Exercise 1

(see STK2100, spring 2018: $1^{\text {st }}$ mandatory assignment)

Consider a linear regression with qualitative (categorical) explanatory variables. The data are in the form $\left(c_{1}, y_{1}\right), \ldots,\left(c_{n}, y_{n}\right)$, where $c_{i} \in\{1, \ldots, K\}$. For $j=1, \ldots, K$, define

$$
x_{i, j}= \begin{cases}1 & \text { if } c_{i}=j \\ 0 & \text { otherwise }\end{cases}
$$

(a) Show that the two models

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{2} x_{i, 2}+\cdots+\beta_{K} x_{i, K}+\varepsilon_{i} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{i}=\alpha_{1} x_{i, 1}+\cdots+\alpha_{K} x_{i, K}+\varepsilon_{i} \tag{2}
\end{equation*}
$$

are equivalent. Write down the connection between $\boldsymbol{\beta}$ and $\boldsymbol{\alpha}$ explicitly. Give also an interpretation of the parameters.
In the following we will stick to model (2) as it is mathematically easier to deal with.
(b) Let \boldsymbol{X} be the design matrix for model (2), i.e. the i-th row of X contains the values $x_{i, j}, j=1, \ldots, K$. Show that $\boldsymbol{X}^{T} \boldsymbol{X}$ becomes a diagonal matrix with diagonal elements n_{j}, where n_{j} is the number of observations for which $c=j$.
Also show that $\boldsymbol{X}^{T} \boldsymbol{y}$ is a vector with the j-th element equal to $\sum_{i: c_{i}=j} y_{i}$.
Based on this, derive the least squares estimates for $\alpha_{1}, . ., \alpha_{K}$. Discuss whether the estimates are reasonable.
(c) Based on the relation between $\boldsymbol{\beta}$ and $\boldsymbol{\alpha}$ also construct the estimates for $\boldsymbol{\beta}$.

Explain why these estimates also become the least squares estimates for $\boldsymbol{\beta}$.
(d) Another alternative model is

$$
\begin{equation*}
Y_{i}=\gamma_{0}+\gamma_{1} x_{i, 1}+\cdots+\gamma_{K} x_{i, K}+\varepsilon_{i} \tag{3}
\end{equation*}
$$

where $\sum_{j=1}^{K} \gamma_{j}=0$.
What values must $\gamma_{j}, j=1, \ldots, K$ have in order that this model becomes equivalent to the previous two?
What interpretation do the γ 's have in this case?

