ALGEBRAIC TOPOLOGY III SPRING 2023 CHROMATIC HOMOTOPY THEORY

CHAPTER 3: CLASSIFYING SPACES

JOHN ROGNES

See [Ste51], [Hus66, Part I], [Seg68] and Hatcher (2003).

1. Equivariant topology

Let G be a topological group, with unit element e and multiplication $m: G \times G \rightarrow$ G. A left G-space is a space X with a unital and associative left G-action

$$
\begin{aligned}
\lambda: G \times X & \longrightarrow X \\
(g, x) & \longmapsto g x .
\end{aligned}
$$

If X has a base point x_{0}, then we assume that $g x_{0}=x_{0}$ for all $g \in G$. The G-fixed points of X is the subspace

$$
X^{G}=\{x \in X \mid g x=x \text { for all } g \in G\}
$$

of X, and the G-orbits of X is the quotient space

$$
X / G=X /\{x \sim g x \text { for all } x \in X, g \in G\} .
$$

(If one needs to deal with both left and right G-actions, it might be better to write $G \backslash X$ for this orbit space.) For G-spaces X and Y, a G-map from X to Y is a map $f: X \rightarrow Y$ that is G-equivariant, in the sense that

commutes, i.e., such that $f(g x)=g f(x)$. We give $X \wedge Y$ the diagonal G-action, with

$$
g(x \wedge y)=g x \wedge g y,
$$

and we give $\operatorname{Map}(X, Y)$ the conjugate G-action, with

$$
(g f)(x)=g f\left(g^{-1} x\right) .
$$

The homeomorphism

$$
\begin{aligned}
\operatorname{Map}(X \wedge Y, Z) & \cong \operatorname{Map}(X, \operatorname{Map}(Y, Z)) \\
f & \leftrightarrow f^{\prime},
\end{aligned}
$$

where $f(x \wedge y)=f^{\prime}(x)(y)$, is then G-equivariant. Moreover, the G-fixed points $\operatorname{Map}(X, Y)^{G}$ is the space of G-maps $f: X \rightarrow Y$.

Definition 1.1. A G-CW complex is a G-space X with an exhaustive skeleton filtration

$$
\emptyset=X^{(-1)} \subset X^{(0)} \subset \cdots \subset X^{(n-1)} \subset X^{(n)} \subset \cdots \subset X
$$

where

is a pushout for each n. Here each $H_{\alpha} \subset G$ is a closed subgroup.
We say that G is a free G-CW complex if each $H_{\alpha}=\{e\}$ is trivial.

2. Principal G-bundles

Definition 2.1. Let P be a G-space. The projection

$$
\pi: P \longrightarrow P / G=X
$$

is a principal G-bundle if each point $x \in X$ has a neighborhood U such that there exists a G-equivariant homeomorphism

$$
t_{U}: \pi^{-1}(U) \xrightarrow{\cong} U \times G
$$

over U. Here $\pi^{-1}(U)$ is a sub G-space of $P, U \times G$ has the G-action $g\left(u, g^{\prime}\right)=$ ($u, g g^{\prime}$), and the "over U " condition asks that

commutes, where $\operatorname{pr}\left(u, g^{\prime}\right)=u$.
We say that t_{U} is a local trivialization of $\pi: P \rightarrow X$ over U. Note that the G-action on P must be free, in the sense that $g p=p$ for $p \in P$ only if $g=e$, since this is the case for the G-action on $U \times G$. For point set topological reasons we should assume that the covering of X by the neighborhoods U admits a partition of unity, but this is no condition for reasonable X.

A map of principal G-bundles from $\pi: P \rightarrow X$ to $\pi: Q \rightarrow Y$ is a G-map $\hat{f}: P \rightarrow$ Q. We write $f: X \rightarrow Y$ for the induced map of base spaces, so that the diagram

commutes. Conversely, given a principal G-bundle $\pi: Q \rightarrow Y$ and a map $f: X \rightarrow$ Y, let

$$
f^{*} Q=X \times_{Y} Q=\{(x, q) \in X \times Q \mid f(x)=\pi(q)\}
$$

be the fiber product, with the G-action $g(x, q)=(x, g q)$. The map

$$
\begin{aligned}
f^{*} \pi: f^{*} Q & \longrightarrow X \\
(x, q) & \longmapsto x
\end{aligned}
$$

is then a principal G bundle, called the pullback of $\pi: Q \rightarrow Y$. If f is the inclusion of a subspace, we write $Q \mid X \rightarrow X$ for the pullback, then called the restriction.

The local trivializations t_{U} show that locally over X a principal G-bundle $\pi: P \rightarrow$ X and the product bundle $\mathrm{pr}: X \times G \rightarrow X$ are isomorphic, but this will often not be true globally over X.

We write

$$
\operatorname{Bun}_{G}(X)=\{\text { principal } G \text {-bundles } \pi: P \rightarrow P / G \cong X\} / \cong
$$

for the (set of) isomorphism classes of principal G-bundles over a fixed base space X. The pullback construction makes this a contravariant functor of X. It is a homotopy functor, because of the following lemma.

Lemma 2.2 ([Ste51, §11]). Let $\pi: Q \rightarrow X \times[0,1]$ be a principal G-bundle over a cylinder. Then the restricted bundles

$$
Q|X \times\{0\} \cong Q| X \times\{1\}
$$

are isomorphic.

3. Classifying spaces

Definition 3.1. A principal G-bundle $\pi: P \rightarrow X$ is said to be universal if P is (non-equivariantly) contractible. We write $\pi: E G \rightarrow B G$ to denote a universal principal G-bundle, and call $B G$ a classifying space for the group G.

We postpone the proof that universal principal G-bundles exist. Examples include $\mathbb{R} \rightarrow S^{1}$ for $G=\mathbb{Z}, S^{\infty} \rightarrow \mathbb{R} P^{\infty}$ for $G=\mathbb{Z} / 2, S^{\infty} \rightarrow L^{\infty}$ for $G=\mathbb{Z} / p$, and $S^{\infty} \rightarrow \mathbb{C} P^{\infty}$ for $G=S^{1}$.

Theorem 3.2 ([Ste51, §19]). Let $\pi: E G \rightarrow B G$ be a universal principal G-bundle. The natural function

$$
\begin{aligned}
& {[X, B G] } \cong \\
& {[f] } \operatorname{Bun}_{G}(X) \\
& {\left[f^{*} \pi: f^{*} E G \rightarrow X\right] }
\end{aligned}
$$

is a bijection for all $C W$ complexes X.

Proof. We first prove surjectivity. Let $\pi: P \rightarrow X$ be a given principal G-bundle. Then P admits the structure of a free G-CW complex, with $P^{(n)}=\pi^{-1}\left(X^{(n)}\right)$. Suppose by induction on n that there is a G-map $\hat{f}_{n-1}: P^{(n-1)} \rightarrow E G$.

The obstruction to extending it over the pushout to a G-map $\hat{f}_{n}: P^{(n)} \rightarrow E G$ is the α-indexed collection of homotopy classes of G-maps

$$
\hat{f}_{n-1} \phi_{\alpha}: G \times \partial D^{n} \longrightarrow E G
$$

These correspond bijectively to homotopy classes of (non-equivariant) maps $\partial D^{n} \rightarrow$ $E G$, all of which lie in the trivial group $\pi_{n-1}(E G)$. Hence there is no obstruction, and we obtain a G-map $\hat{f}: P \rightarrow E G$. Let $f: X \rightarrow B G$ be the map of G-orbits. Then $P \cong f^{*} E G$ over X.

The proof of injectivity is similar, starting with a map $f_{0} \sqcup f_{1}: X \times\{0,1\} \rightarrow B G$ and an isomorphism $f_{0}^{*} \pi \cong f_{1}^{*} \pi$ of principal G-bundles over X. This lifts to a G-map $\hat{f}_{0} \sqcup \hat{f}_{1}: P \times\{0,1\} \rightarrow E G$, and there is no obstruction to extending it to a G-map $\hat{F}: P \times[0,1] \rightarrow E G$ giving a G-homotopy from \hat{f}_{0} to \hat{f}_{1}. The map $F: X \times[0,1] \rightarrow B G$ of G-orbits gives the desired homotopy $f_{0} \simeq f_{1}$.

Corollary 3.3. Any two universal principal G-bundles are weakly homotopy equivalent.

Proof. They represent isomorphic functors.
Lemma 3.4. There is a homotopy equivalence

$$
G \simeq \Omega(B G)
$$

so the classifying space $B G$ is a (connected) delooping of G.
Proof. Consider the Puppe fiber sequence

$$
\Omega E G \longrightarrow \Omega B G \stackrel{\simeq}{\longrightarrow} G \longrightarrow E G \xrightarrow{\pi} B G
$$

where $E G$ is contractible by assumption.

4. Fiber Bundles

Let F be a fixed space.
Definition 4.1. An F-bundle, or a bundle with fiber F, is a map

$$
\pi: E \rightarrow X
$$

from the total space E to the base space X, together with local trivializations

$$
t_{U}: \pi^{-1}(U) \xrightarrow{\cong} U \times F
$$

for all U in an open cover of X. Here t_{U} is a homeomorphism over U.
It is also common to write B (in place of X) for the base space. This is the origin of the notations $E G$ and $B G$. Let G be a group acting on F.

Definition 4.2. An F-bundle $\pi: E \rightarrow X$ has structure group G if each composite

$$
(U \cap V) \times F \xrightarrow{t_{V}^{-1} \mid} \pi^{-1}(U \cap V) \xrightarrow{t_{U} \mid}(U \cap V) \times F
$$

has the form

$$
(x, f) \longmapsto\left(x, g_{U V}(x) f\right)
$$

for $x \in U \cap V, f \in F$ and a map

$$
g_{U V}: U \cap V \longrightarrow G
$$

satisfying the cocycle condition

$$
g_{U V}\left|\circ g_{V W}\right|=g_{U W} \mid: U \cap V \cap W \longrightarrow G
$$

for all U, V, W in the open cover. If G acts effectively on F, so that only the unit element $g=e$ acts as the identity map, then the cocycle condition is automatically satisfied.

Example 4.3. Every bundle with fiber F admits $\operatorname{Homeo}(F)$ as a structure group.
Example 4.4. A principal G-bundle is a bundle with fiber G and structure group G, for the left action $G \times G \rightarrow G$ given by the group multiplication.
Example 4.5. Let $G L_{n}(\mathbb{R})$ act by linear transformations on \mathbb{R}^{n}, and let the orthogonal group $O(n)$ act as the subgroup of Euclidean isometries. An \mathbb{R}^{n}-bundle with structure group $G L_{n}(\mathbb{R})$ is a real vector bundle of rank n. A choice of Euclidean inner product on the vector bundle is equivalent to a reduction of the structure group to $O(n)$.
Example 4.6. Let $G L_{n}(\mathbb{C})$ act by linear transformations on \mathbb{C}^{n}, and let the unitary group $U(n)$ act as the subgroup of Hermitian isometries. A \mathbb{C}^{n}-bundle with structure group $G L_{n}(\mathbb{C})$ is a complex vector bundle of rank n. A choice of Hermitian inner product on the vector bundle is equivalent to a reduction of the structure group to $U(n)$.
Definition 4.7. Let F be a G-space. To each principal G-bundle $\pi: P \rightarrow X$ we associate an F-bundle $\pi: E \rightarrow X$ with structure group G by setting

$$
E=(P \times F) / G
$$

and $\pi:[p, f]=\pi(p)$. Here G acts diagonally on $P \times F$, so

$$
(p, f) \sim(g p, g f)
$$

are identified in E for all $p \in P, f \in F$ and $g \in G$. If $t_{U}: \pi^{-1}(U) \cong U \times G$ is a local trivialization for the principal G-bundle, then

$$
\left(t_{U} \times F\right) / G: \pi^{-1}(U) \xrightarrow{\cong}(U \times G \times F) / G \cong U \times F
$$

is a local trivialization over U for the associated F-bundle.
If we view the left G-space P as a right G-space via the action through the group inverse, defined by $p g=g^{-1} p$, then

$$
E=P \times_{G} F
$$

where \times_{G} denotes the balanced product, given by the equivalence classes with respect to

$$
(p g, f) \sim(p, g f) .
$$

Let

$$
\operatorname{Bun}_{F, G}(X)=\{F \text {-bundles } \pi: E \rightarrow X \text { with structure group } G\} / \cong
$$ be the set of isomorphism classes of F-bundles over X with structure group G.

Proposition 4.8. Let F be a G-space. The associated bundle functor defines a natural bijection

$$
\begin{aligned}
\operatorname{Bun}_{G}(X) & \stackrel{\cong}{\leftrightarrows} \operatorname{Bun}_{F, G}(X) \\
{[\pi: P \rightarrow X] } & \longmapsto\left[\pi: E=P \times_{G} F \rightarrow X\right] .
\end{aligned}
$$

Hence $B G$ is also a classifying space for F-bundles with structure group G.
Example 4.9. The inclusion $O(n) \rightarrow G L_{n}(\mathbb{R})$ is a homotopy equivalence, with homotopy inverse given by the Gram-Schmidt process. Hence $B O(n) \rightarrow B G L_{n}(\mathbb{R})$ is also a homotopy equivalence, and the classification of principal $O(n)$-bundles is the same as the classification of principal $G L_{n}(\mathbb{R})$-bundles. Hence the classification of real vector bundles over a CW complex X is the same as the classification of Euclidean vector bundles, i.e., real vector bundles with a continuous choice of Euclidean inner product on each fiber. We write

$$
\operatorname{Vect}_{n}(X)=\operatorname{Vect}_{n}^{\mathbb{R}}(X)=\operatorname{Bun}_{\mathbb{R}^{n}, O(n)}(X)
$$

for the set of isomorphism classes of \mathbb{R}^{n}-bundles over X, which is in bijective correspondence with

$$
\operatorname{Bun}_{O(n)}(X)=[X, B O(n)]
$$

Example 4.10. The inclusion $U(n) \rightarrow G L_{n}(\mathbb{C})$ is a homotopy equivalence, with homotopy inverse given by the Gram-Schmidt process. Hence $B U(n) \rightarrow B G L_{n}(\mathbb{C})$ is also a homotopy equivalence, and the classification of principal $U(n)$-bundles is the same as the classification of principal $G L_{n}(\mathbb{C})$-bundles. Hence the classification of complex vector bundles over a CW complex X is the same as the classification of Hermitian vector bundles, i.e., complex vector bundles with a continuous choice of Hermitian inner product on each fiber. We write

$$
\operatorname{Vect}_{n}(X)=\operatorname{Vect}_{n}^{\mathbb{C}}(X)=\operatorname{Bun}_{\mathbb{C}^{n}, U(n)}(X)
$$

for the set of isomorphism classes of \mathbb{C}^{n}-bundles over X, which is in bijective correspondence with

$$
\operatorname{Bun}_{U(n)}(X)=[X, B U(n)]
$$

5. Direct sum and tensor product of vector bundles

Let ξ be an \mathbb{R}^{n}-bundle $\pi: E \rightarrow X$ and let η be an \mathbb{R}^{m}-bundle $\pi: F \rightarrow Y$. Their product bundle, or external direct sum, is the \mathbb{R}^{n+m}-bundle $\xi \times \eta=\xi \hat{\oplus} \eta$ given by

$$
\pi \times \pi: E \times F \longrightarrow X \times Y
$$

The fiber above $(x, y) \in X \times Y$ is the direct sum of vector spaces $E_{x} \oplus F_{y}=E_{x} \times F_{y}$. The external tensor product of ξ and η is the $\mathbb{R}^{n m}$-bundle $\xi \hat{\otimes} \eta$ with fiber $E_{x} \otimes_{\mathbb{R}} F_{y}$ over (x, y).

If $X=Y$ we can pull $\xi \times \eta$ back along $\Delta: X \rightarrow X \times X$, to obtain the Whitney sum, or internal direct sum,

$$
\xi \oplus \eta=\Delta^{*}(\xi \times \eta)
$$

with fiber $E_{x} \oplus F_{x}$ over $x \in X$. We also restrict $\xi \hat{\otimes} \eta$ along the diagonal, giving the (internal) tensor product $\xi \otimes \eta$ with fiber $E_{x} \otimes F_{x}$ over x.

Let ξ be an \mathbb{C}^{n}-bundle $\pi: E \rightarrow X$ and let η be an \mathbb{C}^{m}-bundle $\pi: F \rightarrow Y$. Their product bundle, or external direct sum, is the \mathbb{C}^{n+m}-bundle $\xi \times \eta=\xi \hat{\oplus} \eta$ given by

$$
\pi \times \pi: E \times F \longrightarrow X \times Y
$$

The fiber above $(x, y) \in X \times Y$ is the direct sum of vector spaces $E_{x} \oplus F_{y}=E_{x} \times F_{y}$. The external tensor product of ξ and η is the $\mathbb{C}^{n m}$-bundle $\xi \hat{\otimes} \eta$ with fiber $E_{x} \otimes_{\mathbb{C}} F_{y}$ over (x, y).

If $X=Y$ we can pull $\xi \times \eta$ back along $\Delta: X \rightarrow X \times X$, to obtain the Whitney sum, or internal direct sum,

$$
\xi \oplus \eta=\Delta^{*}(\xi \times \eta)
$$

with fiber $E_{x} \oplus F_{x}$ over $x \in X$. We also restrict $\xi \hat{\otimes} \eta$ along the diagonal, giving the (internal) tensor product $\xi \otimes \eta$ with fiber $E_{x} \otimes F_{x}$ over x.

These operations induce natural pairings of isomorphism classes

$$
\begin{array}{r}
\times=\hat{\oplus}: \operatorname{Vect}_{n}(X) \times \operatorname{Vect}_{m}(Y) \longrightarrow \operatorname{Vect}_{n+m}(X \times Y) \\
\hat{\otimes}: \operatorname{Vect}_{n}(X) \times \operatorname{Vect}_{m}(Y) \longrightarrow \operatorname{Vect}_{n m}(X \times Y)
\end{array}
$$

with internal variants

$$
\begin{aligned}
& \oplus: \operatorname{Vect}_{n}(X) \times \operatorname{Vect}_{m}(Y) \longrightarrow \operatorname{Vect}_{n+m}(X) \\
& \otimes: \operatorname{Vect}_{n}(X) \times \operatorname{Vect}_{m}(Y) \longrightarrow \operatorname{Vect}_{n m}(X)
\end{aligned}
$$

In the real case these are classified by maps

$$
\begin{aligned}
& \mu_{n, m}^{\oplus}: B O(n) \times B O(m) \longrightarrow B O(n+m) \\
& \mu_{n, m}^{\otimes}: B O(n) \times B O(m) \longrightarrow B O(n m)
\end{aligned}
$$

In the complex case they are classified by maps

$$
\begin{aligned}
& \mu_{n, m}^{\oplus}: B U(n) \times B U(m) \longrightarrow B U(n+m) \\
& \mu_{n, m}^{\otimes}: B U(n) \times B U(m) \longrightarrow B U(n m)
\end{aligned}
$$

Their effect on (co-)homology will be studied later.

6. GEOMETRIC REALIZATION OF CATEGORIES

We will construct the spaces $B G$ and $E G$ as the "geometric picture" of certain categories $\mathcal{B} G$ and $\mathcal{E} G$. Following [Seg68] this will be encoded using simplicial methods, which generalize the classical study of simplicial complexes, and the partial generalization called Δ-complexes in [Hat02]. These ideas go back to the Eilenberg-MacLane bar construction, where "bar" refers to the notation $[g \mid f] a$ appearing below.

Given a (small) category \mathcal{C}, we shall form a space $|N \mathcal{C}|$ called its geometric realization. We start with a point []a for each object a on \mathcal{C}. We view each morphism $f: a \rightarrow b$ in \mathcal{C} as a relation between a and b, and exhibit this by adding an edge $[f] a$ to $|N \mathcal{C}|$ connecting []a and []b.

$$
[] b \stackrel{[f] a}{\leftarrow}[] a
$$

(Note that this geometric edge can be traversed in either direction, even if the categorical morphism is not an isomorphism.) If $g: b \rightarrow c$ is a second morphism, so that $g f: a \rightarrow c$ is defined, we now have the boundary of a triangle, with vertices []a, []b and []c and edges $[f] a,[g] b$ and $[g f] a$, and we record this in our space by filling in any such triangle with a 2-simplex denoted $[g \mid f] a$.

Given a third morphism $h: c \rightarrow d$, associativity of composition in \mathcal{C} implies that we have assembled the boundary of a tetrahedron. We fill this in with a 3 -simplex, denoted $[h|g| f] a$.

In the definition of a category, coherence for the cartesian product of sets ensures that no further axioms are required regarding q-fold compositions of morphisms for $q \geq 4$, but in our geometric picture we need to make these higher coherences explicit. Therefore, for each $q \geq 0$ and each sequence

$$
c_{0} \stackrel{f_{1}}{\longleftarrow} c_{1} \stackrel{f_{2}}{\longleftarrow} \ldots \longleftarrow c_{q-1} \stackrel{f_{q}}{\longleftarrow} c_{q}
$$

of q composable morphisms in \mathcal{C} we add a q-simplex denoted

$$
\sigma=\left[f_{1}\left|f_{2}\right| \ldots \mid f_{q}\right] c_{q}
$$

to our space $|N C|$. It is to be glued to the previously constructed union of simplices of dimensions $<q$ by identifying the i-th face, opposite to the i-th vertex, with the ($q-1$)-simplex

$$
d_{i}(\sigma)=\left[f_{1}|\ldots| f_{i} f_{i+1}|\ldots| f_{q}\right] c_{q}
$$

associated to the $(q-1)$-tuple of morphisms

$$
c_{0} \stackrel{f_{1}}{\longleftarrow} \ldots \longleftarrow c_{i-1} \stackrel{f_{i} f_{i+1}}{\longleftarrow} c_{i+1} \longleftarrow \ldots \stackrel{f_{q}}{\longleftarrow} c_{q}
$$

obtained by deleting the object c_{i} and composing the morphisms f_{i+1} and f_{i}. Here $0<i<q$. In the case with $i=0$ no composition is required; we simply forget f_{1}.

$$
d_{0}(\sigma)=\left[f_{2}|\ldots| f_{q}\right] c_{q}
$$

In the case with $i=q$ we forget f_{q} and replace c_{q} with c_{q-1} as the "initial source" object.

$$
d_{q}(\sigma)=\left[f_{1}|\ldots| f_{q-1}\right] c_{q-1}
$$

We also want to take the unitality property of the identity morphisms into account, by collapsing the edge [id] a associated to id: $a \rightarrow a$, which so far appears as a loop from []a to itself, to a single point. More generally, if $f_{j+1}=\mathrm{id}$ in a chain

$$
c_{0} \stackrel{f_{1}}{\leftarrow} \ldots \stackrel{f_{j}}{\longleftarrow} c_{j} \stackrel{\text { id }}{\longleftarrow} c_{j+1} \stackrel{f_{j+2}}{\longleftarrow} \ldots \stackrel{f_{q}}{\longleftarrow} c_{q},
$$

for some $1 \leq j+1 \leq q$, we squash the q-simplex

$$
s_{j}(\tau)=\left[f_{1}|\ldots| f_{j}|\mathrm{id}| f_{j+2}|\ldots| f_{q}\right] c_{q}
$$

down to the $(q-1)$-simplex

$$
\tau=\left[f_{1}|\ldots| f_{j}\left|f_{j+2}\right| \ldots \mid f_{q}\right] c_{q}
$$

associated to

$$
c_{0} \stackrel{f_{1}}{\leftarrow} \ldots \stackrel{f_{j}}{\leftarrow}\left(c_{j}=c_{j+1}\right) \stackrel{f_{j+2}}{\rightleftarrows} \ldots \stackrel{f_{q}}{\leftarrow} c_{q}
$$

The resulting space is the geometric realization $|N \mathcal{C}|$ of the category \mathcal{C}.

To formalize the construction above, we let

$$
[q]=\{0<1<\cdots<q-1<q\}
$$

be the linearly ordered set with $(q+1)$ elements. (This is a different notation than the bar notation []$a,[f] a,[f \mid g] a, \ldots$ used just above.) We view this as a category, with a unique morphism $i \leftarrow j$ for each $i \leq j$. A functor $\sigma:[q] \rightarrow \mathcal{C}$ is then a diagram

$$
c_{0} \leftarrow c_{1} \leftarrow \cdots \leftarrow c_{q-1} \leftarrow c_{q}
$$

in \mathcal{C}, corresponding precisely to the q-simplices in our construction. Let $\alpha:[p] \rightarrow[q]$ be any order-preserving function, meaning that $\alpha(i) \leq \alpha(j)$ for all $i \leq j$. In terms of categories, this is the same as a functor from $[p]$ to $[q]$. Right composition with α takes a q-simplex $\sigma:[q] \rightarrow \mathcal{C}$ as above to the p-simplex $\sigma \alpha:[p] \rightarrow \mathcal{C}$ given by the diagram

$$
c_{\alpha(0)} \leftarrow c_{\alpha(1)} \leftarrow \cdots \leftarrow c_{\alpha(p-1)} \leftarrow c_{\alpha(p)}
$$

When α equals the (order-preserving) injection

$$
\delta^{i}:[q-1] \longrightarrow[q]
$$

that does not contain i in its image, this encodes the deletion-of-object operation

$$
\sigma \longmapsto d_{i}(\sigma)=\left(\delta^{i}\right)^{*}(\sigma)
$$

that specified how the i-th face of σ was to be identified with a $(q-1)$-simplex. When α equals the (order-preserving) surjection

$$
\sigma^{j}:[q] \longrightarrow[q-1]
$$

that maps j and $j+1$ to the same element, it encodes the insertion-of-identity operation

$$
\tau \longmapsto s_{j}(\tau)=\left(\sigma^{j}\right)^{*}(\tau)
$$

that specified how q-simplices involving identity morphisms were to be flattened down to $(q-1)$-simplices. Any order-preserving $\alpha:[p] \rightarrow[q]$ is a composition of these face $\left(\delta^{i}\right)$ and degeneracy $\left(\sigma^{j}\right)$ operators, and the former give a convenient formalization of the composition laws satisfied by the latter.

7. Simplicial sets

As the notation suggests, the geometric realization $|N \mathcal{C}|$ of a category is formed in two steps. First we form a simplicial set $X=N \mathcal{C}$ called the nerve of \mathcal{C}. Thereafter we form the geometric realization $|X|$ of this simplicial set. We discuss these two steps in turn. See [May67] and [GJ99] for treatments of simplicial sets.

Definition 7.1. Let Δ be the category with one object

$$
[q]=\{0<1<\cdots<q-1<q\}
$$

for each integer $q \geq 0$, and morphisms

$$
\Delta([p],[q])=\{\text { order-preserving } \alpha:[p] \rightarrow[q]\}
$$

Definition 7.2. A simplicial set is a (contravariant) functor

$$
\begin{aligned}
X: \Delta^{o p} & \longrightarrow \mathcal{S e t} \\
{[q] } & \longmapsto X_{q} \\
(\alpha:[p] \rightarrow[q]) & \longmapsto\left(\alpha^{*}: X_{q} \rightarrow X_{p}\right) .
\end{aligned}
$$

We call X_{q} the set of q-simplices in X, and sometimes write X_{\bullet} to indicate the position of the simplicial degree. A map of simplicial sets from X to Y is a natural transformation

$$
\begin{array}{r}
f: X \longrightarrow Y \\
f_{q}: X_{q} \longrightarrow Y_{q}
\end{array}
$$

of such functors. We write $s \mathcal{S}$ et for the category of simplicial sets.
More generally, a simplicial object in a category \mathcal{E} is a functor

$$
X: \Delta^{o p} \longrightarrow \mathcal{E}
$$

and a map of simplicial objects is a natural transformation. We write $s \mathcal{E}$ for the category of simplicial objects in \mathcal{E}.

Definition 7.3. The nerve of a category \mathcal{C} is the simplicial set $N \mathcal{C}=N_{\bullet} \mathcal{C}$ with q-simplices

$$
\begin{aligned}
N_{q} \mathcal{C} & =\operatorname{Fun}([q], \mathcal{C}) \\
& =\left\{c_{0} \stackrel{f_{1}}{\longleftarrow} c_{1} \longleftarrow \ldots \longleftarrow c_{q-1} \stackrel{f_{q}}{\leftarrow} c_{q}\right\}
\end{aligned}
$$

For each $\alpha:[p] \rightarrow[q]$ the simplicial operator $\alpha^{*}: N_{q} \mathcal{C} \rightarrow N_{p} \mathcal{C}$ is given by composition

$$
\begin{aligned}
\alpha^{*}: \operatorname{Fun}([q], \mathcal{C}) & \longrightarrow \operatorname{Fun}([p], \mathcal{C}) \\
\sigma & \longmapsto \alpha^{*}(\sigma)=\sigma \alpha .
\end{aligned}
$$

Let \mathcal{C} at be the category of (small) categories and functors. We can view Δ as the full subcategory of \mathcal{C} at generated by the objects $[q]$ for $q \geq 0$. The nerve $N \mathcal{C}$ is then the restriction to $\Delta^{o p}$ of the functor $\operatorname{Fun}(-, \mathcal{C}): \mathcal{C}$ at ${ }^{o p} \rightarrow \mathcal{S}$ et represented by \mathcal{C}.

Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a functor of categories. The induced map of nerves

$$
N F: N \mathcal{C} \longrightarrow N \mathcal{D}
$$

has q-th component given by the composition

$$
\begin{aligned}
N_{q} F=F_{*}: \operatorname{Fun}([q], \mathcal{C}) & \longrightarrow \operatorname{Fun}([q], \mathcal{D}) \\
\sigma & \longmapsto F_{*}(\sigma)=F \sigma .
\end{aligned}
$$

Definition 7.4.

$$
\Delta^{q}=\left\{\left(t_{0}, t_{1}, \ldots, t_{q}\right) \mid \sum_{i=0}^{q} t_{i}=1, \text { each } t_{i} \geq 0\right\}
$$

be the standard geometric q-simplex in \mathbb{R}^{q+1}, for each $q \geq 0$, spanned by the vertices v_{0}, \ldots, v_{q}. For each $\alpha:[p] \rightarrow[q]$ in Δ let

$$
\begin{aligned}
\alpha_{*}: \Delta^{p} & \longrightarrow \Delta^{q} \\
v_{i} & \longmapsto v_{\alpha(i)}
\end{aligned}
$$

be the affine linear map taking the i-th vertex to the $\alpha(i)$-th vertex. If $\alpha=\delta^{i}$, this is the inclusion of the i-th face. If $\alpha=\sigma^{j}$, this is the projection that collapses the edge $\left[v_{j-1}, v_{j}\right]$ to a point.

Let \mathcal{U} denote the category of (unbased) topological spaces. The rule $[q] \mapsto \Delta^{q}$ defines a (covariant) functor $\Delta^{\bullet}: \Delta \rightarrow \mathcal{U}$, which is an example of a cosimplicial space.

Definition 7.5. The geometric realization of a simplicial set X is the quotient space

$$
|X|=\coprod_{q \geq 0} X_{q} \times \Delta^{q} / \sim
$$

where

$$
\left(\alpha^{*}(x), \xi\right) \sim\left(x, \alpha_{*}(\xi)\right)
$$

for all $\alpha:[p] \rightarrow[q], x \in \Delta_{q}$ and $\xi \in \Delta^{p}$. A map $f: X \rightarrow Y$ of simplicial sets defines a map

$$
\begin{aligned}
|f|:|X| & \longrightarrow|Y| \\
\quad[x, \xi] & \longrightarrow\left[f_{q}(x), \xi\right]
\end{aligned}
$$

for all $q \geq 0, x \in X_{q}$ and $\xi \in \Delta^{q}$. Geometric realization defines a functor

Proposition 7.6. Let X be a simplicial set. The geometric realization $|X|$ is a $C W$ complex, with n-skeleton

$$
|X|^{(n)}=\coprod_{q=0}^{n} X_{q} \times \Delta^{q} / \sim
$$

and one n-cell with characteristic map

$$
\begin{aligned}
\Phi_{x}: D^{n} \cong \Delta^{n} & \longrightarrow|X|^{(n)} \\
\xi & \longmapsto[x, \xi]
\end{aligned}
$$

for each non-degenerate n-simplex x, i.e., each $x \in X_{n}$ not of the form $s_{j}(y)$ for any $1 \leq j \leq n-1, y \in X_{n-1}$.

Corollary 7.7. The geometric realization $|N \mathcal{C}|$ of the nerve of a category \mathcal{C} is a $C W$ complex, with one q-cell $\left[f_{1}|\ldots| f_{q}\right] c_{q}$ for each chain of q composable non-identity morphisms

$$
c_{0} \stackrel{f_{1}}{\leftarrow} \ldots \stackrel{f_{q}}{\longleftarrow} c_{q}
$$

in \mathcal{C}.
Example 7.8. The nerve of $\mathcal{C}=[1]=\{0<1\}$ has q-simplices

$$
N_{q}[1]=\operatorname{Fun}([q],[1])=\Delta([q],[1])
$$

The 0 -simplices are given by the objects 0 and 1 , corresponding to $\delta^{1}:[0] \rightarrow[1]$ and $\delta^{0}:[0] \rightarrow[1]$, respectively. The only non-degenerate 1 -simplex is given by the morphism

$$
0 \longleftarrow 1
$$

corresponding to id: $[1] \rightarrow[1]$. Hence the geometric realization $|N[1]|$ is $\Delta^{1}=$ $\left[v_{0}, v_{1}\right]$, with the CW structure with 0 -skeleton $\left\{v_{0}, v_{1}\right\}$. More generally, the geometric realization of (the nerve) of $\mathcal{C}=[q]$ is Δ^{q}.

8. Singular simplicial sets

Definition 8.1. Let Y be a space. The singular simplical set $\operatorname{sing}(Y)$ has set of q-simplices

$$
\operatorname{sing}(Y)_{q}=\left\{\operatorname{maps} \sigma: \Delta^{q} \longrightarrow Y\right\}
$$

equal to the set of singular q-simplices in Y. The simplicial operators are

$$
\begin{aligned}
\alpha^{*}: \operatorname{sing}(Y)_{q} & \longrightarrow \operatorname{sing}(Y)_{p} \\
\sigma & \longmapsto \alpha^{*}(\sigma)=\sigma \alpha_{*},
\end{aligned}
$$

where $\sigma \alpha_{*}$ is the composite

$$
\Delta^{p} \xrightarrow{\alpha_{*}} \Delta^{q} \xrightarrow{\sigma} Y .
$$

Proposition 8.2. $|-|$ is left adjoint to sing, meaning that there is a natural bijection

$$
\mathcal{U}(|X|, Y) \cong s \mathcal{S} \operatorname{et}(X, \operatorname{sing}(Y))
$$

for simplicial sets X and topological spaces Y. The adjunction counit

$$
\epsilon:|\operatorname{sing}(Y)| \xrightarrow{\sim} Y
$$

is a weak homotopy equivalence, and provides a functorial $C W$ approximation to any space Y.

9. Products

In addition to accounting for the unitality of identity morphisms, the degeneracy operators σ^{j} in Δ are also needed for $|-|$ to respect products. The product of two simplicial sets X and Y is given by

$$
(X \times Y)_{q}=X_{q} \times Y_{q}
$$

with simplicial operators $\alpha^{*} \times \alpha^{*}$.
Theorem 9.1 ([Mil57]). The natural map

$$
|X \times Y| \xrightarrow{\cong}|X| \times|Y|
$$

is a homeomorphism.
Sketch proof. The key case to check is $X=N[p]$ and $Y=N[q]$, in which case $X \times Y=N([p] \times[q])$, where $[p] \times[q]$ has the product partial ordering.

Passing to classifying spaces, $|N([p] \times[q])|$ presents the product $\Delta^{p} \times \Delta^{q}=|N[p]| \times$
 type (p, q).

Let \mathcal{C} and \mathcal{D} be categories, $F, G: \mathcal{C} \rightarrow \mathcal{D}$ functors, and $\theta: F \rightarrow G$ a natural transformation. We can view θ as a functor

$$
\begin{aligned}
H: \mathcal{C} \times[1] & \longrightarrow \mathcal{D} \\
(c, 0) & \longmapsto G(c) \\
(c, 1) & \longmapsto F(c)
\end{aligned}
$$

where

$$
\begin{array}{r}
H(f, 0)=G(f): G(a) \rightarrow G(b) \\
H(f, 1)=F(f): F(a) \rightarrow F(b) \\
H(c, 0<1)=\theta_{c}: F(c) \rightarrow G(c)
\end{array}
$$

for $f: a \rightarrow b$ and c in \mathcal{C}.
Lemma 9.2. Let $\theta: F \rightarrow G$ be a natural transformation of functors $F, G: \mathcal{C} \rightarrow \mathcal{D}$. The composite

$$
N \mathcal{C} \times N[1] \cong N(\mathcal{C} \times[1]) \xrightarrow{N H} N \mathcal{D}
$$

with H as above, induces a homotopy

$$
|N \mathcal{C}| \times[0,1] \cong|N \mathcal{C}| \times|N[1]| \cong|N \mathcal{C} \times N[1]| \xrightarrow{|N H|}|N \mathcal{D}|
$$

from $|N F|:|N \mathcal{C}| \rightarrow|N \mathcal{D}|$ to $|N G|:|N \mathcal{C}| \rightarrow|N \mathcal{D}|$.
Notice that even if we only have a natural transformation in one direct, the resulting homotopy goes both ways, in the sense that it can be viewed as a path that can be reversed.

Corollary 9.3. Suppose that $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ are mutually inverse equivalences of categories, or more generally form an adjoint pair. Then $|N F|:|N \mathcal{C}| \rightarrow$ $|N \mathcal{D}|$ and $|N G|:|N \mathcal{D}| \rightarrow|N \mathcal{C}|$ are mutually inverse homotopy equivalences. Hence equivalent categories have homotopy equivalent geometric realizations.

Proof. The adjunction unit η : id $\rightarrow G F$ and counit $\epsilon: F G \rightarrow$ id induce homotopies $\mathrm{id} \simeq|N G| \circ|N F|$ and $|N F| \circ|N G| \simeq \mathrm{id}$.

10. The bar construction

Definition 10.1. Let G be a topological group and X a left G-space. We view each point $x \in X$ as an object in a topological category $\mathcal{C}=\mathcal{B}(G, X)$, and each pair $(g, x) \in G \times X$ as a morphism

$$
g x \stackrel{g}{\longleftarrow} x .
$$

Hence

$$
\begin{aligned}
\operatorname{obj} \mathcal{C} & =X \\
\operatorname{mor} \mathcal{C} & =G \times X
\end{aligned}
$$

The source and target rules are

$$
\begin{aligned}
s, t: \operatorname{mor} \mathcal{C} & \longrightarrow \operatorname{obj} \mathcal{C} \\
s(g, x) & =x \\
t(g, x) & =g x
\end{aligned}
$$

while the identity rule is

$$
\begin{aligned}
\mathrm{id}: \quad \text { obj } \mathcal{C} & \longrightarrow \operatorname{mor} \mathcal{C} \\
\operatorname{id}(x) & =(e, x)
\end{aligned}
$$

The composition of two morphisms

$$
g h x \stackrel{g}{\longleftarrow} h x \stackrel{h}{\longleftarrow} x
$$

is

$$
g h x \stackrel{g h}{\rightleftarrows} x
$$

so the composition rule is

$$
\begin{aligned}
\circ: \operatorname{mor} \mathcal{C} \times{ }_{\text {obj } \mathcal{C}} \operatorname{mor} \mathcal{C} & \longrightarrow \operatorname{mor} \mathcal{C} \\
(g, h x) \circ(h, x) & =(g h, x)
\end{aligned}
$$

Example 10.2. When $X=\left\{x_{0}\right\}$ is a one-point space, we can omit $x \in X$ from the notation. The category $\mathcal{B} G=\mathcal{B}\left(G,\left\{x_{0}\right\}\right)$ has a single object, and the group G as the morphism space

$$
\mathcal{B} G\left(x_{0}, x_{0}\right)=G
$$

All morphisms are automorphisms of x_{0}.

Example 10.3. When $X=G$ with left G-action given by the group multiplication, the category $\mathcal{E} G=\mathcal{B}(G, G)$ has object space G and there is a unique morphism

$$
h \stackrel{h g^{-1}}{\longleftarrow} g
$$

from any object g to any other object h. Note that there the right action of G on $X=G$, also given by the group multiplication, defines a right action of G on the category $\mathcal{E} G$.

Lemma 10.4. The category $\mathcal{E} G$ is equivalent to the category $\mathcal{E}\{e\}$, i.e., the terminal category with only one object $\{e\}$ and only one morphism id : $e \rightarrow e$.

Proof. There is a (unique) natural transformation θ from the composite functor

$$
\mathcal{E} G \longrightarrow \mathcal{E}\{e\} \subset \mathcal{E} G
$$

to the identity of $\mathcal{E} G$, with components

$$
\theta_{g}: e \xrightarrow{g} g
$$

The nerve $N \mathcal{B}(G, X)$ is the simplicial space with q-simplices

$$
\begin{aligned}
N_{q} \mathcal{B}(G, X) & =G^{q} \times X \\
& =\left\{\left[g_{1}|\ldots| g_{q}\right] x \mid g_{1}, \ldots, g_{q} \in G, x \in X\right\}
\end{aligned}
$$

the space of diagrams

$$
g_{1} g_{2} \cdots g_{q} x \stackrel{g_{1}}{\leftarrow} g_{2} \cdots g_{q} x \stackrel{g_{2}}{\leftarrow} \ldots \stackrel{g_{q-1}}{\leftarrow} g_{q} x \stackrel{g_{q}}{\leftarrow} x .
$$

Example 10.5. When $X=\left\{x_{0}\right\}$, the nerve $N \mathcal{B} G$ is the simplicial space with q simplices

$$
\begin{aligned}
N_{q} \mathcal{B} G & =G^{q} \\
& =\left\{\left[g_{1}|\ldots| g_{q}\right] \mid g_{1}, \ldots, g_{q} \in G\right\}
\end{aligned}
$$

viewed as a chain of q automorphisms of x_{0}.
Example 10.6. When $X=G$, the nerve $N \mathcal{E} G$ is the simplicial space with q-simplices

$$
\begin{aligned}
N_{q} \mathcal{E} G & =G^{q} \times G \\
& =\left\{\left[g_{1}|\ldots| g_{q}\right] g \mid g_{1}, \ldots, g_{q}, g \in G\right\} .
\end{aligned}
$$

The right G-action on $X=G$ commutes with the simplicial structure maps, and makes this a simplicial right G-space. The right action is given by

$$
\begin{aligned}
N_{q} \mathcal{E} G \times G & \longrightarrow N_{q} \mathcal{E} G \\
\left(\left[g_{1}|\ldots| g_{q}\right] g, k\right) & \longmapsto\left[g_{1}|\ldots| g_{q}\right] g k
\end{aligned}
$$

The right G-action is free, in the sense that $\left[g_{1}|\ldots| g_{q}\right] g=\left[g_{1}|\ldots| g_{q}\right] g k$ only if $k=e$.

Lemma 10.7. There is a natural isomorphism of simplicial spaces

$$
N \mathcal{E} G \times_{G} X \cong N \mathcal{B}(G, X) .
$$

In particular, $(N \mathcal{E} G) / G \cong N \mathcal{B} G$.
Definition 10.8. Let X be a left G-space. The bar construction

$$
B(G, X)=|\mathcal{B}(G, X)|
$$

is the geometric realization of (the nerve of) the category $\mathcal{B}(G, X)$. When $X=*$ is a one-point space we call

$$
B G=B(G, *)
$$

the (bar construction of the) classifying space of G. When $X=G$, the bar construction

$$
E G=B(G, G)
$$

is contractible. The right G-action on X induces a free right G-action on $E G$, and there is a natural homeomorphism

$$
E G \times_{G} X \cong B(G, X) .
$$

In particular, $E G / G=E G \times_{G} * \cong B G$, and the projection

$$
\pi: E G \longrightarrow B G
$$

is a universal principal G-bundle.
To be precise, some mild topological hypotheses on (G, e) are required for $E G \rightarrow$ $B G$ to be locally trivial. It suffices that G is a CW complex with cellular multiplication. If desired, the right G-action on $E G$ can be converted to a left G-action, via the group inverse.

Example 10.9. If G and X are discrete, the bar construction $B(G, X)$ is a CW complex with one q-cell for each

$$
\left[g_{1}|\ldots| g_{q}\right] x \in G^{q} \times X
$$

with $g_{i} \neq e$ for each $1 \leq i \leq q$. In particular the classifying space $B G$ is a CW complex with one q-cell for each

$$
\left[g_{1}|\ldots| g_{q}\right] \in G^{q}
$$

with $g_{i} \neq e$ for each $1 \leq i \leq q$, and $E G$ is a free G-CW complex with one G equivariant q-cell covering each q-cell in $B G$.
((Orbits and homotopy orbits.))
((Čech covers, hypercovers.))

References

[GJ99] Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Progress in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999. MR1711612
[Hat02] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR1867354
[Hus66] Dale Husemoller, Fibre bundles, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR0229247
[May67] J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR0222892
[May99] J. P. May, A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1999. MR1702278
[Mil57] John Milnor, The geometric realization of a semi-simplicial complex, Ann. of Math. (2) 65 (1957), 357-362, DOI 10.2307/1969967. MR84138
[Seg68] Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105-112. MR232393
[Ste51] Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR0039258

Department of Mathematics, University of Oslo, Norway
Email address: rognes@math.uio.no

