LIST OF FORMULASTOPICS FOR STK2100

(Version May 2022)

1 General issues

(a) The Bias-variance trade-off
(b) Training, test and validation sets
(c) Complexity/degrees of freedom
(i) Assuming $\hat{\boldsymbol{y}}=\boldsymbol{S} \boldsymbol{y}$, degrees of freedom is defined as $\mathrm{df}=\operatorname{trace}(\boldsymbol{S})$.
(ii) One-to-one correspondance between degrees of freedom and penalty parameter.
(iii) Selection of df/penalty usually through cross-validation
(d) Loss functions
(i) For regression, one usually uses quadratic loss: $L(y, \hat{y})=(y-\hat{y})^{2}$. The optimal predictor based in input variable(s) \mathbf{x} is then $\widehat{Y}=E[Y \mid \mathbf{x}]$.
(ii) For classification we usually use $0-1$ loss: $L(y, \hat{y})=I(y=\hat{y})$ where $I(\cdot)$ is the indicator function. The optimal prediction based on input variable(s) \mathbf{x} is then $\widehat{Y}=\operatorname{argmax}_{k} \operatorname{Pr}(Y=k \mid \mathbf{x})$.
(e) Model selection criteria
(i) AIC defined by AIC $=-2 l(\hat{\boldsymbol{\theta}})+2|\boldsymbol{\theta}|$ where $|\boldsymbol{\theta}|$ is the number of free parameters in the model.
(ii) BIC defined by BIC $=-2 l(\hat{\boldsymbol{\theta}})+\log (n)|\boldsymbol{\theta}|$.
(iii) K-folded cross-validation
i. Divide the N data points into K groups by randomization
ii. For $k=1, \ldots, K$
A. Fit the model on all data except data from group k.
B. Predict \hat{y}_{i} for all data in group k based on the fitted model
C. Calculate $\operatorname{RSS}_{i}=\left(y_{i}-\hat{y}_{i}\right)^{2}$ for i in group k
iii. Calculate $\mathrm{CV}_{(K)}=\frac{1}{N} \sum_{i=1}^{N} \operatorname{RSS}_{i}$
(f) Principal components: 1 . component defined by $\boldsymbol{z}_{i 1}=\boldsymbol{a}_{1}^{T} \boldsymbol{x}_{i}$ with

$$
\boldsymbol{a}_{1}=\underset{\boldsymbol{a}}{\operatorname{argmax}} \boldsymbol{a}^{T} \boldsymbol{S} \boldsymbol{a} \quad \text { subject to } \quad \boldsymbol{a}^{T} \boldsymbol{a}=1
$$

where \boldsymbol{S} is the sample covariance matrix. Next components defined similarly.

2 Multiple linear regression

(a) Model:

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}+\epsilon_{i} ; i=1,2, \ldots, N
$$

where the $x_{i j}$'s are known numbers and the ϵ_{i} 's are independent and $N\left(0, \sigma^{2}\right)$ distributed.
(b) Matrix form:

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}
$$

where $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{N}\right)^{T}$ and $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{p}\right)^{T}$ are N - and $(p+1)$-dimenional vectors, respectively. Further, $\mathbf{X}=\left\{x_{i j}\right\}$ (with $x_{i 1}=1$) is an $N \times(p+1)$ dimensional matrix.
(c) The least squares estimator for $\boldsymbol{\beta}$ is $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}$.
(d) Let $\hat{\boldsymbol{\beta}}=\left(\hat{\beta}_{0}, \ldots, \hat{\beta}_{p}\right)^{T}$. Then the $\hat{\beta}_{j}$'s are normal distributed and unbiased, and

$$
\operatorname{Var}\left(\hat{\beta}_{j}\right)=\sigma^{2} c_{j j} \quad \text { and } \quad \operatorname{Cov}\left(\hat{\beta}_{j}, \hat{\beta}_{l}\right)=\sigma^{2} c_{j l}
$$

where $c_{j l}$ is element (j, l) in the $(p+1) \times(p+1)$ matrix $\mathbf{C}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$.
(e) Let $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i 1}+\cdots+\hat{\beta}_{p} x_{i k}$, and $\operatorname{RSS}=\sum_{i=1}^{N}\left(Y_{i}-\hat{Y}_{i}\right)^{2}$. Then $\hat{\sigma}^{2}=\frac{\mathrm{RSS}}{n-(p+1)}$ is an unbiased estimator for σ^{2}, and $[N-(p+1)] \hat{\sigma}^{2} / \sigma^{2} \sim \chi_{N-(p+1)}^{2}$. Further, $\hat{\sigma}^{2}$ and $\hat{\boldsymbol{\beta}}$ are independent.
(f) Let $\mathrm{SE}\left(\hat{\beta}_{j}\right)^{2}$ be the variance estimator for $\hat{\beta}_{j}$ that we get by replacing σ^{2} with $\hat{\sigma}^{2}$ in the formulae for $\operatorname{Var}\left(\hat{\beta}_{j}\right)$ in point (d). Then $\left(\hat{\beta}_{j}-\beta_{j}\right) / \operatorname{SE}\left(\hat{\beta}_{j}\right) \sim t_{N-(p+1)}$.
(g) We can test the hypothesis

$$
H_{0}: \beta_{i_{1}}=\beta_{i_{2}}=\cdots=\beta_{i_{q}}=0
$$

by using the test observator

$$
\mathrm{F}=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right) / q}{\operatorname{RSS}_{1} /(N-p-1)} \stackrel{H_{0}}{\sim} F_{q, N-p-1}
$$

where $\operatorname{RSS}_{0}=\sum_{i=1}^{N}\left(y-\hat{y}_{i}\right)^{2}$ when \hat{y}_{i} is calculated under H_{0} while RSS_{1} is similarly under the full model.
(h) Ridge/Lasso regression: Minimize with respect to $\boldsymbol{\beta}$

$$
\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|^{q}
$$

with $q=2$ for Ridge, $q=1$ for Lasso.
(i) Best subset selection: Minimize with respect to $\boldsymbol{\beta}$

$$
\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}
$$

subject to that at most k of the β_{j} 's are non-zero.
Usually some sub-optimal solutions (e.g. forward/backward selection) is applied.

3 General regression methods

(a) General setting: Assume

$$
Y_{i}=f\left(\boldsymbol{x}_{i}\right)+\varepsilon_{i}
$$

where $f(\cdot)$ is some general function while $\varepsilon_{i}, i=1, \ldots, N$ are noise terms assumed to have zero expectation and variance σ^{2}.
(b) The K-nearest neighbor regression method is defined by

$$
\hat{f}\left(\mathbf{x}_{0}\right)=\frac{1}{K} \sum_{\mathbf{x}_{i} \in \mathcal{N}_{k}\left(\boldsymbol{x}_{0}\right)} y_{i}
$$

where $\mathcal{N}_{k}\left(\boldsymbol{x}_{0}\right) \subset\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$ contain the K nearest points to \mathbf{x}_{0} in the training set.
(c) Basis expansions: $f(\boldsymbol{x})=\sum_{m=1}^{M} \beta_{m} h_{m}(\boldsymbol{x})$
(i) Cubic spline: Piecewise polyomial with basis functions

$$
\begin{aligned}
h_{1}(x) & =1, \quad h_{2}(x)=x, \quad h_{3}(x)=x^{2}, \quad h_{4}(x)=x^{3}, \\
h_{3+k}(x) & =\left(x-c_{k}\right)_{+}^{3}, \quad k=1, \ldots, K .
\end{aligned}
$$

(ii) Natural cubic splines, smoothing splines.
(iii) Additive models: $f(\boldsymbol{x})=\sum_{j=1}^{p} f_{j}\left(x_{j}\right)$.
(d) Kernel methods/Local polynomial regression

$$
\min _{\alpha\left(x_{0}\right), \beta_{j}\left(x_{0}\right)} \sum_{i=1}^{N} K_{\lambda}\left(x_{0}, x_{i}\right)\left[y_{i}-\alpha\left(x_{0}\right)-\sum_{j=1}^{d} \beta_{j}\left(x_{0}\right) x_{i}^{j}\right]^{2} .
$$

(e) Neural network (one hidden layer):

$$
f\left(\boldsymbol{x}_{i}\right)=f_{1}\left(\beta_{0}+\sum_{j=1}^{J} \beta_{j} f_{0}\left(\sum_{h=1}^{p} \alpha_{h j} x_{i h}\right)\right)
$$

with f_{0}, f_{1} some chosen (nonlinear) activation function.
(f) Tree-based methods: $f(\boldsymbol{x})=\sum_{m=1}^{M} c_{m} I\left(\boldsymbol{x} \in R_{m}\right)$ where $\mathcal{R}^{p}=R_{1} \cup R_{2} \cup \cdots \cup R_{M}$ and regions are defined through sequential splitting based on one variable at a time.
(i) Bagging, random forrest, Boosting:

$$
\hat{f}_{\text {avg }}(\mathbf{x})=\frac{1}{B} \sum_{b=1}^{B} \hat{f}^{b}(\mathbf{x})
$$

where $\hat{f}^{1}(\mathbf{x}), \hat{f}^{2}(\mathbf{x}), \ldots, \hat{f}^{B}(\mathbf{x})$ are B different predictors based on ordinary bootstrapping (bagging) or where splitting are only considered by a subset of explanatory variables (random forrest). For boosting, the \hat{f}^{b} 's are estimated sequentially.

4 Some methods for Classification

(a) Logistic regression for binary responses:

$$
\operatorname{Pr}(G=1 \mid \boldsymbol{x})=\frac{\exp \left(\beta_{0}+\sum_{j=1}^{p} \beta_{j} x_{j}\right)}{1+\exp \left(\beta_{0}+\sum_{j=1}^{p} \beta_{j} x_{j}\right)} \Leftrightarrow \log \frac{\operatorname{Pr}(G=1 \mid \boldsymbol{x})}{\operatorname{Pr}(G=0 \mid \boldsymbol{x})}=\beta_{0}+\sum_{j=1}^{p} \beta_{j} x_{j} .
$$

Can be combined with Ridge, Lasso, subset selection procedures.
(b) Several classes:

$$
\log \frac{\operatorname{Pr}(G=k \mid \boldsymbol{x})}{\operatorname{Pr}(G=K \mid \boldsymbol{x})}=\beta_{k 0}+\sum_{j=1}^{p} \beta_{k j} x_{j} .
$$

(c) In general: Want to estimate

$$
\log \frac{\operatorname{Pr}(G=k \mid \boldsymbol{x})}{\operatorname{Pr}(G=K \mid \boldsymbol{x})}=f_{k}(\boldsymbol{x})
$$

or more directly

$$
\operatorname{Pr}(G=k \mid \boldsymbol{x})=E[I(G=k) \mid \boldsymbol{x}]
$$

Can be constructed with same techniques as for regression.
(i) K-nearest neighbor classification:

$$
\operatorname{Pr}\left(G=g \mid \mathbf{X}=\mathbf{x}_{0}\right) \approx \frac{1}{K} \sum_{\mathbf{x}_{i} \in \mathcal{N}_{0}\left(\boldsymbol{x}_{0}\right)} I\left(g_{i}=g\right) .
$$

(ii) Generalized additive models:

$$
\log \frac{\operatorname{Pr}(G=k \mid \boldsymbol{x})}{\operatorname{Pr}(G=K \mid \boldsymbol{x})}=\beta_{0}+\sum_{j=1}^{p} f_{j}\left(x_{j}\right) .
$$

Criterion:

$$
\begin{aligned}
& \operatorname{PRSS}\left(\alpha, f_{1}, f_{2}, \ldots, f_{p}\right)= \\
& \qquad \sum_{i=1}^{N}\left(y_{i}-\alpha-\sum_{j=1}^{p} f_{j}\left(x_{i j}\right)\right)^{2}+\sum_{j=1}^{p} \lambda_{j} \int f_{j}^{\prime \prime}\left(t_{j}\right)^{2} d t_{j}
\end{aligned}
$$

(d) Alternative methods:
(i) Use Bayes theorem and model $f(\boldsymbol{x} \mid G=k)=f_{k}(\boldsymbol{x})$:

$$
\operatorname{Pr}(G=k \mid X=x)=\frac{\pi_{k} f_{k}(\boldsymbol{x})}{\sum_{l=1}^{K} \pi_{l} f_{l}(\boldsymbol{x})}
$$

i. LDA: $f_{k}(\mathbf{x})=p(x \mid G=k)=N\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}\right)$.
ii. QDA: $f_{k}(\mathbf{x})=p(x \mid G=k)=N\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$.
(ii) Separating hyperplanes (2 classes): Boundary defined by $\left\{\boldsymbol{x}: \beta_{0}+\boldsymbol{\beta}^{T} \boldsymbol{x}=0\right\}$
i. Optimal separating hyperplanes: Define output $y_{i} \in\{-1,1\}$,

$$
\max _{\beta, \beta_{0},\|\beta\|=1} M \text { : s. t. } y_{i}\left(\boldsymbol{x}_{i}^{T} \beta+\beta_{0}\right) \geq M, \quad i=1, \ldots, N
$$

ii. Rosenblatt's perceptron learning algorithm

5 The maximum likelihood method

(a) Maximum likelihood principle:

$$
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} L(\boldsymbol{\theta})=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ell(\boldsymbol{\theta}), \quad \ell(\boldsymbol{\theta})=\log L(\boldsymbol{\theta}) .
$$

(b) Typically found as the solution of $\frac{\partial}{\partial \boldsymbol{\theta}} \ell(\boldsymbol{\theta})=\mathbf{0}$.
(c) Newton-Raphson

$$
\boldsymbol{\theta}^{(s+1)}=\boldsymbol{\theta}^{(s)}-\left[\frac{\partial^{2} \ell\left(\boldsymbol{\theta}^{(s)}\right)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}}\right]^{-1} \frac{\partial \ell\left(\boldsymbol{\theta}^{(s)}\right)}{\partial \boldsymbol{\theta}}
$$

(d) Under certain regularity conditions, $\hat{\boldsymbol{\theta}} \approx N\left(\boldsymbol{\theta}, J(\hat{\boldsymbol{\theta}})^{-1}\right)$ with

$$
J(\hat{\boldsymbol{\theta}})=-\left.\frac{\partial^{2}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}} \ell(\boldsymbol{\theta})\right|_{\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}}
$$

