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See [Ste51], [Hus66, Part I], [Seg68] and Hatcher (2003).

1. Equivariant topology

Let G be a topological group, with unit element e and multiplication m : G×G→
G. A left G-space is a space X with a unital and associative left G-action

λ : G×X −→ X

(g, x) 7−→ gx .

If X has a base point x0, then we assume that gx0 = x0 for all g ∈ G. The G-fixed
points of X is the subspace

XG = {x ∈ X | gx = x for all g ∈ G}
of X, and the G-orbits of X is the quotient space

X/G = X/{x ∼ gx for all x ∈ X, g ∈ G} .
(If one needs to deal with both left and right G-actions, it might be better to write
G\X for this orbit space.) For G-spaces X and Y , a G-map from X to Y is a map
f : X → Y that is G-equivariant, in the sense that

G×X λ //

id×f
��

X

f

��
G× Y λ // Y

commutes, i.e., such that f(gx) = gf(x). We give X ∧ Y the diagonal G-action,
with

g(x ∧ y) = gx ∧ gy ,
and we give Map(X,Y ) the conjugate G-action, with

(gf)(x) = gf(g−1x) .

The homeomorphism

Map(X ∧ Y,Z) ∼= Map(X,Map(Y,Z))

f ↔ f ′ ,

where f(x ∧ y) = f ′(x)(y), is then G-equivariant. Moreover, the G-fixed points
Map(X,Y )G is the space of G-maps f : X → Y .
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2 JOHN ROGNES

Definition 1.1. A G-CW complex is a G-space X with an exhaustive skeleton
filtration

∅ = X(−1) ⊂ X(0) ⊂ · · · ⊂ X(n−1) ⊂ X(n) ⊂ · · · ⊂ X
where ∐

αG/Hα × ∂Dn //

φ

��

∐
αG/Hα ×Dn

Φ
��

X(n−1) // X(n)

is a pushout for each n. Here each Hα ⊂ G is a closed subgroup.

We say that G is a free G-CW complex if each Hα = {e} is trivial.

2. Principal G-bundles

Definition 2.1. Let P be a G-space. The projection

π : P −→ P/G = X

is a principal G-bundle if each point x ∈ X has a neighborhood U such that there
exists a G-equivariant homeomorphism

tU : π−1(U)
∼=−→ U ×G

over U . Here π−1(U) is a sub G-space of P , U × G has the G-action g(u, g′) =
(u, gg′), and the “over U” condition asks that

π−1(U)
tU
∼=

//

π
##

U ×G

pr
||

U

commutes, where pr(u, g′) = u.

We say that tU is a local trivialization of π : P → X over U . Note that the
G-action on P must be free, in the sense that gp = p for p ∈ P only if g = e, since
this is the case for the G-action on U × G. For point set topological reasons we
should assume that the covering of X by the neighborhoods U admits a partition
of unity, but this is no condition for reasonable X.

A map of principal G-bundles from π : P → X to π : Q→ Y is a G-map f̂ : P →
Q. We write f : X → Y for the induced map of base spaces, so that the diagram

P
f̂ //

π

��

Q

π

��
X = P/G

f // Q/G = Y

commutes. Conversely, given a principal G-bundle π : Q → Y and a map f : X →
Y , let

f∗Q = X ×Y Q = {(x, q) ∈ X ×Q | f(x) = π(q)}
be the fiber product, with the G-action g(x, q) = (x, gq). The map

f∗π : f∗Q −→ X

(x, q) 7−→ x
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is then a principal G bundle, called the pullback of π : Q→ Y . If f is the inclusion
of a subspace, we write Q|X → X for the pullback, then called the restriction.

The local trivializations tU show that locally overX a principalG-bundle π : P →
X and the product bundle pr : X ×G→ X are isomorphic, but this will often not
be true globally over X.

We write

BunG(X) = {principal G-bundles π : P → P/G ∼= X}/ ∼=
for the (set of) isomorphism classes of principal G-bundles over a fixed base spaceX.
The pullback construction makes this a contravariant functor of X. It is a homotopy
functor, because of the following lemma.

Lemma 2.2 ([Ste51, §11]). Let π : Q → X × [0, 1] be a principal G-bundle over a
cylinder. Then the restricted bundles

Q|X × {0} ∼= Q|X × {1}
are isomorphic.

3. Classifying spaces

Definition 3.1. A principal G-bundle π : P → X is said to be universal if P is
(non-equivariantly) contractible. We write π : EG → BG to denote a universal
principal G-bundle, and call BG a classifying space for the group G.

We postpone the proof that universal principal G-bundles exist. Examples in-
clude R → S1 for G = Z, S∞ → RP∞ for G = Z/2, S∞ → L∞ for G = Z/p, and
S∞ → CP∞ for G = S1.

Theorem 3.2 ([Ste51, §19]). Let π : EG→ BG be a universal principal G-bundle.
The natural function

[X,BG]
∼=−→ BunG(X)

[f ] 7−→ [f∗π : f∗EG→ X]

is a bijection for all CW complexes X.

f∗EG
f̂ //

f∗π

��

EG

π

��
X

f // BG

Proof. We first prove surjectivity. Let π : P → X be a given principal G-bundle.
Then P admits the structure of a free G-CW complex, with P (n) = π−1(X(n)).

Suppose by induction on n that there is a G-map f̂n−1 : P (n−1) → EG.∐
αG× ∂Dn //

∐
α φα
��

∐
αG×Dn

Φ
��

P (n−1) //

f̂n−1
//

P (n)

f̂n

%%
EG
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The obstruction to extending it over the pushout to a G-map f̂n : P (n) → EG is
the α-indexed collection of homotopy classes of G-maps

f̂n−1φα : G× ∂Dn −→ EG .

These correspond bijectively to homotopy classes of (non-equivariant) maps ∂Dn →
EG, all of which lie in the trivial group πn−1(EG). Hence there is no obstruction,

and we obtain a G-map f̂ : P → EG. Let f : X → BG be the map of G-orbits.
Then P ∼= f∗EG over X.

The proof of injectivity is similar, starting with a map f0tf1 : X×{0, 1} → BG
and an isomorphism f∗0π

∼= f∗1π of principal G-bundles over X. This lifts to a

G-map f̂0 t f̂1 : P × {0, 1} → EG, and there is no obstruction to extending it

to a G-map F̂ : P × [0, 1] → EG giving a G-homotopy from f̂0 to f̂1. The map
F : X × [0, 1]→ BG of G-orbits gives the desired homotopy f0 ' f1. �

Corollary 3.3. Any two universal principal G-bundles are weakly homotopy equiv-
alent.

Proof. They represent isomorphic functors. �

Lemma 3.4. There is a homotopy equivalence

G ' Ω(BG) ,

so the classifying space BG is a (connected) delooping of G.

Proof. Consider the Puppe fiber sequence

ΩEG −→ ΩBG
'−→ G −→ EG

π−→ BG ,

where EG is contractible by assumption. �

4. Fiber bundles

Let F be a fixed space.

Definition 4.1. An F -bundle, or a bundle with fiber F , is a map

π : E → X

from the total space E to the base space X, together with local trivializations

tU : π−1(U)
∼=−→ U × F

for all U in an open cover of X. Here tU is a homeomorphism over U .

It is also common to write B (in place of X) for the base space. This is the
origin of the notations EG and BG. Let G be a group acting on F .

Definition 4.2. An F -bundle π : E → X has structure group G if each composite

(U ∩ V )× F
t−1
V |−→ π−1(U ∩ V )

tU |−→ (U ∩ V )× F

has the form

(x, f) 7−→ (x, gUV (x)f)

for x ∈ U ∩ V , f ∈ F and a map

gUV : U ∩ V −→ G ,
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satisfying the cocycle condition

gUV | ◦ gVW | = gUW | : U ∩ V ∩W −→ G

for all U , V , W in the open cover. If G acts effectively on F , so that only the unit
element g = e acts as the identity map, then the cocycle condition is automatically
satisfied.

Example 4.3. Every bundle with fiber F admits Homeo(F ) as a structure group.

Example 4.4. A principal G-bundle is a bundle with fiber G and structure group G,
for the left action G×G→ G given by the group multiplication.

Example 4.5. Let GLn(R) act by linear transformations on Rn, and let the orthog-
onal group O(n) act as the subgroup of Euclidean isometries. An Rn-bundle with
structure group GLn(R) is a real vector bundle of rank n. A choice of Euclidean
inner product on the vector bundle is equivalent to a reduction of the structure
group to O(n).

Example 4.6. Let GLn(C) act by linear transformations on Cn, and let the unitary
group U(n) act as the subgroup of Hermitian isometries. A Cn-bundle with struc-
ture group GLn(C) is a complex vector bundle of rank n. A choice of Hermitian
inner product on the vector bundle is equivalent to a reduction of the structure
group to U(n).

Definition 4.7. Let F be a G-space. To each principal G-bundle π : P → X we
associate an F -bundle π : E → X with structure group G by setting

E = (P × F )/G

and π : [p, f ] = π(p). Here G acts diagonally on P × F , so

(p, f) ∼ (gp, gf)

are identified in E for all p ∈ P , f ∈ F and g ∈ G. If tU : π−1(U) ∼= U × G is a
local trivialization for the principal G-bundle, then

(tU × F )/G : π−1(U)
∼=−→ (U ×G× F )/G ∼= U × F

is a local trivialization over U for the associated F -bundle.

If we view the left G-space P as a right G-space via the action through the group
inverse, defined by pg = g−1p, then

E = P ×G F
where ×G denotes the balanced product, given by the equivalence classes with
respect to

(pg, f) ∼ (p, gf) .

Let

BunF,G(X) = {F -bundles π : E → X with structure group G}/ ∼=
be the set of isomorphism classes of F -bundles over X with structure group G.

Proposition 4.8. Let F be a G-space. The associated bundle functor defines a
natural bijection

BunG(X)
∼=−→ BunF,G(X)

[π : P → X] 7−→ [π : E = P ×G F → X] .
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Hence BG is also a classifying space for F -bundles with structure group G.

Example 4.9. The inclusion O(n) → GLn(R) is a homotopy equivalence, with
homotopy inverse given by the Gram–Schmidt process. Hence BO(n)→ BGLn(R)
is also a homotopy equivalence, and the classification of principal O(n)-bundles is
the same as the classification of principal GLn(R)-bundles. Hence the classification
of real vector bundles over a CW complex X is the same as the classification
of Euclidean vector bundles, i.e., real vector bundles with a continuous choice of
Euclidean inner product on each fiber. We write

Vectn(X) = VectRn(X) = BunRn,O(n)(X)

for the set of isomorphism classes of Rn-bundles over X, which is in bijective cor-
respondence with

BunO(n)(X) = [X,BO(n)] .

Example 4.10. The inclusion U(n) → GLn(C) is a homotopy equivalence, with
homotopy inverse given by the Gram–Schmidt process. Hence BU(n)→ BGLn(C)
is also a homotopy equivalence, and the classification of principal U(n)-bundles is
the same as the classification of principal GLn(C)-bundles. Hence the classification
of complex vector bundles over a CW complex X is the same as the classification
of Hermitian vector bundles, i.e., complex vector bundles with a continuous choice
of Hermitian inner product on each fiber. We write

Vectn(X) = VectCn(X) = BunCn,U(n)(X)

for the set of isomorphism classes of Cn-bundles over X, which is in bijective cor-
respondence with

BunU(n)(X) = [X,BU(n)] .

5. Direct sum and tensor product of vector bundles

Let ξ be an Rn-bundle π : E → X and let η be an Rm-bundle π : F → Y . Their
product bundle, or external direct sum, is the Rn+m-bundle ξ × η = ξ⊕̂η given by

π × π : E × F −→ X × Y .

The fiber above (x, y) ∈ X×Y is the direct sum of vector spaces Ex⊕Fy = Ex×Fy.
The external tensor product of ξ and η is the Rnm-bundle ξ⊗̂η with fiber Ex⊗R Fy
over (x, y).

If X = Y we can pull ξ × η back along ∆: X → X ×X, to obtain the Whitney
sum, or internal direct sum,

ξ ⊕ η = ∆∗(ξ × η)

with fiber Ex⊕Fx over x ∈ X. We also restrict ξ⊗̂η along the diagonal, giving the
(internal) tensor product ξ ⊗ η with fiber Ex ⊗ Fx over x.

Let ξ be an Cn-bundle π : E → X and let η be an Cm-bundle π : F → Y . Their
product bundle, or external direct sum, is the Cn+m-bundle ξ × η = ξ⊕̂η given by

π × π : E × F −→ X × Y .

The fiber above (x, y) ∈ X×Y is the direct sum of vector spaces Ex⊕Fy = Ex×Fy.
The external tensor product of ξ and η is the Cnm-bundle ξ⊗̂η with fiber Ex⊗C Fy
over (x, y).
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If X = Y we can pull ξ × η back along ∆: X → X ×X, to obtain the Whitney
sum, or internal direct sum,

ξ ⊕ η = ∆∗(ξ × η)

with fiber Ex⊕Fx over x ∈ X. We also restrict ξ⊗̂η along the diagonal, giving the
(internal) tensor product ξ ⊗ η with fiber Ex ⊗ Fx over x.

These operations induce natural pairings of isomorphism classes

× = ⊕̂ : Vectn(X)×Vectm(Y ) −→ Vectn+m(X × Y )

⊗̂ : Vectn(X)×Vectm(Y ) −→ Vectnm(X × Y )

with internal variants

⊕ : Vectn(X)×Vectm(Y ) −→ Vectn+m(X)

⊗ : Vectn(X)×Vectm(Y ) −→ Vectnm(X) .

In the real case these are classified by maps

µ⊕n,m : BO(n)×BO(m) −→ BO(n+m)

µ⊗n,m : BO(n)×BO(m) −→ BO(nm) .

In the complex case they are classified by maps

µ⊕n,m : BU(n)×BU(m) −→ BU(n+m)

µ⊗n,m : BU(n)×BU(m) −→ BU(nm) .

Their effect on (co-)homology will be studied later.

6. Geometric realization of categories

We will construct the spaces BG and EG as the “geometric picture” of cer-
tain categories BG and EG. Following [Seg68] this will be encoded using sim-
plicial methods, which generalize the classical study of simplicial complexes, and
the partial generalization called ∆-complexes in [Hat02]. These ideas go back to
the Eilenberg–MacLane bar construction, where “bar” refers to the notation [g|f ]a
appearing below.

Given a (small) category C, we shall form a space |NC| called its geometric
realization. We start with a point []a for each object a on C. We view each
morphism f : a→ b in C as a relation between a and b, and exhibit this by adding
an edge [f ]a to |NC| connecting []a and []b.

[]b []a
[f ]aoo

(Note that this geometric edge can be traversed in either direction, even if the
categorical morphism is not an isomorphism.) If g : b → c is a second morphism,
so that gf : a→ c is defined, we now have the boundary of a triangle, with vertices
[]a, []b and []c and edges [f ]a, [g]b and [gf ]a, and we record this in our space by
filling in any such triangle with a 2-simplex denoted [g|f ]a.

[]a

[f ]a

��

[gf ]a

��
[]c []b

[g]b
oo
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Given a third morphism h : c → d, associativity of composition in C implies that
we have assembled the boundary of a tetrahedron. We fill this in with a 3-simplex,
denoted [h|g|f ]a.

[]a

[f ]a

��
[gf ]a

��

[hgf ]a

��

[]b

[g]b

��
[hg]b

��
[]d []c

[h]coo

In the definition of a category, coherence for the cartesian product of sets ensures
that no further axioms are required regarding q-fold compositions of morphisms
for q ≥ 4, but in our geometric picture we need to make these higher coherences
explicit. Therefore, for each q ≥ 0 and each sequence

c0
f1←− c1

f2←− . . .←− cq−1
fq←− cq

of q composable morphisms in C we add a q-simplex denoted

σ = [f1|f2| . . . |fq]cq
to our space |NC|. It is to be glued to the previously constructed union of simplices
of dimensions < q by identifying the i-th face, opposite to the i-th vertex, with the
(q − 1)-simplex

di(σ) = [f1| . . . |fifi+1| . . . |fq]cq
associated to the (q − 1)-tuple of morphisms

c0
f1←− . . .←− ci−1

fifi+1←− ci+1 ←− . . .
fq←− cq

obtained by deleting the object ci and composing the morphisms fi+1 and fi. Here
0 < i < q. In the case with i = 0 no composition is required; we simply forget f1.

d0(σ) = [f2| . . . |fq]cq
In the case with i = q we forget fq and replace cq with cq−1 as the “initial source”
object.

dq(σ) = [f1| . . . |fq−1]cq−1

We also want to take the unitality property of the identity morphisms into account,
by collapsing the edge [id]a associated to id: a→ a, which so far appears as a loop
from []a to itself, to a single point. More generally, if fj+1 = id in a chain

c0
f1←− . . . fj←− cj

id←− cj+1
fj+2←− . . . fq←− cq ,

for some 1 ≤ j + 1 ≤ q, we squash the q-simplex

sj(τ) = [f1| . . . |fj | id |fj+2| . . . |fq]cq
down to the (q − 1)-simplex

τ = [f1| . . . |fj |fj+2| . . . |fq]cq
associated to

c0
f1←− . . . fj←− (cj = cj+1)

fj+2←− . . . fq←− cq .
The resulting space is the geometric realization |NC| of the category C.
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To formalize the construction above, we let

[q] = {0 < 1 < · · · < q − 1 < q}

be the linearly ordered set with (q+ 1) elements. (This is a different notation than
the bar notation []a, [f ]a, [f |g]a, . . . used just above.) We view this as a category,
with a unique morphism i ← j for each i ≤ j. A functor σ : [q] → C is then a
diagram

c0 ← c1 ← · · · ← cq−1 ← cq

in C, corresponding precisely to the q-simplices in our construction. Let α : [p]→ [q]
be any order-preserving function, meaning that α(i) ≤ α(j) for all i ≤ j. In terms
of categories, this is the same as a functor from [p] to [q]. Right composition with
α takes a q-simplex σ : [q]→ C as above to the p-simplex σα : [p]→ C given by the
diagram

cα(0) ← cα(1) ← · · · ← cα(p−1) ← cα(p) .

When α equals the (order-preserving) injection

δi : [q − 1] −→ [q]

that does not contain i in its image, this encodes the deletion-of-object operation

σ 7−→ di(σ) = (δi)∗(σ)

that specified how the i-th face of σ was to be identified with a (q − 1)-simplex.
When α equals the (order-preserving) surjection

σj : [q] −→ [q − 1]

that maps j and j + 1 to the same element, it encodes the insertion-of-identity
operation

τ 7−→ sj(τ) = (σj)∗(τ)

that specified how q-simplices involving identity morphisms were to be flattened
down to (q − 1)-simplices. Any order-preserving α : [p] → [q] is a composition of
these face (δi) and degeneracy (σj) operators, and the former give a convenient
formalization of the composition laws satisfied by the latter.

... [2]
σ0 //

σ1 // [1]

δ0oo

δ1oo

δ2
oo

σ0 // [0]
δ0oo

δ1
oo

7. Simplicial sets

As the notation suggests, the geometric realization |NC| of a category is formed
in two steps. First we form a simplicial setX = NC called the nerve of C. Thereafter
we form the geometric realization |X| of this simplicial set. We discuss these two
steps in turn. See [May67] and [GJ99] for treatments of simplicial sets.

Definition 7.1. Let ∆ be the category with one object

[q] = {0 < 1 < · · · < q − 1 < q}

for each integer q ≥ 0, and morphisms

∆([p], [q]) = {order-preserving α : [p]→ [q]} .



10 JOHN ROGNES

Definition 7.2. A simplicial set is a (contravariant) functor

X : ∆op −→ Set

[q] 7−→ Xq

(α : [p]→ [q]) 7−→ (α∗ : Xq → Xp) .

We call Xq the set of q-simplices in X, and sometimes write X• to indicate the
position of the simplicial degree. A map of simplicial sets from X to Y is a natural
transformation

f : X −→ Y

fq : Xq −→ Yq

of such functors. We write sSet for the category of simplicial sets.
More generally, a simplicial object in a category E is a functor

X : ∆op −→ E ,
and a map of simplicial objects is a natural transformation. We write sE for the
category of simplicial objects in E .

Definition 7.3. The nerve of a category C is the simplicial set NC = N•C with
q-simplices

NqC = Fun([q], C)

= {c0
f1←− c1 ←− . . .←− cq−1

fq←− cq} .

For each α : [p]→ [q] the simplicial operator α∗ : NqC → NpC is given by composi-
tion

α∗ : Fun([q], C) −→ Fun([p], C)
σ 7−→ α∗(σ) = σα .

Let Cat be the category of (small) categories and functors. We can view ∆ as
the full subcategory of Cat generated by the objects [q] for q ≥ 0. The nerve NC
is then the restriction to ∆op of the functor Fun(−, C) : Catop → Set represented
by C.

Let F : C → D be a functor of categories. The induced map of nerves

NF : NC −→ ND
has q-th component given by the composition

NqF = F∗ : Fun([q], C) −→ Fun([q],D)

σ 7−→ F∗(σ) = Fσ .

Definition 7.4.

∆q = {(t0, t1, . . . , tq) |
q∑
i=0

ti = 1, each ti ≥ 0}

be the standard geometric q-simplex in Rq+1, for each q ≥ 0, spanned by the vertices
v0, . . . , vq. For each α : [p]→ [q] in ∆ let

α∗ : ∆p −→ ∆q

vi 7−→ vα(i)
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be the affine linear map taking the i-th vertex to the α(i)-th vertex. If α = δi, this
is the inclusion of the i-th face. If α = σj , this is the projection that collapses the
edge [vj−1, vj ] to a point.

Let U denote the category of (unbased) topological spaces. The rule [q] 7→ ∆q

defines a (covariant) functor ∆• : ∆ → U , which is an example of a cosimplicial
space.

Definition 7.5. The geometric realization of a simplicial set X is the quotient
space

|X| =
∐
q≥0

Xq ×∆q/ ∼

where
(α∗(x), ξ) ∼ (x, α∗(ξ))

for all α : [p]→ [q], x ∈ ∆q and ξ ∈ ∆p. A map f : X → Y of simplicial sets defines
a map

|f | : |X| −→ |Y |
[x, ξ] 7−→ [fq(x), ξ]

for all q ≥ 0, x ∈ Xq and ξ ∈ ∆q. Geometric realization defines a functor

| − | : sSet −→ U .

Proposition 7.6. Let X be a simplicial set. The geometric realization |X| is a
CW complex, with n-skeleton

|X|(n) =

n∐
q=0

Xq ×∆q/ ∼

and one n-cell with characteristic map

Φx : Dn ∼= ∆n −→ |X|(n)

ξ 7−→ [x, ξ]

for each non-degenerate n-simplex x, i.e., each x ∈ Xn not of the form sj(y) for
any 1 ≤ j ≤ n− 1, y ∈ Xn−1.

Corollary 7.7. The geometric realization |NC| of the nerve of a category C is a CW
complex, with one q-cell [f1| . . . |fq]cq for each chain of q composable non-identity
morphisms

c0
f1←− . . . fq←− cq

in C.

Example 7.8. The nerve of C = [1] = {0 < 1} has q-simplices

Nq[1] = Fun([q], [1]) = ∆([q], [1]) .

The 0-simplices are given by the objects 0 and 1, corresponding to δ1 : [0] → [1]
and δ0 : [0] → [1], respectively. The only non-degenerate 1-simplex is given by the
morphism

0←− 1 ,

corresponding to id: [1] → [1]. Hence the geometric realization |N [1]| is ∆1 =
[v0, v1], with the CW structure with 0-skeleton {v0, v1}. More generally, the geo-
metric realization of (the nerve) of C = [q] is ∆q.
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8. Singular simplicial sets

Definition 8.1. Let Y be a space. The singular simplical set sing(Y ) has set of
q-simplices

sing(Y )q = {maps σ : ∆q −→ Y }

equal to the set of singular q-simplices in Y . The simplicial operators are

α∗ : sing(Y )q −→ sing(Y )p

σ 7−→ α∗(σ) = σα∗ ,

where σα∗ is the composite

∆p α∗−→ ∆q σ−→ Y .

Proposition 8.2. | − | is left adjoint to sing, meaning that there is a natural
bijection

U(|X|, Y ) ∼= sSet(X, sing(Y ))

for simplicial sets X and topological spaces Y . The adjunction counit

ε : | sing(Y )| ∼−→ Y

is a weak homotopy equivalence, and provides a functorial CW approximation to
any space Y .

9. Products

In addition to accounting for the unitality of identity morphisms, the degeneracy
operators σj in ∆ are also needed for | − | to respect products. The product of two
simplicial sets X and Y is given by

(X × Y )q = Xq × Yq

with simplicial operators α∗ × α∗.

Theorem 9.1 ([Mil57]). The natural map

|X × Y |
∼=−→ |X| × |Y |

is a homeomorphism.

Sketch proof. The key case to check is X = N [p] and Y = N [q], in which case
X × Y = N([p]× [q]), where [p]× [q] has the product partial ordering.

(0, q)

��

(p, q)oo

{{ ��
(0, 0) (p, 0)oo

Passing to classifying spaces, |N([p]× [q])| presents the product ∆p×∆q = |N [p]|×
|N [q]| as a union of ∆p+q-simplices, indexed by the

(
p+q
p

)
shuffle permutations of

type (p, q). �
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Let C and D be categories, F,G : C → D functors, and θ : F → G a natural
transformation. We can view θ as a functor

H : C × [1] −→ D
(c, 0) 7−→ G(c)

(c, 1) 7−→ F (c)

where

H(f, 0) = G(f) : G(a)→ G(b)

H(f, 1) = F (f) : F (a)→ F (b)

H(c, 0 < 1) = θc : F (c)→ G(c)

for f : a→ b and c in C.

Lemma 9.2. Let θ : F → G be a natural transformation of functors F,G : C → D.
The composite

NC ×N [1] ∼= N(C × [1])
NH−→ ND ,

with H as above, induces a homotopy

|NC| × [0, 1] ∼= |NC| × |N [1]| ∼= |NC ×N [1]| |NH|−→ |ND|

from |NF | : |NC| → |ND| to |NG| : |NC| → |ND|.

Notice that even if we only have a natural transformation in one direct, the
resulting homotopy goes both ways, in the sense that it can be viewed as a path
that can be reversed.

Corollary 9.3. Suppose that F : C → D and G : D → C are mutually inverse equiv-
alences of categories, or more generally form an adjoint pair. Then |NF | : |NC| →
|ND| and |NG| : |ND| → |NC| are mutually inverse homotopy equivalences. Hence
equivalent categories have homotopy equivalent geometric realizations.

Proof. The adjunction unit η : id→ GF and counit ε : FG→ id induce homotopies
id ' |NG| ◦ |NF | and |NF | ◦ |NG| ' id. �

10. The bar construction

Definition 10.1. Let G be a topological group and X a left G-space. We view
each point x ∈ X as an object in a topological category C = B(G,X), and each
pair (g, x) ∈ G×X as a morphism

gx
g←− x .

Hence

obj C = X

mor C = G×X .

The source and target rules are

s, t : mor C −→ obj C
s(g, x) = x

t(g, x) = gx ,
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while the identity rule is

id : obj C −→ mor C
id(x) = (e, x) .

The composition of two morphisms

ghx
g←− hx h←− x

is

ghx
gh←− x ,

so the composition rule is

◦ : mor C ×obj C mor C −→ mor C
(g, hx) ◦ (h, x) = (gh, x) .

Example 10.2. When X = {x0} is a one-point space, we can omit x ∈ X from the
notation. The category BG = B(G, {x0}) has a single object, and the group G as
the morphism space

BG(x0, x0) = G .

All morphisms are automorphisms of x0.

x0

h||
g

--

gh

FF

Example 10.3. When X = G with left G-action given by the group multiplication,
the category EG = B(G,G) has object space G and there is a unique morphism

h
hg−1

←− g

from any object g to any other object h. Note that there the right action of G on
X = G, also given by the group multiplication, defines a right action of G on the
category EG.

Lemma 10.4. The category EG is equivalent to the category E{e}, i.e., the terminal
category with only one object {e} and only one morphism id : e→ e.

Proof. There is a (unique) natural transformation θ from the composite functor

EG −→ E{e} ⊂ EG

to the identity of EG, with components

θg : e
g−→ g .

�

The nerve NB(G,X) is the simplicial space with q-simplices

NqB(G,X) = Gq ×X
= {[g1| . . . |gq]x | g1, . . . , gq ∈ G, x ∈ X}

the space of diagrams

g1g2 · · · gqx
g1←− g2 · · · gqx

g2←− . . . gq−1←− gqx
gq←− x .
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Example 10.5. When X = {x0}, the nerve NBG is the simplicial space with q-
simplices

NqBG = Gq

= {[g1| . . . |gq] | g1, . . . , gq ∈ G}

viewed as a chain of q automorphisms of x0.

Example 10.6. When X = G, the nerve NEG is the simplicial space with q-simplices

NqEG = Gq ×G
= {[g1| . . . |gq]g | g1, . . . , gq, g ∈ G} .

The right G-action on X = G commutes with the simplicial structure maps, and
makes this a simplicial right G-space. The right action is given by

NqEG×G −→ NqEG
([g1| . . . |gq]g, k) 7−→ [g1| . . . |gq]gk

The right G-action is free, in the sense that [g1| . . . |gq]g = [g1| . . . |gq]gk only if
k = e.

Lemma 10.7. There is a natural isomorphism of simplicial spaces

NEG×G X ∼= NB(G,X) .

In particular, (NEG)/G ∼= NBG.

Definition 10.8. Let X be a left G-space. The bar construction

B(G,X) = |B(G,X)|

is the geometric realization of (the nerve of) the category B(G,X). When X = ∗
is a one-point space we call

BG = B(G, ∗)

the (bar construction of the) classifying space of G. When X = G, the bar con-
struction

EG = B(G,G)

is contractible. The right G-action on X induces a free right G-action on EG, and
there is a natural homeomorphism

EG×G X ∼= B(G,X) .

In particular, EG/G = EG×G ∗ ∼= BG, and the projection

π : EG −→ BG

is a universal principal G-bundle.

To be precise, some mild topological hypotheses on (G, e) are required for EG→
BG to be locally trivial. It suffices that G is a CW complex with cellular multipli-
cation. If desired, the right G-action on EG can be converted to a left G-action,
via the group inverse.
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Example 10.9. If G and X are discrete, the bar construction B(G,X) is a CW
complex with one q-cell for each

[g1| . . . |gq]x ∈ Gq ×X
with gi 6= e for each 1 ≤ i ≤ q. In particular the classifying space BG is a CW
complex with one q-cell for each

[g1| . . . |gq] ∈ Gq

with gi 6= e for each 1 ≤ i ≤ q, and EG is a free G-CW complex with one G-
equivariant q-cell covering each q-cell in BG.

((Orbits and homotopy orbits.))
((Čech covers, hypercovers.))
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matics, vol. 174, Birkhäuser Verlag, Basel, 1999. MR1711612
[Hat02] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.

MR1867354
[Hus66] Dale Husemoller, Fibre bundles, McGraw-Hill Book Co., New York-London-Sydney, 1966.

MR0229247

[May67] J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Stud-
ies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967.

MR0222892

[May99] J. P. May, A concise course in algebraic topology, Chicago Lectures in Mathematics,
University of Chicago Press, Chicago, IL, 1999. MR1702278

[Mil57] John Milnor, The geometric realization of a semi-simplicial complex, Ann. of Math. (2)

65 (1957), 357–362, DOI 10.2307/1969967. MR84138

[Seg68] Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ.

Math. 34 (1968), 105–112. MR232393
[Ste51] Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol.

14, Princeton University Press, Princeton, N. J., 1951. MR0039258

Department of Mathematics, University of Oslo, Norway
Email address: rognes@math.uio.no


