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statistical methods for
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Submission deadline

Thursday 18th February 2021, 14:30 in Canvas (canvas.uio.no).

Instructions

You can choose between scanning handwritten notes or typing the solution
directly on a computer (for instance with LATEX). The assignment must be
submitted as a single PDF file. Scanned pages must be clearly legible. The
submission must contain your name, course and assignment number.

It is expected that you give a clear presentation with all necessary
explanations. Remember to include all relevant plots and figures. Students
who fail the assignment, but have made a genuine effort at solving the
exercises, are given a second attempt at revising their answers. All aids,
including collaboration, are allowed, but the submission must be written
by you and reflect your understanding of the subject. If we doubt that you
have understood the content you have handed in, we may request that you
give an oral account.

In exercises where you are asked to write a computer program, you need
to hand in the code along with the rest of the assignment. It is important
that the submitted program contains a trial run, so that it is easy to see
the result of the code.

Application for postponed delivery

If you need to apply for a postponement of the submission deadline due to
illness or other reasons, you have to contact the Student Administration
at the Department of Mathematics (e-mail: studieinfo@math.uio.no) well
before the deadline.

All mandatory assignments in this course must be approved in the same
semester, before you are allowed to take the final examination.

https://canvas.uio.no
mailto:studieinfo@math.uio.no


Complete guidelines about delivery of mandatory assignments:

uio.no/english/studies/admin/compulsory-activities/mn-math-mandatory.html

GOOD LUCK!

http://www.uio.no/english/studies/admin/compulsory-activities/mn-math-mandatory.html
http://www.uio.no/english/studies/admin/compulsory-activities/mn-math-mandatory.html


Spesific requirements to this assignment:

In order to get the assignment accepted you need to fullfil the following
requirements:

• You have done a real attempt on all (sub-)questions. This applies
to the first submission!

• There is a satisfactory answer in at least 2/3 of the (sub-)questions.

Remember that it is allowed to ask for help!
Within the exercises several commands that can be used in R are included.
If some libraries are not available at your computer, you need to install
them, for example by
i n s t a l l . packages ( "MASS" )

All the command listed in the assignment are aslo available in a separate .R
file on the course webpage.

It is allowed to use other programs, but there will then be extra
requirements to good documentation on what you have done and you can
not expect to obtain help with respect to implementional details.

Problem 1. We will in this exercise look at a dataset nuclear and see
how we can use regression for prediction of costs of light-water reactor. The
data is available in the file nuclear.dat while a description of the data
is available at nuclear.txt, both availble from the course data webpage
https://www.uio.no/studier/emner/matnat/math/STK2100/data/.

Our interest will be in the cost variabele while the other variables will
be explanatory variables. Since cost is always positive, we will model this
variable at the log-scale.

(a) Make the data available through the commands
datad i r = " http : //www. uio . no/ s t ud i e r/emner/matnat/math/STK2100/data/ "
nuc l ea r = read . table (paste ( datadir , " nuc l ea r . dat " , sep=" " ) , header=T)
n = nrow( nuc l ea r )

Make also different plots in order to get some understanding of the data.

(b) We will first look at a model

Yi = β0 + β1xi,1 + · · ·+ βpxi,p + εi

where Yi is cost at log scale for observation i.
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What are the standard assumptions about the noise terms εi? Discuss
also which of these assumptions that are most important.
Fit this model including all the observations with log(cost) as response
and all the other variables as covariates.
Discuss the results.

(c) Now remove the variable with the highest corresponding P-value and fit
the new model.
Why is this a reasonable procedure?
Discuss potential changes of the P-values for the remaining variables.
You can relate this to correlations between the explanatory variables.

(d) Continue to remove explanatory variables until all P-values are less than
0.05. What is your final model?
Make different plots in order to evaluate whether the model is reasonable.

(e) Use the final model to predict response and make a model based on the
average quadratic error ( 1

n

∑n
i=1(yi− ŷi)2) in order to evaluate how good

the model is. Discuss weaknesses with such a procedure.

An automatic routine,stepAIC for sequential model selection is available in
the R -library MASS. This procedure do not use the P-values for selection of
models, but instead

AIC = −2 log(L(θ̂)) + 2(q + 2)

where L(θ̂) is the likelihood value evaluated at the maximum likelhood
estimate θ̂ while q is the number of parameters in the model. One wants
low AIC-values.

For a linear regression model, we get

AIC = Const + n log(σ̂2) + 2(q + 2) (LM.BIC)

where σ̂2 is an estimate of σ2 within the model considered.
The function stepAIC can do both forward and backward selection. We

will concentrate on backward selection which can be obtained by the option
direction=”backward”.

Using backward selection, at the step with q variables included in the
current model, q different models, each with one of the current variables
removed, will be fitted. It then chooses the reduced model with largest
likelihood value. It then calculate the AIC value for this new model with
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q− 1 variables and compare it with the current model containing q variables.
The procedure continues as long as a reduction in the AIC value is achieved.

Alternatively on can use stepAIC for the BIC criterion

BIC = −2 log(L(θ̂)) + log(n)(q + 2)

which for linear models becomes

BIC = Const + n log(σ̂2) + log(n)(q + 2). (LM.BIC)

BIC can be obtained by the option k=log(n).

(f) Show that AIC and BIC are equal to (LM.BIC) and (LM.BIC) for the
linear regression model with Gaussian noise.

(g) Try out the automatic model selection command on the nuclear dataset
both using AIC and BIC. Which models do you end up with then?

(h) Have a look on the order of which the two different methods select
models. Explain why the order should be the same for AIC and BIC.

(i) Discuss potential differences compared with the manual selection based
on the P-values (both with respect to the order they are selected and
the number of variables that are included in the end).

Assume now we want to predict cost for a new data point. More specifically
we are interested in θ = E[Y |x∗] as well as η = E[exp(Y )|x∗] where x∗ is
defined by
d .new = data . frame (date=70.0 , t1=13, t2=50, cap=800 , pr=1,

ne=0, ct=0,bw=1,cum . n=8,pt=1)

Prediction can be performed by the command predict.lm.
The command below gives predictions for a fitted model for θ 1

predict ( f i t , d .new, se . f i t )

where fit is the fitted model.
1Note that it is enough to use the generic function predict here due to that R

understands that it is the underlying command predict.lm which do predictions for
linear models is to be used. If you, however, want to see how the function works, you
need to use help(predict.lm). There you also can see how to include uncertainties in
the predictions.
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(j) Show that if Z ∼ N(µ, σ2) , then E[exp(Z)] = exp(µ+ 0.5σ2). Use this
to argue that we have two possible estimates of η:

η̂1 = exp(θ̂)
η̂2 = exp(θ̂ + 0.5σ̂2)

Argue for one of these estimates and use that in the following.

(k) Perform predictions based on the three choosen modes you obtained
earlier (model choice based on P-values, AIC and BIC). Comment on
the results.

Problem 2. This exercise is a continuation of the previous exercise where
we will use alternative methods for evaluating different models.

(a) Consider the following commands using stepAIC to obtain a range of
models and simultaneously estimating prediction errors by splitting into
training and test data.
n = nrow( nuc l ea r )
ind = sample ( 1 : n , n/2 , replace=FALSE)
RMSE. t e s t 1=rep (NA, 11 )
RMSE. t e s t 2=rep (NA, 11 )
model_narrow=lm( log ( co s t )~1 ,data=nuc l ea r )
model_wide=lm( log ( co s t )~ . , data=nuc l ea r )
for ( i in 0 : 10 )
{
f i t=stepAIC (model_narrow , d i r e c t i o n=" forward " ,

s t ep s=i , data=nuc l ea r [ ind , ] , k=0,
scope=l i s t ( lower=model_narrow ,upper=model_wide ) )

pred=predict ( f i t , nuc l ea r [− ind , ] )
RMSE. t e s t 1 [ i +1]=sqrt (mean( ( log ( nuc l ea r$ co s t )−pred )^2) )
RMSE. t e s t 2 [ i +1]=sqrt (mean( ( nuc l ea r$cost−exp( pred ) )^2 ) )
}

You may plot the results by e.g the following commands:
par (mar=c (5 , 4 , 4 , 4 )+0 .3 )
plot ( 0 : 1 0 ,RMSE. te s t1 , type=" l " ,

x lab=" Complexity " , y lab="RMSE1" )
par (new=TRUE)
plot ( 0 : 1 0 ,RMSE. te s t2 , type = l " , axes=FALSE, bty="n" ,
␣␣␣␣␣ xlab=" " , ylab=" " , c o l =2)
ax i s ( s i d e =4, at=pre t ty ( range (RMSE. t e s t 2 ) ) )
mtext ( "RMSE2" , s i d e =4, l i n e =3)

Try to explain what is going on here. Also discuss the results (within
the plot) you get.
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Repeat the set of commands a few times. How robust are the results?
Discuss some weaknesses with this approach.

(b) An alternative to splitting the data into two is to use cross-validation.
The following commands can then be useful:
l ibrary ( lmvar )
RMSE. cv1=rep (0 , 10 )
RMSE. cv2=rep (0 , 10 )
for ( i in 0 : 10 )
{
f i t=stepAIC (model_narrow , d i r e c t i o n=" forward " , s t ep s=i , k=0,

scope=l i s t ( lower=model_narrow ,upper=model_wide ) , trace=0)
f i t=lm( formula ( f i t ) ,data=nuclear , x=TRUE, y=TRUE)

#Note : k be low has a d i f f e r e n t meaning than k above ! ! !
RMSE. cv1 [ i +1]=cv . lm( f i t , k=10)$MSE$mean
RMSE. cv2 [ i +1]=cv . lm( f i t , k=10, log=TRUE)$MSE$mean
}

Look at the help page for the cv.lm routine to understand that this
command is doing.
Make a similar plot as in the previous exercise and comment on the
results.
Again repeat a few times to see the robustness of this approach.

(c) Modify the previous commands to perform leave-one-out cross validation.
Run the commands and discuss the results in this case.

Problem 3. We will in this exercise look at linear regression with
quantitative (categorical) explanatory variables. Assume we have data
(c1, y1), ..., (cn, yn) where ci ∈ {1, ..., K}. Define for j = 1, ...., K

xi,j =

1 if ci = j;
0 otherwise.

(a) Show that the two models

Yi =β0 + β2xi,2 + · · ·+ βKxi,K + εi (1)

and

Yi =α1xi,1 + · · ·+ αKxi,K + εi (2)

are equivalent. Write an explicit relationship between β = (β0, β2, ..., βK)
and α = (α1, ..., αK). Use also the two models to give an interpretation
of the various parameters involved.
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We will in the following concentrate on model (2) since this is version is
somewhat simpler mathematically.

(b) Let X be the design matrix for model (2), that is the ith row of X
contains the values xi,j, j = 1, ..., K. Show thatXTX will be a diagonal
matrix with diagonal elements nj where nj is the number of observations
with ci = j.
Also show that XTy is a vector where the j-th element is equal to
element ∑

i:ci=j yi.
Based on this, derive the least squares estimates for α1, .., αK . Discuss
whether these estimates are reasonable.

(c) Based on the relationship between β and α, construct estimates for β.
Argue why also these estimates are least squares estimates for β.

(d) Another alternative model is

Yi =γ0 + γ1xi,1 + · · ·+ γKxi,K + εi (3)

where we constain the parameters by assuming ∑K
j=1 γj = 0.

What values do the γj’s need to have in order for this model to be
equivalent to the previous models?
What interpretation do the γ’s have in this case?

Note that the two previous models can be rewritten to

Yi =β0 + β1xi,1 + · · ·+ βKxi,K + εi

where β1 = 0 and

Yi =α0 + α1xi,1 + · · ·+ αKxi,K + εi

where α0 = 0. That is, all three models are basically expressed in the same
way with K + 1 parametre but are reduced to K free parametres by putting
constraints on the parameters. We will see below how we can introduce such
constraints when performing analysis within R .

We will in the rest of the exercise look at a dataset from Devore & Berk
(2012, exercise 11.5). The dataset consists of measurements of iron content
in four different iron formations (1=carbonate, 2=silicate, 3=magnetite, 4
=hematite). The table below shows the data, with 10 observations within
each type of iron formation.
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Type 1 2 3 4 5 6 7 8 9 10
1 20.50 28.10 27.80 27.00 28.00 25.20 25.30 27.10 20.50 31.30
2 26.30 24.00 26.20 20.20 23.70 34.00 17.10 26.80 23.70 24.90
3 29.50 34.00 27.50 29.40 27.90 26.20 29.90 29.50 30.00 35.60
4 36.50 44.20 34.10 30.30 31.40 33.10 34.10 32.90 36.30 25.50

We will to test whether there are differences in iron content between the
different formations.

(e) Read the data by the command
datad i r = " http : //www. uio . no/ s t ud i e r/emner/matnat/math/STK2100/data/ "
Fe <− read . table (paste ( datadir , " f e . txt " , sep=" " ) , header=T, sep=" , " )

Try out the following command
f i t 1 <− lm(Fe~ form+0,data=Fe)
summary( f i t 1 )

Why do this go wrong?
Then give the command
Fe$form <− as . factor (Fe$form )

Now try out the same call to lm again. Why do you get a more reasonable
result in this case? Which of the three models discussed earlier do this
fit belong to? That is, which constraint does it correspond to?

(f) Try now out
options ( )$contrasts
options ( contrasts=c ( " contr . treatment " , " contr . treatment " ) )
f i t 2 <− lm(Fe~form , data=Fe)
summary( f i t 2 )

options ( contrasts=c ( " contr . sum" , " contr . sum" ) )
options ( )$contrasts
f i t 3 <− lm(Fe~form , data=Fe)
summary( f i t 3 )

Which models do these fits relate to?
For all the three models, make a table of all the K + 1 regression
parameters.
Do the results match the results you derived earlier?

(g) Assume you want to test the difference between different types of iron
formation.
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Formulate a reasonable null and alternative hypothesis and explain how
you can use one of the summaries from the earlier fitted models to
perform such a test.
What is the conclusion of this test?

(h) Based on the outputs from the different models, suggest a possible
simplification of the model.
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