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 2  MICHAEL J. HOPKINS AND JEFFREY H. SMITH

 Introduction

 This paper is a continuation of [11]. Since so much time has elapsed since

 its publication, a recasting of the context is in order.

 In [19] Ravenel described a series of conjectures getting at the structure of

 stable homotopy theory in the large. The theory was organized around a family

 of "higher periodicities" generalizing Bott periodicity, and it depended on being

 able to determine the nilpotent and non-nilpotent maps in the category of

 spectra. There are three senses in which a map of spectra can be nilpotent:

 Definition 1. i) A map of spectra f: F X is smash nilpotent if for

 n >y O the map f(n): F(n) > x(n) is null.

 ii) A self-map f: SsCF > F is nilpotent if for n Bi O the map f n: SknF >

 F is null.

 iii) A map f: Sm > R from the sphere spectrum to a ring spectrum is

 nilpotent if it is nilpotent when regarded as an element of the ring 1r*R.

 The following is the main result of [11].

 THEOREM 2 ([11, Th. 1]). In each of the above sitqlations, the map f is

 nilpotent if the spectrum F is finite and the map 1MU A f is null. In cases ii)

 and iii) it suffices to assume that MUF f = O.

 In case the range of f is p-local, the condition can be replaced with the

 condition 1BP A f (resp. BPF f = O).

 The purpose of this paper is to refine this criterion and to produce sorne

 interesting nonnilpotent maps. Many of the results of this paper were conjec-

 tured by Ravenel in [19].

 Let K(n) be the nth Morava K-theory at the prime p (see §1).

 THEOREM 3. i) Let R be a (p-local) ring spectrum. An element oe E 1r*R

 is nilpotent if and only if for all O < n < oo, K(n)*(oe) is nilpotent.

 ii) A self-map f: SkF > F, of the p-localization of a finite spectrum, is

 nilpotent if and only if K(n)*f is nilpotent for all O < n < oo.

 iii) A map f: F ) X from a finite spectrum to a p-local spectrum is smash

 nilpotent if and only if K(n)* f = O for all O < n < oo.

 Of course, the hypothesis "p-local" can be dropped if the condition on the

 Morava K theory is checked at all primes.

 Theorem 3 can be used to determine which cohomology theories detect

 the non-nilpotent maps in the category of spectra.
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 NILPOTENCE AND STABLE HOMOTOPY THEORY II 3

 Definition 4. A ring spectrum E is said to detect nilpotence if, equivalently,

 i) for any ring spectrum R, the kernel of the Hurewicz homomorphism

 E*: -rFR -> E.R consists of nilpotent elements;
 ii) a map f: F -> X from a finite spectrum F to any spectrum X is smash

 nilpotent if 1E A f: E A F -> E A X is null homotopic.

 To see that the parts of this definition are equivalent, replace MU by E

 in the remark on page 209 of [11] and in the proof on page 211 of [11] that

 Theorem 2 implies part ii) of Theorem 1.

 COROLLARY 5. A ring spectrum E detects nilpotence if and only if

 K(n)*E y& 0

 for all 0 < n < Ko and for all primes p.

 Now let Co be the homotopy category of p-local finite spectra, let Cn C Co
 be the full subcategory of K(n - l)-acyclics, and let COO be the full subcategory

 consisting of contractible spectra. The C, fit into a sequence

 Cc, C *- C Cn+1 C Cn C .. C Co.

 This is a nontrivial fact. That there are inclusions C,+1 C Cn is essentially the
 Invariant Prime Ideal Theorem (see [19]). That the inclusions are proper is a

 result of Steve Mitchell [17].

 Definition 6. A full subcategory C of the category of spectra is said to be

 thick if it is closed under weak equivalences, cofiber sequences and retracts;

 i.e.,

 i) An object weakly equivalent to an object of C is in C.

 ii) If X -> Y -> Z is a cofiber sequence, and two of {X, Y, Z} are in C
 then so is the third.

 iii) A retract of an object of C is in C.

 THEOREM 7. If C C Co is a thick subcategory, then C = Cn for some n.

 Theorem 7 is in fact equivalent to Theorem 2 (the proof is sketched at the

 end of Section 4). It is often used in the following manner.
 Call a property P of p-local finite spectra generic if the full subcategory

 of Co consisting of the objects satisfying P is thick. To show that X E Cn has
 a generic property P it suffices (by Theorem 7) to show that any object of

 Cn \ Cn+1 has P. The proofs of the next few results use this technique.
 Theorem 3 limits the non-nilpotent maps in Co-they must be detected

 by some Morava K-theory. The simplest type is a Vn self-map.
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 4  MICHAEL J. HOPKINS AND JEFFREY H. SMITH

 Definition 8. Let X be a p-local finite spectrum, and n > O. A self-map

 v: SkX > X is said to be a vn-self-map if

 'multiplication by a if m-n = O;

 rational number
 K(m)*v 1S g

 an lsomorphlsm lf rn = n 7& 0;

 inilpotent if rn 7& n.

 It turns out that the property of admitting a vn self-map is generic.

 THEOREM 9. A p-local fiinite spectrvbm X admits a vn self-map if and

 only if X E Cn. If X admits a Vn self-map, then for N >> O, X admits a Vn

 self-map
 - V SP 2(p -l)x ) X

 satisfying

 ( ) ( )* {O othervsse.

 The vn self-maps turn out to be distinguished by another property.

 Definition 10. A ring homomorphism

 f: A > B

 is an F-isomorphism if

 i) the kernel of f consists of nilpotent elements, and

 ii) given b E B, bP is in the image of f for some n.

 Two rings A and B are F-isomorphic (A F B) if there is an F-isomorphisrr

 between them.

 THEOREM 11. Let X E Cn \Cn+l. The K(n)-Htbrewicz homomorphism

 gives rise to an F-isomorphism

 (12) Center [X,X]* F {F [Vn] (n-O)

 Put another way, this result shows that the Vn maps essentially constitute

 the center of the endomorphism rings of finite spectra.

 The description of spectra as cell complexes encourages the intuition that

 the endomorphism rings of finite spectra approximate matrix algebras over the

 ring 1r*S°. This would suggest that the centers of these rings are generated by

 the maps obtained by smashing the identity map with a map between spheres-

 an impossibility by Theorem 11. A more accurate description might be that

 the 'Morita' equivalence classes of these rings are determined by the integer n
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 NILPOTENCE AND STABLE HOMOTOPY THEORY II  5

 of Theorem 11. This integer invariant can also be thought of as determining

 the 'birational' equivalence classes of finite spectra. For more on this analogy

 see [13]

 There is a less metaphorical interpretation of the integer which occurs in

 Theorems 9 and 11. It turns out to correspond to the Bousfield class ([19,

 1 .19], [9]) of the spectrum X.

 Defiinition 13. Two spectra X and Y are Botbsfield eqzbivalent if they have

 the same acyclic spectra:

 For all Z, X A Z * X Y A Z *.

 The Botbsfield class of X (denoted (X)) is the collection of spectra Y which

 are Bousfield equivalent to X

 There is a natural partial ordering on Bousfield classes of spectra. One

 writes (X) > (Y) if for all Z,

 X A Z * X Y A Z *.

 Thus the class sphere spectrum is maximal with respect to this ordering, and

 the class of contractible spectra is minimal. There are also two binary opera-

 tions (V and A). They are defined by

 (X) V (Y) = (X V Y),

 (X) A (Y) -(X A Y).

 The operation A distributes over V.

 Let N be the set of nonnegative integers and P the set of primes. For a

 finite spectrum X, let C1(X) C N x P denote the set of pairs (n,p) for which

 K(n)*X 7& O at p.

 THEOREM 14. If X and Y are finite spectra, then (X) < (Y) if and only

 if C1(X) C C1(Y)

 Theorem 14 affirms Ravenel's class invariance conjecture ([19]).

 Proof of Theorem 14. It is immediate from the definition that if (X) < (Y)

 then C1(X) C C1(Y). Suppose then that C1(X) C: C1(Y).- Since (X) < (Y)

 if and only if (X(p)) < (Y(p)) for all prime p, we may localize everything at a

 prime p. Having done that, suppose that Y E Cn \ Cn+l By assumption, X is

 also in Cn. For a fixed Y, the property (of X)

 (X) < (Y)

 is a generic property. It follows that the class

 { X I' (X) < (Y) }
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 6 MICHAEL J. HOPKINS AND JEFFREY H. SMITH

 is equal to Cm for some m. Since (Y) = (Y), m < n (in fact m = n), and so

 XE Cm. This completes the proof. D

 The organization of this paper is as follows. In Section 1 the Morava

 K-theories and related spectra are introduced, and their basic properties are

 established. Section 2 contains the proofs of Theorems 3 and 7. The section

 ends with a simple argument reducing Corollary 5 to Theorem 3. In Section 3,

 Vn self-maps are introduced and their basic properties are established. The

 main result of the section is that the property of admitting a vn self-map is
 generic. This reduces the existence of vn self-maps to the task of constructing
 a single example of each type. These examples are constructed in Section 4.

 The construction makes use of the Adams spectral sequence. Section 5 is con-

 cerned with the classification of the endomorphisms, up to nilpotent elements,

 of full subcategories which are stable under suspension, of the homotopy cat-

 egory of finite spectra. The proof of Theorem 11 is given after Corollary 5.4.
 The appendix to the paper contains some results on the cohomology of Hopf
 algebras which are needed in Section 4.

 Acknowledgments. Most of the results of this paper date from 1985, and

 many people have helped shape their course. Special thanks are due to Em-

 manuel Dror-Farjoun whose prodding eventually led to the formulation of The-

 orem 7, and to Clarence Wilkerson for helpful conversations concerning the
 proof of Theorem 4.13. Even deeper debts are owed to Doug Ravenel for for-

 mulating such a beautiful body of conjectures, and to Mark Mahowald for

 placing in the hands of the authors the tools for proving results like these.

 Finally, the first author would like to dedicate his contributions to this paper
 to Ruth, Randi and Rose.

 Notation and conventions. We will work for the most part in the homo-

 topy category of spectra as defined in [2], [14], or [10], and not in some model
 category of spectra. This is in part because the main results of this paper con-

 cern the homotopy category. It also allows us to avoid choosing a particular

 model.

 This expository decision comes at a mild cost. For instance, in order to

 form the mapping cone of a map f: X > Y in the homotopy category, one
 must represent it by a map

 f: SH-~Y

 in some model of the category of spectra, and then define Y Uf CX to be the
 image in the homotopy category of the mapping cone

 YUf CX=YUXXI/

 of f. The isomorphism (weak equivalence) class of Y Uf CX depends only on
 the original map f, but its dependence on f is not functorial. Nevertheless,
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 NILPOTENCE AND STABLE HOMOTOPY THEORY II 7

 this object will be referred to as the mapping cone of f, or as the cofiber of f,

 and will be denoted Cf.
 Having chosen a lift of f of f, one has a natural identification of the

 mapping cone of Y -> Y U X with X A S1, and this latter map is used to define

 the connecting homomorphism in the long exact sequence of a cofibration.

 Because if this, we will take the assertion that a sequence

 f X y-* Z

 is a cofiber sequence to mean that it comes equipped with a map Z -- X A S1,

 and that there is a map f:- X -> Y of cofibrant objects in some model of the

 category of spectra, with the property that the image of

 X -*Y -YUX ->XAS1

 becomes isomorphic to

 X >Y >Z >XA S1

 in the homotopy category. With this convention, enough structure has been

 specified to give all of the usual long exact sequences associated to a cofiber

 sequence.

 A map of cofiber sequences

 (XI --+ y >-+Z1) >-+(X2 --+Y2 --+Z2)

 consists of maps

 f X1- X2, Y1 > Y2, and Z >- Z2

 for which the following diagram commutes:

 X1 ) Y1 > Z1 - X1 A S1

 f{ { fAS1

 X2 > Y2 >Z2 ) X2 A S1.

 A map of cofiber sequences gives rise to maps between all of the usual long

 exact sequences.

 As described above, any map X -> Y can be extended to a cofiber se-

 quence. Given cofiber sequences

 X1 Y1 >-Z1 and X

 and commutative square

 iX

 xi1Y
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 8 MICHAEL J. HOPKINS AND JEFFREY H. SMITH

 there always exists a map Z1 -* Z2 extending the square to a map of cofiber

 sequences. This map, however, is not unique.

 All of this basically amounts to saying that the homotopy category of

 spectra is a triangulated category with the cofiber sequences as triangles.

 A square

 W >X

 y -Z

 is homotopy cocartesian if any of the following equivalent conditions holds:

 (1) There is a lift of the square to some model of the category of spectra of

 the form

 W >X

 jI~~Z
 with W, X, Y, and Z cofibrant, the maps i and j cofibrations, and the map

 X UY >- Z
 w

 a weak equivalence.

 (2) There is an extension of the square to a map of cofiber sequences

 W >X >A

 y >Z > B

 in which the map A B is a weak equivalence.

 (3) In any extension of the square to a map of cofiber sequences

 W - X -) A

 I. I
 Y -> Z -> B,

 the map A -> B is a weak equivalence.

 A homotopy cocartesian square gives rise to a family of Meyer-Vietoris se-

 quences.
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 NILPOTENCE AND STABLE HOMOTOPY THEORY II 9

 The reader may have noticed that we have chosen to form the cofiber of a

 map f: X -> Y of spectra with the "cone coordinate" on the right.. With this

 convention the canonical weak equivalence of the cofiber of

 ZAX-- ZAY

 with Z A (Y Uf CX) involves only the associativity of the smash product,
 and not the process of moving the cone coordinate past Z. Also with this

 convention, the cofiber of Y -+ Y Uf CX is naturally identified with X A S1
 (and not S1 A X). This avoids the troublesome sign that can crop up when

 one tries to relate the connecting homomorphism in a cofiber sequence with

 the connecting homomorphism in some suspension of the cofiber sequence.

 A sequence

 Xo -X* xi

 in the homotopy category of spectra can always be lifted to a sequence of

 cofibrations between cofibrant objects

 (15) - kX

 in some model for the category of spectra. The image of

 XO= lim Xi

 in the homotopy category is independent of the choice of lift, and depends

 functorially on the sequence (15). We will write lim Xi for the image of XO in
 the homotopy category of spectra, and refer to it as the homotopy colimit of

 the sequence (15). The homotopy colimit is rarely the colimit because of the

 lim1-term in the Milnor sequence.

 The assumption that a spectrum is finite is made several times. In contexts

 when the category in mind is the category of p-local spectra, this term is used

 to refer to a spectrum which is weakly equivalent to the p-localization of a finite

 spectrum. The only property of finite spectra used is that the set of homotopy
 classes of maps from a finite spectrum to a sequential homotopy colimit is the

 colimit of the maps

 [X, lim Y] - lim[X, Yj].

 In general, an object of a category with this property is said to be small. It

 can be shown that the small objects of the category of p-local spectra are

 precisely the objects which are weakly equivalent to the p-localizations of a
 finite spectrum.

 A spectrum X is connective if 7rkX = 0 for k <K 0. It is connected if
 7rkX = 0 for k < 0. Thus "connected" and "(-1)-connected" are synony-
 mous. Similarly, a graded abelian group is connective if the homogeneous part
 of degree k is zero for k < 0. A graded abelian group is connected if the
 homogeneous component of degree k is zero for k < 0.

This content downloaded from 129.240.223.22 on Tue, 02 Oct 2018 09:56:20 UTC
All use subject to https://about.jstor.org/terms



 10 MICHAEL J. HOPKINS AND JEFFREY H. SMITH

 The Eilenberg-MacLane spectrum with coefficients in an abelian group A
 will be denoted HA. To be consistent with this, the homology of a spectrum
 X with coefficients in A will be denoted HA*X.

 Finally, the suspension of a map will always be labeled with the same

 symbol as the map.

 1. Morava K-theories

 1.1. Construction. The study of a ring is often simplified by passage
 to its quotients and localizations. The same is true of ring spectra, though
 constructing quotients and localizations can be difficult. In good cases the
 following constructions can be made:

 Quotients. Suppose that E is a ring spectrum and that 7r*E = R is com-
 mutative. Given x E R, define the spectrum E/(x) by the cofiber sequence AIxIE x E -- E/(x).
 If x is not a zero divisor then 7r*E/(x) is isomorphic to the ring R/(x). In
 good cases E/(x) will still be a ring spectrum, and the map

 E - E/(x)

 will be a map of ring spectra. Given a regular sequence

 {Xi....,)xn } cR,

 one can hope to iterate the above construction and form a ring spectrum

 E/(xi, .Xn

 with

 7r*E/(xi.... ., Xn, . . . ) (xi, .. I *X n) **

 and such that the natural map

 E >El(xi,. I * Xni * *)

 is a map of ring spectra.

 Localizations. Let E and R be as above, and suppose that S C R is a
 multiplicatively closed subset. Since S-1R is a flat R-module, the functor

 S-1E*() =f S-1R0 E*(
 R-

 is a homology theory. In good cases it is represented by a ring spectrum, and
 the localization map by a map of ring spectra

 F -E S-1E.
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 NILPOTENCE AND STABLE HOMOTOPY THEORY II 11

 1.2. Spectra related to BP. When the ring spectrum in question is BP,

 the above constructions can always be made, using the Baas-Sullivan theory

 of bordism with singularities. See [5], [18], [22] for the details.

 Recall that BP* Z(p) [v1,... va...] with IvnI = 2pn - 2. To fix notation,
 take the set {vn} to be the Hazewinkel generators [12]. For 0 < n < oc the
 ring spectra K(n) and P(n) are defined by the isomorphisms

 K(n)*, Ip [Vn, v n 1] )
 P(n). IFp [Vn, Vn+ ]
 P(O)* BP*,

 with the understanding that they are constructed from BP using a combination

 of the above methods. It is also useful to set

 K(O) = HQ,

 K(oo) = HFp.

 There are maps P(n) -> P(n + 1), and the colimit

 lim P(n)
 n

 is the Eilenberg-MacLane spectrum HFp.

 PROPOSITION 1.1 ([19, Th. 2.1(c)]). The Bousfield classes of K(n) and

 P(n) are related by

 (P(n)) = (K(n)) V (P(n + 1)).

 Consequently,

 (BP) = (K(O)) V V (K(n)) V (P(n + 1)).

 Proof. The proposition follows from the next two results of Ravenel

 [19]. -

 PROPOSITION 1.2 ([19, Lemma 1.34]). Let v: ZkX -> X be a self-map of

 a spectrum X. Let X/vX and v-X denote the cofiber of v and the homotopy

 colimit of the sequence

 Z-klvlXVX E-(k+l)IvIX ...

 respectively. Then there is an equality of Bousfield classes

 (X) = (X/vX) V (v- X). L

 PROPOSITION 1.3 ([19, Th. 2.1(a)]). There is an equality of Bousfield
 classes

 (VjnP(n)) = (K(n)) L
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 12  MICHAEL J. HOPKINS AND JEFFREY H. SMITH

 1.3. Fields in the category of spectra. The coefficient ring K(n)* is a
 graded field in the sense that all of its graded modules are free. This begets a
 host of special properties of the Morava K-theories.

 PROPOSITION 1.4. For any spectrum X, K(n) A X has the homotopy
 type of a wedge of suspensions of K(n).

 Proof. Choose a basis {ei}iEI of the free K(n)*-module K(n)*X, and rep-
 resent it as a map

 V sletl K(n) AX.

 ieI

 The composition

 K(n) A V sletl K(n) A K(n) A X K(n) A X

 ieI

 is then a weak equivalence. O
 PROPOSITION 1.5. For any two spectra X and Y, the natural map

 (1.6) K(n)*X (8)K(n)* K(n)*Y K(n)*X A Y

 7

 as an eq?savalence.

 Proof. Consider the map (1.6) as a transformation of functors of Y. The
 left side satisfies the Eilenberg-Steenrod axioms since K(n)*Y is a flat (in fact
 free) K(n)*-module. The right side satisfies the Eilenberg-Steenrod axioms by
 definition. The transformation is an isomorphism when Y is the sphere, hence
 for all Y. - C1
 Propositions 1.4 and 1.5 portray the Morava K-theories as being a lot like

 fields. One formulation of Theorem 3 is that they are the prime fields of the
 category of spectra.
 A (skew) field is a ring, all of whose modules are free.

 Definition 1.7. A non-contractible ring spectrum E is a field if E*X is a
 free E*-module for all spectra X.

 This property also admits a geometric expression.

 LEMMA 1. 8. If E is a field, then E AX has the homotopy type of a wedge
 of suspensions of E.

 Proof. This is very similar to the proof of 1.4. C1

 PROPOSITION 1.9. Let E be a field. Then E has the homotopy type of a
 wedge of stbspensions of K(n) for some n.
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 NILPOTENCE AND STABLE HOMOTOPY THEORY II 13

 Proof. Since 1 E i7rE is non-nilpotent, Theorem 3 implies that. for some

 prime p and for some n < oc,

 K(n)*E # 0.

 Since K(n) and E are both fields, it follows from Lemma 1.8 that K(n) A E

 is both a wedge of suspensions of K(n) and a wedge of suspensions of E.

 In particular, E is a retract of a wedge of suspensions.of K(n). The result
 therefore follows from the next proposition. C

 PROPOSITION 1.10. Let M have the homotopy type of a wedge of suspen-

 sions of K(n) (fixed n). If E is a retract of M, then E itself has the homotopy

 type of a wedge of suspensions of K(n).

 LEMMA 1.11. The homotopy homomorphism induced by the Hurewicz

 map

 t A1M: M S A M -K(n) A M

 is a homomorphism of K(n)*-modules.

 Proof. The map in question is a wedge of suspensions of the map

 77R: K(n) So A K(n) -+ K(n) A K(n),

 so it suffices to prove the claim when M is K(n). In this case the result is a

 consequence of the formula [20, A.2.2.5 or 6.1.13],

 ?7R(vn) = Vn

 LEMMA 1.12. Let f: M -> N be a map of wedges of suspensions of

 K(n). The homotopy homomorphism

 w*f: wrAM + N

 is a map of K(n)*-modules.

 Proof. Consider the following commutative diagram:

 f
 M N

 1Af

 K(n) A M - K(n) AN.

 The right vertical arrow is the inclusion of a wedge summand since N admits

 the structure of a K(n)-module spectrum. It therefore suffices to prove that

 the composition induces a map of K(n)*-modules. The left vertical arrow does
 by Lemma 1.11 and the bottom horizontal arrow is a map of K(n)-module
 spectra. .I
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 14 MICHAEL J. HOPKINS AND JEFFREY H. SMITH

 Proof of Proposition 1.10. Since M has the homotopy type of a wedge of

 suspensions of K(n)'s, it can be given the structure of a K(n)-module spec-

 trum. Let i: E -+ M, and p: M -+ E be the inclusion and retraction mappings
 respectively. By Lemma 1.12, the composite -i op induces a homomorphism of
 K(n)*-modules

 I7r*M --J7r*M.

 Choose a basis {,ei} of the image of this map, and represent it by

 V Sle-ij M.

 The map

 N = K(n) A (V Slei) K(n) A M M
 then gives rise to an isomorphism

 7r*N image of 7r* (i o p),

 since it sends the obvious basis of 7r*N to the basis {ej}. The composite

 N >- M _P+ E

 is the desired homotopy equivalence. El

 1.4. Morava K-theories and duality. We will often use the device of re-
 placing a self map of a finite spectrum

 f : EnX-X

 with its Spanier-Whitehead dual

 Df: Sntm XADX,

 a map from the n-sphere to the ring spectrum X A DX. If V is the finite-

 dimensional K(n)*-vector space K(n)*X, then the ring K(n)*(X A DX) is
 naturally isomorphic to the ring

 V 0 V* .End(V).

 The effect in Morava K-theory of the duality map

 flip duality

 XADX - DX AX >
 is to send an endomorphism to its trace (in the graded sense). Let {ej} C V
 be a basis of V, and { e*} C V* the corresponding dual basis. The effect of the
 other duality map

 S- X A DX

 is to send 1 E K(n)* to E ej 0 e* E V 0 V*. In particular,

 LEMMA 1.13. The duality map So X A DX induces a nonzero homo-
 morphism in K(n)-homology if and only if K(n)*X 7& 0.
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 15 NILPOTENCE AND STABLE HOMOTOPY THEORY II

 1.5. Proof of Corollary 5, assuming Theorem 3. Let R be a ring spec-

 trum, and oe E 7r*R. By Proposition 1.4, if K(n)*E 7& O, then

 E*c>= O X K(n)*cx = O.

 It follows that if for all n, K(n)*E 78 O, then for all n, PC(n)*cx = O, so that

 oe is nilpotent by Theorem 3. On the other hand, if K(n)*E = O for some n,

 then E does not detect the non-nilpotent map

 ^: S° K(n),

 so E does not detect nilpotence. This completes the proof.

 2. Proofs of Theorems 3 and 7

 2.1. Proof of Theorem 3. Some of the conditions in Theorem 3 require

 the case n = oo, and some of them do not. When the target spectrum is finite,

 the case n= oo is superfluous.

 LEMMA 2.1. Let X and Y be finite spectra. For m BY O,

 i) K(m)*X HEp*X (23 K(m)*; ii) K(m)*Y HEp*Y (8) K(m)*; iii) K(m)*f = HEp*f (8) lK(m)* for every f: X Y.

 Proof. This follows from the Atiyah-Hirzebruch spectral sequence, when

 we use the fact that lvml > oo as m > oo. C1

 COROLLARY 2.2. If f is either a self-map of a finite spectrum or an

 element in the homotopy of a finite ring spectrum, the following are equivalent:

 i) K(m)* f is nilpotent for m BY O;

 ii) HEp*f is nilpotent.

 If If l + O then both of these conditions hold.

 Proof. If If l 7& 0 then, from dimensional considerations,

 HlFp* fi = O for i >> 0.

 It then follows from 2.1 that K(m)*fi = O for i,m >y O. When If l = O, part

 (3) of 2.1 applies to every power of f. The result follows easily from this. C1

 Let f: S° > X be a map of spectra. Consider the homotopy direct limit

 T of the sequence

 (2.3)

 S° > X > X A X X A X A X > * * *,
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 16
 MICHAEL J. HOPKINS AND JEFFREY H. SMITH

 in which the map x(n) x(n+l) is given by f A lx(n) x(n) S° A xfn) X(n+1)

 The n-fold composition

 S° > ... ), x(n)

 is the iterated smash product

 X (n) = f A *** A f.

 The map

 f(°°): S° > T

 can be thought of as the infinite smash product of f.

 LEMMA 2.4. Let E be a ring spectrum with unit l: S° > E. The following are equivalent:

 i) E A T is contractible;

 ii) l A f(°°): S° > EA T is null;

 iii) l A f(n): S° > E A X(n) is n1>ll for n > 0;

 iV) 1E Af(n): EEAS° yEAX(n) isnullforn>>O.

 Proof. i)ii) and iv)i) are immediate. Since

 - limEA xfn) EAT,

 and since homotopy groups commute with direct limits, a null homotopy of
 S° > E A T must occur at some S° > E A x(n) for n > O. This gives ii)=>iii).
 The implication iii)>iv) is the only one requiring E to be a ring spectrum. If
 S° > E A x(n) is null then so is the first map in the following factorization of 1E A f (n):

 E A S° > E A E A xfn) > E A xfn).

 This completes the proof. 1:1
 Proof of Theorem 3. Part i) follows from part iii), since the iterated multi-
 plication factors through iterated smashing. Part ii) follows from part i) since multiplication in the rings

 gr*XADX and K(n)*XADX

 corresponds, under Spanier-Whitehead duality, to composition in

 [XS X]* and Endv(n)* (K(n)*X)
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 17 NILPOTENCE AND STABLE HOMOTOPY THEORY II

 Replacing

 f: F > X

 with

 Df: S°DFAX

 in part iii) if necessary, we may assume that F = S°. The result reduces to

 Theorem 2 once it is shown that

 1BP A f(m)

 is null for m > O. Fiom Lemma 2.4 (with the obvious notation) this is equiva-

 lent to showing that BPAT is contractible. In view of the Bousfield equivalence

 (BP) = (K(O)) V * * * V (K(n)) V (P(n + 1)),

 it is enough to show that P(n) A T is contractible for n >y O. Again from 2.4

 this is equivalent to showing that

 S° yP(n)AT

 is null for n By O. Now let n grow to infinity. Since

 limP(n) HEp,

 the map

 S° ylimP(n)AT

 is null by assumption. Since homotopy commutes with direct limits, the null

 homotopy arises at some

 S° yP(n)AT.

 This completes the proof of Theorem 3. CH

 2.2. Proof of Theorem 7. The proof of Theorem 7 requires a slight mod-

 ification of the third assertion of Theorem 3, and a useful cofiber sequence

 (2.7).

 COROLLARY 2. 5. Let F and Z be finite spectra, E a ring spectrtbm, and

 X an arbitrary spectrum.

 i) If a map f: F > X A E satisfies

 K(n)*(f) = O for all O < n < x

 then for m >y O, the composite

 F(m) m > (X A E)(m) X(m) A E(m) 8 > x(m) A E

 is null.
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 18  MICHAEL J. HOPKINS AND JEFFREY H. SMITH

 ii) A map

 f: F X

 has the property that

 - f (m) A l Z: F(m) A Z > X(m) A Z

 is null for m >y O if and only if

 K(n)*(f A lZ) = O
 for all O < n < oo.

 Proof. In part i), the map f(m) is already null for m >y O by part iii) of
 Theorem 3. The only if part of ii) is clear. Letting E be the ring spectrum Z A DZ and replacing

 f A lz: F A Z > X A Z
 with its Spanier-Whitehead dual

 F > X A Z A DZ

 reduce the if part to i). C1
 LEMMA 2.6. Let X > Y > Z be a sequence of maps. The map

 Cf Cgof induced by g gives rise to a cofiber sequence

 Cf > Cgof > Cg.

 Proof. Consider the following diagram in which the rows and columns are cofiber sequences:

 X > Y- > Cf
 g

 X > Z > C >

 Cg > ?

 The upper right square is a pushout. It follows that the bottom arrow is a
 homotopy equivalence. This completes the proof. Cl

 COROLLARY 2.7. Let f: X > Y andg: Z > W be two maps. There is a cofiber sequence

 XACg > CfAg Cf AY.
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 19 NILPOTENCE AND STABLE HOMOTOPY THEORY II

 Proof. Apply the lemma to the factorization

 f A g = f A ly o lx A g. Cl

 Proof of Theorem 7. It suffices to establish the following:

 (2.8) if X E C and X E Cn then Cn C C,

 for then C = Cm7 where

 m = min { n l Cn C c } .

 Since everything has been localized at p, set

 Cl(X) = {n E N | K(n)*(X) + O}.

 With this notation, (2.8) becomes:

 (2.9) if X E C and Cl(Y) C Cl(X), then Y E C.

 Suppose, then, that X E C. Then so is Z A X for any Z E Co. Let

 f: I' > S° be the fiber of the duality map S° > X A DX. Then Y A Cf E C.

 Setting g = f (m-l) in Corollary 2.7 and smashing with the identity map of Y

 gives a cofiber sequence

 YAFACf(m_l) > YACf(m) > YACf AF(m 1).

 It follows that Y A Cf(m) E C for all m.

 By 1.13, K(n)*f + O if and only if n f Cl(X), so that

 K(n)*(ly A f) O for all n,

 since Cl(Y) C Cl(X). Part ii) of Corollary 2.5 then gives that 1y A f(m) is null

 for m > O. This means that

 Y A Cf(m) Y V (XY A F(m)) for mBy O,

 so that Y E C. This completes the proof of Theorem 7. C1

 3. Vn Self-maps

 The purpose of the next two sections is to establish Theorem 9. The "only

 if" part, that X , Cn implies that X does not admit a vn self-map is easy: if

 for some j < n, K(j)*X 7& O, and if v is a vn self-map, then the cofiber Y of v

 is a finite spectrum satisfying

 K(n)*Y = O, K(j)*Y 7& O,

 contradicting the fact that Cn C Cj. The proof of the "if" part falls into two

 steps. In this section it is shown that the property of admitting a vn self-map
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 20  MICHAEL J. HQPKINS AND JEFFREY H. SMITH

 is generic. It then remains to construct for each n, a spectrum Xn with a vn
 self-map. This is done in Section 4.

 For any spectrum X, the element p E [X, X]* is a vo self-map satisfying
 condition (*) of Theorem 9. We therefore need only consider vn self-maps
 when n > 1. Because of this, unless otherwise mentioned, in this and the next
 section, we will work entirely in the category C1.

 As mentioned in subsection 1.4, a self-map

 XkF > F

 of a finite spectrum corresponds, under Spanier-Whitehead duality, to a map
 from the k-sphere to the ring spectrum

 R= FADF.

 Definition 3.1. Let R be a finite ring spectrum, n > O. An element

 oe E gr*R

 is a vn-element if

 ( a unit if m = n
 K(m)*at ls 1 nilpotent otherwise.

 LEMMA 3.2. Let R be a finite ring spectrum, and ae E *R a vn-element.
 There exist integers i and j such that

 K(m)*ogi = , ° ifm7An
 t Vn tf m = n

 Proof. It follows from Corollary 2.2 that HEp*ae is nilpotent. Raising oe
 to a power, if necessary, we may suppose that HEp*ae = O. It then follows from
 Corollary 2.2 that K(m)*ae = O for all but finitely many m. Raising oe to a
 further power, if necessary, it can be arranged that K(m)*ae = O for m + n.

 The assertion K(n)*oei = vn is equivalent to the assertion that agi = 1 E
 K(n)*R/(vn-1). The ring K(n)*R/(vn-1) has a finite group of units, so i
 can be taken to be the order of this group. C1

 COROLLARY 3.3. If f: SkF > F is a Vn self-map, then there exist
 integers i,; with the property that

 ( )*f { m7>ltiplication by VJ f m-n.

 LEMMA 3.4. Suppose that x and y are commuting elements of a E(P)-
 algebra. If x-y is both torsion and nilpotent, then forN >y O,

 X y
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 NILPOTENCE AND STABLE HOMOTOPY THEORY II 21

 Proof. Since we are working over a Z(p)-algebra it follows that

 pk(Xy)O=

 for some k. The result now follows by expansion of

 N NY+(
 XP = 8+ X ) )pN

 using the binomial theorem. C]

 LEMMA 3.5. Let R be a finite ring spectrum, and at E 7rkR a vn-element.

 For some i > 0, & is in the center of 7w.R.

 Proof. Raising ae to a power, if necessary, we may assume that K(m),cx
 is in the center of K(m)*R for all m. Let l(cx) and r(ca) be the elements

 of End(7irR) given by left and right multiplication by ca. Since R E C1 the
 difference l(c) - r(aE) has finite order. Since

 K(m)* (l(ca) - r(aE)) = 0 for all m,

 l(aE) - r(aE) is nilpotent by Theorem 3. The result now follows from 3.4 (with

 x l(ca), y = r(ca)). L

 LEMMA 3.6. Let ca,3 E 7*R be vn-elements. There exist integers i and j
 with & = 03.

 Proof. Raising ae and ,3 to powers if necessary, we may assume that for

 all m, K(m)* (ca - ) = 0. The result follows, as above, from 3.4. LI

 COROLLARY 3.7. If f and g are two Vn self-maps of F, then fi is
 homotopic to g3 for some i and j.

 COROLLARY 3.8. Suppose X and Y have Vn self-maps vx and vy. There
 are integers i and j so that for every Z and every

 f: ZAX-4>Y

 the following diagram commutes:

 f
 ZAX - Y

 lAvx${ {vyj

 f
 ZAX - Y.

 Proof. The spectrum DX A Y has two vn self-maps: DvX A ly and 1DX A
 vy. By Corollary 3.7 there are integers i and j for which Dvx'AIy is homotopic

 to 1DX A vyi. The result now follows from Spanier-Whitehead duality. LI
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 22 MICHAEL J. HOPKINS AND JEFFREY H. SMITH

 COROLLARY 3.9. The full subcategory of C1 consisting of spectra admit-

 ting a Vn self-map is thick.

 Proof. Call the subcategory in question C. Note that X E C if and only if

 EX E C. To check that C is closed under cofiber sequences it therefore suffices

 to show that if

 (3.10) X - Y Z

 is a cofiber sequence with X and Y in C, then Z is in C. Using Corollary 3.8

 choose the Vn self-maps vx and vy of X and Y so that

 EkX E yky > EkZ

 ?Jx{ vY{

 X Y Z

 commutes. It is easy to check that any map vz: EkZ Z making the above
 diagram a map of cofiber sequences is a Vn self-map.

 Now suppose that Y is a retract of X, and let i: Y -- X and p: X -- Y

 be the inclusion and retraction mappings respectively. Choose a Vn self-map v
 of X which commutes with i o p. The map

 p o v oi

 is easily checked to be a Vn self-map of Y. -L

 COROLLARY 3.1 1. The full subcategory of C1 consisting of spectra ad-

 mitting a Vn self-map satisfying condition (*) of Theorem 9 is thick.

 Proof. This is similar to 3.9, and involves checking that the integers which

 arise in 3.6-3.8 are powers of p. In fact, the only place where an integer which

 is not a power of p comes up is in using 3.7 to arrange that K(m)*v is in
 the center of EndK(m)*(K(m)*X). But this is guaranteed at the outset by
 condition (*). LI

 4. Construction of Vn self-maps

 4.1. Preliminaries. The examples of self-maps needed for the proof of

 Theorem 9 are constructed using the Adams spectral sequence

 Ext't(H*Y,HX) H* [X, Y]t-7
 which relates the mod p cohomology of X and Y as modules over the Steenrod

 algebra to [X, Y]*. The spectral sequence is usually displayed in the (t - s, s)-
 plane, so that the groups lying in a given vertical line assemble to a single
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 23 NILPOTENCE AND STABLE HOMOTOPY THEORY II

 homotopy group. With this convention the "filtration jumps" are vertical in

 the sense that the difference between two maps representing the same class in

 ExtAt(H*Y, H*X)

 represents a class in

 ExtAv (H Y,H X),

 with s' > s, and t-s = t'-s'.

 There are many criteria for convergence of the Adams spectral sequence.

 A simple one, which is enough for the present purpose is in [1].

 LEMMA 4.1. If X a finite spectrqsrn and Y is a connective spectrqsrn with

 the property that each 7rkY is a finite abelian p-groqsp, then the Adarns spectral

 seq1sence converges strongly to

 [X,Y]*.

 If B C C are Hopf algebras over a field k, the forgetful functor

 C-modules > B-modules

 has both a left and a right adjoint. The left adjoint

 M, > C@M

 carries projectives to projectives, and so prolongs to a change of rings isornor-

 phisrn

 (4.2) Extc(C@M, N) Ext*B(M, N).

 When M is a C-module this can be combined with the "shearing isomorphism"

 C X M > C//B (S M (C//B = C * k)

 cXm | > ,c' XC'!m,

 f (c) = E c' X c't',

 to give another "change of rings" isomorphism

 Extc(C//B X M, N) Exts(M, N)

 The difference between Extc and Extg can therefore be measured by the

 augmentation ideal

 C//B = ker{E: C//B > k}

 with the long exact sequence coming from

 C//B (S) M C//B @ M M.
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 Recall that for p = 2, the dual Steenrod algebra is

 A* = F2[6i 6i .. ]i 1fjj = 2i _ 1
 and for p odd

 A* = A [mTo, ]i I &p[416 ii.. ], 17il I= 2p - 1 1 ljj 2(pi-1).
 The subalgebra of the Steenrod algebra generated by

 Sq1,. ..,Sq2 when p = 2,

 13jpl,... ,pn-1 when p is odd, and n : 1,

 )3 when p is odd and n 0 0
 is denoted An. It is the finite sub-Hopf algebra which is annihilated by the
 ideal

 2n+1 v 62n,*** n1v(v... p = 2,
 (41P~ n ,**f)n+ii n+1...) p h 2.

 The augmentation ideal of A//An is 2pn(p - 1)-connected. The fact that the
 connectivity goes to infinity with n plays an important role in the Approxima-
 tion Lemma 4.6.

 It is customary to give the dual Steenrod algebra the basis of monomials
 in the ('s and T's. With this convention, the Adams-Margolis elements are

 pts dato t (s < t))

 Q ~~~Tn p odd
 Qndual to { 2

 Each Qn is primitive, and together they generate an exterior sub-Hopf
 algebra of the Steenrod algebra. The Pts all satisfy

 (pS)P - 0,

 but are primitive only when s = 0. The Adams-Margolis elements are naturally
 ordered by degree

 PtsI = 2pS(pt- 1)
 = 2pn_1.

 4.2. Vanishing lines. Given an A-module M, and an Adams-Margolis
 element d, the Margolis homology of M, H(M,d), is the homology of the

 complex (M*, d*), with

 Mn = M, n 2,

 d2n = d

 fdP-1 if d=Pts
 {d if d = Qn
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 25 NILPOTENCE AND STABLE HOMOTOPY THEORY II

 When X is a spectrum the symbol H(X, d) will be used to denote H(H*X, d).

 The Margolis homology groups are periodic of period 1 if p is even or if d = Qn

 and they are periodic of period 2 otherwise.

 Definition 4.3. Let M be an A-module. A line

 y = mx + b

 is a vanishing line of

 ExtA* (M, Ep)

 if

 ExtAt(M,lFp) = O for s > m(t-s) + b.

 The following result, due to Anderson-Davis [3] and to Miller-Wilkerson [15]

 relates vanishing lines to Margolis homology groups.

 THEOREM 4.4. If M is a connective A-rnodule with

 H(M,d) = O for Idl < n,

 then

 ExtA* (M,Fp)

 has a vanishing line of slope 1/n.

 In general, there is no easy way to predict the intercept of the vanishing

 line, but there is the following:

 PROPOSITION 4.5. Suppose that M is a connective A-rnodule, and that

 y = mx + b

 is a vanishing line for ExtA*(M,?p). If N is a (c-1)-connected A-rnodule,

 then

 - y=m(x-c)+b

 is a vanishing line for

 ExtA* (M (3 N,?p)

 Proof. Let Nk be the quotient of N by the elements of degree greater

 than k, and Njk C Nk the submodule consisting of elements of degree > j.

 There is an exact sequence

 Njk > Nk > Nj.

 Since M is connective,

 M X N = limM (3 Nk
 k
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 and

 Ext't (M 09 N, Fp) = lrn Extsjt (M 0Nk, Fp
 k

 so it suffices to prove the result for each Nk. This is trivial for k < c, so

 suppose k > c, and by induction, that the result is true for k' < k. Suppose
 that (s, t) satisfies

 s > m(t - s - c) + b

 and consider the exact sequence

 M X Nk-1 M 9 N _ M & N

 By induction,

 Exts t(M Nkl IF) = 0.

 The module N/~1 is just a sum of copies of 3k1p the A-module which consists

 of Fp in degree k, and zero elsewhere. It follows that

 Extsjt(M 0 Nk1, FP)

 is a product of copies of

 Extst(M 0k ]kp Fp) Extsvt-k(M I1 )

 which is zero since

 s > m(t-s-c) + b

 > m((t-k)-s) + b. L

 LEMMA 4.6 (approximation lemma). Let M be a connective A-module,

 and suppose that Ext**(M ,Fp) has a vanishing line of slope m. Given b, for
 n y 0 the restriction map

 ExtsAt(M,1Fp) -+ExtsA (M,]Fp)

 is an isomorphism when

 s > m(t-s) + b.

 Proof. The result follows from the exact sequence

 A//An X9 M >-+A//An ($9 M -*M,

 Proposition 4.5, and the fact that the connectivity of A//An can be made

 arbitrarily large by taking n to be large. CL
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 NILPOTENCE AND STABLE HOMOTOPY THEORY II 27

 4.3. Morava K-theories and the Adams spectral sequence. We need to be

 able to examine the K(n)-Hurewicz homomorphism from the point of view of

 the Adams spectral sequence. This can be done, but it is a little easier to work

 with the connected cover k(n) of K(n). The spectrum k(n) is a ring spectrum,

 with

 k(n)* =IFp[vn] C K(n)* = IFp[Vn, V~n]

 LEMMA 4.7. The transformation k(n)*X K(n)*X extends to a natu-
 ral isomorphism

 vn-lk(n)*X K(n)* X.

 Proof. Since localization is exact, both sides satisfy the exactness prop-

 erties of a homology theory. They agree when X is the sphere, hence for

 all X. D

 COROLLARY 4.8. If k(n)*X is finite then K(n)*X = 0.

 Proof. If k(n)*X is finite, then for j > 0, k(n)jX 0 O. This means that
 for each x E k(n)*X, v7Lx = 0 for m > 0. The result then follows from
 Lemma 4.7. E

 Since kr(n) is a ring spectrum, the mod p cohomology H* k (n) is a coalgebra
 over the Steenrod algebra. It has been calculated by Baas and Madsen [6].

 PROPOSITION 4.9. As a coalgebra over the Steenrod algebra,

 H*k(n) el4A//E[Qn].

 It follows that the E2-term of the Adams spectral sequence for w*k(n) A X is
 isomorphic to

 Ext [Qn] (H* X'FP),

 and that the map of E2-terms induced by the Hurewicz homomorphism is the

 natural restriction.

 COROLLARY 4.10. If X is a finite spectrum and H(X,Qn) = 0, then

 K(n)*X = 0.

 Proof. The group

 E[Qn] (II (X) ]FP)

 is the cohomology of the complex

 Qn Qn Qn
 H*X H*X H*X

 This means that for s > 0, the graded abelian group

 Ext[Qn] (H*X, FP)
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 is isomorphic to the Margolis homology group H(X, Qn). The vanishing of these groups implies that

 EXtE[Qn] (H X, lFp) EXtE[Q ] (H X, lFp) C H*X

 is finite, and hence that k(n)*X is finite. The result then follows from Corol- lary 4.8. []
 4.4. Examples of self maps. The key to constructing self-maps is the

 following result of the second author [24]. An account appears in [21].

 THEOREM 4.11. For each n = 1,2, . . . there is a finite spectrqsm Xn with the properties:

 i) All differentials in the Adams spectral seq?>ence

 ExtE[Qn] (H Xn A Dxn ,IFp) I k (n)*Xn A DXn are zero;

 ii) The Margolis homology groqxps H(Xn A DXn,d) are zero if
 Idl < IQnl

 THEOREM 4.12. The spectrqsm Xn is in Cn \Cn_l and has a vn self-map satisfying (*) of Theorem 9.

 The proof of Theorem 4.12 uses the Adams spectral sequence and the following consequence of the results of Wilkerson [25].

 THEOREM 4.13. Sqxppose that B c C are finite, connected, graded, co-
 commqbtative Hopf algebras over a field k of characteristic p > O. If

 b E ExtB* (k,k),

 then for N >y O, bP is in the image of the restriction map

 Extc (k,k) Extg (k,k)

 Proof. See Appendix A. []
 Proof of Theorem 4.12. That Xn is in Cn\Cn_l follows from Corollary 4.10.
 For the construction of the self-map, it is slightly cleaner to work from
 the point of view of finite ring spectra. Thus let R be the finite ring spectrum
 Xn A DXn. The ring 7r*R is an algebra over 7r*S°, and the image of 7r*S° in
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 7r*R is in the center (in the graded sense). Similarly, if B C A is a sub-Hopf

 algebra, the ring

 Ext*B* (H*R, ?p)

 is a central algebra over Ext*B*(lFp,lFp).

 To show that Xn admits a vn self-map satisfying condition (*) of Theo-

 rem 9 it suffices to exhibit an element

 v E 7r*R

 satisfying

 (4.14) k(n)*vP = vnN * 1 for some M, N > O;

 (4.15) the map k(m)*v is nilpotent when m + n.

 Step 1. The first step is to find an approximation to a vn self-map in the

 E2-term of the Adams spectral sequence. Let

 Vn E ExtE[2Q ] l(Ep F )

 be the element representing Vn E k(n)*. We need to find a

 e E tP]VxPN(2Pn_ 1) (H*R lF )

 restricting to vn 1, for N >y O. By 4.4, the bigraded group

 ExtA (H R, Ep)

 has a vanishing line of slope l/2(pn-1). Using the approximation lemma, an

 integer n can be chosen for which the restriction map

 (4.16) ExtA (H R, E?p) > ExtA (H R, Ep)

 1 * *r
 1S an lsomorpnlsm 1I

 > 2(pn-1) ( )

 By Theorem 4.13 there is an element

 w E ExtAn (lFp, lFp)

 restricting to vn E ExtE[Q I (lFp, lFp). The class w can be taken to be the image

 of w 1 under the isomorphism (4.16). [1

 Step 2. This construction of the class w actually gives something more.

 Since

 ExtA>n (IFp, IFp)

 is in the center (in the graded sense) of

 ExtA* (H*R, E?p),
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 the class w commutes with every

 oe E ExtA (H* R, Ep)

 with

 (4.17) - 2(pn _ 1) ( )

 Step 3. Now we choose a power of w which survives the Adams spectral

 sequence. The differentials in the Adams spectral sequence are derivations,

 and the values of drW lie in the region (4.17). This means that

 dr_lw = O =s drWP = O

 Since d1w = O it follows that dbwP = O. The possible values of drWP for r > b

 lie in the region

 2 (pn-1 ) )

 which is above the vanishing line. This means that the class wP is a permanent

 cycle.

 Step 4. For simplicity, replace w with wP, and adjust the integer N so

 that w restricts to vn 1. Let

 v E r*R

 be a representative of w. We will see that this is the desired class.

 The difference k(n)*(v-vn ) is represented by a class in

 ExtE[Qn] (H R) Ep)

 with s > 1/2(pn-1) (t-s). Some power of k(n)*(v-Vn b) iS therefore

 represented by a class above the vanishing line of

 EXtE[Qn](H R)EP)

 (which has slope 1/2(pn-1)), and hence is zero. Lemma 3.4 then gives that

 k (n) * vP = vn , M >> O .

 This proves property (4.14).

 Property (*) is trivial when m < n, since R E Cn. When m > n, it is a

 consequence of Lemma 2.1 and the fact that the Adams spectral sequence for

 k(m)*R has a vanishing line of slope 1/2(pm-1), and that the powers of v are

 represented by classes lying on the line

 2(pn-1) ( )

 which has a larger slope. This completes the proof.
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 4.5. Proof that Theorem 7 implies Theorem 2. This subsection is in-

 cluded to satiate any curiosity aroused by the claim made after the statement

 of Theorem 7. Since the argument is not necessary for establishing any of the

 results of this paper, it is included only as a sketch.

 In [11, 01] the nilpotence theorem (Theorem 2 in this paper) is reduced

 to showing that if Ris a connective, associative ring spectrum, and

 aX*R

 is in the kernel of the MU-Hurewicz homomorphism, then oe is nilpotent. This

 in turn is easily reduced to the case when Ris localized at p and MU is replaced

 with BP. The case loel < O is easy, so it may be assumed that lotl > °

 Let oe be the map

 (4.18) zIalR ? RAR R

 The map (4.18) induces multiplication by BP*cx = O in BP homology. This

 means that from the point of view of the Adams-Novikov spectral sequence,

 composition with oe moves the homotopy groups to the right along a line of

 positive slope.

 Step 1. The construction used to produce the spectra Xn of this section

 can be used to construct finite torsion-free spectra Yn with the property that

 H*Yn) as a module over An) is free over An//E, where E is the sub-Hopf

 algebra

 A [QO v v Qn]

 See [24].

 Step 2. Use the spectral sequence of [20, Th. 4.4.3] to show that

 ExtsBpBp(BP*,BP*RA Yn )

 has a vanishing line with slope tending to zero as noo.-

 Step 3. It follows from the vanishing line that for n> 0 the spectrum

 - Yn Aa-1R

 is contractible.

 Step 4. Now use Theorem 14 to conclude that Yn is Bousfield equivalent

 to the sphere, hence that oe-lR is contractible, hence that oe is nilpotent.

 5. Endomorphisms, up to nilpotents

 In this section we will completely classify the endomorphisms (up to nilpo-

 tent elements) of full subcategories of finite spectra which are stable under

 suspension (Theorem 5.3). This has as a consequence Theorem 11, which is

 essentially the special case in which the subcategory consists of one object.
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 5.1. N-endomorphisms. The vn self-maps form an endomorphism (up to

 nilpotent elements) of the category C,. It turns out that these are the only
 endomorphisms of this kind that can occur in the category of finite spectra.

 Definition 5.1. Let C be a full subcategory of Co which is closed under
 suspensions. A collection v, of self-maps

 vx: kxX X_+ X X C

 is said to represent an N-endomorphism of C if

 i) The map vyX is the composite

 flip
 EkEX EkX AS'

 {VXA1S1

 XAS1 ~flip X A S' EX.

 ii) For each f: X -+ Y in C there are integers i and j with ikX = jky, such
 that the following diagram commutes:

 EMX M EMy

 vXi{ jjyi
 X - Y.

 f

 Two representatives v and v' are equivalent if for each X C C there are
 integers i and j with vxi = v' i. An N-endomorphism is defined to be an
 equivalence class of representatives. The N-endomorphism represented by v
 will be denoted [v].

 Remark 1. (1) If v represents an N-endomorphism of a category C, and
 f: X - Y an isomorphism with X c C, then defining vy to be

 Ekfx-1
 rky F kX

 X Y
 f

 extends v to the full subcategory obtained from C by adjoining the suspensions
 of Y. Because of property ii), the resulting N-endomorphism is independent
 of the choice of isomorphism f. In this way an N-endomorphism can always
 be extended uniquely to a full subcategory which is closed under suspensions
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 and isomorphisms. This procedure will be used without comment, so once an

 N-endomorphism has been defined on a subcategory C of finite spectra, it will

 be taken to be extended to the smallest full subcategory containing C, which is

 closed under suspensions and isomorphisms. Among other things, this means

 that if vx is defined, so is VXAS1 and, after raising both sides to a power if
 necessary, one has

 VXAS1 = vX A l S.

 (2) An N-endomorphism is of degree zero if all of the integers kX are zero.
 If an N-endomorphism is not of degree zero, then none of the integers kX is
 zero, and the maps vx can all be chosen to have finite order. Given two spectra

 X, Y E C, the maps vx and vy can be chosen in such a way that the integers

 kX and ky coincide. With this arrangement, given a map

 f c [X, Y]*,

 if there are integers i and j for which

 vo f = f 0 VI

 then it must be the case that i = j. This same discussion applies to any finite

 collection of elements of C.

 Example 5.2. (1) Any collection v with each vx nilpotent represents an

 N-endomorphism.

 (2) Taking each vx to be a multiple of the identity defines an actual

 endomorphism.

 (3) Suppose C C C,. Taking vx to be a vn self-map defines an N-
 endomorphism.

 5.2. Classification of N-endomorphisms. The above list of examples turns

 out to be complete.

 THEOREM 5.3. Let C C Co be a full subcategory which is closed under

 suspensions. If v represents an N-endomorphism of C then one of the following

 holds:

 i) each vx is nilpotent;

 ii) some power of each vx is a multiple of the identity map;

 iii) C C Cn for some n, and each vx is a Vn self-map.

 Of course, these possibilities are not mutually exclusive. If X Cn+1 C Cn,
 any Vn self-map of X is nilpotent.

 The proof of Theorem 5.3 will be completed in subsection 5.6..
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 COROLLARY 5.4. Suppose that X C Co, and that v C [X,X]* is in the

 center. Then v is nilpotent, a power of v is a multiple of the identity, or v is

 a Vn self-map.

 Proof. Let C be the full subcategory of Co consisting of the suspensions of
 X. The map v represents an N-endomorphism of C, so the result follows from

 Theorem 5.3. D

 Proof of Theorem 11. Let X C Cn \ Cn+1. By Corollary 5.4 the map
 induced by the K(n)-Hurewicz homomorphism

 center [X, X]* OF ( 0.I)

 has a nilpotent kernel. The result then follows from Theorem 9 and the ob-

 servation made in the proof of Corollary 3.11 that some p power of any Vn
 self-map satisfying condition (*) of Theorem 9 is central. El

 Remark 2. It is natural to consider a representative v of an N-endomor-

 phism for which the integers i and j can be taken to be powers of p, and to

 define a finer equivalence relation by declaring v and v' to be equivalent if for

 each X E C there are integers i and j with vxPi = v' . An F-endomorphism
 is an equivalence class of such representatives with respect to this finer equiv-

 alence relation. Taking vX to be a Vn self-map satisfying condition (*) of
 Theorem 9 defines an F-endomorphism.

 The argument which classifies N-endomorphisms leads to a classification

 of F-endomorphisms, provided one keeps track of when certain integers can

 be taken to be a power of p. We have kept track of this in the statements of

 the results leading to the proof of Theorem 5.3, but since we have no use for

 F-endomorphisms in mind, we leave the classification to the interested reader.

 The proof of Theorem 5.3 falls into two parts. First it is shown that an

 N-endomorphism extends uniquely to a thick subcategory. It then suffices to

 construct, for each n, a spectrum Xn C Cn \ Cn+l whose only non-nilpotent
 self-map is a Vn self-map.

 To begin, we dispense with the N-endomorphisms of degree zero.

 PROPOSITION 5.5. If X is in Co, and v: X -+ X is in the center of
 [XX]* = 7r*X A DX then there are integers m and n for which

 v= multiplication by m.

 Proof. Since

 7r*X A DX 0 Q HQ*X A DX d End HQ*X,
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 the map H(Q*v must be in the center of End H¢2*X which consists entirely of

 scalar multiplications. Since the Hurewicz map H(Q* factors through HE*, this

 constant must be an integer k. The map w = v-k then has finite order.

 Since all of the eigenvalues of HlFp*wP-1 are equal to O or 1, the map

 HEp*w(P-l)P is an idempotent for M >> O. Replace w with w(P-l)P . The

 map w still has finite order and is in the center of [X, X]*. Define connective

 spectra A1 and A2 by

 A1 = W-lX, A2 = (1 - w)-lX.

 The map

 X yA1VA2

 induces an isomorphism on both mod p and rational homologyj hence on ho-

 mology with coefficients in E(p). It is therefore a homotopy equivalence, and

 in particular A1 and A2 are finite.

 The ring of self-maps [X,X]* can be written as a ring of 2 x 2 matrices,

 in which the ij-entry is in [Aj, Ai]. The map w is represented by the matrix

 f W|A1 ° A

 V O OJ'

 whose (1,1) entry is an equivalence. Given a map f: SkA2 A1, let f be the

 map

 tO fA

 tO OJ

 Then

 d( )f ( WIAlf 0 )

 Since w is central, and wlAl is an equivalence this means that f is null. By

 Lemma 5.6 below, it follows that one of A1 and A2 is contractible. If A1 is

 contractible, then w is nilpotent, and the result follows from Lemma 3.4. If A2

 is contractible, then 1-w is nilpotent, HQ*X = O, and we may assume that

 the integer k; is 0, so that w = v(P-l)P . It then follows from Lemma 3.4 that

 v(P-l)P = 1 for M > O. This completes the proof. C1

 We have used

 LEMMA 5.6. If A and B are non-contractible p-local finite spectra, then

 [A,B]* + 0.

 Proof. Since

 HEp*DA A B = Hom(HEp*A, HEp*B) + O,
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 the spectrum DA A B is not-contractible. It therefore has a nonzero homotopy

 group. Now use the isomorphism

 1r*DAAB [AB]*. Li

 5.3. Some technical tools. The next few results are a bit technical, but

 they come up several times.

 LEMMA 5.7. Suppose that M is a bimodule over the ring 2(P) [v], and for
 mc M let

 ad(v)m =.vm - mv.

 If there are integers i, j and k, for which

 i) k ad(v')m =O, and

 ii) ad(vi) (ad(v')m) - 0,

 then

 ad (vik) m =.

 Clearly, k can be taken to be a power of p, so that if i and j are powers
 of p, then so is ijk.

 LEMMA 5.8. Suppose M is a bimodule over the ring Z[v]. Let ad(v): M
 M be the operator ad(v)m = vm - my. The operators ad(v') and ad'(v) are
 related by the formula:

 (5.9) ad(vn)m = (n) ad (v)m. vn-i

 Proof. Let 1(v) and r(v) be the operators of left and right multiplication
 by v respectively. Then

 ad(v) = 1(v) - r(v),

 and the operators ad(v), 1(v), and r.(v) all commute. Now take the equation

 1(v) = ad(v) + r(v),

 raise both sides to the power n, and use the binomial theorem. LI

 Proof of 5.7. Replacing j with ij and v with vi, we may suppose that
 i = 1. Since the operators ad(v]) and ad(v) commute, it follows from (5.9)
 that

 ad(vi) (ad(vi)m) = 0.

 Replacing v with vI, we may therefore also assume that j 1, and hence that
 ad2 (v)m = 0. But then, again from (5.9),

 ad(vk)m = kad(v)m = 0.

 This completes the proof. Ol
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 5.4. N-endomorphisms and thick subcategories.

 LEMMA 5.10. Suppose that [v] and [v'] are N-endomorphisms of a thick

 subcategory C C Co. The full subcategory D C C consisting of objects for which

 [v] = [v'] is thick.

 Proof. The case in which the degree of [v] is zero follows from Proposi-
 tion 5.5, so we may assume that the degree of [v] is not zero. In this case

 Remark 2 applies.

 Suppose that i: Y -+ X is the inclusion of a retract, with X E D and

 Y E C. Choose the representatives vx, vy, v> and v', so that

 (1) vxi =ivy, v i = ivy , and

 (2) vx v>.

 Then ivy = ivy, so that Vy = since i is a monomorphism.

 Now suppose that

 X -y-z Z

 is a cofiber sequence in C with X and Y in D. Choose the maps v to have

 finite order, with vx = v>, Vy = vy, and so that

 EMy ZMZ EMX AS

 Vy 1 vZ{ VxAS1 {

 Y - Z - XAS

 and

 EMy ZMZ >3MXAS

 V/l V/ V/tl

 Y - Z X A S1.

 commute. Make [Z, Z],* into a E(p) [v]-bimodule by

 (5.11) Vm = vz o m,

 (5.12) my = mo0V.

 The goal is to show that ad(vk)lz is zero, for some k. We know that ad(vk)lz
 has finite order, and that it factors through a map EMX A S1 -- Z. In general,
 if a map f c [Z, Z]. factors through some W c D then ad(vj)f = 0 for some
 j. It follows that

 ad(v1) (ad(v)lz) 0

 for some j. The result then follows from Lemma 5.7. L
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 LEMMA 5.13. Let [v] be an N-endomorphism of a full subcategory C of

 Co which is closed ander suspensions. If D is the larpest full subcategory of Co

 to which v extends, then D is thick.

 Proof. If the degree of [v] is zero, then the result follows from 5.5. We

 may therefore assume that the maps v all have finite order, and for the finitely

 many spectra that come up in the proof, that they all have the same degree.

 Suppose that X E D and that

 i: YX,

 p: X > Y

 satisfy poi = ly. Choose the map vx so that it commutes with the idempotent

 i o p, and set

 vy = p ° vx o i.

 If it can be shown that this map vy extends [v] to the full subcategory D U

 {SkY},z, it will follow that Y E D by maximality.

 To check this, let W E D U {SkY}kEz and suppose at first that W E D.

 Given a map f: W Y, choose an integer j so that the outer rectangle in

 the following diagram commutes:

 SNW > sSy > sNX

 , VW Vy Vx

 W > Y > X.

 -The right square commutes by construction, so the left must also, since the

 map i is the inclusion of a wedge summand. The argument for dealing with a

 map Y > W is similar. Finally, given

 f: SkYY,

 using the above, find an integer k so that

 i O Vy O f = vx ° i O f = i o f o vy.

 Then, again, since i*: [Y, Y]* > [Y, X]* is a monomorphism,

 vyOf=fovy.

 Now suppose that

 X yY yZ

 is a cofiber sequence with X and Y in D. Choose the maps vx and vy so that

 the left square in the following diagram commutes:

 SNX > sSy > sNz

 VX Vy Vz

 X > Y > Z,
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 Let vz be any map of finite order making the above a map of cofiber sequences.

 If it can be shown that this map vz extends v to the category

 D U {SkZ}kz

 it will follow that Z E D by maximality.

 To check this, suppose that f: Z > W is a m-ap with W an object of

 D U {SkZ}kz. If necessary raise the maps vw, vx, vy, and vz to powers so

 that they are all of finite order, and that they all have the same degree.

 Case 1. W E D, and f factors through b: Z X /\ sl. Write

 S =gob,

 and choose an integer i so that the right square in the following diagram

 commutes:

 ENz 6 > SNX A S1 > eNW

 Vz Vx Vw

 _S

 Z > EX > W.

 g

 The left square commutes by definition of vz, so that the whole diagram com-

 mutes. °

 Case 2. The spectram W is in D. Make the graded abelian group [Z, W]*

 into a bimodule over E(p) [v] by

 v m = vwom,

 m v = morz.

 For some i, ad(vi)f vanishes on Y and so factors through X /\ sl. By Case 1,

 ad(vi) (ad(vi)f) = O for some j,

 and the result follows from Lemma 5.7.

 Case 3. W=EkZ. By Case 2, the maps v can be chosen to commute in

 addition with all elements of [Z, SkX /\ sl]. It then follows that ad(v)f factors

 through Sky, and so by case 1,

 ad(vi) (ad(v)Y) = O for some j.

 The result then follows from Lemma 5.7.

 The case of maps W > Z is handled similarly. This completes the

 proof. O
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 5.5. A spectr?m with few non-nilpotent self maps. Now to construct, for

 each n a spectrum Xn E Cn \ Cn_l whose only non-nilpotent self-maps are

 roots of the identity, or vn self-maps. The spectrum Xo can be taken to be the

 sphere.

 PROPOSITION 5.14. For each n > O there exists a sequence

 k=(ko,...kn_l))

 and a finite spectram M(k) E Cn \ Cn_l ) satisfying:

 i) BP M(k) = BP /(vP ° vP n 1 ) (VO = p);

 ii) If

 v: S2M(k) > M(k)

 is a non-nilpotent self-map, then some power of v is the identity map, or v is

 a Vn self-map.

 Proof. Suppose by induction on n that a sequence

 k=(ko,...,kn-l)

 and a spectrum

 M= M(k)

 have been found, satisfying condition i). When n = 1 the sequence can be

 taken to be (1), and the spectrum M, the mod p Moore spectrum

 S Up e

 Let I(k) c BP* be the ideal

 * (Vo ) * * * ) Vn-1 )

 If v is a non-nilpotent self-map of M(k) then the BP-Hurewicz image, BP*v,

 must be a non-nilpotent element of the ring

 HomBp* (BP* /I (k), BP* /I (k) ) BP* /I (k) .

 The map BP*v must also be a map of BP*BP-comodules, and so is an element

 of

 Homse* BP (BP* /I (k), BP* /I (k) ) c BP* /I (k) .

 Now the ideal

 In = (pvv1) ) ) ) vVn-l) C BP*/I(k)

 is nilpotent, and one knows ([20, Th. 4.3.2]) that

 Homsp* BP (BP* /In, BP* /In ) = Ep [Vn] F
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 It follows that there are elements A E Fp, k C 2, with the property that
 BPv-Avk is an element of In, hence nilpotent. It then follows from Lemma 3.4
 that

 BP*v(PI)pN = vk(p-1)PN N O.

 Replace v with v . If k = 0, then BP*(v-1) = 0, and so v-1 is nilpotent
 (by Theorem 2). It then follows from Lemma 3.4 that

 N

 VP =1M, N > 0.

 Suppose then that k 7L 0, and let w be a Vn self-map of M. By the above
 discussion applied to w, there are integers i and j, for which BP*vi = BP*wj.
 But this means (again by Theorem 2) that vi -w is nilpotent, so by Lemma 3.4

 some power of v is homotopic to some power of w, and v is a Vn self-map. This
 proves iii). For the rest of the induction step, let

 W: Z2(pn_)PNM __ M

 be a Vn self-map satisfying condition (*) of Theorem 9. The integer kn can be
 taken to be N, and

 M(ko, . .kn)

 the cofiber of the map w. [1

 5.6. Proof of Theorem 5.3. Let v be an N-endomorphism of C C Co.

 Then v extends uniquely to the smallest thick subcategory Cn C Co containing
 C. Let

 k = (ko,. . . kn-1)

 and M = M(k) be as in Lemma 5.14, and let D be the full subcategory of

 Cn consisting of the suspensions of M. Then v is also uniquely determined
 by its restriction to D, i.e. by the map VM. By Proposition 5.14, there are

 three possibilities for vM, and these are the restrictions of the nilpotent, iden-

 tity, and Vn self-map N-endomorphisms. This completes the proof of Theo-
 rem 5.3.

 Appendix A. Proof of Theorem 4.13

 The purpose of this appendix is to prove (rather, deduce from [25]) The-
 orem 4.13. All of the techniques used here can be found in [25].

 Throughout this appendix, all Hopf algebras will be over a field of char-

 acteristic p > 0. They will be connected, graded, cocommutative, and finite-

 dimensional. The dual of a Hopf algebra will be graded in such a way that
 the dual of the homogeneous component of degree k has degree -k. This
 convention enables the coaction map (A.2) to preserve degrees.
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 The action of a Hopf algebra B on a module M can be expressed as an

 "action"

 (A.1) B@M yM

 or as a "coaction"

 (A.2) MB*@M.

 A module M which happens to be an algebra is an algebra over B if the

 multiplication map

 M X M > M

 is a map of B-modules. This is equivalent to the requirement that the coaction

 map (A.2) be multiplicative. All algebras over Hopf algebras in this appendix

 will be graded and connected.

 If B C C is normal, and M is a C-module, then the sub-module of elements

 invariant under B,

 MB=Homg(k,M),

 inherits an action of the quotient Hopf algebra C//B. In fact, so do all of the

 derived functors

 (A.3) EXtB(k) M)

 If M is an algebra over B, then (A.3) becomes an algebra over C//B [23].

 In case B C C is normal, the relationship between the cohomologies of B

 and C is given by the Lyndon-Hochschild-Serre spectral sequence

 Extc//B (k, Extg(k, M)) > EXtc(k) M)

 The main result of this appendix is

 - THEOREM A.4. S?ppose that R is a Noetherian C-algebra, and that

 B C C is normal. Then

 i) The algebra Extc(k,R) is Noetherian, hence finitely generated.

 ii) The Lyndon-Hochschild-Serre spectral sequence

 Extc//B (k, EXtB (k,R) ) > EXtc (kvR)

 terminates at a finite stage in the sense that there is an integer N with the

 property that all of the differentials dr are zero, if r > N.

 iii) There is an integer N with the property that drXP is zero, for all x

 and all r.

 iv) The Lyndon-Hochschild-Serre spectral sequence is of fiinitely generated

 modules over some connected, graded, Noetherian ring T.

 The parts of this theorem are closely related.
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 LEMMA A.5. In Theorem A.4, parts i), ii), and iii) follow from iv). Given i), parts ii), iii), and iv) are equivalent.

 Proof. Suppose first that iv) holds. Then part ii) follows from Lemma A.6
 below. Part iii) follows from ii) since the differentials are derivations. That
 iv)i) follows from the fact that if a ring is complete with respect to an
 exhaustive filtration, and if the associated graded ring is Noetherian, then so
 is the original ring (see [8, 3.2.9 and Cor. 2 to Prop. 12] or [4, Cor. 10.25]).

 Now suppose that part i) holds. Then the the E2-term of the Lyndon-
 Hochschild-Serre spectral sequence is Noetherian, hence finitely generated over
 #. Given ii), part iii) follows as above. Given part iii), the algebra T in part iv)
 can be taken to be the algebra of (pN)th-powers in E2. The implication iv)ii)
 was established in the preceding paragraph. This completes the proof. O We have used:

 LEMMA A.6. Let {Er) dr} be a spectral sequence of finitely generated
 mod?lles over a Noetherian ring T. There is an integer N with the property that all of the differentials dr are zero, if r > N.

 Proof. The modules Er are sub-quotients of E2. Define

 Br+l C Br C *a C Zr C Zr+1 C E2
 with the property that

 Er+l = Zr/Br

 The graded T-modules Zr and Br can be thought of as the kernel and image of
 dr respectively. By the ascending chain condition, there is an integer N with
 the property that Br = BN if r > N. But this implies, for r > N + 1 that
 Er C EN+1, SO that the image of dr is zero. O
 Wilkerson [25] has proved a special case of Theorem A.4. Recall that a
 map R > S of rings is finite if S is finitely generated when regarded as an R-module.

 THEOREM A.7 (Wilkerson). i) Suppose that B C C is in the center, and
 that the action of C on R is trivial. Then i)-iv) of Theorem A.4 hold. ii) If B C C is normal, the map

 Extc (k,#) > Exts (k)k)
 is finite.

 The requirement that C act trivially on R turns out not to be much of a restriction.
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 LEMMA A.8. S?ppose a Hopf algebra A acts on a graded comm?tative

 ring R. Given an element x E R, for N > O, the element xP is invariant

 ander A. In particalar, if R is Noetherian, then

 RA' t R

 is finite.

 Proof. This is easiest to verify from the point of view of the coaction. By

 assumption, the coaction is given by

 g6(x) = 1 XX + Lai (8)Xi,

 where Ixil 7& O. Since A is finite-dimensional, there is an N with the property

 that aP = 0 for all a E A* with lal 7& O. But then

 ( pN ) 1 X XP + E aP @ Xt

 = 1 (23 XP

 This completes the proof. C1

 LEMMA A.9. If A is a finite Hopf algebra and R > S is a finite map of

 Noetherian A-algebras, then

 ExtA (k,R) > ExtA (kvS)

 is finite.

 COROLLARY A.10. If C is a Hopf algebra, and R is a Noetherian C-

 module, then the cohomology algebra

 Extc (k,R)

 is Noetherian.

 Proof. By Lemma A.8, the map Rc > R is finite. By Lemma A.9,

 Rc @ Extc (k, k) Extc (k, RC) Extc (k, R)

 is finite. The result now follows from A.7. C1

 COROLLARY A.ll. It suffces to prove Theorem A.4 whenR= k.

 Proof. It is enough to deduce part iv) of Lemma A.4 since by Lemma A.5,

 iv) implies i), ii), and iii). Suppose that the Lyndon-Hochschild-Serre spectral

 sequence

 Extc//I3(k, ExtI3(ks k)) > EXtc(k, k)
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 consists of finitely generated modules over the Noetherian ring T. Then the spectral sequence

 Extc//B(k, ExtB(k, RC)) =s Extc(k, RC)

 consists of finitely generated modules over the Noetherian ring Rc X T. By

 Lemma A.8, the map Rc R is finite. It follovvs from Lemma A.9 that the

 map

 Extc//B(k, ExtB(k, RC)) > Extc//B(k, ExtB(k, R))
 is finite, so the spectral sequence

 Extc//B(k, ExtB(k, R)) B Extc(k, R)

 is also a spectral sequence of finite modules over Rc X T. O
 The proof of A.ll is built out of a few special cases.

 LEMMA A.12. Suppose that E is a Hopf algebra of the form E[x], where

 (A.13) E[t] = { ktx]/xP tf tx: ts even,

 and R > S is a finite map of Noetherian E-algebras. If the action of E on R is trivial, then

 ExtE(k,R) > ExtE(k,S)
 . n

 ts nntte.

 Proof. Let us take the case in which E = k[x]/xP with Ixl even. The
 others are similar. If M is an E-module, the cohomology

 ExtE(k, M)

 is the cohomology of the complex

 M ($ A[a] (8) k[b]

 with differential

 d(mXb) = xP-1mXaXbk,
 d(mXaXb) = xmXb+1.

 When the action of E on M is trivial, the differential d is zero. The result now
 follows since the complex for calculating ExtE(k, S) is already a finite module over the ExtE (k, R) . [1
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 LEMMA A.14. Suppose A is a Hopf algebra and R -> S is a finite map
 of Noetherian A-algebras. If the action of A on R is trivial, then

 Ext* (k,R) - Ext* (k,S)

 is finite.

 Proof. The proof is by induction on the dimension of A, the case in which

 the dimension of A is 1 being a tautology. Suppose that the dimension of A

 is greater than 1, and that the result is known to be true for Hopf algebras of
 dimension less than that of A.

 Let E C A be a central sub-Hopf algebra of the form (A.13), and let

 {Er}, and {Er}

 be the associated Lyndon-Hochschild-Serre spectral sequences with coefficients
 in R and S, respectively. The spectral sequence {Er} is just the tensor product
 of R with the Lyndon-Hochschild-Serre spectral sequence with coefficients in k.
 By Theorem A.7 it is a spectral sequence of finite modules over a Noetherian

 ring of the form R 0 T. It follows that the map

 Eoo --> E0'

 is finite, and so the map

 ExtA (k, R) - Ext* (k, S)

 is finite by [4, Prop. 10.24]. D

 Proof of Lemma A.9. Since S is finite over R and R is finite over RA by
 Lemma A.8, S is finite over RA. It follows from Lemma A.14 that

 Ext* (k, RA) - Ext* (k, S)

 is finite, so a fortiori

 ExtA (k, R) - Ext* (k, S)

 is finite. This completes the proof. -

 Proof of Theorem A.4. By Corollary A.11 we may assume that R = k.
 Choose an integer N with the property that xP is invariant under the action
 of C//B for every x c ExtB(k, k), and let

 S C Ext* (k, k)

 be the sub-algebra consisting of the (pN)th powers of the elements in the image
 of Extc *(k, k). Then the maps

 S - Ext*(k, k), and

 Ext*C/B(k, S) - ExtC//B(k, Ext*(k, k))
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 are finite by A.8 and A.9. But

 Extc//B (k, S) = EXtCayB (k? k) (8) S

 is Noetherian, and consists of permanent cycles. Taking T to be this algebra
 establishes part iv), and completes the proof. g

 To deduce Theorem 4.13 requires

 LEMMA A.15. Sqsppose that B C C is an inclasion of finite Hopf alge- bras. There is a seq?sence

 B-Co<l Cl <I Cn=C

 with each Ci <I Ci+l normal, and with the property that the Hopf algebra Ci+l //Ci is of the form (A. 13) .

 Proof. It suffices, by induction on dimk C//B, to show that if B + C then
 there is a surjective map of Hopf algebras C > E[x] with the property that the composite

 B C E[x]

 is trivial (which means that it is the augmentation followed by the inclusion of
 the degree zero part). Since B 78 C the map of dual algebras

 C* > B*

 is not a monomorphism. It follows from [16, Prop. 3.9] that the map of prim-
 itives is not injective. Let D be a primitive in the kernel. The element D can
 be thought of as a derivation from A to k with the property that D(b) = O- when b E B.

 Give x the degree -ID]. The map to E[x] is then given by Taylor's formula:

 | EP=lODnazn! IDI even

 - t D°a+D(a)x IDI odd.
 The powers of D are taken in the algebra C*. In particular, D°, being the unit of C*, is the augmentation. O
 Proof of Theorem 4.13. It suffices, by Lemma A.15 to deal with the case in which B C C is normal. Let

 b E ExtB(k,k)

 be a cohomology class. By Lemma A.8 there is an integer M with the property
 that bP is invariant under C//B. This gives a class in the E2-term of the
 Lyndon-Hochschild-Serre spectral sequence. For convenience, replace bP with
 b. By Theorem A.4 there is an integer N with the property that drbP = O for
 all r. The class in Extc(k, k) represented by bP is then the desired class. 0
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