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Exercise 1 (Linear regression)
(a) First of all, we have Yi ∼ N(xTi β, σ

2). Since we assume independence, we have that
the log-likelihood is

l(β, σ2) = log f(y;β, σ2)

=
n∑
i=1

log f(yi;β, σ
2)

=
n∑
i=1

[−0.5 log(2π)− 0.5 log σ2 − 0.5
1

σ2
(yi − xTi β)2]

=− 0.5n log(2π)− 0.5n log σ2 − 0.5
1

σ2

n∑
i=1

(yi − xTi β)2

We see that the only term that involves β is the last one so that maximizing the
(log-)likelihood is equivalent to minimizing

n∑
i=1

(yi − xTi β)2 = (Y −Xβ)T (Y −Xβ)

(b) We have that

(Y −Xβ)T (Y −Xβ) = Y TY − 2βTXTY + βTXTXβ

and

∂

∂βT
(Y −Xβ)T (Y −Xβ) =− 2XTY + 2XTXβ

which is equal to zero for

β̂ = [XTX]−1XTY
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(c) We have that

∂

∂σ2
l(β, σ2) =− 0.5

n

σ2
+ 0.5

1

σ4

n∑
i=1

(yi − xTi β)2

which is equal to zero if

σ2 =
1

n

n∑
i=1

(yi − xTi β)2

resulting in that the maximum likelihood estimate becomes

σ̂2 =
1

n

n∑
i=1

(yi − xTi β̂)2

(d) Define Y = AZ + b. Then

Yj =
∑
k

AjkZk + bjE[Yj] = E[
∑
k

AjkZk + bj] =
∑
k

AjkE[Zk] + bj

which combined gives E(AZ + b) = AE(Z) + b.

Further, defining Σ = V[Z], we have

Var[Yj] =Var[
∑
k

AjkZk + bj] = Var[
∑
k

AjkZk]

=
∑
k

∑
l

VarAjkAjlCov[Zk, Zl] =
∑
k

∑
l

VarAjkAjlΣk,l

Cov[Yj, Ym] =Cov[
∑
k

AjkZk + bj,
∑
l

AmlZl + bm]

=Cov[
∑
k

AjkZk,
∑
l

AmlZl]

=
∑
k

∑
l

AjkAmlCov[Zk, Zl] =
∑
k

∑
l

AjkAmlΣk,l

which combined gives V(AZ + b) = AV(Z)AT = AΣAT .

(e) We know that variances always are positive. Now consider Z = aTV . Then V[Z] =
aTΣa ≥ 0 which proves that Σ is positive (semi-)definite.

(f) We have that

E[Y ] =E[Xβ + ε] = Xβ

E[β̂] =E[[XTX]−1XTY ] = [XTX]−1XTE[Y ]

=[XTX]−1XTXβ = β
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(g) We have

V[β̂] =V[[XTX]−1XTY ]

=[XTX]−1XTV[Y ]X[XTX]−1

=[XTX]−1XTσ2IX[XTX]−1

=σ2[XTX]−1XTX[XTX]−1 = σ2[XTX]−1

Exercise 9 (Multinomial regression)
(a) We have for k > 0

Pr(Y = k|x) =
exp(θk,0 +

∑p
j=1 θk,jxj)∑K−1

l=0 exp(θl,0 +
∑p

j=1 θl,jxj)

=
exp(θk,0 − θ0,0 +

∑p
j=1(θk,j − θ0,j)xj)∑K−1

l=0 exp(θl,0 − θ0,0 +
∑p

j=1(θl,j − θ0,1)xj)

=
exp(θk,0 − θ0,0 +

∑p
j=1(θk,j − θ0,j)xj)

1 +
∑K−1

l=1 exp(θl,0 − θ0,0 +
∑p

j=1(θl,j − θ0,1)xj)

=
exp(βk,0 +

∑p
j=1 βk,jxj)

1 +
∑K−1

l=1 exp(βl,0 +
∑p

j=1 βl,jxj)
,

for βk,j = θk,j − θ0,j. The last equation follows by the sum to 1 constraint.

(b) We have that

Pr(Zk
i = 1|xi) = Pr(Yi = k|Yi = k or Yi = 0,xi)

=
Pr(Yi = k|xi)

Pr(Yi = k|xi) + Pr(Yi = 0|xi)

=

exp(βk,0+
∑p

j=1 βk,jxj)

1+
∑K−1

l=1 exp(βl,0+
∑p

j=1 βl,jxj)

exp(βk,0+
∑p

j=1 βk,jxj)

1+
∑K−1

l=1 exp(βl,0+
∑p

j=1 βl,jxj)
+ 1

1+
∑K−1

l=1 exp(βl,0+
∑p

j=1 βl,jxj)

=
exp(βk,0 +

∑p
j=1 βk,jxj)

exp(βk,0 +
∑p

j=1 βk,jxj) + 1

which means that if we only are considering these specific data, we have a standard
logistic regression model and the β’s can be estimated by standard procedures.

(c) See Extra_9.R

(d) See Extra_9.R
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