STK2130: Solution to Exam Spring 2004

Problem 1

Per's problem.
(a) See book. Take two states that communicate $i \leftrightarrow j$ (i.e. they belong to the same class) and i is recurrent, then we will come back to i at a later time. Since $i \rightarrow j$ and i recurrent this implies $j \rightarrow i$ and hence $(i \leftrightarrow j) j$ will be recurrent as well.
(b) The states are $S=\{0,1, \ldots, M\}$. All states are transient (Per goes up but never down) except from M which is recurrent, once he has reached step M he "remains" there. There are $M+1$ classes since no states communicate. States have no period (not even 1) since once Per is in state i he will (with probability 1) never reenter state i, this only happens in state M where he remains and therefore state M has period 1 .
(c) What is the probability that Per goes up the staircase without treading on step no 2?

Here we see that

$$
\begin{gathered}
P\left(X_{n} \neq 2 \mid X_{0}=0\right)=p(1-p) \\
P\left(X_{n} \neq 2 \mid X_{0}=1\right)=1-p \\
P\left(X_{n} \neq 2 \mid X_{0}=2\right)=0 \\
P\left(X_{n} \neq 2 \mid X_{0} \geqslant 3\right)=1 .
\end{gathered}
$$

We use now the law of total probability and of course, assume that $X_{0}=0$ (Per starts going up from the first floor, i.e. $P\left(X_{0}=0\right)=1$ and $\left.P\left(X_{0} \geqslant 1\right)=0\right)$. So

$$
\begin{aligned}
P\left(X_{n} \neq 2\right) & =P\left(X_{n} \neq 2 \mid X_{0}=0\right) P\left(X_{0}=0\right)+P\left(X_{n} \neq 2 \mid X_{0}=1\right) P\left(X_{0}=1\right) \\
& +P\left(X_{n} \neq 2 \mid X_{0} \geqslant 3\right) P\left(X_{0} \geqslant 3\right) \\
& =p(1-p) .
\end{aligned}
$$

(d) You shall find the probability that Per goes up the staircase without treading on step no $M-1$ (because it is squeaking). Introduce the notation u_{i} for the probability that Per
goes up the staircase without treading on step no $M-1$ given he is standing on step no i.

$$
u_{i}=P\left(X_{n} \neq M-1, n \geqslant 1 \mid X_{0}=i\right) .
$$

It is easy to see the following: (by the law of total probability) given Per is standing on step no i, then he has two possibilities to move along and therefore

$$
P\left(X_{n} \neq M-1 \mid X_{0}=i\right)=P\left(X_{n} \neq M-1 \mid X_{0}=i+1\right) p+P\left(X_{n} \neq M-1 \mid X_{0}=i+2\right)(1-p)
$$

Now, by the Markov property we conclude

$$
\begin{equation*}
u_{i-1}=u_{i} p+u_{i+1}(1-p) \text { for each } i=1, \ldots, M-1 \tag{0.1}
\end{equation*}
$$

In particular, it is also easy to compute u_{i} for i close to $M-1$. Namely,

$$
\begin{gathered}
u_{M-2}=1-p \\
u_{M-3}=p(1-p) \\
u_{M-4}=p^{2}(1-p)+(1-p)^{2} \\
u_{M-5}=p^{3}(1-p)+p(1-p)^{2}+p(1-p)^{2}=p^{3}(1-p)+2 p(1-p)^{2}
\end{gathered}
$$

and one sees that they satisfy (0.1)
(e) The difference equation given in (0.1) can be solved and for $i=0$ (Per does not tread on step $M-1$) is

$$
u_{0}=\frac{q+(-q)^{M}}{1+q}
$$

Calculate u_{0} for $M=10$ and $M=11$ when (i) $q=0.2$ and (ii) $q=0.9$. Comment on the difference in the results. Do you have a reasonable explanation for the difference?
We obtain for $M=10$

$$
\text { (i) } 0.1666 \text { (ii) } 0.6572
$$

and for $M=11$
(i) 0.1666 (ii) 0.30852

No matter whether we have even or odd number of stairs the probability is almost the same (they are not exactly equal) since $q=0.2$ tells that Per rarely chooses to jump one staircase. On the other hand, if $M=11$ and q is big, this means that he will probably jump over a staircase and end up treading on $M-1$ with higher probability (i.e. lower for not treading on $M-1$)

