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Information and measurability

• In this lecture our standing assumption is that #Ω = K <∞.

Definition 1
Outcomes of an experiment ω1, ...., ωK are called elementary events or sample
points and the finite set Ω = {ω1, ...., ωK} is called the space of of elementary
events or the sample space.

Definition 2
Events are all subsets A ⊆ Ω for which, under the conditions of the
experiment, one can conclude that either “the outcome ω ∈ A” or “the
outcome ω /∈ A”.

Example 3
The random experiment consists in tossing a coin three times.

Ω = {HHH,HHT ,HTH,HTT ,THH,THT ,TTH,TTT} , K = 8.

Event = ” 2 heads in all “ = {HHT ,HTH,THH} ⊂ Ω.
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Information and measurability

Definition 4
A collection F of subsets of Ω is called an algebra on Ω if

1. Ω ∈ F .
2. A ∈ F ⇒ Ac := Ω \ A ∈ F .
3. A,B ∈ F ⇒ A ∪ B ∈ F .

Remark 5

• Note that ∅ = Ωc ∈ F and A,B ∈ F ⇒ A ∩ B = (Ac ∪ Bc )c ∈ F . Hence,
an algebra F is a family of subsets of Ω which is closed under
complementation and finitely many set operations (intersection and union).

• For sets with infinite cardinality we need the closedness property to hold
for infinitely many set operations. In this case, we say that a collection F
of subsets of Ω is a σ-algebra on Ω if 1., 2. and
3′. {An}n≥1 ⊆ F ⇒

⋃
n≥1 An ∈ F .

• For Ω with #Ω <∞ both concepts coincide.
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Information and measurability

Example 6
Consider the following examples

1. F1 = {∅,Ω} trivial algebra. (contains no information)
2. F1 = P (Ω) collection of all subsets of Ω. (contains all the information)
3. F3 = {∅,Ω,A,Ac} algebra generated by the event A. (contains the

minimal information needed to decide if A has occurred or not)

Definition 7
Let S be a class of subsets of Ω. Then a (S), the algebra generated by S, is
the smallest algebra on Ω containing S. That is,

1. S ⊆ a (S) ,
2. If S ⊆ F , where F is an algebra, then S ⊆ a (S) ⊆ F .

Note that

• If S1 ⊆ S2 then a (S1) ⊆ a (S2).
• The intersection of an arbitrary number of algebras is an algebra.
• a (S) is the intersection of all the algebras on Ω containing S. 5/24



Information and measurability

Example 8
Let Ω = {ω1, ω2, ω3, ω4}.

1. S1 = {{ω1}} , then

a (S1) = {Ω, ∅, {ω1} , {ω2, ω3, ω4}} .

2. S2 = {{ω1} , {ω2, ω3} , {ω4}}, then

a (S2) = {Ω, ∅, {ω1} , {ω2, ω3} , {ω4} , {ω2, ω3, ω4} , {ω1, ω4} , {ω1, ω2, ω3}} .

3. S3 = {{ω1} , {ω1, ω4}}, then

a (S3) = {Ω, ∅, {ω1} , {ω1, ω4} , {ω2, ω3, ω4} , {ω2, ω3} , {ω1, ω2, ω3} , {ω4}} .

Note that a (S1) ⊆ a (S2). The algebra a (S2) contains the events in a (S1)
and more. Hence, a (S2) is more informative than a (S1).
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Information and measurability

An interesting class of subsets of Ω are those which form a partition of Ω.
Definition 9
A class of subsets π = {A1, . . . ,Am} of Ω is a partition of Ω if

1. Ai ∩ Aj = ∅, i 6= j,
2. ∪m

i=1Ai = Ω.

Definition 10
Given two partitions π1, π2 of Ω, we say that π2 is finer than (or refines) π1, if
for any A ∈π2 there exists B ∈ π1 such that A ⊆ B and we will denote it by
π1 ⊆ π2.

Definition 11
Given two partitions π1, π2 of Ω, we may define its intersection π1 ∩ π2 to be
the following partition

π1 ∩ π2 = {A ∩ B : A ∈ π1 and B ∈ π2} .

Note that, in general, neither π1 ⊆ π2 nor π2 ⊆ π1, but π1 ⊆ π1 ∩ π2 and
π2 ⊆ π1 ∩ π2.
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Information and measurability

Example 12

•
A1 A2

A3 A4
⊆

B1 B2 B3

B3 B4

π1 π2

•
A1

A2
neither ⊆ nor ⊇ B1 B2

π3 π4

But π3 ∩ π4 = π1 and π3 ⊆ π1, π4 ⊆ π1.
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Information and measurability

Remark 13
Why are partitions interesting?

• For any algebra F on Ω, there exists a partition π such that F = a (π)
(bijection).

• The elements of a (π) are all possible unions of the elements in π. (easy
structure)

• Let X : Ω→ {x1, . . . , xM}, where M ≤ K = #Ω, represent a measurament
in a random experiment. Then, the following class of subsets of Ω is a
partition

πX =
{

X−1 (xi ) = {ω ∈ Ω : X (ω) = xi} , i = 1, ...,M
}
. (easy to interpret)

Definition 14
Let F be an algebra on Ω. We say that function X : Ω→ {x1, . . . , xM} is
F-measurable (measurable with respect to F) if

X−1 (xi ) = {ω ∈ Ω : X (ω) = xi} ∈ F , i = 1, ...,M.

X is a random variables if and only if X is P (Ω)-measurable. 9/24



Information and measurability

Definition 15
The algebra generated by a finite number of r.v. X1,X2, . . . ,Xn , denoted by
a (X1,X2, . . . ,Xn), is defined as a

(⋂n
i=1 πXi

)
.

Remark 16

• a (X) is the smallest algebra F such that X is F-measurable.
• Let F = a (π) where π is a partition of Ω. Then, X is F-measurable if

and only if X is constant on each element of the partition π.
• Usually, P (Ω) is strictly finer than a (X), that is, by observing X we

cannot get all the information available in the sample space Ω.
• a (X) = P (Ω) if and only if X takes K = #Ω different values.
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Information and measurability

Example 17
Let Ω = {ω1, ω2, ω3, ω4}. Consider the random variables

X (ω) =
{

2 if ω = ω1, ω2

4 if ω = ω3, ω4
Y (ω) =


1 if ω = ω1

2 if ω = ω2

3 if ω = ω3

4 if ω = ω4

.

Then,

πX = {{ω1, ω2} , {ω3, ω4}} , a (X) = a (πX ) = {∅,Ω, {ω1, ω2} , {ω3, ω4}} ,

πY = {{ω1} , {ω2} , {ω3} , {ω4}} a (Y ) = a (πY ) = P (Ω) .

Let Z be the “random variable” Z ≡ 1. Then, πZ = {Ω} and
a (Z) = a (πZ ) = {∅,Ω}.

Note that Z (in fact any constant random variable) is measurable with
respect to any algebra on Ω.
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Information and measurability

Definition 18
A filtration F = {Ft}t=0,...,T on Ω is a sequence of algebras on Ω such that
Ft ⊆ Ft+1, t = 0, . . . ,T .

• We will always assume that F0 = {∅,Ω} and usually FT = P (Ω).
• A filtration models the evolution of the information at our disposal

through time.
• At time t = 0 we have no information and at time T , if FT = P (Ω), we

have full information.
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Information and measurability

Two graphical ways to represent the flow of information:

• Partitions

ω1 ω5

ω2 ω6

ω3 ω7

ω4 ω8

ω1 ω5

ω2 ω6

ω3 ω7

ω4 ω8

ω1 ω5
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ω3 ω7
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Information and measurability

Definition 19
A stochastic process X = {X (t)}t=0,...,T is a collection of random variables
indexed by t = 0, . . . ,T . You can see it as a function
X : Ω× {0, . . . ,T} → R or as random variable X : Ω→ R{0,...,T}, where
R{0,...,T} denotes the set of all real-valued functions with domain of definition
{0, . . . ,T}.

Definition 20
We say that a stochastic process X is adapted to the filtration F or F-adapted
if Xt is Ft -measurable, t = 0, . . . ,T .

Definition 21
The natural filtration generated by a stochastic process X , denoted by FX , is
defined by

FX =
{
FX

t = a (X (0) ,X (1) , . . . ,X (t))
}

t=0,...,T
.

• FX is the minimal filtration to which X is adapted to. It contains the
information that you can get by observing the process X . 14/24



Information and measurability

Definition 22
We say that a process X = {X (t)}t=1,...,T is predictable with respect to a
filtration F or F-predictable if Xt is Ft−1-measurable, t = 1, . . . ,T

Example 23
Let Ω = {ω1, ω2, ω3, ω4} and X = {X (t)}t=0,1,2 with X (0) = 3,

X (1, ω) =
{

5 if ω = ω1, ω2

2 if ω = ω3, ω4
, X (2, ω) =


6 if ω = ω1, ω2

3 if ω = ω3

2 if ω = ω4

.

FX
0 = a (X (0)) = a

(
πX(0)

)
= {∅,Ω} ,

FX
1 = a (X (0) ,X (1)) = a

(
πX(0) ∩ πX(1)

)
= a
(
πX(1)

)
= a ({{ω1, ω2} , {ω3, ω4}})

= {∅,Ω, {ω1, ω2} , {ω3, ω4}} ,

FX
2 = a (X (0) ,X (1) ,X (2)) = a

(
πX(0) ∩ πX(1) ∩ πX(2)

)
= a
(
πX(2)

)
= a ({{ω1, ω2} , {ω3} , {ω4}})
= {∅,Ω, {ω1, ω2} , {ω3} , {ω4} , {ω1, ω2, ω3} , {ω1, ω2, ω4} , {ω3, ω4}}

In this case FX
2 6= P (Ω). Check what happens if X (2, ω2) = 3. 15/24



Information and measurability

Remark 24
The systematic way to compute a (S) , where S ⊆ P (Ω), is to identify the
finest partition of Ω that you can obtain by basic set operations on all
elements of S, denoted by πS . Then, the elements of a (S) will all possible
unions of elements in πS .
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Conditional expectation

• Recall that a probability P on a finite sample space Ω = {ω1, . . . , ωK} is a
function P : Ω→ [0, 1] such that P (ωi ) > 0,i = 1, . . . ,K and∑K

i=1 P (ωi ) = 1.
• The triple (Ω,P (Ω) ,P) is a probability space.
• Given an event A ∈ P (Ω) the probability of A happening is given by

P (A) =
∑

ω∈A P (ω).
• We say that two events A,B ∈ P (Ω) are independent if

P (A ∩ B) = P (A) P (B).
• Given two events A,B ∈ P (Ω), the probability of A given B, denoted by

P ( A|B) = P (A ∩ B) /P (B).

Definition 25
Given two algebras F1,F2 on Ω we say that they are independent if for all
A ∈ F1 and B ∈ F2 we have that A and B are independent.

Definition 26
Given a random variable X we define its expectation by

E [X ] =
∑
ω∈Ω

X (ω) P (ω) .
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Conditional expectation

Definition 27

Given an algebra F and a random variable X we define the conditional
expectation of X given F as the unique random variable Z , denoted by
E [ X | F ], satisfying

1. Z is F-measurable.
2. E [1AX ] = E [1AZ ], A ∈ F .

Note that since E [ X | F ] is F-measurable, it is constant on the partition that
generates F .

How we compute E [ X | F ]?
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Conditional expectation

Definition 28
Let A ∈ P (Ω) and X be a random variable. Then, the conditional
expectation of X given A is the quantity

E [ X |A] =
∑

x

xP ( X = x |A) ,

where x are the values taken by X and

P ( X = x |A) = P ({ω : X (ω) = x} ∩ A)
P (A) .

Proposition 29
Let F be an algebra on Ω, X be a random variable and let π = {A1, . . . ,Am}
be the partition of Ω such that F = a (π). Then,

E [ X | F ] (ω) =
m∑

i=1

E [ X |A] 1Ai (ω) .
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Conditional expectation

Remark 30

• Usually we are given (or we guess) a candidate Z to be E [ X | F ], then we
need to check conditions 1) and 2) in Definition 27.

• When F = σ (π) , π a partition it suffices to check that the candidate Z is
constant over the elements of π (F-measurable) and check condition 2) in
Definition 27 only for Ai ∈ π.
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Conditional expectation

Example 31
Let Ω = {ω1, . . . , ω4} and P (ωi ) = 1/4, i = 1, ..., 4. Consider the algebra
F = {∅,Ω, {ω1, ω2} , {ω3, ω4}} and the random variable X given by

X (ω) =


9 if ω = ω1

6 if ω = ω2, ω3

3 if ω = ω4

= 91{ω1} (ω) + 61{ω2,ω3} (ω) + 31{ω4} (ω) .

Then,

E [ X | {ω1, ω2}] =
∑

ω∈{ω1,ω2}

X (ω) P (ω)
P ({ω1, ω2})

= 9 1/4
1/2 + 6 1/4

1/2 = 15
2 ,

E [ X | {ω3, ω4}] =
∑

ω∈{ω3,ω4}

X (ω) P (ω)
P ({ω3, ω4})

= 6 1/4
1/2 + 3 1/4

1/2 = 9
2 ,

and

E [ X | F ] (ω) = E [ X | {ω1, ω2}] 1{ω1,ω2} (ω) + E [ X | {ω3, ω4}] 1{ω3,ω4} (ω)

= 15
2 1{ω1,ω2} (ω) + 9

2 1{ω3,ω4} (ω)
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Conditional expectation

Theorem 32
Suppose X and Y are random variables on (Ω,P (Ω) ,P) , G is an algebra on
Ω, a, b ∈ R. Then,

1. Linearity: E [ aX + bY | G] = aE [ X | G] + bE [ Y | G].
2. Law of total expectation: E [E [ X | G]] = E [X ].
3. Independence: If X is independent of G then E [ X | G] = E [X ].
4. Measurability: If Y is G-measurable then E [ XY | G] = YE [ X | G].
5. Tower property: If H is an algebra on Ω such that H ⊆ G, then

E [E [ X |H]| G] = E [ X |H] ,
E [E [ X | G]|H] = E [ X |H] .
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Conditional expectation

Definition 33
Let F = {Ft}t=0,...,T be a filtration on (Ω,P (Ω) ,P) . A stochastic process
X = {X (t)}t=0,...,T is a (F-) martingale if

1. X is F-adapted.
2. E [ X (t + s)| Ft ] = X (t), t ∈ {0, . . . ,T} ,s ≥ 0,t + s ∈ {0, . . . ,T} .

Intuitively, the best forecast of the process at some future time t + s given
today’s information Ft is the value of the process today.
Remark 34

• An F-adapted process X is called a (sub) supermartingale if

E [ X (t + s)| Ft ] (≥) ≤ X (t) .

• If #Ω = +∞ then we need to impose that E [|X (t)|] <∞ for all
t = 0, . . . ,T .

• In the previous definitions we can change X (t + s) by X (t + 1).
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Conditional expectation

Proposition 35
Let F = {Ft}t=0,...,T be a filtration on (Ω,P(Ω),P). Let H be an
F-predictable process and M an F-martingale. Then, the process Y defined
by Y0 = c (a constant) and

Y (t) =
t∑

s=1

H (s) (M (s)−M (s − 1)) =
t∑

s=1

H (s) ∆M (s) , t = 1, . . . ,T ,

is an F-martingale with E [Y (t)] = c.
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