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CHAPTER 2: THE STEENROD ALGEBRA AND ITS DUAL

JOHN ROGNES

1. Cohomology and Eilenberg–MacLane spaces

See [Hat02, §4.3] and [May99, Ch. 22].
Let G be an abelian group. For each n ≥ 0 let K(G,n) be an Eilenberg–MacLane

complex of type (G,n), i.e., a CW complex such that

πkK(G,n) ∼=

{
G for k = n,

0 else.

Concrete examples include K(Z, 1) ' S1, K(Z/2, 1) ' RP∞, K(Z/p, 1) ' L∞

(mod p lens spaces) and K(Z, 2) ' CP∞. The latter three arise as orbit spaces of
the contractible space S∞. The adjoint structure map

σ̃ : K(G,n)
'−→ ΩK(G,n+ 1)

is an equivalence. By the universal coefficient and Hurewicz theorems there are
isomorphisms

Hn(K(G,n);G) ∼= Hom(Hn(K(G,n)), G) ∼= Hom(πnK(G,n), G) ∼= Hom(G,G) .

The class

ιn ∈ Hn(K(G,n), G)

corresponding to id: G → G is called the fundamental class. Each map f : X →
K(G,n) induces a homomorphism

f∗ : Hn(K(G,n);G) −→ Hn(X;G)

that only depends on [f ].

Theorem 1.1 (Eilenberg–MacLane (1940/1954)). The homomorphism

[X,K(G,n)]
∼=−→ Hn(X;G)

[f ] 7−→ f∗(ιn)
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is a natural isomorphism. The adjoint structure map induces the suspension iso-
morphism

Hn(X;G)
Σ
∼=

//

∼=
��

Hn+1(ΣX;G)

∼=
��

[X,K(G,n)]
σ̃∗
∼=
// [X,ΩK(G,n+ 1)] ∼=

// [ΣX,K(G,n+ 1)] .

The proof is by a comparison of cohomology theories.

2. Cohomology operations

By a cohomology operation of type (G,n)− (G′, n′) we mean a natural transfor-
mation

θ : Hn(X;G) −→ Hn′(X;G′)

of functors from spaces X to sets. Examples include

α : Hn(X;G) −→ Hn(X;G′)

induced by a given group homomorphism α : G→ G′, the Bockstein homomorphism

βG : Hn(X;G′′) −→ Hn+1(X;G′)

associated to a group extension G′ → G→ G′′, and the cup squaring operation

ξ : Hn(X;R) −→ H2n(X;R)

x 7−→ x2 = x ∪ x
defined for rings R. The latter is a homomorphism if 2 = 0 in R. By the Yoneda
lemma, any natural transformation

θ : [X,K(G,n)] −→ [X,K(G′, n′)]

is induced by composition with a map

θ : K(G,n) −→ K(G′, n′) ,

corresponding to a cohomology class

[θ] ∈ Hn′(K(G,n);G′) .

The classification of all cohomology operations of type (G,n) − (G′, n′) is thus

equivalent to the computation of Hn′(K(G,n);G′).

3. Steenrod operations

See [Hat02, §4.L], [Ste62].
Let F2 = Z/2. Steenrod (1947/1962) constructed cohomology operations Sqi of

type (F2, n)− (F2, n+ i) for all n ≥ 0. These are natural transformations

Sqi : Hn(X;F2) −→ Hn+i(X;F2)

corresponding to cohomology classes

Sqi ∈ Hn+i(K(F2, n);F2)

for all i ≥ 0 and n ≥ 0. Let β = βZ/4 denote the Bockstein for the group extension
F2 → Z/4→ F2.

Theorem 3.1 (Steenrod, Cartan).
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(1) Sq0 = id.
(2) Sq1 = β.
(3) Sqi(x) = x2 for i = |x|.
(4) Sqi(x) = 0 for i > |x| (instability).
(5)

Sqk(x ∪ y) =
∑
i+j=k

Sqi(x) ∪ Sqj(y)

(Cartan formula).

The potentially nonzero operations on x ∈ Hn(X;F2) are the Sqi(x) for 0 ≤ i ≤
n, of degree less than or equal to that of x2, so the Sqi are often called the reduced
squaring operations. The inhomogeneous sum

Sq(x) =
∑
i≥0

Sqi(x) ∈ H∗(X;F2)

is called the total squaring operation, and the Cartan formula can be written as

Sq(x ∪ y) = Sq(x) ∪ Sq(y) .

It follows from the Cartan formula that

Sqi(Σx) = ΣSqi(x) : Hn(X;F2) −→ Hn+i+1(ΣX;F2) ,

so that the Sqi for varying n are compatible. This is why we leave “n” out of the
notation. This also means that the collection of operations Sqi for all n defines a
morphism of cohomology theories

Sqi : H∗(X;F2) −→ H∗+i(X;F2)

represented by a degree −i map of Eilenberg–MacLane spectra

Sqi : HF2 −→ ΣiHF2 .

Recall that H∗(RP∞;F2) = F2[x] with |x| = 1.

Lemma 3.2. The Steenrod operation

Sqi : H∗(RP∞;F2) −→ H∗+i(RP∞;F2)

is given by

Sqi(xn) =

(
n

i

)
xn+i .

Proof. By instability, Sq(x) = x+x2 = x(1+x), so by the Cartan formula Sq(xn) =
(x+ x2)n = xn(1 + x)n. In degree n+ i we read off that Sqi(xn) = xn ·

(
n
i

)
xi, from

the binomial theorem. Here the binomial coefficient is read mod 2. �

We outline a construction of the Steenrod squares. Let Km = K(F2,m) for all
m ≥ 0. The smash product (= reduced cross product) in cohomology

Hn(X;F2)⊗Hn(Y ;Fn)
∧−→ H2n(X ∧ Y ;F2)

is induced by composition with a map

µ : Kn ∧Kn −→ K2n

representing ιn ∧ ιn. Let C2 = {±1} act antipodally on S∞, and by the symmetry
isomorphism on Kn ∧Kn. Form the balanced smash product

D2(Kn) = S∞+ ∧C2 Kn ∧Kn
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by setting (s, p, q) ∼ (−s, q, p) for s ∈ S∞, p, q ∈ Kn. This is also known as the
“quadratic construction” on Kn. Note that Kn ∧Kn

∼= S0
+ ∧C2

Kn ∧Kn. Commu-
tativity of the cup product implies that µ extends (uniquely, up to homotopy) to a
map µ̄, as below.

Kn ∧Kn
//

µ
((

S1
+ ∧C2 Kn ∧Kn

//

��

D2(Kn)

µ̄
ww

K2n

The diagonal map ∆: Kn → Kn ∧Kn extends to a map

∆̄: RP∞+ ∧Kn −→ D2(Kn)

sending ([s], p) to [(s, p, p)]. The composite µ̄∆̄ : RP∞+ ∧ Kn → K2n represents a
class in

H2n(RP∞+ ∧Kn;F2) ∼=
n⊕
i=0

Hn−i(RP∞;F2)⊗Hn+i(Kn;F2) .

Writing this as

[µ̄∆̄] =

n∑
i=0

xn−i ⊗ Sqi

specifies well-defined classes

Sqi ∈ Hn+i(Kn;F2)

for all 0 ≤ i ≤ n. Composition with the corresponding maps Sqi : Kn → Kn+i

induces the Steenrod cohomology operation Sqi.
For odd primes p, let Fp = Z/p. Steenrod also constructed reduced power opera-

tions P i of type (Fp, n)−(Fp, n+(2p−2)i). These are stable natural transformations

P i : Hn(X;Fp) −→ Hn+(2p−2)i(X;Fp)

for all n ≥ 0, represented by a degree −(2p− 2)i map

P i : HFp −→ Σ(2p−2)iHFp
of Eilenberg–MacLane spectra.

Theorem 3.3 (Steenrod, Cartan).

(1) P 0 = id.
(2) P i(x) = xp for 2i = |x|.
(3) P i(x) = 0 for 2i > |x|.
(4)

P k(x ∪ y) =
∑
i+j=k

P i(x) ∪ P j(y) .

Let β = βZ/p2 be the Bockstein for the extension Fp → Z/p2 → Fp. Recall that
H∗(L∞;Fp) = Λ(x)⊗ Fp[y] with |x| = 1, |y| = 2, β(x) = y and β(y) = 0.

Lemma 3.4. The Steenrod operation

P i : H∗(L∞;Fp) −→ H∗+(2p−2)i(L∞;Fp)



THE STEENROD ALGEBRA AND ITS DUAL 5

is given by

P i(yn) =

(
n

i

)
yn+(p−1)i

P i(xyn) =

(
n

i

)
xyn+(p−1)i .

Proof. The total power operation P =
∑
i≥0 P

i is given by P (x) = x and P (y) =

y+ yp = y(1 + yp−1), so P (yn) = yn(1 + yp−1)n and P i(yn) = yn ·
(
n
i

)
y(p−1)i. Here(

n
i

)
is read mod p. Moreover, P (xyn) = xP (yn), so P i(xyn) = xP i(yn). �

One construction of Steenrod’s power operations involves the p-th extended
power construction

Dp(Kn) = EΣp+ ∧Σp
K∧pn

where EΣp+ is a contractible space with free Σp-action.

4. The Steenrod algebra

The Steenrod squares generate an associative F2-algebra under composition,
called the mod 2 Steenrod algebra A . We might write A = A (2) to empha-
size the prime 2, or A = A ∗ to emphasize the cohomological grading. It turns out
that only composites

Sqi1Sqi2 · · ·Sqi`

with i1 ≥ 2i2, . . . , i`−1 ≥ 2i` are needed to obtain an additive basis for A , in view
of the following Adem relations.

Theorem 4.1 (Adem (1952)). If a < 2b then

SqaSqb =

[a/2]∑
j=0

(
b− 1− j
a− 2j

)
Sqa+b−jSqj .

For example, Sq1Sq1 = 0, Sq1Sq2 = Sq3, Sq2Sq2 = Sq3Sq1 and Sq3Sq2 = 0.
Very briefly, this arises from noting that the source of the composite

D2(D2(Kn))
D2(µ̄)−→ D2(K2n)

µ̄−→ K4n

involves the wreath product C2 o C2 of order 8, and can be extended over a con-
struction involving the symmetric group Σ4 of order 24. The extra symmetry forces
certain relations, which can be rewritten as above.

For I = (i1, i2, . . . , i`) a finite sequence of positive integers we write

SqI = Sqi1Sqi2 · · ·Sqi` .
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We say that I is admissible if is ≥ 2is+1 for each 1 ≤ s < `. The admissible basis
for A begins

1

Sq1

Sq2

Sq3, Sq2Sq1

Sq4, Sq3Sq1

Sq5, Sq4Sq1

Sq6, Sq5Sq1, Sq4Sq2

Sq7, Sq6Sq1, Sq5Sq2, Sq4Sq2Sq1

Sq8, Sq7Sq1, Sq6Sq2, Sq5Sq2Sq1

in degrees 0 ≤ ∗ ≤ 8.
Serre inductively calculated the mod 2 cohomology algebra of each Eilenberg–

MacLane complex, by means of the Serre spectral sequence

E∗,∗2 = H∗(K(F2, n+ 1);H∗(K(F2, n);F2))

=⇒ H∗(PK(F2, n+ 1);F2) ∼= F2

associated to the fibre sequence

K(F2, n) −→ PK(F2, n+ 1)
p−→ K(F2, n+ 1) .

The excess of I is e(I) = i1 − (i2 + · · ·+ i`).

Theorem 4.2 (Serre (1952)).

H∗(K(F2, n);F2) = F2[SqI(ιn) | I admissible with e(I) < n]

is the polynomial algebra on the classes SqI(ιn), where I ranges over the admissible
sequences of excess < n.

The induction begins with H∗(K(F2, 1);F2) = F2[ι1], which is the known case
K(F2, 1) ' RP∞. It follows that every cohomology operation of type (F2, n) −
(F2, n

′) can be presented as a polynomial, with respect to the cup product algebra
structure, of (some of) the iterated Steenrod operations SqI .

Since suspension annihilates cup products, it follows that

F2{SqI | I admissible}
∼=−→ lim

n
Hn+∗(K(F2, n);F2)

SqI 7−→ (SqI(ιn))n

is an isomorphism, so that the mod 2 Steenrod algebra is precisely the algebra of
all stable cohomology operations in mod 2 cohomology:

A ∼= (HF2)∗(HF2) = [HF2, HF2]−∗ .

(Until we construct the stable homotopy category, the middle and right hand sides
here can be viewed as notation for the limit in the previous display.)

For odd primes p, the Bockstein and the Steenrod power operations generate
an associative Fp-algebra under composition, called the mod p Steenrod algebra
A = A (p). An additive basis is given by the admissible composites

βε1P i1βε2P i2 · · ·βε`P i`
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with εs ∈ {0, 1}, εs + (2p− 2)is > 0 and is ≥ εs+1 + pis+1 for each 1 ≤ s < `. We
write P I for this composite, where I = (ε1, i1, ε2, i2, . . . , ε`, i`). These monomial
suffice, in view of the following Adem relations.

Theorem 4.3 (Adem (1953)). If a < pb then

P aP b =
∑
j

(−1)a+j

(
(p− 1)(b− j)− 1

a− pj

)
P a+b−jP j .

If a ≤ pb then

P aβP b =
∑
j

(−1)a+j

(
(p− 1)(b− j)− 1

a− pj

)
βP a+b−jP j

−
∑
j

(−1)a+j

(
(p− 1)(b− j)− 1

a− pj − 1

)
P a+b−jβP j .

The admissible basis for A begins

1

β

P 1

βP 1, P 1β

βP 1β

. . .

P p

βP p, P pβ

βP pβ

P p+1, P pP 1

βP p+1, P p+1β, βP pP 1, P pP 1β

βP p+1β, βP pP 1β

in degrees 0 ≤ ∗ ≤ 2p2.

Theorem 4.4 (Cartan (1954)). H∗(K(Fp, n);Fp) is the free graded commutative
Fp-algebra on the classes P I(ιn) for admissible I, subject to an excess condition
depending on n.

(We omit to introduce the notation needed for the excess condition at odd
primes.) It follows that

Fp{P I | I admissible}
∼=−→ lim

n
Hn+∗(K(Fp, n);Fp)

P I 7−→ P I(ιn)

is an isomorphism, so that the mod p Steenrod algebra is equal the algebra of stable
mod p cohomology operations:

A ∼= (HFp)∗(HFp) = [HFp, HFp]−∗ .
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5. Modules over the Steenrod algebra

By construction, the evaluation of a cohomology operation on a cohomology class
defines a natural pairing

λ : A ⊗H∗(X;F2) −→ H∗(X;F2)

SqI ⊗ x 7−→ SqI(x)

making H∗(X;F2) a left A -module, for each space X. Since the Steenrod oper-
ations are stable, this also applies for each spectrum X, in which case the action
above can be expressed as the composition pairing

[HF2, HF2]−∗ ⊗ [X,HF2]−∗ −→ [X,HF2]−∗

[θ]⊗ [f ] 7−→ [θf ] .

The resulting contravariant functor

H∗(−;F2) : Ho(Sp) −→ (A−Mod)op

X 7−→ H∗(X;F2)

to the (abelian) category of (graded) A -modules carries far more information about
a spectrum X than the underlying mod 2 cohomology functor to graded F2-vector
spaces.

Theorem 5.1. Let n ≥ 1. Then

(1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (6)

where

(1) n ∈ {1, 2, 4, 8}.
(2) Rn admits a division algebra structure over R.
(3) Sn−1 is parallelizable.
(4) Sn−1 admits an H-space structure.
(5) There is a map S2n−1 → Sn of Hopf invariant ±1.
(6) n is a power of 2.

Proof (Adem, 1952) of (5) =⇒ (6). If f : S2n−1 → Sn has Hopf invariant±1, then

H∗(Cf ;F2) = F2[x]/(x3)

with |x| = n, so Sqn(x) = x2 6= 0. If n is not a power of n then Sqn is decomposable
as a sum of products of operations Sqi with 0 < i < n, by the Adem relations. But
Sqi(x) = 0 for each such i, giving a contradiction. �

Likewise, for each odd prime p the mod p cohomology H∗(X;Fp) of a space (or
a spectrum) X is naturally left module over the mod p Steenrod algebra A .

6. Bialgebras

The external version

Sqk(x ∧ y) =
∑
i+j=k

Sqi(x) ∧ Sqj(y)

of the Cartan formula extends over F2{Sqk | k ≥ 0} ⊂ A as follows.
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Lemma 6.1 (Milnor (1958)). Let p be any prime. There is a unique algebra ho-
momorphism

ψ : A −→ A ⊗A

given by

Sqk 7−→
∑
i+j=k

Sqi ⊗ Sqj

for p = 2, and by

β 7−→ β ⊗ 1 + 1⊗ β

P k 7−→
∑
i+j=k

P i ⊗ P j

for p odd, making

A ⊗H∗(X;Fp)⊗H∗(Y ;Fp)
id⊗∧
∼=

//

ψ⊗id⊗ id

��

A ⊗H∗(X ∧ Y ;Fp)

λ

��
A ⊗A ⊗H∗(X;Fp)⊗H∗(Y ;Fp)

(23) ∼=
��

H∗(X ∧ Y ;Fp)

A ⊗H∗(X;Fp)⊗A ⊗H∗(Y ;Fp)
λ⊗λ // H∗(X;Fp)⊗H∗(Y ;Fp)

∧∼=

OO

commute. Here (23) = id⊗τ ⊗ id.

Definition 6.2. Let k be a (graded) commutative ring, and write ⊗ = ⊗k. A
k-algebra is a (graded) k-module A with a unit map

η : k −→ A

and a (multiplication =) product map

φ : A⊗A −→ A

satisfying left and right unitality

k ⊗A
η⊗id //

∼= $$

A⊗A

φ

��

A⊗ k
id⊗ηoo

∼=zz
A

and associativity

A⊗A⊗A
φ⊗id //

id⊗φ
��

A⊗A

φ

��
A⊗A

φ // A .

The algebra is commutative if

A⊗A τ
∼=

//

φ ""

A⊗A

φ||
A
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commutes. A k-algebra homomorphism from A to B is a k-module homomorphism
α : A→ B (of degree 0) such that

k
η

��

η

��
A

α // B

and

A⊗A

φ

��

α⊗α // B ⊗B

φ

��
A

α // B

commute. The tensor product A ⊗ B of two k-algebras A and B is the k-algebra
with unit

k ∼= k ⊗ k η⊗η−→ A⊗B
and product

A⊗B ⊗A⊗B (23)−→ A⊗A⊗B ⊗B φ⊗φ−→ A⊗B .
It is commutative if A and B are commutative, in which case it is the coproduct
(= categorical sum) of A and B in the category of commutative k-algebras.

Definition 6.3. Let A be a k-algebra. A left A-module is a (graded) k-module M
with an action map

λ : A⊗M −→M

satisfying unitality

k ⊗M
∼=

%%

η⊗id // A⊗M

λ

��
M

and associativity

A⊗A⊗M id⊗λ //

φ⊗id

��

A⊗M

λ

��
A⊗M λ // M .

An A-module homomorphism from M to N is a k-module homomorphism f : M →
N (of degree 0) such that

A⊗M

λ

��

id⊗f // A⊗N

λ

��
M

f // N

commutes. The category of leftA-modules is abelian, with ker(f) ⊂M , M/ ker(f) =
coim(f) ∼= im(f) ⊂ N and cok(f) = N/ im(f) defined in the usual way at the level
of (k-modules or) graded abelian groups. There are analogous definitions for right
A-modules.
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Definition 6.4. A k-coalgebra is a (graded) k-module C with a counit map (=
augmentation)

ε : C −→ k

and a (comultiplication =) coproduct map

ψ : C −→ C ⊗ C

satisfying left and right counitality

C

ψ

��

∼=

zz

∼=

$$
k ⊗ C C ⊗ C

ε⊗id
oo

id⊗ε
// C ⊗ k

and coassociativity

C
ψ //

ψ

��

C ⊗ C

ψ⊗id

��
C ⊗ C

id⊗ψ // C ⊗ C ⊗ C .

The coalgebra is cocommutative if

C
ψ

{{

ψ

##
C ⊗ C τ

∼=
// C ⊗ C

commutes. A k-coalgebra homomorphism from C to D is a k-module homomor-
phism γ : C → D (of degree 0) such that

C
γ //

ε
��

D

ε
��

k

and

C
γ //

ψ

��

D

ψ

��
C ⊗ C

γ⊗γ // D ⊗D

commute. The tensor product C⊗D of two k-coalgebras C and D is the k-coalgebra
with counit

C ⊗D ε⊗ε−→ k ⊗ k ∼= k

and coproduct

C ⊗D ψ⊗ψ−→ C ⊗ C ⊗D ⊗D (23)−→ C ⊗D ⊗ C ⊗D .

It is cocommutative if C and D are cocommutative.
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Definition 6.5. Let C be a k-algebra. A left C-comodule is a (graded) k-module
M with a coaction map

ν : M −→ C ⊗M
satisfying counitality

M
ν //

∼= ##

C ⊗M

ε⊗id

��
k ⊗M

and coassociativity

M
ν //

ν

��

C ⊗M

id⊗ν
��

C ⊗M
ψ⊗id // C ⊗ C ⊗M .

A C-comodule homomorphism from M to N is a k-module homomorphism f : M →
N (of degree 0) such that

M
f //

ν

��

N

ν

��
C ⊗M

id⊗f // C ⊗N

commutes. If C is flat as a k-module, so that C⊗k (−) is an exact functor, then the
category of C-comodules is abelian. Flatness is needed for the existence of kernels
within this category, since it ensures that C ⊗ ker(f)→ C ⊗M is injective, so that
there is a unique dashed arrow making the following diagram commute.

0 // ker(f) //

��

M
f //

ν

��

N

ν

��
0 // C ⊗ ker(f) // C ⊗M

id⊗f // C ⊗N

Definition 6.6. A k-bialgebra is a (graded) k-module B that is both a k-algebra
and a k-coalgebra, and these structures are compatible in the sense that ε : B → k
and ψ : B → B ⊗B are k-algebra homomorphisms.

k
η

��

id

��
B

ε // k

B ⊗B ε⊗ε //

φ

��

k ⊗ k
∼=
��

B
ε // k

k

η

��

∼= // k ⊗ k

η⊗η
��

B
ψ // B ⊗B

B ⊗B

φ

��

ψ⊗ψ // B ⊗B ⊗B ⊗B
(23)

∼= ))
B ⊗B ⊗B ⊗B

φ⊗φ
��

B
ψ // B ⊗B
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This is equivalent to asking that η : k → B and φ : B ⊗ B → B are k-coalgebra
homomorphisms.

A k-bialgebra homomorphism fromB′ toB is a k-module homomorphism β : B′ →
B that is both a k-algebra homomorphism and a k-coalgebra homomorphism. A left
B-module is a left module over the underlying k-algebra of B. A left B-comodule
is a left comodule over the underlying k-coalgebra of B′.

Corollary 6.7 (Milnor (1958)). Let p be any prime. The mod p Steenrod algebra
A is a cocommutative bialgebra over Fp, with product φ given by composition of
operations and coproduct ψ given as above.

7. The dual Steenrod algebra

For k-modules M and N write Hom(M,N) = Homk(M,N) for the k-module of
(graded) k-linear homomorphisms, let M∨ = Hom(M,k) denote the linear dual,
and let f∨ : N∨ → M∨ be the homomorphism dual to f : M → N . There is a
natural transformation

θ : M∨ ⊗N∨ −→ (M ⊗N)∨

given by

θ(f ⊗ g)(x⊗ y) = (−1)|g||x|f(x)g(y)

for f ∈M∨, g ∈ N∨, x ∈M and y ∈ N . It is an isomorphism, for example, if k is
a field and both M and N are bounded below and of finite type.

Lemma 7.1. The dual C∨ of a k-coalgebra C is a k-algebra, with unit map

η : k ∼= k∨
ε∨−→ C∨

and product

φ : C∨ ⊗ C∨ θ−→ (C ⊗ C)∨
ψ∨−→ C∨ .

The dual M∨ of a left C-comodule M is a left C∨-module, with action map

λ : C∨ ⊗M∨ θ−→ (C ⊗M)∨
ν∨−→M∨ .

Lemma 7.2. Let A be a k-algebra such that θ : A∨ ⊗ A∨ → (A ⊗ A)∨ is an iso-
morphism. Then the dual A∨ is a k-coalgebra, with counit map

ε : A∨
η∨−→ k∨ ∼= k

and coproduct

ψ : A∨
φ∨−→ (A⊗A)∨

θ−1

−→ A∨ ⊗A∨ .
Furthermore, let M be a left A-module such that θ : A∨ ⊗M∨ → (A ⊗M)∨ is an
isomorphism. Then the dual M∨ is a left A∨-comodule, with coaction map

ν : M∨
λ∨−→ (A⊗M)∨

θ−1

−→ A∨ ⊗M∨ .

The (mod p Steenrod) cocommutative bialgebra A is connected (hence bounded
below) and of finite type over Fp. Hence its dual A ∨ is a commutative bialgebra.
More directly, the colimit

A∗ = colim
n

H∗+n(K(Fp, n);Fp) ∼= (HFp)∗(HFp) = π∗(HFp ∧HFp)
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is connected and of finite type over Fp. By the universal coefficient theorem, its
dual is

(A∗)
∨ = (colim

n
H∗+n(K(Fp, n);Fp))∨

∼= lim
n

(H∗+n(K(Fp, n);Fp)∨)

∼= lim
n
H∗+n(K(Fp, n);Fp) ∼= A .

Therefore A∗ is isomorphic to its double dual (A ∨∗ )∨ ∼= A ∨, which we just saw is
a commutative bialgebra. Adapting Milnor’s work, we shall soon make its algebra
and coalgebra structures explicit.

For any space (or spectrum) X, we shall construct a natural A∗-coaction

ν : H∗(X;Fp) −→ A∗ ⊗H∗(X;Fp)

making H∗(X;Fp) a left A∗-comodule. The dual A -action

A ∨∗ ⊗H∗(X;Fp)∨ −→ H∗(X;Fp)∨

is the usual left A -module structure

λ : A ⊗H∗(X;Fp) −→ H∗(X;Fp)

from the construction of A as an algebra of cohomology operations. Hence, if
H∗(X;Fp) is bounded below and of finite type, then we can recover (or introduce)
the A∗-coaction ν on H∗(X;Fp) as the dual

H∗(X;Fp)∨ −→ A ∨ ⊗H∗(X;Fp)∨

of the left A -action on H∗(X;Fp). The conclusion will be that the lift of the
mod p cohomology functor can be refined one step further as the covariant homology
functor

H∗(−;Fp) : Ho(Sp) −→ A∗− coMod

X 7−→ H∗(X;Fp)

followed by the contravariant dualization functor

(−)∨ : A∗− coMod −→ (A−Mod)op .

When H∗(X;Fp) has finite type, the two approaches are equivalent, but for general
X working with the homology as an A∗-comodule is more powerful.

The Cartan formula and Milnor’s lemma dualize to prove that the A∗-coaction
is compatible with the smash product of spaces (and spectra), via the Künneth
isomorphism. This means that for an H-space or ring spectrum X, the homology
H∗(X,Fp) is an A∗-comodule algebra.

Lemma 7.3. The diagram

H∗(X;Fp)⊗H∗(Y ;Fp)
ν⊗ν //

∧ ∼=
��

A∗ ⊗H∗(X;Fp)⊗A∗ ⊗H∗(Y ;Fp)

(23)∼=
��

H∗(X ∧ Y ;Fp)

ν

��

A∗ ⊗A∗ ⊗H∗(X;Fp)⊗H∗(Y ;Fp)

φ⊗id⊗ id

��
A∗ ⊗H∗(X ∧ Y ;Fp) A∗ ⊗H∗(X;Fp)⊗H∗(Y ;Fp)

id⊗∧
∼=

oo
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commutes.

More generally, the Steenrod operations can be viewed as giving an action by A
or a coaction by A∗, from the left or from the right, on homology or on cohomology.
This leads to a total of eight incarnations, all discussed by Boardman in [Boa82].
Four of these involve the conjugation = involution = antipode χ on the Steenrod
algebra and its dual, which makes these bialgebras into Hopf algebras (to be dis-
cussed later). The four that do not require χ are the following left or right actions
or coactions.

λ = φL : A ⊗H∗(X;Fp) −→ H∗(X;Fp)
ν = ψL : H∗(X;Fp) −→ A∗ ⊗H∗(X;Fp)
ρ = φR : H∗(X;Fp)⊗A −→ H∗(X;Fp)

λ∗ = ψR : H∗(X;Fp) −→ H∗(X;Fp) ⊗̂A∗ .

For each θ ∈ A the homomorphism

θ· = φL(θ ⊗−) : H∗(X;Fp) −→ H∗(X;Fp)

is the dual of the homomorphism

·θ : φR(−⊗ θ) : H∗(X;Fp) −→ H∗(X;Fp)

up to the usual sign:

〈θ · x, α〉 = (−1)|θ|〈x, α · θ〉
for θ ∈ A , x ∈ H∗(X;Fp) and α ∈ H∗(X;Fp). The sign is (−1)|θ|(|x|+|α|) = (−1)|θ|,
since |θ|+ |x| = |α| for ordinary (co-)homology. If θ· = Sqi or P i one usually writes
Sqi∗ or P i∗ for ·θ, so that (SqaSqb)∗ = Sqb∗Sq

a
∗ , and so on. The (formal) right

copairing λ∗ = ψR is the dual of the pairing φR. Hence we have the identities

〈θ · x, α〉 = 〈θ ⊗ x, ν(α)〉 = (−1)|θ|〈x, α · θ〉 = (−1)|θ|〈λ∗(x), α⊗ θ〉 .

Milnor observes that the Cartan formula (discussed for λ and ν in Lemmas 6.1
and 7.3, respectively) has two further interpretations. The result for λ∗ = ψR is
particularly convenient for elementwise calculations.

Lemma 7.4. For any space X,

ρ : H∗(X;Fp)⊗A −→ H∗(X;Fp)

is a coalgebra homomorphism with respect to the diagonal coproduct ∆∗ in homology,
and

λ∗ : H∗(X;Fp)→ H∗(X;Fp) ⊗̂A∗

is an algebra homomorphism with respect to the cup product ∪ = ∆∗ in cohomology.

8. The structure of A∗

Consider p = 2. Recall that K(F2, 1) ' RP∞ with H∗(RP∞;F2) = F2[x] with
|x| = 1, and let

H∗(RP∞;F2) ∼= F2{αn | n ≥ 0}
with αn in degree n dual to xn. The left and right A -actions are given by

Sqi(xn) =

(
n

i

)
xi+n and Sqi∗(αm) =

(
m− i
i

)
αm−i .
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Definition 8.1. Let ζk ∈ A∗ in degree |ζk| = 2k−1 be characterized by the identity

λ∗(x) = ψR(x) =
∑
k≥0

x2k

⊗ ζk = x⊗ 1 + x2 ⊗ ζ1 + x4 ⊗ ζ2 + . . .

in H∗(RP∞;F2) ⊗̂A∗. In particular ζ0 = 1.

This is the original notation from [Mil58], but many later authors write ξk in
place of ζk. Some of these then use ζk to denote the so-called conjugate class
χ(ξk) = ξ̄k, which can be confusing.

Lemma 8.2. The right A∗-coaction λ = ψR on H∗(RP∞;F2) satisfies

λ∗(xn) =
∑

i1,...,in≥0

x2i1+···+2in ⊗ ζi1 · · · ζin .

Proof. Clearly

λ∗(xn) = (
∑
k≥0

x2k

⊗ ζk)n =
∑

i1,...,in≥0

x2i1 · · ·x2in ⊗ ζi1 · · · ζin

since λ∗ = ψR is an algebra homomorphism. �

Lemma 8.3 ([Swi73]). Let Z =
∑
k≥0 ζk = 1 + ζ1 + ζ2 + . . . . The left A∗-coaction

ν = ψL on H∗(RP∞;F2) is given by

ν(αm) =

m∑
n=0

(Zn)m−n ⊗ αn

for each m ≥ 0, where (Zn)m−n denotes the homogeneous degree (m − n) part of
the n-th power Zn. In particular,

ν(α2k) = ζk ⊗ α1 + · · ·+ 1⊗ α2k

for each k ≥ 0.

Proof. Note that Zn =
∑
i1,...,in≥0 ζi1 · · · ζin so that

(Zn)m−n =
∑

2i1+···+2in=m

ζi1 · · · ζin .

Hence ν(αm) is characterized by

〈θ ⊗ xn, ν(αm)〉 = 〈λ∗(xn), αm ⊗ θ〉

=
∑

i1,...,in≥0

〈x2i1+···+2in
, αm〉 · 〈θ, ζi1 · · · ζin〉

=
∑

2i1+···+2in=m

〈θ, ζi1 · · · ζin〉 = 〈θ, (Zn)m−n〉

for all θ ∈ A and n ≥ 0. Comparing coefficients, this implies

ν(αm) =
∑
n

(Zn)m−n ⊗ αn .

�
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Lemma 8.4. For each k ≥ 0 the class ζk ∈ A∗ is the image of α2k ∈ H2k(RP∞;F2)
under the structure homomorphism

H∗+1(RP∞;F2) −→ colim
n

H∗+n(K(F2, n);F2) ∼= A∗

α2k 7−→ ζk .

Proof. The structure homomorphism is A∗-colinear, so the diagram

H∗+1(RP∞;F2)
ν //

��

A∗ ⊗H∗+1(RP∞;F2)

��
A∗

ψ //

id
))

A∗ ⊗A∗

id⊗ε
��

A∗

commutes. In ν(α2k) the summand ζk ⊗ α1 maps to ζk ∈ A∗, while the other
summands map to 0. Hence the left hand vertical map takes α2k to ζk. �

Lemma 8.5. For admissible sequences I = (i1, . . . , i`),

〈SqI , ζk〉 =

{
1 if I = (2k−1, 2k−2, . . . , 2, 1),

0 otherwise.

Proof. This follows from

SqI(x) =

{
x2k

if I = (2k−1, 2k−2, . . . , 2, 1),

0 otherwise

in H∗(RP∞;F2). �

Theorem 8.6 (Milnor (1958)).

A∗ ∼= F2[ζk | k ≥ 1]

is a polynomial algebra on the generators ζk for k ≥ 1.

Sketch proof. Milnor shows that evaluation of the Serre–Cartan admissible basis
elements SqI for A on the monomials

ζR = ζr11 ζr22 · · ·

in A∗, for finite length sequences R = (r1, r2, . . . ), gives a triangular, hence invert-
ible, matrix in each degree. Hence the latter form a basis for A∗. �

The basis for A that is dual to the monomial basis for A∗ is called the Mil-
nor basis. It is different from the Serre–Cartan basis, and admits a non-recursive
description of its product, which is convenient for machine calculations (such as
Bruner’s ext).

Theorem 8.7 (Milnor (1958)). The bialgebra coproduct

ψ : A∗ −→ A∗ ⊗A∗
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is the algebra homomorphism given by

ψ(ζk) =
∑
i+j=k

ζ2j

i ⊗ ζj

= ζk ⊗ 1 + ζ2
k−1 ⊗ ζ1 + · · ·+ ζ2k−1

1 ⊗ ζk−1 + 1⊗ ζk .

Notice how the non-commutativity of the composition product in A is reflected
in the non-cocommutativity of ψ acting on A∗.

Proof. By coassociativity of the right coaction λ∗ on H∗(RP∞;F2) the sum

(λ∗ ⊗ id)λ∗(x) = (λ∗ ⊗ id)
∑
i

x2i

⊗ ζi

=
∑
j

(
∑
i

x2i

⊗ ζi)2j

⊗ ζj =
∑
i,j

x2i+j

⊗ ζ2j

i ⊗ ζj

is equal to

(id⊗ψ)λ∗(x) = (id⊗ψ)
∑
k

x2k

⊗ ζk =
∑
k

xk ⊗ ψ(ζk) .

Comparing the coefficients in A∗ ⊗A∗ of x2k

gives the result. �

To summarize, the combined Steenrod operations on mod 2 (co-)homology ex-
hibit H∗(X;F2) as a left comodule over the commutative bialgebra

A∗ = F2[ζ1, ζ2, ζ3, . . . ]

with coproduct ψ given by

ψ(ζ1) = ζ1 ⊗ 1 + 1⊗ ζ1
ψ(ζ2) = ζ2 ⊗ 1 + ζ2

1 ⊗ ζ1 + 1⊗ ζ2
ψ(ζ3) = ζ3 ⊗ 1 + ζ2

2 ⊗ ζ1 + ζ4
1 ⊗ ζ2 + 1⊗ ζ3

. . .

We shall later reinterpret

Spec(A∗) = Spec(F2[ζ1, ζ2, ζ3, . . . ])

as the group scheme of automorphisms of the additive formal group law over F2.
((ETC: For p odd, α2pk 7→ τk and βpk 7→ ξk. Requires K(Fp, 1), K(Z, 2) and

maybe K(Fp, 2).))

Theorem 8.8 (Milnor (1958)). For p an odd prime,

A∗ ∼= Λ(τk | k ≥ 0)⊗ Fp[ξk | k ≥ 1]

is a free graded commutative algebra on odd degree generators τk and even degree
generators ξk, with |τk| = 2pk − 1 and |ξk| = 2pk − 2. The bialgebra coproduct

ψ : A∗ −→ A∗ ⊗A∗

is the algebra homorphism given by

ψ(τk) = τk ⊗ 1 +
∑
i+j=k

ξp
j

i ⊗ τj

and
ψ(ξk) =

∑
i+j=k

ξp
j

i ⊗ ξj ,
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where ξ0 = 1.
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