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CHROMATIC HOMOTOPY THEORY

CHAPTER 1: INTRODUCTION

JOHN ROGNES

Chromatic homotopy theory is the name given by Doug Ravenel to the study of
the stable homotopy category of spectra through its relation

Ho(Sp) −→ QCoh(Mfg)

to the category of quasi-coherent sheaves on the moduli stack of formal groups. The
chromatic filtration of stable homotopy theory corresponds to the height filtration of
this moduli stack. In more elementary algebraic terms, these quasi-coherent sheaves
correspond to comodules for the Hopf algebroid (MU∗,MU∗MU) associated to
complex bordism.
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1. Homotopy theory

In homotopy theory we study properties of based topological spaces that are
invariant under weak homotopy equivalences. Letting T denote the category of
based spaces and basepoint preserving maps, the homotopy category Ho(T ) is the
localization

T −→ Ho(T )

that turns all weak homotopy equivalences into isomorphisms. We write

[X,Y ] = Ho(T )(X,Y )

for the morphisms sets in this category. If Xc → X is a CW approximation, then
[X,Y ] can be calculated as the homotopy classes of maps Xc → Y . We then have
useful isomorphisms

Hn(X;G) ∼= [X,K(G,n)] and πn(Y ) ∼= [Sn, Y ] ,
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2 JOHN ROGNES

where K(G,n) is an Eilenberg–MacLane complex of type (G,n), and Sn is the n-
dimensional sphere. We can view a space Y as a single geometric object underlying
the sequence of (sets and) groups

π0(Y ), π1(Y ), π2(Y ), . . . .

Conversely, we can reconstruct a (simple) space Y from its homotopy groups and
additional information, called Postnikov k-invariants, which are cohomology classes.
Many questions in topology can be formulated as

extension problems A

i

��

// Y

X

>> or lifting problems E

p

��
X

??

// B ,

and these can be resolved in the homotopy category if i is a “good” inclusion (a
cofibration) or if p is a “good” projection (a fibration).

The category T can be enriched, in the sense that there is a mapping space
Map(Y,Z) of maps Y → Z, such that composition is continuous. Moreover, there
is a natural bijection

{X ∧ Y −→ Z}
∼=←→ {X −→ Map(Y, Z)} ,

called an adjunction, where

X ∧ Y =
X × Y
X ∨ Y

is the smash product of spaces. This product is associative and unital, with unit
S0, and there is a symmetry isomorphism

τ : X ∧ Y ∼= Y ∧X .

We say that ∧, S0 and Map make T a closed symmetric monoidal category.
Each map f : X → Y is equivalent to a cofibration

i : X −→Mf = Y ∪X X ∧ I+ ,
where I = [0, 1] and Mf is called the mapping cylinder of f . The cofiber Cf =
Mf/X = Y ∪X X ∧ I is called the mapping cone, or homotopy cofiber, of f , and
X ∧ I = CX is the cone on X. The inclusion j : Y → Cf is already a cofibration,
so its homotopy cofiber Cj is equivalent to its cofiber Cf/Y ∼= X ∧ S1 = ΣX,
i.e., the suspension of X. Moreover, the homotopy cofiber Ck of the projection
k : Cf → ΣX is equivalent to ΣY . The resulting Puppe cofiber sequence

X
f−→ Y

j−→ Cf
k−→ ΣX

−Σf−→ ΣY

is coexact, in the sense that

[X,Z]
f∗←− [Y, Z]

j∗←− [Cf,Z]
k∗←− [ΣX,Z]

−Σf∗←− [ΣY,Z]

is exact for each space Z, and can be extended arbitrarily far to the right. (Here
exactness means that the image of one function equals the preimage of 0 for the
next function.) This often allows computation of [Cf,Z]∗ from [X,Z]∗ and [Y, Z]∗,
where

[X,Z]n = [ΣnX,Z]

for n ≥ 0. These sets are groups for n ≥ 1, which are abelian for n ≥ 2. We might
say that the Puppe cofiber sequences make Ho(T ) a proto-triangulated category.
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Dually, each map g : Y → Z is equivalent to a fibration

p : Ng = Y ×Z Map(I+, Z)→ Z .

The fiber Fg = p−1(∗) = Y ×Z Map(I, Z) is called the homotopy fiber of g,
and PZ = Map(I, Z) is the path space of Z. The projection q : Fg → Y is al-
ready a fibration, so its homotopy fiber Fq is equivalent to its fiber q−1(∗) ∼=
Map(S1, Z) = ΩZ, i.e., the loop space of Z. Moreover, the homotopy fiber of the
inclusion r : ΩZ → Fg is equivalent to ΩY . The resulting Puppe fiber sequence

ΩY
−Ωg−→ ΩZ

r−→ Fg
q−→ Y

g−→ Z

is exact, in the sense that

[X,ΩY ]
−Ωg∗−→ [X,ΩZ]

r∗−→ [X,Fg]
q∗−→ [X,Y ]

g∗−→ [X,Z]

is exact for each space X, and can be extended arbitrarily far to the left. Again,
this often allows computation of [X,Fg]∗ from [X,Y ]∗ and [X,Z]∗. Note that

[ΣnX,Z] ∼= [X,ΩnZ]

in view of the natural bijection {X ∧ Sn → Z} ∼= {X → Map(Sn, Z)}. We can say
that the Puppe fiber sequences make the opposite Ho(T )op a proto-triangulated
category.

The Freudenthal suspension theorem implies that the Puppe cofiber sequence is
partially exact, in the sense that

[T,X]
f∗−→ [T, Y ]

j∗−→ [T,Cf ]
k∗−→ [T,ΣX]

−Σf∗−→ [T,ΣY ]

is exact when X and Y are k-connected and dim(T ) ≤ 2k. Under these conditions,
the suspension homomorphisms

Σ: [T,X] −→ [ΣT,ΣX] and Σ: [T, Y ] −→ [ΣT,ΣY ]

are isomorphisms, and we say that these mapping sets are in the stable range. Note
that further suspensions will not take us out of the stable range, and if dim(T ) is
finite then some finite number of suspensions will bring us into the stable range.

Exercise: Prove that im(f∗) = j−1
∗ (0) when Σ from [T,X] is surjective and Σ

from [T, Y ] is injective.
References: See [Hatcher, §4.3].

2. Stable homotopy theory

Stable homotopy theory studies the target of a stabilization functor

Σ∞ : Ho(T ) −→ Ho(Sp)

that turns all suspension homomorphisms Σ into isomorphisms. Extension and
lifting problems that occur in the stable range, such as the “Hopf invariant one”,
“Vector fields on spheres” and “Kervaire invariant one” problems, can equally well
be resolved in the stable homotopy category Ho(Sp).

For finite CW complexes X and Y , the stabilization functor Σ∞ satisfies

Ho(Sp)(Σ∞X,Σ∞Y ) = colim
n

[ΣnX,ΣnY ] ,

where the colimit is formed over the suspension homomorphisms

. . . −→ [ΣnX,ΣnY ]
Σ−→ [Σn+1X,Σn+1Y ] −→ . . . .
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Note that these colimits are abelian groups. Historically, the first approximation
to the stable homotopy category was the Spanier–Whitehead (1953) category SW,
with (integer shifts of) finite CW complexes as objects and the abelian groups
Ho(Sp)(Σ∞X,Σ∞Y ) as morphisms. It is closed symmetric monoidal, with a smash
product pairing ∧ satisfying

Σ∞X ∧ Σ∞Y ∼= Σ∞(X ∧ Y )

and unit the sphere spectrum S = Σ∞S0. It admits function objects F (Σ∞Y,Σ∞Z)
such that there are natural isomorphisms

{Σ∞X → F (Σ∞Y,Σ∞Z)} ∼= {Σ∞X ∧ Σ∞Y → Σ∞Z}
of morphism groups. Moreover, the Spanier–Whitehead category is triangulated,
with distinguished triangles given by Puppe cofiber sequences.

While concrete, this category is too small to be really useful. Boardman (1965,
unpublished) constructed a closed symmetric monoidal and triangulated category
Ho(Sp), containing the Spanier–Whitehead category as a full subcategory, but large
enough to contain “all interesting” constructions. This is (still) what we mean by
the stable homotopy category. We write

[D,E] = Ho(Sp)(D,E)

for the abelian group of morphisms D → E in this category. It is stable in the
sense that

Σ: [D,E]
∼=−→ [ΣD,ΣE]

is always an isomorphism.
Adams (1974, Part III) gave a more elementary presentation of Ho(Sp) as a

category of spectra and suitable morphisms. To first approximation a spectrum

E = (En, σ)n

is a sequence of spaces En and structure maps

σ : ΣEn −→ En+1 ,

for n ≥ 0. Its homotopy groups are given for k ∈ Z by the colimit

πk(E) = colim
n

πk+n(En) ,

formed over the suspension homomorphisms

. . . −→ πk+n(En)
Σ−→ πk+n+1(ΣEn)

σ∗−→ πk+n+1(En+1) −→ . . .

(ranging over the n with k + n ≥ 0 or k + n ≥ 2). We write π∗(E) or E∗ for the
resulting graded abelian group.

The stabilization functor Σ∞ takes X to the suspension spectrum Σ∞X given
by the sequence of spaces (Σ∞X)n = ΣnX and the identity maps

id: Σ(ΣnX)
=−→ Σn+1X .

The groups πkΣ∞X = colimn πk+n(ΣnX) are the stable homotopy groups of X.
Other examples are given by the Eilenberg–MacLane spectra HG, with n-th space
HGn = K(G,n) and structure map

σ : ΣK(G,n) −→ K(G,n+ 1)

adjoint to an equivalence

σ̃ : K(G,n)
'−→ ΩK(G,n+ 1) .
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Here π∗HG = G is concentrated in degree 0. For nontrivial G, these are never
suspension spectra. Following Whitehead (1962), this category is large enough to
(co-)represent ordinary homology and cohomology:

H̃k(X;G) ∼= πk(HG ∧ Σ∞X) = [ΣkS,HG ∧ Σ∞X]

H̃k(X;G) ∼= π−kF (Σ∞X,HG) = [Σ∞X,ΣkHG] .

Moreover, by Brown’s representability theorem (1962), each generalized cohomol-

ogy theory X 7→ Ẽ∗(X) is represented by a spectrum E, so that

Ẽk(X) ∼= [Σ∞X,ΣkE] .

The associated homology theory X 7→ Ẽ∗(X) is then given by

Ẽk(X) = πk(E ∧ Σ∞X) .

The unreduced theories are given by Ek(X) = Ẽk(X+) and Ek(X) = Ẽk(X+).
The coefficient groups of these theories are recovered as

πk(E) ∼= Ek(∗) ∼= Ẽk(S0) ∼= E−k(∗) ∼= Ẽ−k(S0) .

Any natural transformation of cohomology theories f∗ : D̃∗(X)→ Ẽ∗(X) arises
from a morphism f : D → E in Ho(Sp), so that f∗ takes x : Σ∞X → ΣkD to Σkf ◦
x : Σ∞X → ΣkE. Let Fp denote the field with p elements, for any prime p. Steenrod

constructed cohomology operations Sqi : H̃∗(X;F2) → H̃∗+i(X;F2), arising from
morphisms

Sqi : HF2 −→ ΣiHF2

in Ho(Sp), and similarly for odd p. These generate a graded non-commutative

Fp-algebra A, called the Steenrod algebra, and H̃∗(X;Fp) naturally becomes a left
A-module for each space X. In particular,

A ∼= H∗(HFp;Fp) = [HFp, HFp]−∗
is the graded endomorphism ring of HFp in Ho(Sp). The module theory and
homological algebra over Fp is very simple, but that over A is very complicated.
Nonetheless, if H∗(E;Fp) is a free A-module, one can represent its generators by a
set of morphisms {gα : E → ΣnαHFp}α and often deduce that their product

g : E −→
∏
α

ΣnαHFp

is an equivalence, inducing an isomorphism π∗(E) ∼=
∏
α ΣnαFp. Hence, in these

favorable cases one can pass from cohomology as an A-module to homotopy. Dually,
H̃∗(X;Fp) becomes a left A∗-comodule, where A∗ denotes the coalgebra dual to
the Steenrod algebra, given in Ho(Sp) as

A ∼= H∗(HFp;Fp) = π∗(HFp ∧HFp) .

Its structure (as a Hopf algebra) was determined by Milnor (1958). For example,
for p = 2 there is an isomorphism

A∗ ∼= F2[ζi | i ≥ 1]

where |ζi| = 2i − 1. Working with homology as an A∗-comodule often avoids
unnecessary finiteness hypotheses that would arise from a double dualization when
working with cohomology as an A-module.

References: See [Hatcher, §4.E, §4.F and §4.L].
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3. Bordism

Thom (1954) developed ideas of Poincaré to construct a new homology theory,
now denoted X 7→MO∗(X) and called (unoriented) bordism. Here

MOk(X) = {f : Mk −→ X}/ '

where M is a closed, smooth k-manifold, f is a continuous map, and f ' g : Nk →
X if there exists a bordism F : W k+1 → X, i.e., a compact, smooth (k + 1)-
manifold W and a continuous map F , with a diffeomorphism ∂W ∼= M

∐
N such

that F |M = f and F |N = g. The k-th coefficient group

MOk = {closed, smooth k-manifolds M}/ '

of this theory is the set of bordism classes of closed, smooth k-manifolds, so its
determination is already an interesting problem in manifold topology. The pair-
ings induced by disjoint union and cartesian product of manifolds make MO∗ a
graded commutative F2-algebra. To determine its structure, Thom viewed MO∗ =
π∗(MO) as the homotopy groups of a ring spectrum MO = {n 7→ MOn, σ}, now
called a Thom spectrum, and calculated these by first computing

H∗(MO;F2) = colim
n

H̃∗+n(MOn;F2) ∼= F2[ak | k ≥ 1]

as an A∗-comodule algebra. Here H̃∗+n(MOn;F2) ∼= H∗(BO(n);F2) is known from
the theory of Stiefel–Whitney characteristic classes, and |ak| = k. It turns out that
the dual H∗(MO;F2) is free as a left A-module, so that the proof strategy above
applies, and

π∗(MO) ∼= F2[zk | k 6= 2i − 1]

with zk in degree |zk| = k. For example, π3(MO) = 0, so each closed, smooth
3-manifold is the boundary of a compact, smooth 4-manifold. Note that this strat-
egy depends on thinking of the bordism ring MO∗ as the coefficient groups of a
homology theory, represented by a spectrum, so that it makes sense to also talk
about the (co-)homology groups of that spectrum.

As is often the case, algebra works out better over algebraically closed ground
fields. Milnor (1960) and Novikov studied the homology theory X 7→ MU∗(X),
called (almost) complex bordism, where each manifold in the theory comes equipped
with a complex structure on its stable normal bundle, i.e., on the formal negative
of its tangent (real vector) bundle. The representing ring spectrum MU = {n 7→
MUn, σ} plays a central role in chromatic homotopy theory. Here

H∗(MU) = colim
n

H̃∗+2n(MU2n) ∼= Z[bk | k ≥ 1]

is again an A∗-comodule algebra. Now H̃∗+2n(MU2n) ∼= H∗(BU(n)) is known from
the theory of Chern characteristic classes, and |bk| = 2k. This time H∗(MU ;Fp) is
not free as a left A-module, but it is induced up from a well-understood (exterior)
subalgebra of the Steenrod algebra. A refinement of Thom’s argument above, called
the Adams spectral sequence, applies to show that

π∗(MU) ∼= Z[xk | k ≥ 1] ,

with |xk| = 2k.
Already in the 1930s, Pontryagin studied (stably) framed bordism, where each

stable normal (or tangent) bundle is assumed to come with a trivialization. He
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showed that the associated homology theory is the same as that given by the (unre-
duced) stable homotopy groups, X 7→ S∗(X) ∼= π∗Σ

∞(X+), hence is represented by
the sphere spectrum S. In this case the homological algebra behind the A-module

H∗(S;Fp) ∼= Fp
is maximally complicated, so that the Adams spectral sequence

E∗,∗2 = ExtA(Fp,Fp) =⇒ π∗(S)∧p

is far from fully understood. The framed bordism classification of k-manifolds,
or equivalently, the calculation of the stable homotopy groups πk(S) of spheres,
is a fundamental open problem in stable homotopy theory, and is often used as
a yardstick for measuring progress in the computational aspects of the theory.
Nonetheless, it is perhaps similar to the problem of enumerating all prime numbers,
which may not be the best formulation of the issue at hand. For the time being
there are other, more conceptual, questions and results whose answers seem to be
more enlightening. The chromatic homotopy connection between stable homotopy
and formal group laws is one example of this.

4. Formal group laws

Novikov (1967) proposed to replace mod p cohomology and the algebra of Steen-
rod operations, used for the analysis of homotopy groups through the Adams spec-
tral sequence, by complex cobordism MU∗(X) viewed as a left module over the
algebra

MU∗(MU) = [MU,MU ]−∗

of MU -cohomology operations. In hindsight it is better to work with the homology
theory MU∗(X) as an MU∗-module with a left coaction

ν : MU∗(X) −→MU∗(MU)⊗MU∗ MU∗(X)

by the (almost) coalgebra

MU∗(MU) = π∗(MU ∧MU) ∼= MU∗[bk | k ≥ 1]

of MU∗-homology cooperations.
More precisely, MU∗MU = MU∗(MU) is a Hopf algebroid, with left and right

unit homomorphisms

ηL : MU∗ →MU∗MU and ηR : MU∗ →MU∗MU

induced by the maps MU ∼= MU ∧ S → MU ∧ MU and MU ∼= S ∧ MU →
MU ∧MU , respectively. In algebro-geometric terms, the MU∗-module MU∗(X) is
the same as a quasi-coherent sheaf

MU∗(X)∼ ↓ Spec(MU∗)

over the affine scheme Spec(MU∗). From the functor of points perspective, this
scheme is the functor taking any commutative ring R to the set Hom(MU∗, R) of
ring homomorphisms θ : MU∗ → R. The MU∗MU -coaction ν corresponds to a
(coherent) isomorphism

η∗LMU∗(X)∼
ν̄∼= η∗RMU∗(X)∼ ↓ Spec(MU∗MU)

of the quasi-coherent sheaves obtain by pullback along the two maps

ηL, ηR : Spec(MU∗MU) −→ Spec(MU∗) .
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Equivalently, the coaction ν shows that MU∗(X)∼ descends to, i.e., is pulled back
from, a quasi-coherent sheaf MU∗(X)≈ over a quotient (pre-)stack that we might
denote

Spec(MU∗)
π−→ Spec(MU∗)/(ηL ∼ ηR) .

The target of π is the functor that takes any commutative ring R to the groupoid
G(R) with objects

objG(R) = Hom(MU∗, R)

and morphisms

morG(R) = Hom(MU∗MU,R) .

The source and target functions s, t : morG(R) → objG(R) are induced by ηL
and ηR, respectively, and the Hopf algebroid coproduct induces the composition of
morphisms.

A fundamental insight of Quillen is that objG(R) can be reinterpreted as the set
of (commutative, 1-dimensional) formal group laws F defined over R, and morG(R)
can be identified with the set of strict isomorphisms h : F → F ′ between such formal
group laws. Hence R 7→ G(R) equals the moduli (pre-)stack Mfgl of formal group
laws and strict isomorphisms, and for each space or spectrum X the MU∗MU -
comodule MU∗(X) corresponds directly to the quasi-coherent sheaf

MU∗(X)≈ ↓ Mfgl .

Here, a formal group law F over R is a formal power series

F (y1, y2) ∈ R[[y1, y2]]

such that

• F (y1, y2) = F (y2, y1) (commutativity),
• F (y1, 0) = y1 (unitality) and
• F (F (y1, y2), y3) = F (y1, F (y2, y3)) (associativity).

The associated R-algebra homomorphism

R[[y]] −→ R[[y1, y2]] ∼= R[[y1]⊗̂RR[[y2]]

y 7−→ F (y1, y2)

specifies an abelian group structure on the formal affine line over Spec(R) given by
the colimit

Â1
R = Spf(R[[y]]) = colim

n
Spec(R[y]/(yn+1)) ,

which is a formal neighborhood of the origin Spec(R) in the affine line A1
R =

Spec(R[y]). We write ĜF for this formal group. A strict isomorphism h : F → F ′

over R is a formal power series

h(y) ∈ R[[y]]

such that

• h(y) ≡ y mod y2 (strictness) and
• h(F (y1, y2)) = F ′(h(y1), h(y2)) (additivity).

The associated R-algebra homomorphism

R[[y]] −→ R[[y]]

y 7−→ h(y)
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specifies a group isomorphism ĜF → ĜF ′ , restricting to the identity on the tangent
space Spec(R[y]/(y2)).

Some examples of formal group laws are given by the additive formal group law

Fa(y1, y2) = y1 + y2 ,

the multiplicative formal group law

Fm(y1, y2) = (1 + y1)(1 + y2)− 1 = y1 + y2 + y1y2

and Lazard’s universal formal group law

FL(y1, y2) = y1 + y2 +
∑
i,j≥1

aijy
i
1y
j
2

defined over a ring L = Z[aij | i, j ≥ 1]/(∼) that Quillen identified as MU∗. There
is a strict isomorphism h : F → Fa for any formal group law F of the form

F (y1, y2) = h−1(h(y1) + h(y2)) ,

in which case h(y) = logF (y) is called the logarithm of F .
The algebraic geometry ofMfgl was studied by Dieudonné and by Lazard (1955),

and translated into algebraic topology by Morava and Landweber. This motivated a
set of conjectures formulated by Ravenel (1977/1984), many of which were proved
by Devinatz, Hopkins and Smith. Very roughly speaking, these assert that the
functor

MU∗ : Ho(Sp) −→ {MU∗MU -comodules} ' QCoh(Mfgl)

X 7−→MU∗(X)↔MU∗(X)≈

is an equivalence up to nilpotence. An almost injectivity part of Ravenel’s conjec-
tures is the following.

Theorem 4.1 (Devinatz–Hopkins–Smith nilpotence theorem (1988)). Let

f : ΣdX −→ X

be a degree d self map of a finite CW spectrum. If MU∗(f) = 0, then f is nilpotent,
i.e., fN ' 0 for some N > 0.

This includes Nishida’s nilpotence theorem (1973), that any class f ∈ π∗(S) of
degree 6= 0 is nilpotent. Hence the space Spec(π∗(S)) is homeomorphic to Spec(Z),
and does not know anything about the higher homotopy groups of spheres.

5. The height filtration

Let F be a formal group law defined over R. Multiplication by any integer k in
the abelian group structure ĜF is represented by a formal power series

[k]F (y) ∈ R[[y]] ,

such that [k]F (y) ≡ ky mod y2, called the k-series of F . Fix a prime p, and suppose
that R is a Z(p)-algebra. Then [`]F (y) is an isomorphism for all primes ` 6= p, but
the p-series [p]F (y) is either zero, or of the form

[p]F (y) = vn(F ) · yp
n

+ . . .

for some well-defined integer n ≥ 0 and nonzero element vn(F ) ∈ R. Here n is called
the height of the formal group law F . It measures how exceptional the formal group
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is, or how closely it approximates the additive formal group law. Clearly n = 0 if
p 6= 0 in R. The multiplicative formal group law has height 1 over Fp, since

[p]Fm(y) = (1 + y)p − 1 = yp ∈ Fp[[y]] .

There are universal elements vn ∈ MU∗ for n ≥ 0, with |vn| = 2pn − 2, such that
the homomorphism representing F ∈ objG(R) ∼= Hom(MU∗, R) sends vn to vn(F ):

MU∗ −→ R

vn 7−→ vn(F )

Let In = (v0, v1, . . . , vn−1) ⊂MU∗ be the ideal generated by the first n of these uni-
versal elements. It is invariant under the left MU∗MU -coaction. We let G≥n(R) ⊂
G(R) be the full subgroupoid generated by the formal group laws of height ≥ n.
The sequence

G(R) ⊃ · · · ⊃ G≥n(R) ⊃ G≥n+1(R) ⊃ · · · ⊃ G∞(R)

then defines a filtration of Mfgl by closed substacks

Mfgl ⊃ · · · ⊃ M≥nfgl ⊃M
≥n+1
fgl ⊃ · · · ⊃ M∞fgl ,

called the height filtration. Here

objG≥n(R) = Hom(MU∗/In, R)

and
morG≥n(R) = Hom(MU∗MU/In, R)

(suitably interpreted).
For each n ≥ 1, Lubin and Tate (1965) constructed a formal group law over

Zp with p-series [p](y) = py + yp
n

. Its mod p reduction to Fp is usually called

the height n Honda (1970) formal group law Hn, with p-series [p]Hn(y) = yp
n

. Let
Fp ⊂ F̄p be the algebraic closure. Lazard (1955) had proved that any height n formal
group law over F̄p is strictly isomorphic to Hn. In our graded situation, we view
Hn as the formal group law over Fp[v±1

n ] corresponding to the ring homomorphism

θ : MU∗ −→ Fp[v±1
n ]

vn 7−→ vn ,

with p-series [p]Hn(y) = vn · yp
n

. The map

Spec(F̄p[v±1
n ]) −→ Spec(MU∗) −→Mfgl

then gives a geometric point in Mn
fgl ⊂ M

≥n
fgl \ M

≥n+1
fgl that is essentially unique

up to (non-unique) isomorphism.
The n-th Morava K-theory spectrum K(n) is a ring spectrum defining a multi-

plicative homology theory X 7→ K(n)∗(X), with coefficient ring K(n)∗ = Fp[v±1
n ],

and there is a ring spectrum map MU → K(n) inducing the homomorphism
θ : MU∗ → K(n)∗ above representing the Honda formal group law Hn.

For n = 0 we set K(0) = HQ. For n = 1, K(1) is a direct summand of mod p
complex K-theory, i.e., KU/p, which may be the origin of the name “Morava K-
theory”. In general, K(n) is close to a spectral field at the prime p and height n.
Beware, however, that K(n) is not commutative in the structured sense, i.e., does
not admit an E∞ ring structure.

We say that a p-local finite CW spectrum X has (chromatic) type n if n is
minimal such that K(n)∗(X) 6= 0. Then K(m)∗(X) = 0 for all m < n, and Ravenel
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(1984) proved that K(m)∗(X) 6= 0 for all m > n. In this case the quasi-coherent

sheaf MU∗(X)≈ ↓ Mfgl is supported on the closed substack M≥nfgl , meaning that
its restriction to the open complement

Mfgl \M≥nfgl

is zero.
Let SW≥n be the full subcategory of Ho(Sp) generated by the p-local finite

CW spectra of type ≥ n. Then SW≥n is a thick subcategory, i.e., a triangulated
subcategory that is closed under passage to homotopy cofibers and retracts. The
filtration

SW ⊃ · · · ⊃ SW≥n ⊃ SW≥n+1 ⊃ · · · ⊃ SW∞

of the p-local Spanier–Whitehead category by thick subcategories matches the
height filtration of Mfgl.

Theorem 5.1 (Hopkins–Smith thick subcategory theorem (1998)). The thick sub-
categories of SW are precisely the SW≥n for 0 ≤ n ≤ ∞.

Multiplication by vn defines an MU∗MU -comodule homomorphism

vn : Σ2pn−2MU∗/In −→MU∗/In ,

hence acts on any quasi-coherent sheaf over M≥nfgl . An almost surjectivity part of
Ravenel’s conjectures is the following.

Theorem 5.2 (Hopkins–Smith periodicity theorem (1998)). Let X be a finite CW
complex of type n. Then there exists a self map f : ΣdX → X inducing multiplica-
tion by vNn on K(n)∗(X) for some N > 0.

For example, the mapping cone

S
p−→ S

i−→ Cp
j−→ ΣS

defines the mod p Moore spectrum Cp = S/p, which has type 1. For p = 2 it
admits a self map

f : Σ8S/2 −→ S/2

inducing multiplication by v4
1 on K(1)∗(S/2), while for p odd it admits a self map

f : Σ2p−2S/p −→ S/p

inducing multiplication by v1 on K(1)∗(S/p). These maps were first constructed
by Adams (1966). Each power fN induces a nontrivial isomorphism K(1)∗(f

N ),
so fN is never null-homotopic. In other words, f is a periodic self map. For p odd
the α-family (the first Greek letter family)

αk ∈ π(2p−2)k−1(S)

consists of the composites

αk : Σ(2p−2)kS
i−→ Σ(2p−2)kS/p

fk−→ S/p
j−→ ΣS

for k ≥ 1. The homotopy colimit

S/p
f−→ Σ−2p+2S/p

f−→ . . .
f−→ Σ−(2p−2)iS/p

f−→ . . . −→ v−1
1 S/p

is called the telescopic localization of S/p. The periodicity theorem extends these
constructions to all higher types/heights n.
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6. Automorphisms and deformations

The geometric point

Spec(F̄p[v±1
n ]) −→ Spec(K(n)∗) −→Mn

fgl

given by the Honda formal group law Hn over F̄p spans a substack, corresponding to
the groupoid Gn(F̄p) of height n formal group laws over F̄p and their isomorphisms.
Its classifying space is connected, but has a fundamental group given by the group
Aut(Hn) consisting of the automorphisms h : Hn → Hn. These are all defined
over Fpn , and the extended Morava stabilizer group

Gn = Aut(Fpn , Hn)

is the profinite group of pairs (g, h), where g ∈ Gal(Fpn/Fp) ∼= Z/n and h : Hn →
g∗Hn.

We cannot realize the elements (g, h) of Gn as self maps of K(n). However,
Lubin and Tate (1966) showed that there is a universal deformation LTn of Hn,
which is a formal group law defined over a (complete noetherian) local ring

LT (Hn,Fpn) = W (Fpn)[[u1, . . . , un−1]]
π−→ Fpn

with π∗(LTn) = Hn. Here W (Fpn) denotes the ring of Witt vectors, which is a
degree n unramified extension of Zp. This defines a formal neighborhood

Spec(Fpn) −→ Spf(LT (Hn,Fpn)) −→Mfgl

of the closed point given by Hn, and by the Landweber exact functor theorem
there exists a homology theory X 7→ (En)∗(X) and spectrum En = E(Hn,Fpn)
with coefficient ring

π∗(En) = W (Fpn)[[u1, . . . , un−1]][u±1]

where |u| = 2. Moreover, there is a ring spectrum map MU → En inducing the
homomorphism MU∗ → π∗(En) representing the Lubin–Tate universal deformation
of the Honda formal group law. It maps

v0 −→ p

vm −→ umu
pm−1

vn −→ up
n−1 ,

so LTn is supported at all heights 0 ≤ m ≤ n.
The following result lifts flat or étale topological features ofMfgl to stable homo-

topy theory. It requires a better underlying category Sp of spectra, with homotopy
category Ho(Sp), than that provided by Adams. Following Bousfield (1979), a
spectrum E is K(n)-local if E∗(Z) = 0 for all Z with K(n)∗(Z) = 0. There is a
K(n)-localization functor LK(n), left adjoint to the forgetful functor from K(n)-
local spectra to Ho(Sp).

Theorem 6.1 (Hopkins–Miller (Rezk 1998), Goerss–Hopkins (2004)). The Lubin–
Tate spectrum En is a K(n)-local E∞ ring spectrum, and the Morava stabilizer
group Gn acts on En through E∞ ring maps.

When n = 1, the Morava stabilizer group is G1
∼= Z×p , with k ∈ Z − (p) ⊂ Z×p

corresponding to [k]H1
∈ G1. The Lubin–Tate deformation ring is LT (H1,Fp) =
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Zp → Fp, and E1 = KU∧p is p-complete complex K-theory. The action by k ∈ Z×p
on E1 is the action by the Adams operation ψk on KU∧p . Its homotopy fixed points

LK(1)S = J∧p = (KU∧p )hZ
×
p

is the p-complete image-of-J spectrum. The homotopy groups π∗(KU
∧
p ) = Zp[u±1]

and the action ψk(u) = ku by the Adams operations are well known, so π∗(J
∧
p )

and π∗(J/p) are also well known.
The following theorem compares the telescopic and chromatic localizations at

height 1.

Theorem 6.2 (Mahowald (1981), Miller (1981)).

v−1
1 S/p

'−→ LK(1)S/p

so (for p odd)
v−1

1 π∗(S/p) ∼= π∗(J/p) ∼= Λ(α1)⊗ Fp[v1] .

Ravenel’s telescope conjecture (published 1984) asserts that for X of type n the
map

v−1
n X −→ LK(n)X

from the telescopic to the chromatic localization is an equivalence. Since 1990, it
has been expected that the telescope conjecture is false for n ≥ 2, cf. Mahowald–
Ravenel–Shick (2001), but no definitive (dis-)proof has been found. Beaudry–
Behrens–Bhattacharya–Culver–Xu (2021) is a recent contribution suggesting that
the conjecture fails for n = 2 and p = 2.

MU // MU(p)
// LnMU //

%%

L1MU //

$$

MUQ

En KU∧p

S

OO

//

��

S(p)

OO

//

��

LnS

OO

//

%%

L1S

OO

//

$$

HQ

OO

LK(n)S

Gn

OO

J∧p

Z×p
OO

HZ // HZ(p)
// HQ
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83 (1955), 251–274 (French). MR73925
[LT65] Jonathan Lubin and John Tate, Formal complex multiplication in local fields, Ann. of

Math. (2) 81 (1965), 380–387, DOI 10.2307/1970622. MR172878
[LT66] , Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. France

94 (1966), 49–59. MR238854

[Mah81] Mark Mahowald, bo-resolutions, Pacific J. Math. 92 (1981), no. 2, 365–383. MR618072
[MRS01] Mark Mahowald, Douglas Ravenel, and Paul Shick, The triple loop space approach

to the telescope conjecture, Homotopy methods in algebraic topology (Boulder, CO,

1999), Contemp. Math., vol. 271, Amer. Math. Soc., Providence, RI, 2001, pp. 217–284,
DOI 10.1090/conm/271/04358. MR1831355

[Mil81] Haynes R. Miller, On relations between Adams spectral sequences, with an application

to the stable homotopy of a Moore space, J. Pure Appl. Algebra 20 (1981), no. 3,
287–312, DOI 10.1016/0022-4049(81)90064-5. MR604321

[Mil58] John Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150–171,
DOI 10.2307/1969932. MR99653

[Mil60] J. Milnor, On the cobordism ring Ω∗ and a complex analogue. I, Amer. J. Math. 82

(1960), 505–521, DOI 10.2307/2372970. MR119209
[Nis73] Goro Nishida, The nilpotency of elements of the stable homotopy groups of spheres, J.

Math. Soc. Japan 25 (1973), 707–732, DOI 10.2969/jmsj/02540707. MR341485
[Nov67] S. P. Novikov, Methods of algebraic topology from the point of view of cobordism theory,

Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 855–951 (Russian). MR0221509

[Qui69] Daniel Quillen, On the formal group laws of unoriented and complex cobordism theory,
Bull. Amer. Math. Soc. 75 (1969), 1293–1298, DOI 10.1090/S0002-9904-1969-12401-8.
MR253350

[Rav84] Douglas C. Ravenel, Localization with respect to certain periodic homology theories,
Amer. J. Math. 106 (1984), no. 2, 351–414, DOI 10.2307/2374308. MR737778

[SW53] E. H. Spanier and J. H. C. Whitehead, A first approximation to homotopy theory, Proc.

Nat. Acad. Sci. U.S.A. 39 (1953), 655–660, DOI 10.1073/pnas.39.7.655. MR56290
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