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 Annals of Mathematics, 128 (1988), 207-241

 Nilpotence and stable homotopy theory I

 By ETHAN S. DEVINATZ, MICHAEL J. HOPKINS and JEFFREY H. SMITH

 In the course of his work on the J homomorphism [1] Adams produced for

 each prime p a self-map a: *PMP Mp of the mod(p) Moore spectrum. Here
 kp = 2p-2 if p is odd while k2 = 8, and Mp is the cofibre of the degree p

 map p: S0 - S 0. He showed that the map a induced an isomorphism in
 complex K-theory and in particular was non-nilpotent. It was then not difficult to

 show that none of the composites

 a: Snkp 5k EnkpM anM S 1

 are null homotopic. (At odd primes, these are essentially the elements of order p

 in the image of J.) This was of great interest to homotopy theorists for two
 reasons. First of all it was a new method of constructing elements of 7 S0, the

 stable homotopy groups of the zero sphere. Second, the elements produced in

 this manner were related by a periodic operator "multiplication by a" closely

 related to Bott periodicity in K-theory.

 Some time later Larry Smith [29] embarked on a program to generalize this.

 He replaced K-theory with complex bordism and searched for self-maps of finite

 complexes inducing non-nilpotent endomorphisms in complex bordism. As in the

 construction of the family { a) }, iterates of these self-maps give rise to families in
 7T* So.

 To explain Smith's work in more detail, we let p be a prime and recall that

 the p-localization of the spectrum MU representing complex cobordism is

 equivalent to a wedge of suspensions of the Brown-Peterson spectrum BP.

 Its coefficient ring BP* is a polynomial algebra Z(p)[v1, v2, ... ], where vn
 has dimension 2pn - 2 [32, I]. Then Smith tried to construct finite com-

 plexes V(n - 1) with BP*V(n - 1) = BP*/(p, v1,..., Vn-1) and maps vn:
 ,2pn- 2V( n - 1) -* V( n - 1) inducing multiplication by vn in BP homology,
 succeeding for n < 3 at large enough primes. These complexes were considered,

 from a different point of view, by Toda [30], who obtained similar results. (For a

 precise account of the state of affairs as of 1986, see [27, pp. 21-3].)
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 208 E. S. DEVINATZ, M. J. HOPKINS, J. H. SMITH

 Indeed, the family obtained from the self-map v1 of V(0) = MP is the a
 family; the families obtained from the self-maps vn of V(n - 1) for n = 2 or 3
 are known as the /3 and y families respectively. Although Smith proved that each

 ,fi = 0, he was unable to show that the y family consisted of nonzero elements.
 Around 1975, Miller, Ravenel and Wilson, motivated by insights of Morava,

 introduced the chromatic spectral sequence converging to ExtBP. BP(BP*, BP*),
 the E2-term of the Adams-Novikov spectral sequence converging to *So) [21].
 Using this they were able to demonstrate the nontriviality of the y family. Yet

 more significantly, the chromatic spectral sequence provides a framework for

 organizing this ET-term into periodic families associated with the generators of
 BP*-a framework which is well suited for analyzing families in T*50 obtained
 from self-maps of finite complexes non-nilpotent in BP homology. Furthermore,

 Ext BPBP(BP*, BP*) seems to be built out of algebraic analogues of this self-map.

 The ease with which the known periodicity in *S0 fit into the above
 algebraic framework led Ravenel to speculate that all periodicity in *S0 ought

 to be accurately reflected in the periodicity of ExtBP, BP(BP*, BP*). In particular,
 around 1976 he conjectured that the non-nilpotent self-maps in the category of
 finite spectra were precisely those which induced non-nilpotent endomorphisms

 in complex bordism. During the next eight years he considerably expanded his

 point of view and, incorporating Bousfield's theory of localization [7], wrote the
 seminal [26]. In this paper Ravenel established the perspective which has
 dominated most of the subsequent work in this area. He also added several more

 conjectures to his nilpotence conjecture.

 The only existing evidence for the nilpotence conjecture was Nishida's

 theorem [25] asserting the nilpotence of elements of positive degree in the ring

 7* SO. One can imagine generalizing Nishida's result in three ways: i) The sphere
 spectrum is a ring spectrum so it is a result about ring spectra; ii) The

 multiplication in 7*S0 comes from the smash product construction so it is a
 result about smashing maps; iii) The multiplication in 7* S0 comes from compos-
 ing maps so it is a result about iterated composition. This last direction is of

 course the direction of the nilpotence conjecture.
 The main result of this paper generalizes Nishida's theorem in the three

 ways indicated above. Before stating it, however, we establish our conventions

 and make a recollection.

 For much of this paper, we shall be working in the stable category.

 Although there is wide agreement as to what the stable category should be, a
 number of different constructions have been proposed, perhaps the most popular

 one being due to Adams [3, Part III]. While his construction is adequate for

 much of this paper, we find the construction of [16] to be better suited for the
 analysis of Thom spectra used here. Nevertheless, the reader familiar only with
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 STABLE HOMOTOPY 209

 Adams' model should have no difficulty following our arguments. Furthermore,

 very little of [16] is actually needed here; in particular, no use is made of any sort

 of equivariant theory. Finally, our conventions regarding the stable category and

 generalized homology theories remain those of [3].

 We also recall that given a sequence { Xi} of spectra and maps
 fi: Xi -* Xi,, for each i, the homotopy direct limit of this system, denoted
 holim Xi, may be defined as the cofibre of f: VXi -+ VXi, where l n-t a+ 1 ? fin = fa tl . Here ln: X,* V Xi is the inclusions of the slimmand Xi.

 The following then is our main result.

 THEOREM 1. i) Let R be a ring spectrum (not necessarily connective,

 associative, or of finite type). The kernel of the MU Hurewicz homomorphism

 MU*: 7*R -* MU* R consists of nilpotent elements.
 ii) Let f: F -* X be a map from a finite spectrum to an arbitrary spectrum.

 If 'MU A f is null homotopic, then f is smash nilpotent; i.e. the n-fold smash

 product f A ... Af is null for n sufficiently large.

 iii) Let .*. Xn kXn+ Xn+2 - . be a sequence of
 spectra with Xn cn-connected. Suppose that cn > mn + b for some m and b. If
 MU* fn = 0 for all n, then holim Xn is contractible.

 On

 Remark. Part i) is an easy consequence of Part ii). For suppose a E 7TnR is
 in the kernel of the MU Hurewicz homomorphism. Then since MU is a ring

 spectrum, IMU A a is trivial, so ii) implies that a: Sn 1R is smash nilpotent
 and is thus nilpotent.

 If R is a connective ring spectrum with H*(R; Z) torsion free, then MU* R
 is torsion free (cf. [15, 3.10]), and the kernel of the MU Hurewicz homomor-

 phism is precisely the ideal of torsion elements of 7T1R. As a special case of
 Theorem 1.i) we thus have the following result.

 COROLLARY 1. Let R be a connective ring spectrum with H*(R; Z) torsion

 free. Then the torsion in FO R is nilpotent.

 For example this means that the torsion in the symplectic cobordism ring

 MSp* is nilpotent, a question considered by S. Kochman.
 Next, note that the condition in Part iii) is automatically satisfied if the

 sequence --- -* Xn - Xn+1 -* * * is obtained by iterating a self-map f of a
 connective spectrum X with MU*f = 0.

 COROLLARY 2. Let f: EkX -- X be a self-map of a connective spectrum X.
 If MU*f = 0 then holim {X I f O-kX > E-2kx > } is contractible.
 In particular, if X is finite then f is nilpotent; i.e., the n-fold composition

 f *... o f: EknX -- X is trivial for large enough n.
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 210 E. S. DEVINATZ, M. J. HOPKINS, J. H. SMITH

 In Corollary 2, we have used (and will continue to use) the symbol f to

 denote a map f or any of its suspensions.

 The finite X case of Corollary .2 is Ravenel's Nilpotence Conjecture ([26,

 10.1]).

 Remark. Ravenel's Nilpotence Conjecture also follows easily from Part i) of

 Theorem 1. For suppose f is a self-map of X with MU* f = 0. Then MU A

 f 'X = *, where f'-X = holim {X E-kX f E-2kX } Since
 X is finite, this implies that the composition

 EknX >X > MUA X

 is trivial for n large. However, by replacing f by fn, we may assume that

 n = 1. Now let DX be the Spanier-Whitehead dual of X, and let f" e r* X A DX
 be the adjoint of f. Then fJ is in the kernel of the MU Hurewicz homomor-
 phism. Now X A DX is a ring spectrum; its multiplication corresponds to

 composition. Thus by Theorem L.i), f` is nilpotent, and therefore f is nilpotent.

 Theorem 1 remains true if everything is localized at the prime p; in fact, we

 shall establish this theorem one prime at a time. Since MU(p) is equivalent to a
 wedge of suspensions of BP, we may replace MU by BP in the p-local version.

 The proof of Theorem L.ii) falls naturally into three steps. An outline of

 these steps can be found in Section 1; their proof takes up the bulk of this paper.

 Theorem L.iii) is a consequence of Theorem L.ii); its proof will be carried out in

 Section 4.

 A sequel to this paper will describe refinements of Theorem 1 and applica-

 tions to (among other things) some of Ravenel's other conjectures. See [13] for an

 outline of these results.

 We would like to thank M. G. Barratt, W. Lellmann, M. E. Mahowald, R. J.

 Milgram, H. R. Miller, F. P. Peterson, and D. C. Ravenel for helping us in

 various ways during the development of this project. J. F. Adams and J. P. May

 read a preliminary version of the manuscript and offered us some useful

 comments. The first two authors were partially supported by the NSF.

 1. A reduction and outline of the proof

 The first step in the proof of Theorem L.ii) is a reduction to the following

 special case.

 THEOREM 2. Let R be a connective associative ring spectrum of finite type.

 If a E- 7T R is in the kernel of MU*: R -* MU.IR then a is nilpotent.

 We assume Theorem 2 for now and show that it implies Theorem L.ii).
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 STABLE HOMOTOPY 211

 LEMMA 1.1. Let f: S' -* F be a map to a 0-connected finite spectrum F. If
 'MU A f is null homotopic then f is smash nilpotent.

 Proof Let F(j) be the j-fold smash product of F, F(?) = So. Let JF=

 Vj,?0F(1). Then JF is a ring spectrum with multiplication given by concat-
 enation. Regarding f as an element of 7,,JF places one in the situation of
 Theorem 2.

 We now give the proof of Theorem L.ii). First notice that replacing f by

 f#: So -* X A DF changes neither the assumption nor the conclusion. We may
 therefore suppose that F = So. Since MU is a ring spectrum, IMU A f is null
 homotopic if and only if So f X - MU A X is null homotopic. But X is a
 directed colimit of finite spectra; hence the map f and the null homotopy of

 'IMU A f both factor through a finite spectrum. Suspending a few times allows us
 to apply Lemma 1.1 to complete the proof.

 We now outline our program for proving Theorem 2.

 Let X(n) be the Thom spectrum [16, Chapter 9] of the map

 Q SU(n) - Q SU - BU,

 where the right map is a homotopy inverse of the Bott map as defined by May
 [18, Chapter 1]. Using Propositions 3.3 and 3.4, together with the fact that the

 Bott map BU -* i SU is a map of Yspaces, where Y is the linear isometries
 operad [18, Chapter 1], one can show that X(n) is a commutative and associa-

 tive ring spectrum. Moreover, the canonical maps X(n) -* X(n + 1) -* MU are
 ring spectra maps and MU = holim X(n). Note also that X(1) = So. These
 spectra X( n) were first considered by Ravenel [26] and in some sense generalize

 the Xk-construction of Barratt-Mahowald [4].

 Theorem 2 is a consequence of the next result.

 THEOREM 3. Let R be a connective associative ring spectrum of finite type

 and let a E 7. R. If X(n + 1)* a is nilpotent then X(n)*a is nilpotent.

 Proof of Theorem 2 assuming Theorem 3. Let a E ker(7T*R -* MU*R).
 Since MU = holim. X(n), X(n + 1)*a = 0 for n sufficiently large. By Theorem 3
 we conclude that X(1)*a is nilpotent. But X(1)*a = a as X(1) = S?.

 The proof of Theorem 3 falls naturally into two more steps. To describe

 these we need some further preparation. We begin with some generalities.

 Let R be an associative ring spectrum and a: S"' --> R. We definie a- to be
 the composite

 aARR
 StmA R-*I RAJIR- R
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 212 E. S. DEVINATZ, M. J. HOPKINS, J. H. SMITH

 and set

 a-'R=holim{R E-mR -2mR >

 The proof of the following proposition is left to the reader.

 PROPOSITION 1.2. Let E be a ring spectrum and let a and R be as above.

 The Hurewicz image E * a is nilpotent if and only if E A a - 'R is contractible.

 Remark 1.3. Since E A a-R ' * if and only if E(p) A a-R ' * for each
 prime p, it suffices to establish Theorem 3 by proving that (X(n)(p))* a is
 nilpotent whenever (X(n + l)(p))* a is nilpotent, for each prime p.

 We shall also need the next concept.

 Definition 1.4 ([6], [26]). Two spectra X and Y are Bousfield equivalent if

 they annihilate the same spectra.

 By "X annihilates Z" is meant X A Z is contractible.

 The collection of spectra Bousfield equivalent to X is denoted (X). One
 defines an ordering on Bousfield classes by (X) < (Y) if the collection of
 spectra annihilated by X contains those annihilated by Y. One could equally well

 think of ( X) as denoting the collection of Z such that X A Z is not contractible.
 The above ordering is then just ordinary inclusion. From this point of view (X)
 can be thought of as the support of X by analogy with commutative algebra.

 Now we need a means of passing from X(n) to X(n + 1). Let JkS2,

 QS2n?1 be the inclusion of the kth stage of the James construction (see for

 example [31, VII, 2]). We recall that H*(QS2n+1)?= Z[bn], where bn is of
 degree 2n, and that H*(JkS2n)? is the subgroup generated by 1, bn,.X bk.
 Define Fk' by the homotopy cartesian square

 F 'k ' SU(n + 1)

 IkS - * 2n+1

 where p: SU(n + 1) __ S2n+1 is the usual fibration with fibre SU(n). Finally, let

 Fk = FkX(n + 1) be the Thom spectrum of the map Fk -Q 2 SU(n + 1) -- BU.

 PROPOSITION 1.5. The spectra Fk = FkX(n + 1) form a filtration of

 X(n + 1) by X(n) module spectra. Moreover, F0 = X(n) (as X(n) module
 spectra).

 Proof. We outline the construction of the action of X(n) on Fk. Since Up is

 a loop map, the fibre acts on the total space Q SU(n + 1) on the left. There is
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 STABLE HOMOTOPY 213

 therefore an action of 02 SU(n) on the total space of any fibration induced from

 U p. Passing to Thom spectra from the action Q SU(n) X FK - FK gives the
 module structure X(n) A Fk -* Fk (see Prop. 3.4).

 We can now describe the steps in the proof of Theorem 3. Fix a prime p

 and let Gk = Fpk 1X(n + 1) localized at p.

 Step II. If X(n + 1)*a is nilpotent, then Gk A a-R R * for k sufficiently

 large.

 This step will be proved in Section 2 using a vanishing line argument in the

 X(n + 1)-based Adams spectral sequence converging to q*Gk A R. The next
 step, together with Proposition 1.2 and Remark 1.3, completes the proof of

 Theorem 3.

 Step III. Gk+l is Bousfield equivalent to Gk for all k ? 0; hence (Gk) =
 (Go) = (X(n)(P)) for all k > 0.

 This step will be proved in Section 3. The proof amounts to showing that a

 certain self-map b: E2npk+l -2Gk -- Gk has contractible infinite mapping tele-
 scope; i.e., b -Gk *. Our original proof of this fact was similar to the one to

 be given in this paper in that it proceeded by extending iterates of b over the

 smash product of Gk with Brown-Gitler spectra. Our execution was however

 quite complicated and relied heavily on Brown-Gitler technology, Bruner's work

 on power operations in Adams spectral sequences [8], and a plenum of folklore

 (due to Barratt-Mahowald) surrounding the Xk-construction. Doug Ravenel

 subsequently pointed out that a natural "action" of (Q2S2n+l)+ on the spectra
 Gk gave these extensions immediately, greatly simplifying the exposition. We are

 extremely grateful to Ravenel for clarifying our ideas and for allowing us to

 incorporate his suggestion. The actual implementation of this suggestion was a

 bit tricky and we also wish to acknowledge some very useful conversations with

 Michael Barratt about this.

 2. Proof of step II

 In order to use the X(n + 1)-based Adams spectral sequence converging to

 7T*Gk A R we must first study X(n + 1)*X(n + 1) and X(n + l)*Gk.
 Let CPn'l -- SU(n) be the restriction of the Bott map BU -+ SU

 [18, Chapter 1]. This map represents the homology of ?2 SU(n) as the symmetric

 algebra on H*CPn-1 (cf. [31, p. 345]). Now CPn-1 -+ ? SU(n) -- BU classifies
 the canonical line bundle. Passing to Thom spectra thus results in a map

 TCPn-I - X(n), where TCPn-1 is the Thom spectrum of the canonical line
 bundle over CPF-1. But it is well known that TCP? is homotopy equivalent to
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 214 E. S. DEVINATZ, M. J. HOPKINS, J. H. SMITH

 Y-2CPoo; it then follows that TCP'-' -Yr2CP,. We therefore obtain "orien-

 tations" E-2CP, -> X(n) which are compatible in that

 (2.1) E-2CP > X(n)

 E-2cPn+ 1 , X(n + 1)

 I -=fl*
 E-2Cpoo x MU

 commutes, where x is the complex orientation of MU. We note that one can

 determine much of the structure of X(n))*X(n) by substituting E-2CPn for
 E -2CP ? and X(n) for MU in the analysis of MU* MU presented for example in
 [3, Part II]. The particular information we require is however more quickly

 obtained by comparison with MU* MU and connectivity arguments.
 Recall ([3, Part II, 2]) that MU*CP? is the free MU*-module with basis

 { pi: i > 0)1, where fPi is characterized by (x', f i) = Si K ) here denotes the
 Kronecker pairing MU*CP' ? MU*CP' -+ MU,.

 PROPOSITION 2.2. The map X(n) -+ MU is (2n - 1)-connected.

 Proof This statement follows from the Thom isomorphism and the known

 effect in integral homology of S2 SU( n) -+ ? SU - BU.

 Proposition 2.2 implies that if k ? n and j: X(n)*CPk MU*CP, is the
 map induced by the evident inclusions, then there is a unique Pi E X( n)2iCPk
 with j(3i) = fi for 1 < i < k.

 Now MU*MU=MU*[bob1,b2,...]/(bo- 1) where bi = x*3i+1. We
 may also define bi e X(n)*X(k) for 0 < i < k - 1 and k < n as the image of ,Bi+1 E X(n)*CPk under the map induced by the orientation E-2CPk -> X(k).
 By 2.1, 2.2, these bi's are compatible in the evident way.

 The next proposition follows from routine Atiyah-Hirzebruch spectral se-

 quence arguments of the sort used in [3, Part II] together with the fact that

 H*X(k) = Z[bo,..., bk-l]/(bo - 1).

 PROPOSITION 2.3. Suppose k < n.

 i) X(n)*CPk =X(n)*{1 1,..., 1k), the free X(n)*-module with basis
 {fi: 1 i c k).

 ii) X(n)* X(k) = X(n)*[bo, bk-1]/(bo - 1).
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 STABLE HOMOTOPY 215

 Proposition 2.3.ii) implies that X(n + 1)*X(n + 1) is flat over X(n + 1)*
 and is thus a Hopf algebroid ([2, Lecture 3], [20]). Though the coefficient ring

 X(n + 1)* is almost completely unknown, in the range where the bi are defined,
 X(n + 1)* X( n + 1) agrees with MU* MU (Proposition 2.2). It follows that the
 basic structure formulae for X( n + 1)*X( n + 1) can be read off from those of
 MU* MU (see [3, Part II, 11]). For our purposes, we require only the following
 result.

 PROPOSITION 2.4. X(n + 1)*X(n + 1) is a split Hopf algebroid [19, 7]
 isomorphic to X(n + 1)* ?i Z[b0, b1, ... , bn]/(bo - 1).

 We turn next to X(n + l)*(FkX(n + 1)).

 PROPOSITION 2.5. X(n + l)*Fk is a subcomodule of X(n + 1)*X(n + 1).
 It is the free module over X(n + 1)*X(n) = X(n + 1)*[ bo0 , bn1]/(bo - 1)
 with basis { 1, bn 5 * * bn}

 Proof The integral homology of F' and the effect in homology of the

 inclusion F' --? 0 SU(n + 1) are easily determined with the Eilenberg-Moore (or
 Serre) spectral sequence. Combined with the Thom isomorphism this determines

 the effect in integral homology of the map Fk -> X( n + 1); namely, HZ* Fk
 injects into HZ*X(n + 1) = Z[b0,..., bn]/(bo - 1) with image the free mod-
 ule over HZ*X(n) = Z[b0,..., bn1]/(bo - 1) with basis {1, bn ,... bn}.

 The proof is now completed by a routine argument using the Atiyah-

 Hirzebruch spectral sequence.

 We can now study Ext*x(n+tlx(n+1)(X(n + 1)*, X(n + l)*Gk A R), the
 E2-term of the X( n + 1)-based Adams spectral sequence converging to

 T* Gk A R. The proof of Step II will follow easily from this.
 First recall that if (A, F) is a Hopf algebroid or if F is an augmented

 coalgebra over A, a left F-comodule M is said to be extended if M = r ?A X as

 F-comodules, for some A-module X. If M is a left F-comodule, ExtFr(A, N) is
 computed as the homology of HomF(A, 1*), where 1* is a resolution of N by

 extended comodules (or more generally by summands thereof). The term resolu-

 tion is here used in the sense of relative homological algebra; for more details the

 reader is referred to [20]. In particular, ExtFr(A, N) can be computed as the
 homology of a certain functorial complex Q*(F; N), the cobar complex of N.

 (Again, see [20], but take note that the signs on p. 436 should read:

 a(i) = IYOI + + ?hYi-1I + IYi'I + i,
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 216 E. s. DEVINATZ, M. J. HOPKINS, J. H. SMITH

 LEMMA 2.6. Let C be a connected Hopf algebra over a field K, and let N be

 a C-comodule. Suppose further that Extcs t(K, N) = 0 whenever t < f(s), where
 f is a function with domain the natural numbers. Then if M is a (b - 1)-

 connected C-comodule, Extcst(K, M ? N) = 0 whenever t < f(s) + b.

 Proof Let M( n) be the subcomodule of M consisting of those elements of

 degree < n. It follows immediately from the definition of the cobar complex that

 Q*(C; M) = lim Q*(C; M(n)), so that Extc(K, M) = lim Extc(K; M(n)).
 We therefore need only verify the conclusion for each M(n), which we do by

 induction. M(b) is a trivial C-comodule; so the result is clear in this case.

 In general, we have 0 -> M(n) -> M(n + 1) -> M(n + 1)/M(n) -+ 0 and
 M(n + 1)/M(n) is an n-connected trivial C-comodule. The result now follows
 from the long exact sequence obtained by applying Extc(K,? ? N) and the
 inductive hypothesis.

 Definition 2.7. Let (A, F) be a Hopf algebroid and let M be a F-comodule.

 ExtF(A, M) is said to have a vanishing line of slope 1/m if there exists c such
 that Ext s t( A, M) = 0 whenever t - s < ms - c.

 PROPOSITION 2.8. Let M be a connective X(n + 1)* X(n + 1)-comodule of
 finite type. Then

 ExtX(n+l),X(n+l)(X(n + 1), X(n + 1)*Gk ?X(n+1)* M)

 has a vanishing line of slope tending to zero as k tends to infinity. (In fact, this

 slope tends to zero uniformly in M.)

 The proof of this result will use a change of rings theorem, which, although

 well-known, we prove for the reader's convenience.

 First recall that if B is a coalgebra over the commutative ring R and if M

 and N are right and left comodules respectively over B, then MEIBN is defined
 as the kernel of the map

 M ?RN I M (& B ?&R N,

 where AM, AN are the coaction maps for M and N.

 PROPOSITION 2.9. Let f: A -> B be a map of augmented coalgebras over R.
 Give A the right B-comodule structure induced by f. If A is flat over R and is an
 extended B-comodule, then ExtA(R, A[]BN) = ExtB(R, N) for any left B-

 comodule N.
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 STABLE HOMOTOPY 217

 Remark 2.10. The flatness of A guarantees that the map AA ? N: A ? N

 A ? A ?9 N restricts to a map ADBN -> A ? (AZIBN) so that AZDBN is an
 A-comodule. AA is of course the comultiplication of A.

 Remark 2.11. Suppose f: A -+ B is a map of connected Hopf algebras. If f
 is a split epimorphism and A LBR -+ A is a split monomorphism as maps of
 R-modules, then A is an extended B-comodule [24, 4.7].

 Proof of 2.9. We first note that if S is any right B-comodule, then the

 coaction S -- S ? B factors to give an isomorphism S -+ SEIBB. This factoriza-
 tion also implies that the inclusion t: SZBB -+ S ?9 B splits as a map of
 R-modules. Furthermore, the monomorphism coker t- S ? B ? B is also R-
 split; a splitting is given by the composition

 S ?9 B ? B -2)B--EY S ? B ' cokert,

 where ?: B -- R is the co-unit. It therefore follows that if X is any R-module,
 (SZBB) 2) X and SEIB(B ? X) are both kernels of the map 4s ? B ? X -
 S ? 4B' ? X, so that

 (2.12) S ? X = (S[1BB) ? X = S[1B(B ? X).

 Now let 1* be a resolution of N by extended comodules. By (2.12), A L B I*

 is a chain complex of extended A-comodules. Since A = C ? B as B-comodules,

 we have

 A[1BL = (C ? B)[1BL = C ? (BOBL) = C ? L

 for any B-comodule L, so that AEIBI* is a resolution of AEIBN. (Our definition

 of resolution allows us to dispense with any flatness hypotheses.)

 Finally,

 HomB(R, Ij) , HomA(R, A[1BIS)

 under the map sending g to (A ? g)o 4'R; therefore ExtB(R, N) =

 ExtA(R, AZBN).

 Proof of Proposition 2.8. Since X(n + 1)*X(n + 1) is a split Hopf alge-
 broid (Proposition 2.4), it follows from [19] that the Ext group in question is
 equal to

 EXtz(P)[b. - Ibh(Z(P) Z(P)[bl5 ... bn-1]{1 b,,.. ., ? M).
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 Now let Z(p)[bfl] be the Hopf algebra with bn primitive. It is the quotient
 Hopf algebra of Z(p)[bl,..., bn] by the ideal (b1,..., bn-1). Then

 Z(p) [bl, ... , bn-1] 1, bf* bn }

 = Z(p)[bl,..*, bnl] ? (z(p)[bflzZ p[bl]z(p){1, ba,..., b.}))

 = (z() [bl, ... bn-1] ? Z(p) [ bn] )Lz [blZ(p){ 1 b n k1

 = Z( [b, ..., bn]IZ(PI[blZ(p{1 .. ., bnk}.

 This isomorphism is one of (left) Z(P)[b1,..., bn]-comodules, where in the last
 cotensor product, Z(p)[bl 5 . . . bn ] coacts only on Z( ) [ b1 ... . bn].

 Furthermore there is an isomorphism

 Z( b[b1,. * *, blZ [b (Z(P){ * * ... b, k M} ? M)

 of Z(P)[b1, . .., bn]-comodules, where the tensor products are given diagonal
 coactions. This isomorphism sends (Liai ? wj) ? m to Yi' aa ic (? (w i ? mj),
 where the coaction 4 on M is given by 4(m) = E ?cj M j.

 Hence by Proposition 2.9, the above Ext is equal to

 Ext ze ,b]( z( ) 15 .. 5 Vn $
 Filter Q*(Z(p)[bn]; Z(p){l,..., bnP-1} ? M) by powers of the ideal (p).

 This yields a May spectral sequence [19, 8]:

 ExtF [ bl(FP.FP{1. b, bn } ? EoM)

 -> Extz ,[ (z~p,~ 15 ... bn } $ M $ZP5

 where E M is the bigraded object formed from successive quotients of the

 p-adic filtration, and Zp denotes the p-adic integers. By the convergence results
 of [5, ?11] or [12, Corollary 6.3] together with Lemma 2.6, it therefore suffices to

 establish a vanishing line for

 ExtF [b (FPF 15 .. b5 })

 Now Fp[b]= ?j ?0 D(xj) as coalgebras, where x; corresponds to bjP, and
 D(x) denotes the Hopf algebra Fp[x]/(xP) with x primitive. Furthermore,
 Fp{ 1,. .., b V-1} - J<kD(xj) as comodules; thus by change of rings the
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 above Ext group becomes

 Ext? D(Xj )(F F) ) ExtF[bp k] (FP, Fp).

 Since b Pk has dimension 2npk, the normalized cobar complex (cf. [21, 1.15]) for
 computing this last Ext group has a vanishing line of slope (2npk - 1) -. A

 minimal resolution actually has a vanishing line of slope (npk+1-1)-1. This
 completes the proof of Proposition 2.8.

 Proof of Step 11. The ring 7* R acts on T* G A R on the right. To prove
 that Gk A a'- 'R = *, we must show that for every f E gr* Gk A R, there exists
 an m such that 3am = 0.

 There are strongly convergent X( n + 1)-based Adams spectral sequences

 ([3, III], [7], [8], [19], [27, Chapter 2.2]):

 ExtX(n+1l)X(n+l)(X(n + 1)*, X(n + 1)*Ri) 7T*R,

 ExtX(n+l),X(n+l)(X(n + 1)*, X(n + 1)*Gk A R) =gT*Gk A R.

 There is also a pairing of these two spectral sequences corresponding to the

 action of r7T*R on 7T*Gk A R.
 Since X( n + 1)*a is assumed to be nilpotent, we may, by replacing a by

 one of its powers, assume that X(n + ?1)*a = 0. Therefore, a is detected by

 a E ExtX(tn +l) x(nl )(X(n + 1)*, X(n + 1)*R), s > 0.

 Now choose k so that the Ext group in Proposition 2.8 has a vanishing line of

 slope less than Is(t - s)<' for the X(n + 1)*X(n + 1)-comodule X(n + 1)*IR.
 But

 X(n + 1)*Gk A R = X(n + 1)*Gk ?X(n+l)*X(n + 1)*R

 since X(n + l)*Gk is a flat X(n + 1)*-module. Therefore, the E2-term of the
 above spectral sequence converging to g*Gk A R has a vanishing line of slope
 less than Is(t - s) - 1 1.

 Let /3 e sGk A R be detected by an element in

 Ext X(n+)X(n+l)(X(n + 1)*, X(n + 1)*Gk A R).

 Then if 13am # 0, it is detected by an element in

 Extu+m n+jvmi(X( n + 1)*, X(n + 1)*Gk A R), j ? 0.

 However, by our choice of vanishing line slope, this Ext group is 0 for all j ? 0

 provided m is taken sufficiently large. This implies that f#am = 0 and completes
 the proof of Step II.

This content downloaded from 129.240.223.22 on Tue, 02 Oct 2018 09:53:07 UTC
All use subject to https://about.jstor.org/terms



 220 E. S. DEVINATZ, M. J. HOPKINS, J. H. SMITH

 3. Proof of step III

 We first outline our proof of Step III. It proceeds most naturally from the

 general to the specific; we thus begin with a general situation.

 Suppose given a map (: E -> BU. We shall denote the Thom spectrum of (
 by Et. Since we are working in the stable category, the Thom class is in

 dimension zero; however most of our arguments also apply unstably. Maps
 which are restrictions of ( will also be called (. For a space X, the composite

 X * -- BU is denoted 0.

 Now suppose we are also given a fibration p: E -+ JrS2m for some r ? 0,
 m ? 1. Then if 0 < q < r, let Eq be the pullback

 (3.1) Eq E

 JqS2m Jr S2

 In particular E0 is the fibre of p. Since p is a fibration, Eq is homotopy
 equivalent to the homotopy pullback.

 After inverting r!, we shall construct a certain map

 (3.13) b: E2m(r+l)-2E Et

 with the property that

 (3.14) (Es) = (Et) v (b-'E).
 Now the action of QJrS2m on the fibre yields, upon passage to Thom

 spectra, an action (QJrrS2m)+A E- E (3.16). We will show (Proposition 3.27)
 that if r = p - 1 and the action extends to an action (Q22S2m+l)+A E E-

 then b-'E * provided HFp~b = 0.
 Finally, we will construct a (p-local) fibre sequence

 (3 33) Fp'k-1 Fp'k+ i - 1 _JS2pkl

 satisfying the conditions of Proposition 3.27. Therefore (Gk) = (Gk+1)5 com-
 pleting the proof of Step III.

 The proof of 3.27 involves first showing (Prop. 3.19) that b is homotopic to

 the composite

 S2m(r+l)-2 A E JA1 jSmA Et ? Et

 where ,B is a certain fixed map. Thus, under the hypotheses of 3.27, we obtain a

 factorization of b through Q2S2m+l A Et. The Snaith splitting of 2S2+m+1
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 allows us to utilize an argument reminiscent of Nishida's proof of the nilpotence

 of elements of order p in g*S0 to obtain the desired result.
 The reader may have noticed above that without parentheses, our notation

 for adding a disjoint basepoint can be ambiguous. On the other hand, the use of

 parentheses in these situations is often awkward; thus we leave it to the reader to

 determine from the context where the disjoint basepoint belongs. For future use,

 recall also that if X is a space with a nondegenerate basepoint, then there is an

 evident natural homotopy equivalence E(X,) = EX V ES?, so that as suspen-
 sion spectra, X + X V so.

 Naturally, the proof of Step III makes use of various properties of Thom

 spectra. We single out the facts needed for this paper and refer the reader to

 [16, Chapter 9] for a complete account. First of all, passage to Thom spectra is a

 functor from the category of spaces over BU to the category of spectra. It is

 immediate from the definition that if I: E -> BU is 0, then E is canonically
 isomorphic to E +. Furthermore, if X and Y are any spaces, the Thom spectrum
 of

 (3.2) Xx Y Y BU
 is canonically isomorphic to X+A Y71.

 The next result is not as obvious.

 PROPOSITION 3.3 [16, Chapter 9, 4.9]. Let X: Y -+ Z be a weak equivalence
 (of spaces) and let g: Z -+ BU. Then the induced map ygX -+ Z9 of Thom
 spectra is an equivalence in the stable category.

 Our final recollection generalizes (3.2). Although it will not be used in the

 proof of Step III, it has been used earlier, for example in proving that X(n) is a

 ring spectrum. Since this property of Thom spectra requires some background to

 state precisely, we sketch the relevant prerequisites.

 As noted earlier, BU is an Yspace, where Y is the linear isometries operad

 [18, Chapter 1]. By choosing a point in Y(2) and appropriate paths in Y(1),

 Y(2), Y(3), we obtain a multiplication p: BU X BU -* BU and homotopies
 expressing the existence of the homotopy identity, homotopy commutativity, and

 homotopy associativity [17, p. 4]. Now write (X X y)fxg for the Thom spec-
 trum of the composition

 X x Y - BUxBU - BU.
 Then the composite

 (X x Y)fxg -> T(c(f X g X 1,) + ~-(X X Y)(gxf)t -, (Y x X)gxf
 gives a natural equivalence (X x y)fxg (Y x X) xf. Here t is the twist map,
 C: BU X BU X I -* BU is the commutativity homotopy for 4, and

This content downloaded from 129.240.223.22 on Tue, 02 Oct 2018 09:53:07 UTC
All use subject to https://about.jstor.org/terms



 222 E. S. DEVINATZ, M. J. HOPKINS, J. H. SMITH

 T(c(f x g x 1I)) is the Thom spectrum of c(f X g X 1k). Using the associativ-

 ity and unit homotopies, we obtain natural equivalences

 (X X Y X z)(fxg)xh (X X Y X Z)fx(gxh)

 and

 (* XX)oxf~ xXf (X x*)fxo

 PROPOSITION 3.4. (X x y)fxg is canonically and coherently equivalent to

 Xf A Yg. "Coherent" means that this equivalence commutes with the associa-

 tivity, commutativity, and unit isomorphisms.

 Remark. The reader may wish to verify directly, using Proposition 3.3 and

 the contractibility of Y(j), that (X x Y)fxg is independent of the choices
 made, up to canonical and coherent equivalence.

 We can now begin the details of the proof of Step III. We first construct

 certain maps Oi, 0 < i < r. and determine some of their properties. These maps
 are needed to define the map b of 3.13.

 Construction 3.5. Consider the map E (- ) JrS2m X E. Map the range into

 BU by (X2, and pass to Thom spectra to obtain

 Et JrS2m A E.

 Choose a stable multiplicative splitting rS2m Vr=oS2mi such that the compo-
 nent IrS +m r2m is the stabilization of the "evaluation map"

 EJrS2m (cfS2m+l s2m+ (cf. 3.30).
 Now since g*JS2+m is a Hopf algebra over * SO0, and the element of 7T2mJS 2-n
 represented by the inclusion of the summand S2m is primitive, it follows from

 the multiplicativity of the splitting that the diagram

 (3.6) > m A S2m

 s2mt - S2mi A S2mj

 commutes, where i + j = t and the bottom map is multiplication by the

 binomial coefficient (i, j). Then let Oi be the composite

 E JrS2m A EP > s2mi A E.

 Now the spectrum EP is naturally filtered by Et c E C c + . Filter
 IrS tm by the James filtration and give JrS2Vm A EP the smash product filtration.
 We shall need to know that the map E -rS2tm A EP is homotopic to a
 filtration preserving map.
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 Construction 3.7. A canonical homotopy from the diagonal map S2m S2,
 x S2m to the composite S2m S2m V S2m X S2mx , where the left map is
 the co-H-space map for S2m, gives a homotopy H from the diagonal map

 JrS2m JrS2m x JrS2'm' to the composite LS2' Jr(S2m v S2r) -L(S2m x S~) JrS2' x IrS2m, denoted A. A is easily seen to be filtration preserving.
 Lift H to a homotopy H: E X I JrS2m X E with Ho = (p, 1); then H1 is

 filtration preserving. Hence we obtain a strictly commutative diagram

 Et "'-* , Jis+ A E~
 q

 (Eq x I l'721

 q

 El Jqs2m A El

 where the both composite is the map of Construction 3.5. Passing to quotients

 yields maps

 E___ (Eq X I ) E l2H1

 Eqh (Eq-h X I-h

 UjS2m A El E .

 UJiS+ A Eqh-i s2h A

 These maps will also be denoted by Oi.

 Remark 3.8. By "quotient" we really mean "cofiber of the evident inclu-

 sion"; however, we will not worry about this possible abuse of notation.

 The following properties of the maps Oi of Construction 3.7 will be needed
 in the construction of b.

 PROPOSITION 3.9. The composition

 El ElP o. PE .
 Eq Oi 22mi Eq -i 22m(i +j)- q-i ;
 q-1 q-i-l q-i-j-1

 is equal to (i, j)0i+j.

 Proof The proof is motivated by the following observation. Consider the

 map

 E > JrS2mXJrS2m X E.
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 It factors in two ways, namely

 E - >-~ JrSm mXE JS2m X JS2mXE
 X (p, 1) rr

 Map the range into BU by projecting onto E and then composing with (, and

 pass to Thom spectra. The component

 JrSm' A rS m A s ' S2mw A S2mi A EP

 is, by the factorization (p, p, 1) = [1 x (p, 1)] o (p, 1), the map Oj o Oi. By the
 factorization (p, p, 1) ( X) o (p, 1), together with 3.6, it is also (i, j)Oi+.
 Of course the 0i's are here those of Construction 3.5. However, since we want to

 prove the filtered version of this result and thus must deal with the homotopy of

 Construction 3.7, a more precise argument is needed.

 Let H and H be the homotopies of Construction 3.7, and let 2=

 {(t0 t1, t2)lti ? 0, to + tl + t2 = 1). One can show that there exists a map

 S: jrS2m X A2 > JrS2m x JrS2m x JrS2m

 such that

 S(X5(05t5 I- f (H(x,.2t),. x) t ? 1/2
 ( (a x 1)H(x,2t-1) t > 1/2,

 - { (1 x ?A)H(x,2t) t ? 1/2

 S~x,(t,,1 - - (1 x H2-1)za(X) ti ? 1/2

 and such that the homotopy K: JrS2m X I JrS2m X JrS2m X IrS2ni defined by

 K(x, t) = S(x, (1 -t t, O))

 is filtration preserving, where (JrS2m X I)q = JqS2m X J.

 We may now lift this map to a map

 S: E X A2 > JrS2m x JrS2m X E

 such that

 ?(e,(0, 5 I t f (H(p (e),.2t),. e) t ? 1/2
 |. (ax 1)I(e, 2t -1) t > 1/2,

 ?(e,(t0.1 = f (Ix Iifo)Ii(e,2t) t ? 1/2
 (i X x 2t 1 )f1( e) t > 1/2

 Moreover, the homotopy K: E X I JrS2m X LrS2m X E defined by

 K(e, t) = S(e, (1 - t, t, ))

 is filtration preserving.
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 Consider the commutative diagram

 E (72"1 q

 I~ (AXl)H1
 (0 1, 0)

 Et _(--'-* E (Eq x U)u? A 3S+ A EU
 U, V

 11 L(0,0,0)

 (1 XH1)H1

 E ~T(fl3 H)1
 q

 where ( tI t2) denotes the map of Thom spectra induced by the inclusion of E
 into E X A2 sending any element e to (e, (to, tj, t2)). This diagram passes to
 quotients; hence

 I Xij (x 1 o) = x(0j ? (1 1)I )i ? t(lj 0 0) ? t(0 0 1)
 as maps from Eq/Eq-j to S2m' A S2mi A E ij/Eqiji, 'ny, being the
 evident projection. Clearly, the left map is (i, j)Oi+j. To show that the right map

 is Oi o Oj, chase the diagram

 (Eq X I) E UJuS2+ Aq-t
 q ~~~~~~~q + - ~~~~~~~~~~~~~~~~~~~U

 to > Tj to A to

 Eq- t >,0, (EqX2)3S T (E X I) (73(1 X ?HX ) HI > UJ, A (Eq~ x I) 072Z
 X it~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t

 10 10~ll lAt0

 ----- x ~~ - x -----bt A Xj

 Et73(1 xHl)Hl fi UJ S2"' A Et72"11 q + q-it

 (X1)H 1 LH1

 U JLS 2l A JV S 2 A E~ - _
 u, V
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 where T1, T2 are the maps of Thom spectra induced by the inclusions (e, t)

 (e, (t/2, 0, 1 - 2)) and (e, t) - (e, (- + 2, 0, 1 - 2)) respectively.

 PROPOSITION 3.10. For 0 < j < r, 9;: E 1 E - 2 2mjiE is an equiv-
 alence.

 Proof It suffices to take j = r. In this case 9 is defined by passing to Thom

 spectra from

 js2m
 E jS2m X E x 7 2 X E = S2mj x E

 to obtain

 Et > S2mi A Et,

 and then collapsing S0 A Et. Of course the diagonal needs to be deformed to get

 the map

 EjIEj4_ > S2mi A Eo.
 All of this can be arranged before passing to Thom spectra. The relevant

 diagram is

 (Ep, Ej-1) > S~ X Eo U* X Ej,* X El

 II
 (Js2m, s Smm) - V ] S2m * X J S2m) where the bottom map is the composition

 -~2~ m JxS2m Jjs2m UJiSm X - Jis2m U ] s2m X Jjii sm
 i i imin(i, j-1)

 and the top map is defined similarly using H1. Now the 9O, in question is
 obtained from this top map of pairs by passage to relative Thom spectra. But the
 bottom map of pairs is a relative homology equivalence. Since the square is

 Cartesian, so is the top map. Therefore, by the Thom isomorphism, Oi is a
 homology equivalence. This completes the proof.

 Application 3.11. Take r = 1 (so the splitting rS2+m - vroS2mi is just the

 usual equivalence S2m S2m V SO). Let p: E -* S2m be the path space fibration

 and let ( be the trivial map. Then EI/Eo = pS2m/2S2+m is equivalent to EUS2S,
 while S2mr A Eo is S2m A (UiS2m). We therefore obtain a weak equivalence

 :52m - S2m A (US2m) = S2m V 22mQS2m.
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 Iterating gives the James-Milnor splitting of Y:S2S2+m. Note that we do not need to
 work in the category of spectra here.

 COROLLARY 3.12. After inversion of r!, the map 01 induces an equivalence

 Et/Et ->22mErt_

 Proof Consider the following diagram of cofibre sequences:

 Et/Et >Et+ 1/Et >Et+ 1/Et

 I 0 1+1 1+1I

 z Ej-1 ,2mE >2 mE/Et-j

 By Propositions 3.9 and 3.10, the rightmost 01 is an equivalence whenever j + 1
 is invertible. The desired result is thus obtained by induction.

 From now on with the exception of Construction 3.16 invert r!. We define b
 to be the following composite:

 (3 . 13) - 2 +2m(r+ ')Et 6 ,-2+ mEt/Ert 1 mErt_ (3.13) 0-?mrlE r- r- 1

 2-'EtlEt Eon
 The maps 8 are here the evident maps in the evident cofibre sequences.

 As remarked earlier, the map b allows us to compare the Bousfield class of
 E with that of Et.

 PROPOSITION 3.14 (cf. [26, 1.34]). (Es) = (Et) V (b 1E ), where b 1Et
 is the infinite mapping telescope of b.

 Proof If X A E is contractible then X A b- 1E is also contractible since
 smashing commutes with colimits. That X A E is contractible for all j follows
 by induction on j by use of the cofibratiol

 X A Ej 4 l X A Ejt X A Ej/Ej O_ X A 22miEt.
 j-1 I I 1 1 =0

 Thus (Et) ? (Et) V (b-1Et).
 Now consider the factorization b = 8 o o 8 o Or-1. Each of the 0 maps is

 an equivalence. The cofibres of the 8 maps are (up to suspension) equivalent to
 Et. Hence if X A Et * then 1x A b is an equivalence. This implies that
 X A Et - X A b-1Et is an equivalence so that if X A b-Et * then X A Et 0 0

 is also contractible. Therefore, (Et) < (Et) V (b- Et), and the proof is com-
 plete.
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 Note that the triples (E, p, 5) form the objects of a category, and the
 association (E, p, 5) Et is a functor 3 to the stable category. Furthermore,
 we have the next result.

 PROPOSITION 3.15. The maps b = b(E, p, 5) form a natural transformation
 from 22m(r+ l)-2yw to j.

 Proof Suppose we have a diagram

 p

 E E' BU

 JrS2m.

 Let H: E X I JrS2m X E and H': E' X I JrS2m X E' be as in Construction
 3.7. Then we may use the homotopy lifting property in the obvious way
 (cf. Prop. 3.9) to obtain a map

 S: E X A2 > JrS2m X E'

 such that

 S(e, (O.t,I - t)) = (1 X g)Ii(e, t)

 S(e,(tO,1 - t)) = Ii'o(g X 1)(e.t)
 and such that the homotopy K: E X I JrS2m X E' defined by

 K(e, t) = S(e, (1 - tt O))

 is filtration preserving.

 The following diagram therefore commutes, from which follows the natural-

 ity of the Oi's, and hence the naturality of b:

 (Eq T2x ( E g,7T2Hi ;2U~sm AEg Eqg ,(E X I)(2 < EglH Ujis+ Eq-

 (Eq X 2)T2S* (Eq X I) 2K* ULS+ A q-i

 E~g 0 (Eq X I) fl2 ''(9 X ) E tr2H'g/ I ~I I /
 N /

 vf ' ( E x I )472'H < Ef t7r2Rl' -q X q
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 Incidentally, this argument proves that the Oi are independent of the choice
 of covering homotopy H of Construction 3.7.

 We will next show that the natural transformation b is the same as another

 natural transformation, defined using the action of 'JrS2m on E0. We first give a
 precise construction of the Thom spectrum version of this action.

 Construction 3.16. Let p: E JrS2m be a fibration, and let (: E -> BU.
 Replace E by IP = [(w, e)Iw(O) = p(e)} C (IrS2m)I X E, and let p: IP JrS2m
 be defined by -(w, e) = o(1). Finally, let IP be the fibre of -. Of course, IP is

 the homotopy fibre of p; thus the canonical map E0 -> IP is an equivalence.

 Now define i: PJrS2m X IP -> P by I(X,(w, e)) = (Xw, e). (Note that our
 convention regarding path multiplication is the reverse of the usual one.) Passing

 to Thom spectra from S2JS2m X Iop 1Iop 30 IP E BU
 yields an action

 'JrS2m A (I-P)

 where ( also denotes the composite IP -> E BU. But Eo - - (Ia, thereby
 giving us the desired action

 QJrS2+m A E Eo

 Construction 3.17. Consider once more the path fibration PJrS2m rs2m,
 and map PJrS2m into BU by the zero map. Define fB to be the composite

 S2m(r? +)-2 > 2m(r+1)-2j 2Pm b( S, P ')

 where the left map is the inclusion of the bottom cell. Using the action of 3.16

 we therefore obtain a natural transformation

 S2m(r? i)-2 A Eo t- 2JrS2m A E~ t- Eo,

 which we call "multiplication by /3".

 Application 3.18. Take E = PJrS2m JrS2m and 0 = 0 as above. Then the
 sequence defining b becomes

 E2m(r+1)-2uJrS2?lL m Efj -+ S' A l JrS2T8n __ SjrS m E~~IE~- W S-1 ~r-1 +

 E ipjr 2

 where the vertical map is the obvious cofibre. The map b in this case therefore
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 extends to an equivalence

 E2m(r+1)-2uJrS2m V S2m(r+l)-2 V S2m-1 > sJrS2m.

 Iterating gives a stable splitting of S2JrS2m. Only two suspensions are needed to

 form b in this case; so we actually obtain a splitting (due to John Moore) of the

 space E2Q2JrS2m after inverting r!.

 PROPOSITION 3.19. The natural transformations b and multiplication by /3

 are the same.

 We require the following lemma.

 LEMMA 3.20. Let p: E JrS2m be a fibration, and let 'q: F -- BU, where
 F is any space. Then b(E X F, p'T1, 51q2) = b(E, p, 0) A 1Fl-

 Remark 3.21. More generally, if A: E BU, then b(E X F, p x Xl) =
 b(E, p, A) A 1F'q. The proof is formally the same.

 Proof. Recall Construction 3.7 and observe that a homotopy lifting H for

 P 7T, may be taken to be H' X 1F' where H' is a homotopy lifting for p.
 Furthermore, since (X X F)l32 = X+A FT' for any space X, it follows that
 0j(E X F, p7T1, qi7T2) = Oi(E, p, 0) A 4F,. Therefore b(E X F, p7r1, 'qg72) =
 b(E, pO) A 1F77

 Proof of Proposition 3.19. We use the notation of Constructions 3.16 and

 3.17. By the naturality of b together with Lemma 3.20, the diagram

 PJrS2m X Ip - ' IP - BU
 0~~~

 JrS2m

 yields the commutative diagram

 Sm(r+)-2A E 2m(r+l)-2J S2m A E 2m(r+)-2

 Ib' /1 b

 s2JrS2m A Et 'Et

 where b' = b(PJrS2m, Pi, 0). The top horizontal composition is the identity;
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 hence the two long compositions are b and multiplication by 1. This completes
 the proof.

 While the relation ( Eo) = (b - 'Es) V ( E) followed immediately from
 the definition of b, it is the description of b as multiplication by 13 which will be
 used in proving that b-1Eo is contractible when r = p-1, the action of

 JS2+m on Eo extends to an action of Q2S2m,1, and HFp~b = 0. These are the
 two main general ingredients in the proof of Step III.

 We begin our study of the contractibility of bV-'E by making the map

 0i(PJrS2m, p, 0): E /E- S2m A Et more explicit. Here EI/Eo =
 PJrS~m//&2JrS~m and S2m A - s2m A PJrS2m. Take I/{O, 1) as a model of S'
 and define an equivalence

 (3.22) f: S1 A mJrS2m > PJrS+m/t2JrS+m

 by f(t, y)(s) = y(st). Here s, t E I and y: I JrS2m is an element of 2JrS2m.
 Now let irS2m _> S0 be the unique equivalence which is base point preserving.
 Smashing with the identity map of 52m fixes an equivalence 52m A rs2m s2m.
 By a venial abuse of notation let 01 denote the composite

 (3.23) Sl A S2fJ.+S2m Pirs2m > S rS~m JrSpm
 There is another natural stable map E: S1 A S2JrS2m S2m namely the "evalua-
 tion" map obtained by stabilizing

 S1 A S1 A SJrS2m - 51 A JrS2m - S1 A QS2m+l

 LEMMA 3.24. The maps 01 and "evaluation": S1 A S2JrS2m S2mare the
 same.

 Proof. The map 01 is defined by passing to relative Thom spectra from

 (3.25) (I x S2JrS2m, {0. 1) x s2JrS2m)

 f (PJrS2m, oJrS2m)
 (, ( JrS2m x Pirs2m, Js2m x pirS2m)

 ,(jrS2m, j S2m),

 factoring through S1 A saJrS2m and composing with the projection JrS2m S-> 2m.
 Recall (3.5) that this projection is the stabilization of the evaluation map

 EJrS2m _> ES2m+ S2m+ . A check of the definition reveals that the com-

 position (3.25) is the evaluation map (t, y) -> y(t). This completes the proof.

 COROLLARY 3.26. The composition

 E2m(r+1)-2Qj , &2m b s J 52+ m

 is null homotopic.
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 Proof. By Lemma 3.24, we have the commutative diagram

 S2m(r+l)-2 A UJrS2m S2m-2 Am E4/E, - s2m-1 A E - 1 S' 1 A S' A Q2mIrS2+7-

 S2m-1 A PjrS2m S2m-1 s2ml.

 The map in question is the long composition. It is null homotopic since it factors
 through the cofibration

 S2m2 A E/E1 S2m-1 A - S2m-1 A pJiSm
 We now specialize to r = p - 1, where p is a prime. We also continue to

 assume that all spectra are localized at p. The next result is, as remarked earlier,

 crucial.

 PROPOSITION 3.27. Suppose that the fibration E - Jp S2m extends to a
 diagram of fibrations

 Eo = F0

 E > E'
 1. ___~ 1. m+

 P-1s2m ~ ~5?1

 and that the map (: E -> BU extends to (': E' -> BU. If HFp b= =. then
 b-'Eo *.

 Remark 3.28. More generally, the above hypotheses excluding the condi-

 tion HFp*b = 0 imply that (b'E0) = (HFp A b-'E).

 The condition in the proposition means that the action of j S' on E
 extends to an action of Q2S2m+1 on Eo. Our proof relies upon Proposition 3.19
 together with the study of the composite

 (3.29) a: SmP- g A Jps+2m , 52m+1

 where ,B is as in 3.17. We begin by recalling a few well-known properties of
 Q 2s2m+1. A convenient reference, though not necessarily the original source, is
 [11]. As usual, one needs to distinguish the situation at odd primes from that at

 the prime 2. We adopt here the odd prime notation, leaving the modifications
 necessary at the prime 2 to the reader.

 Let Ck(R2) be the configuration space of ordered k-element subsets of R2
 (or, equally well, the space of ordered k-tuples of nonoverlapping cubes in I2)
 ([17, Chapter 4]). For X a pointed space, set D2 0X = 50 and for k > 0, let
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 D2 k(X) be the equivariant half smash product

 Ck(R2) 2Vk X(k) = Ck(R2)+ Ask X(k),
 where X(k) denotes the k-fold smash product of X. There is a well-known pairing

 D2 k(X) A D2 j(X) -> D2 k+j(X); it comes from the operad structure of the
 little cubes operad.

 Recollection 3.30. There is a stable splitting
 00

 usa2Sm+ 1 VD S2m-1 +1 V D2 kS
 k=O

 with the following properties:

 i. The homotopy class of the multiplication Sm A2s2mm l A >A2Qm+1
 &2S2+m+l is given in terms of the splitting as the wedge of the multiplications

 D S2m-1 A D2jS2m-1> D s2m-1, and the unit S0 -> 2S2Sm+l is given
 by the inclusion of the summand D2 0S2m-1 = SO.

 ii. The map _-3S VcD2 k2 -> D2 1s2m1 v D2 0S2 -
 S 2m-l is the stabilization of the evaluation map.

 For example, the splitting given in [10] is shown in [9] to have these

 properties.

 The Pontrjagin rings H*(2JpiS2+m;Fp) and H*(Q22S2m+ l;Fp) are isomor-
 phic to

 A[X2m 1 ? Fp[Y2mp-21

 and

 A [X2m-1 X2mp-1 **. X2mpi-l...I ? Fp[Y2mp-2 ... Y2mpi-25 ...

 respectively. The subscripts refer to the dimensions of the homology classes, and

 the effect in homology of the inclusion Q2Jp 1S2m --> 2s2m+l is the one sug-
 gested by the notation.

 We give H (Q22S2m+ 1; F,) a second grading by setting

 Wt(X2mpi-1) = pj = wt(Y2mpi-2)5

 wt(a b) = wt(a) + wt(b).

 Recollection 3.31 (see for example [11, p. 23]).

 i. The inclusion H* DkS2ml1 > H*(Q2S2m+ 1) is the inclusion of the vector
 space generated by the monomials of weight k. In particular, H*(DkS2m- '; Fp)
 0 unless k 0,1 mod (p).

 ii. The map D21 S2m- ' A D2 pkS2m -> D2 pk+lS2m-l is an equivalence.
 iii. Let UEk H2k(mP-l)(s22S2m+l;F ) be dual to (Y2mp-2)k with respect to

 the monomial basis. Then Uk generates the summand H*(D2 kp S2m-1) as an
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 A-module, A being the mod (p) Steenrod algebra. Furthermore

 H*( D2 kpS2m1) A/A( X(f3 ,P') |pi + E > k} ? {Uk}.

 In particular, D2, S2m-l - E2mp-2M M where MP is once again the mod (p)
 Moore spectrum.

 At the prime 2, this result is originally due to Mahowald.

 Let us now return to the study of the map a of 3.29. We require the
 following lemma for the proof of 3.27.

 LEMMA 3.32. a factors as the composite

 S2mp-2 D2 S2m-l u2s2m+1

 where the left map has Hurewicz image Y2mp-2 (Up to multiplication by a unit

 in Fp) and the right map is the inclusion of the summand D2 pS2m- 1.

 Proof. Using 3.18, it is easy to see that the Hurewicz image of a is Y2mp-2

 (up to multiplication by a unit in Fp). But by 3.31, 2S2+m+l is stably (2mp +
 2m - 3)-equivalent to So V s2m-1 V D2,pS2m-1; furthermore, the component of
 a in S2m-1 is null by Corollary 3.26 and 3.30.ii. This completes the proof.

 Proof of Proposition 3.27. First note that Proposition 3.19 and the preced-
 ing lemma give us the factorization

 b: S (mpl) A Ed ? (D2 S2m1)N A E A Et E

 for each positive integer N. But using 3.30.i, this factorization simplifies to

 bN: S2N(mp ) A E 1 , D2 NS2m- A >2s2m+? A Et Et

 Moreover, the Hurewicz image of a N is (02mp-2)N.
 Now consider the map

 UN: D-2Nm( p-1)DNs2m-1 - HFp,

 so that the diagram

 so ? E-2N( mp-1)D2 S 2m-1

 {UN

 HFp
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 commutes (up to multiplication by a unit in Fe), where q is the unit map for the
 ring spectrum HFP. By 3.31.iii, UN is certainly an N-equivalence.

 If x E ?T.Et, then ('q A 1)b*x E 7r(HFp A Et) = HFP.Et is trivial, since
 HFp~b = O. (In fact, the hypothesis HFp~b = O implies that ('q A 1)b = O.)
 It then follows from the above discussion of UN that there exists N with

 (aN A 1)b*x = 0. Hence by the factorization of bN, we obtain bIjx = 0.
 Therefore 'T* b - 1Et = 0. so that b - 1E is contractible. E

 In some sense the backbone of the above proof is the fact that, with

 Q2S2m+l considered as a ring spectrum, a- 12S2mm+1 splits as a wedge of
 suspensions of Eilenberg-MacLane spectra. This result follows in a straightfor-

 ward way from 3.32. Such splittings will also be discussed in [14]. In any event,

 Step III is now an easy consequence of Proposition 3.27 and the next result.

 PROPOSITION 3.33. There is a p-local diagram of fibrations

 Fpk 1 - S U(n 1)

 FP'_JS~ us2Unl II
 Jp_1SnPk , 2S2npk 1.

 More precisely, we establish a homotopy Cartesian square

 F = F

 E - SSU(n + 1) ~~~~I
 B > u2S2npk+1

 and p-equivalences Fpk -1 -> F Fp'k+ll -> E, JPS2nP B, such that their
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 respective compositions into Q2SU(n + 1) and ?US2npk? 1 are the usual maps.

 However, we shall give the proof p-locally, leaving the proof of this more precise

 statement to the reader.

 We begin with an observation and a lemma.

 Observation 3.34. If the diagram

 P >X

 F yE

 is homotopy Cartesian and F is the homotopy fibre of a map E -> B. then P is
 the homotopy fibre of the composite X -> E -> B.

 LEMMA 3.35. Let H: QS2n+' _> Q2S2nPk +1 be any map which is surjective
 in mod (p) homology; e. g., the James-Hopf map. Define a map h: ?2 SU(n + 1)

 QS2npk+1 by

 S SU(n + 1) OP- us2n+1 H US2npk+1

 Then

 Fp'k - -SU(n + 1) - QS2npk+ 1

 is a homotopy fibre sequence.

 Proof Recall that Fp'k_ 1 was defined by the homotopy Cartesian square

 Fp'k 1- QSU(n + 1)

 I I
 J k 1S - QS2n+1

 If H: 2S2n~l -> 2S2npk?+ is any map which is surjective in mod (p) homology,
 then a (cohomology) Serre spectral sequence argument shows that

 k s2n u &s2n+ 1 H ) QS2n Pk+ 1 Ji - sn

 is a homotopy fibre sequence. The result now follows from Observation 3.34.
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 Proof of Proposition 3.33. Let h be as in 3.35. Consider the homotopy

 Cartesian square

 F yS2SU(n+1)

 Ih

 Jup1S 1P , k2np +k

 The map J __52Pk k +1 extends to a homotopy fibre sequence
 JpI1S 2nPk &2S2npk + 1JH' S2nPk+1+1

 with H' inducing a surjection in mod (p) homology. The map

 S SU(n + 1) - QS2n Pk+1 HJ s5S2npk+L +1

 can be rewritten as

 0 SU(n + 1) - g52n11 HUH 4S2nPk?L?1

 It now follows from the previous lemma and Observation 3.34 that F

 ?2 SU(n + 1) can be identified with the map Fp'k+li -> SU(n + 1). This
 completes the proof of 3.33.

 Finally we reach our goal.

 Proof of Step III. By 3.14 and 3.27, it suffices to show that HFP.b = 0,
 where b is associated to the fibration

 p-* Fpk+ F - 1 P S2nP

 of 3.33 and Fp'k+?L- is mapped into BU in the usual way. But H*(Fpk-; Fp) ->
 H*(Fp'k +L ; Fp) is a monomorphism; it therefore follows easily from the definition

 of b that HFp * b = 0, completing the proof.

 4. Proof of Theorem L.iii

 In this section, all spectra are localized at the prime p. In particular, by a

 finite spectrum, we mean the p-localization of one.

 To prove Theorem L.iii, it suffices to show that if

 Xn 0n Xn+1 I Xn?2

 is a sequence of spectra with Xn ca-connected, C > mn + b for some m and b,
 and BP*fn = 0 for all n, then holim Xn *

 )- n
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 We begin our proof with the following result, which is in fact equivalent to

 (the p-local version of) Theorem 1.ii. The second and third authors will prove a

 strong generalization of this result in a sequel to this paper.

 PROPOSITION 4.1. Let X be a finite spectrum such that H*(X; Z(p)) is
 nontrivial and torsion free. Then (X) = (SO).

 Proof First note that since H*(X; Z(p)) is a free Z(p)-module, BP*X is a
 free BP*-module [15, 3.10].

 Now let k be the smallest integer such that BPkX + 0. Since the reduction

 BP - HZ(p is (2p - 2)-connected, it follows immediately that k is the smallest
 integer with Hk(X; Z(W)) # 0 and that BPkX - Hk(JX; Z(p)). We may thus
 choose g: Sk __ X so that its Hurewicz image generates a BP*-module summand
 of BP* X; hence BP A Sk is a summand of BP A X under the inclusion BP A g.

 Consider the cofibre sequence

 (4.2) X S X E LX.

 Then 1BP A 8 is trivial, so that 8 is smash nilpotent by Theorem 1.ii.

 Now suppose X A Z 8*. A lZ is then an equivalence and hence

 8(n) A Iz: X A ... A X A Z Skn A Z

 is also. But this map is trivial for large n; therefore Z must be contractible,

 proving that (X) = (S?).

 Remark 4.3. The fact that (X) = (SO) follows from (4.2) and the smash
 nilpotence of 8 is a special case of a result of Bousfield [6, 2.11].

 Our strategy is thus to find a finite spectrum X with torsion free homology

 such that X A holim Xn *. The next proposition, which follows from work of

 the third author [28], provides us with all the finite complexes we need. We first
 introduce some notation.

 Let (i be the usual element in the dual of the Steenrod algebra [23]. Let P*
 be the sub-Hopf algebra of A* defined by

 p |F 42~ 422 .. * *S2( (* ** p = 2
 ** p odd

 Note that P* = BP* BP/IBP* BP, where I is the invariant ideal (p, v1, v2, ...)
 [21, 9].

 PROPOSITION 4.4. Given - > 0 there exists a finite nontrivial spectrum X

 such that H*(X; Z(p)) is torsion free and Extp (Fp, HFp*X) has a vanishing line
 of slope less than E.
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 X is constructed as a summand of an iterated smash product of finite

 complex projective spaces using an idempotent in the Z(p) group algebra of the

 appropriate symmetric group. The vanishing line is established using a criterion

 of Anderson and Davis (generalized to p possibly odd by Miller and Wilkerson

 [22]).

 This proposition has the following consequence in BP-theory.

 PROPOSITION 4.5. Let - > 0 and let X be as in 4.4. Then there exists d such

 that if N is any (c - 1)-connected BP* BP-comodule,

 ExtBP BP (BP*, BP* X ?BP N) = o

 whenever t - s < (s/i) + d + c.

 Proof Since N is the direct limit of its finitely generated subcomodules

 (cf. [20, 2.12]), and the cobar resolution commutes with direct limits, we may

 assume that N is of finite type over Z(p). There is then a May spectral sequence
 [19, 8]:

 Ext p(Fp, HFp*X ?F EON) ExtBP*BP(BP*, BP*X ?BPN) p
 obtained by filtering the cobar complex S *(BP* BP, BP* X ?BP N) by powers of
 the ideal I = (p, v1, v2, ..). Here Z p once again denotes the p-adic integers and
 EO(?) is the bigraded object formed from successive quotients of the I-adic
 filtration. We also remark that to identify EO(BP* X ?BP N) with HFp*X ? EON,
 one uses the fact that BP* X is a free BP*-module so that HFp*X = BP* X/IBP* X.
 Now Ext p(Fp, HFp*X ? EON) has the desired vanishing line by 4.4 and 2.6;
 therefore by the convergence results of [5, 11] or [12, Corollary 6.3],

 ExtBP, BP(BP*, BP* X ?Bp N) does also.

 Proof of Theorem l.iii. Without loss of generality we may assume that
 m < 0. Choose - > 0 with - <- 1/m and let X be as in 4.4. Suppose

 a E '7j(X A Xn). We will show that

 (1x A fnlk-1) ? ... o(1x A fn)a E 7rj(X A Xnfk)
 is trivial for k sufficiently large, thus proving that X A holim Xn *. By 4.1,
 this implies that holim X ,

 Consider the strongly convergent BP-based Adams spectral sequence

 ExtBP BP(BP*, BP*X ?BP* BP*Xn-lk) > T*X A Xnfk.

 If the element (lx A fn Ik - 1) ? ... o (lx A fn)a is not zero, it is detected in
 Ext~4 sBP (BP*, BP* X ?BP BP* XPn+k) with s ? k. But, by our choice of E, we
 have that

 j < k/e + d + b + m(n + k) + 1 < k/l + d + Cn+k +
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 for k sufficiently large, where d is the constant in 4.5. Hence by Proposition 4.5,

 Exts,+ 'JBP (BP*, BP* X ?BP BP*Xn+k) = 0 for all s ? k provided k is suffi-
 ciently large. With such a choice of k, it therefore follows that the image of a in

 jX A X n+ k is trivial, completing the proof.
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