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Exercise 1 (Linear regression)
Consider the standard linear regression model

Yi = xiβ + εi, i = 1, ..., n

where ε1, ..., εn
iid∼ N(0, σ2). We can also write the model more compact as

Y = Xβ + εi

whereX here is a matrix with row i corresponding to xi and ε ∼ N(0, σ2In) with In being
the identity matrix of dimension n× n. We will assume X known in this exercise.

(a) Show that the maximum likelihood estimator for β is equal to the least squares
estimator

β̂ = argmin
β

(Y −Xβ)T (Y −Xβ).

(b) Show that the maximum likelihood estimator for β is

β̂ = (XTX)−1XTY .

(c) Find the maximum likelihood estimator for σ2.

Consider a random vector Z = (Z1, ..., Zq). The expectation vector µz for Z, E(Z), is
a vector with ith element equal to the expectation of Zi. The covariance matrix for a
random vector Z, V(Z), is a matrix where the (i, j) element is equal to the covariance
between Zi and Zj.

(d) Show that if A is a matrix and b a vector, then E(AZ + b) = AE(Z) + b and that
V(AZ + b) = AV(Z)AT .

What requirements are there on the matrix A and the vector b?

(e) Show that a covariance matrix always needs to be positive (semi-)definite.

Hint: A matrix C is positive semi-definite if for any vector a we have aTCa ≥ 0.
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(f) Show that the expectation vector of Y is Xβ and use this to show that the expec-
tation vector of β̂ is equal to β.

(g) Show that the covariance matrix for β̂ is equal to σ2(XTX)−1.

Assume now that the first column of X contain only 1’s (corresponding to an intercept
term) while the rest of the elements of X are generated according to the N(0, 1) distribu-
tion.

(h) Within R, generate X for p = 5 and n = 10, 15, 20, 25, · · · , 95, 100 and plot the
variance of the first component of β̂ as a function of n. Make your own choice of σ2.

(i) Within R, generate X for n = 31 and p = 20, 21, ..., 30, 31, 32 and plot the variance
of the first component of β̂ as a function of p. Make your own choice of σ2.

(j) Discuss these results.

Exercise 2 (Statistical decision theory)
Assume a setting where we have explanatory variables x ∈ Rp and a response variable
Y ∈ R. We want to find a predictor f(x) for prediction of Y .

Evaluation of how good f(x) is for prediction can be measured by a loss function
L(Y, f(x)). Statistical desisions theory can be used to derive the optimal predictor given
a specific loss function. In this exercise, we will look at one of the most commonly used
loss functions, the squared loss function

L(y, f(x)) = (y − f(x))2

In principle, we want to minimize L(y, f(x)). However, when applying the predictor, y
will be unknown and the loss is therefore not possible to evaluate. An alternative is then
to try to minimize the expected loss or expected prediction error (EPE) which is given by

EPE(f) = E(L(Y, f(X))) = E(Y − f(X))2 =

∫
x,y

(y − f(x))2p(x, y)dydx

where p(x, y) is the density for (X, Y ). Our task will be to find the function f(x) which
minimizes EPE(f). Note that we in this case also are considering the explanatory variables
as random variables.

(a) Show that f is the function given by

f(x) = argmin
c

EY |X=x([Y − c]2|X = x)

Hint: Use that E(Y − f(X))2 = EXEY |X([Y − f(x)]2|X = x)

(b) Show that the value c than minimizes EY |x([y − c]2|X = x) is

c = E[Y |X = x].
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(c) Consider now a model

Y = g(X) + ε

where ε is a random variable with zero expectation. What is the optimal predictor
in this case?

(d) Assume the model above and further that V(ε) = σ2 and that ε is independent ofX.
Consider a general predictor f(x) (which might be different from the optimal choice
that you derived in the previous point). Derive a general expression for EPE(f) and
show that a lower limit is V(g(X)) + σ2.

Exercise 3 (Loss functions for binary responses)
Assume now a setting where we want to predict a binary response Y ∈ {0, 1} based on
some explanatory variables X ∈ Rp. Assume that the predictor f(x) ∈ {0, 1}. A possible
loss function in this case is

L(y, f(x)) =

{
0 if f(x) = y;
1 otherwise.

Also in this case we want to minimize

EPE(f) = E(L(Y, f(X))

(a) Using similar arguments as for exercise 2, show that

EPE(f) =

∫
x

[1− Pr(Y = f(x)|X = x)]p(x)dx

where p(x) is the marginal density ofX and Pr(Y 6= f(x)|X = x) is the conditional
probability of Y being different of the predictor for a given value of x.

(b) Show that the optimal predictor is

f(x) = argmin
k∈{0,1}

[1− Pr(Y = k|x)] = argmax
k∈{0,1}

Pr(Y = k|x)

and that this corresponds to

f(x) =

{
1 if Pr(Y = 1|x) ≥ 0.5;
0 otherwise.

Discuss this result.

(c) Extend the results above to the case where Y ∈ {0, ..., K − 1}.

(d) Argue why the expected error rate for X = x will be 1−maxk Pr(Y = k|x).
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Exercise 4 (Linear regression)
We will in this exercise look at different aspects related to linear regression. Consider first
a very simple situation where the true model is

Y = β0 + β1x+ ε, ε
iid∼ N(0, σ2). (*)

Assuming we have available data {(x1, y1), ..., (xn, yn)}, we can test the hypothesis

H0 : β1 = 0 against Ha : β1 6= 0

by using that under H0

T =
β̂1

SE(β̂1)
∼ tn−2.

We will look at the performance of this test through a simulation study.

(a) Assume n = 30, β0 = 1, σ2 = 1. For β1 = 0.0, 0.1, 0.2, · · · , 1.9, 2.0, simulate 100
datasets where X ∼ N(0, 1) and Y follows model (*). Record for each simulation
whether H0 is rejected or not (using a signficance level α = 0.05) and plot the
rejection rate as a function of β1.

Discuss the results.

Hint: At the course webpage there is an R script extra4.r which you can use for
this task. Make however sure that you understand what is going on.

Assume now that we also have available a second explanatory variable z. We will also
assume that these variables are generated according to Z ∼ N(0, 1) but that Cor(X,Z) =
0.9. We will however still assume that (*) is the true model but that we in our analysis
assume

Y = β0 + β1x+ β2z + ε, ε
iid∼ N(0, σ2). (**)

(b) Show that if

Z = 0.9X +
√

1− 0.92η

where η ∼ N(0, 1) and independent of X then (X,Z) will have the properties above.
Explain how this can be used to simulate the pair (X,Z) on the computer.

(c) Modify your script from (a) so that you simulate values of the triplets {(xi, zi, yi), i =
1, ..., n} from the true model, but now fit model (**). Record and plot the rejection
rate of H0 as a function of β1 also in this case.

(d) What happends if you increase the correlation between X and Z to 0.99?
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(e) Discuss these results. Are there some aspects that have not been taken into account
in these simulation experiments?

Exercise 5 (Prediction)
Assume the standard linear regression model

Y = β0 + β1x1 + · · ·+ βpxp + ε = xTβ + ε

with the usual assumptions about the noise terms. We will in this exercise consider pre-
diction at a new point x∗,

Y ∗ = β0 + β1x
∗
1 + · · ·+ βpx

∗
p + ε∗ = (x∗)Tβ + ε∗

We will denote the ordinary least squares estimate for β by β̂ as usual.

(a) Denote θ = (x∗)Tβ. Show that θ̂ = (x∗)T β̂ is an unbiased estimate of θ.

(b) Derive an expression for the variance of θ̂, σ2
θ̂
.

You may in the following use that

(n− p− 1)
σ̂2

σ2
∼ χ2

n−p−1,

that β̂ is independent of σ̂2 and that if Z ∼ N(0, 1) andX ∼ χ2
ν with Z andX independent,

then

T =
Z√
X/ν

∼ tν .

(Here χ2
ν is the Chi-square distribution with ν degrees of freedom and tν is the t distribution

with ν degrees of freedom.)

(c) Argue why

T =
θ̂ − θ
sθ̂
∼ tn−p−1

where sθ̂ is the estimate of σθ̂ with σ̂ is inserted for σ.

Use this to construct a 100(1− α)% confidence interval for θ.

(d) Consider now prediction of Y ∗. Show that E[Y ∗ − θ̂] = 0.

Why do we not state this as E[θ̂] = Y ∗?

(e) Derive the variance of Y ∗ − θ̂, σ2
Y ∗−θ̂.
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(f) Argue why

T =
Y ∗ − θ̂
sY ∗−θ̂

∼ tn−p−1

where sY ∗−θ̂ is the estimate of σY ∗−θ̂ with σ̂ is inserted for σ.

Use this to construct a 100(1− α)% prediction interval for Y ∗.

(g) Consider now the Advertising data from the text book (with an R-script available
from the course web-page). In the R-script a command is included that make the
prediction interval. Use help(predict.lm) to see how you can construct a confidence
interval for Y ∗. Discuss the similarities and the difference between this interval and
the prediction interval.

Why do you need to use help(predict.lm) and not help(predict) here?

Exercise 6 (More general loss functons for binary responses)
Consider again the setting of Exercise 3. We will however now consider a more general loss
function

L(y, f(x)) =


0 if f(x) = y;
c0 if y = 0 and f(x) = 1;
c1 if y = 1 and f(x) = 0;

indicating that we put different losses on the two types of errors.
We continue to minimize

EPE(f) = E(L(Y, f(X))

(a) Show that

EPE(f) =

∫
x;f(x)=0

Q1(x)p(x)dx+

∫
x;f(x)=1

Q0(x)p(x)dx

=

∫
I(f(x) = 0)Q1(x)p(x)dx+

∫
I(f(x) = 1)Q0(x)p(x)dx

where

Q0(x) =c0 Pr(Y = 0|X = x)

Q1(x) =c1 Pr(Y = 1|X = x)

and I(·) is the usual indicator function.

(b) Show that the expression above can be rewritten to

EPE(f) =Const +

∫
I(f(x) = 0)[Q1(x)−Q0(x)]p(x)dx
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and use this to argue that the optimal predictor in this case is

f(x) =

{
1 if Pr(Y = 1|X = x) > c0

c1
Pr(Y = 0|X = x);

0 otherwise.

Discuss why this is a reasonable classification rule in this case.

Exercise 7 (Leave-one-out cross-validation and linear regression)
We will in this case explore the LOOCV procedure in the case of the linear regression
model

Yi =β0 + β1xi,1 + · · ·+ βpxi,p + εi

=xTi β + εi, i = 1, ..., n

where xi = (1, xi,1, ..., xi,p)
T and β = (β0, ..., βp). We recall that the least squares estimate

is given by

β̂ = (XTX)−1XTy

while the hat matrix is defined by

H = X(XTX)−1XT .

In order to make clear that there are different types of predictions, we will use ŷi for the
prediction of yi based on all the data while we will use ŷ−ii to be the prediction of yi when
observation i is excluded (the leave-one-out prediction).

(a) We will start with the case p = 0.

(i) Show that ŷi = ȳ for all i in this case.

(ii) Show that the LOOCV prediction of yi in this case is ŷ−ii = 1
n−1

∑
j 6=i yj.

(iii) Show that hii = 1
n
in this case.

(iv) Show that

yi − ŷ−ii =
yi − ŷi
1− 1

n

and that this corresponds to equation (5.2) in the textbook.

(b) Consider now the general case p ≥ 1. We will start by consider the special case i = n.
We will also denote by Xs the design matrix based on the first s observations and
similarly ys to be the vector of the first s responses. Note that X = Xn and y = yn.
We will also use the notation Mn = XT

nXn.

(i) Show that Mn =
∑n

i=1 xix
T
i .
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(ii) Show in general that if A is a symmetric non-singular matrix and v is a vector,
then

[A+ uvT ]−1 = A−1 − A−1uvTA−1

1+vTA−1u
.

This is known as the Sherman-Morrison formula within the linear algebra theory.

(iii) Show that

M−1
n =M−1

n−1 −
x̃nxT

nM−1
n−1

1+xT
n x̃n

where

x̃n =M−1
n−1xn.

(iv) Denote by β̂s = M−1
s X

T
s ys the least squares estimate based on the first s

observations. Show that

β̂ =β̂n

=
[
M−1

n−1 −
x̃nxT

nM−1
n−1

1+xT
n x̃n

]
[XT

n−1yn−1 + xnyn]

=[I − x̃nxT
n

1+xT
n x̃n

]β̂n−1 + 1
1+xT

n x̃n
x̃nyn.

(v) Show that

[I − x̃nxT
n

1+xT
n x̃n

]−1 = I + x̃nx
T
n

and use this to show that

β̂n−1 =[I + x̃nx
T
n ]β̂n − x̃nyn

(vi) Denoting now ŷ−nn = xTn β̂n−1, show that

yn − ŷ−nn =(1 + xTn x̃n)(yn − ŷn)

(vii) Show that the nth diagonal element of H can be written as

Hn,n =xTnM
−1
n xn

= xT
n x̃n

1+xT
n x̃n

and use this to verify equation (5.2) in the textbook for i = n

(viii) Use symmetry arguments to show that equation (5.2) is valid for all i = 1, ..., n.

(c) Discuss how these results can be used for recursive calculation of least squares esti-
mates (as well as the related covariance matrix).
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Exercise 8 (Constant constraints on cubic splines)
Assume we have a cubic spline model

Y =g(x) + ε

where

g(x) =β0 + β1x+ β2x
2 + β3x

3 +
K∑
k=1

β3+kb3+k(x)

and

b3+k(x) =(x− ck)3+ for k = 1, ..., K

Assume now that we want to impose the constraint that g(x) is constant in the intervals
(−∞, c1) and [cK ,∞). We will see what kind of model this reduces to.

(a) Argue why this also can considered as a problem of imposing extra constraints on
natural splines, given by

g(x) =θ0 + θ1x+
K−2∑
k=1

θ1+knk(x)

w here

nk(x) =dk(x)− dK−1(x), k = 1, ..., K − 2

and

dk(x) =
(x− ck)3+ − (x− cK)3+

cK − ck

(b) Show that the extra constant constraints result in that θ1 = 0.

(c) Argue why g(x) is a cubic polynomial for x ∈ [cK ,∞) and that the extra constraints
must result in that g′(x) = 0 in this interval.

(d) Show that the extra constraint results in the constraint

K−2∑
k=1

θ1+k(cK−1 − ck) = 0.

(e) Derive the basis functions in this case.
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Exercise 9 (Multinomial regression)
Consider a setting where Y ∈ {0, 1, ..., K − 1} and we want to classify to one of the K
categories based on some covariate vector x. A possible model is then

Pr(Y = k|x) =
exp(θk,0 +

∑p
j=1 θk,jxj)∑K−1

l=0 exp(θl,0 +
∑p

j=1 θl,jxj)
, k = 0, ..., K − 1

(a) Show that the model above is equivalent to that

Pr(Y = k|x) =
exp(βk,0 +

∑p
j=1 βk,jxj)

1 +
∑K−1

l=1 exp(βl,0 +
∑p

j=1 βl,jxj)
, k = 1, ..., K − 1

Pr(Y = 0|x) =1−
K−1∑
k=1

Pr(Y = k|x)

for some relationships between the θ’s and the β’s. Discuss why it is better to consider
the model based on the β’s.

Assume now we have data {(x1, y1), ..., (xn, yn)} available and we want to estimate the β’s

(b) Consider now only those observations for which yi ∈ {0, k}. Define

zki =

{
1 if yi = k

0 if yi = 0

Based on the model above, show that (for k > 0)

Pr(Zk
i = 1|xi) =

exp(βk,0 +
∑p

j=1 βk,jxij)

1 + exp(βk,0 +
∑p

j=1 βk,jxij)

Explain why we then are able to use logistic regression for estimation of the β pa-
rameters.

(c) For the phoneme dataset, divide the data into a training set and a test set

(i) Use logistic regression for estimating the β-parameters based on the training
data. Calculate the error rate on the test data.
Hint: The phoneme dataset can be read into R by the command
ddi r <− "http : //www. uio . no/ s t ud i e r/emner/matnat/math/STK2100/v17/data/"
phoneme <− read . table (paste ( ddir , "phoneme . data" , sep="" ) , header=T, sep=" , " )

(ii) Compare the results obtained by the multinom routine.

Exercise 10 (Heart data)
In the textbook, the Heart data is used to produce figures 8.6 and 8.8. We will in this
exercise see how these are constructed. The data are available from the course web-page
under the file heart.csv
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(a) Read the data into R and remove all observations where either the response or one
of the covariates are not available.

(b) By modifying the commands in the Carseats_tree.R script, reproduce Figure 8.6
from the textbook.

(c) By using the option ntree=B in the randomForrest command, produce the black
curve in Figure 8.8.

Why is the curve you obtain not exactly equal to the one in Figure 8.8?

(d) Now consider out-of-bag estimation error. Look at the help file for predict.randomForest
to see how you can obtain the OOB estimates. Use this to produce the green curve
in Figure 8.8. Plot this together with the curve from (c).

Exercise 11 (Rosenblatt’s perceptron learning rule)
We will in this exercise look at a procedure, Rosenblatt’s perceptron learning rule for
constructing a separating hyperplane (if it exists). Let X be the design matrix, with
one row for each individual observation and one column for each covariate (with the first
column containing only 1’s corresponding to the intercept). In addition we have a vector
y where yi ∈ {−1, 1} for i = 1, ..., n. Our aim is to find a vector β = (β0, β1, ..., βp) such
that

yiβ
Txi > 0, i = 1, ..., n. (*)

(a) Assume that there exist a hyperplane that separates the two classes. Show that there
then exist a vector βsep such that

yiβ
T
sepzi ≥1 (**)

where

zi =xi/||xi||

for all i.

Hint: Show first that ε = mini(yiβ
Txi) > 0.

(b) (This part is a bit hard.) Assume that we have a current value β (which do not
separate the classes). Assume i is a point for which yiβTxi ≤ 0 and define

βnew = β + yizi

Show that

||βnew − βsep||2 ≤ ||β − βsep||2 − 1

Hint: Use that ||yizi||2 = 1.
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(c) Consider now the following algorithm:

(i) Choose an arbitratry β0 and define M0 to be the set of i’s for which yiβTxi < 0
for β = β0. Set t = 0

(ii) Continue until M t is empty:

i. Select an arbitrary i ∈M t

ii. Set βt+1 = βt + yizi
iii. Define M t+1 to be the set of i’s for which yiβTxi < 0 for β = βt+1.

Based on the results in (b), show that this algorithm will converge in a fine number
of iterations if a separating hyperplane exists.

(d) Implement a function having as input a matrix X of dimension n × p and a vector
y of length n with yi ∈ {−1, 1} and which performs the algorithm above for finding
a separating hyperplane.

(e) Consider the simulated data generated by
set . seed (1 )
x=matrix (rnorm(20∗2) , ncol=2)
y=c ( rep (−1 ,10) , rep ( 1 , 10 ) )
x [ y==1,]=x [ y==1,] + 2

Run the algorithm with different starting points and see how the algorithm performs.
You can include a plot showing the different lines obtained at the various iterations
of the algorithm.

(f) Modify the data so that there is no separating hyperplane. Try out the algorithm in
this case and see what happens.

Exercise 12 (Neural networks on Spam data)
On the course web page the Spam data is available. Have a look on the spam.info file to
get some information and background about these data.

(a) Read the data into R and use the binary variables in the spam.traintest to divide
the data into a training and a test set (1 corresponding to training).

(b) Copy the commands using the nnet command from the zip_nn.R file in order to
perform neural network classification using one hidden layer with 10 hidden variables.
Test the resulting net on the test data and calculate the error rate.

Try out different values of the decay parameter. Also try out different number of
hidden variables. What are the best choices you obtain?

(c) Now try out the mlp command again with one hidden layer and different number of
hidden variables. Compare your results with the ones obtained by nnet.

If you get differences, try to explain why.
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(d) Now extend to several layers of latent variables. Try out different options. For what
combination do you get the best results?

(e) Now try to reduce the number of input variables by first performing logistic regression
and model selection based on the AIC criterion. Use the remaining input variables
within a neural network approach. What is your error rate in this case?

Hint: Use the stepAIC function.

(f) Summarize your results.

Exercise 13 (Neural network on Wage data)
We have earlier looked at the Wage data within the ISLR package. In this exercise we will
see how we can use neural networks to predict wage.

(a) Start by making the data ready through the following commands. Note that the
numerical covariates (input variables) are scaled to be between zero and one.
l ibrary ( ISLR)
data (Wage)
set . seed (2 )
n <− nrow(Wage)
t r a i n <− sample ( 1 : n , n/2 , replace=FALSE)
Wage$year = scale (Wage$year )
Wage$age = scale (Wage$age )
Wage . t r a i n <− Wage [ t ra in , ]
Wage . t e s t <− Wage[− t ra in , ]

(b) Now try out a neural network using the following commands:
m=10
wage . nnet = nnet (wage~year+age+mar i t l+race+educat ion+j o b c l a s s+hea l th+hea l th_ins ,

data=Wage . t ra in , s i z e=m, decay =0.1 , l i n ou t=TRUE,
MaxNWts=10000 ,maxit=300)

pred . nnet = predict (wage . nnet ,Wage . t e s t )
resid = Wage . t e s t$wage−pred . nnet
e r r . nnet = mean( resid^2)

Try out different values of of the decay parameter and number of latent variables.

(c) Now scale also the response variable by
#Sca le response to be between zero and one .
maxWage = max(Wage$wage )
Wage$rwage = Wage$wage/maxWage
Wage . t r a i n <− Wage [ t ra in , ]
Wage . t e s t <− Wage[− t ra in , ]

Try out neural networks with rwage as response. Note that when doing predictions,
you should multiply by maxWage in order to get it into the right scale again.

Compare the results with those obtained in (b). Discuss the differences.
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(d) Turn now to deep learning. A problem in this case is that the mpl do not like factor
variables as input variables. We can however transform these variables to dummy
variables through the following commands:
X = model . matrix (~year+age+mar i t l+race+educat ion+j o b c l a s s+hea l th+hea l th_ins ,

data=Wage)
X. t r a i n = X[ t ra in , ]
X. t e s t = X[− t ra in , ]

We can then call mpl through the commands
l ibrary (RSNNS)
wage . dnet = mlp (X. t ra in ,Wage . t r a i n$rwage , s i z e = c ( 10 ) , l i n ou t=TRUE,

learnFuncParams=c ( 0 . 3 ) , maxit=300)
pred . dnet = maxWage∗predict (wage . dnet ,X. t e s t )
resid = Wage . t e s t$wage−pred . dnet
e r r . dnet = mean( resid^2)

Try these deep learning commands out with different networks. Try at least (10),
(10, 10), (10, 10, 10) and (10, 10, 10, 10).

(e) Consider now the best network from (d). Repeat the calls for this model. You should
then see some variation. Try to explain why you get this variation.

(f) Given the variations in the mpl routine, a possibility is to fit several networks and
then take the average of the predictions you obtain. Try this out using an average of
10 separate fitted networks. Report your results.

(g) Compare your results with previous prediction results on the Wage data.

Exercise 14
Consider a classification problem with K = 3 classes where Y denotes the class while the
observations follow the distributions

X|Y = k ∼ Poisson(λk)

Let λ1 = 10, λ2 = 15 and λ3 = 20. Assume further that πk = Pr(Y = k) = 1/K for all k.

(a) Derive the Bayes classifier in this case.

(b) Derive the error rate of the classifier.

Hint: First derive the error rate conditional on that Y = k.

(c) Write an R script that simulates (X, Y ) 1000 times, calculates Ŷ based on the Bayes
classifier.

Use this to estimate the error rate and compare with your result in (b).
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Exercise 15
Assume a classification problem where Pr(Y = 1) = Pr(Y = 2) = 0.5 and

X|Y = k ∼ N(µk, 1)

with µ1 = −1 and µ2 = 1

(a) Derive the Bayes classifier in this case.

(b) Plot Pr(Y = 1|X = x) as a function of x. Discuss the behavior of this plot as
x→ ±∞.

(c) Derive the marginal distribution fX(x) for X. Use this to construct a test where you
reject

H0 : X ∼ fX(x)

when X is extreme using a significance level α.

(d) Define now a classification rule where

Ŷ =

{
outlier if H0 is rejected;
the Bayes classification otherwise.

Argue why the ordinary Bayes classifier corresponds to α = 0.

Write an R function that performs such a classification.

(e) Simulates 1000 sets of (X, Y ) from the specified distribution and perform the classi-
fication rule for different values of α (including α = 0).

Discuss the results.

Exercise 16 (Dynamic and parallel computation in linear regression)
Consider first the simple model

yi
iid∼ N(µ, σ2)

where the maximum likelihood estimates are given by

µ̂ =
1

n

n∑
i=1

yi

σ̂2 =
1

n

n∑
i=1

(yi − ȳ)2
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(a) Show that if we divide the data into groups where gi indicates the group of observation
i and ng is the number of observations within group g, then

µ̂ =
G∑
g=1

ng
n
ȳg where ȳg =

1

ng

∑
i:gi=g

yi

and

σ̂2 =
G∑
g=1

ng
n

[σ̂2
g + (ȳg − ȳ)2] where σ̂2

g =
1

ng

∑
i:gi=g

(yi − ȳg)2

(b) Consider now dynamic calculation of the estimates. Denote the estimates based on
the first s observations by µ̂s and σ̂2

s . Show that

µ̂n =
1

n

n∑
i=1

yi =
n− 1

n
µ̂n−1 +

1

n
yn (*)

σ̂2
n =

1

n

n∑
i=1

(yi − ȳ)2 =
n− 1

n
σ̂2
n−1 +

n− 1

n2
(yn − ȳn−1)2

Consider now the general linear regression model

yi = xTi β + εi

where the least squares estimate is given by

β̂ = [XT
nXn]−1XT

n yn

where now Xs is the design matrix based on the first s observations and similarly ys is the
vector of the first s responses.

Define also Mn = XT
nXn and recall from Exercise 7 that

M−1
n = M−1

n−1 −
x̃nx

T
nM

−1
n−1

1 + xTn x̃n
where x̃n = M−1

n−1xn

(c) Define now β̂s to be the least squares estimate based on the first s observations.
Show that

β̂n =[I − x̃nx
T
n

1 + xTn x̃n
][β̂n−1 + x̃nyn] (**)

How much memory and how many operations are needed at each step in order to
update β̂n in this way?

How would you initialize such an algorithm?
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(d) Verify that (*) is a special case of (**).

Hint: Show first that M−1
n = 1

n
in this case.

Exercise 17 (Adjustment for multiple testing)
Consider a linear regression model

Y = β0 +

q∑
j=1

βjxj + ε

where q is large. We want to test

H0j : βj = 0 against H0j : βj 6= 0

f or j = 1, ..., q.

(a) Assume all H0j’s are true and q = 1 000 000. Performing a separate test for each j
with significance level α = 0.01, how many of the hypotheses will you expect to be
rejected?

(b) One way of correcting for multiple testing is the Bonferroni correction. In this case
each test is performed on significance level α/q instead.

Prove that this guarantees that if all H0j’s are true, the probability of making at
least one error is less or equal to α.

Discuss why this can lead to very low power (that is low probability for detecting a
true H1j).

Consider now the following table, which specifies the possible events that can happen where
V is the number of true hypotheses that are rejected etc.

H0j true H0j wrong Total
H0j rejected V S R
H0j not rejected U T q-R
Total q0 q − q0 q

(c) Which quantities in the table above is stochastic?

Explain why the Bonferroni correction corresponds to controlling Pr(V > 0).

The FDR approach is based on another idea in that one wants to control the number of
falsely rejected H0j among all hypotheses that are rejected, that is V

R
= V

V+S
. In principle,

one wants

E

[
V

R

]
= E

[
V

V + S

]
≤ α (1)

for any value of q0 but this is a bit problematic directly, as we will see.
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(d) Consider the case where q0 = q. What are the values of V
V+S

that are possible in this
case? Discuss why it is difficult to control E

[
V
R

]
in this case.

(e) An alternative could be to control

E
[
V
R
|R > 0

]
Discuss why such a measure is also difficult to control.

The false discovery rate (FDR) approach is instead looking at

Pr(R > 0)E
[
V
R

]
The procedure for obtaining this is the following:

(i) Sort the p-values p1, ..., pq corresponding to testing H0j, j = 1, ..., q to

p(1) ≤ p(2) ≤ · · · ≤ p(q)

(ii) Find the largest k such that p(k) ≤ k
q
α

(iii) Reject H0,j if pj ≤ p(k)

The proof on that this satisfies Pr(R > 0)E
[
V
R

]
≤ α is somewhat technical, so we will

rather study its properties through a simulation study.

(f) At the course web-page there is a routine FDR.R which contains commands for sim-
ulating data and performing testing based on the FDR approach.

Run these commands and plot the FDR as a function of q0. Discuss the results.
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