
LIST OF FORMULASTOPICS FOR STK2100

(Version May 2022)

1 General issues

(a) The Bias-variance trade-off

(b) Training, test and validation sets

(c) Complexity/degrees of freedom

(i) Assuming ŷ = Sy, degrees of freedom is defined as df = trace(S).

(ii) One-to-one correspondance between degrees of freedom and penalty param-
eter.

(iii) Selection of df/penalty usually through cross-validation

(d) Loss functions

(i) For regression, one usually uses quadratic loss: L(y, ŷ) = (y − ŷ)2. The

optimal predictor based in input variable(s) x is then Ŷ = E[Y |x].
(ii) For classification we usually use 0-1 loss: L(y, ŷ) = I(y = ŷ) where I(·) is

the indicator function. The optimal prediction based on input variable(s) x

is then Ŷ = argmaxk Pr(Y = k|x).

(e) Model selection criteria

(i) AIC defined by AIC = −2l(θ̂)+2|θ| where |θ| is the number of free param-
eters in the model.

(ii) BIC defined by BIC = −2l(θ̂) + log(n)|θ|.
(iii) K -folded cross-validation

i. Divide the N data points into K groups by randomization

ii. For k = 1, ..., K

A. Fit the model on all data except data from group k.

B. Predict ŷi for all data in group k based on the fitted model

C. Calculate RSSi = (yi − ŷi)
2 for i in group k

iii. Calculate CV(K) =
1
N

∑N
i=1RSSi

(f) Principal components: 1. component defined by zi1 = aT
1 xi with

a1 = argmax
a

aTSa subject to aTa = 1

where S is the sample covariance matrix. Next components defined similarly.
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2 Multiple linear regression

(a) Model:

Yi = β0 + β1xi1 + · · ·+ βpxip + ϵi ; i = 1, 2, . . . , N ;

where the xij’s are known numbers and the ϵi’s are independent and N(0, σ2)-
distributed.

(b) Matrix form:

Y = Xβ + ε

where Y = (Y1, . . . , YN)
T and β = (β0, . . . , βp)

T are N - and (p + 1)-dimenional
vectors, respectively. Further, X = {xij} (with xi1 = 1) is an N × (p + 1)-
dimensional matrix.

(c) The least squares estimator for β is β̂ = (XTX)−1XTY.

(d) Let β̂ = (β̂0, . . . , β̂p)
T . Then the β̂j’s are normal distributed and unbiased, and

Var(β̂j) = σ2cjj and Cov(β̂j, β̂l) = σ2cjl

where cjl is element (j, l) in the (p+ 1)× (p+ 1) matrix C = (XTX)−1.

(e) Let Ŷi = β̂0 + β̂1xi1 + · · · + β̂pxik, and RSS =
N∑
i=1

(Yi − Ŷi)
2. Then σ̂2 = RSS

n−(p+1)

is an unbiased estimator for σ2, and [N − (p+ 1)]σ̂2/σ2 ∼ χ2
N−(p+1). Further, σ̂

2

and β̂ are independent.

(f) Let SE(β̂j)
2 be the variance estimator for β̂j that we get by replacing σ2 with σ̂2

in the formulae for Var(β̂j) in point (d). Then (β̂j − βj)/SE(β̂j) ∼ tN−(p+1).

(g) We can test the hypothesis

H0 : βi1 = βi2 = · · · = βiq = 0

by using the test observator

F =
(RSS0 − RSS1)/q

RSS1/(N − p− 1)

H0∼ Fq,N−p−1

where RSS0 =
∑N

i=1(y−ŷi)
2 when ŷi is calculated under H0 while RSS1 is similarly

under the full model.

(h) Ridge/Lasso regression: Minimize with respect to β

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

|βj|q

with q = 2 for Ridge, q = 1 for Lasso.
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(i) Best subset selection: Minimize with respect to β

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

subject to that at most k of the βj’s are non-zero.

Usually some sub-optimal solutions (e.g. forward/backward selection) is applied.

3 General regression methods

(a) General setting: Assume

Yi = f(xi) + εi

where f(·) is some general function while εi, i = 1, ..., N are noise terms assumed
to have zero expectation and variance σ2.

(b) The K-nearest neighbor regression method is defined by

f̂(x0) =
1

K

∑
xi∈Nk(x0)

yi

where Nk(x0) ⊂ {x1, ...,xN} contain the K nearest points to x0 in the training
set.

(c) Basis expansions: f(x) =
∑M

m=1 βmhm(x)

(i) Cubic spline: Piecewise polyomial with basis functions

h1(x) =1, h2(x) = x, h3(x) = x2, h4(x) = x3,

h3+k(x) =(x− ck)
3
+, k = 1, ..., K.

(ii) Natural cubic splines, smoothing splines.

(iii) Additive models: f(x) =
∑p

j=1 fj(xj).

(d) Kernel methods/Local polynomial regression

min
α(x0),βj(x0)

N∑
i=1

Kλ(x0, xi)[yi − α(x0)−
d∑

j=1

βj(x0)x
j
i ]
2.

(e) Neural network (one hidden layer):

f(xi) = f1(β0 +
J∑

j=1

βjf0(

p∑
h=1

αhjxih))

with f0, f1 some chosen (nonlinear) activation function.
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(f) Tree-based methods: f(x) =
∑M

m=1 cmI(x ∈ Rm) where Rp = R1∪R2∪· · ·∪RM

and regions are defined through sequential splitting based on one variable at a
time.

(i) Bagging, random forrest, Boosting:

f̂avg(x) =
1

B

B∑
b=1

f̂ b(x)

where f̂ 1(x), f̂ 2(x), ..., f̂B(x) are B different predictors based on ordinary
bootstrapping (bagging) or where splitting are only considered by a subset of
explanatory variables (random forrest). For boosting, the f̂ b’s are estimated
sequentially.

4 Some methods for Classification

(a) Logistic regression for binary responses:

Pr(G = 1|x) =
exp(β0 +

∑p
j=1 βjxj)

1 + exp(β0 +
∑p

j=1 βjxj)
⇔ log

Pr(G = 1|x)
Pr(G = 0|x)

= β0+

p∑
j=1

βjxj.

Can be combined with Ridge, Lasso, subset selection procedures.

(b) Several classes:

log
Pr(G = k|x)
Pr(G = K|x)

= βk0 +

p∑
j=1

βkjxj.

(c) In general: Want to estimate

log
Pr(G = k|x)
Pr(G = K|x)

= fk(x)

or more directly

Pr(G = k|x) = E[I(G = k)|x]

Can be constructed with same techniques as for regression.

(i) K-nearest neighbor classification:

Pr(G = g|X = x0) ≈
1

K

∑
xi∈N0(x0)

I(gi = g).
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(ii) Generalized additive models:

log
Pr(G = k|x)
Pr(G = K|x)

= β0 +

p∑
j=1

fj(xj).

Criterion:

PRSS(α,f1, f2, ..., fp) =

N∑
i=1

(
yi − α−

p∑
j=1

fj(xij)

)2

+

p∑
j=1

λj

∫
f ′′
j (tj)

2dtj

(d) Alternative methods:

(i) Use Bayes theorem and model f(x|G = k) = fk(x):

Pr(G = k|X = x) =
πkfk(x)∑K
l=1 πlfl(x)

.

i. LDA: fk(x) = p(x|G = k) = N(µk,Σ).

ii. QDA: fk(x) = p(x|G = k) = N(µk,Σk).

(ii) Separating hyperplanes (2 classes): Boundary defined by {x : β0+βTx = 0}
i. Optimal separating hyperplanes: Define output yi ∈ {−1, 1},

max
β,β0,∥β∥=1

M : s. t. yi
(
xT
i β + β0

)
≥ M, i = 1, . . . , N

ii. Rosenblatt’s perceptron learning algorithm

5 The maximum likelihood method

(a) Maximum likelihood principle:

θ̂ =argmax
θ

L(θ) = argmax
θ

ℓ(θ), ℓ(θ) = logL(θ).

(b) Typically found as the solution of ∂
∂θ
ℓ(θ) = 0.

(c) Newton-Raphson

θ(s+1) = θ(s) −
[
∂2ℓ(θ(s))

∂θ∂θT

]−1
∂ℓ(θ(s))

∂θ

(d) Under certain regularity conditions, θ̂ ≈ N(θ, J(θ̂)−1) with

J(θ̂) =− ∂2

∂θ∂θT
ℓ(θ)|θ=θ̂
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