MEK4350, fall 2014

Exercises 10 - Second order Stokes wave as model for irregular sea (corrected)

The second-order Stokes wave on infinite depth is

$$
\begin{equation*}
\eta(x, t)=a \cos \psi+\frac{1}{2} k_{c} a^{2} \cos (2 \psi)+\cdots \tag{1}
\end{equation*}
$$

where $\psi=k_{c} x-\omega_{c} t+\frac{1}{2} \omega_{c}\left(k_{c} a\right)^{2} t+\theta$, the wavenumber k_{c} and the angular frequency ω_{c} are related by the linear dispersion relation $\omega_{c}^{2}=g k_{c}, a$ is an amplitude, θ is a phase angle, and g is the acceleration of gravity. The steepness $\epsilon=k_{c} a$ is assumed to be small, therefore the second-order Stokes wave is a small correction to a linear monochromatic wave. The terms hidden in the dots are proportional to $k_{c}^{2} a^{3}$.

We now want to compute some consequences that the second-order Stokes wave will have if it is applied as a representation for an extremely narrow-banded irregular sea.

To this end we employ the following assumptions: Let a and θ be statistically independent, let a be Rayleigh distributed $f_{a}(a)=\frac{a}{\sigma^{2}} \mathrm{e}^{-\frac{a^{2}}{2 \sigma^{2}}}$ for $a \geq 0$, and let θ be uniformly distributed $f_{\theta}=\frac{1}{2 \pi}$ for $0 \leq \theta \leq 2 \pi$. Let $k \sigma$ be small, and note that equation (1) is truncated at the second relative order of this small parameter.

In order to make this problem tractable, we start by doing a Taylor-expansion of (1) with respect to a around the origin

$$
\begin{equation*}
\eta(x, t)=a \cos \left(k_{c} x-\omega_{c} t+\theta\right)+\frac{1}{2} k_{c} a^{2} \cos \left(2\left(k_{c} x-\omega_{c} t+\theta\right)\right)+\cdots \tag{2}
\end{equation*}
$$

In the following, remember to truncate all expressions at the second relative order!

Problem 1

Show that σ^{2} is the variance of the first term in (2).

Problem 2

Compute the mean $\mu(x, t)$ and the autocorrelation function $R(x+\rho, x ; t+\tau, t)$ where we have used ρ and τ for the differences in space and time.

Is this a weakly stationary process?
Compute the variance of η.
Compute the significant wave height H_{s}.

Problem 3

Compute the spectrum $S(k, \omega)$ of $\eta(x, t)$.

Problem 4

Compute the skewness and the kurtosis of η.

Problem 5

In section 1 of Dysthe, Krogstad \& Müller (2008) (the article is linked up on the course semester web page) we find two "standard" definitions for freak waves,

$$
H / H_{s}>2 \quad \text { or } \quad \eta_{c} / H_{s}>1.25
$$

where $H=\eta_{c}-\eta_{t}$ is the wave height, η_{c} is the crest height, and η_{t} is the trough "depth".

Compute the probability for a freak wave according to these two criteria.
Which one of these criteria are most extreme?
Suppose that we only consider the first term in (1) corresponding to a linear wave. Compute the probability for a freak wave in this linear case and compare with your nonlinear result above.

