STK2130: Solution to Exam Spring 2007

Problem 2

Facebook exercise and keeping notations:
(a)

$$
\begin{gathered}
q_{i, i+1}=\lim _{\Delta t \rightarrow 0} \frac{p_{i, i+1}(\Delta t)-p_{i, i+1}(0)}{\Delta t}=\lambda_{i} \\
q_{i, i-1}=\lim _{\Delta t \rightarrow 0} \frac{p_{i, i-1}(\Delta t)-p_{i, i-1}(0)}{\Delta t}=\mu_{i}, \\
q_{i, i}=\lim _{\Delta t \rightarrow 0} \frac{p_{i, i}(\Delta t)-p_{i, i}(0)}{\Delta t}=-\left(\lambda_{i}+\mu_{i}\right) .
\end{gathered}
$$

The infinitesimal generator matrix is $Q=\left(q_{i j}\right)_{i j \in S}$ defined as $Q:=P^{\prime}(0)$ which generates $P(t)$ in the following way

$$
P(t)=e^{Q t} .
$$

The limiting probabilities $\pi=\left(\pi_{0}, \pi_{1}, \ldots\right)$ are found as the solution to

$$
\pi Q=0
$$

and such that

$$
\sum_{i=0}^{\infty} \pi_{i}=1
$$

Now

$$
Q=\left(\begin{array}{cccccccc}
-\lambda_{0} & \lambda_{0} & 0 & 0 & 0 & \ldots & 0 & \ldots \\
\mu_{1} & -\left(\lambda_{1}+\mu_{1}\right) & \lambda_{1} & 0 & 0 & \ldots & 0 & \ldots \\
0 & \mu_{2} & -\left(\lambda_{2}+\mu_{2}\right) & \lambda_{2} & 0 & \ldots & 0 & \ldots \\
0 & 0 & \mu_{3} & -\left(\lambda_{3}+\mu_{3}\right) & \lambda_{3} & \ldots & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \ldots
\end{array}\right)
$$

Then $\pi Q=0$ gives

$$
-\lambda_{0} \pi_{0}+\mu_{1} \pi_{1}=0
$$

and for $i \geqslant 1$

$$
\begin{equation*}
\lambda_{i-1} \pi_{i-1}-\left(\lambda_{i}+\mu_{i}\right) \pi_{i}+\mu_{i+1} \pi_{i+1}=0 . \tag{0.1}
\end{equation*}
$$

We see that $\pi_{1}=\frac{\lambda_{0}}{\mu_{1}} \pi_{0}$, then using (0.1) we get $\pi_{2}=\frac{\lambda_{0} \lambda_{1}}{\mu_{1} \mu_{2}} \pi_{0}$ and so on. Thus

$$
\pi_{i}=\prod_{j=1}^{i} \frac{\lambda_{j-1}}{\mu_{j}} \pi_{0}
$$

provided $\lambda_{0}>0$ and the sum of π_{i} 's is convergent.
(b) Assume that such user joins a new group according to a Poisson process with rate λ and for each group he is a member of decides to leave it with a rate μ (i.e., the chance of leaving it inside $[t, t+\Delta t]$ given that he is a member at time t, is $\mu \Delta t+o(\Delta t)$). Why these assumption imply that the model (2) is in force with

$$
\lambda_{i}=\lambda \text { and } \mu_{i}=i \mu, \text { for } i=0,1,2, \ldots
$$

Denote by $N(t)$ the number of groups that have been added until time t (without counting the ones left). Then $N(t)$ (see page 312 and 314 for the two equivalent definitions) is a counting process moreover, since "arrivals" or "joins" happen at a Poisson speed, then N is a Poisson distribution (it has stationary independent increments, the book usually assumes this for any markov process p372). We know that since N is Poisson

$$
P(N(\Delta t)=1)=\lambda \Delta t+o(\Delta t)
$$

(this is saying that we join a new group in a small time interval with rate λ, in the definition we also assume that two or more arrivals can not happen in a short time interval: see property (iv) page 314))
On the other hand, the probabiity of joining a group is given by

$$
p_{i, i+1}=P(X(t+\Delta t)=i+1 \mid X(t)=i)=\lambda_{i} \Delta t+o(\Delta t)
$$

and by stationary increments we obtain $\lambda_{i}=\lambda$.
Finally, given we have $X(t)=i$ groups, and each of them are left at a rate of μ and therefore (by independence of groups) $\mu_{i}=i \mu$ for all $i \geqslant 1$.
(c) From the fact that

$$
\pi_{i}=\prod_{j=1}^{i} \frac{\lambda_{j-1}}{\mu_{j}} \pi_{0}=\left(\frac{\lambda}{\mu}\right)^{i} \frac{1}{i!} \pi_{0}
$$

and

$$
\sum_{i=0}^{\infty} \pi_{i}=1
$$

we see that

$$
\pi_{0}=\left(\sum_{i=0}^{\infty}\left(\frac{\lambda}{\mu}\right)^{i} \frac{1}{i!}\right)^{-1}=e^{-\lambda / \mu}
$$

and therefore for each $i \geqslant 0$

$$
\pi_{i}=\frac{e^{-\lambda / \mu}(\lambda / \mu)^{i}}{i!}
$$

We see clearly that $\pi \sim \operatorname{Poiss}(\lambda / \mu)$ and hence the mean is

$$
E \pi=\lambda / \mu
$$

(Here we make an abuse of notation and denote by π the asymptotic distribution as we usually do)
(d) $m(t)=E X(t)=E[X(t) \mid X(0)]$ and recall $X(0)=0$ which will determine the initial condition of the ODE for $m(t)$.
$E[X(t+\Delta) \mid X(t)=i]=(X(t)+1) \lambda_{i} \Delta t+(X(t)-1) \mu_{i} \Delta t+X(t)\left(1-\left(\lambda_{i}+\mu_{i}\right) \Delta t+o(\Delta t)\right)$.
Now, since $\lambda_{i}=\lambda, \mu_{i}=i \mu$ and it is given that $i=X(t)$ we have
$E[X(t+\Delta t) \mid X(t)=i]=(X(t)+1) \lambda \Delta t+(X(t)-1) X(t) \mu \Delta t+X(t)(1-(\lambda+X(t) \mu) \Delta t+o(\Delta t))$.
We can ignore the terms in $o(\Delta t)$ and then

$$
E[X(t+\Delta t) \mid X(t)=i]=\lambda \Delta t-X(t) \mu \Delta t+X(t)
$$

Then

$$
m^{\prime}(t)=\lim _{\Delta t \rightarrow 0} \frac{\lambda \Delta t-\mu m(t) \Delta t+m(t)-m(t)}{\Delta t}=\lambda-\mu m(t) .
$$

The differential equation to solve is

$$
\begin{gathered}
m^{\prime}(t)+\mu m(t)=\lambda \\
m(0)=0
\end{gathered}
$$

How to solve it! (not important) A clear particular solution is $m_{p}(t)=\lambda / \mu$. The homogeneous solution is $m_{h}(t)=C e^{-\mu t}$. So the general solution is

$$
m_{g}(t)=C e^{-\mu t}+\frac{\lambda}{\mu}
$$

Imposing $m(0)=0$ we obtain

$$
m(t)=\frac{\lambda}{\mu}\left(1-e^{-\mu t}\right) .
$$

Another way to justify $m(t)=\frac{\lambda}{\mu}\left(1-e^{-\mu t}\right)$ as a solution is that linear ODE's with constant coefficients always admit a unique solution, if the one they give us satisfies the equation, which it does indeed, then it IS the solution.
(e) We add a ceiling for the total number of groups we wish to be a member of. The rates turn out to be

$$
\lambda_{i}=(N-i) \lambda \quad \mu_{i}=i \mu \quad i=0, \ldots, N .
$$

We easily see that

$$
\pi_{i}=\frac{\lambda_{0} \cdots \lambda_{i-1}}{\mu_{1} \cdots \mu_{i}} \pi_{0}=\frac{N(N-1) \cdots(N-i-1)}{i!}\left(\frac{\lambda}{\mu}\right)^{i} \pi_{0}=\binom{N}{i}\left(\frac{\lambda}{\mu}\right)^{i} \pi_{0}
$$

Then we have $\sum_{i=0}^{N} \pi_{i}=1$ we deduce

$$
\pi_{i}=\frac{\binom{N}{i}\left(\frac{\lambda}{\mu}\right)^{i}}{\sum_{j=0}^{N}\binom{N}{j}\left(\frac{\lambda}{\mu}\right)^{j}} .
$$

Since $\sum_{j=0}^{N}\binom{N}{j}\left(\frac{\lambda}{\mu}\right)^{j}=\left(1+\frac{\lambda}{\mu}\right)^{N}$ we can write

$$
\pi_{i}=\binom{N}{i}\left(\frac{\lambda}{\lambda+\mu}\right)^{i}\left(\frac{\mu}{\lambda+\mu}\right)^{N-i}
$$

thus being π binomial distributed with parameters N and $p=\frac{\lambda}{\lambda+\mu}$. See page 394 too.
(f) The previous study of the process $X(t)$ is meant to be for a single user. Now take a population of users where each one has his own join/leave-rate λ / μ. Assume $\lambda / \mu \sim$ $\exp (0.1)$. Let X be the number of groups of a randomly selected user of this population where we assume users have reached an equilibirum. Compute the mean and variance of X.

Note that

$$
E[X \mid \lambda / \mu]=\lambda / \mu
$$

because given the "join/leave"-rate we know that (in equilibrium) a user is member of λ / μ groups in mean. By the "tower property" we have

$$
E[X]=E[\lambda / \mu]=1 / 0.1=10 .
$$

Finally by the total variance formula we have

$$
\begin{aligned}
\operatorname{Var}(X) & =E[\operatorname{Var}(X \mid \lambda / \mu)]+\operatorname{Var}(E[X \mid \lambda / \mu]) \\
& =E[\lambda / \mu]+\operatorname{Var}(\lambda / \mu) \\
& =10+\frac{1}{0.1^{2}}=110
\end{aligned}
$$

Problem 4

(a) $s \leqslant t$ then

$$
E[W(t) W(s)]=E\left[(W(t)-W(s)) W(s)+W(s)^{2}\right]=E\left[W(s)^{2}\right]=\sigma^{2} s
$$

(b) Define $Z(t):=\frac{W(t)}{\sqrt{t}}$.

$$
\operatorname{Var}[Z(t)]=E\left[W(t)^{2} / t\right]-E[W(t) / \sqrt{t}]^{2}=\frac{1}{t} E\left[W(t)^{2}\right]=\frac{1}{t} \sigma^{2} t=\sigma^{2} .
$$

Now if $s \leqslant t$

$$
\operatorname{Cov}[Z(t), Z(s)]=E[Z(t) Z(s)]=\frac{1}{\sqrt{t s}} E[W(t) W(s)]=\frac{\sigma^{2} s}{\sqrt{t s}} .
$$

The correlation between $Z(t)$ and $Z(s)$ is then

$$
\rho_{Z(t), Z(s)}=\frac{\operatorname{Cov}[Z(t), Z(s)]}{\sqrt{\operatorname{Var}[Z(t)]} \sqrt{\operatorname{Var}[Z(s)]}}=\frac{\sigma^{2} s / \sqrt{t s}}{\sigma^{2}}=\frac{s}{\sqrt{t s}} .
$$

