Exercise 4.1

Three white and three black balls are distributed equally into two urns. We say that the system is in state $i, i=0,1,2,3$, if the first urn contains i white balls. At each step, we draw one ball from each urn and exchange them. Let X_{n} denote the state of the system after the n-th step. Explain why X_{n} is a Markov chain and calculate the transition probability matrix.

Solution: For example, choose $\left\{X_{n}, n \geqslant 0\right\}$ the process such that

$$
X_{n}=\{\text { Number of white balls in urn } 1 \text { after } n \text { extractions }\} .
$$

Clearly, the r.v. X_{n} determines completely the state of the system at time n. If we know how many white balls there are in urn 1 , we know everything. We adopt the standard notation from the book: (X_{n} satisfies the Markov property, see page 192)

$$
P\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{1}=i_{1}, X_{0}=i_{0}\right)=P\left(X_{n+1}=j \mid X_{n}=i\right),
$$

for all states $i_{0}, \ldots, i_{n-1}, i, j$ and steps $n \geqslant 0$.
One may easily compute the transition probabilities, for each $n \geqslant 0$. See the following figure to help yourself:

Take one ball from each
 and exchange them

Observe that state X_{0} depends on how balls are distributed for the first time. $X_{0} \sim \operatorname{Bin}(3,1 / 3)$. Moreover, observe that

$$
P\left(X_{n+1}=j \mid X_{n}=i\right)=0 \text { for all } j<i-1 \text { and } j>i+1
$$

This means that, the probability that we increase/decrease the number of white balls by more than one is 0 in just one step (reasonable).

For $i=0,1,2,3$ (see the figure above carefully)

$$
P\left(X_{n+1}=j \mid X_{n}=i\right)=\left\{\begin{array}{l}
\left(\frac{i}{3}\right)^{2} j=i-1, \\
2 \frac{i}{3} \frac{3-i}{3} j=i, \\
\left(\frac{3-i}{3}\right)^{2} j=i+1
\end{array}\right.
$$

Observe that $\sum_{j=i-1}^{i+1} P\left(X_{n+1}=j \mid X_{n}=i\right)=1$ for all $i=1,2,3$ as it has to be. Using book's notation (recall that $P_{i, j}=0$ for all i, j s.t. $|i-j| \geqslant 2$)

$$
\begin{gathered}
P_{0,0}=0, P_{0,1}=1, P_{0,2}=0, P_{0,3}=0 \\
P_{1,0}=1 / 9, P_{1,1}=4 / 9, P_{1,2}=4 / 9, P_{1,3}=0 \\
P_{2,0}=0, P_{2,1}=4 / 9, P_{2,2}=4 / 9, P_{2,3}=1 / 9 \\
P_{3,0}=0, P_{3,1}=0, P_{3,2}=1, P_{3,3}=0
\end{gathered}
$$

In matrix form,

$$
P=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 / 9 & 4 / 9 & 4 / 9 & 0 \\
0 & 4 / 9 & 4 / 9 & 1 / 9 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Additional computations: (Very similar to exercise 4.5!) Just for fun, we could be interested in what is the expected number of white balls in the first urn at time $n=2$. That is, we want to compute $E\left[X_{2}\right]$. We can do so by using:
(1) Knowledge of the starting state X_{0} (We know its distribution)
(2) The tower property of the conditional expectation
(3) Chapman-Kolmogorov equation

$$
\begin{aligned}
E\left[X_{2}\right] & =E\left[E\left[X_{2} \mid X_{0}\right]\right]=\sum_{i=0}^{3} E\left[X_{2} \mid X_{0}=i\right] P\left(X_{0}=i\right) \\
& =\sum_{i=0}^{3} \sum_{j=0}^{3} j P\left(X_{2}=j \mid X_{0}=i\right) P\left(X_{0}=i\right)
\end{aligned}
$$

X_{0} is the result of distributing 6 balls in two boxes (three white and three black). In other words, it is the result of choosing three balls out of six (white with probability $1 / 2$) and putting them in urn 1. So $X_{0} \sim \operatorname{Bin}(3,1 / 2)$. Hence $P\left(X_{0}=i\right)=\frac{3!}{(3-i)!i!}(1 / 2)^{3}$.

Moreover,

$$
P\left(X_{2}=j \mid X_{0}=i\right)=\sum_{k=0}^{2} P\left(X_{2}=j \mid X_{1}=k\right) P\left(X_{1}=k \mid X_{0}=i\right)
$$

which using notation from the book (see page 195) is

$$
P_{i j}^{2}=\sum_{k=0}^{3} P_{i k} P_{k j}
$$

also known as, Chapman-Kolmogorov equation.
Hence $P\left(X_{2}=j \mid X_{0}=i\right)$ the probabilities of transition from i to j in 2 steps are given in the entries of the matrix P^{2} which in our case is:

$$
P^{2}=\left(\begin{array}{cccc}
1 / 9 & 4 / 9 & 4 / 9 & 0 \\
4 / 81 & 41 / 81 & 32 / 81 & 4 / 81 \\
4 / 81 & 32 / 81 & 41 / 81 & 4 / 81 \\
0 & 4 / 9 & 4 / 9 & 1 / 9
\end{array}\right)
$$

Using the number from the matrix above and $P\left(X_{0}=0\right)=1 / 8, P\left(X_{0}=1\right)=3 / 8$, $P\left(X_{0}=2\right)=3 / 8$ and $P\left(X_{0}=3\right)=1 / 8$ and probably a bit of patience or a computer we obtain

$$
\begin{aligned}
E\left[X_{3}\right] & =P\left(X_{2}=1 \mid X_{0}=0\right) P\left(X_{0}=0\right)+2 P\left(X_{2}=2 \mid X_{0}=0\right) P\left(X_{0}=0\right)+3 P\left(X_{2}=3 \mid X_{0}=0\right) P\left(X_{0}=0\right) \\
& +P\left(X_{2}=1 \mid X_{0}=1\right) P\left(X_{0}=1\right)+2 P\left(X_{2}=2 \mid X_{0}=1\right) P\left(X_{0}=1\right)+3 P\left(X_{2}=3 \mid X_{0}=1\right) P\left(X_{0}=1\right) \\
& +P\left(X_{2}=1 \mid X_{0}=2\right) P\left(X_{0}=2\right)+2 P\left(X_{2}=2 \mid X_{0}=2\right) P\left(X_{0}=2\right)+3 P\left(X_{2}=3 \mid X_{0}=2\right) P\left(X_{0}=2\right) \\
& +P\left(X_{2}=1 \mid X_{0}=3\right) P\left(X_{0}=3\right)+2 P\left(X_{2}=2 \mid X_{0}=3\right) P\left(X_{0}=3\right)+3 P\left(X_{2}=3 \mid X_{0}=3\right) P\left(X_{0}=3\right) \\
& =\frac{3}{2} .
\end{aligned}
$$

This means, if we repeat the experiment many times, in the long-run, there will be "1.5" white balls in URN 1 after two extractions.

Exercise 4.12

The statement of this exercise is false. We will find a counterexample. One MUST have at least three states. So, $S=\{0,1,2\}$ (you can try with two to see why it does not work)

I suggest the following counterexample although this one is not the only one:

Take $X_{n}: \Omega \rightarrow\{0,1,2\}$ and $\mathbf{r}=2$ so the new process with two states is $Y_{n}: \Omega \rightarrow\{0,1\}$. Then consider as a transition probability matrix P of X :

$$
P=\left(\begin{array}{ccc}
p_{00} & p_{01} & p_{02} \\
p_{10} & 0 & p_{12} \\
p_{20} & p_{21} & 0
\end{array}\right)
$$

with none of the $p_{i j}$ either 0 or 1 . Then the situation is as follows:

Hence Q (according to the def. in the exercise: $q_{i, j}=\frac{p_{i j}}{1-p_{i r}}$ with $i, j \neq 2$) looks like:

$$
Q=\left(\begin{array}{cc}
\frac{p_{00}}{1-p_{01}} & \frac{p_{02}}{1-p_{01}} \\
1 & 0
\end{array}\right)
$$

For example, taking $\mathbf{i}=\mathbf{0}, \mathbf{m}=\mathbf{2}$ and $\mathbf{n}=\mathbf{2}$ we have (look at the diagram to help yourself and think of all the possible paths to follows),

$$
P\left(X_{2}=2 \mid X_{1} \neq 1, X_{0}=0\right)=\frac{P\left(X_{2}=2, X_{1} \neq 1 \mid X_{0}=0\right)}{P\left(X_{1} \neq 1 \mid X_{0}=0\right)}=\frac{p_{00} p_{02}}{p_{00}+p_{02}}=\frac{p_{00} p_{02}}{1-p_{01}}
$$

where the last step follows since $p_{00}+p_{01}+p_{02}=1$.
On the other hand, according to the exercise it should be

$$
q_{1,1}^{(2)}=\frac{p_{00} p_{02}}{\left(1-p_{01}\right)^{2}} .
$$

Let us check!

$$
\frac{p_{00} p_{02}}{1-p_{01}}=\frac{p_{00} p_{02}}{\left(1-p_{01}\right)^{2}}
$$

if, and only if

$$
1-p_{01}=\left(1-p_{01}\right)^{2}
$$

if, and only if

$$
1=1-p_{01}
$$

if, and only if

$$
p_{01}=0!!
$$

which can not be since we assumed none of the $p_{i j}$ were 0 or 1 . So

$$
q_{1,1}^{(2)} \neq \frac{p_{00} p_{02}}{\left(1-p_{01}\right)^{2}}
$$

and the formula is wrong.

