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Generalized Additive Models: introduction

From the previous lecture:

‚ linear regression models are easy and effective models;

‚ often the effect of a predictor on the response is not linear;

Ó

local polynomials and splines.

Generalized Additive Models:

‚ flexible statistical methods to identify and characterize
nonlinear regression effects;

‚ larger class than the generalized linear models.

STK-IN4300: lecture 7 3/ 43



STK-IN4300 - Statistical Learning Methods in Data Science

Generalized Additive Models: additive models

Consider the usual framework:

‚ X1, . . . , Xp are the predictors;

‚ Y is the response variable;

‚ f1p¨q, . . . , fpp¨q are unspecified smooth functions.

Then, an additive model has the form

ErY |X1, . . . , Xps “ α` f1pX1q ` ¨ ¨ ¨ ` fppXpq.
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Generalized Additive Models: more generally

As linear models are extended to generalized linear models, we can
generalize the additive models to the generalized additive models,

gpµpX1, . . . , Xpqq “ α` f1pX1q ` ¨ ¨ ¨ ` fppXpq,

where:

‚ µpX1, . . . , Xpq “ ErY |X1, . . . , Xps;

‚ gpµpX1, . . . , Xpqq is the link function;

‚ classical examples:
§ gpµq “ µ Ø identity link Ñ Gaussian models;
§ gpµq “ logpµ{p1´ µqq Ø logit link Ñ Binomial models;
§ gpµq “ Φ´1pµq Ø probit link Ñ Binomial models;
§ gpµq “ logpµq Ø logarithmic link Ñ Poisson models;
§ . . .
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Generalized Additive Models: semiparametric models

Generalized additive models are very flexible:

‚ not all functions fjp¨q must be nonlinear;

gpµq “ XTβ ` fpZq

in which case we talk about semiparametric models.

‚ nonlinear effect can be combined with qualitative inputs,

gpµq “ fpXq ` gkpZq “ fpXq ` gpV,Zq

where k indexes the level of a qualitative variable V .
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Fitting algorithm: difference with splines

When implementing splines:

‚ each function is modelled by a basis expansion;

‚ the resulting model can be fitted with least squares.

Here the approach is different:

‚ each function is modelled with a smoother (smoothing splines,
kernel smoothers, . . . )

‚ all p functions are simultaneously fitted via an algorithm.
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Fitting algorithm: ingredients

Consider an additive model

Y “ α`

p
ÿ

j“1

fjpXjq ` ε.

We can define a loss function,

N
ÿ

i“1

˜

yi ´ α´

p
ÿ

j“1

fjpxijq

¸2

`

p
ÿ

j“1

λj

ż

tf2j ptjqu
2dtj

‚ λj are tuning parameters;

‚ the minimizer is an additive cubic spline model,
§ each fjpXjq is a cubic spline with knots at the (unique) xij ’s.
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Fitting algorithm: constraints

The parameter α is in general not identifiable:

‚ same result if adding a constant to each fjpXjq and
subtracting it from α;

‚ by convention,
řp
j“1 fjpXjq “ 0:

§ the functions average 0 over the data;
§ α is therefore identifiable;
§ in particular, α̂ “ ȳ.

If this is true and the matrix of inputs X has full rank:

‚ the loss function is convex;

‚ the minimizer is unique;

‚ simple procedure to find the solution Ñ backfitting algorithm.
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Fitting algorithm: backfitting algorithm

The backfitting algorithm:

1. Initialization: α̂ “ N´1
řN
i“1 yi and f̂j ” 0 @j

2. In cycle, j “ 1, . . . , p, 1, . . . , p, . . .

f̂j Ð Sj

»

–tyi ´ α̂´
ÿ

k‰j

f̂kpxikqu
N
1

fi

fl

f̂j Ð f̂j ´
1

N

N
ÿ

i“1

f̂jpxijq

until f̂j changes less than a pre-specified threshold.

Sj is usually a cubic smoothing spline, but other smoothing
operators can be used.
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Fitting algorithm: remarks

Note:

‚ the smoother S can be (when applied only at the training
points) represented by the N ˆN smoothing matrix S,

§ the degrees of freedom for the j-th terms are tracepSq;

‚ for the generalized additive model, the loss function is the
penalized negative log-likelihood;

‚ the backfitting algorithm fits all predictors,
§ not feasible when p ąą N .
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Example: logistic regression for email spam data

Consider the spam data (as in Exercise 3.17).

‚ binary response (email/spam),

§ logistic regress., log PrpY“1|Xq
PrpY“0|Xq “ α` f1pX1q ` ¨ ¨ ¨ ` fppXpq;

‚ 48 percentages of words in the email (e.g. you, free, . . . );

‚ 6 percentages of specific characters (e.g. ch;, ch$, . . . );

‚ average length sequences of capital letters (CAPAVE);

‚ length longest sequence of capital letters (CAPMAX);

‚ sum length sequences of capital letters (CAPTOT).

Sample size: 3065 training, 1536 test.

Choice of fjp¨q: smoothing cubic splines with df “ 4.

STK-IN4300: lecture 7 12/ 43



STK-IN4300 - Statistical Learning Methods in Data Science

Example: logistic regression for email spam data
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Example: logistic regression for email spam data
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Example: logistic regression for email spam data
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Tree-based Methods: introduction

Consider a regression problem, Y the response, X the input matrix.

A tree is a recursive binary partition of the feature space:

‚ each time, a region is divide into two or more regions;
§ until a stopping criterion applies;

‚ at the end, the input space is split in M regions Rm;

‚ a constant cm is fitted to each Rm.

The final prediction is

f̂pXq “
M
ÿ

m“1

ĉm1pX P Rmq,

where ĉm is an estimate for the region Rm (e.g., avepyi|xi P Rmq).
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Tree-based Methods: introduction
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Tree-based Methods: introduction

Note:

‚ the split can be represented as a junction of a tree;

‚ this representation works for p ą 2;

‚ each observation is assigned to a branch at each junction;

‚ the model is easy to interpret.
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Tree-based Methods: introduction
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How to grow a regression tree: split

How to grow a regression tree:

‚ we need to automatically decide the splitting variables . . .

‚ . . . and the splitting points;

‚ we need to decide the shape (topology) of the tree.

Using a sum of squares criterion,
řN
i“1pyi ´ fpxiqq

2,

‚ the best ĉm “ avepyi|xi P Rmq;

‚ finding the best partition in terms of minimum sum of squares
is generally computationally infeasible

Ó

go greedy
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How to grow a regression tree: greedy algorithm

Starting with all data:

‚ for each Xj , find the best split point s
§ define the two half-hyperplanes,

§ R1pj, sq “ tX|Xj ď su;
§ R2pj, sq “ tX|Xj ą su;

§ the choice of s can be done really quickly;

‚ for each j and s, solve

min
j, s
rmin
c1

ÿ

xiPR1pj,sq

pyi ´ c1q
2 `min

c2

ÿ

xiPR2pj,sq

pyi ´ c2q
2s

‚ the inner minimization is solved by
§ ĉ1 “ avepyi|xi P R1pj, sqq;
§ ĉ2 “ avepyi|xi P R2pj, sqq.

‚ the identification of the best pj, sq is feasible.
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How to grow a regression tree: when to stop

The tree size:

‚ is a tuning parameter;

‚ it controls the model complexity;

‚ its optimal values should be chosen from the data.

Naive approach:

‚ split the tree nodes only if there is a sufficient decrease in the
sum-of-squares (e.g., larger than a pre-specified threshold);

§ intuitive;
§ short-sighted (a split can be preparatory for a split below).

Preferred strategy:

‚ grow a large (pre-specified # of nodes) or complete tree T0;

‚ prune it (remove branches) to find the best tree.
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How to grow a regression tree: cost-complexity pruning

Consider a tree T Ă T0 computed by pruning T0 and define:

‚ Rm the region defined by the node m;

‚ |T | the number of terminal nodes in T ;

‚ Nm the number of observations in Rm, Nm “ #txi P Rmu;

‚ ĉm the estimate in Rm, ĉm “ N´1m
ř

xiPRm
yi;

‚ QmpT q the loss in Rm, QmpT q “ N´1m
ř

xiPRm
pyi ´ ĉmq

2.

Then, the cost complexity criterion is

CαpT q “

|T |
ÿ

m“1

NmQmpT q ` α|T |.
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How to grow a regression tree: cost-complexity pruning

The idea is to find the subtree Tα̂ Ă T0 which minimizes CαpT q:

‚ @α, find the unique subtree Tα which minimizes CαpT q;

‚ through weakest link pruning:
§ successively collapse the internal node that produces the

smallest increase in
ř|T |
m“1NmQmpT q;

§ until the single node tree;
§ find Tα within the sequence;

‚ find α̂ via cross-validation.

Here the tuning parameter α:

‚ governs the trade-off between tree size and goodness of fit;

‚ larger values of α correspond to smaller trees;

‚ α “ 0 Ñ full tree.
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Classification trees: definition

No major differences between regression and classification trees:

‚ define a class k P t1, . . . ,Ku for each region,

km “ argmaxk p̂mk “ argmaxk

#

N´1m
ÿ

xiPRm

1pyi “ kq

+

;

‚ change the loss function from QmpT q to:
§ 0-1 loss: N´1

m

ř

xiPRm
1pyi ‰ kmq;

§ Gini index:
řK
k“1 p̂mkp1´ p̂mkq;

§ deviance:
řK
k“1 p̂mk log p̂mk;

§ all three can be extended to consider different error weights.
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Classification trees: loss functions
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Classification trees: example
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Tree-based Methods: remarks

Tree-based methods:

‚ fast to construct, interpretable models;

‚ can incorporate mixtures of numeric and categorical inputs;

‚ immune to outliers, resistant to irrelevant inputs;

‚ lack of smoothness;

‚ difficulty in capturing additive structures;

‚ highly unstable (high variance).
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Bagging: Galton (1907)

© 1907 Nature Publishing Group
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Bagging: Galton (1907)

In 1907, Sir Francis Galton visited a country fair:

A weight-judging competition was carried on at the annual show of
the West of England Fat Stock and Poultry Exhibition recently
held at Plymouth. A fat ox having been selected, competitors
bought stamped and numbered cards [. . . ] on which to inscribe
their respective names, addresses, and estimates of what the ox
would weigh after it had been slaughtered and “dressed”. Those
who guessed most successfully received prizes. About 800 tickets
were issued, which were kindly lent me for examination after they
had fulfilled their immediate purpose.
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Bagging: Galton (1907)

After having arrayed and analyzed the data, Galton (1907) stated:

It appears then, in this particular instance, that the vox populi is
correct to within 1 per cent of the real value, and that the
individual estimates are abnormally distributed in such a way that
it is an equal chance whether one of them, selected at random,
falls within or without the limits of -3.7 per cent and +2.4 per cent
of their middlemost value.

Concept of “Wisdom of Crowds” (or, as Schapire & Freund,
2014, “how it is that a committee of blockheads can somehow
arrive at a highly reasoned decision, despite the weak judgement of
the individual members.”)
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Bagging: wisdom of crowds
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Bagging: translate this message into trees

How do can we translate this idea into tree-based methods?

‚ we can fit several trees, then aggregate their results;

‚ problems:
§ “individuals” are supposed to be independent;
§ we have only one dataset . . .

How can we mimic different datasets while having only one?
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Bagging: the solution is . . .
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Bagging: bootstrap trees
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Bagging: bootstrap trees
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Bagging: bootstrap trees

The procedure so far:

‚ generate bootstrap samples;

‚ fit a tree on each bootstrap sample;

‚ obtain B trees.

At this point, aggregate the results. How?

‚ consensus: Ĝpxq “ argmaxk qkpxq, k P t1, . . . ,Ku,
§ where qkpxq is the proportion of trees voting for the category k;

‚ probability: Ĝpxq “ argmaxk B
´1

řB
b“1 p

rbs
k pxq,

k P t1, . . . ,Ku,

§ where p
rbs
k pxq is the probability assigned by the b-th tree to

category k;
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Bagging: bootstrap trees
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Bagging: general

In general, consider the training data Z “ tpy1, x1q, . . . , pyN , xN qu.
The bagging (bootstrap aggregating) estimate is defined by

f̂bagpxq “ EP̂ rf̂
˚pxqs,

where:

‚ P̂ is the empirical distribution of the data pyi, xiq;

‚ f̂˚pxq is the prediction computed on a bootstrap sample Z˚;

‚ i.e., py˚i , x
˚
i q „ P̂.

The empirical version of the bagging estimate is

f̂bagpxq “
1

B

B
ÿ

b“1

f̂˚pxq,

where B is the number of bootstrap samples.
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Bagging: variance

Bagging has smaller prediction error because it reduces the
variance component,

EP rpY ´ f̂
˚pxqq2s “ EP rpY ´ fbagpxq ` fbagpxq ´ f̂

˚pxqq2s

“ EP rpY ´ fbagpxqq
2s ` EP rpfbagpxq ´ f̂

˚pxqq2s

ě EP rpY ´ fbagpxqq
2s,

where P is the data distribution.

Note that this does not work for 0-1 loss:

‚ due to non-additivity of bias and variance;

‚ bagging makes better a good classifier, worse a bad one.
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Bagging: from bagging to random forests

The average of B identically distributed r.v. with variance σ2 and
positive pairwise correlation ρ has variance

ρσ2 `
1´ ρ

B
σ2.

‚ as B increases, the second term goes to 0;

‚ the bootstrap trees are p. correlated Ñ first term dominates.

Ó

construct bootstrap tree as less correlated as possible

Ó

random forests
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Bagging: from bagging to boosting
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