LIST OF FORMULASTOPICS FOR STK2100

(Version May 2022)

1 General issues

(a) The Bias-variance trade-off
(b) Training, test and validation sets
(c) Complexity/degrees of freedom

(i) Assuming y = Sy, degrees of freedom is defined as df = trace(S).

(77) One-to-one correspondance between degrees of freedom and penalty param-
eter.

(7i7) Selection of df/penalty usually through cross-validation

(d) Loss functions

(i) For regression, one usually uses quadratic loss: L(y,9) = (y — 9)?. The
optimal predictor based in input variable(s) x is then Y = E[Y|x].

(17) For classification we usually use 0-1 loss: L(y,9) = I(y = §) where I(+) is
the indicator function. The optimal prediction based on input variable(s) x
is then Y = argmax, Pr(Y = k|x).

(e) Model selection criteria
(i) AIC defined by AIC = —21(0) +2|6| where |6] is the number of free param-
eters in the model.
(ii) BIC defined by BIC = —21(8) + log(n)|6).
(7i1) K-folded cross-validation

i. Divide the N data points into K groups by randomization
ii. Fork=1,...,. K
A. Fit the model on all data except data from group k.

B. Predict y; for all data in group k& based on the fitted model
C. Calculate RSS; = (y; — ;)? for ¢ in group k
iii. Calculate CV gy = % Zf\il RSS;

Principal components: 1. component defined by z;; = a! x; with
Yy 1

a, = argmaxa’ Sa subject to a’a=1
a

where S is the sample covariance matrix. Next components defined similarly.



2 Multiple linear regression

(a) Model:
Kzﬁo—i_ﬁlle_'_+Bpx1p+€z72:1727>N7

where the z;;’s are known numbers and the ¢;’s are independent and N (0, 0?)-
distributed.

(b) Matrix form:
Y=X3+e¢

where Y = (V,...,Yn)T and B8 = (By,...,5,)" are N- and (p + 1)-dimenional
vectors, respectively. Further, X = {z;;} (with z;; = 1) is an N x (p + 1)-
dimensional matrix.

(¢) The least squares estimator for 8 is 3 = (XTX)'XTY.
(d) Let B = (BO, . ,Bp)T. Then the Bj’s are normal distributed and unbiased, and
Var(6;) = o%c;; and  Cov(B;, B)) = o2cy
where ¢;; is element (j,1) in the (p+ 1) x (p + 1) matrix C = (XTX)~*.

N

7\ 2 ~2 _ _ RSS
i:l()/; —Y;)?. Then 6% = 1D

(e) Let Y; = BO + Bﬂil +- 4+ Bpxika and RSS =
is an unbiased estimator for 0%, and [N — (p +1)|6°/0® ~ X3, _,,,)- Further, 67

and B are independent.

(f) Let SE(f;)? be the variance estimator for 3; that we get by replacing o2 with 62
in the formulae for Var(3;) in point (d). Then (5; — 3;)/SE(5;) ~ tn—(p+1)-

(9) We can test the hypothesis
HO:Bh:ﬁig:‘“:Biq:O
by using the test observator

RSS;/(N—p—1) ~oN=!

where RSSy = Zfil (y—10;)? when ; is calculated under Hy while RSS; is similarly
under the full model.

(h) Ridge/Lasso regression: Minimize with respect to 3

n

P 2 P
5 <yi-ﬁo—zmj) Sl
j=1 J=1

=1

with ¢ = 2 for Ridge, ¢ = 1 for Lasso.
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(7) Best subset selection: Minimize with respect to 3
n P 2
Z (yz —Bo — Z @%’j)
i=1 j=1
subject to that at most k of the §;’s are non-zero.

Usually some sub-optimal solutions (e.g. forward/backward selection) is applied.

General regression methods

(a) General setting: Assume
Y= f(z:) +e

where f(-) is some general function while €;,7 = 1, ..., N are noise terms assumed
to have zero expectation and variance o2.

(b) The K-nearest neighbor regression method is defined by
>
x; €N (z0)

where N (xg) C {X1,...,Xy} contain the K nearest points to Xq in the training
set.

(¢) Basis expansions: f(x) = S0 Bphm ()

(7) Cubic spline: Piecewise polyomial with basis functions

hi(z) =1, ho(x) =z, hs(z)= 22, hy(z) = z3,
hasi(x) =(x — )%, k=1,..,K.

(7) Natural cubic splines, smoothing splines.
(¢47) Additive models: f(x) = >"_, fi(z;).

(d) Kernel methods/Local polynomial regression

d

min ZKA xo, i) [yi — alzo) — Zﬁj(xo)a:g]z.

a(zo),B;(xo0) < =

(e) Neural network (one hidden layer):

J p
f(x:) = fi(Bo + Z ijo(z hjTin))
j=1 h=1
with fo, f1 some chosen (nonlinear) activation function.
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(f) Tree-based methods: f(x) = fozl cml(x € R,,) where RP = R{URyU---URy,
and regions are defined through sequential splitting based on one variable at a

time.

(1) Bagging, random forrest, Boosting:

. 1 &L
fave(x) = 5 > (%)
b=1

where f1(x), f2(x), ..., fB(x) are B different predictors based on ordinary
bootstrapping (bagging) or where splitting are only considered by a subset of
explanatory variables (random forrest). For boosting, the f’s are estimated

sequentially.

4 Some methods for Classification

(a) Logistic regression for binary responses:

+5S" B, _
Pr(G = 1|z) exp(fo EJ_; Biw) o (G = 1]z
1+ exp(Bo + D25, Bj7;) Pr(G = 0|z

== /30 + Z Bjxj-
j=1

Can be combined with Ridge, Lasso, subset selection procedures.

(b) Several classes:

Pr(G = k|x)

p
log —2 — MIT) ;.
0g PI"(G: K’CB) 5k0+;5ijj

(¢) In general: Want to estimate

Pr(G = klx)

log PrG=Klz) (@)

or more directly
Pr(G = k|x) = E[I(G = k)|x]
Can be constructed with same techniques as for regression.

(1) K-nearest neighbor classification:

1
Pr(G = g|X = x0) - > Igi=g)
x;€No (o)



(17) Generalized additive models:

Pr(G = klz) - .
logm = bo + ;f](%)-
Criterion:
PRSS(Oé7f1, fg, ceey fp) =
N p 2 p
> (?Jz —a—> fj(l’z'j)> + N /fj/',(tj)thj
i—1 =1 =1

(d) Alternative methods:
(i) Use Bayes theorem and model f(x|G = k) = fi(x):
_ mefu(x)
S mfi(x)
i. LDA: fi(x) = p(z|G = k) = N(py, X).

i QDA: fi(x) = p(2|G = k) = N(pp, ).
(ii) Separating hyperplanes (2 classes): Boundary defined by {x : fy+8Tx = 0}

Pr(G =k|X =x)

i. Optimal separating hyperplanes: Define output y; € {—1,1},

max M sty (@] 8+ F) > M, i=1,...,N
B.60.118]=1 vi (i B+ Bo)

ii. Rosenblatt’s perceptron learning algorithm

5 The maximum likelihood method

(a) Maximum likelihood principle:

6 = argmax L(0) = argmax ((0), ((8) = log L(0).
0 0

(b) Typically found as the solution of %5(9) =0.

(¢) Newton-Raphson

s -1 s
o) _ g _ [aw(m >)} L(0)

00007 00
(d) Under certain regularity conditions, 8 ~ N (8, .J(8)™!) with

R 92
J(0) =— 20007 0(0)]g_g



