
LIST OF FORMULAS FOR STK1100 AND STK1110

(Version of 11. November 2015)

1. Probability

Let A,B,A1, A2, . . . , B1, B2, . . . be events, that is, subsets of a sample space Ω.

a) Axioms:
A probability function P is a function from subsets of the sample space Ω to real
numbers, satisfying

P (Ω) = 1

P (A) ≥ 0

P (A1 ∪ A2) = P (A1) + P (A2) if A1 ∩ A2 = ∅

P
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai) if Ai ∩ Aj = ∅ for i 6= j

b) P (A′) = 1− P (A)

c) P (∅) = 0

d) A ⊂ B ⇒ P (A) ≤ P (B)

e) The addition law of probability/ the sum rule:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

f) Conditional probability:

P (A|B) =
P (A ∩B)

P (B)
if P (B) > 0

g) Total probability:

P (A) =
n∑
i=1

P (A|Bi)P (Bi) if
n⋃
i=1

Bi = Ω and Bi ∩Bj = ∅ for i 6= j

h) Bayes’ Rule:

P (Bj|A) =
P (A|Bj)P (Bj)∑n
i=1 P (A|Bi)P (Bi)

under same conditions as in g)

i) A and B are (statistically) independent events if P (A ∩B) = P (A)P (B)
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j) A1, . . . , An are (statistically) independent events if

P (Ai1 ∩ · · · ∩ Aim) = P (Ai1)P (Ai2) · · ·P (Aim)

for any subset of indexes i1, i2, . . . , im

k) The product rule:

P (A1 ∩ · · · ∩ An)

= P (A1)P (A2|A1)P (A3|A1 ∩ A2) · · ·P (An|A1 ∩ A2 ∩ · · · ∩ An−1)

2. Combinatorics

a) Two operations that can be done in respectively n and m different ways can be
combined in n ·m ways.

b) The number of ordered subsets of r elements drawn with replacement from a set
of n elements is nr

c) The number of ordered subsets of r elements drawn without replacement from a
set of n elements is n(n− 1) · · · (n− r + 1)

d) Number of permutations of n elements is n! = 1 · 2 · 3 · · · (n− 1) · n

e) The number of unordered subsets of r elements drawn from a set of n elements
is (

n

r

)
=
n(n− 1) · · · (n− r + 1)

r!
=

n!

r! (n− r)!

f) Number of ways a set of n elements can be divided into r subsets with ni elements
in the ith subset is (

n

n1 n2 · · · nr

)
=

n!

n1!n2! · · · nr!
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3. Probability distributions

a) For a random variable X (discrete or continuous), F (x) = P (X ≤ x) is the
cumulative distribution function (cdf).

b) For a discrete random variable X which can take the values x1, x2, x3, . . .
we have

p(xj) = P (X = xj)

F (x) =
∑
xj≤x

p(xj)

p(xj) is a point probability if

p(xj) ≥ 0 for all j∑
j

p(xj) = 1

c) For a continuous random variable X we have

P (a < X < b) =

∫ b

a

f(x)dx

F (x) =

∫ x

−∞
f(u)du

f(x) = F ′(x)

f(x) is a probability density function if

f(x) ≥ 0∫ ∞
−∞

f(x)dx = 1

d) For two random variables X and Y (discrete or continuous) the
joint cumulative distribution function is F (x, y) = P (X ≤ x, Y ≤ y)

e) For discrete random variables X and Y which can take the values x1, x2, . . . and
y1, y2, . . . respectively, we have

p(xi, yj) = P (X = xi, Y = yj)

F (x, y) =
∑
xi≤x

∑
yj≤y

p(xi, yj)

p(xi, yj) is a joint point probability if it fullfills the same conditions as in b)
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f) For continuous random variables X and Y we have

P ( (X, Y ) ∈ A ) =

∫ ∫
A

f(u, v)dvdu

F (x, y) =

x∫
−∞

y∫
−∞

f(u, v)dvdu

f(x, y) =
∂2F (x, y)

∂x∂y

f(x, y) is a joint probability density function if it fullfills the same conditions as
in c)

g) Marginal point probabilities:

pX(xi) =
∑
j

p(xi, yj) (for X)

pY (yj) =
∑
i

p(xi, yj) (for Y )

h) Marginal probability densities:

fX(x) =

∞∫
−∞

f(x, y)dy (for X)

fY (y) =

∞∫
−∞

f(x, y)dx (for Y )

i) Independence:

The random variables X and Y are independent if

p(xi, yj) = pX(xi)pY (yj) (discrete)

f(x, y) = fX(x)fY (y) (continuous)

j) Conditional point probabilities:

pX|Y (xi|yj) =
p(xi, yj)

pY (yj)
(for X given Y = yj)

pY |X(yj|xi) =
p(xi, yj)

pX(xi)
(for Y given X = xi)

Assuming pY (yj) > 0 and pX(xi) > 0, respectively. Conditional point probabili-
ties can be treated as regular point probabilities.
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k) Conditional probability densities:

fX|Y (x|y) =
f(x, y)

fY (y)
(for X given Y = y)

fY |X(y|x) =
f(x, y)

fX(x)
(for Y given X = x)

Assuming fY (y) > 0 and fX(x) > 0, respectively. Conditional probability densi-
ties can be treated as regular probability densities.

4. Expectation

a) The expected value of a random variable X is defined as

E(X) =
∑
j

xjp(xj) (discrete)

E(X) =

∫ ∞
−∞

xf(x)dx (continuous)

b) For a real function g(X) of a random variable X, the expectated value is

E[g(X)] =
∑
j

g(xj)p(xj) (discrete)

E[g(X)] =

∫ ∞
−∞

g(x)f(x)dx (continuous)

c) E(a+ bX) = a+ bE(X)

d) For a real function g(X, Y ) of two random variables X and Y , the expected value
is

E
[
g(X, Y )

]
=
∑
i

∑
j

g(xi, yj)p(xi, yj) (discrete)

E
[
g(X, Y )

]
=

∞∫
−∞

∞∫
−∞

g(x, y)f(x, y)dydx (continuous)

e) If X and Y are independent E
[
g(X)h(Y )

]
= E

[
g(X)

]
· E
[
h(Y )

]
f) If X and Y are independent E(XY ) = E(X) · E(Y )

g) E

(
a+

n∑
i=1

biXi

)
= a+

n∑
i=1

biE(Xi)
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h) Conditional expectation:

E(Y |X = xi) =
∑
j

yjpY |X(yj|xi) (discrete)

E(Y |X = x) =

∞∫
−∞

yfY |X(y|x)dy (continuous)

5. Variance and standard deviation

a) The variance and standard deviation of a random variable X are defined as

V(X) = E[(X − µ)2]

sd(X) =
√

V(X)

b) V(X) = E(X2)−
(
E(X)

)2

c) V(a+ bX) = b2 V(X)

d) If X1, . . . , Xn are independent we have

V

(
a+

n∑
i=1

biXi

)
=

n∑
i=1

bi
2 V(Xi)

e)

V

(
a+

n∑
i=1

biXi

)
=

n∑
i=1

bi
2 V(Xi) +

n∑
i=1

∑
j 6=i

bibjCov(Xi, Xj)

f) Chebyshev’s inequality:

Let X be a random variable with µ = E(X) and σ2 = V(X).
For all t > 0 we have

P (|X − µ| > t) ≤ σ2

t2

6. Covariance and correlation

a) Let X and Y be random variables with µX = E(X), σ2
X = V(X), µY = E(Y )

and σ2
Y = V(Y ). The covariance and correlation of X and Y is then defined as

Cov(X, Y ) = E
[
(X − µX)(Y − µY )

]
ρ = Corr(X, Y ) =

Cov(X, Y )

σXσY
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b) Cov(X,X) = V(X)

c) Cov(X, Y ) = E(XY )− E(X)E(Y )

d) X, Y independent ⇒ Cov(X, Y ) = 0

e)

Cov

(
a+

n∑
i=1

biXi , c+
m∑
j=1

djYj

)
=

n∑
i=1

m∑
j=1

bidjCov(Xi, Yj)

f) −1 ≤ Corr(X, Y ) ≤ 1 and Corr(X, Y ) = ±1 if and only if there exists two num-
bers a, b such that Y = a+ bX (except, eventually, on areas of zero probability)

7. Moment generating functions

a) For a random variable X (discrete or continuous) the moment generating function
is MX(t) = E(etX)

b) If the moment generating function MX(t) exists for t in an open interval contain-
ing 0, then it uniquely determines the distribution of X.

c) If the moment generating function MX(t) exists for t in an open interval con-
taining 0, then all moments of X exist, and we can find the rth moment by
E(Xr) = M

(r)
X (0)

d) Ma+bX(t) = eatMX(bt)

e) If X and Y are independent: MX+Y (t) = MX(t)MY (t)

8. Some discrete probability distributions

a) Binomial distribution:

Point probability: P (X = k) =
(
n
k

)
pk(1− p)n−k k = 0, 1, . . . , n

Moment generating function: MX(t) = (1− p+ pet)n

Expectation: E(X) = np

Variance : V(X) = np(1− p)

Approximation 1: Z =
X − np√
np(1− p)

is approximately normally distributed

when np and n(1− p) both are sufficiently big (at least 10)

Approximation 2: X is approximately Poisson distributed with parameter λ = np

when n is big and p is small
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Sum rule: X ∼ binomial (n, p), Y ∼ binomial (m, p)

and X, Y independent ⇒ X + Y ∼ binomial (n+m, p)

b) Geometric distribution:

Point probability: P (X = k) = (1− p)k−1p k = 1, 2, . . .

Moment generating function: MX(t) = etp/[1− (1− p)et]
Expectation: E(X) = 1/p

Variance: V(x) = (1− p)/p2

Sum rule: If X is geometrically distributed with probability p then

X − 1 is negative binomial (1, p). Then if X and Y are

geometrically distributed with same p and independent then

X + Y − 2 is negative binomial (2, p)

c) Negative binomial distribution:

Point probability: P (X = k) =
(
k+r−1
r−1

)
pr(1− p)k k = 0, 1, 2, . . .

Moment generating function: MX(t) = {p/[1− (1− p)et]}r

Expectation: E(X) = r(1− p)/p
Variance: V(X) = r(1− p)/p2

Sum rule: X ∼ negative binomial (r1, p),

Y ∼ negative binomial (r2, p)

and X, Y independent

⇒ X + Y ∼ negative binomial (r1 + r2, p)

d) Hypergeometric distribution:

Point probability: P (X = k) =
(Mk )(N−M

n−k )
(Nn)

Expectation: E(X) = n · M
N

Variance: V(X) = nM
N

(1− M
N

)N−n
N−1

Approximation: X is approximately binomial (n, M
N

)

when n is much smaller than N

e) Poisson distribution:

Point probability: P (X = k) = λk

k!
e−λ k = 0, 1, . . .

Moment generating function: MX(t) = eλ(et−1)

Expectation: E(X) = λ
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Variance: V(X) = λ

Approximation: Z =
X − λ√

λ
is approximately normally distributed

when λ is sufficiently big (at least 10)

Sum rule: X ∼Poisson (λ1), Y ∼Poisson (λ2)

and X, Y independent ⇒ X + Y ∼ Poisson (λ1 + λ2)

e) Multinomial distribution:

Point probability: P (N1 = n1, . . . , Nr = nr) = n!
n1!···nr!p

n1
1 · · · pnrr

Here
r∑
i=1

pi = 1 and
r∑
i=1

ni = n

Marginal distribution: Ni ∼ binomial(n, pi)

9. Some continuous probability distributions

a) Normal distribution:

Density: f(x) = 1√
2πσ

e−(x−µ)2/2σ2 −∞ < x <∞

Moment generating function: MX(t) = eµteσ
2t2/2

Expectation: E(X) = µ

Variance: V(X) = σ2

Transformation: X ∼ N(µ, σ2)⇒ a+ bX ∼ N(a+ bµ, b2σ2)

X ∼ N(µ, σ2)⇒ Z = X−µ
σ
∼ N(0, 1)

Sum rule: X ∼ N(µX , σ
2
X), Y ∼ N(µY , σ

2
Y ),

X, Y independent
⇒ X + Y ∼ N(µX + µY , σ

2
X + σ2

Y )

b) Exponential distribution:

Density: f(x) = λe−λx x > 0

Moment generating function: MX(t) = λ/(λ− t) for t < λ

Expectation: E(X) = 1/λ

Variance: V(X) = 1/λ2

Sum rule: X ∼ exp(λ), Y ∼ exp(λ), X and Y independent
⇒ X + Y ∼ gamma(2, 1/λ)

c) Gamma distribution:

Density: f(x) = 1
βαΓ(α)

xα−1e−x/β x > 0
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Gamma function: Γ(α) =
∫∞

0
uα−1e−udu

Γ(α + 1) = αΓ(α)
Γ(n) = (n− 1)! when n is an integer
Γ(1/2) =

√
π, Γ(1) = 1

Moment generating function: MX(t) = [1/(1− βt)]α

Expectation: E(X) = αβ

Variance: V(X) = αβ2

Sum rule: X ∼ gamma(α, β), Y ∼ gamma(δ, β),
X and Y independent ⇒ X + Y ∼ gamma(α + δ, β)

d) Chi-squared distribution:

Density: f(v) = 1
2n/2Γ(n/2)

v(n/2)−1e−v/2 v > 0

n degrees of freedom

Expectation: E(V ) = n

Variance: V(V ) = 2n

Sum rule: U ∼ χ2
n , V ∼ χ2

m , U and V independent
⇒ U + V ∼ χ2

n+m

Result: Z ∼ N(0, 1)⇒ Z2 ∼ χ2
1

e) Student’s t-distribution:

Density: f(t) = Γ[(n+1)/2]√
nπΓ(n/2)

(1 + t2

n
)−(n+1)/2 −∞ < t <∞

n degrees of freedom

Expectation: E(T ) = 0 (n ≥ 2)

Variance: V(T ) = n/(n− 2) (n ≥ 3)

Result: Z ∼ N(0, 1), U ∼ χ2
n, Z,U independent ⇒ Z/

√
U/n ∼ tn

f) Binormal distribution:

Density:

f(x, y) =

1

2πσXσY
√

1−ρ2
exp

{
− 1

2(1−ρ2)

[ (x−µX)2

σ2
X

+ (y−µY )2

σ2
Y
− 2ρ (x−µX)(y−µY )

σXσY

]}
Marginal distribution: X ∼ N(µX , σ

2
X), Y ∼ N(µY , σ

2
Y )

Correlation: Corr(X, Y ) = ρ

Conditional distribution: Given X = x, Y is normally distributed with
expectation E(Y |X = x) = µY + ρ σY

σX
(x− µX)

and variance V(Y |X = x) = σ2
Y (1− ρ2)
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10. One normally distributed sample

If X1, X2, . . . , Xn are independent and N(µ, σ2) distributed then we have that:

a) X = 1
n

n∑
i=1

Xi and S2 = 1
n−1

n∑
i=1

(Xi −X)2 are independent

b) X ∼ N(µ, σ2/n)

c) (n− 1)S2/σ2 ∼ χ2
n−1

d) X−µ
S/
√
n
∼ tn−1

11. Two normally distributed samples

Let X1, X2, . . . , Xn be independent and N(µX , σ
2) distributed, and Y1, Y2, . . . , Ym in-

dependent and N(µY , σ
2) distributed. The two samples are independent of each other.

Let X, Y , S2
X and S2

Y be defined as in 10a). Then we have that:

a) S2
p = [(n− 1)S2

X + (m− 1)S2
Y ]/(m+ n− 2) is a weighted estimator for σ2

b) X − Y ∼ N
(
µX − µY , σ2( 1

n
+ 1

m
)
)

c) (n+m− 2)S2
p/σ

2 ∼ χ2
m+n−2

d) X−Y−(µX−µY )

Sp
√

1
n

+ 1
m

∼ tm+n−2

12. Regression analysis

Assume Yi = β0 +β1xi + εi ; i = 1, 2, . . . , n ; where xij-s are given numbers and εi-s are
independent and N(0, σ2) distributed. Then we have that:

a) The least squares estimators for β0 and β1 are

β̂0 = Y − β̂1x and β̂1 =

∑n
i=1(xi − x)(Yi − Y )∑n

i=1(xi − x)2

b) The estimators in a) are normally distributed and unbiased, and

Var(β̂0) =
σ2
∑n

i=1 x
2
i

n
∑n

i=1(xi − x)2
and Var(β̂1) =

σ2∑n
i=1(xi − x)2

c) Let SSE=
n∑
i=1

(Yi− β̂0− β̂1xi)
2. Then S2 = SSE/(n−2) is an unbiased estimator

for σ2, and (n− 2)S2/σ2 ∼ χ2
n−2
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13. Multiple linear regression

Assume Yi = β0 + β1xi1 + · · · + βkxik + εi ; i = 1, 2, . . . , n ; where xij-s are given
numbers and εi-s are independent and N(0, σ2) distributed. The model can be written
in matrix form as Y = Xβ + ε, where Y = (Y1, . . . , Yn)T , ε = (ε1, . . . , εn)T and
β = (β0, . . . , βk)

T are n-, n- and (k + 1)-dimentional vectors, and X = {xij} (with
xi0 = 1) is a n× (k + 1)-dimentional matrix. Then:

1. The least squares estimator for β is β̂ = (XTX)−1XTY.

2. Let β̂ = (β̂0, . . . , β̂k)
T . Then β̂j-s are normally distributed and unbiased, and

Var(β̂j) = σ2cjj og Cov(β̂j, β̂l) = σ2cjl

where cjl is element (j, l) in the (k + 1)× (k + 1) matrix C = (XTX)−1.

3. Let Ŷi = β̂0 + β̂1xi1 + · · · + β̂kxik, og let SSE =
n∑
i=1

(Yi − Ŷi)
2. Then S2 =

SSE/[n−(k+1)] is an unbiased estimator for σ2, and [n−(k+1)]S2/σ2 ∼ χ2
n−(k+1).

Also, S2 and β̂ are independent.

4. Let S2
β̂j

be the variance estimator for β̂j we get by replacing σ2 with S2 in the

formula for Var(β̂j) (in b). Then (β̂j − βj)/Sβ̂j ∼ tn−(k+1).

12


