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CHAPTER 4: CHARACTERISTIC CLASSES

JOHN ROGNES

See [Hus66, Part III], [MS74], [May99, Ch. 23] and Hatcher (2003).

1. Characteristic classes for line bundles

Definition 1.1. Let G be a topological group and R an abelian group. A fixed
cohomology class

c ∈ H∗(BG;R)

specifies an R-valued characteristic class for principal G-bundles, or for F -fiber
bundles with structure group G. Writing ξ for π : P → X or π : E → X, this is the
natural transformation

BunG(X) ∼= [X,BG] −→ H∗(X;R)

ξ ↔ [f ] 7−→ f∗(c) = c(ξ) ,

assigning to ξ the cohomology class c(ξ) = f∗(x), where

f∗ : H∗(BG;R) −→ H∗(X;R)

is the homomorphism induced by the classifying map f : X → BG.

Example 1.2. For G = O(1) with EO(1) ' S∞ and BO(1) ' RP∞ ' K(F2, 1)
each class

xn ∈ Hn(RP∞;F2)

defines an F2-valued characteristic class for real line bundles. The case n = 1 is
most interesting, when x = ι1 is the fundamental class, so that

Vect1(X) ∼= [X,BO(1)]
∼=−→ H1(X;F2)

[f ] 7−→ f∗(x)

is a natural bijection. Here Vect1(X) = VectR1 (X) = BunR,O(1)(X) ∼= BunO(1)(X)
denotes the set of isomorphism classes of real line bundles over X. This character-
istic class is called the first Stiefel–Whitney class, and usually denoted

w1(ξ) ∈ H1(X;F2) .

The bijection shows that real line bundles are classified up to isomorphism by the
first Stiefel–Whitney class.
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Lemma 1.3. The fiberwise tensor product ξ⊗η of two line bundles over X is again
a line bundle over X. The first Stiefel–Whitney classes satisfy

w1(ξ ⊗ η) = w1(ξ) + w1(η)

in H1(X;F2).

Proof. Let γ1 = γ1
R denote the tautological line bundle

E(γ1) = S∞ ×O(1) R −→ RP∞

with w1(γ1) = x, and let ε1 = ε1R : R∞ × R → RP∞ denote the trivial line bundle
with w1(ε1) = 0. Then the external tensor product

γ1⊗̂γ1 = pr∗1(γ1)⊗ pr∗2(γ1)

over RP∞ × RP∞ is classified by a map

m : RP∞ × RP∞ −→ RP∞ .

In terms of the bar construction, m is the map

BO(1)⊗BO(1) ∼= B(O(1)×O(1)) −→ BO(1)

induced by the (commutative) group multiplication O(1) × O(1) → O(1). Since
γ1 ⊗ ε1 ∼= γ1 ∼= ε1 ⊗ γ1 it follows that m restricted to RP∞ × ∗, or to ∗ × RP∞, is
homotopic to the identity. This implies that

m∗(x) = x× 1 + 1× x ∈ H1(RP∞ × RP∞;F2) = F2{x× 1, 1× x} .

Let f : X → RP∞ and g : X → RP∞ classify ξ and η, respectively. Then ξ ⊗ η is
classified by

X
∆−→ X ×X f×g−→ RP∞ × RP∞ m−→ RP∞ ,

so

w1(ξ ⊗ η) = ∆∗(f∗ × g∗)m∗(x) = f∗(x) ∪ 1 + 1 ∪ g∗(x) = w1(ξ) + w1(η) .

�

Example 1.4. For G = U(1) with EU(1) ' S∞ and BU(1) ' CP∞ ' K(Z, 2) each
class

yn ∈ H2n(CP∞) = H2n(CP∞;Z)

defines a Z-valued characteristic class for real line bundles. The case n = 1 is most
interesting, when y = ι2 is the fundamental class, so that

Vect1(X) ∼= [X,BU(1)]
∼=−→ H2(X) = H2(X;Z)

[f ] 7−→ f∗(y)

is a natural bijection. Here Vect1(X) = VectC1 (X) = BunC,U(1)(X) ∼= BunU(1)(X)
denotes the set of isomorphism classes of complex line bundles over X. This char-
acteristic class is called the first Chern class, and usually denoted

c1(ξ) ∈ H2(X) .

The bijection shows that complex line bundles are classified up to isomorphism by
the first Chern class.
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Lemma 1.5. The fiberwise tensor product ξ⊗η of two line bundles over X is again
a line bundle over X. The first Chern classes satisfy

c1(ξ ⊗ η) = c1(ξ) + c1(η)

in H2(X).

Proof. Let γ1 = γ1
C denote the tautological line bundle

E(γ1) = S∞ ×U(1) C −→ CP∞

with c1(γ1) = y, and let ε1 = ε1C : C∞ × C → CP∞ denote the trivial line bundle
with c1(ε1) = 0. Then the external tensor product

γ1⊗̂γ1 = pr∗1(γ1)⊗ pr∗2(γ1)

over CP∞ × CP∞ is classified by a map

m : CP∞ × CP∞ −→ CP∞ .

In terms of the bar construction, m is the map

BU(1)⊗BU(1) ∼= B(U(1)× U(1)) −→ BU(1)

induced by the (commutative) group multiplication U(1) × U(1) → U(1). Since
γ1 ⊗ ε1 ∼= γ1 ∼= ε1 ⊗ γ1 it follows that m restricted to CP∞ × ∗, or to ∗ × CP∞, is
homotopic to the identity. This implies that

m∗(y) = y × 1 + 1× y ∈ H2(CP∞ × CP∞) = Z{y × 1, 1× y} .
Let f : X → CP∞ and g : X → CP∞ classify ξ and η, respectively. Then ξ ⊗ η is
classified by

X
∆−→ X ×X f×g−→ CP∞ × CP∞ m−→ CP∞ ,

so

c1(ξ ⊗ η) = ∆∗(f∗ × g∗)m∗(y) = f∗(y) ∪ 1 + 1 ∪ g∗(y) = c1(ξ) + c1(η) .

(There is a choice of sign convention here, namely whether c1(γ1) is y or −y, which
is related to whether the fundamental class of CPn is dual to (−y)n or yn.) �

2. Characteristic classes for real vector bundles

Fix n ≥ 0. The Stiefel space

Vn(R∞) = {(v1, . . . , vn) | vi ∈ R∞, 〈vi, vj〉 = δij}
of orthogonal n-frames in R∞ is contractible. Viewing it as the space of isometries
v : Rn → R∞ it has a free (right) O(n)-action (v,A) 7→ vA given by precomposition
by any isometry A : Rn → Rn. The orbit space

Grn(R∞) = Vn(R∞)/O(n) = {V ⊂ R∞ | dimR(V ) = n}
is the Grassmannian of n-dimensional real subspaces of R∞. Hence

π : Vn(R∞) −→ Grn(R∞)

(v1, . . . , vn) −→ R{v1, . . . , vn}

is a universal principal O(n)-bundle, and Grn(R∞) ' BO(n) is a classifying space
for O(n)-bundles, hence also for GLn(R)-bundles, Rn-vector bundles and Euclidean
Rn-vector bundles. The associated Rn-bundle

π : Vn(R∞)×O(n) Rn −→ Grn(R∞)
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is isomorphic to the tautological vector bundle γn = γnR , with total space

E(γn) = {(V, x) | V ∈ Grn(R∞), x ∈ V } .
When n = 1, Gr1(RP∞) = RP∞ classifies real line bundles, as discussed before.

The R-valued characteristic classes of real vector bundles correspond to elements
of H∗(BO(n);R) ∼= H∗(Grn(R∞);R). This is best understood for R = F2 and
R = Z[1/2], separately, and we focus on the first of these. Let O(1)n ⊂ O(n) be the
diagonal subgroup, which is elementary abelian of order 2n. The inclusion induces
a map

in : (RP∞)n ' BO(1)n −→ BO(n) ' Grn(R∞)

classifying the external direct sum of n real line bundles. In other words,

i∗n(γn) ∼= γ1 × · · · × γ1

with n copies of γ1. We obtain an induced homomorphism

i∗n : H∗(BO(n);F2) −→ H∗(BO(1);F2) ∼= F2[x]⊗ · · · ⊗ F2[x] ∼= F2[x1, . . . , xn] ,

where we have used the Künneth theorem, there are n copies of H∗(RP∞;F2) =
F2[x], and

xi = 1⊗ · · · ⊗ 1⊗ x⊗ 1⊗ · · · ⊗ 1

with x in the i-th entry, for 1 ≤ i ≤ n. Each x and xi has cohomological degree 1.
Each permutation σ ∈ Σn in the symmetric group on n letters acts on O(1)n by
permuting the n factors. (This is the Weyl group action for O(1)n inside O(n),
since the normalizer of O(1)n is Σn n O(1)n = Σn o O(1) ⊂ O(n), where we view
Σn as a group of permutation matrices, within O(n).) The induced map

σ : (RP∞)n ' BO(1)n → BO(1)n ' (RP∞)n

also acts by permuting the factors. Hence

σ∗(ξ1 × · · · × ξn) ∼= ξσ(1) × · · · × ξσ(n)

for any n line bundles ξ1, . . . , ξn. In particular, when ξ1 = · · · = ξn = γ1, we get an
isomorphism

σ∗(γ1 × · · · × γ1) ∼= γ1 × · · · × γ1 .

This means that the triangle

BO(1)n
σ //

in %%

BO(1)n

inyy
BO(n)

commutes up to homotopy, so that

H∗(BO(n);F2)

i∗n

vv

i∗n

((
H∗(BO(1);F2)

σ∗ // H∗(BO(1);F2)

commutes. In other words, i∗n factors through the Σn-invariants

H∗(BO(n);F2)
ĩ∗n−→ H∗(BO(1)n;F2)Σn ∼= F2[x1, . . . , xn]Σn ⊂ F2[x1, . . . , xn] .

These invariants are the symmetric polynomials in x1, . . . , xn.
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Definition 2.1. For 1 ≤ k ≤ n let

ek(x1, . . . , xn) =
∑

1≤i1<···<ik≤n

xi1 · · ·xik

be the k-th elementary symmetric polynomial. (Milnor and Stasheff write σk in
place of ek.) If each xi has degree 1, then ek(x1, . . . , xn) has degree k. In par-
ticular, e1(x1, . . . , xn) = x1 + · · · + xn, e2(x1, . . . , xn) = x1x2 + · · · + xn−1xn and
en(x1, . . . , xn) = x1 · · ·xn.

The following theorem on symmetric polynomials is classical.

Theorem 2.2.
F2[e1, . . . , en] = F2[x1, . . . , xn]Σn .

where ek = ek(x1, . . . , xn).

Theorem 2.3 ([Bor53]).

ĩ∗n : H∗(BO(n);F2)
∼=−→ F2[x1, . . . , xn]Σn ∼= F2[e1, . . . , en]

is an isomorphism.

Definition 2.4. For 1 ≤ k ≤ n the k-th Stiefel–Whitney class

wk ∈ Hk(BO(n);F2)

is characterized by
i∗n(wk) = ek(x1, . . . , xn) .

Hence
H∗(BO(n);F2) = F2[w1, . . . , wn]

with wk in degree k.

3. Characteristic classes for complex vector bundles

Fix n ≥ 0. The Stiefel space

Vn(C∞) = {(v1, . . . , vn) | vi ∈ C∞, 〈vi, vj〉 = δij}
of unitary n-frames in C∞ is contractible. Viewing it as the space of isometries
v : Cn → C∞ it has a free (right) U(n)-action (v,A) 7→ vA given by precomposition
by any isometry A : Cn → Cn. The orbit space

Grn(C∞) = Vn(C∞)/U(n) = {V ⊂ C∞ | dimC(V ) = n}
is the Grassmannian of n-dimensional complex subspaces of C∞. Hence

π : Vn(C∞) −→ Grn(C∞)

(v1, . . . , vn) −→ C{v1, . . . , vn}
is a universal principal U(n)-bundle, and Grn(C∞) ' BU(n) is a classifying space
for U(n)-bundles, hence also for GLn(C)-bundles, Cn-vector bundles and Hermitian
Cn-vector bundles. The associated Cn-bundle

π : Vn(C∞)×U(n) Cn −→ Grn(C∞)

is isomorphic to the tautological vector bundle γn = γnC , with total space

E(γn) = {(V, x) | V ∈ Grn(C∞), x ∈ V } .
When n = 1, Gr1(CP∞) = CP∞ classifies complex line bundles, as discussed
before.
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The integer valued characteristic classes of complex vector bundles correspond
to elements of H∗BU(n) ∼= H∗Grn(C∞). Let U(1)n ⊂ U(n) be the diagonal torus.
The inclusion induces a map

in : (CP∞)n ' BU(1)n −→ BU(n) ' Grn(C∞)

classifying the external direct sum of n complex line bundles. In other words,

i∗n(γn) ∼= γ1 × · · · × γ1

with n copies of γ1. We obtain an induced homomorphism

i∗n : H∗BU(n) −→ H∗BU(1) ∼= Z[y]⊗ · · · ⊗ Z[y] ∼= Z[y1, . . . , yn] ,

where we have used the Künneth theorem, there are n copies of H∗(CP∞) = Z[y],
and

yi = 1⊗ · · · ⊗ 1⊗ y ⊗ 1⊗ · · · ⊗ 1

with y in the i-th entry, for 1 ≤ i ≤ n. Each y and yi has cohomological degree 2.
Each permutation σ ∈ Σn in the symmetric group on n letters acts on U(1)n by
permuting the n factors. (This is the Weyl group action for U(1)n inside U(n),
since the normalizer of U(1)n is Σn n U(1)n = Σn o U(1) ⊂ U(n), where we view
Σn as a group of permutation matrices, within U(n).) The induced map

σ : (CP∞)n ' BU(1)n → BU(1)n ' (CP∞)n

also acts by permuting the factors. Hence

σ∗(ξ1 × · · · × ξn) ∼= ξσ(1) × · · · × ξσ(n)

for any n line bundles ξ1, . . . , ξn. In particular, when ξ1 = · · · = ξn = γ1, we get an
isomorphism

σ∗(γ1 × · · · × γ1) ∼= γ1 × · · · × γ1 .

This means that the triangle

BU(1)n
σ //

in %%

BU(1)n

inyy
BU(n)

commutes up to homotopy, so that

H∗BU(n)

i∗n

xx

i∗n

&&
H∗BU(1)

σ∗ // H∗BU(1)

commutes. In other words, i∗n factors through the Σn-invariants

H∗BU(n)
ĩ∗n−→ H∗(BU(1)n)Σn ∼= Z[y1, . . . , yn]Σn ⊂ Z[y1, . . . , yn] .

These invariants are the symmetric polynomials in y1, . . . , yn.

Definition 3.1. For 1 ≤ k ≤ n let

ek(y1, . . . , yn) =
∑

1≤i1<···<ik≤n

yi1 · · · yik
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be the k-th elementary symmetric polynomial. (Milnor and Stasheff write σk in
place of ek.) If each yi has degree 2, then ek(y1, . . . , yn) has degree 2k. In par-
ticular, e1(y1, . . . , yn) = y1 + · · · + yn, e2(y1, . . . , yn) = y1y2 + · · · + yn−1yn and
en(y1, . . . , yn) = y1 · · · yn.

The following theorem on symmetric polynomials is classical.

Theorem 3.2.
Z[e1, . . . , en] = Z[y1, . . . , yn]Σn .

where ek = ek(y1, . . . , yn).

Theorem 3.3 ([Bor53]).

ĩ∗n : H∗BU(n)
∼=−→ Z[y1, . . . , yn]Σn ∼= Z[e1, . . . , en]

is an isomorphism.

Definition 3.4. For 1 ≤ k ≤ n the k-th Chern class

ck ∈ H2kBU(n)

is characterized by
i∗n(ck) = ek(y1, . . . , yn) .

Hence
H∗BU(n) = Z[c1, . . . , cn]

with ck in degree 2k.

4. Thom complexes

Definition 4.1. Let ξ be an Euclidean Rn-bundle π : E = E(ξ) → X, with fibers
Ex = E(ξ)x = π−1(x). Let π : P → X be the associated principal O(n)-bundle, so
that E = P ×O(n) Rn. We write

D(ξ) = {v ∈ E | ‖v‖ ≤ 1} = P ×O(n) D
n

and
S(ξ) = {v ∈ E | ‖v‖ = 1} = P ×O(n) S

n−1

for the unit disc and sphere subbundles of ξ. We have inclusions

S(ξ) ⊂ D(ξ) ⊂ E
of fiber bundles over X, all with structure group O(n). Let

Th(ξ) = D(ξ)/S(ξ)

be the Thom space of ξ.

The disc and sphere bundles, and the Thom space, are natural for maps of
Euclidean vector bundles.

Definition 4.2. Let R be a commutative ring. An R-orientation class of ξ is an
element

U = Uξ ∈ H̃n(Th(ξ);R) ∼= Hn(D(ξ), S(ξ);R)

whose restriction to

Hn(D(ξ)x, S(ξ)x;R) ∼= Hn(Dn, Sn−1;R) ∼= R

is a unit for each x ∈ X. Here D(ξ)x = D(ξ) ∩ Ex and S(ξ)x = S(ξ) ∩ Ex are the
fibers of D(ξ) and S(ξ) over x.
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Lemma 4.3. A choice of Z-orientation class Uξ ∈ H̃n(Th(ξ);Z) is equivalent to a
continuous choice of orientations of the fiber vector spaces Ex. There is a unique
choice of F2-orientation Uξ ∈ H̃n(Th(ξ);F2).

Sketch proof. If X is a CW complex, then (D(ξ), S(ξ)) is a relative CW complex
with one (k + n)-cell for each k-cell of X. Hence Th(ξ) is a based CW complex
with one (k + n)-cell for each k-cell of X, in addition to the base point 0-cell. It

follows that H̃∗(Th(ξ)) = 0 for ∗ < n.
In neighborhoods on X where ξ admits a trivialization, the result follows from

the Künneth isomorphism. Let A,B ⊂ X. The Mayer–Vietoris sequence

0→ Hn(D(ξ|A∪B), S(ξ|A∪B)) −→ Hn(D(ξ|A), S(ξ|A))⊕Hn(D(ξ|B), S(ξ|B))

−→ Hn(D(ξ|A ∩B), S(ξ|A ∩B))

shows that choices of orientation classes Uξ|A and Uξ|B over A and B, respectively,
can be (uniquely) extended to an orientation class Uξ|A∪B if and only if their re-
strictions over A ∩ B agree, and this compatibility is what a choice of orientation
provides. �

The Thom complex is monoidal for the external direct sum of vector bundles.

Lemma 4.4. Let ξ be as above, let η be an Euclidean Rm-bundle π : E(η) → Y ,
and let ξ×η be the external direct sum Rn+m-bundle E(ξ)×E(η)→ X×Y . There
is a homotopy equivalence

Th(ξ) ∧ Th(η) ' Th(ξ × η)

that is natural up to (coherent) homotopy. If ξ and η are R-oriented, then the
smash product homomorphism

H̃n(Th(ξ);R)⊗R H̃m(Th(η);R)
∧−→ H̃n+m(Th(ξ × η);R)

takes Uξ ⊗ Uη to an R-orientation class

Uξ×η = Uξ ∧ Uη
for ξ × η.

Sketch proof. There is an O(n)×O(m)-equivariant homeomorphism

Dn ×Dm ∼= Dn+m

that scales each vector by a positive factor, so as to restrict to a homeomorphism

Sn−1 ×Dm ∪Dn × Sm−1 ∼= Sn+m−1 .

�

Example 4.5. For each complex n-dimensional vector space V , the underlying real
2n-vector space has a canonical orientation, given by the ordered real basis

(v1, ivi, . . . , vn, ivn) ,

where (v1, . . . , vn) is any choice of complex basis for V . Hence the underlying
R2n-bundle of any Cn-bundle η has a preferred integral orientation class Uη ∈
H̃2n(Th(η);Z).
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5. Euler classes

There is a homotopy cofiber sequence

S(ξ)
π−→ X

z−→ Cπ = Th(ξ)

expressing Th(ξ) as the mapping cone of the sphere bundle projection π : S(ξ)→ X.
The map z : X → Th(ξ) is the composite qs0 of the zero-section

s0 : X −→ D(ξ) ⊂ E(ξ)

mapping each x ∈ X to the zero vector 0 ∈ Ex in the (unit disc and) vector space
fiber over x, followed by the collapse map

q : D(ξ) −→ D(ξ)/S(ξ) = Th(ξ) .

(Transversality of maps SN → Th(ξ) with respect to z : X → Th(ξ) plays a key
role in Thom’s classification of manifolds up to bordism.)

Definition 5.1. The Euler class of an R-oriented Rn-bundle ξ is the pullback

e(ξ) = z∗(Uξ) ∈ Hn(X;R)

of the orientation class along the zero-section.

Remark 5.2. The Euler class for Z-oriented Rn-bundles is a characteristic class for
oriented real vector bundles, i.e., Rn-bundles with structure group

SO(n) = {A ∈ O(n) | det(A) = 1} ⊂ O(n) .

The classifying space

BSO(n) ' G̃rn(R∞)

is equivalent to the Grassmannian of oriented n-dimensional real subspaces of R∞,
which is the universal (double) cover of Grn(R∞). The universal (integral) Euler
class is thus an element

e ∈ Hn(BSO(n);Z) .

Theorem 5.3 ([MS74, Cor. 11.12]). Let M be a smooth, closed and oriented n-
manifold, with tangent bundle τM and fundamental class [M ] ∈ Hn(M ;Z). Then

〈e(τM ), [M ]〉 = χ(M)

is equal to the Euler characteristic of M .

Remark 5.4. The universal F2-valued Euler class for (not necessarily oriented) Rn-
bundles is an element

ē ∈ Hn(BO(n);F2) .

Proposition 5.5. Let ξ and η be oriented Rn- and Rm-bundles over X and Y ,
respectively. The Euler classes of ξ, η and the external direct sum ξ × η satisfy

e(ξ × η) = e(ξ)× e(η) .

If X = Y and ξ⊕ η = ∆∗(ξ× η) is the fiberwise direct sum (= Whitney sum), then

e(ξ ⊕ η) = e(ξ) ∪ e(η) .
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Proof. The zero-sections are compatible, and induce the following commutative
square.

H̃n Th(ξ)⊗ H̃m Th(η)
∧ //

z∗⊗z∗

��

H̃n+m Th(ξ × η)

z∗

��
Hn(X)⊗Hm(Y )

× // Hn+m(X × Y )

Chasing Uξ ⊗ Uη both ways gives the result for ξ × η. The result for ξ ⊕ η (when
X = Y ) follows by pullback along ∆: X → X ×X. �

Example 5.6. The group isomorphism U(1) ∼= SO(2) induces an equivalenceBU(1) ∼=
BSO(2), and the universal Euler class e ∈ H2(BSO(2);Z) corresponds to the
first Chern class c1 ∈ H2(BU(1);Z). The universal F2-valued Euler class ē ∈
H1(BO(1);F2) equals the first Stiefel–Whitney class w1 ∈ H1(BO(1);F2).

6. The Thom isomorphism

Theorem 6.1 ([Tho54]). Let ξ be an Rn-bundle π : E → X, with R-orientation

class Uξ ∈ Hn(D(ξ), S(ξ);R) ∼= H̃n(Th(ξ);R).
(a) The cup product with Uξ defines an isomorphism

Hi(X;R) ∼= Hi(D(ξ);R)
∼=−→ Hi+n(D(ξ), S(ξ);R) ∼= H̃i+n(Th(ξ);R)

x 7−→ x ∪ Uξ

for each i, combining to the (cohomological) Thom isomorphism

Φξ : H∗(X;R)
∼=−→ H̃∗+n(Th(ξ);R) .

(b) The cap product with Uξ defines an isomorphism

H̃n+i(Th(ξ);R) ∼= Hn+i(D(ξ), S(ξ);R)
∼=−→ Hi(D(ξ);R) ∼= Hi(X;R)

α 7−→ Uξ ∩ α

for each i, combining to the (homological) Thom isomorphism

Φξ : H̃∗+n(Th(ξ);R)
∼=−→ H∗(X;R) .

Sketch proof. (a) In neighborhoods onX where ξ admits a trivialization, this follows
from the Künneth isomorphism. Let A,B ⊂ X. The map of Mayer–Vietoris
sequences induced by cup product with R-orientation classes, see Figure 1, and the
five-lemma, give the inductive step from the case of ξ|A, ξ|B and ξ|A∩B to ξ|A∪B.

(b) The same proof works, using the map of Mayer–Vietoris sequences induced
by cap product with R-orientation classes. �

The relative cup product can be replaced by the external smash product followed
by pullback along the Thom diagonal map

Th(ξ) −→ D(ξ)+ ∧ Th(ξ) ' X+ ∧ Th(ξ)

taking v to π(v) ∧ v for v ∈ D(ξ). This is the base point when v ∈ S(ξ).
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Hi−1(A)⊕Hi−1(B)
Φξ|A⊕Φξ|B //

��

H̃i−1+n(Th(ξ|A);R)⊕ H̃i−1+n(Th(ξ|B);R)

��
Hi−1(A ∩B)

Φξ|A∩B //

δ

��

H̃i−1+n(Th(ξ|A ∩B);R)

δ

��
Hi(A ∪B)

Φξ|A∪B //

��

H̃i+n(Th(ξ|A ∪B);R)

��
Hi(A)⊕Hi(B)

Φξ|A⊕Φξ|B //

��

H̃i+n(Th(ξ|A);R)⊕ H̃i+n(Th(ξ|B);R)

��
Hi(A ∩B)

Φξ|A∩B // H̃i+n(Th(ξ|A ∩B);R)

Figure 1. Map of Mayer–Vietoris sequences

7. The Gysin sequence

Theorem 7.1 ([Gys42]). Let ξ be an R-oriented Rn-bundle π : E → X, with Euler
class e(ξ) ∈ Hn(X;R).

(a) The long exact cohomology sequence of the pair (D(ξ), S(ξ)) is isomorphic
to the (cohomological) Gysin sequence

· · · → Hi(X;R)
−∪e(ξ)−→ Hi+n(X;R)

π∗−→ Hi+n(S(ξ);R) −→ Hi+1(X;R)→ . . . .

(b) The long exact homology sequence of the same pair is isomorphic to the
(homological) Gysin sequence

· · · → Hi+1(X;R) −→ Hn+i(S(ξ);R)
π∗−→ Hn+i(X;R)

e(ξ)∩−−→ Hi(X;R)→ . . . .

Proof.

Hi(X)

π∗ ∼=
��

−∪e(ξ)

((
Hi+n−1(S(ξ))

66

// Hi(D(ξ)) //

−∪Uξ ∼=
��

Hi+n(X)
π∗ //

π∗

��
∼=

Hi+n(S(ξ))

Hi+n−1(S(ξ))
δ //

((

Hi+n(D(ξ), S(ξ)) // Hi+n(D(ξ)) //

s∗0

OO

Hi+n(S(ξ))

H̃i+n(Th(ξ))

∼=

OO

q∗

66

�
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8. Cohomology of BU(n)

Consider the linear action of U(n) on S2n−1 = S(Cn). The subgroup U(n − 1)
fixes the last unit vector en = (0, . . . , 0, 1), so that

U(n)/U(n− 1)
∼=−→ S2n−1

A · U(n− 1) 7−→ Aen .

Hence we have an equivalence

BU(n− 1) = EU(n− 1)/U(n− 1)
'−→ EU(n)/U(n− 1)

∼= EU(n)×U(n) U(n)/U(n− 1) ∼= EU(n)×U(n) S
2n−1 = S(γn)

where γn = γnC is the tautological Cn-bundle over BU(n) ' Grn(C∞). The inclu-
sion ι : BU(n− 1)→ BU(n) corresponds to the projection π : S(γn)→ BU(n).

The underlying R2n-bundle of the Cn-bundle γn is canonically Z-oriented, so we
have a long exact Gysin sequence

· · · → HiBU(n)
−∪e(γn)−→ Hi+2nBU(n)

ι∗−→ Hi+2nBU(n−1) −→ Hi+1BU(n)→ . . . .

Note that ι∗ is an isomorphism for i+ 2n ≤ 2n− 2, i.e., for i ≤ −2.

Definition 8.1. Suppose, by induction on n ≥ 1, that the Chern classes

ck ∈ H2k(BU(n− 1);Z)

have been defined for 1 ≤ k < n. Then we define

ck ∈ H2k(BU(n);Z)

for 1 ≤ k < n by the condition ι∗(ck) = ck. Finally, we define

cn ∈ H2n(BU(n);Z)

to be equal to the Euler class e(γn) of the canonically oriented R2n-bundle under-
lying the tautological Cn-bundle over BU(n).

Proposition 8.2.

Z[c1, . . . , cn]
∼=−→ H∗BU(n) .

Proof. Assume, by induction, that Z[c1, . . . , cn−1] ∼= H∗BU(n− 1). Then the ring
homomorphism ι∗ is surjective, so the Gysin sequence breaks up into a short exact
sequence

0→ H∗−2nBU(n)
·cn−→ H∗BU(n)

ι∗−→ H∗BU(n− 1)→ 0 .

It follows by induction on degrees that this is isomorphic to

0→ Σ2nZ[c1, . . . , cn]
·cn−→ Z[c1, . . . , cn] −→ Z[c1, . . . , cn−1]→ 0 .

�

Proposition 8.3.

ĩ∗n : H∗BU(n) −→ Z[y1, . . . , yn]Σn

ck 7−→ ek(y1, . . . , yn)

maps ck to the k-th elementary symmetric polynomial

ek(y1, . . . , yn) =
∑

1≤i1<···<ik≤n

yi1 · · · yik .
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Proof. For 1 ≤ k < n this follows by induction, since

H∗BU(n)
ĩ∗n //

ι∗

��

Z[y1, . . . , yn]Σn

yn 7→0

��
H∗BU(n− 1)

ĩ∗n−1 // Z[y1, . . . , yn−1]Σn−1

commutes and the right hand vertical map is an isomorphism below degree 2n,
sending ek(y1, . . . , yn) to ek(y1, . . . , yn−1) for each 1 ≤ k < n. It remains to prove
that

ĩ∗n(cn) = y1 · · · yn = y × · · · × y ∈ H∗(BU(1)n)Σn .

It suffices to prove that that

i∗n(cn) = y × · · · × y ∈ H∗(BU(1)n) .

This follows from cn = e(γn), i∗n(γn) = γ1 × · · · × γ1 and the product formula for
the Euler class:

i∗n(cn) = i∗ne(γ
n) = e(i∗nγ

n) = e(γ1 × · · · × γ1)

= e(γ1)× · · · × e(γ1) = y × · · · × y .

�

Theorem 3.3 follows, in view of Theorem 3.2.

Remark 8.4. At this point, we have available the “splitting principle” for charac-
teristic classes of complex vector bundles. To prove a statement about a natural
class c(ξ) ∈ H∗(X;R) for a Cn-bundle over X, it suffices by naturality to handle
the case of c = c(γn) ∈ H∗(BU(n);R). To verify an identity in H∗(BU(n);R) it
suffices to verify it after applying the injective ring homomorphism

i∗n : H∗(BU(n);R) −→ H∗(BU(1)n;R) ∼= R[y1, . . . , yn] .

Hence it suffices to check the condition for c(ξ) = i∗n(c) in the case of

ξ = i∗n(γn) = γ1 × · · · × γ1 = pr∗1 γ
1 ⊕ · · · ⊕ pr∗n γ

1 ,

which is a Whitney sum of n complex line bundles over BU(1)n ' (CP∞)n. Hence
we may effectively assume that ξ splits as a direct sum of line bundles.

For a Cn-bundle ξ we set c0(ξ) = 1 and ck(ξ) = 0 for k > n, and write c(ξ) =∑
k≥0 ck(ξ) for the total Chern class of ξ. The Whitney sum formula for Chern

classes follows.

Theorem 8.5. Let ξ and η be complex vector bundles over X. Then

ck(ξ ⊕ η) =
∑
i+j

ci(ξ) ∪ cj(η) ∈ H2k(X)

Hence

c(ξ ⊕ η) = c(ξ) ∪ c(η) ∈ H∗(X) .

Proof. By naturality, it suffices to prove that

ck(γn × γm) =
∑
i+j=k

ci(γ
n)× ck(γm) ∈ H2k(BU(n)×BU(m)) .
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This can be verified using the injectivity of i∗n : H∗BU(n) → H∗BU(1)n for all n,
i.e., by the splitting principle. The diagram

BU(1)n ×BU(1)m
in×im //

∼=
��

BU(n)×BU(m)

µn,m

��
BU(1)n+m

in+m // BU(n+m)

commutes, where the right hand vertical map µn,m = µ⊕n,m is induced by the block

sum inclusion U(n)×U(m)→ U(n+m) mapping (A,B) to (A 0
0 B ), and represents

the external direct sum γn × γm. Then

(in × im)∗ck(γn × γm) = i∗n+mck = ek(y1, . . . , yn+m)

and

(in × im)∗
∑
i+j=k

ci(γ
n)× cj(γm) =

∑
i+j=k

i∗nci × i∗mcj

=
∑
i+j=k

ei(y1, . . . , yn)× ej(yn+1, . . . , yn+m) .

The claim thus follows from the identity

ek(y1, . . . , yn+m) =
∑
i+j=k

ei(y1, . . . , yn)ej(yn+1, . . . , yn+m)

in Z[y1, . . . , yn, yn+1, . . . , yn+m]. �

As in Milnor’s lemma on the Cartan formula for the Steenrod operations, we can
express the Whitney sum formula for Chern classes as a coproduct homomorphism.

Corollary 8.6. µn,m : BU(n)×BU(m)→ BU(n+m) induces

µ∗n,m : H∗BU(n+m) −→ H∗(BU(n)×BU(m)) ∼= H∗BU(n)⊗H∗BU(m)

ck 7−→
∑
i+j=k

ci ⊗ cj .

Example 8.7. Let τCPn , γ1
n and ε1 be the tangent bundle, tautological line bundle

and trivial line bundle over CPn, respectively. Let γ∗ = Hom(γ1
n, ε

1) be the linear
dual of the tautological line bundle. There is a canonical short exact of complex
vector bundles

0→ ε1 −→ Hom(γ1
n, ε

n+1) −→ τCPn → 0 ,

so that τCPn ⊕ ε1 ∼= (n+ 1)γ∗. Hence the total Chern classes satisfy

c(τCPn) = c(τCPn ⊕ ε1) = c((n+ 1)γ∗) = c(γ∗)n+1

in H∗(CPn) ∼= Z[y]/(yn+1). With the convention c1(γ1
n) = y we have c1(γ∗) = −y

and c(γ∗) = 1−y, so that c(τCPn) = (1−y)n+1 = 1+(n+1)(−y)+· · ·+(n+1)(−y)n.
Hence

ci(τCPn) =

(
n+ 1

i

)
(−y)i

for 1 ≤ i ≤ n. In particular, 〈(−y)n, [CPn]〉 = 1 with this convention. For this
reason, many authors change the sign of y, so that y = c1(γ∗), c(τCPn) = (1 + y)n

and ci(τCPn) =
(
n+1
i

)
yi.
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9. Cohomology of BO(n)

Consider the linear action of O(n) on Sn−1 = S(Rn). The subgroup O(n − 1)
fixes the last unit vector en = (0, . . . , 0, 1), so that

O(n)/O(n− 1)
∼=−→ Sn−1

A ·O(n− 1) 7−→ Aen .

Hence we have an equivalence

BO(n− 1) = EO(n− 1)/O(n− 1)
'−→ EO(n)/O(n− 1)

∼= EO(n)×O(n) O(n)/O(n− 1) ∼= EO(n)×O(n) S
n−1 = S(γn)

where γn = γnR is the tautological Rn-bundle over BO(n) ' Grn(R∞). The inclu-
sion ι : BO(n− 1)→ BO(n) corresponds to the projection π : S(γn)→ BO(n).

The Rn-bundle γn is canonically F2-oriented, so we have a long exact Gysin
sequence

· · · → Hi(BO(n);F2)
−∪ē(γn)−→ Hi+n(BO(n);F2)

ι∗−→ Hi+n(BO(n− 1);F2) −→ Hi+1(BO(n);F2)→ . . . .

Note that ι∗ is an isomorphism for i+ n ≤ n− 2, i.e., for i ≤ −2.

Remark 9.1. At this point, an argument is needed for why ι∗ : Hn−1(BO(n);F2)→
Hn−1(BO(n − 1);F2) is an isomorphism, in the case corresponding to i = −1 in
the Gysin sequence above. It is clearly injective, and by exactness, surjectivity
is equivalent to knowing that ē(γn) 6= 0 in Hn(BO(n);F2). Milnor and Stasheff
[MS74] resolve this by directly constructing the classes wk ∈ Hk(BO(n);F2) using
Thom’s formula

wk = Φ−1
ξ (Sqk(Uξ)) ∈ H̃k+n(Th(ξ);F2)

in the universal case ξ = γn, and checking that ι∗(wk) = wk for all 1 ≤ k < n.
((ETC: We omit to discus this in more detail.))

Definition 9.2. Suppose, by induction on n ≥ 1, that the Stiefel–Whitney classes

wk ∈ Hk(BO(n− 1);F2)

have been defined for 1 ≤ k < n. Then we define

wk ∈ Hk(BO(n);F2)

for 1 ≤ k < n by the condition ι∗(wk) = wk. Finally, we define

wn ∈ Hn(BO(n);F2)

to be equal to the F2-valued Euler class ē(γn) associated to the canonical F2-
orientation of γn.

Proposition 9.3.

F2[w1, . . . , wn]
∼=−→ H∗BO(n) .

Proof. Assume, by induction, that F2[w1, . . . , wn−1] ∼= H∗BO(n − 1). Then the
ring homomorphism ι∗ is surjective, so the Gysin sequence breaks up into a short
exact sequence

0→ H∗−nBO(n)
·wn−→ H∗BO(n)

ι∗−→ H∗BO(n− 1)→ 0 .
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It follows by induction on degrees that this is isomorphic to

0→ ΣnF2[w1, . . . , wn]
·wn−→ F2[w1, . . . , wn] −→ F2[w1, . . . , wn−1]→ 0 .

�

Proposition 9.4.

ĩ∗n : H∗BO(n) −→ F2[x1, . . . , xn]Σn

wk 7−→ ek(x1, . . . , xn)

maps wk to the k-th elementary symmetric polynomial

ek(x1, . . . , xn) =
∑

1≤i1<···<ik≤n

xi1 · · ·xik .

Proof. For 1 ≤ k < n this follows by induction, since

H∗BO(n)
ĩ∗n //

ι∗

��

F2[x1, . . . , xn]Σn

xn 7→0

��
H∗BO(n− 1)

ĩ∗n−1 // F2[x1, . . . , xn−1]Σn−1

commutes and the right hand vertical map is an isomorphism below degree n,
sending ek(x1, . . . , xn) to ek(x1, . . . , xn−1) for each 1 ≤ k < n. It remains to prove
that

ĩ∗n(wn) = x1 · · ·xn = x× · · · × x ∈ H∗(BO(1)n)Σn .

It suffices to prove that that

i∗n(wn) = x× · · · × x ∈ H∗(BO(1)n) .

This follows from wn = ē(γn), i∗n(γn) = γ1 × · · · × γ1 and the product formula for
the Euler class:

i∗n(wn) = i∗nē(γ
n) = ē(i∗nγ

n) = ē(γ1 × · · · × γ1)

= ē(γ1)× · · · × ē(γ1) = x× · · · × x .

�

Theorem 2.3 follows, in view of Theorem 2.2.
For a Rn-bundle ξ we set w0(ξ) = 1 and wk(ξ) = 0 for k > n, and write

w(ξ) =
∑
k≥0 wk(ξ) for the total Stiefel–Whitney class of ξ.

The Whitney sum formula for Stiefel–Whitney classes follows.

Theorem 9.5. Let ξ and η be real vector bundles over X. Then

wk(ξ ⊕ η) =
∑
i+j

wi(ξ) ∪ wj(η) ∈ Hk(X;F2)

Hence

w(ξ ⊕ η) = w(ξ) ∪ w(η) ∈ H∗(X;F2) .

Proof. By naturality, it suffices to prove that

wk(γn × γm) =
∑
i+j=k

wi(γ
n)× wk(γm) ∈ Hk(BO(n)×BO(m);F2) .
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This can be verified using the injectivity of i∗n : H∗(BO(n);F2)→ H∗(BO(1)n;F2)
for all n, i.e., by the splitting principle. The diagram

BO(1)n ×BO(1)m
in×im //

∼=
��

BO(n)×BO(m)

µn,m

��
BO(1)n+m

in+m // BO(n+m)

commutes, where the right hand vertical map µn,m = µ⊕n,m is induced by the block

sum inclusion O(n)×O(m)→ O(n+m) mapping (A,B) to (A 0
0 B ), and represents

the external direct sum γn × γm. Then

(in × im)∗wk(γn × γm) = i∗n+mwk = ek(x1, . . . , xn+m)

and

(in × im)∗
∑
i+j=k

wi(γ
n)× wj(γm) =

∑
i+j=k

i∗nwi × i∗mwj

=
∑
i+j=k

ei(x1, . . . , xn)× ej(xn+1, . . . , xn+m) .

The claim thus follows from the identity

ek(x1, . . . , xn+m) =
∑
i+j=k

ei(x1, . . . , xn)ej(xn+1, . . . , xn+m)

in F2[x1, . . . , xn, xn+1, . . . , xn+m]. �

As in Milnor’s lemma on the Cartan formula for the Steenrod operations, we
can express the Whitney sum formula for Stiefel–Whitney classes as a coproduct
homomorphism.

Corollary 9.6. µn,m : BO(n)×BO(m)→ BO(n+m) induces

µ∗n,m : H∗BO(n+m) −→ H∗(BO(n)×BO(m)) ∼= H∗BO(n)⊗H∗BO(m)

wk 7−→
∑
i+j=k

wi ⊗ wj .

Example 9.7. Let τRPn , γ1
n and ε1 be the tangent bundle, tautological line bundle

and trivial line bundle over RPn, respectively. Let γ∗ = Hom(γ1
n, ε

1) be the linear
dual of the tautological line bundle, which in this (real) case is isomorphic to γ1

n.
There is a canonical short exact of real vector bundles

0→ ε1 −→ Hom(γ1
n, ε

n+1) −→ τRPn → 0 ,

so that τRPn ⊕ ε1 ∼= (n+ 1)γ∗. Hence the total Stiefel–Whitney classes satisfy

w(τRPn) = w(τRPn ⊕ ε1) = w((n+ 1)γ∗) = w(γ∗)n+1

in H∗(RPn;F2) = F2[x]/(xn+1). Here w1(γ1
n) = w1(γ∗) = x, so that w(τRPn) =

(1 + x)n+1 = 1 + (n+ 1)x+ · · ·+ (n+ 1)xn. Hence

wi(τRPn) =

(
n+ 1

i

)
xi

for 1 ≤ i ≤ n, read modulo 2.
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10. (Co-)homology of BO and BU as a bipolynomial bialgebras

Definition 10.1. Let

O =
⋃
n

O(n)

U =
⋃
n

U(n)

be the infinite rank orthogonal and unitary groups. Their classifying spaces are

BO ' Gr∞(R∞) = colim
n

Grn(R∞)

BU ' Gr∞(C∞) = colim
n

Grn(C∞) .

The maps µn,m induce pairings

BO ×BO ' colim
n,m

Grn(R∞)×Grm(R∞)
µ−→ colim

n,m
Grn+m(R∞ ⊕ R∞) ' BO

and

BU ×BU ' colim
n,m

Grn(C∞)×Grm(C∞)
µ−→ colim

n,m
Grn+m(C∞ ⊕ C∞) ' BU ,

which are unital, associative and commutative up to homotopy. ((ETC: These
define E∞ structures on BO and BU , in these sense of spaces with operad actions.))

Theorem 10.2. H∗(BO;F2) ∼= F2[wk | k ≥ 1] is a bicommutative F2-bialgebra
with coproduct ψ = µ∗ given by

ψ(wk) =
∑
i+j=k

wi ⊗ wj

where w0 = 1.

Theorem 10.3. H∗BU ∼= Z[ck | k ≥ 1] is a bicommutative Z-bialgebra with
coproduct ψ = µ∗ given by

ψ(ck) =
∑
i+j=k

ci ⊗ cj

where c0 = 1.

Proof. This follows by a passage to limits from the results for H∗BU(n), since

H∗BU ∼= lim
n
H∗BU(n)

maps isomorphically to H∗BU(n) for ∗ ≤ 2n+ 1. �

Definition 10.4. Let αk ∈ Hk(BO(1);F2) be dual to xk ∈ Hk(BO(1);F2), and
let βk ∈ H2k(BU(1);Z) be dual to yk ∈ H2k(BU(1);F2), so that

H∗(BO(1);F2) = F2{αk | k ≥ 0}
H∗(BU(1);Z) = Z{βk | k ≥ 0} .
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Let ak = ι∗(αk) ∈ Hk(BO;F2) be the image of αk, and let bk = ι∗(βk) ∈
H2k(BU ;Z) be the image of βk, under the homomorphisms

ι∗ : Hk(BO(1);F2) −→ Hk(BO;F2)

αk 7−→ ak

ι∗ : Hk(BU(1);Z) −→ Hk(BU ;Z)

βk 7−→ bk

induced by ι : BO(1)→ BO and ι : BU(1)→ BU , respectively.

The corresponding results in homology follow by (non-trivial) algebraic dual-
ization. See [Mil60, §3], [Liu62, §3], [MS74, §16] and [MP12, Thm. 21.4.3] for
expositions of this classical result. Note that

∆∗(αk) =
∑
i+j=k

αi ⊗ αj

∆∗(βk) =
∑
i+j=k

βi ⊗ βj

inH∗(BO(1);F2) andH∗(BU(1);Z), respectively, where ∆: X → X×X generically
denotes the diagonal map.

Theorem 10.5. H∗(BO;F2) ∼= F2[ak | k ≥ 1] is a bipolynomial F2-bialgebra with
coproduct ψ = ∆∗ given by

ψ(ak) =
∑
i+j=k

ai ⊗ aj

where a0 = 1. Here 〈wk1 , ak〉 = 1, while 〈wI , ak〉 = 0 for any other monomial

wI = wi11 · · ·w
i`
` of Stiefel–Whitney classes.

Theorem 10.6. H∗BU ∼= Z[bk | k ≥ 1] is a bipolynomial Z-bialgebra with coprod-
uct ψ = ∆∗ given by

ψ(bk) =
∑
i+j=k

bi ⊗ bj

where b0 = 1. Here 〈ck1 , bk〉 = 1, while 〈cI , bk〉 = 0 for any other monomial cI =

ci11 · · · c
i`
` of Chern classes.

Here a “bipolynomial” bialgebra B means one such that both the underlying
algebra B and the dual B∨ of the underlying coalgebra are polynomial algebras.
In particular, such B are bicommutative.

11. Symmetric functions

Definition 11.1. For k ≥ 1 let

pk =
∑
i≥1

yki = yk1 + yk2 + · · · ∈ Z[[y1, y2, . . . ]] .

be the k-th formal power-sum series. It projects to the k-th power-sum symmetric
polynomial

pk(y1, . . . , yn) =

k∑
i=1

yki ∈ Z[y1, . . . , yn]Σn ∼= H∗BU(n)

for each n, hence defines a class pk ∈ H2kBU .
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Theorem 11.2 (Girard (1629), Newton (1666)). p1 = c1, p2 = c21 − 2c2 and

pn = pn−1c1 − pn−2c2 + · · ·+ (−1)np1cn−1 − (−1)nncn .

By a partition of k we mean an unordered sequence T = {t1, . . . , tn} of positive
integers with t1 + · · ·+ tn = k.

Definition 11.3. Two monomials in y1, y2, . . . are equivalent if some permutation
of these variables takes one to the other. For any partition T = {t1, . . . , tn} let

pT =
∑

yt11 · · · ytnn ∈ H∗BU

be the (formal) sum of all monomials that are equivalent to yt11 · · · ytnn . For example,
p{k} = pk and p{1,...,1} = ck (where {1, . . . , 1} has k copies of 1).

The classes pT give a Z-basis for H∗BU , different from that given by the mono-
mials cI in the Chern classes.

Lemma 11.4.

H∗BU = Z{pT | T any partition} .

The concatenation of two partitions R = {r1, . . . , r`} and S = {s1, . . . , sm} is
the partition RS = {r1, . . . , r`, s1, . . . , sm}.

Lemma 11.5 (Thom, [MS74, Lem. 16.2]). For any partition T ,

ψ(pT ) =
∑
RS=T

pR ⊗ pS

in H∗BU ⊗ H∗BU , where the sum ranges over all pairs (R,S) of partitions with
concatenation T .

Proof. Given T = {t1, . . . , tn} we can detect ψ(pT ) in H∗BU(n)⊗H∗BU(n), hence
also in H∗BU(1)n ⊗H∗BU(1)n.

H∗BU
ψ //

��

H∗BU ⊗H∗BU

��
H∗BU(2n)

µ∗n,n //
��

i∗2n
��

H∗BU(n)⊗H∗BU(n)
��
i∗n⊗i

∗
n

��
Z[y1, . . . , y2n]

∼= // Z[y1, . . . , yn]⊗ Z[yn+1, . . . , y2n] .

Any monomial in y1, . . . , y2n that is equivalent to yt11 · · · ytnn corresponds under the
lower isomorphism to the tensor product of a monomial equivalent to yr11 · · · y

r`
` and

a monomial equivalent to ys1n+1 · · · y
sm
2n , where R = {r1, . . . , r`} and S = {s1, . . . , sm}

range over all possible partitions with RS = T . Hence pT =
∑
RS=T pR ⊗ pS . �

A class x ∈ C in a coalgebra is primitive if ψ(x) = x⊗ 1 + 1⊗ x.

Corollary 11.6. The coalgebra primitives in H∗BU are

Z{pk | k ≥ 1} .

Proof. The partition {k} can only be written as the concatenation of {k} and {},
in either order. �
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((ETC: We may discuss coalgebra primitives, and the dual notion of algebra
indecomposables, in more detail later, perhaps in the context of Tor1 and Ext1.))

Proof of Theorem 10.6. The monomial basis {pT | T any partition} for H∗BU de-
termines a dual basis {p∨T | T any partition} for (H∗BU)∨. The coproduct from
Lemma 11.5 dualizes to the product

p∨R · p∨S = p∨RS .

Hence

p∨T = p∨{t1} · · · p
∨
{tn}

for T = {t1, . . . , tn}, and the p∨k = p∨{k} freely generate (H∗BU)∨ as a (graded)

commutative ring (= Z-algebra). In other words

Z[p∨k | k ≥ 1] = (H∗BU)∨ ∼= H∗BU .

In fact, p∨k = bk. This follows from the calculation

〈pT , bk〉 = 〈pT , ι∗(βk)〉 = 〈ι∗pT , βk〉 =

{
1 if T = {k},
0 otherwise,

where ι∗pT = 0 if n ≥ 2, and ι∗pT = yt1 if n = 1. The formula for ψ(bk) follows by
naturality for the one for ψ(βk). �

Remark 11.7. To each finite sequence I = (i1, . . . , i`) of non-negative integers we
assign the partition R = {r1, . . . , rn} where u occurs iu times, for each 1 ≤ u ≤ `.
This gives a bijective correspondence. For example, I = (0, . . . , 0, 1) (with 1 in
the k-th position) corresponds to the partition T = (k), and I = (k) corresponds
to the partition T = {1, . . . , 1} (with k copies of 1). If I corresponds to R, J
corresponds to S and K = I+J is the coordinatewise sum of finite sequences, then
K corresponds to the concatenation T = RS.
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