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CHAPTER 3: CLASSIFYING SPACES

JOHN ROGNES

See [Ste51], [Hus66, Part 1], [Seg68] and Hatcher (2003).

1. EQUIVARIANT TOPOLOGY

Let G be a topological group, with unit element e and multiplication m: GxG —
G. A left G-space is a space X with a unital and associative left G-action

AGxX —X
(g,2) —> gx.
If X has a base point z(, then we assume that gzy = z¢ for all g € G. The G-fixed
points of X is the subspace
XC={reX|gr=uxforallgeG}
of X, and the G-orbits of X is the quotient space
X/G=X/{x~gxforallze X, geG}.

(If one needs to deal with both left and right G-actions, it might be better to write
G\X for this orbit space.) For G-spaces X and Y, a G-map from X to Y is a map
f: X — Y that is G-equivariant, in the sense that

GXX$X

ass| |

GxY 2>y

commutes, i.e., such that f(gx) = gf(x). We give X A'Y the diagonal G-action,
with

g9(x Ny) =gz Ngy,
and we give Map(X,Y’) the conjugate G-action, with

(9f)(z) = gf(g~ 2).
The homeomorphism

Map(X AY, Z) = Map(X, Map(Y, Z))
[ f,

where f(z Ay) = f'(x)(y), is then G-equivariant. Moreover, the G-fixed points
Map(X,Y )% is the space of G-maps f: X — Y.
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Definition 1.1. A G-CW complex is a G-space X with an exhaustive skeleton
filtration

(Z):X(_l) CX(O) C - CX("_l) CX(”) c---CcX
where

II,G/Hy x 0D —— ], G/H, x D"

‘| Jo
X (n—1) X (n)
is a pushout for each n. Here each H, C G is a closed subgroup.

We say that G is a free G-CW complex if each H, = {e} is trivial.

2. PRINCIPAL G-BUNDLES

Definition 2.1. Let P be a G-space. The projection
m: P— P/G=X

is a principal G-bundle if each point x € X has a neighborhood U such that there
exists a G-equivariant homeomorphism

ty: 7Y U) = UxG

over U. Here n~1(U) is a sub G-space of P, U x G has the G-action g(u,g’) =
(u,gg’), and the “over U” condition asks that

commutes, where pr(u, g') = u.

We say that ¢y is a local trivialization of w: P — X over U. Note that the
G-action on P must be free, in the sense that gp = p for p € P only if g = e, since
this is the case for the G-action on U x G. For point set topological reasons we
should assume that the covering of X by the neighborhoods U admits a partition
of unity, but this is no condition for reasonable X.

A map of principal G-bundles from 7: P — X to7: Q — Y is a G-map f: P —
Q. We write f: X — Y for the induced map of base spaces, so that the diagram

P 4 Q

|

X=P/G—1>Q/G=Y

commutes. Conversely, given a principal G-bundle 7: @ — Y and a map f: X —
Y, let
Q=X xyQ={(z,q) € X xQ| f(z) =7(q)}
be the fiber product, with the G-action g(z,q) = (¢, gq). The map
ffr ffQ— X
(z,q) — =
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is then a principal G bundle, called the pullback of 7: @ — Y. If f is the inclusion
of a subspace, we write Q| X — X for the pullback, then called the restriction.
The local trivializations ty show that locally over X a principal G-bundle 7: P —
X and the product bundle pr: X x G — X are isomorphic, but this will often not
be true globally over X.
We write

Bung(X) = {principal G-bundles 7: P - P/G = X}/ =

for the (set of ) isomorphism classes of principal G-bundles over a fixed base space X.
The pullback construction makes this a contravariant functor of X. It is a homotopy
functor, because of the following lemma.

Lemma 2.2 ([Ste51, §11]). Let m: Q — X x [0,1] be a principal G-bundle over a
cylinder. Then the restricted bundles
QX x {0} = QX x {1}

are isomorphic.

3. CLASSIFYING SPACES

Definition 3.1. A principal G-bundle 7: P — X is said to be universal if P is
(non-equivariantly) contractible. We write m: EG — BG to denote a universal
principal G-bundle, and call BG a classifying space for the group G.

We postpone the proof that universal principal G-bundles exist. Examples in-
clude R — St for G = Z, S — RP> for G = Z/2, S — L*™ for G = Z/p, and
§% — CP> for G = S'.

Theorem 3.2 ([Ste51, §19]). Let m: EG — BG be a universal principal G-bundle.
The natural function

o

[X, BG] — Bung(X)
[f]—[f'm: fPEG — X]
is a bijection for all CW complexes X.

FEG—L > EG
S
x—' . Ba

Proof. We first prove surjectivity. Let m: P — X be a given principal G-bundle.
Then P admits the structure of a free G-CW complex, with P = 7=1(X (™),
Suppose by induction on n that there is a G-map f,_1: P~V — EG.

I1,G x 9D" —> ][, G x D"

L. %l lcb

p(n—1) pn)
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The obstruction to extending it over the pushout to a G-map fn: P — EG is
the a-indexed collection of homotopy classes of G-maps

frno1¢a: G x D™ —s EG.

These correspond bijectively to homotopy classes of (non-equivariant) maps D" —
EG, all of which lie in the trivial group 7,_1(EG). Hence there is no obstruction,
and we obtain a G-map f: P — EG. Let f: X — BG be the map of G-orbits.
Then P = f*EG over X.

The proof of injectivity is similar, starting with a map foU f1: X x {0,1} — BG
and an isomorphism fjm = f{m of principal G-bundles over X. This lifts to a
G-map fo U fi: P x {0,1} — EG, and there is no obstruction to extending it
to a G-map F: P x [0,1] — EG giving a G-homotopy from fo to fi. The map
F: X x[0,1] = BG of G-orbits gives the desired homotopy fo ~ fi. O

Corollary 3.3. Any two universal principal G-bundles are weakly homotopy equiv-
alent.

Proof. They represent isomorphic functors. (]
Lemma 3.4. There is a homotopy equivalence
G ~ Q(BG),
so the classifying space BG is a (connected) delooping of G.
Proof. Consider the Puppe fiber sequence
QEG — QBG — G — EG - BG,

where E'G is contractible by assumption. ([

4. FIBER BUNDLES
Let F be a fixed space.
Definition 4.1. An F-bundle, or a bundle with fiber F', is a map
T EF—X
from the total space F to the base space X, together with local trivializations
ty:m ' (U) = UxF
for all U in an open cover of X. Here ¢ty is a homeomorphism over U.

It is also common to write B (in place of X) for the base space. This is the
origin of the notations EG and BG. Let G be a group acting on F.

Definition 4.2. An F-bundle 7: F — X has structure group G if each composite

-1
Unvyx F v wnvy 2 onv)x F
has the form

(@, f) — (@, 9uv () [)
forceUNV, feF and a map

guv:UnNV — G,
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satisfying the cocycle condition
for all U, V, W in the open cover. If G acts effectively on F', so that only the unit

element g = e acts as the identity map, then the cocycle condition is automatically
satisfied.

Ezample 4.3. Every bundle with fiber F' admits Homeo(F') as a structure group.

Ezxample 4.4. A principal G-bundle is a bundle with fiber G and structure group G,
for the left action G x G — G given by the group multiplication.

Ezample 4.5. Let GL,,(R) act by linear transformations on R™, and let the orthog-
onal group O(n) act as the subgroup of Euclidean isometries. An R"™-bundle with
structure group GL,,(R) is a real vector bundle of rank n. A choice of Euclidean
inner product on the vector bundle is equivalent to a reduction of the structure
group to O(n).

Ezample 4.6. Let GL,,(C) act by linear transformations on C", and let the unitary
group U(n) act as the subgroup of Hermitian isometries. A C™-bundle with struc-
ture group GL,(C) is a complex vector bundle of rank n. A choice of Hermitian
inner product on the vector bundle is equivalent to a reduction of the structure
group to U(n).

Definition 4.7. Let F be a G-space. To each principal G-bundle 7: P — X we

associate an F-bundle 7: E' — X with structure group G by setting
E=(PxF)/G

and 7: [p, f] = w(p). Here G acts diagonally on P X F, so

(o, f) ~ (9p, 9f)
are identified in E forallp € P, f € Fand g € G. If ty: 7Y (U) 2 U x G is a
local trivialization for the principal G-bundle, then
(ty x F))G: 7 Y(U) = (U x G x F)/G=UxF
is a local trivialization over U for the associated F-bundle.

If we view the left G-space P as a right G-space via the action through the group
inverse, defined by pg = ¢~ 'p, then
E=PxgF

where X denotes the balanced product, given by the equivalence classes with
respect to

(pg, ) ~ (p;gf)-
Let

Bung ¢(X) = {F-bundles 7: E — X with structure group G}/ =
be the set of isomorphism classes of F-bundles over X with structure group G.

Proposition 4.8. Let F' be a G-space. The associated bundle functor defines a
natural bijection

o

Bung(X) — Bunpg g (X)
[7: P— X]+— [m: E=Pxg F — X].
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Hence BG is also a classifying space for F-bundles with structure group G.

Ezample 4.9. The inclusion O(n) — GL,(R) is a homotopy equivalence, with
homotopy inverse given by the Gram-Schmidt process. Hence BO(n) — BGL,(R)
is also a homotopy equivalence, and the classification of principal O(n)-bundles is
the same as the classification of principal GL, (R)-bundles. Hence the classification
of real vector bundles over a CW complex X is the same as the classification
of Euclidean vector bundles, i.e., real vector bundles with a continuous choice of
Euclidean inner product on each fiber. We write

Vect,, (X) = Vect® (X) = Bungn o (n) (X)

for the set of isomorphism classes of R™-bundles over X, which is in bijective cor-
respondence with
Bung ) (X) = [X, BO(n)].

Ezample 4.10. The inclusion U(n) — GL,(C) is a homotopy equivalence, with
homotopy inverse given by the Gram—Schmidt process. Hence BU(n) — BGL,,(C)
is also a homotopy equivalence, and the classification of principal U(n)-bundles is
the same as the classification of principal GL, (C)-bundles. Hence the classification
of complex vector bundles over a CW complex X is the same as the classification
of Hermitian vector bundles, i.e., complex vector bundles with a continuous choice
of Hermitian inner product on each fiber. We write

Vect, (X) = VectS(X) = Buncr y(n)(X)

for the set of isomorphism classes of C™-bundles over X, which is in bijective cor-
respondence with

Bungy ) (X) = [X, BU(n)].

5. DIRECT SUM AND TENSOR PRODUCT OF VECTOR BUNDLES

Let € be an R™-bundle 7: E — X and let n be an R™-bundle 7: F' — Y. Their
product bundle, or external direct sum, is the R"*™-bundle & x 1 = £&n given by

nxm: ExF—XXxY.

The fiber above (z,y) € X xY is the direct sum of vector spaces E, $F, = E, X F,,.
The external tensor product of ¢ and 7 is the R”™-bundle £&n with fiber E, Qg E,
over (z,y).

If X =Y we can pull £ x 1 back along A: X — X x X to obtain the Whitney
sum, or internal direct sum,

Eon=A"¢xn)

with fiber E, ® F, over x € X. We also restrict £&n along the diagonal, giving the
(internal) tensor product £ ® n with fiber E, ® F, over x.

Let € be an C™-bundle 7: £ — X and let n be an C™-bundle 7: F' — Y. Their
product bundle, or external direct sum, is the C"*™-bundle & x 1 = £&n given by

nxm: ExXF—XXxY.

The fiber above (z,y) € X xY is the direct sum of vector spaces B, F, = E; X F,,.
The external tensor product of £ and 7 is the C"™-bundle £&n with fiber E, ®c¢ F,
over (z,y).
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If X =Y we can pull £ x 1 back along A: X — X x X, to obtain the Whitney
sum, or internal direct sum,
§on=A%Exn)
with fiber £, @ F, over € X. We also restrict £®n along the diagonal, giving the
(internal) tensor product £ ® n with fiber E, ® F, over x.
These operations induce natural pairings of isomorphism classes
x = @&: Vect, (X) x Vect,(Y) — Vect, ym(X x Y)
®@: Vect, (X) x Vect,(Y) — Vect,m,(X xY)
with internal variants
@: Vect, (X) x Vect,, (Y) — Vect,m (X)
®: Vect, (X) x Vecty, (V) — Vectpm(X).
In the real case these are classified by maps
e, : BO(n) x BO(m) — BO(n +m)
(1 s BO(n) x BO(m) — BO(nm).
In the complex case they are classified by maps
e .. BU(n) x BU(m) — BU(n+m)
(1 s BU(n) x BU(m) — BU (nm) .
Their effect on (co-)homology will be studied later.

6. GEOMETRIC REALIZATION OF CATEGORIES

We will construct the spaces BG and EG as the “geometric picture” of cer-
tain categories BG and £G. Following [Seg68] this will be encoded using sim-
plicial methods, which generalize the classical study of simplicial complexes, and
the partial generalization called A-complexes in [Hat02]. These ideas go back to
the Eilenberg-MacLane bar construction, where “bar” refers to the notation [g|f]a
appearing below.

Given a (small) category C, we shall form a space |NC| called its geometric
realization. We start with a point [Ja for each object a on C. We view each
morphism f: a — b in C as a relation between a and b, and exhibit this by adding
an edge [fla to |NC| connecting [|a and []b.

1< o

(Note that this geometric edge can be traversed in either direction, even if the
categorical morphism is not an isomorphism.) If g: b — ¢ is a second morphism,
so that gf: a — c is defined, we now have the boundary of a triangle, with vertices
[la, []b and [Jc and edges [f]a, [g]b and [gf]a, and we record this in our space by
filling in any such triangle with a 2-simplex denoted [g|f]a.

la
[9f]a [f]a
e Q i’
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Given a third morphism h: ¢ — d, associativity of composition in C implies that
we have assembled the boundary of a tetrahedron. We fill this in with a 3-simplex,
denoted [h|g|f]a.

;

v

[hgfla ]b lgfla
[hg

[h]c

In the definition of a category, coherence for the cartesian product of sets ensures
that no further axioms are required regarding g¢-fold compositions of morphisms
for ¢ > 4, but in our geometric picture we need to make these higher coherences
explicit. Therefore, for each ¢ > 0 and each sequence

: f
co<f—101<f—2...<—cq,1<—ch

of ¢ composable morphisms in C we add a g-simplex denoted

o= [filfzl---|fleq

to our space |[NC|. It is to be glued to the previously constructed union of simplices
of dimensions < ¢ by identifying the i-th face, opposite to the i-th vertex, with the
(g — 1)-simplex

di(0) = [fal .. |fifixal- .- |fa)cq
associated to the (¢ — 1)-tuple of morphisms

fifi fq
o e T e — gy

obtained by deleting the object ¢; and composing the morphisms f;,1 and f;. Here
0 < i < ¢q. In the case with ¢ = 0 no composition is required; we simply forget f;.

do(0) = [fa| - |faleq
In the case with i = ¢ we forget f, and replace ¢, with c¢,—; as the “initial source”
object.
dq(0) = [fil .- | fg—1leq—1
We also want to take the unitality property of the identity morphisms into account,
by collapsing the edge [id]a associated to id: a — a, which so far appears as a loop
from [Ja to itself, to a single point. More generally, if f;+1 = id in a chain

J; i I f
co X .. <—ch<—cj+1<i Ly,

for some 1 < j + 1 < ¢, we squash the g-simplex

Sj(T) = [fl‘ ce |f]| id |fj+2| SN |fq]cq
down to the (¢ — 1)-simplex

= [fil. - A filfiaal - - | fqleq
associated to
Co <f—1 (f—J (Cj = Cj+1) @ (f—q Cq

The resulting space is the geometric realization |NC| of the category C.



CLASSIFYING SPACES 9

To formalize the construction above, we let
[ff ={0<1<--<g-1<gq}
be the linearly ordered set with (¢ + 1) elements. (This is a different notation than
the bar notation [|a, [f]a, [f|g]a, ... used just above.) We view this as a category,
with a unique morphism ¢ + j for each ¢ < j. A functor o: [¢q] — C is then a
diagram
Co < ClL <% Cqg—1 £ Cq
in C, corresponding precisely to the g-simplices in our construction. Let a: [p] — [g]
be any order-preserving function, meaning that a(i) < «(j) for all i < j. In terms
of categories, this is the same as a functor from [p] to [¢]. Right composition with
« takes a ¢-simplex o: [g] = C as above to the p-simplex oa: [p] — C given by the
diagram
Ca(0) £ Ca(1) & 7" 5 Ca(p-1) < Ca(p) -
When « equals the (order-preserving) injection
6': [q = 1] — [q]
that does not contain ¢ in its image, this encodes the deletion-of-object operation
o+ di(0) = (8")"(0)

that specified how the i-th face of o was to be identified with a (¢ — 1)-simplex.
When « equals the (order-preserving) surjection

o’ g — g — 1]
that maps j and j + 1 to the same element, it encodes the insertion-of-identity
operation
T 55(7) = (07)*(7)

that specified how g-simplices involving identity morphisms were to be flattened
down to (¢ — 1)-simplices. Any order-preserving a: [p] — [g] is a composition of
these face (6") and degeneracy (o7) operators, and the former give a convenient
formalization of the composition laws satisfied by the latter.

% §0

2] <31— [1] —o*> [0]
el U bt
T st

7. SIMPLICIAL SETS

As the notation suggests, the geometric realization |[NC| of a category is formed
in two steps. First we form a simplicial set X = NC called the nerve of C. Thereafter
we form the geometric realization |X| of this simplicial set. We discuss these two
steps in turn. See [May67] and [GJ99] for treatments of simplicial sets.

Definition 7.1. Let A be the category with one object
[(={0<1<--<q-1<q}
for each integer ¢ > 0, and morphisms

A([p], [q]) = {order-preserving a: [p] — [¢]}.
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Definition 7.2. A simplicial set is a (contravariant) functor
X: A% — Set
lq) — X,
(a: [p) = la)) — (@™ X, = X,).
We call X, the set of g-simplices in X, and sometimes write X, to indicate the

position of the simplicial degree. A map of simplicial sets from X to Y is a natural
transformation

X —Y

fo: Xg — Y,

of such functors. We write s Set for the category of simplicial sets.
More generally, a simplicial object in a category & is a functor

X AP — &,
and a map of simplicial objects is a natural transformation. We write s€ for the
category of simplicial objects in &.
Definition 7.3. The nerve of a category C is the simplicial set NC = N,C with
g-simplices

N,C = Fun([¢],C)

f
:{C(]L61<—...<—Cq,1(—ch}.

For each a: [p] — [¢] the simplicial operator a*: N,C — N,C is given by composi-
tion
a™: Fun([g],C) — Fun([p],C)
or— a’(o) =oa.

Let Cat be the category of (small) categories and functors. We can view A as
the full subcategory of Cat generated by the objects [g] for ¢ > 0. The nerve NC
is then the restriction to A°P of the functor Fun(—,C): Cat®” — Set represented
by C.

Let F: C — D be a functor of categories. The induced map of nerves

NF: NC— ND
has ¢-th component given by the composition
N,F = F,: Fun([q],C) — Fun([q], D)
or— F.(o)=Fo.
Definition 7.4.
AT = {(to,t1,...,tq) | zq:ti = 1,each t; > 0}
i=0

be the standard geometric g-simplex in R4, for each ¢ > 0, spanned by the vertices
0, ...,vq. For each a: [p] = [¢] in A let

o AP — A1

Vi > Va(i)
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be the affine linear map taking the i-th vertex to the a(i)-th vertex. If a = §%, this
is the inclusion of the i-th face. If @ = ¢, this is the projection that collapses the
edge [v;j_1,v;] to a point.

Let U denote the category of (unbased) topological spaces. The rule [¢q] — A?
defines a (covariant) functor A®*: A — U, which is an example of a cosimplicial
space.

Definition 7.5. The geometric realization of a simplicial set X is the quotient
space

x| =T Xy x A7/~

q20

where

(@*(z),€) ~ (z,04(¢))
for all a: [p] = [¢], z € Agand £ € AP. Amap f: X — Y of simplicial sets defines
a map

[l 1 X[ — Y]

[z,&] — [fq(x), €]

for all ¢ > 0, z € X; and £ € A?. Geometric realization defines a functor
| —|: sSet — U.

Proposition 7.6. Let X be a simplicial set. The geometric realization |X| is a
CW complex, with n-skeleton

x| = T X, x A7/ ~
q=0
and one n-cell with characteristic map
$,: D" =2 A" — [ X[
§— [z,¢]

for each non-degenerate n-simplex x, i.e., each x € X, not of the form s;(y) for
anyl<j<n-1y€ X, 1.

Corollary 7.7. The geometric realization |NC| of the nerve of a category C is a CW
complex, with one g-cell [f1|...|fs]cq for each chain of ¢ composable non-identity

morphisms

f
co<f—1...%ch

in C.
Ezample 7.8. The nerve of C = [1] = {0 < 1} has ¢-simplices

Ng[1] = Fun([q], [1]) = A([q], [1]) -
The 0-simplices are given by the objects 0 and 1, corresponding to 6*: [0] — [1]
and 6°: [0] — [1], respectively. The only non-degenerate 1-simplex is given by the
morphism
0<+—1,

corresponding to id: [1] — [1]. Hence the geometric realization |[N[1]| is Al =
[vg, v1], with the CW structure with 0-skeleton {wvg,v1}. More generally, the geo-
metric realization of (the nerve) of C = [q] is AY.
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8. SINGULAR SIMPLICIAL SETS

Definition 8.1. Let Y be a space. The singular simplical set sing(Y’) has set of
g-simplices

sing(Y)y = {maps 0: A? — Y}
equal to the set of singular g-simplices in Y. The simplicial operators are
o sing(Y), — sing(Y),
or— a*(0) =oay,
where oo, is the composite
AP Z AT T Y

Proposition 8.2. | — | is left adjoint to sing, meaning that there is a natural
bijection
U(|X],Y) = sSet(X,sing(Y))
for simplicial sets X and topological spaces Y. The adjunction counit
e: |sing(Y)] =Y

is a weak homotopy equivalence, and provides a functorial CW approzimation to
any space Y .

9. ProDUCTS

In addition to accounting for the unitality of identity morphisms, the degeneracy
operators ¢ in A are also needed for | — | to respect products. The product of two
simplicial sets X and Y is given by

(X xY), = X, x Y,
with simplicial operators o™ x a*.
Theorem 9.1 ([Mil57]). The natural map

X x Y| = |X] x|Y]
is a homeomorphism.

Sketch proof. The key case to check is X = N[p] and Y = N]g], in which case
X xY = N([p] x [q]), where [p] x [g] has the product partial ordering.

0,9) =<— (p,q)

L

(0,0) =— (»,0)

Passing to classifying spaces, |N([p] x [¢])| presents the product AP x A? = |N[p]| x
|N|g]| as a union of APT¢-simplices, indexed by the (¥ :q) shuffle permutations of

type (p,q)- g
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Let C and D be categories, F,G: C — D functors, and §: FF — G a natural
transformation. We can view 6 as a functor

H:Cx[1]—D
(¢,0) — G(c)
(¢,1) — F(c)
where
H(f,0)=G(f): Gla) = G(b)
H(f,1) = F(f): F(a) = F(b)
H(c,0<1)=0.: F(c) = G(c)
for f: @ — band cin C.

Lemma 9.2. Let 0 : F — G be a natural transformation of functors F,G: C — D.

The composite

NC x N[1] = N x [1]) 22 ND,

with H as above, induces a homotopy

INC| % [0,1] = [NC| x [N[1]| = |NC x N[1]] Y2 | nD|
from |NF|: [INC| = |ND| to NG| [NC| — |ND|.

Notice that even if we only have a natural transformation in one direct, the
resulting homotopy goes both ways, in the sense that it can be viewed as a path
that can be reversed.

Corollary 9.3. Suppose that F: C — D and G: D — C are mutually inverse equiv-
alences of categories, or more generally form an adjoint pair. Then |[NF|: |NC| —
IND| and |[NG|: [ND| — |NC| are mutually inverse homotopy equivalences. Hence
equivalent categories have homotopy equivalent geometric realizations.

Proof. The adjunction unit n: id — GF and counit €: F'G — id induce homotopies
id~ |[NG|o|NF| and |[NF|o [NG| ~ id. d
10. THE BAR CONSTRUCTION

Definition 10.1. Let G be a topological group and X a left G-space. We view
each point x € X as an object in a topological category C = B(G, X), and each
pair (g,x) € G x X as a morphism

gr & x.
Hence
objC =X
morC =G x X.

The source and target rules are
s,t: morC — objC
s(g,z) ==
t(g,x) = gz,
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while the identity rule is
id: objC — morC
id(z) = (e, x).
The composition of two morphisms
ghaz <2 hx PR
is
ghx oy ,
so the composition rule is
o: morC Xgpjc morC — morC

(g,haﬂ o (h7x) ::(g}l7x)'

Ezample 10.2. When X = {z(} is a one-point space, we can omit € X from the
notation. The category BG = B(G, {zo}) has a single object, and the group G as
the morphism space

l?(?(ax),mo) =G.

All morphisms are automorphisms of xg.

9<:;>x0%i:)h
()

gh

Ezample 10.3. When X = G with left G-action given by the group multiplication,
the category £G = B(G, G) has object space G and there is a unique morphism

-1
h}fg—g

from any object g to any other object h. Note that there the right action of G on
X = @G, also given by the group multiplication, defines a right action of G' on the
category £G.

Lemma 10.4. The category EG is equivalent to the category E{e}, i.e., the terminal
category with only one object {e} and only one morphism id: e — e.

Proof. There is a (unique) natural transformation 6 from the composite functor
EG — E{e} C &G
to the identity of £G, with components

Gg:eiu].

The nerve NB(G, X) is the simplicial space with g-simplices
NB(G, X)=GTx X
={[g1].. . lgqlz | 91,-..,94 € G,z € X}

the space of diagrams

g1 g2 9q—-1 9q
glgg~-~gqx 644'gg~~~gqx %44’...44*'gq$ <— X.
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Ezample 10.5. When X = {z¢}, the nerve NBG is the simplicial space with ¢-
simplices

N,BG = G1
={lo1l--lggl [ 91,-.. .94 € G}
viewed as a chain of ¢ automorphisms of z.
Example 10.6. When X = G, the nerve NEG is the simplicial space with ¢g-simplices
NG =GT"xG
={lo1l---lgdlg I 91,---, 94,9 € G}.

The right G-action on X = G commutes with the simplicial structure maps, and
makes this a simplicial right G-space. The right action is given by

N,EG x G — N,EG
(lg1l-- - 194)g, k) — [91] - - - 194)9k

The right G-action is free, in the sense that [g1]...|g.)g = [g1].. |94k only if
k=e.

Lemma 10.7. There is a natural isomorphism of simplicial spaces
NEG xg X 2 NB(G, X).
In particular, (NEG)/G = NBG.
Definition 10.8. Let X be a left G-space. The bar construction
B(G,X) = |B(G, X)|

is the geometric realization of (the nerve of) the category B(G, X). When X = x
is a one-point space we call

BG = B(G, )

the (bar construction of the) classifying space of G. When X = G, the bar con-
struction

EG = B(G,G)

is contractible. The right G-action on X induces a free right G-action on EG, and
there is a natural homeomorphism

EG x¢ X 2 B(G,X).
In particular, FG/G = EG X * = BG, and the projection
m: EG — BG
is a universal principal G-bundle.

To be precise, some mild topological hypotheses on (G, e) are required for EG —
BG to be locally trivial. It suffices that G is a CW complex with cellular multipli-
cation. If desired, the right G-action on EG can be converted to a left G-action,
via the group inverse.
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Ezample 10.9. If G and X are discrete, the bar construction B(G,X) is a CW
complex with one g¢-cell for each

[g1] ... lgqlz € GI x X

with g; # e for each 1 < i < ¢. In particular the classifying space BG is a CW
complex with one g-cell for each

(g1]---1gq] € G*

with g; # e for each 1 < i < g, and EG is a free G-CW complex with one G-
equivariant g-cell covering each g¢-cell in BG.

((Orbits and homotopy orbits.))
((Cech covers, hypercovers.))

REFERENCES

[GJ99] Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Progress in Mathe-
matics, vol. 174, Birkhauser Verlag, Basel, 1999. MR1711612
[Hat02] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.
MR1867354
[Hus66] Dale Husemoller, Fibre bundles, McGraw-Hill Book Co., New York-London-Sydney, 1966.
MR0229247
[May67] J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Stud-
ies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967.
MR0222892
[May99] J. P. May, A concise course in algebraic topology, Chicago Lectures in Mathematics,
University of Chicago Press, Chicago, IL, 1999. MR1702278
[Mil57] John Milnor, The geometric realization of a semi-simplicial complez, Ann. of Math. (2)
65 (1957), 357-362, DOI 10.2307/1969967. MR84138
[Seg68] Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Etudes Sci. Publ.
Math. 34 (1968), 105-112. MR232393
[Ste51] Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol.
14, Princeton University Press, Princeton, N. J., 1951. MR0039258

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OSLO, NORWAY
Email address: rognes@math.uio.no



