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e Background
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Generalized Additive Models: introduction

From the previous lecture:
e linear regression models are easy and effective models;
e often the effect of a predictor on the response is not linear;

l

local polynomials and splines.

Generalized Additive Models:

e flexible statistical methods to identify and characterize
nonlinear regression effects;

e larger class than the generalized linear models.
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Generalized Additive Models: additive models

Consider the usual framework:
e Xi,...,X, are the predictors;
e Y is the response variable;

e fi(*),..., fp(-) are unspecified smooth functions.

Then, an additive model has the form

ElY|Xy,...,Xpl =a+ fi(Xq) + -+ fp(Xp).
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Generalized Additive Models: more generally

As linear models are extended to generalized linear models, we can
generalize the additive models to the generalized additive models,

g(pu(Xi, ... vXp)) =a+ fi(X1)+ -+ fp(Xp)v

where:

o u(X1,...,Xp) = ElY|Xy,...,Xp];

e g(u(X1,...,X,)) is the link function;

e classical examples:
> g(p) = p < identity link — Gaussian models;
> g(p) =log(p/(1 — p)) < logit link — Binomial models;
> g(u) = @~ (pu) < probit link — Binomial models;

(1)

> g(n) = log(p) < logarithmic link — Poisson models;
[
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Generalized Additive Models: semiparametric models

Generalized additive models are very flexible:

e not all functions f;(-) must be nonlinear;

g(p) = XTB+ f(2)

in which case we talk about semiparametric models.

e nonlinear effect can be combined with qualitative inputs,

9(p) = f(X) + gx(Z) = f(X) +9(V, Z)

where k indexes the level of a qualitative variable V.
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Fitting algorithm: difference with splines

When implementing splines:
e each function is modelled by a basis expansion;

e the resulting model can be fitted with least squares.

Here the approach is different:

e each function is modelled with a smoother (smoothing splines,
kernel smoothers, .. .)

e all p functions are simultaneously fitted via an algorithm.
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Fitting algorithm: ingredients

Consider an additive model
P
Y =a+ ) fi(X
j=1

We can define a loss function,

N P 2
Silvi—a=> fitey) | +DN j{
) iz =1

e ); are tuning parameters;

e the minimizer is an additive cubic spline model,

)}2dt;

> each f;(X;) is a cubic spline with knots at the (unique) x;;'s.
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Fitting algorithm: constraints

The parameter « is in general not identifiable:

e same result if adding a constant to each f;(Xj;) and
subtracting it from «;
e by convention, >/ f;(X;) = 0:
> the functions average 0 over the data;

> « is therefore identifiable;
> in particular, & = ¥.

If this is true and the matrix of inputs X has full rank:
e the loss function is convex;
e the minimizer is unique;

e simple procedure to find the solution — backfitting algorithm.
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Fitting algorithm: backfitting algorithm

The backfitting algorithm:
1. Initialization: & = N3N g, and f; =0 V)
2. Incycle, j=1,...,p,1,...,p,...

fi =S| {yi—a =) fulza)

k#j

. o1 &
ficli—-§ > filiy)
=1

until fj changes less than a pre-specified threshold.

§; is usually a cubic smoothing spline, but other smoothing
operators can be used.
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Fitting algorithm: remarks

Note:

e the smoother S can be (when applied only at the training
points) represented by the N x N smoothing matrix S,

> the degrees of freedom for the j-th terms are trace(5);
e for the generalized additive model, the loss function is the
penalized negative log-likelihood;
e the backfitting algorithm fits all predictors,
> not feasible when p >> N.
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Example: logistic regression for email spam data

Consider the spam data (as in Exercise 3.17).
e binary response (email/spam),
> logistic regress., log % =a+ fi(X1)+ -+ fr(Xp);

48 percentages of words in the email (e.g. you, free, ...);

6 percentages of specific characters (e.g. ch;, ch$, ...);

average length sequences of capital letters (CAPAVE);

length longest sequence of capital letters (CAPMAX);
e sum length sequences of capital letters (CAPTOT).
Sample size: 3065 training, 1536 test.

Choice of f;(-): smoothing cubic splines with df = 4.
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Example: logistic regression for email spam data

Name Num. df Coefficient Std. Error Z Score Nonlinear
P-value

Positive effects

our 5 3.9 0.566 0.114 4.970 0.052
over 6 3.9 0.244 0.195 1.249 0.004
remove 7 4.0 0.949 0.183 5.201 0.093
internet 8 4.0 0.524 0.176 2.974 0.028
free 16 3.9 0.507 0.127 4.010 0.065
business 17 3.8 0.779 0.186 4.179 0.194
hpl 26 3.8 0.045 0.250 0.181 0.002
ch! 52 4.0 0.674 0.128 5.283 0.164
ch$ 53 3.9 1.419 0.280 5.062 0.354
CAPMAX 56 3.8 0.247 0.228 1.080 0.000
CAPTOT 57 4.0 0.755 0.165 4.566 0.063
Negative effects
hp 25 3.9 —1.404 0.224 —6.262 0.140
george 27 3.7 —5.003 0.744 —6.722 0.045
1999 37 3.8 —0.672 0.191 —3.512 0.011
re 45 3.9 —0.620 0.133 —4.649 0.597
edu 46 4.0 —1.183 0.209 —5.647 0.000
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Example: logistic regression for email spam data
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Tree-based Methods: introduction

Consider a regression problem, Y the response, X the input matrix.

A tree is a recursive binary partition of the feature space:
e each time, a region is divide into two or more regions;
> until a stopping criterion applies;
e at the end, the input space is split in M regions R,,;
e a constant ¢, is fitted to each R,,.

The final prediction is

m1(X € Ry,),

=
>
I
NGE
>

where ¢, is an estimate for the region R,, (e.g., ave(y;|z; € Ry,)).
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Tree-based Methods: introduction
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Tree-based Methods: introduction

Note:
e the split can be represented as a junction of a tree;
e this representation works for p > 2;

e each observation is assigned to a branch at each junction;

e the model is easy to interpret.
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Tree-based Methods: introduction
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How to grow a regression tree: split

How to grow a regression tree:
e we need to automatically decide the splitting variables . ..
e ...and the splitting points;
e we need to decide the shape (topology) of the tree.

Using a sum of squares criterion, Zf\il(yl — fx:))?,
e the best ¢, = ave(y;|x; € Ry);

e finding the best partition in terms of minimum sum of squares
is generally computationally infeasible

!
go greedy

STK-IN4300: lecture 7 20/ 43



UiO 2 University of Oslo

STK-IN4300 - Statistical Learning Methods in Data Science

How to grow a regression tree: greedy algorithm

Starting with all data:

o for each X, find the best split point s
> define the two half-hyperplanes,
> Rai(j,s) = {X|X; < s};
> Ro(j,s) = {X|X; > s};
*> the choice of s can be done really quickly;

e for each j and s, solve

min[min D (yi—cl)Q—l—Hgn S i — )

Js S . .
z;€R1(4,9) 2;€R2(],5)

e the inner minimization is solved by
> &1 = ave(yilzi € Ri(j,9));
> ¢ = ave(y;|x; € Ra(4, 9)).

e the identification of the best (j, s) is feasible.
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How to grow a regression tree: when to stop

The tree size:
e is a tuning parameter;
e it controls the model complexity;
e its optimal values should be chosen from the data.

Naive approach:
e split the tree nodes only if there is a sufficient decrease in the

sum-of-squares (e.g., larger than a pre-specified threshold);
> intuitive;
> short-sighted (a split can be preparatory for a split below).

Preferred strategy:
e grow a large (pre-specified # of nodes) or complete tree Tp;

e prune it (remove branches) to find the best tree.
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How to grow a regression tree: cost-complexity pruning

Consider a tree T' < Ty computed by pruning T and define:

R, the region defined by the node m;

|T| the number of terminal nodes in T’
N,,, the number of observations in R,,, Ny, = #{z; € Ry, };

¢ the estimate in Ry, &, = Nt ineRm Yi
Qun(T) the loss in Ry, Qun(T) = N, DiwieRr,, (Yi — ém)?.

Then, the cost complexity criterion is

T
Ca(T) = Z NQO(T) + a|T|'
m=1
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How to grow a regression tree: cost-complexity pruning

The idea is to find the subtree T; < Ty which minimizes C\,(T):
e Yo, find the unique subtree T, which minimizes C(T);

e through weakest link pruning:
> successively collapse the internal node that produces the

smallest increase in Zg‘:l N Q@ (T);
> until the single node tree;
> find T, within the sequence;

e find & via cross-validation.

Here the tuning parameter a:
e governs the trade-off between tree size and goodness of fit;
e |arger values of « correspond to smaller trees;

e o =0 — full tree.
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Classification trees: definition

No major differences between regression and classification trees:

e define a class k € {1,..., K} for each region,
km = argmax;, P, = argmaxy N,;l 2 1(y; = k) p;
xiERm

e change the loss function from @,,(7T) to:
> 0-1loss: N' Yo cr L(yi # km);
» Gini index: Zszl Pk (L — Dk );
> deviance: Y1, Pk 108 Pmic;

> all three can be extended to consider different error weights.
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Classification trees: loss functions
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Classification trees: example
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Tree-based Methods: remarks

Tree-based methods:

fast to construct, interpretable models;

can incorporate mixtures of numeric and categorical inputs;
immune to outliers, resistant to irrelevant inputs;

lack of smoothness;

difficulty in capturing additive structures;

highly unstable (high variance).
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Bagging: Galton (1907)

450 NATURE

[Maren 7, 1907

17%0 at Moyeni, Basutoland, on August 23.
yearly value of the absolute maxima was 86%9, and of the
corresponding minima 41°6. The mean temperature for
the year was 0%g below the average. The stormiest month
was October, and the calmest was April.

We have also received the official meteorological year-
books for South Australia (1904) and Mysore (1905). Both
of these works contain valuable means for previous years.

Forty Years of Southern New Mexico Climate.—Bulletin
No. 59 of the New Mexico College of Agriculture contains
the meteorological data recorded at the experimental station
from 1892 to 1903 inclusive, together with results of
temperature and rainfall observations at other stations in
the Mesilla Valley for most of the years between 1851 and
1890, published some years ago by General Greely
“ Report on the Climate of New Mexico.” The station is
situated in lat. 32° 15/ N., long. 106° 45' W., and is
3868 feet above sealevel. The data have a general appli-
cation to those portions of southern New Mexico with
an altitude less than 4000 feet. The mean annual tempera-
ture for the whole period was 61%6, mean maximum
(fourteen years) 76°8, mean minimum 41%4, absolute
maximum 106° (which occurred several times), absolute
minimum 1° (December, 1893). The mean annual rain-
fall was 88 inches; the smallest yearly amount was
3-5 inches, in 1873, the largest 17-1 inches, in 1905. Most
of the rain falls during July, August, and September.
The relative humidity is low, the mean annual amount being
about 51 per cent. The bulletin was prepared by J.
Tinsley, vicedirector of the station.

Meteorological Observations in Germany.—The results

‘The mean

of the observations made under the system of the Deutsche |

Seewarte, Hamburg, for 1903, at ten stations of the second |

nrdH and At fifty-six storm-warning stations, have been
This is the twenty-cighth yearly volume

pubhshed by the Seewarte, and forms part of the series of
erman meteorological year-books. We have frequently
referred to this excellent series, and the volume in ques-
tion is similar in all respects to its predecessors; it con-
tains most vn!uable data rela[mg to rhe Nor(h SBd .md

lein an
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Distribution of the estimates of the dressed weight of a
particular living ox, made by 787 different persons.

| Centites I
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1207 Ibs. pee =37

\

B |
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10 109 | - o8 —70 +28
15 1126 oo 8 -57 . 424
20 1148 - 59 ~ 46 +13
7125 1162 1 - 45 ,  -37 + 8
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41, 93, the first and shird quartiles, stand at 25° and 75 respscuively.

71, the median or middlemost value, stands at 50°

The dressed weight proved to be 1198 Ib

According to the democratic principle of * one vote one
value,” the middlemost estimate expresses the wox populi,
every other estimate being condemned as too low or too
high by a majority of the voters (for fuller explanation
:eé‘ “ One Vote, One Value,” Naturg, February 28,

. w the middlemost estimate is 1207 Ib.,

dnd \he _weight of the dressed ox proved to be 1108 Ib.}
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Bagging: Galton (1907)

In 1907, Sir Francis Galton visited a country fair:

A weight-judging competition was carried on at the annual show of
the West of England Fat Stock and Poultry Exhibition recently
held at Plymouth. A fat ox having been selected, competitors
bought stamped and numbered cards [...] on which to inscribe
their respective names, addresses, and estimates of what the ox
would weigh after it had been slaughtered and “dressed”. Those
who guessed most successfully received prizes. About 800 tickets
were issued, which were kindly lent me for examination after they
had fulfilled their immediate purpose.
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Bagging: Galton (1907)

After having arrayed and analyzed the data, Galton (1907) stated:

It appears then, in this particular instance, that the vox populi is
correct to within 1 per cent of the real value, and that the
individual estimates are abnormally distributed in such a way that
it is an equal chance whether one of them, selected at random,
falls within or without the limits of -3.7 per cent and +2.4 per cent
of their middlemost value.

Concept of “Wisdom of Crowds” (or, as Schapire & Freund,
2014, “how it is that a committee of blockheads can somehow
arrive at a highly reasoned decision, despite the weak judgement of
the individual members.")
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Bagging: wisdom of crowds
Wisdom of Crowds
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Bagging: translate this message into trees

How do can we translate this idea into tree-based methods?

e we can fit several trees, then aggregate their results;
e problems:

> ‘“individuals” are supposed to be independent;
> we have only one dataset ...

How can we mimic different datasets while having only one?
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Bagging: the solution is ...

—_----- Bootstrap
-- replications

(
{ oo | .ce-------27 Bootstrap
e .-~ samples

- Trainjing
sample
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Bagging: bootstrap trees
Original Tree b=1 b=2
x.1<0.395 x.1<0.555 x.2 <0.205

1 1
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Bagging: bootstrap trees
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Bagging: bootstrap trees

The procedure so far:
e generate bootstrap samples;
e fit a tree on each bootstrap sample;

e obtain B trees.

At this point, aggregate the results. How?

e consensus: G(z) = argmax, qx(z), ke {1,..., K},
> where g () is the proportion of trees voting for the category k;

e probability: G(z) = argmax;, B! Zszlp,[cb] (7),
ke{l,...,K},

> where p,[f](ac) is the probability assigned by the b-th tree to

category k;
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Test Error
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Bagging: general

In general, consider the training data Z = {(y1,x1),..., (yn,zN)}-
The bagging (bootstrap aggregating) estimate is defined by

Joag(@) = Ep[f*(2)],

where:
e P is the empirical distribution of the data (y;, z;);
° f* (x) is the prediction computed on a bootstrap sample Z*;

o i, (yf,a¥) ~P.

The empirical version of the bagging estimate is

B ~
fbag Z f

where B is the number of bootstrap samples.

STK-IN4300: lecture 7 39/ 43



UiO 2 University of Oslo
STK-IN4300 - Statistical Learning Methods in Data Science

Bagging: variance

Bagging has smaller prediction error because it reduces the
variance component,

A~

Ep[(Y — f*(2))’] = Ep[(Y — foag(®) + foag(a) — F*(2))?]
— Ep[(Y — foag(2)2] + Ep[(foag(x) — f*(2))?]
> Ep[(Y — foag(2))?],

where P is the data distribution.

Note that this does not work for 0-1 loss:
e due to non-additivity of bias and variance;

e bagging makes better a good classifier, worse a bad one.
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Bagging: from bagging to random forests

The average of B identically distributed r.v. with variance o2 and
positive pairwise correlation p has variance

1—
BPUQ.

p0'2 +

e as B increases, the second term goes to 0;

e the bootstrap trees are p. correlated — first term dominates.

l

construct bootstrap tree as less correlated as possible

!

random forests
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Bagging: from bagging to boosting

Bagged Decision Rule Boosted Decision Rule
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