es = E8 = 0 for all s < 0, where the resulting spectral 
sequences converge conditionally to either (i) the colimits G = A-oo and G = _A-oo, 
or (ii) the limits G = A00 and G = A00 • Iff induces isomorphisms foo: Eoo ~ Eoo 
and REoo ~ RE00 , then it induces an isomorphism f: G ~ G of filtered target 
groups (in the strict sense that f: F 8 G ~ ps G for all s). Further, f induces an 
isomorphism RA00 ~ RA00 in Case (ii) (as well as trivially in Case (i)). 

REMARK. As in Theorem 2.6, one can show (with extra work) that the hy-
pothesis RA00 = 0 in Case (i) is not needed; it is in fact a consequence. 

Note that we do not assume that REoo = 0, so that we obtain the desired 
isomorphism even for spectral sequences that fail to be weakly convergent! This 
makes conditional convergence a tool for theoretical work as well as practical com-
putations. Just as it is useful in analysis to consider divergent series that are 
nevertheless summable in some sense, this theorem makes it reasonable to consider 
certain spectral sequences that fail all forms of convergence listed in Definition 5.2. 
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PROOF. In Case (i), naturality of (5.12) yields the commutative diagram 

o-
psc 

Es---+ Qs+l i Qs----+ RE':xo -o - -ps+lG = 

l t~ 1! lf t~ 
o-

psc p;s---+ Qs+l ____!__... Qs --- RE~ -o ps+lG - 00 

with exact rows. Put K 8 = Ker[f: Q8 ---+ Q8 ] and cs = Coker[!: Q8 ---+ Q8 ]; by 
Lemma 1. 7, Ks+l ___, Ks is epic and cs+l ~ cs. The left exactness of lim shows 
that lim8 K 8 = 0, since lim8 Qs =A= = 0; hence K 8 = 0 for all s by Corollary 1.9. 

We thus have the short exact sequence 

f -
0 ______, Q s ______, Q s ______, c s ______, 0' 

to which we apply lims by Theorem 1.4. Since RA = = 0 implies Rlims Q8 = 0 by 
Theorem 3.4 and lims Qs = Jl= = 0, we deduce that lims cs = 0. Then cs = 0 for 
all s, and we have f: Q8 ~ Q8 for all s. 

The above diagram now provides isomorphisms ps G I ps+l G ~ ps G Ips+ 1 G 
for all s. We apply Theorem 2.6 to the filtered homomorphism f: G ---+ G. Both 
filtrations are complete, by Lemma 5.11(b). The isomorphism r]0 : A0 ~ A-= 
carries Q0 to p=, and similarly for A0 , so that f: poo ~ poe. 

In Case (ii), we obtain from (5. 7) the similar commutative diagram 

0--- E':xo- Qs+l i Qs---+ RE~ _ RQs+l RQS -o --- ---+-

1~ lf lf 1~ 1 l 
o--- E~- Qs+l i Qs---+ RE'= RQs+l ---+- RQS -o --- -

This time, we find an isomorphism Ks+l ~ Ks and a monomorphism cs+l---+ cs. 
Since A0 = A0 = 0, we must have Ks = cs = 0 for all s, and we again deduce 
isomorphisms f: Qs ~ Q8 for all s. 

Hence f: Im"' As~ Im"' As for all a:;:: wand all s. Then diagram (5.8) yields 
the isomorphism F 8 G I ps+lc ~ F 8 GI ps+lG, and Lemma 5.4(b) allows us to apply 
Theorem 2.6 to f: G ---+ G. 

There is more. Put U = Ker[RQ 8 ---+ RQ8 ] and Ds = Coker[RQ 8 ---+ RQ8 ]; 

Lemma 1.7 gives £s+l ~ L 8 and Ds+l ~ Ds for all s. We again have £ 0 = D0 = 0 
for trivial reasons, and so L 8 = D 8 = 0 and RQ8 ~ RQ8 for all s. Then naturality 
of the Mittag-Leffier short exact sequence (3.5) yields RA= ~ RA00 • D 

The colimit as target. We can be more specific when the target G is the 
colimit A -oo. The conditions in Theorem 7.1 are exactly what we need. 

THEOREM 7.3. Suppose that the unrolled exact couple (0.1) satisfies E 8 = 0 for 
all s < 0, so that we have a half-plane spectral sequence with entering differentials. 
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If the spectral sequence satisfies any two of the following conditions, it satisfies the 
third: 

( i) The spectral sequence converges conditionally to the colimit A~ 00 , ( i. e. 
A00 = 0 and RA00 = 0); 

(ii) REoo = 0; 

(iii) The spectral sequence converges strongly to A-oo. 

PROOF. The filtration of G = A-oo is trivially exhaustive, since F0 G = G. 
Further, the filtered isomorphism rP: A 0 ~ G induces Q0 ~ F 00 and RQ0 ~ RF00 • 

If we assume (i) and (ii), Lemma 5.9 yields isomorphisms RF00 ~ RQ0 ~ 
RA00 = 0 and weak convergence, and hence F 00 ~ Q0 ~ A00 = 0. We have (iii). 

Conversely, if we assume (ii) and (iii), the same isomorphisms yield RA00 ~ 
RF00 = 0 and A00 ~ F 00 = 0, and we have (i). 

If we assume (i) and weak convergence, Lemma 5.11(c) shows that i: Qs+ 1 ---+ 

Qs is monic for all s. But (iii) gives Q0 ~ F 00 = 0, so that we must have Qs = 0 
for all s. Then diagram (5.12) reduces to (ii). D 

EXAMPLE. We exhibit a conditionally convergent half-plane spectral sequence 
for which REoo -:/:- 0. We take As= Z(2) for s > 0 and A 0 = A-oo = G = Z(2)/Z, 
all concentrated in degree 0. For s > 0, i: As+1 ---+ As is multiplication by 2, 
and i: A1 ---+ A0 is the natural projection. Then psc = G for all s. Hence 
Q0 = F 00 = G, but Qs = 0 for s > 0, so that RE! ~ Q0 = G from (5.12). 

We take deg(j) = 0 and deg(k) = 1, as usual. From (0.1), the only nonzero 
groups in the E 1-term are E~·- 1 = Z, generated by x, say, and E~,-s = Z/2, for 
s > 0, generated by Ys· Then E~·- 1 = Z, gen(_lrated by 2r-1x, with differential 
dr(2r- 1x) = Yr· Thus Eoo = 0 and we trivially have weak convergence. 

The limit as target. The other case is rather different. 

THEOREM 7.4. Suppose As= 0 for all s ~ 0 in the unrolled exact couple (0.1), 
so that Es = 0 for all s < 0 and A-oo = 0. Then the following conditions on the 
resulting half-plane spectral sequence are equivalent: 

(i) REoo = 0; 

(ii) RA00 = 0 and the spectral sequence converges strongly to A00 • 

PROOF. We trivially have Q0 = RQ0 = 0. We combine diagrams (5.7) and (5.8) 
into the commutative diagram with exact rows (omitting 0 from each end) 

psc 
--- - lm17 As+1 

psi1G l C 

--+ lm17 As ---+- 0 

(7.5) 1 

If RE00 = 0, Lemma 5.9 gives RA00 ~ RQs ~ RQ0 = 0 and lm17 As= Qs. The 
diagram yields weak (therefore, by Lemma 5.4(b), strong) convergence. 

Conversely, suppose we have convergence. The diagram shows, by Lemma 1.7, 
that Im17 As = Qs implies Im17 As+1 = Qs+l; by induction, starting with Q0 = 0, 
we deduce that lm17 As = Qs for all s. By Corollary 3.6, RA00 = 0 implies that 
RQs = 0 for all s. The diagram now shows that RE~ = 0. 0 
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8. Whole-plane spectral sequences 

In this section, we extend our previous results to spectral sequences arising 
from a general unrolled exact couple, with no dimensional restrictions. 

Another obstruction. The condition REcxo = 0 is no longer enough to guar-
antee strong convergence; an additional obstruction group W arises from the in-
teraction between limits and colimits. We introduce W formally later, in equa-
tion (8.7); meanwhile, we give a useful criterion for it to vanish, that depends only 
on data internal to the spectral sequence. In stating the criterion, we assume that 
deg(i) = deg(j) = 0 and deg(k) = 1, and give the differentials the usual (coho-
mological) indexing, dr: E;•t ~ E;+r,t~r+l. (It can of course be adapted to other 
conventions.) 

LEMMA 8.1. Suppose that for each m, there exist numbers u(m) and v(m) such 
that for all u;::: u(m) and v;::: v(m), the differential 

d . E~u,m+u -----+ Ev,m~v+l 
u+v · u+v u+v 

vanishes. Then W = 0. 

REMARK. This criterion has a convenient graphical interpretation. As usual, 
we place the group E;•t at the point (s, t) of the plane. We represent each differential 
dr: E;•t ~ E;+r,t~r+l by a line segment joining the source (s, t) and the target 
(s+r, t-r+1). Then the hypothesis states that there does not exist an infinite 
family of nonzero differentials that all cross each other (in their interiors). 

Conditional convergence. We generalize Theorems 7.1 and 7.2. 

THEOREM 8.2. Suppose the spectral sequence arising from the unrolled exact 
couple (0.1) converges conditionally to the colimit A ~oo or the limit A 00 • If RE00 = 
0 and W = 0, the spectral sequence converges strongly. 

This will follow immediately from the more detailed Theorems 8.10 and 8.13. 

THEOREM 8.3. Assume given unrolled exact couples As etc. and .!P etc. as in 
(0.1) that converge conditionally to either (i) the colimits G = A~oo and G = x~oo 
or (ii) the limits G = A 00 and G = A 00 • Suppose f: As ~ As etc. is a morphism 
of unrolled exact couples that induces isomorphisms: 

(i) foo: Eoo ~ Eoo; 

(ii) REoo ~ REoo (e. g. if REDO = REcxo = 0); 

(iii) W ~ W (e.g. ifW = W = 0). 

Then f induces an isomorphism of filtered groups f: G ~ G (in the strict sense 
that f: psc ~ ps(} for all s). 

Again, we defer the proof. In fact, we have to treat the two cases separately. 

Limits and colimits in a sequence. The new feature of whole-plane spectral 
sequences is that limits and colimits can interact in complicated and mysterious 
ways. In addition to the decreasing filtration of each As by the images Imr As = 
Im[i(r): As+r ~ As], we have the increasing filtration by the kernels KnAs = 
Ker[i(n): As ~ As~n]. We define Kn Imr As = KnAs n Imr As. The minimal 
subquotient groups of this double filtration are directly expressible in terms of the 
spectral sequence. 
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LEMMA 8.4. For any n 2 1, r 2 0, and s, we have the natural isomorphism 

Kn Imr As '="I [d . Es-n Es+r] 
Kn Imr+1 As+ Kn-1 Imr As - m n+r. n+r ----> n+r . 

(If deg(i) = deg(j) = 0, this isomorphism has degree 0.) 

PROOF. The homomorphism i(n-1): As ----> As-n+l carries the stated subquo-
tient isomorphically to K1 Imr+n-1 As-n+l / K1 Imr+n As-n+1, which equation (0.7) 
identifies with Im dn+r. D 

In addition to Qs = Imw As = limr Imr As and RQs = Rlimr Imr As, we in-
troduce K 00 As = Ker['IJs: As----> G] = Un KnAs, and extend our previous notation 
Kn Imr As to allow r = w or n = oo or both. These behave exactly as expected 
under limits (intersections) and colimits (unions), namely 

nKnimr As= n(KnAS nimr As)= KnAS nQs = KnQs, 
r r 

even for n = oo, and 

UKnlmr As= U(KnAS nimr As)= KooAS nimr As= Koolmr As, 
n n 

even for r = w. Thus these limits and colimits commute, 

r n n r 

However, the derived limits do not commute with colimits in general. 

LEMMA 8.5. There is a short exact sequence 

(8.6) 0----+ colimRlimKnimr As----+ RlimcolimKnimr As----+ W----+ 0, 
n r r n 

where 

(8.7) W = colimRlimK00 Imr As. 
s r 

In terms of the double filtration on As, we can write 

(8.8) W l. Rl" Koo Imr As 
=COlli 1m K I rA 

n r n m s 

PROOF. We apply limr by Theorem 1.4 to the short exact sequence 

(8.9) 

to obtain (in part) the exact sequence 

K 00 Qs-n----> RlimKn Imr As----> RlimK00 Imr As----> RlimK00 Imr+n As-n----> 0. 
r r r 

To this we apply the exact functor colimn. Since 

co lim KooQs-n = Ker[colim Qs-n ----> G] = co lim Ker[Qs-n ----> A s-n] = 0, 
n n n 

we obtain (8.6), with W = colimn Rlimr K 00 Imr+n As-n. By shifting the indexing 
(which does not affect the colimit or derived limit) and relabeling, we find the form 
(8.7) of W. 

For (8.8), we use diagram (8.9) to rewrite K 00 Imr+n As-n as a quotient. D 

We deduce Lemma 8.1 by combining Lemmas 8.4 and 8.5. 
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PROOF OF LEMMA 8.1. We work throughout in degree m+l. In Lemma 8.4 
we sets= -u(m)+1, n = u-u(m)+1, and r = v+u(m)-1, and use it to rewrite 
the hypothesis of Lemma 8.1 as 

Kn Imr As = Kn Imr+l As + Kn-1 Imr As 

for all n?: 1 and all r?: ro = u(m)+v(m)-1. Induction on n, starting from the 
triviality KoAs = 0, shows that Kn Imr As = Kn Imr+l As for all r ?: ro and all 
finite n, hence also for n = oo. Thus Koo Imr As/ Kn Imr As is independent of r for 
r?: r0 , and equation (8.8) shows that W = 0. D 

The colimit as target. Here, we take the colimit A -oo as the target G of our 
spectral sequence, filtered by the subgroups FsG = ps A-oo = Im[1Js: As---+ A- 00]. 

THEOREM 8.10. If the spectral sequence resulting from the unrolled exact couple 
(0.1) satisfies any two of the following conditions, it satisfies the third: 

(i) The spectral sequence converges conditionally to the co limit A -oo ( i. e. 
A 00 = 0 and RA00 = 0); 

(ii) REoo = 0 and W = 0; 

(iii) The spectral sequence converges strongly to A -oo. 

By Lemma 5.4(a), the filtration of A-oo is always exhaustive. We need to study 
the groups F 00 and RF00 • The isomorphisms Q0 ~ F 00 and RQ0 ~ RF00 that 
were so useful in §7 do not extend in the obvious way; the natural homomorphisms 
colims Qs ---+ F 00 and colims RQs ---+ RF00 are in general not isomorphisms. 

LEMMA 8.11. There is an exact sequence 

(8.12) 0 -----+ co lim Qs -----+ F 00 -----+ W -----+ colim RQs -----+ RF00 -----+ 0. 
s s 

PROOF. We apply limr by Theorem 1.4 to the short exact sequence 

c '1" 
0 -----+ K 00 Imr As -----+ Imr As -----+ pr+s -----+ 0 

to obtain the exact sequence 

K 00 Qs----+ Qs----+ F 00 ----+ RlimK00 lmr As----+ RQs----+ RF00 ----+ 0. 
r 

To this we apply the exact functor colims; as in the proof of Lemma 8.5, we see 
that colims K 00 Qs = 0. We deduce (8.12), with the help of equation (8.7). D 

PROOF OF THEOREM 8.10. We modify the proof of Theorem 7.3. 
Assume (i) and (ii). Lemma 5.9 yields weak convergence, also Qs = RQs = 0 

for all s. Since W = 0, Lemma 8.11 gives F 00 = RF00 = 0, and we have (iii). 
Conversely, (ii) and (iii) imply (i). 
As before, (i) and (iii) imply monomorphisms i: Qs+l ---+ Qs and RQs = 0 for 

all s. Since F 00 = RF00 = 0, Lemma 8.11 shows that W = 0 and colims Qs = 0. 
It follows that Qs = 0 for all s. Then RE00 = 0 by diagram (5.12). D 

PROOF OF THEOREM 8.3, CASE (i). The proof of Theorem 7.2 still provides 
isomorphisms f: Qs ~ i:? and Fsjps+I ~ ps;ps+I. By Lemma 5.11, RQs = 
Rl'? = RF00 = RF00 = 0. Then naturality of diagram (8.12) shows that f: F 00 ~ 
F 00 , and Theorem 2.6 applies to f: G ---+ G. D 
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EXAMPLE. We exhibit an unrolled exact couple for which W =1- 0. For integers 
n 2 0, we take An and A-n to be free abelian on generators Xt in degree zero for 
all t 2 n and i: As+1 -+ As as the obvious homomorphism given by ixt = Xt for 
all t, except that i: A-n -+ A-n-1 takes Xn to Xn+1· Then G = A-oo is free on 
one generator x, with rJsXt = x for all s and t. Equivalently, G = A 0 I K, where 
K denotes the subgroup consisting of all finite sums I:t AtXt such that I:t At = 0. 
It is filtered trivially, with ps = G for all s, so that poo = G =1- 0 and RF00 = 0. 
Clearly, Qs = 0 for all s, and Lemma 8.11 shows that W =1- 0. Also, RQs =1- 0. 

As usual, we take deg(i) = deg(j) = 0 and deg(k) = 1. Then En is free on one 
element Zn = jxn in degree 0, and E-n- 1 is free on one element Yn in degree -1, 
where kyn = Xn- Xn+1· The differentials dzn+1: E2nn+11'n -+ E;;,~~ in the spectral 
sequence are given by d2n+1Yn = Zn and kill everything, so that E 00 = RE00 = 0. 
It is clear how the hypothesis of Lemma 8.1 fails. 

To obtain a conditionally convergent example for Theorem 8.10, we complete 
the sequence A as in the proof of Theorem 3.4, so that .An =A-n consists of formal 
infinite sums I:t AtXt· This leaves Es and the spectral sequence undisturbed, but we 
now have conditional convergence to A0 I K. (This is not a general phenomenon; in 
view of diagram (3.8) and Lemma 1.7, the procedure works precisely when Qs+ 1 S:! 

Qs and RQs+1 S:! RQs for all s.) The filtration of the target group .A-DO is trivial as 
before, and not Hausdorff. Thus Theorem 8.10 fails without the hypothesis W = 0. 

The limit as target. Here, we assume A -DO = 0 and take the limit A 00 as 
the target G, filtered by the subgroups ps = psc = Ker[Es: ADO -+ As]. By 
Lemma 5.4(b), this filtration is always complete Hausdorff and exhaustive. 

THEOREM 8.13. Assume only that A-oo = 0 in the unrolled exact couple (0.1). 
Then the following conditions on the resulting spectral sequence are equivalent: 

(i) REDO = 0 and W = 0; 
(ii) RA00 = 0 and the spectral sequence converges strongly to ADO. 

In this context, the mystery group W has a simpler interpretation. 

LEMMA 8.14. If A-oo = 0, then W = colims RQs. 

PROOF. In this case, K 00 Imr As= Imr As, and equation (8.7) simplifies. D 

PROOF OF THEOREM. We modify the proof of Theorem 7.4. 
As before, (i) implies strong convergence, also that RADO S:! RQs for all s. Then 

Lemma 8.14 shows that RADO S:! W = 0. 
If we assume (ii), we still have diagram (7.5), but the inductive proof we used 

before is no longer available. Instead, put cs = Qs I Im"" As; then by Lemma 1.7, 
cs+I -+ cs is monic. But colims cs = 0, being a quotient of colims Qs = 0; we 
deduce that cs = 0 and Im"" As = Qs for all s. By Corollary 3.6, RQs = 0 for all 
s. Then W = 0 by Lemma 8.14 and RE~ = 0 by diagram (7.5). D 

PROOF OF THEOREM 8.3, CASE (ii). We modify the proof of Theorem 7.2, by 
making much use of colimits and their exactness. 

We still have Ks+l S:! Ks and monomorphisms cs+1 -+ cs, where Ks = 
Ker[f: Qs -+ l?J and cs = Coker[!: Qs -+ l?J. We no longer have Q0 = (jO = 0. 
Instead, we use colims Qs = 0 and colims ?:? = 0; these are subgroups of A-DO = 0 
and _A-= = 0. Then colims Ks = colims cs = 0, and we conclude that Ks = cs = 
0 for all s. As before, we deduce the filtered isomorphism f: G S:! G. 
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We still find Ls+l ~ U and Ds+ 1 ~ D 8 , where L 8 = Ker[RQs -. RQ8 ] and 
D8 = Coker[RQs -. RQ8 ]. This time, we use Lemma 8.14 to write colims U = 

Ker[W-. W] = 0 and colims D 8 = Coker[W-. W] = 0. It follows that U = D 8 = 
0 for all s, and we finish the proof as before. D 

PART III- EXAMPLES 

We give examples of unrolled exact couples and the resulting spectral sequences 
in which the concept of conditional convergence is relevant. A common theme will 
be to map a given unrolled exact couple to or from another one having better 
properties, by a morphism that preserves the groups E 8 and therefore the whole 
spectral sequence, including the infinite terms (5.1). 

9. Filtered complexes 

Given a (chain) complex C equipped with a decreasing filtration by subcom-
plexes F 8 C, we construct an unrolled exact couple and hence a spectral sequence. 
The homology exact sequence of the short exact sequence of complexes 

i p 
0 ------* ps +1 C ------* ps C ------* ps C Ips+ 1 C ------* 0 

is the required long exact sequence. We define the unrolled exact couple by 

(9.1) 

together with the obvious structure maps H ( i): As+ 1 -. As, j = H (p): As -. E 8 , 

and the connecting homomorphism k = 8: Es-. As+1 . 

We impose no dimensional restrictions on C or the filtration. If Fmc = 0 for 
some finite m, we find a half-plane spectral sequence with exiting differentials. If 
pmc = C for some finite m, we find a half-plane spectral sequence with enter-
ing differentials. Typically, the differential 8 of C has degree + 1, but it is often 
convenient to reindex C or the filtration. 

THEOREM 9.2. If the filtration of C by the subcomplexes F 8 C exhausts C and 
is complete Hausdorff, then the spectral sequence resulting from (9.1) is 

Ef = H(Fsc I ps+1C) ===* H( C), 

and it converges conditionally to the colimit H (C). 

PROOF. By exactness of the colimit functor, the target group is 

A-oo = colimH(F"C) ~ H(colimF8 C) = H(C). 
s s 

We have to show that A 00 = RA= = 0, which is essentially Proposition 6.1 of 
Eilenberg-Moore [5]. By hypothesis, diagram (1.3) reduces to the isomorphism 

s s 

We apply homology, which preserves products, to obtain another isomorphism 

s s 

which, again by reference to diagram (1.3), gives the result. D 
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One often needs to consider general filtered complexes. If the subcomplexes 
pse do not exhaust e it is obvious what to do: we simply replace C by p-ooe = 
Us pse. If the filtration is not complete Hausdorff, Proposition 2.8 constructs the 
completion C, filtered by subgroups F 8 C, with a differential provided by naturality. 

THEOREM 9.3. Suppose the complex e is filtered by subcomplexes F 8 C that 
exhaust e. Then we have the spectral sequence 

which converges conditionally to the colimit H (C), where C is the completion of e. 

PROOF. By Proposition 2.8(b), the completion homomorphism C -+ C in-
duces isomorphisms pse I ps+le ~ F 8 C I ps+Ic, and therefore an isomorphism of 
spectral sequences. We apply Theorem 9.2 to C. D 

10. Double complexes 

A double complex Dis a bigraded group with components Ds,t having degree 
s + t, equipped with two differentials 8': Ds,t -+ Ds+I,t and 8": Ds,t -+ Ds,t+I of 
degree + 1 that anticommute, 8" o 8' = -8' o 8". (Again, it is often convenient to 
change the indexing.) We construct its spectral sequence. 

The total complex c of D has the component en = EBs+t=n Ds,t in degree n 
and total differential 8 = 8' + 8": en -+ enH. We filter e by the subcomplexes 
pse, where psen = EBi>s Di,n-i. The spectral sequence of the double complex D 
is by definition the spectral sequence of this filtered complex C. (More precisely, 
this is one of them - there is a second spectral sequence with the roles of 8' and 
8" interchanged.) If Ds,t = 0 for all s > s0 (resp. s < s0 ) and all t, it is a half-plane 
spectral sequence with exiting (resp. entering) differentials. 

Then pse I ps+Ie is just the complex (Ds,•, 8"), with Ds,t in degree s + t, 
so that Ef = H(Ds,•, 8"). Next, one computes that d1 : E'{ -+ Ef+l, a connect-
ing homomorphism, is the homology homomorphism induced by the morphism 
8': D 8 •* -+ Ds+I,• of 8"-complexes of degree +1. This gives the E 2-term. 

The filtration of e clearly exhausts e and is Hausdorff, but in general fails to 
be complete. We therefore apply Theorem 9.3 rather than Theorem 9.2. 

THEOREM 10.1. The spectral sequence of the double complex D, 

E2 = H(H(D, 8"), H(8')) ==? H(C), 

converges conditionally to the colimit H(C), where C denotes the completion of the 
total complex of D. D 

The completion in this context is readily constructed. The group cn consists 
of those elements x E fL Ds,n-s whose components X 8 E Ds,n-s vanish for all 
s < s0 , for some s0 that depends on x. (Note that in general, this is neither the 
sum EBs Ds,n-s nor the product fL Ds,n-s.) In practice, it often happens that for 
dimensional reasons, only finitely many of the X 8 can be nonzero, in which case C 
was already complete. 
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11. Multicomplexes 

Multicomplexes are a flexible generalization of double complexes that were 
introduced by Wall [15] and are particularly useful in homological algebra. A 
multicomplex M consists of a bigraded group with components Ms,t having degree 
s + t and homomorphisms dr: Ms,t ---+ Ms+r,t-r+l of degree + 1 for all r 2 0 that 
satisfy the identities 

(11.1) L d; o dj = 0: Ms,t -----+ Ms+n,t-n+2 

i+j=n 

for all n 2 0 and all s and t. In particular, d0 is a differential. In the special case 
when dr = 0 for all r 2 2, M is precisely a double complex. 

As in §10, the total complex e of M has en = EBs+t=n Ms,t in degree n, 
with total differential a = E~o dr: en ---+ en+ 1 ; this works provided the following 
finiteness condition holds for all x E M: 

(11.2) for all except finitely many r. 

The relation (11.1) is exactly what is needed to make 8 a differential. We filter e 
by psen = E9i>s Mi,n-i, and define the spectral sequence of the multicomplex M 

as the spectral ~equence of this filtered complex. If Ms,t = 0 for all s > s0 (resp. 
s < s0 ) and all t, it is a half-plane spectral sequence with exiting (resp. entering) 
differentials. 

Again, pse / ps+lc is the complex M 8 ·* with differential d0 , so that Ef = 
H(M 8 •*, d0 ). Relation (11.1) with n = 1 states that d1 : M 8 •* ---+ Ms+l,• is a 
morphism of d0-complexes of degree +1, and H(dl): H(M 8 •*, d0 )---+ H(Ms+l,•, do) 
serves as d1 : Ef---+ Ef+1. Although d 1 od1 i= 0 in M, relation (11.1) with n = 2 
shows that d2 is a chain homotopy between d 1 o d1 and 0, so that H(dl) o H(dl) = 0 
and we can still describe E 2 as H(H(M,d0 ),H(dl)). In general, as the notation 
suggests, the differential dr: E: ---+ E:+r is induced by dr: Ms,• ---+ Ms+r,•, but 
only on those classes that contain elements x E M 8 ·* that satisfy dix = 0 for all 
i < r (which rarely happens). Once again, we apply Theorem 9.3; the filtration of 
e is clearly Hausdorff and exhaustive, but not complete in general. 

THEOREM 11.3. The spectral sequence of the multicomplex M, 

E 2 = H(H(M, do), H(di)) ==> H(C), 

is conditionally convergent to the colimit H(C), where C denotes the completion of 
the total complex of M. D 

REMARK. This theorem makes no reference to any finiteness condition on M 
because none is needed. As in §10, en is the set of all elements X E IL Ms,n-s for 
which x 8 = 0 for all s < s0 , for some so. The differential is given by 

(8x)s = L drXs-r, 
r20 

where the sum is guaranteed to be finite, and defines an element ax E (5n+1. In 
contrast, the differential in e exists only in the presence of condition (11.2). 
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12. Atiyah-Hirzebruch spectral sequences 

For simplicity of exposition we assume X is a cw-complex or cw-spectrum. 
When X is a space, we may use either absolute or reduced (co )homology, provided 
we are consistent; when X is a spectrum, only the reduced kind is available. 

Homology. We filter X by its skeletons X 8 • Given a spectrum M, the M-
homology exact sequence of the pair (Xs, X 8 _1), 

o. 
----+ M.(Xs-1)----+ M.(Xs)----+ M.(Xs, Xs-d----+ M.(Xs-d----+ ... , 

gives rise (after some awkward reindexing) to the obvious unrolled exact couple 

(12.1) A 8 = M.(X- 8 ), Es = M.(X-s, X-s-1), 

using the above homomorphisms as i, j, and k. Thus deg(i) = deg(j) = 0, while k 
has degree + 1 (or homology degree -1), as usual. The resulting spectral sequence 
is known as the Atiyah-Hirzebruch homology spectral sequence of X. 

To make the indices more manageable, it is customary to rewrite E;s,-t as 
E; t' which has homology degree s + t. Then E}. = M. (X8 , Xs-d may be regarded 
as 'the group of s-chains on X with coefficients in the homotopy groups Mt of M 
(shifted), which leads to the description E;,t = Hs(X; Mt)· 

To discuss convergence, we need to know A00 and A-00 • Theorem 4.2(a) gives 
the target A-oo = M.(X). From now on, we assume that X is a space or con-
nective spectrum, so that X_ 1 is empty or a point spectrum and A00 = 0, and we 
have a half-plane spectral sequence with exiting differentials. Thus Theorem 6.1 ap-
plies. (Otherwise, if X is a nonconnective spectrum, we have a whole-plane spectral 
sequence with A 00 = lims M.(X-s), which need not vanish.) 

THEOREM 12.2. Let X be a space or connective spectrum and M any spectrum. 
Then the Atiyah-Hirzebruch homology spectral sequence, 

E; t = Hs(X; Mt) ==> M.(X), 

is a strongly convergent half-plane spectral sequence with exiting differentials. D 

Cohomology. The cohomology theory M* (-) has coefficient groups Mt ~ 
M-t· The cohomology exact sequences of the triples (X, X 8 , X 8 _1) furnish the 
triangles for the unrolled exact couple with 

(12.3) As= M*(X,Xs-d, Es = M*(Xs,Xs-1)· 

Thus deg(i) = deg(j) = 0 and deg(k) = 1, as usual. The resulting spectral sequence 
is known as the Atiyah-Hirzebruch cohomology spectral sequence for M*(X). As in 
homology, one interprets Et·t = Ms+t(X8 , Xs-d as the group of cellular s-cochains 
on X with coefficients in Mt, and deduces the E 2-term. 

We continue to assume that X is a space or connective spectrum, so that the 
target group is G = M*(X), and we have a half-plane spectral sequence with 
entering differentials. (Otherwise, we have a whole-plane spectral sequence with 
target G = colim8 M*(X, X 8 ), which is quite mysterious.) In any case, this spectral 
sequence is conditionally convergent by Theorem 4.3(b). 

THEOREM 12.4. Let X be a space or connective spectrum and M any spectrum. 
Then the Atiyah-Hirzebruch cohomology spectral sequence, 

E~,t = H 8 (X; Mt) ==> M*(X), 
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is a half-plane spectral sequence with entering differentials that converges condition-
ally to the colimit M*(X). D 

Another exact couple. There is a more obvious unrolled exact couple that 
delivers the same spectral sequence. We take 

(12.5) its= M*(Xs-d, 

and use the cohomology exact sequences of the pairs (X8 , Xs-d as the triangles. 
Its spectral sequence converges conditionally to the limit target group G = A00 = 
lims M*(X8 ), which may or may not be the same as M*(X). The homomorphisms 
8* : A8 --+ A 8 form a morphism of unrolled exact couples that preserves each E 8 

and hence the whole spectral sequence, including the terms E 00 and RE00 • 

We compare these two rather different descriptions of the same spectral se-
quence. We prefer the first, because its target group G is the one we really want. 
As the filtration of G = M* (X) is automatically complete and exhaustive, strong 
convergence to G reduces to two conditions: 

(i) Weak convergence, F 8 I ps+l ~ E':xo; 
(ii) The filtration is Hausdorff, F 00 = 0. 

By Theorem 7.3, REoo = 0 if and only if both hold. 
The Milnor short exact sequence (4.4) may be written 

0 ----t RA00 ----t M* (X) ----t A00 ----t 0. 

It allows us to identify F00 = RA00 , and to compare the filtrations of G and G by 
means of the short exact sequences 

0 ----t RA00 ----t F 8 ----t F8 ----t 0. 

Thus F 8 I ps+l ~ F 8 I ps+l, and weak convergence in either sense is the same, 
even when G f. G. As the filtration of G is automatically complete Hausdorff and 
exhaustive by Lemma 5.4, strong convergence to G requires only weak convergence, 
i.e. condition (i) above. Then Theorem 7.4 also shows that REoo = 0 is equivalent 
to both conditions, since F00 = RA00 • 

Filtered spaces. The only purpose of filtering X by skeletons was to recognize 
the E 2-term. For any filtration of X by subcomplexes or subspectra, we still have 
the unrolled exact couples (12.1) and (12.3) and the resulting spectral sequences. 

THEOREM 12.6. Suppose X has an increasing filtration by subspaces or sub-
spectra Xs that exhaust X, with X_ 1 trivial. Then for any spectrum M: 

(a) The homology spectral sequence resulting from (12.1), 

E;,t = Ms+t(Xs, Xs-1) ==> M*(X), 

is a strongly convergent half-plane spectral sequence with exiting differentials; 

(b) The cohomology spectral sequence resulting from (12.3), 

Et't = Ms+t(Xs, Xs-d ==> M*(X), 

is a half-plane spectral sequence with entering differentials that converges condition-
ally to the co limit M* (X). D 
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13. Serre spectral sequences of a fibration 

Let p: X --+ B be a fibration with fibre F. Again to simplify the exposition, 
we assume that B is a cw-complex. We sketch the spectral sequences following 
Spanier [13, Chap. 9], omitting most details. We filter X by the inverse images 
Xs = p-1(Bs) of the skeletons Bs of B. We use the homology and cohomology 
theories defined by the spectrum M, which may well be ordinary (co )homology. 

Homology. The homology spectral sequence (see Theorem 12.6(a)) of the 
filtered space X is known as the Serre homology spectral sequence of the fibration 
p: X --+ B. One can identify E; t with the group of cellular s-chains on X with 
coefficients in Mt(F). However, t~ proceed to the E 2-term, one must take account 
of the action of the fundamental group 1r1(B) on Mt(F). 

THEOREM 13.1. Given a fibration p: X --+ B as above and a spectrum M, the 
Serre homology spectral sequence, 

E;,t = Hs(X; Mt(F)) ===? M*(X), 

(with coefficients twisted by the action of1r1(B) on Mt(F)) is a strongly convergent 
half-plane spectral sequence with exiting differentials. D 

Cohomology. The cohomology spectral sequence (see Theorem 12.6(b)) of 
the filtered space X is known as the Serre cohomology spectral sequence of the 
fibration. We shall be even briefer. 

THEOREM 13.2. Given a fibration p: X--+ B as above and a spectrum M, the 
Serre cohomology spectral sequence, 

E~,t = Hs(X; Mt(F)) ===? M*(X) 

(with twisted coefficients), is a half-plane spectral sequence with entering differen-
tials that converges conditionally to the colimit M*(X). D 

14. Bockstein spectral sequences 

Let p be a fixed prime. We start from an exact couple of graded groups 

A~A 

(14.1) ~ 1 
E 

where p: A --+ A denotes multiplication by p. By exactness, E consists of torsion 
of orders p and p2 only. We form an unrolled exact couple (0.1) by setting As =A 
and Es = E for all s. The resulting spectral sequence is our algebraic Bockstein 
spectral sequence; it will include the topological spectral sequences as special cases. 
It is a whole-plane spectral sequence, but because all columns are identical, only 
one column needs to be considered. 

As usual, we take the target group G to be the colimit A -oo, filtered by FsG = 
Im[7Js: As --+ A- 00]; as we shall see, it is often obvious or of little interest, and 
convergence is the real issue. Because E is already p-local, we may localize the 
exact couple at p by tensoring with Z(p)• without affecting the spectral sequence. 
So without loss of generality, we may assume A is p-local if we wish. 

Licensed to University I Oslo.  Prepared on Fri Aug 26 05:47:48 EDT 2016for download from IP 129.240.222.177.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



80 J. MICHAEL BOARDMAN 

Recall that a group is reduced if it contains no nontrivial divisible subgroup. 
Denote by 1Fp the field with p elements. 

LEMMA 14.2. Let P be the p-primary torsion subgroup of A. (If A is p-local, 
this is the whole torsion subgroup Tors(A) of A.) Then in the algebraic Bockstein 
spectral sequence resulting from (14.1): 

(a) A-oo =A Q9 z[p- 1]. (If A is p-local, this is the same as A Q9 Q.) 

(b) F 8 ~ AjP. 

(c) F 8 / Fs+l ~(A/ P) ® IFP ~(A/ Tors( A))® 1Fp. 
(d) A 00 ~ lims p" A, where p" A is the largest subgroup of A that is divisible 

by p and we use the homomorphisms p: p" A---. p" A. If P is reduced, A 00 ~ p" A. 

(e) Es: A 00 ---.As is monic if and only if P is reduced. 

(f) If the p-adic filtration of A is complete Hausdorff, then the spectral se-
quence converges conditionally to the colimit A -oo. 

PROOF. For (a), we rewrite p: A---. A as 1 ®p: A®Z---. A®Z. Because A®-
preserves colimits, we have A-oo =A Q9 colims Z =A Q9 z[p- 1]. For (b), we note 
that Ker[rys: As---. A-00 ] = P; then (c) follows. 

Clearly, Imr As = pr As, and the image filtration of A coincides with the p-adic 
filtration. Further, Im" A 8 = p" As for all ordinals a, and p" As is as asserted in 
(d). Now Es: A00 ---. p" A is always epic by (3.3), and is monic precisely when p" A 
contains no elements of order p. Since P is p-local, the largest divisible subgroup 
of P is P n p" A. This gives the rest of (d) and also (e). 

In (f), we have Q 8 = RQ8 = 0. Then A00 = RA00 = 0 by Theorem 3.4. D 

Now we can apply Lemma 5.9. 

THEOREM 14.3. Assume that RE00 = 0 in the algebraic Bockstein spectral se-
quence from (14.1). Then we have weak convergence, E'/xo ~ (A/ Tors( A))® IFP, if 
and only if the p-primary torsion subgroup of A is reduced. D 

One variant of the Bockstein spectral sequence truncates the unrolled exact 
couple by setting Es = 0 for all s < 0 (and i = 1: As ---. As- 1 for all s :::; 0); the 
resulting spectral sequence is now a half-plane spectral sequence with entering differ-
entials, and its columns are not all identical. The first three parts of Lemma 14.2 are 
modified in the obvious way to A -oo = A, F 8 = p8 A, and F 8 j Fs+l = ps Ajps+l A 
(for s ~ 0); the other three parts are unaffected. 

Homology. The topological versions depend ultimately on the exact triangle 
p j k 

s~s~L(lFp) ~s 

of spectra. The composite /3 = j o k: L(IFp) ---. L(lFp) is the Bockstein map. 
If we smash with a general spectrum M, we obtain another exact triangle 

p j k 
M ~ M ~ M A L(IFp) ~ M, 

where M A L(IFp) defines the homology theory M*( -; 1Fp), known as M -homology 
with coefficients 1Fp. Given any space or spectrum X, we deduce the exact couple 
(14.1) with A= M*(X) and E = M*(X;!Fp); the resulting spectral sequence is the 
homology Bockstein spectral sequence of X. Clearly, the differential d1 : Ef ---. Ef+l 
is induced by the Bockstein /3. We may apply Theorem 14.3. 
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THEOREM 14.4. Assume that RE00 = 0 in the homology Bockstein spectral 
sequence for X. Then we have weak convergence, E~ ~ (M*(X)/Tors(M*(X))) c>9 

lFp, if and only if the p-primary torsion subgroup of Mn(X) is reduced for all n. 0 

The hypothesis on Mn(X) obviously holds if the group Mn(X) is finitely gen-
erated, which is the case if M and X are connective and of finite type. (We say 
that a spectrum X has finite type if it is connective and ?Tn(X) (or equivalently 
Hn(X)) is finitely generated for all n.) 

Cohomology. For the cohomology Bockstein spectral sequence of X we take 
A= M*(X) and E = M*(X; lFp) in (14.1). Again, we apply Theorem 14.3. 

THEOREM 14.5. Assume that RE00 = 0 in the cohomology Bockstein spectral 
sequence of X. Then we have weak convergence, E~ ~ (M*(X)/ Tors(M*(X))) c>9 

lFp, if and only if the p-primary torsion subgroup of Mn(X) is reduced for all n. 0 

In the case of ordinary cohomology, where M is the Eilenberg-MacLane spec-
trum H(Z), we often know in advance that Mn(X) is finitely generated and hence 
reduced. For general M, this condition is far less accessible; we therefore offer an 
alternative criterion that does not depend on detailed knowledge of Mn(X). 

THEOREM 14.6. Suppose the p-adic filtration of the coefficient group Mn is 
complete Hausdorff for all n. Then the cohomology Bockstein spectral sequence is 
strongly convergent if and only if RE00 = 0 and W = 0. 

PROOF. As in §4, we construct the homotopy limit N of the sequence of spectra 

p p .P 
. . . -----+ M -----+ M -----+ M. 

For it, we have the two Milnor short exact sequences (4.10), 

0 -----+ Rlim Mn-l -----+ Nn -----+lim Mn -----+ 0 
s s 

and 

0-----+ RlimMn- 1 (X)-----+ Nn(X)-----+ limMn(X)-----+ 0. 
s s 

By Lemma 14.2(f), with A= M* and E = M*(L(lFp)), we have lims Mn = 0 and 
Rlims Mn = 0. The first short exact sequence shows that Nn = 0 for all n, so that 
N is trivial. Then Nn(X) = 0, and the second shows that we have conditional 
convergence, so that Theorem 8.2 applies. 0 

In order to apply this result, it is usually necessary top-complete M first. If 
each Mn is finitely generated, the completed theory is simply M* ( -; Z(p))· Comple-
tion of M leaves the E 1-term and therefore the whole spectral sequence undisturbed, 
by Proposition 4.11. 

15. Adams spectral sequences 

We take M to be a ring spectrum, with multiplication ¢: M /1. M --+ M and 
unit TJ: S --+ M. Then M* (-) is a multiplicative cohomology theory. Classically, 
M = H(lFp) for some prime p (and this may still be the most important case). We 
work stably, so that all cohomology groups are taken in the reduced sense. 
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An Adams tower for a spectrum Y is a diagram of spectra of the form 

ys+l ys yz y1 ~ yo=Y 

(15.1) \/ \/\/ 
in which each triangle is an exact triangle and certain axioms hold (which are 
subject to some negotiation). We extend the diagram to the right by taking ys = Y 
and K 8 trivial for all s < 0. We obtain an unrolled exact couple simply by mapping 
any spectrum X into diagram (15.1), 

(15.2) A 8 ={X, Y 8 }*, E 8 = {X,K 8 }*. 

This results in a half-plane spectral sequence with entering differentials, known as 
the Adams spectral sequence (or Adams-Novikov spectral sequence if M = MU or 
BP). Its target group is clearly A-oo = A 0 ={X, Y}*. 

Following Adams [1, p. 316], the direct way to construct an Adams tower is to 
start from the exact triangle 

'7 q - i 
s~M~M~s 

formed from ry, in which we arrange deg(i) = 0. We define inductively K 8 = M I\Y 8 

and ys+l = M 1\ ys, with maps formed by smashing this exact triangle with Y 8 • 

Thus ys = M 1\ · · · 1\ M 1\ Y and K 8 = M 1\ M 1\ · · · 1\ M 1\ Y, each with s copies 
of M. The obvious splitting of j*: M*(K 8 ) = M*(M 1\ Y 8 ) ---+ M*(Y 8 ), given by 
lifting x E M*(Y 8 ) = {Y8 ,M}* to ¢o(M 1\x), implies the long exact sequence 

(15.3) ... ~ M*(Kz) ~ M*(Kl) ~ M*(Ko) ~ M*(Y) ~ 0, 

which is in some sense a resolution of M* (Y). This leads to a description of the 
E 2-term (which we do not pursue in this generality). 

We are primarily interested in convergence. There is no reason why the ho-
motopy limit yoo = holims ys should be trivial, but we can use Theorem 4.9 to 
remove it. We define spectra zs by the exact triangles 

,. 
yoo ~ ys ~ zs ~ yoo, 

as in (4.8), to replace the given Adams tower (15.1) by the "quotient" tower 

0 0 0 --- zs+l --- zs 

(15.4) \I \1\1 
where holims zs is trivial by Theorem 4.9(b). The new unrolled exact couple has 

(15.5) A 8 ={X,Z8 }*, E 8 ={X,K8 }* fors2:0, 

with A00 = RA00 = 0, as desired. Moreover, the obvious morphism of towers from 
(15.1) to (15.4) induces an isomorphism of spectral sequences, since the E 1-terms 
are the same; therefore the Adams spectral sequence converges conditionally to the 
revised colimit target group A-oo = A0 ={X, Z0 }*. Of course, the target group 
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is unchanged if yoo happens to be trivial, or more generally, if {X, Y 00 }* = 0; the 
latter occurs often enough to be useful (see Proposition 4.11). (We do not claim 
that (15.4) is an Adams tower for Z 0 ; this may or may not be true, but either way, 
is irrelevant.) 

To complete the discussion, we have only to identify Z0 • 

The classical case. Take M = H (IF P) and denote by A the mod p Steenrod 
algebra of operations on H* (-;IF P), which we identify with H* ( H (IF P); IF P). 

THEOREM 15.6. Let Y be a spectrum of finite type and X any spectrum. Then 
the Adams spectml sequence 

E~'* = ExtA*(H*(Y; 1Fp), H*(X; 1Fp)) ====}{X, Y 1\ S(p)}* 

is conditionally convergent in the colimit sense. If, further, Hn (X; IF P) is finite for 
all n and zero for sufficiently large n, we have strong convergence. 

PROOF. The recognition of the E2-term is standard. For such Y, (15.3) is 
indeed a resolution of H*(Y;IFp) by free A-modules and, because each K 8 is of 
finite type, we have isomorphisms 

Ef = {X,K 8 }* ~ Hom:A(H*(K 8 ;1Fp),H*(X;1Fp)) 

that make the homological algebra work. The extra hypothesis on X forces each 
E~,t to be finite, so that REoo vanishes trivially and Theorem 7.1 applies. 

For the target group, see Theorem 15.9(b). D 

We give one application. The result is due to Margolis [10], but we follow T. Y. 
Lin's approach [8]. 

THEOREM 15.7 (Margolis). For any spectrum Y of finite type, the cohomology 
functor H* (-; IF P) induces an isomorphism 

{H(IFp), Y}* ~ Hom:A(H*(Y;IFp),A). 

PROOF. We take X = H(IFp) in Theorem 15.6. By Proposition 4.11, comple-
tion is not needed here. The key fact (Adams-Margolis [2]) is that A is an injective 
A-module, so that E2 = 0 for all s > 0. The spectral sequence collapses and we 
trivially have REoo = 0, hence strong convergence by Theorem 7.1. Therefore the 
edge homomorphism must be an isomorphism. D 

REMARK. Examples show that this result fails without some restriction on Y. 
We needed the finite type assumption in order to obtain the stated E2-term. 

We deduce a theorem of Lin [8, Thm. 3.2]. 

CoROLLARY 15.8. For the Eilenberg-MacLane spectrum H(IFp): 

(a) The cohomotopy groups n*(H(IFp)) vanish; 

(b) The Spanier-Whitehead dual DH(IFp) of H(IFp) is trivial. 

PROOF. We take Y = S in Theorem 15.7. It is easy to see directly that 
Hom:A(IFp,A) = 0, which gives (a). By definition, n*(DH(IFp)) = n*(H(IFp)) = 0, 
which gives (b). D 
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The general case. There are many ring spectra M for which we can identify 
the target of the Adams spectral sequence, following Bousfield [3). 

THEOREM 15.9. Suppose the ring spectrum M is (-I)-connected, and consider 
the Adams spectral sequence arising from the tower (15.1). 

(a) If the ring 7ro(M) = ZJ for the set of primes J, then the Adams spec-
tral sequence converges conditionally to the colimit {X, YJ }*, where YJ is the J-
localization of Y. 

(b) If the ring 7ro(M) = Zjn, then the Adams spectral sequence converges 
conditionally to the colimit {X, YJ }*, where J is the set of primes dividing n and 
YJ is the J -completion of Y. If Y is of finite type, then YJ = Y 1\ S J. 

PROOF. Bousfield's Theorems 6.5 and 6.6 in [3) identify Z 0 in these cases as 
theM-homology localization YM of Y, which we described above. 0 

REMARK. The use of conditional convergence allows us to dispense entirely 
with conditions on X. (We do not compute the E 2-term.) Bousfield's theorems are 
actually stated for more general M, when the core of the ring 7ro(M) is ZJ or Zjn. 
This disposes of two of the four possible cases of the core subring; the other two 
admit no such result, according to Bousfield [3, Thm. 6.7). 
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