Flow Assurance in a subsea system perspective
DAY 1

FMC

Tine Bauck Irmann-Jacobsen

Week 41, 8th October 2012
Agenda

Day 1 8th Oct
• Define Flow Assurance in a system perspective
• Define field development and engineering phases
• Define main drivers for field development
• Define main challenge in field developments
• And some remediation means

Day 2 15th Oct
• Concepts to use for field developments
• System design with subsea X-mas trees
• System design with boosting
 – Subsea compression
 – Separation
 – Multiphase pumping
• Exercises
Flow Assurance definition

• Flow Assurance developed
 – Traditional approaches are inappropriate for deepwater production due to extreme distances, depths, temperatures or economic constraints.
 – The term Flow Assurance was first used by Petrobras in the early 1990s in Portuguese as Garantia do Escoamento (pt::Garantia do Escoamento), meaning literally “Guarantee of Flow”

• Flow Assurance involves
 – Many specialized subjects and embrace all kinds of engineering disciplines.
 – Network modeling and transient multiphase simulation
 – Handling solid deposits, such as, gas hydrates, asphaltene, wax, scale, and naphthenates.
 – Critical task during deep water energy production because of the high pressures and low temperature involved.
 – Solid deposits can interact with each other and can cause blockage formation in pipelines and result in flow assurance failure.

• Flow Assurance drivers
 – The financial loss from production interruption or asset damage due to flow assurance mishap can be astronomical

• Flow Assurance applies during all stages of system selection
 – detailed design, surveillance, troubleshooting operation problems, increased recovery in late life etc., to the petroleum flow path (well tubing, subsea equipment, flowlines, initial processing and export lines).
Flow Assurance - system approach

Combine flow and process models throughout the production and injection system

- Near-well reservoir model or Reservoir Simulation coupling
- Wells
- Manifold and Flowlines
- Subsea process equipment
- Risers
- Process Inlet Facilities
What is a field development

• Given a new field: How to approach a field development and set up an overview for flow assurance challenges that must be evaluated
 – Get a clear overview of the system from screening all information available (design basis, functional requirements)
 – Objectives
 – Screen flow assurance challenges hydrate, wax, corrosion, flow induced vibrations etc.

• Tools/Knowledge for a Flow Assurance Engineer
 – Calculations
 – Numerical
 – Process equipment knowledge
Field example

Fields are characterized by a large network of wells, flowlines and manifolds.

- Subsea-to-beach gas field
- 120 km from field to facility
- Water depth: 850 - 1100 m
- Total gas rate at peak prod.: 70 MSm3/d
- MEG injection at each wellhead
- Field started autumn 2007

Introduction of subsea equipment between the wells and the flowlines greatly affects:
- Pressure and temperature conditions
- System capacity
- Hydrate philosophy
Different types of fields

• Shallow water
 – Bottom-founded facilities can be used (fixed offshore structures)

• Deep water (First development by Shell: Gulf of Mexico, 1961)
 – Deeper than 200m sea water depth
 – Floating structures
 – Unmanned underwater vehicles

• Types of field
 – Oil/Gas fields
 – Old fields: Increased Oil Recovery
 – New fields: Standard fields/ Difficult accessible fields
Field development and engineering phases

- Concept Evaluations
- FEED
- Detailed Engineering
- Operation
- Tail end production

We put you first.
And keep you ahead.
Main drivers for field development of subsea systems

• Main motivation for development is **Maximized production** of oil or gas from reservoir to receiving facilities

• The main parameter that can diminish the production is increase in the **pressure drop** between the reservoir and receiving facilities.
 – It is therefore a main activity to reduce the pressure drop as much as possible.

• Main parameter for selection of system solution is **cost**.

• The flow assurance specialist must be able to design multiphase systems by use of tools, methods, equipment, knowledge and professional skills, **to ensure the safe, uninterrupted transport of reservoir fluids from the reservoir to proc**

• Keywords for subsea design are **robustness, simplicity** and **efficiency**
Main Flow Assurance challenges in system design and field developments

- Reduce pressure drop in system
- Hydrate management
- Multiphase flow distribution
- Fluid properties and PVT analyses
- Sand production
- Erosion
- Thermal requirements
- Terrain slugging
- Flow regime control
- Riser slugging and stability
- Operational philosophy
- Waxes
- Emulsion
- Corrosion
- Asphaltenes
- Flow Induced Vibrations
- Water hammer /pressure surges
- Multiphase simulations
- Process equipment
SYSTEM SOLUTIONS
The engineering process

Field layout
• Well location
• Manifold location
• Flow line / Riser system
• Water depth / step-out distance

Flow Assurance
• Slugging
• Safe shutdown and restart
• Hydrate
• Wax
• Sand
• Scale

Reservoir data
• Production profile
• Flowrates
• Densities
• GVF
• Viscosities
• etc

Subsea station design
• Steady state simulations
• System solution and design
• Hardware selection and design
 - Pump, separator, control system, power system etc
• Operational philosophy
 - Startup/shutdown
 - Flow assurance strategy
• Dynamic simulation - verify solution
• Technology Maturity/Qualification assessment

Topside
• Layout
• Restrictions
• Requirements

(If) injection well
• Reservoir data
• Gas/water quality requirements
• Monitoring requirements

Near well reservoir

Pipeline

Topside

Riser
FLOW MANAGEMENT
Potential field challenges

Surveillance
- Sensor reconciliation
- Erosion and corrosion
- Integrity of subsea equipment

Operation
- Shutdown:
 - Cooldown and no-touch-time
 - Depressurisation
 - Liquid drainage of flowlines
- Liquid hold-up flowlines
- Hydrate Management
- Reduced need for well testing
- Facilitate field remote operation

Optimization
- Real time reservoir management
- Production rates
- Choke and routing optimization
- Gas lift and pump optimization
- Minimize use of chemicals

Subsea process Solution

Wells
Near well reservoir
Pipeline
Topside

Potential field challenges
Main parameter that can reduce production: **Pressure drop**

- **Motivation**: Max production
- **Influence on pressure drop**
 - Fluid, amount of liquid
 - Length of flowline
 - Velocity
 - Temperature increase actual flow
 - Pressure drop increase actual flow
 - Density
 - Friction pipewall
 - Gravity forces
 - Valves, bends, process modules
 - (b means bulk)

\[
\Delta P = f \frac{L \rho U_b^2}{D} \quad \dot{m} = U_b \rho A
\]

Below a certain production rate, pressure gradient and holdup start building up in the uphill sections
Flow Assurance Issues – Multiphase Fluid related

Fluid properties:
• Wax
• Emulsion
• Corrosion
• Scale
• Hydrates

Wax / Asphaltenes

Emulsion / Foam

Gas Hydrates

Corrosion

Scale
Multiphase flow challenges

Hydrate formation

- Hydrates are formed by gas molecules getting into hydrogen-bonded water cages, and it happens at temperatures well above normal water freezing.
- To make hydrates you need lots of gas, free water, high pressure, and low temperatures.

Hydrates are not ice.
Potential problems in multiphase flow

- Water: Liquid accumulation and water separation in low points
 - Hydrate formation
 - Increased liquid accumulation and pressure drop
 - Large water slugs disturb process
 - Corrosion

- Multiphase flow splitting

- Velocities
 - Erosion
 - Flow Induced Vibrations

- Temperature control
 Design/Subsea Cooling
Multiphase Flow - Liquid surges and slugging

- Operationally induced surges/slugs
 - Ramp-up, start-up, pigging

- Terrain slugging
 - Can cause large pressure swings
 - Slug catchers and receiving separators are voluminous and heavy equipment that drives the cost

- Hydrodynamic slugging
Flow Induced Vibrations – Flow Assurance Issues

- The dynamic response of structures immersed in (external induced i.e. vortex shedding from sea currents) or conveying (internal induced i.e. vortexes from turbulence or bends) fluid flow. Fluid flow is a source of energy that can induce structural and mechanical oscillations. Flow-induced vibrations best describe the interaction that occurs between the fluid's dynamic forces and a structure's inertial, damping, and elastic forces.
Water Hammer

• is a pressure surge or wave resulting when a fluid (usually a liquid but sometimes also a gas) in motion is forced to stop or change direction suddenly (momentum change). Water hammer commonly occurs when a valve is closed suddenly at an end of a pipeline system, and a pressure wave propagates in the pipe. It may also be known as hydraulic shock
Remediation means

Pipeline sizing
pressure loss vs slugging

Choke design
to minimize pressure loss and erosion

Design of Chemical Injection Systems
to minimize risk of hydrates, scale, corrosion etc.

Thermal Insulation Design
to keep fluids warm and minimize risk of hydrates and wax

Erosion analysis
Erosion wear in complex geometries

Flow assurance is to take precautions to **Ensure Deliverability and Operability**
Hydrate formation prevention means

- Hydrate prevention
 - Inhibitor MEG/Methanol
 - Depressurization
 - Insulation of pipelines
 - Heating

- New technology
 - Cold flow

Example of hydrate curve
Remediation means

Calculation of amount of chemical inhibitor to avoid gas hydrates

Seabed: -5°C at 200 bar

Typical gas field hydrate / ice formation curves with MEG

Required Volume % of MEG in aqueous phase: 50% - 60%
WAX management

- WAT (wax appearance temperature)
- WDT (wax disappearance temperature)
- When reservoir pressure decrease more and more wax remains in reservoir (typical 250 bara)
- Wax control:
 - Insulation
 - Scraping (pigging)
 - The wax appearance temperature of most "normal", paraffin North Sea oils and condensates is in the range 30° to 40°C.
 - Hot flushing must be at a temperature at least 20°C above WAT (WDT)
 - Direct Electrical Heating
 - Wax dissolver (chemical)

Restricted flow due to reduced inner diameter in pipelines and increased wall roughness
Increased viscosity of the oil
Settling of wax in storage tanks
Example 4: Thermal insulation of subsea equipment

MANIFOLD SYSTEM: 8” Ball Valve with actuator and support

Thin peek layer of on the steel support increased the thermal performance

Steel support

17°C @ 21hrs

Steel support with peek

23°C @ 21hrs
Heat transfer-insulation

Calculation of heat transfer 1

\[Q = \dot{m} \cdot C_p \cdot \Delta T_F \]

- \(Q \) is total heat exchange
- \(\dot{m} \) is mass rate kg/s
- \(C_p \) is heat capacity
- \(\Delta T_F \) is loss of temperature over subsea station

Calculation of heat transfer 2

\[Q = U \cdot A \cdot \Delta T_E \]

- \(Q \) is total heat exchange
- \(U \) is W/m²K
- \(A \) is total area that exchanges heat with surroundings
- \(\Delta T_E \) is difference in temperature between production fluid and surroundings
Manipulation of flow regimes in multiphase flow for design purposes

- Pipe diameter
- Inclination
- Rate manipulation eg. Gas lift, always production above min flow
 - Min flow: Min rate before velocity
- Simulation modeling
 - Slugging require transient model
6” Pipe Separator in Porsgrunn

8” ID Pipe:
- 20 m³/h = 0.17 m/s
- 30 m³/h = 0.25 m/s
- 40 m³/h = 0.34 m/s

6” Pipe:
- 20 m³/h = 0.31 m/s
- 30 m³/h = 0.46 m/s
- 40 m³/h = 0.61 m/s
- 50 m³/h = 0.73 m/s
Subsea Cooling—New Enabler

Control high temperatures
More efficient separation

- Simple and robust process control
 - Subsea cooling shall not be the most complex part of a subsea processing system
- Simple and robust maintenance/cleaning
- Robust hydrate and wax strategies
- Robust flow induced vibration strategies
- Temperature control to the extent needed (i.e., not always required)
- Scalable standard cooler modules adapted to system requirements
- Subsea Cooling Concepts
 - FMC passive cooling (available now)
 - FMC active cooling (concept stage)
 - FMC heat exchanger (concept stage)
Numerical tools for Flow Assurance system design

- PVTsim (fluid property calculations)
- Flow Manager™ Design (solve Navier Stoke Average)
- OLGA/Fast pipe (transient simulation model)(Navier Stoke average)
- HYSYS steady state
- HYSYS dynamic
- CFD (Navier Stoke fully developed)
- FEA (Finite Element Analysis)
- DNV-RP-O501 (Erosion model)
FlowManager™ integrates flow calculations through the entire production system giving a common monitoring, planning and optimization tool for the operator. Possible coupling with Eclipse, Olga, Hysys etc.
CONDITION PERFORMANCE MONITORING

CPM VALUE ENHANCING SERVICES
- Prevent upcoming failures
- Plan upcoming repair work
- Optimize production
- Initiate system upgrade (IOR)
- Input to new EPC system design

We put you first.
And keep you ahead.
Next week

- Exercises are in the compendium
 - Exercise 1: Minimum flow criteria to keep Subsea Process outside hydrate formation area
 - Exercise 2: Heat losses over a long pipe section
 - Exercise 3: Effect on pressure when enclosed system is cooled down
 - Exercise 4: Head loss and pumping requirements in flowlines
 - Exercise 5: Well head pressure at shut-in conditions