Solutions to extra exercises for STK2100

Geir Storvik
Sprint 2021

Exercise 1 (Linear regression)

(a) First of all, we have $Y_{i} \sim N\left(\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}, \sigma^{2}\right)$. Since we assume independence, we have that the log-likelihood is

$$
\begin{aligned}
l\left(\boldsymbol{\beta}, \sigma^{2}\right) & =\log f\left(\boldsymbol{y} ; \boldsymbol{\beta}, \sigma^{2}\right) \\
& =\sum_{i=1}^{n} \log f\left(y_{i} ; \boldsymbol{\beta}, \sigma^{2}\right) \\
& =\sum_{i=1}^{n}\left[-0.5 \log (2 \pi)-0.5 \log \sigma^{2}-0.5 \frac{1}{\sigma^{2}}\left(y_{i}-\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}\right)^{2}\right] \\
& =-0.5 n \log (2 \pi)-0.5 n \log \sigma^{2}-0.5 \frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}\right)^{2}
\end{aligned}
$$

We see that the only term that involves $\boldsymbol{\beta}$ is the last one so that maximizing the (log-)likelihood is equivalent to minimizing

$$
\sum_{i=1}^{n}\left(y_{i}-\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}\right)^{2}=(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})^{T}(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})
$$

(b) We have that

$$
(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})^{T}(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})=\boldsymbol{Y}^{T} \boldsymbol{Y}-2 \boldsymbol{\beta}^{T} \boldsymbol{X}^{T} \boldsymbol{Y}+\boldsymbol{\beta}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\beta}
$$

and

$$
\frac{\partial}{\partial \boldsymbol{\beta}^{T}}(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})^{T}(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})=-2 \boldsymbol{X}^{T} \boldsymbol{Y}+2 \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\beta}
$$

which is equal to zero for

$$
\widehat{\boldsymbol{\beta}}=\left[\boldsymbol{X}^{T} \boldsymbol{X}\right]^{-1} \boldsymbol{X}^{T} \boldsymbol{Y}
$$

(c) We have that

$$
\frac{\partial}{\partial \sigma^{2}} l\left(\boldsymbol{\beta}, \sigma^{2}\right)=-0.5 \frac{n}{\sigma^{2}}+0.5 \frac{1}{\sigma^{4}} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}\right)^{2}
$$

which is equal to zero if

$$
\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}\right)^{2}
$$

resulting in that the maximum likelihood estimate becomes

$$
\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{x}_{i}^{T} \hat{\boldsymbol{\beta}}\right)^{2}
$$

(d) Define $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{Z}+\boldsymbol{b}$. Then

$$
Y_{j}=\sum_{k} A_{j k} Z_{k}+b_{j} E\left[Y_{j}\right]=E\left[\sum_{k} A_{j k} Z_{k}+b_{j}\right]=\sum_{k} A_{j k} E\left[Z_{k}\right]+b_{j}
$$

which combined gives $\mathrm{E}(\boldsymbol{A} \boldsymbol{Z}+\boldsymbol{b})=\boldsymbol{A} \mathrm{E}(\boldsymbol{Z})+\boldsymbol{b}$.
Further, defining $\boldsymbol{\Sigma}=\mathrm{V}[\boldsymbol{Z}]$, we have

$$
\begin{aligned}
\operatorname{Var}\left[Y_{j}\right] & =\operatorname{Var}\left[\sum_{k} A_{j k} Z_{k}+b_{j}\right]=\operatorname{Var}\left[\sum_{k} A_{j k} Z_{k}\right] \\
& =\sum_{k} \sum_{l} \operatorname{Var} A_{j k} A_{j l} \operatorname{Cov}\left[Z_{k}, Z_{l}\right]=\sum_{k} \sum_{l} \operatorname{Var} A_{j k} A_{j l} \Sigma_{k, l} \\
\operatorname{Cov}\left[Y_{j}, Y_{m}\right] & =\operatorname{Cov}\left[\sum_{k} A_{j k} Z_{k}+b_{j}, \sum_{l} A_{m l} Z_{l}+b_{m}\right] \\
& =\operatorname{Cov}\left[\sum_{k} A_{j k} Z_{k}, \sum_{l} A_{m l} Z_{l}\right] \\
& =\sum_{k} \sum_{l} A_{j k} A_{m l} \operatorname{Cov}\left[Z_{k}, Z_{l}\right]=\sum_{k} \sum_{l} A_{j k} A_{m l} \Sigma_{k, l}
\end{aligned}
$$

which combined gives $\vee(\boldsymbol{A} \boldsymbol{Z}+\boldsymbol{b})=\boldsymbol{A} \bigvee(\boldsymbol{Z}) \boldsymbol{A}^{T}=\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{T}$.
(e) We know that variances always are positive. Now consider $Z=\boldsymbol{a}^{T} \boldsymbol{V}$. Then $\mathrm{V}[Z]=$ $\boldsymbol{a}^{T} \boldsymbol{\Sigma} \boldsymbol{a} \geq 0$ which proves that $\boldsymbol{\Sigma}$ is positive (semi-)definite.
(f) We have that

$$
\begin{aligned}
E[\boldsymbol{Y}] & =E[\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}]=\boldsymbol{X} \boldsymbol{\beta} \\
E[\widehat{\boldsymbol{\beta}}] & =E\left[\left[\boldsymbol{X}^{T} \boldsymbol{X}\right]^{-1} \boldsymbol{X}^{T} \boldsymbol{Y}\right]=\left[\boldsymbol{X}^{T} \boldsymbol{X}\right]^{-1} \boldsymbol{X}^{T} E[\boldsymbol{Y}] \\
& =\left[\boldsymbol{X}^{T} \boldsymbol{X}\right]^{-1} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\beta}=\boldsymbol{\beta}
\end{aligned}
$$

(g) We have

$$
\begin{aligned}
\mathrm{V}[\widehat{\boldsymbol{\beta}}] & =\mathrm{V}\left[\left[\boldsymbol{X}^{T} \boldsymbol{X}\right]^{-1} \boldsymbol{X}^{T} \boldsymbol{Y}\right] \\
& =\left[\boldsymbol{X}^{T} \boldsymbol{X}\right]^{-1} \boldsymbol{X}^{T} \mathrm{~V}[\boldsymbol{Y}] \boldsymbol{X}\left[\boldsymbol{X}^{T} \boldsymbol{X}\right]^{-1} \\
& =\left[\boldsymbol{X}^{T} \boldsymbol{X}\right]^{-1} \boldsymbol{X}^{T} \sigma^{2} \boldsymbol{I} \boldsymbol{X}\left[\boldsymbol{X}^{T} \boldsymbol{X}\right]^{-1} \\
& =\sigma^{2}\left[\boldsymbol{X}^{T} \boldsymbol{X}\right]^{-1} \boldsymbol{X}^{T} \boldsymbol{X}\left[\boldsymbol{X}^{T} \boldsymbol{X}\right]^{-1}=\sigma^{2}\left[\boldsymbol{X}^{T} \boldsymbol{X}\right]^{-1}
\end{aligned}
$$

Exercise 9 (Multinomial regression)

(a) We have for $k>0$

$$
\begin{aligned}
\operatorname{Pr}(Y=k \mid \boldsymbol{x}) & =\frac{\exp \left(\theta_{k, 0}+\sum_{j=1}^{p} \theta_{k, j} x_{j}\right)}{\sum_{l=0}^{K-1} \exp \left(\theta_{l, 0}+\sum_{j=1}^{p} \theta_{l, j} x_{j}\right)} \\
& =\frac{\exp \left(\theta_{k, 0}-\theta_{0,0}+\sum_{j=1}^{p}\left(\theta_{k, j}-\theta_{0, j}\right) x_{j}\right)}{\sum_{l=0}^{K-1} \exp \left(\theta_{l, 0}-\theta_{0,0}+\sum_{j=1}^{p}\left(\theta_{l, j}-\theta_{0,1}\right) x_{j}\right)} \\
& =\frac{\exp \left(\theta_{k, 0}-\theta_{0,0}+\sum_{j=1}^{p}\left(\theta_{k, j}-\theta_{0, j}\right) x_{j}\right)}{1+\sum_{l=1}^{K-1} \exp \left(\theta_{l, 0}-\theta_{0,0}+\sum_{j=1}^{p}\left(\theta_{l, j}-\theta_{0,1}\right) x_{j}\right)} \\
& =\frac{\exp \left(\beta_{k, 0}+\sum_{j=1}^{p} \beta_{k, j} x_{j}\right)}{1+\sum_{l=1}^{K-1} \exp \left(\beta_{l, 0}+\sum_{j=1}^{p} \beta_{l, j} x_{j}\right)},
\end{aligned}
$$

for $\beta_{k, j}=\theta_{k, j}-\theta_{0, j}$. The last equation follows by the sum to 1 constraint.
(b) We have that

$$
\begin{aligned}
& \operatorname{Pr}\left(Z_{i}^{k}=1 \mid \boldsymbol{x}_{i}\right)= \operatorname{Pr}\left(Y_{i}=k \mid Y_{i}=k \text { or } Y_{i}=0, \boldsymbol{x}_{i}\right) \\
&=\frac{\operatorname{Pr}\left(Y_{i}=k \mid \boldsymbol{x}_{i}\right)}{\operatorname{Pr}\left(Y_{i}=k \mid \boldsymbol{x}_{i}\right)+\operatorname{Pr}\left(Y_{i}=0 \mid \boldsymbol{x}_{i}\right)} \\
&=\frac{\exp \left(\beta_{k, 0}+\sum_{j=1}^{p} \beta_{k, j} x_{j}\right)}{1+\sum_{l=1}^{K-1} \exp \left(\beta_{l, 0}+\sum_{j=1}^{p} \beta_{l, j} x_{j}\right)} \\
& 1+\sum_{l=1}^{K-1} \exp \left(\beta_{l, 01}+\sum_{k, j}^{p} x_{j}\right) \\
&\left.\beta_{l, j} x_{j}\right) \frac{1}{1+\sum_{l=1}^{K-1} \exp \left(\beta_{l, 0}+\sum_{j=1}^{p} \beta_{l, j} x_{j}\right)} \\
&= \frac{\exp \left(\beta_{k, 0}+\sum_{j=1}^{p} \beta_{k, j} x_{j}\right)}{\exp \left(\beta_{k, 0}+\sum_{j=1}^{p} \beta_{k, j} x_{j}\right)+1}
\end{aligned}
$$

which means that if we only are considering these specific data, we have a standard logistic regression model and the β 's can be estimated by standard procedures.
(c) See Extra_9.R
(d) See Extra_9.R

