# ALGEBRAIC TOPOLOGY III SPRING 2023 CHROMATIC HOMOTOPY THEORY 

## CHAPTER 4: CHARACTERISTIC CLASSES

JOHN ROGNES

See [Hus66, Part III], [MS74], [May99, Ch. 23] and Hatcher (2003).

## 1. Characteristic classes for line bundles

Definition 1.1. Let $G$ be a topological group and $R$ an abelian group. A fixed cohomology class

$$
c \in H^{*}(B G ; R)
$$

specifies an $R$-valued characteristic class for principal $G$-bundles, or for $F$-fiber bundles with structure group $G$. Writing $\xi$ for $\pi: P \rightarrow X$ or $\pi: E \rightarrow X$, this is the natural transformation

$$
\begin{aligned}
\operatorname{Bun}_{G}(X) \cong[X, B G] & \longrightarrow H^{*}(X ; R) \\
& \xi \leftrightarrow[f] \longmapsto f^{*}(c)=c(\xi),
\end{aligned}
$$

assigning to $\xi$ the cohomology class $c(\xi)=f^{*}(x)$, where

$$
f^{*}: H^{*}(B G ; R) \longrightarrow H^{*}(X ; R)
$$

is the homomorphism induced by the classifying map $f: X \rightarrow B G$.
Example 1.2. For $G=O(1)$ with $E O(1) \simeq S^{\infty}$ and $B O(1) \simeq \mathbb{R} P^{\infty} \simeq K\left(\mathbb{F}_{2}, 1\right)$ each class

$$
x^{n} \in H^{n}\left(\mathbb{R} P^{\infty} ; \mathbb{F}_{2}\right)
$$

defines an $\mathbb{F}_{2}$-valued characteristic class for real line bundles. The case $n=1$ is most interesting, when $x=\iota_{1}$ is the fundamental class, so that

$$
\begin{aligned}
\operatorname{Vect}_{1}(X) \cong[X, B O(1)] & \cong H^{1}\left(X ; \mathbb{F}_{2}\right) \\
{[f] } & \longmapsto f^{*}(x)
\end{aligned}
$$

is a natural bijection. Here $\operatorname{Vect}_{1}(X)=\operatorname{Vect}_{1}^{\mathbb{R}}(X)=\operatorname{Bun}_{\mathbb{R}, O(1)}(X) \cong \operatorname{Bun}_{O(1)}(X)$ denotes the set of isomorphism classes of real line bundles over $X$. This characteristic class is called the first Stiefel-Whitney class, and usually denoted

$$
w_{1}(\xi) \in H^{1}\left(X ; \mathbb{F}_{2}\right)
$$

The bijection shows that real line bundles are classified up to isomorphism by the first Stiefel-Whitney class.

Lemma 1.3. The fiberwise tensor product $\xi \otimes \eta$ of two line bundles over $X$ is again a line bundle over $X$. The first Stiefel-Whitney classes satisfy

$$
w_{1}(\xi \otimes \eta)=w_{1}(\xi)+w_{1}(\eta)
$$

in $H^{1}\left(X ; \mathbb{F}_{2}\right)$.
Proof. Let $\gamma^{1}=\gamma_{\mathbb{R}}^{1}$ denote the tautological line bundle

$$
E\left(\gamma^{1}\right)=S^{\infty} \times_{O(1)} \mathbb{R} \longrightarrow \mathbb{R} P^{\infty}
$$

with $w_{1}\left(\gamma^{1}\right)=x$, and let $\epsilon^{1}=\epsilon_{\mathbb{R}}^{1}: \mathbb{R}^{\infty} \times \mathbb{R} \rightarrow \mathbb{R} P^{\infty}$ denote the trivial line bundle with $w_{1}\left(\epsilon^{1}\right)=0$. Then the external tensor product

$$
\gamma^{1} \hat{\otimes} \gamma^{1}=\operatorname{pr}_{1}^{*}\left(\gamma^{1}\right) \otimes \operatorname{pr}_{2}^{*}\left(\gamma^{1}\right)
$$

over $\mathbb{R} P^{\infty} \times \mathbb{R} P^{\infty}$ is classified by a map

$$
m: \mathbb{R} P^{\infty} \times \mathbb{R} P^{\infty} \longrightarrow \mathbb{R} P^{\infty}
$$

In terms of the bar construction, $m$ is the map

$$
B O(1) \otimes B O(1) \cong B(O(1) \times O(1)) \longrightarrow B O(1)
$$

induced by the (commutative) group multiplication $O(1) \times O(1) \rightarrow O(1)$. Since $\gamma^{1} \otimes \epsilon^{1} \cong \gamma^{1} \cong \epsilon^{1} \otimes \gamma^{1}$ it follows that $m$ restricted to $\mathbb{R} P^{\infty} \times *$, or to $* \times \mathbb{R} P^{\infty}$, is homotopic to the identity. This implies that

$$
m^{*}(x)=x \times 1+1 \times x \in H^{1}\left(\mathbb{R} P^{\infty} \times \mathbb{R} P^{\infty} ; \mathbb{F}_{2}\right)=\mathbb{F}_{2}\{x \times 1,1 \times x\}
$$

Let $f: X \rightarrow \mathbb{R} P^{\infty}$ and $g: X \rightarrow \mathbb{R} P^{\infty}$ classify $\xi$ and $\eta$, respectively. Then $\xi \otimes \eta$ is classified by

$$
X \xrightarrow{\Delta} X \times X \xrightarrow{f \times g} \mathbb{R} P^{\infty} \times \mathbb{R} P^{\infty} \xrightarrow{m} \mathbb{R} P^{\infty}
$$

so

$$
w_{1}(\xi \otimes \eta)=\Delta^{*}\left(f^{*} \times g^{*}\right) m^{*}(x)=f^{*}(x) \cup 1+1 \cup g^{*}(x)=w_{1}(\xi)+w_{1}(\eta)
$$

Example 1.4. For $G=U(1)$ with $E U(1) \simeq S^{\infty}$ and $B U(1) \simeq \mathbb{C} P^{\infty} \simeq K(\mathbb{Z}, 2)$ each class

$$
y^{n} \in H^{2 n}\left(\mathbb{C} P^{\infty}\right)=H^{2 n}\left(\mathbb{C} P^{\infty} ; \mathbb{Z}\right)
$$

defines a $\mathbb{Z}$-valued characteristic class for real line bundles. The case $n=1$ is most interesting, when $y=\iota_{2}$ is the fundamental class, so that

$$
\begin{aligned}
\operatorname{Vect}_{1}(X) \cong[X, B U(1)] & \cong H^{2}(X)=H^{2}(X ; \mathbb{Z}) \\
{[f] } & \longmapsto f^{*}(y)
\end{aligned}
$$

is a natural bijection. Here $\operatorname{Vect}_{1}(X)=\operatorname{Vect}_{1}^{\mathbb{C}}(X)=\operatorname{Bun}_{\mathbb{C}, U(1)}(X) \cong \operatorname{Bun}_{U(1)}(X)$ denotes the set of isomorphism classes of complex line bundles over $X$. This characteristic class is called the first Chern class, and usually denoted

$$
c_{1}(\xi) \in H^{2}(X)
$$

The bijection shows that complex line bundles are classified up to isomorphism by the first Chern class.

Lemma 1.5. The fiberwise tensor product $\xi \otimes \eta$ of two line bundles over $X$ is again a line bundle over $X$. The first Chern classes satisfy

$$
c_{1}(\xi \otimes \eta)=c_{1}(\xi)+c_{1}(\eta)
$$

in $H^{2}(X)$.
Proof. Let $\gamma^{1}=\gamma_{\mathbb{C}}^{1}$ denote the tautological line bundle

$$
E\left(\gamma^{1}\right)=S^{\infty} \times_{U(1)} \mathbb{C} \longrightarrow \mathbb{C} P^{\infty}
$$

with $c_{1}\left(\gamma^{1}\right)=y$, and let $\epsilon^{1}=\epsilon_{\mathbb{C}}^{1}: \mathbb{C}^{\infty} \times \mathbb{C} \rightarrow \mathbb{C} P^{\infty}$ denote the trivial line bundle with $c_{1}\left(\epsilon^{1}\right)=0$. Then the external tensor product

$$
\gamma^{1} \hat{\otimes} \gamma^{1}=\operatorname{pr}_{1}^{*}\left(\gamma^{1}\right) \otimes \operatorname{pr}_{2}^{*}\left(\gamma^{1}\right)
$$

over $\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}$ is classified by a map

$$
m: \mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty} \longrightarrow \mathbb{C} P^{\infty}
$$

In terms of the bar construction, $m$ is the map

$$
B U(1) \otimes B U(1) \cong B(U(1) \times U(1)) \longrightarrow B U(1)
$$

induced by the (commutative) group multiplication $U(1) \times U(1) \rightarrow U(1)$. Since $\gamma^{1} \otimes \epsilon^{1} \cong \gamma^{1} \cong \epsilon^{1} \otimes \gamma^{1}$ it follows that $m$ restricted to $\mathbb{C} P^{\infty} \times *$, or to $* \times \mathbb{C} P^{\infty}$, is homotopic to the identity. This implies that

$$
m^{*}(y)=y \times 1+1 \times y \in H^{2}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)=\mathbb{Z}\{y \times 1,1 \times y\}
$$

Let $f: X \rightarrow \mathbb{C} P^{\infty}$ and $g: X \rightarrow \mathbb{C} P^{\infty}$ classify $\xi$ and $\eta$, respectively. Then $\xi \otimes \eta$ is classified by

$$
X \xrightarrow{\Delta} X \times X \xrightarrow{f \times g} \mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty} \xrightarrow{m} \mathbb{C} P^{\infty}
$$

So

$$
c_{1}(\xi \otimes \eta)=\Delta^{*}\left(f^{*} \times g^{*}\right) m^{*}(y)=f^{*}(y) \cup 1+1 \cup g^{*}(y)=c_{1}(\xi)+c_{1}(\eta)
$$

(There is a choice of sign convention here, namely whether $c_{1}\left(\gamma^{1}\right)$ is $y$ or $-y$, which is related to whether the fundamental class of $\mathbb{C} P^{n}$ is dual to $(-y)^{n}$ or $y^{n}$.)

## 2. Characteristic Classes for real vector bundles

Fix $n \geq 0$. The Stiefel space

$$
V_{n}\left(\mathbb{R}^{\infty}\right)=\left\{\left(v_{1}, \ldots, v_{n}\right) \mid v_{i} \in \mathbb{R}^{\infty},\left\langle v_{i}, v_{j}\right\rangle=\delta_{i j}\right\}
$$

of orthogonal $n$-frames in $\mathbb{R}^{\infty}$ is contractible. Viewing it as the space of isometries $v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\infty}$ it has a free (right) $O(n)$-action $(v, A) \mapsto v A$ given by precomposition by any isometry $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. The orbit space

$$
\operatorname{Gr}_{n}\left(\mathbb{R}^{\infty}\right)=V_{n}\left(\mathbb{R}^{\infty}\right) / O(n)=\left\{V \subset \mathbb{R}^{\infty} \mid \operatorname{dim}_{\mathbb{R}}(V)=n\right\}
$$

is the Grassmannian of $n$-dimensional real subspaces of $\mathbb{R}^{\infty}$. Hence

$$
\begin{aligned}
& \pi: V_{n}\left(\mathbb{R}^{\infty}\right) \longrightarrow \operatorname{Gr}_{n}\left(\mathbb{R}^{\infty}\right) \\
& \left(v_{1}, \ldots, v_{n}\right) \longrightarrow \mathbb{R}\left\{v_{1}, \ldots, v_{n}\right\}
\end{aligned}
$$

is a universal principal $O(n)$-bundle, and $\operatorname{Gr}_{n}\left(\mathbb{R}^{\infty}\right) \simeq B O(n)$ is a classifying space for $O(n)$-bundles, hence also for $G L_{n}(\mathbb{R})$-bundles, $\mathbb{R}^{n}$-vector bundles and Euclidean $\mathbb{R}^{n}$-vector bundles. The associated $\mathbb{R}^{n}$-bundle

$$
\pi: V_{n}\left(\mathbb{R}^{\infty}\right) \times_{O(n)} \mathbb{R}^{n} \longrightarrow \operatorname{Gr}_{n}\left(\mathbb{R}^{\infty}\right)
$$

is isomorphic to the tautological vector bundle $\gamma^{n}=\gamma_{\mathbb{R}}^{n}$, with total space

$$
E\left(\gamma^{n}\right)=\left\{(V, x) \mid V \in \operatorname{Gr}_{n}\left(\mathbb{R}^{\infty}\right), x \in V\right\}
$$

When $n=1, \operatorname{Gr}_{1}\left(\mathbb{R} P^{\infty}\right)=\mathbb{R} P^{\infty}$ classifies real line bundles, as discussed before.
The $R$-valued characteristic classes of real vector bundles correspond to elements of $H^{*}(B O(n) ; R) \cong H^{*}\left(\operatorname{Gr}_{n}\left(\mathbb{R}^{\infty}\right) ; R\right)$. This is best understood for $R=\mathbb{F}_{2}$ and $R=\mathbb{Z}[1 / 2]$, separately, and we focus on the first of these. Let $O(1)^{n} \subset O(n)$ be the diagonal subgroup, which is elementary abelian of order $2^{n}$. The inclusion induces a map

$$
i_{n}:\left(\mathbb{R} P^{\infty}\right)^{n} \simeq B O(1)^{n} \longrightarrow B O(n) \simeq \operatorname{Gr}_{n}\left(\mathbb{R}^{\infty}\right)
$$

classifying the external direct sum of $n$ real line bundles. In other words,

$$
i_{n}^{*}\left(\gamma^{n}\right) \cong \gamma^{1} \times \cdots \times \gamma^{1}
$$

with $n$ copies of $\gamma^{1}$. We obtain an induced homomorphism

$$
i_{n}^{*}: H^{*}\left(B O(n) ; \mathbb{F}_{2}\right) \longrightarrow H^{*}\left(B O(1) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}[x] \otimes \cdots \otimes \mathbb{F}_{2}[x] \cong \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]
$$

where we have used the Künneth theorem, there are $n$ copies of $H^{*}\left(\mathbb{R} P^{\infty} ; \mathbb{F}_{2}\right)=$ $\mathbb{F}_{2}[x]$, and

$$
x_{i}=1 \otimes \cdots \otimes 1 \otimes x \otimes 1 \otimes \cdots \otimes 1
$$

with $x$ in the $i$-th entry, for $1 \leq i \leq n$. Each $x$ and $x_{i}$ has cohomological degree 1 . Each permutation $\sigma \in \Sigma_{n}$ in the symmetric group on $n$ letters acts on $O(1)^{n}$ by permuting the $n$ factors. (This is the Weyl group action for $O(1)^{n}$ inside $O(n)$, since the normalizer of $O(1)^{n}$ is $\Sigma_{n} \ltimes O(1)^{n}=\Sigma_{n} \swarrow O(1) \subset O(n)$, where we view $\Sigma_{n}$ as a group of permutation matrices, within $O(n)$.) The induced map

$$
\sigma:\left(\mathbb{R} P^{\infty}\right)^{n} \simeq B O(1)^{n} \rightarrow B O(1)^{n} \simeq\left(\mathbb{R} P^{\infty}\right)^{n}
$$

also acts by permuting the factors. Hence

$$
\sigma^{*}\left(\xi_{1} \times \cdots \times \xi_{n}\right) \cong \xi_{\sigma(1)} \times \cdots \times \xi_{\sigma(n)}
$$

for any $n$ line bundles $\xi_{1}, \ldots, \xi_{n}$. In particular, when $\xi_{1}=\cdots=\xi_{n}=\gamma^{1}$, we get an isomorphism

$$
\sigma^{*}\left(\gamma^{1} \times \cdots \times \gamma^{1}\right) \cong \gamma^{1} \times \cdots \times \gamma^{1}
$$

This means that the triangle

commutes up to homotopy, so that

commutes. In other words, $i_{n}^{*}$ factors through the $\Sigma_{n}$-invariants

$$
H^{*}\left(B O(n) ; \mathbb{F}_{2}\right) \xrightarrow{\tilde{i}_{n}^{*}} H^{*}\left(B O(1)^{n} ; \mathbb{F}_{2}\right)^{\Sigma_{n}} \cong \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]^{\Sigma_{n}} \subset \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]
$$

These invariants are the symmetric polynomials in $x_{1}, \ldots, x_{n}$.

Definition 2.1. For $1 \leq k \leq n$ let

$$
e_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} x_{i_{1}} \cdots x_{i_{k}}
$$

be the $k$-th elementary symmetric polynomial. (Milnor and Stasheff write $\sigma_{k}$ in place of $e_{k}$.) If each $x_{i}$ has degree 1 , then $e_{k}\left(x_{1}, \ldots, x_{n}\right)$ has degree $k$. In particular, $e_{1}\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots+x_{n}, e_{2}\left(x_{1}, \ldots, x_{n}\right)=x_{1} x_{2}+\cdots+x_{n-1} x_{n}$ and $e_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \cdots x_{n}$.

The following theorem on symmetric polynomials is classical.

## Theorem 2.2.

$$
\mathbb{F}_{2}\left[e_{1}, \ldots, e_{n}\right]=\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]^{\Sigma_{n}}
$$

where $e_{k}=e_{k}\left(x_{1}, \ldots, x_{n}\right)$.
Theorem 2.3 ([Bor53]).

$$
\tilde{i}_{n}^{*}: H^{*}\left(B O(n) ; \mathbb{F}_{2}\right) \xrightarrow{\cong} \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]^{\Sigma_{n}} \cong \mathbb{F}_{2}\left[e_{1}, \ldots, e_{n}\right]
$$

is an isomorphism.
Definition 2.4. For $1 \leq k \leq n$ the $k$-th Stiefel-Whitney class

$$
w_{k} \in H^{k}\left(B O(n) ; \mathbb{F}_{2}\right)
$$

is characterized by

$$
i_{n}^{*}\left(w_{k}\right)=e_{k}\left(x_{1}, \ldots, x_{n}\right)
$$

Hence

$$
H^{*}\left(B O(n) ; \mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[w_{1}, \ldots, w_{n}\right]
$$

with $w_{k}$ in degree $k$.

## 3. Characteristic classes for complex vector bundles

Fix $n \geq 0$. The Stiefel space

$$
V_{n}\left(\mathbb{C}^{\infty}\right)=\left\{\left(v_{1}, \ldots, v_{n}\right) \mid v_{i} \in \mathbb{C}^{\infty},\left\langle v_{i}, v_{j}\right\rangle=\delta_{i j}\right\}
$$

of unitary $n$-frames in $\mathbb{C}^{\infty}$ is contractible. Viewing it as the space of isometries $v: \mathbb{C}^{n} \rightarrow \mathbb{C}^{\infty}$ it has a free (right) $U(n)$-action $(v, A) \mapsto v A$ given by precomposition by any isometry $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$. The orbit space

$$
\operatorname{Gr}_{n}\left(\mathbb{C}^{\infty}\right)=V_{n}\left(\mathbb{C}^{\infty}\right) / U(n)=\left\{V \subset \mathbb{C}^{\infty} \mid \operatorname{dim}_{\mathbb{C}}(V)=n\right\}
$$

is the Grassmannian of $n$-dimensional complex subspaces of $\mathbb{C}^{\infty}$. Hence

$$
\begin{aligned}
\pi: V_{n}\left(\mathbb{C}^{\infty}\right) & \longrightarrow \operatorname{Gr}_{n}\left(\mathbb{C}^{\infty}\right) \\
\left(v_{1}, \ldots, v_{n}\right) & \longrightarrow \mathbb{C}\left\{v_{1}, \ldots, v_{n}\right\}
\end{aligned}
$$

is a universal principal $U(n)$-bundle, and $\operatorname{Gr}_{n}\left(\mathbb{C}^{\infty}\right) \simeq B U(n)$ is a classifying space for $U(n)$-bundles, hence also for $G L_{n}(\mathbb{C})$-bundles, $\mathbb{C}^{n}$-vector bundles and Hermitian $\mathbb{C}^{n}$-vector bundles. The associated $\mathbb{C}^{n}$-bundle

$$
\pi: V_{n}\left(\mathbb{C}^{\infty}\right) \times_{U(n)} \mathbb{C}^{n} \longrightarrow \operatorname{Gr}_{n}\left(\mathbb{C}^{\infty}\right)
$$

is isomorphic to the tautological vector bundle $\gamma^{n}=\gamma_{\mathbb{C}}^{n}$, with total space

$$
E\left(\gamma^{n}\right)=\left\{(V, x) \mid V \in \operatorname{Gr}_{n}\left(\mathbb{C}^{\infty}\right), x \in V\right\}
$$

When $n=1, \operatorname{Gr}_{1}\left(\mathbb{C} P^{\infty}\right)=\mathbb{C} P^{\infty}$ classifies complex line bundles, as discussed before.

The integer valued characteristic classes of complex vector bundles correspond to elements of $H^{*} B U(n) \cong H^{*} \operatorname{Gr}_{n}\left(\mathbb{C}^{\infty}\right)$. Let $U(1)^{n} \subset U(n)$ be the diagonal torus. The inclusion induces a map

$$
i_{n}:\left(\mathbb{C} P^{\infty}\right)^{n} \simeq B U(1)^{n} \longrightarrow B U(n) \simeq \operatorname{Gr}_{n}\left(\mathbb{C}^{\infty}\right)
$$

classifying the external direct sum of $n$ complex line bundles. In other words,

$$
i_{n}^{*}\left(\gamma^{n}\right) \cong \gamma^{1} \times \cdots \times \gamma^{1}
$$

with $n$ copies of $\gamma^{1}$. We obtain an induced homomorphism

$$
i_{n}^{*}: H^{*} B U(n) \longrightarrow H^{*} B U(1) \cong \mathbb{Z}[y] \otimes \cdots \otimes \mathbb{Z}[y] \cong \mathbb{Z}\left[y_{1}, \ldots, y_{n}\right],
$$

where we have used the Künneth theorem, there are $n$ copies of $H^{*}\left(\mathbb{C} P^{\infty}\right)=\mathbb{Z}[y]$, and

$$
y_{i}=1 \otimes \cdots \otimes 1 \otimes y \otimes 1 \otimes \cdots \otimes 1
$$

with $y$ in the $i$-th entry, for $1 \leq i \leq n$. Each $y$ and $y_{i}$ has cohomological degree 2 . Each permutation $\sigma \in \Sigma_{n}$ in the symmetric group on $n$ letters acts on $U(1)^{n}$ by permuting the $n$ factors. (This is the Weyl group action for $U(1)^{n}$ inside $U(n)$, since the normalizer of $U(1)^{n}$ is $\Sigma_{n} \ltimes U(1)^{n}=\Sigma_{n} \prec U(1) \subset U(n)$, where we view $\Sigma_{n}$ as a group of permutation matrices, within $U(n)$.) The induced map

$$
\sigma:\left(\mathbb{C} P^{\infty}\right)^{n} \simeq B U(1)^{n} \rightarrow B U(1)^{n} \simeq\left(\mathbb{C} P^{\infty}\right)^{n}
$$

also acts by permuting the factors. Hence

$$
\sigma^{*}\left(\xi_{1} \times \cdots \times \xi_{n}\right) \cong \xi_{\sigma(1)} \times \cdots \times \xi_{\sigma(n)}
$$

for any $n$ line bundles $\xi_{1}, \ldots, \xi_{n}$. In particular, when $\xi_{1}=\cdots=\xi_{n}=\gamma^{1}$, we get an isomorphism

$$
\sigma^{*}\left(\gamma^{1} \times \cdots \times \gamma^{1}\right) \cong \gamma^{1} \times \cdots \times \gamma^{1}
$$

This means that the triangle

commutes up to homotopy, so that

commutes. In other words, $i_{n}^{*}$ factors through the $\Sigma_{n}$-invariants

$$
H^{*} B U(n) \xrightarrow{\tilde{i}_{n}^{*}} H^{*}\left(B U(1)^{n}\right)^{\Sigma_{n}} \cong \mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]^{\Sigma_{n}} \subset \mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]
$$

These invariants are the symmetric polynomials in $y_{1}, \ldots, y_{n}$.
Definition 3.1. For $1 \leq k \leq n$ let

$$
e_{k}\left(y_{1}, \ldots, y_{n}\right)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} y_{i_{1}} \cdots y_{i_{k}}
$$

be the $k$-th elementary symmetric polynomial. (Milnor and Stasheff write $\sigma_{k}$ in place of $e_{k}$.) If each $y_{i}$ has degree 2 , then $e_{k}\left(y_{1}, \ldots, y_{n}\right)$ has degree $2 k$. In particular, $e_{1}\left(y_{1}, \ldots, y_{n}\right)=y_{1}+\cdots+y_{n}, e_{2}\left(y_{1}, \ldots, y_{n}\right)=y_{1} y_{2}+\cdots+y_{n-1} y_{n}$ and $e_{n}\left(y_{1}, \ldots, y_{n}\right)=y_{1} \cdots y_{n}$.

The following theorem on symmetric polynomials is classical.

## Theorem 3.2.

$$
\mathbb{Z}\left[e_{1}, \ldots, e_{n}\right]=\mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]^{\Sigma_{n}}
$$

where $e_{k}=e_{k}\left(y_{1}, \ldots, y_{n}\right)$.
Theorem 3.3 ([Bor53]).

$$
\tilde{i}_{n}^{*}: H^{*} B U(n) \stackrel{\cong}{\cong} \mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]^{\Sigma_{n}} \cong \mathbb{Z}\left[e_{1}, \ldots, e_{n}\right]
$$

is an isomorphism.
Definition 3.4. For $1 \leq k \leq n$ the $k$-th Chern class

$$
c_{k} \in H^{2 k} B U(n)
$$

is characterized by

$$
i_{n}^{*}\left(c_{k}\right)=e_{k}\left(y_{1}, \ldots, y_{n}\right)
$$

Hence

$$
H^{*} B U(n)=\mathbb{Z}\left[c_{1}, \ldots, c_{n}\right]
$$

with $c_{k}$ in degree $2 k$.

## 4. Thom complexes

Definition 4.1. Let $\xi$ be an Euclidean $\mathbb{R}^{n}$-bundle $\pi: E=E(\xi) \rightarrow X$, with fibers $E_{x}=E(\xi)_{x}=\pi^{-1}(x)$. Let $\pi: P \rightarrow X$ be the associated principal $O(n)$-bundle, so that $E=P \times_{O(n)} \mathbb{R}^{n}$. We write

$$
D(\xi)=\{v \in E \mid\|v\| \leq 1\}=P \times_{O(n)} D^{n}
$$

and

$$
S(\xi)=\{v \in E \mid\|v\|=1\}=P \times_{O(n)} S^{n-1}
$$

for the unit disc and sphere subbundles of $\xi$. We have inclusions

$$
S(\xi) \subset D(\xi) \subset E
$$

of fiber bundles over $X$, all with structure group $O(n)$. Let

$$
\operatorname{Th}(\xi)=D(\xi) / S(\xi)
$$

be the Thom space of $\xi$.
The disc and sphere bundles, and the Thom space, are natural for maps of Euclidean vector bundles.

Definition 4.2. Let $R$ be a commutative ring. An $R$-orientation class of $\xi$ is an element

$$
U=U_{\xi} \in \tilde{H}^{n}(\operatorname{Th}(\xi) ; R) \cong H^{n}(D(\xi), S(\xi) ; R)
$$

whose restriction to

$$
H^{n}\left(D(\xi)_{x}, S(\xi)_{x} ; R\right) \cong H^{n}\left(D^{n}, S^{n-1} ; R\right) \cong R
$$

is a unit for each $x \in X$. Here $D(\xi)_{x}=D(\xi) \cap E_{x}$ and $S(\xi)_{x}=S(\xi) \cap E_{x}$ are the fibers of $D(\xi)$ and $S(\xi)$ over $x$.

Lemma 4.3. A choice of $\mathbb{Z}$-orientation class $U_{\xi} \in \tilde{H}^{n}(\operatorname{Th}(\xi) ; \mathbb{Z})$ is equivalent to a continuous choice of orientations of the fiber vector spaces $E_{x}$. There is a unique choice of $\mathbb{F}_{2}$-orientation $U_{\xi} \in \tilde{H}^{n}\left(\operatorname{Th}(\xi) ; \mathbb{F}_{2}\right)$.

Sketch proof. If $X$ is a CW complex, then $(D(\xi), S(\xi))$ is a relative CW complex with one $(k+n)$-cell for each $k$-cell of $X$. Hence $\operatorname{Th}(\xi)$ is a based CW complex with one $(k+n)$-cell for each $k$-cell of $X$, in addition to the base point 0 -cell. It follows that $\tilde{H}^{*}(\operatorname{Th}(\xi))=0$ for $*<n$.

In neighborhoods on $X$ where $\xi$ admits a trivialization, the result follows from the Künneth isomorphism. Let $A, B \subset X$. The Mayer-Vietoris sequence

$$
\begin{array}{r}
0 \rightarrow H^{n}(D(\xi \mid A \cup B), S(\xi \mid A \cup B)) \longrightarrow H^{n}(D(\xi \mid A), S(\xi \mid A)) \oplus H^{n}(D(\xi \mid B), S(\xi \mid B)) \\
\longrightarrow H^{n}(D(\xi \mid A \cap B), S(\xi \mid A \cap B))
\end{array}
$$

shows that choices of orientation classes $U_{\xi \mid A}$ and $U_{\xi \mid B}$ over $A$ and $B$, respectively, can be (uniquely) extended to an orientation class $U_{\xi \mid A \cup B}$ if and only if their restrictions over $A \cap B$ agree, and this compatibility is what a choice of orientation provides.

The Thom complex is monoidal for the external direct sum of vector bundles.
Lemma 4.4. Let $\xi$ be as above, let $\eta$ be an Euclidean $\mathbb{R}^{m}$-bundle $\pi: E(\eta) \rightarrow Y$, and let $\xi \times \eta$ be the external direct sum $\mathbb{R}^{n+m}$-bundle $E(\xi) \times E(\eta) \rightarrow X \times Y$. There is a homotopy equivalence

$$
\operatorname{Th}(\xi) \wedge \operatorname{Th}(\eta) \simeq \operatorname{Th}(\xi \times \eta)
$$

that is natural up to (coherent) homotopy. If $\xi$ and $\eta$ are $R$-oriented, then the smash product homomorphism

$$
\tilde{H}^{n}(\operatorname{Th}(\xi) ; R) \otimes_{R} \tilde{H}^{m}(\operatorname{Th}(\eta) ; R) \xrightarrow{\wedge} \tilde{H}^{n+m}(\operatorname{Th}(\xi \times \eta) ; R)
$$

takes $U_{\xi} \otimes U_{\eta}$ to an $R$-orientation class

$$
U_{\xi \times \eta}=U_{\xi} \wedge U_{\eta}
$$

for $\xi \times \eta$.
Sketch proof. There is an $O(n) \times O(m)$-equivariant homeomorphism

$$
D^{n} \times D^{m} \cong D^{n+m}
$$

that scales each vector by a positive factor, so as to restrict to a homeomorphism

$$
S^{n-1} \times D^{m} \cup D^{n} \times S^{m-1} \cong S^{n+m-1}
$$

Example 4.5. For each complex $n$-dimensional vector space $V$, the underlying real $2 n$-vector space has a canonical orientation, given by the ordered real basis

$$
\left(v_{1}, i v_{i}, \ldots, v_{n}, i v_{n}\right)
$$

where $\left(v_{1}, \ldots, v_{n}\right)$ is any choice of complex basis for $V$. Hence the underlying $\mathbb{R}^{2 n}$-bundle of any $\mathbb{C}^{n}$-bundle $\eta$ has a preferred integral orientation class $U_{\eta} \in$ $\tilde{H}^{2 n}(\operatorname{Th}(\eta) ; \mathbb{Z})$.

## 5. Euler classes

There is a homotopy cofiber sequence

$$
S(\xi) \xrightarrow{\pi} X \xrightarrow{z} C \pi=\operatorname{Th}(\xi)
$$

expressing $\operatorname{Th}(\xi)$ as the mapping cone of the sphere bundle projection $\pi: S(\xi) \rightarrow X$. The map $z: X \rightarrow \operatorname{Th}(\xi)$ is the composite $q s_{0}$ of the zero-section

$$
s_{0}: X \longrightarrow D(\xi) \subset E(\xi)
$$

mapping each $x \in X$ to the zero vector $0 \in E_{x}$ in the (unit disc and) vector space fiber over $x$, followed by the collapse map

$$
q: D(\xi) \longrightarrow D(\xi) / S(\xi)=\operatorname{Th}(\xi)
$$

(Transversality of maps $S^{N} \rightarrow \operatorname{Th}(\xi)$ with respect to $z: X \rightarrow \operatorname{Th}(\xi)$ plays a key role in Thom's classification of manifolds up to bordism.)

Definition 5.1. The Euler class of an $R$-oriented $\mathbb{R}^{n}$-bundle $\xi$ is the pullback

$$
e(\xi)=z^{*}\left(U_{\xi}\right) \in H^{n}(X ; R)
$$

of the orientation class along the zero-section.
Remark 5.2. The Euler class for $\mathbb{Z}$-oriented $\mathbb{R}^{n}$-bundles is a characteristic class for oriented real vector bundles, i.e., $\mathbb{R}^{n}$-bundles with structure group

$$
S O(n)=\{A \in O(n) \mid \operatorname{det}(A)=1\} \subset O(n)
$$

The classifying space

$$
B S O(n) \simeq \widetilde{\operatorname{Gr}}_{n}\left(\mathbb{R}^{\infty}\right)
$$

is equivalent to the Grassmannian of oriented $n$-dimensional real subspaces of $\mathbb{R}^{\infty}$, which is the universal (double) cover of $\operatorname{Gr}_{n}\left(\mathbb{R}^{\infty}\right)$. The universal (integral) Euler class is thus an element

$$
e \in H^{n}(B S O(n) ; \mathbb{Z})
$$

Theorem 5.3 ([MS74, Cor. 11.12]). Let $M$ be a smooth, closed and oriented $n$ manifold, with tangent bundle $\tau_{M}$ and fundamental class $[M] \in H_{n}(M ; \mathbb{Z})$. Then

$$
\left\langle e\left(\tau_{M}\right),[M]\right\rangle=\chi(M)
$$

is equal to the Euler characteristic of $M$.
Remark 5.4. The universal $\mathbb{F}_{2}$-valued Euler class for (not necessarily oriented) $\mathbb{R}^{n}$ bundles is an element

$$
\bar{e} \in H^{n}\left(B O(n) ; \mathbb{F}_{2}\right)
$$

Proposition 5.5. Let $\xi$ and $\eta$ be oriented $\mathbb{R}^{n}$ - and $\mathbb{R}^{m}$-bundles over $X$ and $Y$, respectively. The Euler classes of $\xi, \eta$ and the external direct sum $\xi \times \eta$ satisfy

$$
e(\xi \times \eta)=e(\xi) \times e(\eta)
$$

If $X=Y$ and $\xi \oplus \eta=\Delta^{*}(\xi \times \eta)$ is the fiberwise direct sum ( $=$ Whitney sum), then

$$
e(\xi \oplus \eta)=e(\xi) \cup e(\eta)
$$

Proof. The zero-sections are compatible, and induce the following commutative square.


Chasing $U_{\xi} \otimes U_{\eta}$ both ways gives the result for $\xi \times \eta$. The result for $\xi \oplus \eta$ (when $X=Y$ ) follows by pullback along $\Delta: X \rightarrow X \times X$.

Example 5.6. The group isomorphism $U(1) \cong S O(2)$ induces an equivalence $B U(1) \cong$ $B S O(2)$, and the universal Euler class $e \in H^{2}(B S O(2) ; \mathbb{Z})$ corresponds to the first Chern class $c_{1} \in H^{2}(B U(1) ; \mathbb{Z})$. The universal $\mathbb{F}_{2}$-valued Euler class $\bar{e} \in$ $H^{1}\left(B O(1) ; \mathbb{F}_{2}\right)$ equals the first Stiefel-Whitney class $w_{1} \in H^{1}\left(B O(1) ; \mathbb{F}_{2}\right)$.

## 6. The Thom isomorphism

Theorem 6.1 ([Tho54]). Let $\xi$ be an $\mathbb{R}^{n}$-bundle $\pi: E \rightarrow X$, with $R$-orientation class $U_{\xi} \in H^{n}(D(\xi), S(\xi) ; R) \cong \tilde{H}^{n}(\operatorname{Th}(\xi) ; R)$.
(a) The cup product with $U_{\xi}$ defines an isomorphism

$$
\begin{aligned}
H^{i}(X ; R) \cong H^{i}(D(\xi) ; R) & \xrightarrow{\cong} H^{i+n}(D(\xi), S(\xi) ; R) \cong \tilde{H}^{i+n}(\operatorname{Th}(\xi) ; R) \\
x & \longmapsto x \cup U_{\xi}
\end{aligned}
$$

for each i, combining to the (cohomological) Thom isomorphism

$$
\Phi_{\xi}: H^{*}(X ; R) \xrightarrow{\cong} \tilde{H}^{*+n}(\operatorname{Th}(\xi) ; R) .
$$

(b) The cap product with $U_{\xi}$ defines an isomorphism

$$
\begin{aligned}
\tilde{H}_{n+i}(\operatorname{Th}(\xi) ; R) \cong H_{n+i}(D(\xi), S(\xi) ; R) & \xlongequal{\cong} H_{i}(D(\xi) ; R) \cong H_{i}(X ; R) \\
\alpha & \longmapsto U_{\xi} \cap \alpha
\end{aligned}
$$

for each i, combining to the (homological) Thom isomorphism

$$
\Phi_{\xi}: \tilde{H}_{*+n}(\operatorname{Th}(\xi) ; R) \xrightarrow{\cong} H_{*}(X ; R) .
$$

Sketch proof. (a) In neighborhoods on $X$ where $\xi$ admits a trivialization, this follows from the Künneth isomorphism. Let $A, B \subset X$. The map of Mayer-Vietoris sequences induced by cup product with $R$-orientation classes, see Figure 1, and the five-lemma, give the inductive step from the case of $\xi|A, \xi| B$ and $\xi \mid A \cap B$ to $\xi \mid A \cup B$.
(b) The same proof works, using the map of Mayer-Vietoris sequences induced by cap product with $R$-orientation classes.

The relative cup product can be replaced by the external smash product followed by pullback along the Thom diagonal map

$$
\operatorname{Th}(\xi) \longrightarrow D(\xi)_{+} \wedge \operatorname{Th}(\xi) \simeq X_{+} \wedge \operatorname{Th}(\xi)
$$

taking $v$ to $\pi(v) \wedge v$ for $v \in D(\xi)$. This is the base point when $v \in S(\xi)$.


Figure 1. Map of Mayer-Vietoris sequences

## 7. The Gysin sequence

Theorem 7.1 ([Gys42]). Let $\xi$ be an $R$-oriented $\mathbb{R}^{n}$-bundle $\pi: E \rightarrow X$, with Euler class $e(\xi) \in H^{n}(X ; R)$.
(a) The long exact cohomology sequence of the pair $(D(\xi), S(\xi))$ is isomorphic to the (cohomological) Gysin sequence

$$
\cdots \rightarrow H^{i}(X ; R) \xrightarrow{-\cup e(\xi)} H^{i+n}(X ; R) \xrightarrow{\pi^{*}} H^{i+n}(S(\xi) ; R) \longrightarrow H^{i+1}(X ; R) \rightarrow \ldots
$$

(b) The long exact homology sequence of the same pair is isomorphic to the (homological) Gysin sequence

$$
\cdots \rightarrow H_{i+1}(X ; R) \longrightarrow H_{n+i}(S(\xi) ; R) \xrightarrow{\pi_{*}} H_{n+i}(X ; R) \xrightarrow{e(\xi) \cap-} H_{i}(X ; R) \rightarrow \ldots
$$

Proof.


## 8. Cohomology of $B U(n)$

Consider the linear action of $U(n)$ on $S^{2 n-1}=S\left(\mathbb{C}^{n}\right)$. The subgroup $U(n-1)$ fixes the last unit vector $e_{n}=(0, \ldots, 0,1)$, so that

$$
\begin{aligned}
U(n) / U(n-1) & \cong S^{2 n-1} \\
A \cdot U(n-1) & \longmapsto A e_{n} .
\end{aligned}
$$

Hence we have an equivalence

$$
\begin{aligned}
B U(n-1)= & E U(n-1) / U(n-1) \xrightarrow{\simeq} E U(n) / U(n-1) \\
& \cong E U(n) \times_{U(n)} U(n) / U(n-1) \cong E U(n) \times_{U(n)} S^{2 n-1}=S\left(\gamma^{n}\right)
\end{aligned}
$$

where $\gamma^{n}=\gamma_{\mathbb{C}}^{n}$ is the tautological $\mathbb{C}^{n}$-bundle over $B U(n) \simeq \operatorname{Gr}_{n}\left(\mathbb{C}^{\infty}\right)$. The inclusion $\iota: B U(n-1) \rightarrow B U(n)$ corresponds to the projection $\pi: S\left(\gamma^{n}\right) \rightarrow B U(n)$.

The underlying $\mathbb{R}^{2 n}$-bundle of the $\mathbb{C}^{n}$-bundle $\gamma^{n}$ is canonically $\mathbb{Z}$-oriented, so we have a long exact Gysin sequence
$\cdots \rightarrow H^{i} B U(n) \xrightarrow{-\cup e\left(\gamma^{n}\right)} H^{i+2 n} B U(n) \xrightarrow{\iota^{*}} H^{i+2 n} B U(n-1) \longrightarrow H^{i+1} B U(n) \rightarrow \ldots$. Note that $\iota^{*}$ is an isomorphism for $i+2 n \leq 2 n-2$, i.e., for $i \leq-2$.

Definition 8.1. Suppose, by induction on $n \geq 1$, that the Chern classes

$$
c_{k} \in H^{2 k}(B U(n-1) ; \mathbb{Z})
$$

have been defined for $1 \leq k<n$. Then we define

$$
c_{k} \in H^{2 k}(B U(n) ; \mathbb{Z})
$$

for $1 \leq k<n$ by the condition $\iota^{*}\left(c_{k}\right)=c_{k}$. Finally, we define

$$
c_{n} \in H^{2 n}(B U(n) ; \mathbb{Z})
$$

to be equal to the Euler class $e\left(\gamma^{n}\right)$ of the canonically oriented $\mathbb{R}^{2 n}$-bundle underlying the tautological $\mathbb{C}^{n}$-bundle over $B U(n)$.

## Proposition 8.2.

$$
\mathbb{Z}\left[c_{1}, \ldots, c_{n}\right] \stackrel{\cong}{\Longrightarrow} H^{*} B U(n)
$$

Proof. Assume, by induction, that $\mathbb{Z}\left[c_{1}, \ldots, c_{n-1}\right] \cong H^{*} B U(n-1)$. Then the ring homomorphism $\iota^{*}$ is surjective, so the Gysin sequence breaks up into a short exact sequence

$$
0 \rightarrow H^{*-2 n} B U(n) \xrightarrow{{\cdot c_{n}}} H^{*} B U(n) \xrightarrow{\iota^{*}} H^{*} B U(n-1) \rightarrow 0
$$

It follows by induction on degrees that this is isomorphic to

$$
0 \rightarrow \Sigma^{2 n} \mathbb{Z}\left[c_{1}, \ldots, c_{n}\right] \xrightarrow{c_{n}} \mathbb{Z}\left[c_{1}, \ldots, c_{n}\right] \longrightarrow \mathbb{Z}\left[c_{1}, \ldots, c_{n-1}\right] \rightarrow 0
$$

## Proposition 8.3.

$$
\begin{aligned}
\tilde{i}_{n}^{*}: H^{*} B U(n) & \longrightarrow \mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]^{\Sigma_{n}} \\
c_{k} & \longmapsto e_{k}\left(y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

maps $c_{k}$ to the $k$-th elementary symmetric polynomial

$$
e_{k}\left(y_{1}, \ldots, y_{n}\right)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} y_{i_{1}} \cdots y_{i_{k}}
$$

Proof. For $1 \leq k<n$ this follows by induction, since

commutes and the right hand vertical map is an isomorphism below degree $2 n$, sending $e_{k}\left(y_{1}, \ldots, y_{n}\right)$ to $e_{k}\left(y_{1}, \ldots, y_{n-1}\right)$ for each $1 \leq k<n$. It remains to prove that

$$
\tilde{i}_{n}^{*}\left(c_{n}\right)=y_{1} \cdots y_{n}=y \times \cdots \times y \in H^{*}\left(B U(1)^{n}\right)^{\Sigma_{n}} .
$$

It suffices to prove that that

$$
i_{n}^{*}\left(c_{n}\right)=y \times \cdots \times y \in H^{*}\left(B U(1)^{n}\right) .
$$

This follows from $c_{n}=e\left(\gamma^{n}\right), i_{n}^{*}\left(\gamma^{n}\right)=\gamma^{1} \times \cdots \times \gamma^{1}$ and the product formula for the Euler class:

$$
\begin{aligned}
i_{n}^{*}\left(c_{n}\right)=i_{n}^{*} e\left(\gamma^{n}\right)=e\left(i_{n}^{*} \gamma^{n}\right)=e\left(\gamma^{1} \times \cdots \times\right. & \left.\gamma^{1}\right) \\
& =e\left(\gamma^{1}\right) \times \cdots \times e\left(\gamma^{1}\right)=y \times \cdots \times y .
\end{aligned}
$$

Theorem 3.3 follows, in view of Theorem 3.2.
Remark 8.4. At this point, we have available the "splitting principle" for characteristic classes of complex vector bundles. To prove a statement about a natural class $c(\xi) \in H^{*}(X ; R)$ for a $\mathbb{C}^{n}$-bundle over $X$, it suffices by naturality to handle the case of $c=c\left(\gamma^{n}\right) \in H^{*}(B U(n) ; R)$. To verify an identity in $H^{*}(B U(n) ; R)$ it suffices to verify it after applying the injective ring homomorphism

$$
i_{n}^{*}: H^{*}(B U(n) ; R) \longrightarrow H^{*}\left(B U(1)^{n} ; R\right) \cong R\left[y_{1}, \ldots, y_{n}\right]
$$

Hence it suffices to check the condition for $c(\xi)=i_{n}^{*}(c)$ in the case of

$$
\xi=i_{n}^{*}\left(\gamma^{n}\right)=\gamma^{1} \times \cdots \times \gamma^{1}=\operatorname{pr}_{1}^{*} \gamma^{1} \oplus \cdots \oplus \operatorname{pr}_{n}^{*} \gamma^{1}
$$

which is a Whitney sum of $n$ complex line bundles over $B U(1)^{n} \simeq\left(\mathbb{C} P^{\infty}\right)^{n}$. Hence we may effectively assume that $\xi$ splits as a direct sum of line bundles.

For a $\mathbb{C}^{n}$-bundle $\xi$ we set $c_{0}(\xi)=1$ and $c_{k}(\xi)=0$ for $k>n$, and write $c(\xi)=$ $\sum_{k \geq 0} c_{k}(\xi)$ for the total Chern class of $\xi$. The Whitney sum formula for Chern classes follows.

Theorem 8.5. Let $\xi$ and $\eta$ be complex vector bundles over $X$. Then

$$
c_{k}(\xi \oplus \eta)=\sum_{i+j} c_{i}(\xi) \cup c_{j}(\eta) \in H^{2 k}(X)
$$

Hence

$$
c(\xi \oplus \eta)=c(\xi) \cup c(\eta) \in H^{*}(X)
$$

Proof. By naturality, it suffices to prove that

$$
c_{k}\left(\gamma^{n} \times \gamma^{m}\right)=\sum_{i+j=k} c_{i}\left(\gamma^{n}\right) \times c_{k}\left(\gamma^{m}\right) \in H^{2 k}(B U(n) \times B U(m)) .
$$

This can be verified using the injectivity of $i_{n}^{*}: H^{*} B U(n) \rightarrow H^{*} B U(1)^{n}$ for all $n$, i.e., by the splitting principle. The diagram

commutes, where the right hand vertical map $\mu_{n, m}=\mu_{n, m}^{\oplus}$ is induced by the block sum inclusion $U(n) \times U(m) \rightarrow U(n+m)$ mapping $(A, B)$ to $\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$, and represents the external direct sum $\gamma^{n} \times \gamma^{m}$. Then

$$
\left(i_{n} \times i_{m}\right)^{*} c_{k}\left(\gamma^{n} \times \gamma^{m}\right)=i_{n+m}^{*} c_{k}=e_{k}\left(y_{1}, \ldots, y_{n+m}\right)
$$

and

$$
\begin{aligned}
\left(i_{n} \times i_{m}\right)^{*} \sum_{i+j=k} c_{i}\left(\gamma^{n}\right) \times c_{j}\left(\gamma^{m}\right) & =\sum_{i+j=k} i_{n}^{*} c_{i} \times i_{m}^{*} c_{j} \\
& =\sum_{i+j=k} e_{i}\left(y_{1}, \ldots, y_{n}\right) \times e_{j}\left(y_{n+1}, \ldots, y_{n+m}\right)
\end{aligned}
$$

The claim thus follows from the identity

$$
e_{k}\left(y_{1}, \ldots, y_{n+m}\right)=\sum_{i+j=k} e_{i}\left(y_{1}, \ldots, y_{n}\right) e_{j}\left(y_{n+1}, \ldots, y_{n+m}\right)
$$

in $\mathbb{Z}\left[y_{1}, \ldots, y_{n}, y_{n+1}, \ldots, y_{n+m}\right]$.
As in Milnor's lemma on the Cartan formula for the Steenrod operations, we can express the Whitney sum formula for Chern classes as a coproduct homomorphism.

Corollary 8.6. $\mu_{n, m}: B U(n) \times B U(m) \rightarrow B U(n+m)$ induces

$$
\begin{aligned}
\mu_{n, m}^{*}: H^{*} B U(n+m) & \longrightarrow H^{*}(B U(n) \times B U(m)) \cong H^{*} B U(n) \otimes H^{*} B U(m) \\
c_{k} & \longmapsto \sum_{i+j=k} c_{i} \otimes c_{j}
\end{aligned}
$$

Example 8.7. Let $\tau_{\mathbb{C} P^{n}}, \gamma_{n}^{1}$ and $\epsilon^{1}$ be the tangent bundle, tautological line bundle and trivial line bundle over $\mathbb{C} P^{n}$, respectively. Let $\gamma^{*}=\operatorname{Hom}\left(\gamma_{n}^{1}, \epsilon^{1}\right)$ be the linear dual of the tautological line bundle. There is a canonical short exact of complex vector bundles

$$
0 \rightarrow \epsilon^{1} \longrightarrow \operatorname{Hom}\left(\gamma_{n}^{1}, \epsilon^{n+1}\right) \longrightarrow \tau_{\mathbb{C} P^{n}} \rightarrow 0
$$

so that $\tau_{\mathbb{C} P^{n}} \oplus \epsilon^{1} \cong(n+1) \gamma^{*}$. Hence the total Chern classes satisfy

$$
c\left(\tau_{\mathbb{C} P^{n}}\right)=c\left(\tau_{\mathbb{C} P^{n}} \oplus \epsilon^{1}\right)=c\left((n+1) \gamma^{*}\right)=c\left(\gamma^{*}\right)^{n+1}
$$

in $H^{*}\left(\mathbb{C} P^{n}\right) \cong \mathbb{Z}[y] /\left(y^{n+1}\right)$. With the convention $c_{1}\left(\gamma_{n}^{1}\right)=y$ we have $c_{1}\left(\gamma^{*}\right)=-y$ and $c\left(\gamma^{*}\right)=1-y$, so that $c\left(\tau_{\mathbb{C} P^{n}}\right)=(1-y)^{n+1}=1+(n+1)(-y)+\cdots+(n+1)(-y)^{n}$. Hence

$$
c_{i}\left(\tau_{\mathbb{C} P^{n}}\right)=\binom{n+1}{i}(-y)^{i}
$$

for $1 \leq i \leq n$. In particular, $\left\langle(-y)^{n},\left[\mathbb{C} P^{n}\right]\right\rangle=1$ with this convention. For this reason, many authors change the sign of $y$, so that $y=c_{1}\left(\gamma^{*}\right), c\left(\tau_{\mathbb{C} P^{n}}\right)=(1+y)^{n}$ and $c_{i}\left(\tau_{\mathbb{C} P^{n}}\right)=\binom{n+1}{i} y^{i}$.

## 9. Сонomology of $B O(n)$

Consider the linear action of $O(n)$ on $S^{n-1}=S\left(\mathbb{R}^{n}\right)$. The subgroup $O(n-1)$ fixes the last unit vector $e_{n}=(0, \ldots, 0,1)$, so that

$$
\begin{aligned}
O(n) / O(n-1) & \cong S^{n-1} \\
A \cdot O(n-1) & \longmapsto A e_{n} .
\end{aligned}
$$

Hence we have an equivalence

$$
\begin{aligned}
B O(n-1)= & E O(n-1) / O(n-1) \xrightarrow{\simeq} E O(n) / O(n-1) \\
& \cong E O(n) \times_{O(n)} O(n) / O(n-1) \cong E O(n) \times_{O(n)} S^{n-1}=S\left(\gamma^{n}\right)
\end{aligned}
$$

where $\gamma^{n}=\gamma_{\mathbb{R}}^{n}$ is the tautological $\mathbb{R}^{n}$-bundle over $B O(n) \simeq \operatorname{Gr}_{n}\left(\mathbb{R}^{\infty}\right)$. The inclusion $\iota: B O(n-1) \rightarrow B O(n)$ corresponds to the projection $\pi: S\left(\gamma^{n}\right) \rightarrow B O(n)$.

The $\mathbb{R}^{n}$-bundle $\gamma^{n}$ is canonically $\mathbb{F}_{2}$-oriented, so we have a long exact Gysin sequence

$$
\begin{aligned}
\cdots \rightarrow H^{i}\left(B O(n) ; \mathbb{F}_{2}\right) & \xrightarrow{-\cup \bar{e}\left(\gamma^{n}\right)} H^{i+n}\left(B O(n) ; \mathbb{F}_{2}\right) \\
& \xrightarrow{\iota^{*}} H^{i+n}\left(B O(n-1) ; \mathbb{F}_{2}\right) \longrightarrow H^{i+1}\left(B O(n) ; \mathbb{F}_{2}\right) \rightarrow \ldots .
\end{aligned}
$$

Note that $\iota^{*}$ is an isomorphism for $i+n \leq n-2$, i.e., for $i \leq-2$.
Remark 9.1. At this point, an argument is needed for why $\iota^{*}: H^{n-1}\left(B O(n) ; \mathbb{F}_{2}\right) \rightarrow$ $H^{n-1}\left(B O(n-1) ; \mathbb{F}_{2}\right)$ is an isomorphism, in the case corresponding to $i=-1$ in the Gysin sequence above. It is clearly injective, and by exactness, surjectivity is equivalent to knowing that $\bar{e}\left(\gamma^{n}\right) \neq 0$ in $H^{n}\left(B O(n) ; \mathbb{F}_{2}\right)$. Milnor and Stasheff [MS74] resolve this by directly constructing the classes $w_{k} \in H^{k}\left(B O(n) ; \mathbb{F}_{2}\right)$ using Thom's formula

$$
w_{k}=\Phi_{\xi}^{-1}\left(S q^{k}\left(U_{\xi}\right)\right) \in \tilde{H}^{k+n}\left(\operatorname{Th}(\xi) ; \mathbb{F}_{2}\right)
$$

in the universal case $\xi=\gamma^{n}$, and checking that $\iota^{*}\left(w_{k}\right)=w_{k}$ for all $1 \leq k<n$. ((ETC: We omit to discus this in more detail.))
Definition 9.2. Suppose, by induction on $n \geq 1$, that the Stiefel-Whitney classes

$$
w_{k} \in H^{k}\left(B O(n-1) ; \mathbb{F}_{2}\right)
$$

have been defined for $1 \leq k<n$. Then we define

$$
w_{k} \in H^{k}\left(B O(n) ; \mathbb{F}_{2}\right)
$$

for $1 \leq k<n$ by the condition $\iota^{*}\left(w_{k}\right)=w_{k}$. Finally, we define

$$
w_{n} \in H^{n}\left(B O(n) ; \mathbb{F}_{2}\right)
$$

to be equal to the $\mathbb{F}_{2^{-}}$-valued Euler class $\bar{e}\left(\gamma^{n}\right)$ associated to the canonical $\mathbb{F}_{2^{-}}$ orientation of $\gamma^{n}$.

## Proposition 9.3.

$$
\mathbb{F}_{2}\left[w_{1}, \ldots, w_{n}\right] \xrightarrow{\cong} H^{*} B O(n) .
$$

Proof. Assume, by induction, that $\mathbb{F}_{2}\left[w_{1}, \ldots, w_{n-1}\right] \cong H^{*} B O(n-1)$. Then the ring homomorphism $\iota^{*}$ is surjective, so the Gysin sequence breaks up into a short exact sequence

$$
0 \rightarrow H^{*-n} B O(n) \xrightarrow{\cdot w_{n}} H^{*} B O(n) \xrightarrow{\iota^{*}} H^{*} B O(n-1) \rightarrow 0 .
$$

It follows by induction on degrees that this is isomorphic to

$$
0 \rightarrow \Sigma^{n} \mathbb{F}_{2}\left[w_{1}, \ldots, w_{n}\right] \xrightarrow{\cdot w_{n}} \mathbb{F}_{2}\left[w_{1}, \ldots, w_{n}\right] \longrightarrow \mathbb{F}_{2}\left[w_{1}, \ldots, w_{n-1}\right] \rightarrow 0
$$

## Proposition 9.4.

$$
\begin{aligned}
\tilde{i}_{n}^{*}: H^{*} B O(n) & \longrightarrow \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]^{\Sigma_{n}} \\
w_{k} & \longmapsto e_{k}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

maps $w_{k}$ to the $k$-th elementary symmetric polynomial

$$
e_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} x_{i_{1}} \cdots x_{i_{k}}
$$

Proof. For $1 \leq k<n$ this follows by induction, since

commutes and the right hand vertical map is an isomorphism below degree $n$, sending $e_{k}\left(x_{1}, \ldots, x_{n}\right)$ to $e_{k}\left(x_{1}, \ldots, x_{n-1}\right)$ for each $1 \leq k<n$. It remains to prove that

$$
\tilde{i}_{n}^{*}\left(w_{n}\right)=x_{1} \cdots x_{n}=x \times \cdots \times x \in H^{*}\left(B O(1)^{n}\right)^{\Sigma_{n}}
$$

It suffices to prove that that

$$
i_{n}^{*}\left(w_{n}\right)=x \times \cdots \times x \in H^{*}\left(B O(1)^{n}\right)
$$

This follows from $w_{n}=\bar{e}\left(\gamma^{n}\right), i_{n}^{*}\left(\gamma^{n}\right)=\gamma^{1} \times \cdots \times \gamma^{1}$ and the product formula for the Euler class:

$$
\begin{aligned}
& i_{n}^{*}\left(w_{n}\right)=i_{n}^{*} \bar{e}\left(\gamma^{n}\right)=\bar{e}\left(i_{n}^{*} \gamma^{n}\right)=\bar{e}\left(\gamma^{1} \times \cdots \times \gamma^{1}\right) \\
&=\bar{e}\left(\gamma^{1}\right) \times \cdots \times \bar{e}\left(\gamma^{1}\right)=x \times \cdots \times x
\end{aligned}
$$

Theorem 2.3 follows, in view of Theorem 2.2.
For a $\mathbb{R}^{n}$-bundle $\xi$ we set $w_{0}(\xi)=1$ and $w_{k}(\xi)=0$ for $k>n$, and write $w(\xi)=\sum_{k \geq 0} w_{k}(\xi)$ for the total Stiefel-Whitney class of $\xi$.

The Whitney sum formula for Stiefel-Whitney classes follows.
Theorem 9.5. Let $\xi$ and $\eta$ be real vector bundles over $X$. Then

$$
w_{k}(\xi \oplus \eta)=\sum_{i+j} w_{i}(\xi) \cup w_{j}(\eta) \in H^{k}\left(X ; \mathbb{F}_{2}\right)
$$

Hence

$$
w(\xi \oplus \eta)=w(\xi) \cup w(\eta) \in H^{*}\left(X ; \mathbb{F}_{2}\right)
$$

Proof. By naturality, it suffices to prove that

$$
w_{k}\left(\gamma^{n} \times \gamma^{m}\right)=\sum_{i+j=k} w_{i}\left(\gamma^{n}\right) \times w_{k}\left(\gamma^{m}\right) \in H^{k}\left(B O(n) \times B O(m) ; \mathbb{F}_{2}\right)
$$

This can be verified using the injectivity of $i_{n}^{*}: H^{*}\left(B O(n) ; \mathbb{F}_{2}\right) \rightarrow H^{*}\left(B O(1)^{n} ; \mathbb{F}_{2}\right)$ for all $n$, i.e., by the splitting principle. The diagram

commutes, where the right hand vertical map $\mu_{n, m}=\mu_{n, m}^{\oplus}$ is induced by the block sum inclusion $O(n) \times O(m) \rightarrow O(n+m)$ mapping $(A, B)$ to $\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$, and represents the external direct sum $\gamma^{n} \times \gamma^{m}$. Then

$$
\left(i_{n} \times i_{m}\right)^{*} w_{k}\left(\gamma^{n} \times \gamma^{m}\right)=i_{n+m}^{*} w_{k}=e_{k}\left(x_{1}, \ldots, x_{n+m}\right)
$$

and

$$
\begin{aligned}
\left(i_{n} \times i_{m}\right)^{*} \sum_{i+j=k} w_{i}\left(\gamma^{n}\right) \times w_{j}\left(\gamma^{m}\right) & =\sum_{i+j=k} i_{n}^{*} w_{i} \times i_{m}^{*} w_{j} \\
& =\sum_{i+j=k} e_{i}\left(x_{1}, \ldots, x_{n}\right) \times e_{j}\left(x_{n+1}, \ldots, x_{n+m}\right)
\end{aligned}
$$

The claim thus follows from the identity

$$
e_{k}\left(x_{1}, \ldots, x_{n+m}\right)=\sum_{i+j=k} e_{i}\left(x_{1}, \ldots, x_{n}\right) e_{j}\left(x_{n+1}, \ldots, x_{n+m}\right)
$$

in $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right]$.
As in Milnor's lemma on the Cartan formula for the Steenrod operations, we can express the Whitney sum formula for Stiefel-Whitney classes as a coproduct homomorphism.

Corollary 9.6. $\mu_{n, m}: B O(n) \times B O(m) \rightarrow B O(n+m)$ induces

$$
\begin{aligned}
\mu_{n, m}^{*}: H^{*} B O(n+m) & \longrightarrow H^{*}(B O(n) \times B O(m)) \cong H^{*} B O(n) \otimes H^{*} B O(m) \\
w_{k} & \longmapsto \sum_{i+j=k} w_{i} \otimes w_{j}
\end{aligned}
$$

Example 9.7. Let $\tau_{\mathbb{R} P^{n}}, \gamma_{n}^{1}$ and $\epsilon^{1}$ be the tangent bundle, tautological line bundle and trivial line bundle over $\mathbb{R} P^{n}$, respectively. Let $\gamma^{*}=\operatorname{Hom}\left(\gamma_{n}^{1}, \epsilon^{1}\right)$ be the linear dual of the tautological line bundle, which in this (real) case is isomorphic to $\gamma_{n}^{1}$. There is a canonical short exact of real vector bundles

$$
0 \rightarrow \epsilon^{1} \longrightarrow \operatorname{Hom}\left(\gamma_{n}^{1}, \epsilon^{n+1}\right) \longrightarrow \tau_{\mathbb{R} P^{n}} \rightarrow 0
$$

so that $\tau_{\mathbb{R} P^{n}} \oplus \epsilon^{1} \cong(n+1) \gamma^{*}$. Hence the total Stiefel-Whitney classes satisfy

$$
w\left(\tau_{\mathbb{R} P^{n}}\right)=w\left(\tau_{\mathbb{R} P^{n}} \oplus \epsilon^{1}\right)=w\left((n+1) \gamma^{*}\right)=w\left(\gamma^{*}\right)^{n+1}
$$

in $H^{*}\left(\mathbb{R} P^{n} ; \mathbb{F}_{2}\right)=\mathbb{F}_{2}[x] /\left(x^{n+1}\right)$. Here $w_{1}\left(\gamma_{n}^{1}\right)=w_{1}\left(\gamma^{*}\right)=x$, so that $w\left(\tau_{\mathbb{R} P^{n}}\right)=$ $(1+x)^{n+1}=1+(n+1) x+\cdots+(n+1) x^{n}$. Hence

$$
w_{i}\left(\tau_{\mathbb{R} P^{n}}\right)=\binom{n+1}{i} x^{i}
$$

for $1 \leq i \leq n$, read modulo 2 .
10. (Co-)homology of $B O$ and $B U$ as a bipolynomial bialgebras

Definition 10.1. Let

$$
\begin{aligned}
& O=\bigcup_{n} O(n) \\
& U=\bigcup_{n} U(n)
\end{aligned}
$$

be the infinite rank orthogonal and unitary groups. Their classifying spaces are

$$
\begin{aligned}
& B O \simeq \operatorname{Gr}_{\infty}\left(\mathbb{R}^{\infty}\right)=\operatorname{colim}_{n} \operatorname{Gr}_{n}\left(\mathbb{R}^{\infty}\right) \\
& B U \simeq \operatorname{Gr}_{\infty}\left(\mathbb{C}^{\infty}\right)=\operatorname{colim}_{n} \operatorname{Gr}_{n}\left(\mathbb{C}^{\infty}\right)
\end{aligned}
$$

The maps $\mu_{n, m}$ induce pairings

$$
B O \times B O \simeq \operatorname{colim}_{n, m} \operatorname{Gr}_{n}\left(\mathbb{R}^{\infty}\right) \times \operatorname{Gr}_{m}\left(\mathbb{R}^{\infty}\right) \xrightarrow{\mu} \underset{n, m}{\operatorname{colim}} \operatorname{Gr}_{n+m}\left(\mathbb{R}^{\infty} \oplus \mathbb{R}^{\infty}\right) \simeq B O
$$

and

$$
B U \times B U \simeq \underset{n, m}{\operatorname{colim}} \operatorname{Gr}_{n}\left(\mathbb{C}^{\infty}\right) \times \operatorname{Gr}_{m}\left(\mathbb{C}^{\infty}\right) \xrightarrow{\mu} \underset{n, m}{\operatorname{colim}} \operatorname{Gr}_{n+m}\left(\mathbb{C}^{\infty} \oplus \mathbb{C}^{\infty}\right) \simeq B U,
$$

which are unital, associative and commutative up to homotopy. ((ETC: These define $\mathbb{E}_{\infty}$ structures on $B O$ and $B U$, in these sense of spaces with operad actions.))

Theorem 10.2. $H^{*}\left(B O ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[w_{k} \mid k \geq 1\right]$ is a bicommutative $\mathbb{F}_{2}$-bialgebra with coproduct $\psi=\mu^{*}$ given by

$$
\psi\left(w_{k}\right)=\sum_{i+j=k} w_{i} \otimes w_{j}
$$

where $w_{0}=1$.
Theorem 10.3. $H^{*} B U \cong \mathbb{Z}\left[c_{k} \mid k \geq 1\right]$ is a bicommutative $\mathbb{Z}$-bialgebra with coproduct $\psi=\mu^{*}$ given by

$$
\psi\left(c_{k}\right)=\sum_{i+j=k} c_{i} \otimes c_{j}
$$

where $c_{0}=1$.
Proof. This follows by a passage to limits from the results for $H^{*} B U(n)$, since

$$
H^{*} B U \cong \lim _{n} H^{*} B U(n)
$$

maps isomorphically to $H^{*} B U(n)$ for $* \leq 2 n+1$.
Definition 10.4. Let $\alpha_{k} \in H_{k}\left(B O(1) ; \mathbb{F}_{2}\right)$ be dual to $x^{k} \in H^{k}\left(B O(1) ; \mathbb{F}_{2}\right)$, and let $\beta_{k} \in H_{2 k}(B U(1) ; \mathbb{Z})$ be dual to $y^{k} \in H^{2 k}\left(B U(1) ; \mathbb{F}_{2}\right)$, so that

$$
\begin{aligned}
H_{*}\left(B O(1) ; \mathbb{F}_{2}\right) & =\mathbb{F}_{2}\left\{\alpha_{k} \mid k \geq 0\right\} \\
H_{*}(B U(1) ; \mathbb{Z}) & =\mathbb{Z}\left\{\beta_{k} \mid k \geq 0\right\} .
\end{aligned}
$$

Let $a_{k}=\iota_{*}\left(\alpha_{k}\right) \in H_{k}\left(B O ; \mathbb{F}_{2}\right)$ be the image of $\alpha_{k}$, and let $b_{k}=\iota_{*}\left(\beta_{k}\right) \in$ $H_{2 k}(B U ; \mathbb{Z})$ be the image of $\beta_{k}$, under the homomorphisms

$$
\begin{aligned}
\iota_{*}: H_{k}\left(B O(1) ; \mathbb{F}_{2}\right) & \longrightarrow H_{k}\left(B O ; \mathbb{F}_{2}\right) \\
\alpha_{k} & \longmapsto a_{k} \\
\iota_{*}: H_{k}(B U(1) ; \mathbb{Z}) & \longrightarrow H_{k}(B U ; \mathbb{Z}) \\
\beta_{k} & \longmapsto b_{k}
\end{aligned}
$$

induced by $\iota: B O(1) \rightarrow B O$ and $\iota: B U(1) \rightarrow B U$, respectively.
The corresponding results in homology follow by (non-trivial) algebraic dualization. See [Mil60, §3], [Liu62, §3], [MS74, §16] and [MP12, Thm. 21.4.3] for expositions of this classical result. Note that

$$
\begin{aligned}
& \Delta_{*}\left(\alpha_{k}\right)=\sum_{i+j=k} \alpha_{i} \otimes \alpha_{j} \\
& \Delta_{*}\left(\beta_{k}\right)=\sum_{i+j=k} \beta_{i} \otimes \beta_{j}
\end{aligned}
$$

in $H_{*}\left(B O(1) ; \mathbb{F}_{2}\right)$ and $H_{*}(B U(1) ; \mathbb{Z})$, respectively, where $\Delta: X \rightarrow X \times X$ generically denotes the diagonal map.

Theorem 10.5. $H_{*}\left(B O ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[a_{k} \mid k \geq 1\right]$ is a bipolynomial $\mathbb{F}_{2}$-bialgebra with coproduct $\psi=\Delta_{*}$ given by

$$
\psi\left(a_{k}\right)=\sum_{i+j=k} a_{i} \otimes a_{j}
$$

where $a_{0}=1$. Here $\left\langle w_{1}^{k}, a_{k}\right\rangle=1$, while $\left\langle w^{I}, a_{k}\right\rangle=0$ for any other monomial $w^{I}=w_{1}^{i_{1}} \cdots w_{\ell}^{i_{\ell}}$ of Stiefel-Whitney classes.
Theorem 10.6. $H_{*} B U \cong \mathbb{Z}\left[b_{k} \mid k \geq 1\right]$ is a bipolynomial $\mathbb{Z}$-bialgebra with coproduct $\psi=\Delta_{*}$ given by

$$
\psi\left(b_{k}\right)=\sum_{i+j=k} b_{i} \otimes b_{j}
$$

where $b_{0}=1$. Here $\left\langle c_{1}^{k}, b_{k}\right\rangle=1$, while $\left\langle c^{I}, b_{k}\right\rangle=0$ for any other monomial $c^{I}=$ $c_{1}^{i_{1}} \cdots c_{\ell}^{i_{\ell}}$ of Chern classes.

Here a "bipolynomial" bialgebra $B$ means one such that both the underlying algebra $B$ and the dual $B^{\vee}$ of the underlying coalgebra are polynomial algebras. In particular, such $B$ are bicommutative.

## 11. Symmetric functions

Definition 11.1. For $k \geq 1$ let

$$
p_{k}=\sum_{i \geq 1} y_{i}^{k}=y_{1}^{k}+y_{2}^{k}+\cdots \in \mathbb{Z}\left[\left[y_{1}, y_{2}, \ldots\right]\right]
$$

be the $k$-th formal power-sum series. It projects to the $k$-th power-sum symmetric polynomial

$$
p_{k}\left(y_{1}, \ldots, y_{n}\right)=\sum_{i=1}^{k} y_{i}^{k} \in \mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]^{\Sigma_{n}} \cong H^{*} B U(n)
$$

for each $n$, hence defines a class $p_{k} \in H^{2 k} B U$.

Theorem 11.2 (Girard (1629), Newton (1666)). $p_{1}=c_{1}, p_{2}=c_{1}^{2}-2 c_{2}$ and

$$
p_{n}=p_{n-1} c_{1}-p_{n-2} c_{2}+\cdots+(-1)^{n} p_{1} c_{n-1}-(-1)^{n} n c_{n}
$$

By a partition of $k$ we mean an unordered sequence $T=\left\{t_{1}, \ldots, t_{n}\right\}$ of positive integers with $t_{1}+\cdots+t_{n}=k$.

Definition 11.3. Two monomials in $y_{1}, y_{2}, \ldots$ are equivalent if some permutation of these variables takes one to the other. For any partition $T=\left\{t_{1}, \ldots, t_{n}\right\}$ let

$$
p_{T}=\sum y_{1}^{t_{1}} \cdots y_{n}^{t_{n}} \in H^{*} B U
$$

be the (formal) sum of all monomials that are equivalent to $y_{1}^{t_{1}} \cdots y_{n}^{t_{n}}$. For example, $p_{\{k\}}=p_{k}$ and $p_{\{1, \ldots, 1\}}=c_{k}$ (where $\{1, \ldots, 1\}$ has $k$ copies of 1 ).

The classes $p_{T}$ give a $\mathbb{Z}$-basis for $H^{*} B U$, different from that given by the monomials $c^{I}$ in the Chern classes.

## Lemma 11.4.

$$
H^{*} B U=\mathbb{Z}\left\{p_{T} \mid T \text { any partition }\right\}
$$

The concatenation of two partitions $R=\left\{r_{1}, \ldots, r_{\ell}\right\}$ and $S=\left\{s_{1}, \ldots, s_{m}\right\}$ is the partition $R S=\left\{r_{1}, \ldots, r_{\ell}, s_{1}, \ldots, s_{m}\right\}$.
Lemma 11.5 (Thom, [MS74, Lem. 16.2]). For any partition T,

$$
\psi\left(p_{T}\right)=\sum_{R S=T} p_{R} \otimes p_{S}
$$

in $H^{*} B U \otimes H^{*} B U$, where the sum ranges over all pairs $(R, S)$ of partitions with concatenation $T$.

Proof. Given $T=\left\{t_{1}, \ldots, t_{n}\right\}$ we can detect $\psi\left(p_{T}\right)$ in $H^{*} B U(n) \otimes H^{*} B U(n)$, hence also in $H^{*} B U(1)^{n} \otimes H^{*} B U(1)^{n}$.


Any monomial in $y_{1}, \ldots, y_{2 n}$ that is equivalent to $y_{1}^{t_{1}} \cdots y_{n}^{t_{n}}$ corresponds under the lower isomorphism to the tensor product of a monomial equivalent to $y_{1}^{r_{1}} \cdots y_{\ell}^{r_{\ell}}$ and a monomial equivalent to $y_{n+1}^{s_{1}} \cdots y_{2 n}^{s_{m}}$, where $R=\left\{r_{1}, \ldots, r_{\ell}\right\}$ and $S=\left\{s_{1}, \ldots, s_{m}\right\}$ range over all possible partitions with $R S=T$. Hence $p_{T}=\sum_{R S=T} p_{R} \otimes p_{S}$.

A class $x \in C$ in a coalgebra is primitive if $\psi(x)=x \otimes 1+1 \otimes x$.
Corollary 11.6. The coalgebra primitives in $H^{*} B U$ are

$$
\mathbb{Z}\left\{p_{k} \mid k \geq 1\right\}
$$

Proof. The partition $\{k\}$ can only be written as the concatenation of $\{k\}$ and $\}$, in either order.
((ETC: We may discuss coalgebra primitives, and the dual notion of algebra indecomposables, in more detail later, perhaps in the context of Tor ${ }_{1}$ and Ext ${ }^{1}$.))

Proof of Theorem 10.6. The monomial basis $\left\{p_{T} \mid T\right.$ any partition $\}$ for $H^{*} B U$ determines a dual basis $\left\{p_{T}^{\vee} \mid T\right.$ any partition $\}$ for $\left(H^{*} B U\right)^{\vee}$. The coproduct from Lemma 11.5 dualizes to the product

$$
p_{R}^{\vee} \cdot p_{S}^{\vee}=p_{R S}^{\vee}
$$

Hence

$$
p_{T}^{\vee}=p_{\left\{t_{1}\right\}}^{\vee} \cdots p_{\left\{t_{n}\right\}}^{\vee}
$$

for $T=\left\{t_{1}, \ldots, t_{n}\right\}$, and the $p_{k}^{\vee}=p_{\{k\}}^{\vee}$ freely generate $\left(H^{*} B U\right)^{\vee}$ as a (graded) commutative ring ( $=\mathbb{Z}$-algebra). In other words

$$
\mathbb{Z}\left[p_{k}^{\vee} \mid k \geq 1\right]=\left(H^{*} B U\right)^{\vee} \cong H_{*} B U
$$

In fact, $p_{k}^{\vee}=b_{k}$. This follows from the calculation

$$
\left\langle p_{T}, b_{k}\right\rangle=\left\langle p_{T}, \iota_{*}\left(\beta_{k}\right)\right\rangle=\left\langle\iota^{*} p_{T}, \beta_{k}\right\rangle= \begin{cases}1 & \text { if } T=\{k\} \\ 0 & \text { otherwise }\end{cases}
$$

where $\iota^{*} p_{T}=0$ if $n \geq 2$, and $\iota^{*} p_{T}=y^{t_{1}}$ if $n=1$. The formula for $\psi\left(b_{k}\right)$ follows by naturality for the one for $\psi\left(\beta_{k}\right)$.

Remark 11.7. To each finite sequence $I=\left(i_{1}, \ldots, i_{\ell}\right)$ of non-negative integers we assign the partition $R=\left\{r_{1}, \ldots, r_{n}\right\}$ where $u$ occurs $i_{u}$ times, for each $1 \leq u \leq \ell$. This gives a bijective correspondence. For example, $I=(0, \ldots, 0,1)$ (with 1 in the $k$-th position) corresponds to the partition $T=(k)$, and $I=(k)$ corresponds to the partition $T=\{1, \ldots, 1\}$ (with $k$ copies of 1 ). If $I$ corresponds to $R, J$ corresponds to $S$ and $K=I+J$ is the coordinatewise sum of finite sequences, then $K$ corresponds to the concatenation $T=R S$.

## References

[Bor53] Armand Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115-207, DOI 10.2307/1969728 (French). MR51508
[Gys42] Werner Gysin, Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten, Comment. Math. Helv. 14 (1942), 61-122, DOI 10.1007/BF02565612 (German). MR6511
[Hus66] Dale Husemoller, Fibre bundles, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR0229247
[Liu62] A. L. Liulevicius, A proof of Thom's theorem, Comment. Math. Helv. 37 (1962/63), 121-131, DOI 10.1007/BF02566966. MR145527
[May99] J. P. May, A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1999. MR1702278
[MP12] J. P. May and K. Ponto, More concise algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2012. Localization, completion, and model categories. MR2884233
[Mil60] J. Milnor, On the cobordism ring $\Omega^{*}$ and a complex analogue. I, Amer. J. Math. 82 (1960), 505-521, DOI 10.2307/2372970. MR119209
[MS74] John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR0440554
[Tho54] René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86, DOI 10.1007/BF02566923 (French). MR61823

Department of Mathematics, University of Oslo, Norway
Email address: rognes@math.uio.no

