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CHAPTER 4: CHARACTERISTIC CLASSES

JOHN ROGNES

See [Hus66, Part III], [MS74], [May99, Ch. 23] and Hatcher (2003).

1. CHARACTERISTIC CLASSES FOR LINE BUNDLES

Definition 1.1. Let G be a topological group and R an abelian group. A fixed
cohomology class

c € H*(BG;R)

specifies an R-valued characteristic class for principal G-bundles, or for F-fiber
bundles with structure group G. Writing £ for 7: P — X or m: E — X, this is the
natural transformation

Bung(X) = [X, BG] — H*(X;R)
e [fl— () =c(§),
assigning to £ the cohomology class ¢(¢) = f*(x), where
f*+ H*(BG;R) — H*(X;R)
is the homomorphism induced by the classifying map f: X — BG.

Ezample 1.2. For G = O(1) with FO(1) ~ S and BO(1) ~ RP*® ~ K(F5,1)
each class

2" € H"(RP*;F2)
defines an Fs-valued characteristic class for real line bundles. The case n = 1 is
most interesting, when x = ¢1 is the fundamental class, so that

Vect; (X) = [X, BO(1)] — H'(X;TF>)
[fl— f*(2)

is a natural bijection. Here Vect;(X) = Vect?(X) = Bung o(1)(X) = Bunp(1)(X)
denotes the set of isomorphism classes of real line bundles over X. This character-
istic class is called the first Stiefel-Whitney class, and usually denoted

wi(§) € H'(X;Fa2).

The bijection shows that real line bundles are classified up to isomorphism by the
first Stiefel-Whitney class.
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Lemma 1.3. The fiberwise tensor product E®mn of two line bundles over X is again
a line bundle over X. The first Stiefel-Whitney classes satisfy

w1 (§ @n) = wi(§) +wi(n)
in HY(X;Fy).
Proof. Let v! =~ denote the tautological line bundle
E(y") = 8% xo1) R — RP>

with wy(y!) = 2, and let €' = ¢ : R x R — RP*> denote the trivial line bundle
with wy (') = 0. Then the external tensor product

v'@y =pri(y!) @pri(y)
over RP* x RP* is classified by a map

m: RP® x RP*® — RP>.
In terms of the bar construction, m is the map

BO(1) ® BO(1) 2 B(O(1) x O(1)) — BO(1)

induced by the (commutative) group multiplication O(1) x O(1) — O(1). Since
'@ el 2 Al =2 el @41 it follows that m restricted to RP> x %, or to * x RP™, is
homotopic to the identity. This implies that

m*(z) =2 x1+1xze€ H(RP® x RP®;Fy) = Fo{x x 1,1 x x}.
Let f: X — RP* and g: X — RP* classify £ and 7, respectively. Then £ ® 7 is
classified by
X 2 X x X DY RPp® « RP® ™ RP®,
SO
wi(§@n) = A*(f" x gT)m*(z) = fH(2) U1+ 10U g (x) = wi(§) + wi(n) .
O
Ezample 1.4. For G = U(1) with EU(1) ~ 5% and BU(1) ~ CP* ~ K(Z,2) each
class
y" € H*"(CP>) = H*"(CP>;Z)

defines a Z-valued characteristic class for real line bundles. The case n = 1 is most
interesting, when y = ¢ is the fundamental class, so that

Vect (X) = [X, BU(1)] — H*(X) = H*(X;Z)
[f1— ()

is a natural bijection. Here Vect;(X) = VectS(X) = Bung y(1)(X) = Buny1)(X)
denotes the set of isomorphism classes of complex line bundles over X. This char-
acteristic class is called the first Chern class, and usually denoted

c1(é) € H*(X).

The bijection shows that complex line bundles are classified up to isomorphism by
the first Chern class.
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Lemma 1.5. The fiberwise tensor product EQmn of two line bundles over X is again
a line bundle over X. The first Chern classes satisfy

ca(®n) =ci(§) +ca(n)
in H*(X).
Proof. Let v! = 7(1: denote the tautological line bundle
E(’yl) =8 XuU(1) C — CpP*

with ¢1(7') =y, and let ¢! = €l.: C*® x C — CP*> denote the trivial line bundle
with ¢1(e!) = 0. Then the external tensor product

&yt =pri(y!) @ prs(v)
over CP>° x CP® is classified by a map
m: CP>* x CP>* — CP*°.
In terms of the bar construction, m is the map
BU(1)®@BU(1) 2 B(U(1) x U(1)) — BU(1)

induced by the (commutative) group multiplication U(1) x U(1) — U(1). Since
' ®@el 2yl 2 el @41 it follows that m restricted to CP> x *, or to * x CP™, is
homotopic to the identity. This implies that

m*(y) =y x1+1xy€ H(CP® x CP®) =Z{y x 1,1 x y}.

Let f: X — CP* and g: X — CP classify & and 7, respectively. Then £ ® 7 is
classified by

X & X x x P9 cpe xcpe ™ cp>,
SO
ca(§@n) =A%(f" xg")m*(y) = fFy) U1+ 1Ug"(y) = c1(§) + ealn) -
(There is a choice of sign convention here, namely whether ¢; (y!) is y or —y, which

is related to whether the fundamental class of CP" is dual to (—y)™ or y".) O

2. CHARACTERISTIC CLASSES FOR REAL VECTOR BUNDLES
Fix n > 0. The Stiefel space
Vn(ROO) = {(’017 . 7’Un) | V; € ROO, <’U7;,Uj> = (5”}

of orthogonal n-frames in R*° is contractible. Viewing it as the space of isometries
v: R™ — R* it has a free (right) O(n)-action (v, A) — vA given by precomposition
by any isometry A: R™ — R"™. The orbit space

Gr,(R*®) = V,(R*)/O(n) = {V C R* | dimg (V) = n}
is the Grassmannian of n-dimensional real subspaces of R*. Hence
m: Vo (R®) — Gry, (R™)
(v1,...,0,) — R{vy,..., 0.}

is a universal principal O(n)-bundle, and Gr, (R>) ~ BO(n) is a classifying space
for O(n)-bundles, hence also for GL,,(R)-bundles, R™-vector bundles and Euclidean
R™-vector bundles. The associated R"-bundle

T Va(R™) xom) R" — Gr, (R™)
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is isomorphic to the tautological vector bundle 7" = 7, with total space
EX")={(V,2) |V € Gr,(R*),z € V}.

When n = 1, Gr1 (RP*>°) = RP* classifies real line bundles, as discussed before.

The R-valued characteristic classes of real vector bundles correspond to elements
of H*(BO(n); R) &2 H*(Gr,(R>); R). This is best understood for R = Fy and
R = Z][1/2], separately, and we focus on the first of these. Let O(1)™ C O(n) be the
diagonal subgroup, which is elementary abelian of order 2". The inclusion induces
a map

in: (RP*®)" ~ BO(1)" — BO(n) ~ Gr,(R™)

classifying the external direct sum of n real line bundles. In other words,

*

(") ZAt xxyt
with n copies of v'. We obtain an induced homomorphism
H*(BO(n);Fo) — H*(BO(1);Fy) 2 Folz] ® - - - @ Folz] 2 Falzy, ..., 2],
where we have used the Kiinneth theorem, there are n copies of H*(RP>;Fy) =
]Fg [.73], and
;=10 1zl ---®1
with z in the i-th entry, for 1 < i < n. Each z and z; has cohomological degree 1.
Each permutation o € ¥, in the symmetric group on n letters acts on O(1)"™ by
permuting the n factors. (This is the Weyl group action for O(1)" inside O(n),
since the normalizer of O(1)™ is X,, x O(1)™ = 2,1 0(1) C O(n), where we view
3, as a group of permutation matrices, within O(n).) The induced map
o: (RP*)" ~ BO(1)" — BO(1)" ~ (RP*>)"

also acts by permuting the factors. Hence

0_*(51 X oo X fn) ggo_(l) NEEED fo’(n)

for any n line bundles &1, ..., &,. In particular, when & = --- = &, = 7!, we get an

isomorphism

AlxoxAt,

I

o (7t x Xt
This means that the triangle

1) BO(1)
BO(n)

commutes up to homotopy, so that

/\

H*(BO(1 H*(BO(1);F>)

commutes. In other words, iy factors through the X, -invariants

H*(BO(n): Fa) - H*(BO(1)";F2)®" = Folzy, ... 20" C Falr1,...,2n].

These invariants are the symmetric polynomials in x1,...,x,.
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Definition 2.1. For 1 < k <n let
ep(T1, ..., oy) = Z Ty e Ty,
1<ip << <n

be the k-th elementary symmetric polynomial. (Milnor and Stasheff write oy in

place of ex.) If each z; has degree 1, then eg(x1,...,x,) has degree k. In par-
ticular, ey (z1,...,2,) = @1 + - + Ty, ea(x1,...,Ty) = T1T2 + -+ + Tp_12, and
en(T1, ..., &) =21 T

The following theorem on symmetric polynomials is classical.

Theorem 2.2.
Fg[el, ey Gn] = FQ[IEl, A ,In]Z"
where e, = eg(T1,...,Tn).
Theorem 2.3 ([Bor53]).
in: H(BO(n);F2) — Folwy, ..., x0)" 2 Faley,... ep

is an isomorphism.
Definition 2.4. For 1 < k < n the k-th Stiefel-Whitney class
wy, € H*(BO(n); Fy)
is characterized by
in(wg) = eg(z1,...,2n) .
Hence
H*(BO(n);F2) = Fawy, ..., wy]
with wy in degree k.

3. CHARACTERISTIC CLASSES FOR COMPLEX VECTOR BUNDLES

Fix n > 0. The Stiefel space
Vn((coo) = {(Ula e 7Un) | v; € C™, <Ui,Uj> = 5@‘}

of unitary n-frames in C* is contractible. Viewing it as the space of isometries
v: C" — C™ it has a free (right) U(n)-action (v, A) — vA given by precomposition
by any isometry A: C™ — C". The orbit space

Gr,(C*®) = V,(C*®)/U(n) ={V Cc C= | dim¢c(V) = n}
is the Grassmannian of n-dimensional complex subspaces of C*°. Hence
m: Vo (C*) — Gr, (C™)
(V1. yvn) — Clog, ..., 05}

is a universal principal U(n)-bundle, and Gr, (C>) ~ BU(n) is a classifying space
for U(n)-bundles, hence also for GL,,(C)-bundles, C™*-vector bundles and Hermitian
C"-vector bundles. The associated C™-bundle

72 Vo (C) Xy(n) C" — Gr,, (C™)
is isomorphic to the tautological vector bundle 4" = 4¢, with total space
E@")={(V,z) |V € Gr,(C®),z € V}.

When n = 1, Gr;(CP*®) = CP*> classifies complex line bundles, as discussed
before.
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The integer valued characteristic classes of complex vector bundles correspond
to elements of H*BU (n) = H* Gr,,(C*). Let U(1)™ C U(n) be the diagonal torus.
The inclusion induces a map

in: (CP®)" ~ BU(1)" — BU(n) ~ Gr,(C™)
classifying the external direct sum of n complex line bundles. In other words,
(") 2yt X x oyt
with n copies of v'. We obtain an induced homomorphism
iy H*'BU(n) — H*BU(1) 2 Zly| ®@ - - - Q Z[y] = Zly1,- - - 1 Yn) s

where we have used the Kiinneth theorem, there are n copies of H*(CP>) = Z[y],
and
y=10---®19ye1®---®1

with y in the i-th entry, for 1 < i < n. Each y and y; has cohomological degree 2.
Each permutation o € ¥,, in the symmetric group on n letters acts on U(1)" by
permuting the n factors. (This is the Weyl group action for U(1)" inside U(n),
since the normalizer of U(1)" is X, x U(1)™ = X, U(1) C U(n), where we view
3, as a group of permutation matrices, within U(n).) The induced map

o: (CP>®)"~BU(1)" — BU(1)" ~ (CP>)"
also acts by permuting the factors. Hence

" (§1 X - X &n) Z o1y X X Eo(n)

for any n line bundles &1, ..., &,. In particular, when & = --- = &, = 7!, we get an

isomorphism

’ylx...xfyl.

Il

o* (vt x e x )
This means that the triangle

1) BU(1)
BU(n)

commutes up to homotopy, so that

H*BU(n

/\

H*BU(1 H*BU(1)

commutes. In other words, i} factors through the ¥, -invariants
* ;; * ~U
H*BU(n) - H*(BU(1)")® 2 Zly1,...,ya)"" C Zy1,-- -, yn] -
These invariants are the symmetric polynomials in y1, ..., Y.

Definition 3.1. For 1 < k <n let

ek(yla"'ayn): Z Yiy - Yiy

1<ip < <ig<n
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be the k-th elementary symmetric polynomial. (Milnor and Stasheff write o in
place of eg.) If each y; has degree 2, then eg(y1,...,y,) has degree 2k. In par-
ticular, e1(y1,..-,Yn) = Y1 + -+ + Yn, €2(Y1,---,Yn) = Y1Y2 + -+ + Yn—1Yn and
en(Y1,-- - Yn) = Y1 Yn.

The following theorem on symmetric polynomials is classical.

Theorem 3.2.
Z[el, e ,en] = Z[yl, . 7yn]2"
where e, = ex(Y1, -+, Yn)-

Theorem 3.3 ([Bor53]).
it H*BU(n) — Zlyy, ..., yn)™" = Zer, ..., en
is an tsomorphism.
Definition 3.4. For 1 < k < n the k-th Chern class
cr € H**BU(n)

is characterized by

ir(cr) =ex(Y1y- s Yn) -
Hence

H*BU(n) = Zleq, . . ., ]
with ¢ in degree 2k.

4. THOM COMPLEXES

Definition 4.1. Let £ be an Euclidean R"-bundle 7: E = E(¢§) — X, with fibers
E, = E(¢),; = n (z). Let m: P — X be the associated principal O(n)-bundle, so
that £ = P Xg(,) R". We write

D(§) ={ve E ||| <1} = P xo@m D"
and

S(€) =fve Bl =1} = P xopm "'
for the unit disc and sphere subbundles of £. We have inclusions

SE)cDEcE

of fiber bundles over X, all with structure group O(n). Let

Th(¢) = D(£)/5(8)
be the Thom space of &.

The disc and sphere bundles, and the Thom space, are natural for maps of
Euclidean vector bundles.

Definition 4.2. Let R be a commutative ring. An R-orientation class of £ is an
element 5

U =Us € H*(Th(§); k) = H"(D(§), S(§); R)
whose restriction to

H™(D()s,S()as R) = H"(D",S" s R) = R

is a unit for each z € X. Here D(§), = D({) N E, and S(§), = S(§) N E, are the
fibers of D(§) and S(§) over x.



8 JOHN ROGNES

Lemma 4.3. A choice of Z-orientation class Ug € H"(Th(£);Z) is equivalent to a
continuous choice of orientations of the fiber vector spaces E;. There is a unique
choice of Fa-orientation Us € H"(Th(§); F2).

Sketch proof. If X is a CW complex, then (D(€),S(€)) is a relative CW complex
with one (k + n)-cell for each k-cell of X. Hence Th() is a based CW complex
with one (k + n)-cell for each k-cell of X, in addition to the base point 0-cell. It
follows that H*(Th(€)) = 0 for * < n.

In neighborhoods on X where £ admits a trivialization, the result follows from
the Kiinneth isomorphism. Let A, B C X. The Mayer—Vietoris sequence

0 — H"(D({]AUB), S(¢|AUB)) — H"(D(£]A), S(]A)) & H" (D(E|B), S(¢]B))

— H"(D({|AN B),S({]AN B))

shows that choices of orientation classes Ug|4 and Ug|p over A and B, respectively,
can be (uniquely) extended to an orientation class Ugaup if and only if their re-
strictions over A N B agree, and this compatibility is what a choice of orientation
provides. ]

The Thom complex is monoidal for the external direct sum of vector bundles.

Lemma 4.4. Let £ be as above, let n be an Euclidean R™-bundle w: E(n) — Y,
and let £ x 1 be the external direct sum R -bundle E(§) x E(n) — X xY. There
is a homotopy equivalence

Th(&) A'Th(n) = Th(£ x n)

that is natural up to (coherent) homotopy. If & and n are R-oriented, then the
smash product homomorphism

H™(Th(€); R) @ H™(Th(n); R) < H"™™(Th(¢ x n); R)
takes Ue @ U,, to an R-orientation class
Uexn =Ue N,
for & xn.
Sketch proof. There is an O(n) x O(m)-equivariant homeomorphism
D™ x D™ = pntm
that scales each vector by a positive factor, so as to restrict to a homeomorphism
Sl x DMUDM x §m e gl

O

Example 4.5. For each complex n-dimensional vector space V, the underlying real
2n-vector space has a canonical orientation, given by the ordered real basis
(V1, W4y« oy Uy iUy)

where (v1,...,v,) is any choice of complex basis for V. Hence the underlying
R?"-bundle of any C"-bundle n has a preferred integral orientation class U, €
2 (Th(n); Z).
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5. EULER CLASSES
There is a homotopy cofiber sequence
S(€) - X 25 Or = Th(¢)

expressing Th(&) as the mapping cone of the sphere bundle projection 7: S(§) — X.
The map z: X — Th(¢) is the composite gsg of the zero-section

s0: X — D(§) C E(§)

mapping each € X to the zero vector 0 € E, in the (unit disc and) vector space
fiber over z, followed by the collapse map

q: D(§) — D(§)/5(&) = Th().

(Transversality of maps S — Th(¢) with respect to z: X — Th(§) plays a key
role in Thom'’s classification of manifolds up to bordism.)

Definition 5.1. The Euler class of an R-oriented R™-bundle ¢ is the pullback
e(§) =2"(U¢) € H"(X; R)
of the orientation class along the zero-section.

Remark 5.2. The Euler class for Z-oriented R™-bundles is a characteristic class for
oriented real vector bundles, i.e., R”-bundles with structure group

SO(n) ={A € O(n) | det(4) =1} C O(n).
The classifying space
BSO(n) ~ Gr, (R®)

is equivalent to the Grassmannian of oriented n-dimensional real subspaces of R>,
which is the universal (double) cover of Gr,(R*). The universal (integral) Euler
class is thus an element

e € H"(BSO(n); 7).

Theorem 5.3 ([MS74, Cor. 11.12]). Let M be a smooth, closed and oriented n-
manifold, with tangent bundle Tps and fundamental class [M] € H,(M;Z). Then

(e(mar), [M]) = x(M)
is equal to the Euler characteristic of M.

Remark 5.4. The universal Fa-valued Euler class for (not necessarily oriented) R”-
bundles is an element

& e H(BO(n);Fy).

Proposition 5.5. Let £ and n be oriented R™- and R™-bundles over X and Y,
respectively. The Euler classes of £, n and the external direct sum & X n satisfy

e(§ xmn) =e(§) xe(n).
If X =Y and E®n = A*(E xn) is the fiberwise direct sum (= Whitney sum), then
e(on) =e(§)Ue(n).
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Proof. The zero-sections are compatible, and induce the following commutative
square.

H™Th(¢) ® H™ Th(n) —> H™*™ Th(¢ x n)

z*®z*l lz*

H"(X)® H™(Y) — == H""™(X x Y)

Chasing Us ® U, both ways gives the result for £ x 7. The result for { & n (when
X =) follows by pullback along A: X — X x X. |

~

Ezample 5.6. The group isomorphism U (1) = SO(2) induces an equivalence BU (1) &
BSO(2), and the universal Euler class e € H?(BSO(2);Z) corresponds to the
first Chern class ¢; € H2(BU(1);Z). The universal Fa-valued Euler class € €
HY(BO(1);F3) equals the first Stiefel-Whitney class w; € H(BO(1);F3).

6. THE THOM ISOMORPHISM

Theorem 6.1 ([Tho54]). Let £ be an R"-bundle 7: E — X, with R-orientation
class Us € H*(D(£),S(€); R) = H™(Th(§); R).
(a) The cup product with Ue defines an isomorphism
H'(X;R) = H'(D(&); R) — H*"(D(€),5(¢); R) = H'*"(Th(¢); R)
z— xUU;

for each i, combining to the (cohomological) Thom isomorphism

o

®¢: H*(X; R) — H*™(Th(¢); R) .
(b) The cap product with Ue defines an isomorphism
Higi(Th(€); R) = Hisi(D(€), S(€); B) — Hi(D(€); B) = Hi(X; R)
ar— UsNa
for each i, combining to the (homological) Thom isomorphism
®e: Hopn(Th(E); R) —» H.(X;R).

Sketch proof. (a) In neighborhoods on X where £ admits a trivialization, this follows
from the Kiinneth isomorphism. Let A,B C X. The map of Mayer—Vietoris
sequences induced by cup product with R-orientation classes, see Figure 1, and the
five-lemma, give the inductive step from the case of £| 4, £|B and {|ANB to {|AUB.

(b) The same proof works, using the map of Mayer—Vietoris sequences induced
by cap product with R-orientation classes. g

The relative cup product can be replaced by the external smash product followed
by pullback along the Thom diagonal map

Th(¢) — D(€)4 A Th(€) = X4 A Th(E)

taking v to m(v) A v for v € D(€). This is the base point when v € S(§).
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P ADP¢ B
_—

H'='(A)© H'(B) H*~'"(Th(g|A); R) @ H'~ " (Th(¢| B); R)

. Peianns ~ .
Hi=1(AN B) < Hi=14n(Th(¢|AN B); R)
§ 5
. PeiauB ~
Hi(AU B) o H*"(Th(¢|AU B); R)
X . D aDPe B ~ . ~ .
H(A) & H(B) ——————— H'*"(Th(¢|A); R) & H'*"(Th(¢| B); R)
PeianB

H'(ANB) H*"(Th(¢|]AN B); R)

FIGURE 1. Map of Mayer—Vietoris sequences

7. THE GYSIN SEQUENCE

Theorem 7.1 ([Gys42]). Let & be an R-oriented R™-bundle n: E — X, with Euler
class e(§) € H*(X; R).

(a) The long exact cohomology sequence of the pair (D(£),S(§)) is isomorphic
to the (cohomological) Gysin sequence

o HY(XGR) 2 gt (X R) T HIT(S(€); R) — HUTY(XGR) - ... .

(b) The long exact homology sequence of the same pair is isomorphic to the
(homological) Gysin sequence

S Hip (X R) — Hi(S(); R) ™5 Horo(XR) “S By (X R) — ...
Proof.

H'(X)

/*&w

H1(8(€)) ——= HI(D(€)) ———= H™"(X) —— H'*"(S(€))

_UUg - SS Tglﬂ-*

H#1(S(€)) — = HH+7(D(€), S(€)) ——= H+™(D(€)) — H*"(S(€))

\ - /

H'(Th(g))
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8. COHOMOLOGY OF BU(n)

Consider the linear action of U(n) on $?"~! = §(C"). The subgroup U(n — 1)
fixes the last unit vector e,, = (0,...,0,1), so that

Un)/Un —1) = §2n1
A-Un—1)— Ae,.

Hence we have an equivalence

BU(n—1)=EU(n—1)/U(n—1) — EU(n)/U(n—1)
= EU(n) Xu(n) U(n)/U(n —1) = EU(n) Xy S*" 7" = S(y")

where 4" = ¢ is the tautological C"-bundle over BU(n) ~ Gr,(C>). The inclu-
sion ¢: BU(n — 1) — BU(n) corresponds to the projection 7: S(y™) — BU(n).

The underlying R?"-bundle of the C"-bundle 4™ is canonically Z-oriented, so we
have a long exact Gysin sequence

- = HIBU(n) ~ 29" it gy (n) 5 H*BU(n—1) — HMBU(n) — ... .
Note that ¢* is an isomorphism for ¢ + 2n < 2n — 2, i.e., for i < —2.
Definition 8.1. Suppose, by induction on n > 1, that the Chern classes
e, € H¥*(BU(n —1);7)

have been defined for 1 < k < n. Then we define

e, € H**(BU(n); Z2)
for 1 < k < n by the condition ¢*(c;) = c. Finally, we define

¢, € H*™(BU(n); Z)

to be equal to the Euler class e(y™) of the canonically oriented R?"-bundle under-
lying the tautological C™-bundle over BU(n).

Proposition 8.2.

Zlei,...,cn) — H*BU(n).

Proof. Assume, by induction, that Z[ci,...,¢,—1] =2 H*BU(n — 1). Then the ring
homomorphism ¢* is surjective, so the Gysin sequence breaks up into a short exact
sequence

0— H*"2"BU(n) -2 H*BU(n) -~ H*BU(n — 1) — 0.
It follows by induction on degrees that this is isomorphic to

0= X2"Z[ct, ..., cn] =5 Zery. .. cn) — Zlet, ... cn1] = 0.

Proposition 8.3.
i H*BU(n) — Zlyr, ..., yn)™"
Cp ek(yla s 72Un)

maps ci to the k-th elementary symmetric polynomial

e’f(yla"'ayn): Z Yiy Yiy, -

1<i1 < <ipg<n
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Proof. For 1 < k < n this follows by induction, since

Tk

H*BU(n) ———=Z[y1, -, yu)™

L*l iynHO
o1

H*BU(n—1) ——Z[y1, ..., yn-1)""""

commutes and the right hand vertical map is an isomorphism below degree 2n,
sending e (y1,...,Yn) to ex(y1,...,yn—1) for each 1 < k < n. It remains to prove
that

(cn) =y Yn =y X --- xy € H*(BU(1)™)>" .
It suffices to prove that that
ir(cp)=yx---xy€H(BU)").

This follows from ¢, = e(y"), i}

5 (y") = 4! x -+ x 4! and the product formula for
the Euler class:

inlen) = ine(r”) = e(iz0™) = e(y" x -+ x 1)

Theorem 3.3 follows, in view of Theorem 3.2.

Remark 8.4. At this point, we have available the “splitting principle” for charac-
teristic classes of complex vector bundles. To prove a statement about a natural
class ¢(§) € H*(X; R) for a C"-bundle over X, it suffices by naturality to handle
the case of ¢ = ¢(y") € H*(BU(n); R). To verify an identity in H*(BU(n); R) it
suffices to verify it after applying the injective ring homomorphism
i+ B (BU(n); ) — H*(BU(1)"; R) = Rly, ..,y
Hence it suffices to check the condition for ¢(€) = i (c) in the case of
E=in(") =7 xxyl =priyt @ @pry
which is a Whitney sum of n complex line bundles over BU(1)™ ~ (CP>°)™. Hence

we may effectively assume that & splits as a direct sum of line bundles.

For a C™-bundle £ we set ¢p(§) = 1 and ¢x(§) = 0 for k > n, and write ¢(§) =
Y k>0 k(&) for the total Chern class of £. The Whitney sum formula for Chern
classes follows.

Theorem 8.5. Let & and n be complex vector bundles over X. Then
c@n) =Y al€)Uen) e H*(X)
i+j
Hence
c(E@n) =c(§)Ueln) € H(X).
Proof. By naturality, it suffices to prove that

e(r x 7™ = 37 ey x eu(y™) € H*(BU(n) x BU(m)).
i+j=k
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This can be verified using the injectivity of i} : H*BU(n) — H*BU(1)™ for all n,
i.e., by the splitting principle. The diagram

i Xim
e

BU(1)" x BU(1)™ BU(n) x BU(m)

BU1)™™ — " BU(n +m)

commutes, where the right hand vertical map pp m = ui‘im is induced by the block
sum inclusion U(n) x U(m) — U(n+ m) mapping (A, B) to (4 %), and represents
the external direct sum 7™ x v™. Then

(in X im) cx(Y" x y™) = i:wrmck =er(Y1,- - Yntm)
and
(in X im)* Y (") X (") = Y ines X e
itj=k itj=k
= Z ei(yla e 7yn) X ej(yn+1a e ayn+nz) .
i+j=k

The claim thus follows from the identity
k(W Ynam) = D €1, Un)€i(Unats s Yntm)
itj=k
inZ[Yy1, -« s Yns Yntis- -« Yntm)- O

As in Milnor’s lemma on the Cartan formula for the Steenrod operations, we can
express the Whitney sum formula for Chern classes as a coproduct homomorphism.

Corollary 8.6. (i, ,: BU(n) x BU(m) — BU(n + m) induces
Pom: H*BU(n+m) — H*(BU(n) x BU(m)) = H*BU(n) ® H*BU(m)

Cr —> Z Q¢
i+j=k
Ezample 8.7. Let 7cpn, 7} and €' be the tangent bundle, tautological line bundle
and trivial line bundle over CP", respectively. Let v* = Hom(+},€!) be the linear
dual of the tautological line bundle. There is a canonical short exact of complex
vector bundles

0 — ¢ — Hom(y},e" ™) — 7cpn — 0,
so that 7cpn @ €' = (n + 1)7*. Hence the total Chern classes satisfy

c(repn) = elrepn ® ) = e{(n + 1)y") = (7)™

in H*(CP") = Z[y]/(y™*!). With the convention c1(v}) = y we have ¢;(v*) = —y
and c(y*) = 1—y, so that c(rcprn) = (1—y)" = 1+(n+1)(—y)+- - -+ (n+1)(—y)".

Hence
n+1 i
citrern) = (" T 0

for 1 < i < n. In particular, ((—y)", [CP™]) = 1 with this convention. For this
reason, many authors change the sign of y, so that y = ¢1(v*), c(7cpr) = (1 4+ y)»
and ¢;(rcpn) = ("T)yl.
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9. COHOMOLOGY OF BO(n)

Consider the linear action of O(n) on S"~! = S(R™). The subgroup O(n — 1)
fixes the last unit vector e,, = (0,...,0,1), so that

O(n)/O(n —1) =5 g1
A-On—1)— Ae,.

Hence we have an equivalence

BO(n—1) = EO(n—1)/O(n —1) = EO(n)/O(n — 1)
= EO(n) Xo(n) O(n)/O(n —1) = EO(n) Xom S" " = S(y")

where v = 4 is the tautological R™-bundle over BO(n) ~ Gr,(R*). The inclu-
sion ¢: BO(n — 1) — BO(n) corresponds to the projection w: S(y™) — BO(n).

The R"-bundle 4™ is canonically Fs-oriented, so we have a long exact Gysin
sequence

oo HI(BO(n); Fy) ~ 23" B+ (BO(n); )
s HF™(BO(n — 1);Fy) — HTY(BO(n);Fo) — ... .
Note that ¢* is an isomorphism for 1 +n <n — 2, i.e., for i < —2.
Remark 9.1. At this point, an argument is needed for why ¢*: H""1(BO(n);F3) —
H""Y(BO(n — 1);Fy) is an isomorphism, in the case corresponding to i = —1 in
the Gysin sequence above. It is clearly injective, and by exactness, surjectivity
is equivalent to knowing that e(y™) # 0 in H"(BO(n);Fs). Milnor and Stasheff
[MS74] resolve this by directly constructing the classes wy € H¥(BO(n);Fy) using
Thom’s formula 3
wy = 071 (8q" (Ug)) € H*"(Th(£); F2)
in the universal case £ = 4™, and checking that ¢*(wy) = wy, for all 1 < k < n.
((ETC: We omit to discus this in more detail.))

Definition 9.2. Suppose, by induction on n > 1, that the Stiefel-Whitney classes
wy, € H*(BO(n — 1);Fy)

have been defined for 1 < k < n. Then we define

wy, € H*(BO(n); Fy)
for 1 < k < n by the condition ¢*(wy) = wy. Finally, we define

wy, € H*(BO(n);F2)
to be equal to the Fo-valued Euler class é(y™) associated to the canonical Fa-
orientation of ™.
Proposition 9.3.

Folwy, ..., wy] = H*BO(n).

Proof. Assume, by induction, that Fawy,...,w,—1] & H*BO(n — 1). Then the
ring homomorphism ¢* is surjective, so the Gysin sequence breaks up into a short
exact sequence

0— H*"BO(n) 3 H*BO(n) ~— H*BO(n —1) — 0.
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It follows by induction on degrees that this is isomorphic to

0 — X"Fafwy, ..., wy,] MFQ[wl,...,wn] — Fawy,...,wy—1] — 0.
O
Proposition 9.4.
it H*BO(n) — Fylxy,. .., x,)>"
w — ex(T1, ..., Ty)

maps wy, to the k-th elementary symmetric polynomial
er(T1,...,op) = Z Ty " T, -
1<ii< - <ig<n
Proof. For 1 < k < n this follows by induction, since

Tk

H*BO(n) —=—>Fsa1,. .., 20"

¥ i lmn —0
i

H*BO(n — 1) ——>Fy[z1, ..., aq_q|>"

commutes and the right hand vertical map is an isomorphism below degree n,
sending ey (z1,...,Ty) to ex(z1,...,2,—1) for each 1 < k < n. It remains to prove
that

it (wp) =2y xy =2 X - X x € H(BO(1)™)>n
It suffices to prove that that
in(wp) =ax---xx € H(BO()").

This follows from w,, = &(y"), i%(y") = 4! x --- x 4! and the product formula for
the Euler class:

Theorem 2.3 follows, in view of Theorem 2.2.

For a R™bundle £ we set wo(§) = 1 and wg(§) = 0 for k > n, and write
w(§) =D 4o wi(§) for the total Stiefel-Whitney class of &.

The Whitney sum formula for Stiefel-Whitney classes follows.

Theorem 9.5. Let & and n be real vector bundles over X. Then
wp(§Bn) = wi(€) Uw;(n) € H*(X;Fy)
i+j
Hence
w(€@n) =w(l)Uw(n) € H(X;Fy).
Proof. By naturality, it suffices to prove that
W x 7™ = 3 wily") x wn(y™) € HE(BO(n) x BO(m); F).

it+j=k
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This can be verified using the injectivity of i¥ : H*(BO(n);Fs) — H*(BO(1)"; F2)
for all n, i.e., by the splitting principle. The diagram

In Xlm
— 5

BO(1)" x BO(1)™

y

BO(1)m+m

BO(n) x BO(m)

i#n,m

BO(n +m)

in+m

commutes, where the right hand vertical map fiy,,m = ,uﬁim is induced by the block
sum inclusion O(n) x O(m) — O(n+ m) mapping (A, B) to (4 %), and represents
the external direct sum 4™ x y™. Then

(Zn X 'Lm)*’l,U]c(’)/n X ’)/7”) = Z:l+mwk == 6k(x17 ... 7xn+’m)
and
(in X im)™ Y wi(y") xwi (") = Y dnw X ipw;
i+j=Fk it+j=k
= Z ei(T1,. .., Tn) X €j(Tntis - s Tngm) -
i+ji=k

The claim thus follows from the identity
er(T1, .., Tngm) = Z ei(1,. ., Zn)ej(Tnti, - s Tngm)
itj=k
in Folxy, ..., Tny Tagls - Tgm)- O
As in Milnor’s lemma on the Cartan formula for the Steenrod operations, we

can express the Whitney sum formula for Stiefel-Whitney classes as a coproduct
homomorphism.

Corollary 9.6. (i, ,: BO(n) x BO(m) — BO(n + m) induces
P : H*BO(n +m) — H*(BO(n) x BO(m)) = H*BO(n) @ H*BO(m)
Wy —— Z w; Q wy .
i+j=k

Ezample 9.7. Let Trpn, 7. and €' be the tangent bundle, tautological line bundle
and trivial line bundle over RP"™, respectively. Let v* = Hom(7;,€!) be the linear
dual of the tautological line bundle, which in this (real) case is isomorphic to ..
There is a canonical short exact of real vector bundles

0 — e — Hom(y},e"™) — mpn — 0,

so that Trpn @ €' = (n + 1)7*. Hence the total Stiefel-Whitney classes satisfy

w(trpn) = w(TRPr D 61) =w((n+1)7") = w(w*)""‘1

in H*(RP™;Fy) = Falx]/(z"*1). Here wi(y}) = wi(y*) = z, so that w(tgpn) =
1+2)""t=1+Mm+1z+- -+ (n+1)a". Hence
n+1\ ;
wi(T]RP”) = ; x

for 1 <i < n, read modulo 2.
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10. (Co-)HOMOLOGY OF BO AND BU AS A BIPOLYNOMIAL BIALGEBRAS

Definition 10.1. Let

o=Jom)
U=JUum)

be the infinite rank orthogonal and unitary groups. Their classifying spaces are
BO =~ Gro(R*) = colim Gr, (R*)
n
BU =~ Gro(C*) = colim Gr,, (C*).

The maps py,,m induce pairings
BO x BO =~ colim Gr,,(R>) x Gr,,(R>®) - colim Gr,, ,, (R*® @ R®) ~ BO

and

BU x BU ~ colim Gr,,(C*®) x Gr,,(C®) - colim Grp, 4, (C* & C>®) ~ BU ,

which are unital, associative and commutative up to homotopy. ((ETC: These
define E, structures on BO and BU, in these sense of spaces with operad actions.))

Theorem 10.2. H*(BO;F3) = Folwy | k > 1] is a bicommutative Fa-bialgebra
with coproduct ¥ = p* given by

Ylwp) = Y wi Dw;
iti=k
where wg = 1.

Theorem 10.3. H*BU = Z[c, | k > 1] is a bicommutative Z-bialgebra with
coproduct ¥ = p* given by

dle) = Y c®g

itj=k

where cog = 1.

Proof. This follows by a passage to limits from the results for H*BU (n), since
H*BU = lim H* BU (n)

maps isomorphically to H*BU (n) for x < 2n + 1. O

Definition 10.4. Let ay € Hy(BO(1);Fs) be dual to 2* € H¥(BO(1);Fs), and
let B € Hap(BU(1);Z) be dual to y* € H**(BU(1);F2), so that

H,(BO(1);F2) = Fao{ay [ k > 0}
H.(BU(1);Z) = Z{Bk | k = 0} .
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Let ap = w(ag) € Hi(BO;Fs3) be the image of oy, and let by = .(Bx) €
Hs(BU;Z) be the image of S, under the homomorphisms
ts: H(BO(1);Fy) — Hy(BO;Fs)
ap — ag
ts: Hp(BU(1);Z) — Hy(BU;Z)
B — bi
induced by ¢: BO(1) — BO and v: BU(1) — BU, respectively.
The corresponding results in homology follow by (non-trivial) algebraic dual-

ization. See [Mil60, §3], [Liu62, §3], [MS74, §16] and [MP12, Thm. 21.4.3] for
expositions of this classical result. Note that

Ay(ag) = Z o ® oy
i+j=k
ABr) =) Bi®B;
i+j=k
in H,(BO(1);Fq) and H,(BU(1);Z), respectively, where A: X — X x X generically
denotes the diagonal map.

Theorem 10.5. H,(BO;F3) = Fylay | k > 1] is a bipolynomial Fa-bialgebra with
coproduct v = A, given by
Ulap) = Y a;@a
it+j=k
where ag = 1. Here (w¥ a) = 1, while (w!,ax) = 0 for any other monomial
wl =wi' - w, of Stiefel-Whitney classes.
Theorem 10.6. H,.BU > Z[b | k > 1] is a bipolynomial Z-bialgebra with coprod-
uct Y = A, given by
Y(be) = Y b @b
itj=k
where bg = 1. Here (k. b) = 1, while (c!,by) = 0 for any other monomial ¢! =
et ¢yt of Chern classes.
Here a “bipolynomial” bialgebra B means one such that both the underlying

algebra B and the dual BY of the underlying coalgebra are polynomial algebras.
In particular, such B are bicommutative.

11. SYMMETRIC FUNCTIONS
Definition 11.1. For £ > 1 let

PkZny=yf+y§+~-~EZ[[yl,yg,...]].
i>1

be the k-th formal power-sum series. It projects to the k-th power-sum symmetric
polynomial

k
Pty yn) = Dy € Zlys, ..., ya)"" = H*BU(n)
=1

for each n, hence defines a class p, € H**BU.
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Theorem 11.2 (Girard (1629), Newton (1666)). p; = c1, p2 = ¢2 — 2¢o and
Pn = Pn—1€1 — Pn—2C2 + -+ (=1)"picp_1 — (=1)"nc, .

By a partition of k we mean an unordered sequence T' = {t1,...,t,} of positive
integers with ¢; +--- + ¢, = k.

Definition 11.3. Two monomials in y1,ys, ... are equivalent if some permutation
of these variables takes one to the other. For any partition 7" = {t1,...,t,} let

pr=>Y_yi'- -y € H'BU
be the (formal) sum of all monomials that are equivalent to yfl -+~ yln. For example,
Py = pe and pyy, 1y = cx (where {1,...,1} has k copies of 1).

The classes pr give a Z-basis for H*BU, different from that given by the mono-
mials ¢ in the Chern classes.

Lemma 11.4.
H*BU =Z{pr | T any partition} .

The concatenation of two partitions R = {ry,...,7¢} and S = {s1,...,8m} is
the partition RS = {ry,...,7¢,81,...,8m}.

Lemma 11.5 (Thom, [MS74, Lem. 16.2]). For any partition T,
Y(pr)= > pr®ps
RS=T
in H*BU ® H*BU, where the sum ranges over all pairs (R,S) of partitions with
concatenation T
Proof. Given T = {t1,...,t,} we can detect ¢(pr) in H*BU (n)® H*BU(n), hence
also in H*BU (1) @ H*BU (1)™.

H*BU v H*BU ® H*BU

. |

Hn,n

H*BU(2n) —" > H*BU(n) ® H*BU(n)

-k Sk ok
z2nI 7’n®zn

Z[ylv LU 7y2n] ; Z[ylv LU ,yn] ® Z[yn+17 . aan} .
Any monomial in y1,...,ys, that is equivalent to yil -+~ yin corresponds under the
lower isomorphism to the tensor product of a monomial equivalent to y7* - - - y,* and
a monomial equivalent to g, | - - - yo5', where R = {ry,...,rf and S = {s1,...,5n}
range over all possible partitions with RS = T. Hence pr = > pq_rPr®ps. O

A class x € C in a coalgebra is primitive if ¥(z) =2 ® 1+ 1® z.
Corollary 11.6. The coalgebra primitives in H* BU are
Zipk | k = 1}.

Proof. The partition {k} can only be written as the concatenation of {k} and {},
in either order. ]
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((ETC: We may discuss coalgebra primitives, and the dual notion of algebra
indecomposables, in more detail later, perhaps in the context of Tor; and Extl.))

Proof of Theorem 10.6. The monomial basis {pr | T any partition} for H*BU de-
termines a dual basis {py. | T any partition} for (H*BU)". The coproduct from
Lemma 11.5 dualizes to the product

Pk Ps = Phs -
Hence
PT =Dy Pt
for T = {t1,...,t,}, and the p/ = pgk} freely generate (H*BU)Y as a (graded)
commutative ring (= Z-algebra). In other words

Zlp) | k> 1] = (H*BU)" = H,BU .
In fact, p; = bg. This follows from the calculation

1 i T = {k},

(pr,bk) = (pr, 1+ (Br)) = ("pr, Br) = )

0 otherwise,
where t*pr = 0if n > 2, and t*py = y'* if n = 1. The formula for 1(by) follows by
naturality for the one for 1 (S;). O

Remark 11.7. To each finite sequence I = (i1,...,4) of non-negative integers we
assign the partition R = {rq,...,r,} where u occurs i, times, for each 1 < u < /.
This gives a bijective correspondence. For example, I = (0,...,0,1) (with 1 in
the k-th position) corresponds to the partition T = (k), and I = (k) corresponds
to the partition T = {1,...,1} (with k copies of 1). If I corresponds to R, J
corresponds to S and K = I+ J is the coordinatewise sum of finite sequences, then
K corresponds to the concatenation T'= RS.
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