
1 Introduction

1.1 A view on the evaluation of risk

The role of mathematics

What skills should the modern actuary possess? How much is this influenced by the powerful modern
computers? This book sees an actuary is a practitioner who is there to solve practical problems of
risk in insurance and finance. Mathematics is an essential part and plays two different roles. One is
as vendor of models that provide simplified descriptions of complicated risk processes. These models
are usually stochastic. Examples are probability distributions of claim numbers and losses in general
insuarnce, Markov processes describing how long we live or how often we become disabled in life
insurance or interest rate and stock market fluctuations in finance.

Mathematics is from this point of view a language. It is a way risk is expressed, and it is a language
we must be master. Otherwise statements of risk couldn’t be related to the reality, it would be
impossible to say what conclusions mean in any precise manner and nor could analyses be presented
effectively to clients. Actuarial science is in this sense almost untouched by modern computational
facilities. The basic concepts and models remain what they were, notwithstanding, of course, the
strong growth of risk products throughout the last decades. This development may have had some-
thing to do with computers, but not much with computing per se.

But mathematics is also deductions where precise conclusions are derived from precise assumptions
through the rules of logic. That is the way mathematics is taught at school and at university. It
is here computing enters applied mathematical disciplines like actuarial science. More and more of
these deductions are implemented in computers and carried out there. This has been going on for
several decades. It leans on an endless growth in computing power, a true technological revolution
that opens for simpler and more general computational methods which require less of users.

Risk methodology

The supreme example of such an all-purpose computational technique is stochastic simulation.
Simplified versions of processes taking place in real life is then reproduced in the computer. Risk in
finance and insurance is future, uncertain gains and losses, designated in this book by letters such
as X and Y . Typical examples are compensations for claims in general insurance, pension schemes
interrupted upon death in life insurance and future values of shares and bonds in finance. There
are also secondary (or derived) products where values and pay-offs are channeled through certain
contract clauses set up in advance. Such agreements are known as derivatives in finance and re-

insurance in insurance.

The mathematical approach, today unanimously accepted, is through probabilities. Risks X and
Y are then regarded as random variables. We shall know their values eventually (after the event),
but for planning and control and to price risk-taking activities we need them in advance and must
then fall back on their probabilities. This leads to a working process as the one depicted in Figure
1.1. The real world on the left is an enormously complicated mechanism (denoted M) that yields
a future X. We shall never know M , though our paradigm is that it does exist as a well-defined,
stochastic mechanism. Since it is beyond reach, a simplified version M̂ in constructed in its place
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The world In the computer Sources for M̂
of risk Historical experience

M → X M̂ → X∗ The implied market view
↑ Deductions from no-arbitrage

Assumed mechanism Judgement, physical modelling

Figure 1.1 The working process: Steps when evaluating a risk X.

and used to draw conclusions about X. We are rarely trying to predict what X is going to be.
Usually our interest is its region of variation, for example its expected value (used for valuation) or
its percentiles (used for control). Note that everything falls apart if M̂ deviates too strongly from
the true mechanism M . This issue of error is a very serious one indeed. Chapter 7 is an introduction.

What there is to go when M̂ is erected is listed on the right in Figure 1.1. Learning from the
past is an obvious source (but not all of it is relevant). In finance current asset prices relate market
opinion on the future. This so-called implied view is briefly introduced in Section 1.4, and there
will be more in part III. Then there is the theory of arbitrage where risk-less financial income is
regarded as impossible. This innocently looking no-arbitrage condition has wide implications which
is discussed in Chapter 14. In practice there might also be some personal judgement behind M̂ , but
this is not suitable for general argument, and nor shall we go into physical modelling used in large
claims insurance where physical damages from hurricanes, earthquakes or floods are imitated in the
computer. This book is about how M̂ is constructed from the first three sources (historical data
above all), how it is implemented in the computer and how the computer model is used to determine
the probability distribution of X.

The computer model

The real risk variable X will materialize only once. The economic result of an financial investment in
a particular year is an unique event as is the aggregated claim against an insurance portfolio during
a certain period of time. With the computer model that is different. Once it has been set it up it can
be played as many times as we please. Let X∗

1
, . . . X∗

m of be m realizations of X. They tell us which
values of X are likely and which are not and how badly things might become if we are unlucky. The
∗-marking will be used throughout to distinguish computer simulations from real variables and m
will always denote the number of simulations.

The method portrayed on the left in Figure 1.1 is known as the Monte Carlo method or as stochas-

tic simulation. It belongs to the realm of numerical integration; see Evans and Schwarz (2000)
for a summary of this important branch of numerical mathematics. Monte Carlo integration dates
far back. It is computationally slow, but other numerical methods (that might do the job faster)
often require more expertise to use and bog down for high-dimensional integrals which is precisely
what is often needed in practice. The Monte Carlo method is unique in handling many variables well.

What is the significance of numerical speed anyway? Does it really matter that some specialized
technique (demanding more time and know-how to implement) is (say) one hundred times faster
when the one we use only takes a second? If the procedure for some reason is to be repeated in a
loop thousands of times, it would matter. Often, however, slow Monte Carlo is quite enough, and,
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indeed, the practical limit to its use is moving steadily as computers become more and more powerful.
How far have we got? The personal computer on the author’s desk (not particularly advanced) could
produce (2004) around 3 million drawings from the Pareto distribution per second (using Algorithm
2.9, implemented in Fortran) and a similar number from the normal (Algorithm 2.1). That is 1000
claims in an insurance portfolio simulated 10000 times (i.e. 10 million draws) completed in about
three seconds!

One of the aims of this book is to demonstrate how these opportunities are utilized. Principal
issues are how simulations programs are designed, how they are modified to deal with related (but
different) problems and how different programs are merged to handle situations of increasing com-
plexity with several risk factors contributing jointly. The versatility and usefulness of Monte Carlo
is indicated in Section 1.5 (and in Chapter 3 too). By mastering it you are well equipped to deal
with most of what that comes up and are not stuck when software packages lack what you need.
What platform should you go for? Algorithms in this book have been written in the pseudo-code
of Algorithm 1.1 that goes with everything. Excell and Visual Basic are a standard in the industry
and may be used even for simulation. Much higher speed is obtained with C, Pascal or Fortran, and
people are in the opinion of this author well adviced to learn software like those. There are other
possibilities as well. Much can be achieved with a platform you know!

How the book is planned

This is an elementary treatise, at least in terms of the mathematics used. No more than a bare
necessity of ordinary and probabilistic calculus is demanded, and mathematical arguments rarely
exceed calculations of means and variances. Models are whenever possible presented the way they
are simulated in the computer. Their probabilistic description in terms of distributions is often
complicated stuff, but this is required only when when models are fitted by maximum likelihood,
and ’advanced’ modelling can therefore be reached quickly. Nor is it necessary to rely on artillery
as heavy as stochastic analysis and Ito integration to understand what modern financial derivatives
are about (see Chapter 14). The matematics in this book is always in discrete time with modelling
in continuous time as limits when the time incement (denoted h) approaches 0.

The next three sections introduce main concepts of risk in insurance and finance with the core
of the mathematical notation needed. Why stochastic simulation is such a unifying tool will be
indicated in Section 1.5. This is a forerunner of the entire Part I where the Monte Carlo method and
its potential is presented jointly with elementary models in insurance and finance. The idea is to get
Monte Carlo settled early as a vehicle for analysis, learning and communication. Other major tools
for risk studies are stochastic modelling of dependence (Chapter 5 and 6) and historical estimation
and error (Chapter 7). Part I carries mathematical, statistical and computational methods from one
application area to another with examples from everywhere. The two other parts of the book deal
with general insurance (Part II) and life insurance and financial risk (Part III). The treatment is
now more systematic with more complex models and situations being examined.

1.2 Insurance risk: Basic concepts

Introduction

Property or general insurance is economic responsibility for unexpected events such as fires or ac-
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cidents passed on (entirely or in part) to an insurer against a fee. The contract, known as a policy,
releases compensation (known as a claim) according to certain clauses. A central quantity is the
total claim X amassed during a certain period of time (typically a year). Often X = 0 (no events),
but on rare occasions X is huge. An insurance company (if properly run) copes whatever happens.
It has a portfolio of many such risks and only a few of of them materialize. The control of the total
uncertainty involved is a major theme in general insurance.

Life insurance is also built up from random payments X. Term insurance where beneficiaries
receive compensation upon the death of the the policy holder is similar to property insurance in that
unexpected events lead to pay-offs. Pension schemes are the opposite. Now the payments go on
as long as the insured is alive, and they are likely, not rare. Yet the basic approach remains the same
with random variables X expressing the uncertainty involved.

Pricing of insurance risk

Transfers of risk through X do not take place for free. The fee (or premium), always charged in
advance, depends on the market conditions, but the expectation is a guideline. Introduce

πpu = E(X), (1.1)

which is known as the pure premium and defines a break-even situation. A company receiving πpu

for its services will in the absence of all overhead cost and all financial income neither earn nor lose in
the long run. This is a consequence of the law of large numbers in probability theory; see Appendix A.

Such a pricing strategy is (of course) out of the question, and companies add loadings γ on top of
πpu. The premium charged is then

π = (1 + γ)πpu, (1.2)

and we may regard γπpu as the cost of risk. It is thoroughly influenced by the market situation, and
are in many branches of insurance known to exhibit strong fluctuations; see Section 11.5 for a simple
model. There has been attempts to determine γ from theoretical arguments, see Young (2004) is a
good review, but these efforts are not much used in practice and will not be considered.

The significance of the loading concept is the insulation of market impact from the insurance process
itself. Another issue is whether the pure premium really is known. When stochastic models for X are
introduced in later chapters, it will emerge that there are always unknown quantities (parameters,
probability distributions) determined from experience or even assessed informally if hard historical
data are lacking. This creates a crucial distinction between the true πpu with perfect knowledge of
the underlying situation and the one π̂pu used for analysis and decisions. The discrepancy between
what we seek and what we get is a fundamental issue of error that is present everywhere (see Figure
1.1), and there is special notation for it. A parameter or quantity with a ˆ such as ψ̂ means an
estimate or assessment of an underlying, unknown ψ. Chapter 7 offers a general discussion of errors
and how they are confronted.

Portfolios and solvency

A second major theme in insurance is control. Companies are obliged to to set aside funds to cover
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furure obligations. Indeed, this is a major theme in the legal definition of insurance. An insurance
company carries responsibiity for many polices. It will lose on some and gain on others. In property
insurance policies without accidents are profitable, those with large claims are not. Long lives in
pension schemes lead to losses, short ones to gains. On portfolio level gains and losses average out.
This is the beauty of a large agent handling many risks simultaneously.

Suppose the portfolio consists of J policies with claims X1, . . . ,XJ . The total claim against the
portfolio is then

X = X1 + . . .+XJ (1.3)

where caligraphical letters like X will be used for quantities applying to portfolios. We are certainely
interested in E(X ), but equally important is its distribution. Regulators demand sufficient funds to
cover X with high probability. The mathematical formulation is in terms of a percentile qǫ which is
the solution of the equation

Pr(X > qǫ) = ǫ (1.4)

where ǫ is a small number (for example 1%). The amount qǫ is known as the solvency capital or
the reserve. Percentiles are used in finance too and is then often called Value at Risk (or VaR for
short). As elsewhere the true qǫ we seek is not same as the estimated q̂ǫ we get; see Chapter 7.

Risk ceding and re-insurance

Risk is ceded from ordinary policy holders to companies, but companies do the same thing be-
tween themselves. This is known as re-insurance, and the ceding company is called the cedent.
The rationale could be the same; i.e. that a financially weaker agent is passing risk to a stronger
one. In reality even the largest of companies do this to diversify risk, and financially the cedent may
be as strong as the re-insurer. There is now a chain of responsibilities that can be depicted as follows:

original clients −→ cedent −→ re-insurer.
X (primary) X ce = X − X re X re (derived)

The original risk X is split between cedent and the re-insurer through two separate relationships
where the cedent part X ce is net and the difference between two cash flows. Of course X re ≤ X ;
i.e. the responsibility of the re-insurer is always less than the original claims. Note the caligraphic
style that applies to portfolios. There may in practice be several rounds of such cedings in compli-
cated networks extending around the globe. One re-insurer may go to a second re-insurer and so
on. Modern methods provide the means to analyse risk taken by an agent who is far away from the
primary source. Ceding and re-insurance are tools used by managers to tune portfolios to a desired
risk profile.

1.3 Financial risk: Basic concepts

Introduction

Gone are the days where insurance liabilities were handled insulated from assets and where insurance
companies carried all financial risk themselves. One trend is ceding to customers. In contries like the
US and Britain insurance products with financial risk integrated have been sold for decades under
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names such as unit link or universal life. The rationale is that clients receive higher financial income
in expectation in exchange for carrying more risk. Pension plans are today increasingly contributed
benfits (or CB) where financial risk rests with the individual members. There is also much interest
in investment strategies taylored to liabilities, in particular how they distribute over time. That is
known as asset liability management (ALM for short) and is discussed in Chapter 15. The present
section and the next one reviews the main concepts of finance.

Rates of interest

An ordinary bank deposit v0 grows to (1 + r)v0 at the end of one period and to (1 + r)Kv0 after
K periods. Here r, the rate of interest, depends on the length of the period. Suppose interest is
compounded over K segments, each of length 1/K so that the total time is one. With interest per
segment being r/K the value of the account becomes

(1 +
r

K
)Kv0 → erv0, as K →∞,

after one of the most famous limits of mathematics. Interest earnings may therefore be cited as

rv0 or (er − 1)v0,

depending on whether we include ‘interest on interest’. The second form implies continuous com-
pounding of interest and higher earnings (er − 1 > r if r > 0), and now (er)k = erk takes over
from (1 + r)k. It doesn’t really matter which form we choose, since they can be made equivalent by
adjusting r.

Financial returns

Let V0 be the value of a financial asset at the start of a period and V1 the value at the end of it. The
relative gain

R =
V1 − V0

V0

, (1.5)

is called the return of the asset. Solving for V1 yields

V1 = (1 +R)V0, (1.6)

which shows that RV0 is financial income. Clearly R acts like interest, but it is more than that.
Interest is a fixed benefit offered by a bank (or an issuer of a very secure bond) in return for making
a deposit and is risk-free. Shares of company stock, on the other hand, are fraught with risk. They
may go up (R positive) or down (R negative). When dealing with such assets, V1 (and hence R) is
determined by the market whereas with ordinary interest r is given and V1 follows.

The return R is the more general concept and is a random variable with a probability distribu-
tion. Take the randomness away, and we are back to a fixed rate of interest r. As r depends on the
time between V0 and V1, so does the distribution of R; how will appear many times in this book.
Whether the rate of interest r really is risk-free is not so obvious as it seems. True, you do get a
fixed share of your deposit as a reward, but that does not tell its worth in real terms when price
increases are taken into account. Indeed, over longer time horizones risk due to inflation may be
huge and reduce the real value of cash deposits and bonds. Saving money at a bank at a fixed rate
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of interest also may also bring opportunity cost if the market rate after a while overturns what
you get. These issues are discussed and integrated with other sources of risk in Part III.

Log-returns

Economics and finance have often constructed stochastic models in terms of R directly. An alterna-
tive is the log-return

L = log(1 +R), (1.7)

which by (1.5) can be written L = log(V1) − log(V0); i.e. as a difference on logarithmic scale. The
modern theory of financial derivatives (Section 3.5 and Chapter 14) is based on L. Actually L and
R do not necessarily deviate that strongly since the Taylor series of log(1 +R) yields

L = R−
R2

2
+
R3

3
+ . . . ,

where R (a relatively small number) dominate so that L
.
= R, at least over over short periods. The

distributions of R and L must then be fairly similar too; see Section 2.3. However, this is not to say
that the discrepancy is unimportant. It depends on the amount of random variation present, and
the longer the time horizon the more L deviate from R. There are calculations in Section 5.4.

Financial portfolios

Investments are often spread on many assets as baskets or financial portfolios. By intuition this
must reduce risk; see Section 5.3 where the issue is discussed. A central quantity is the portfolio
return, denoted R (in caligrahic style). Its relationship to the individual returns Rj of the assets is
as follows. Let V10, . . . , VJ0 be investments in J assets. The portfolio value is then

V0 =
J∑

j=1

Vj0 growing at the end of the period to V1 =
J∑

j=1

(1 +Rj)Vj0.

Subtract V0 from V1 and divide on V0, and you get the portfolio return

R =
J∑

j=1

wjRj where wj =
V0j

V0

. (1.8)

Here wj is the weight on asset j. Note that

w1 + . . .+ wJ = 1. (1.9)

Financial weights define how the portfolio distributes on individual assets and will in this book al-
ways satisfy this normalizing condition.

The mathematics allow negative wj. With bank deposits this corresponds to borrowing. It is also
possible with shares and is then known as short selling. A loss due to a negative development is
then carried by somebody else. The mechanism is as follows. Our short contract with a buyer is to
sell shares at the end of the period at an agreed price. At that point we shall have to buy at market
price, gaining if it is lower than our agreement, losing if not. Short contracts may be an instrument
to lower risk (see Section 5.3) and requires liquidity; i.e. assets that are traded regularly.
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1.4 Financial risk over time

Introduction

A huge number of problems in finance (and in insurance too) have time as a central ingredient, and
this requires additional quantities and concepts and a rather elaborate mathematical notation. Time
will be run on equidistant sequences of the form

tk = kh, k = 0, 1, . . . ,K, (1.10)

where h > 0 is the time increment and k the time index. Variables such as interest rates rk, returns
Rk, portfolio values Vk and insurance liabilities Xk are all assigned values at tk. We observe them
at t0 = 0 (in this book always the present), but what they are going to be in the future (k > 0) is
unknown although stochastic models suggest which values are likely and which are not. The past
will sometimes be indexed by negative k.

Many different time scales h are required. Accountancy is typically annual, and both years, quarters
and months may be appropriate for insurance liabilities and financial variables when followed over
decades. There is also scope for much shorter time increments, Indeed, many model constructions
are based on infitisemal h; i.e. we let h→ 0! This is known as continuous time and is a trick to find
simple mathematical solutions. Parameters are then often cited as intensities which are quantities
per time unit. A case in point is interest rate being denoted rh rather than r. Claim frequencies in
property insurance (Chapter 8) and mortalities in life insurance (Chapter 12) are other prominent
examples of intensities.

K-step quantities

Let v0 be the value of a financial asset earning returns R1, . . . , RK in the periods ahead. By tK = Kh
it is worth

VK = (1 +R1)(1 +R2) · · · (1 +RK)V0 = (1 +R0:K)v0,

which defines R0:K as a K-step return over K periods through

1 +R0:K = (1 +R1) · · · (1 +RK) and also L0:K = L1 + . . .+ LK ,
ordinary returns log-returns

(1.11)

where Lk = log(1 + Rk) and L0:K = log(1 + R0:K). The sum on the right is the logarithm of the
product on the left.

Interest rates is a special case and an important one. If r1, . . . , rK are future rates, then the rate of
interest from t0 to tK is

r0:K = (1 + r1)(1 + r2) · · · (1 + rK)− 1. (1.12)

This reduces to r0:K = (1+r)K−1 if all rk = r, but in practice rk will float in a way that is unknown
at t0 = 0.

Forward rates of interest

Future interest rates like r0:K is crucial, yet hopeless to predict from mathematical models (you
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see why in Section 6.4), but there is also a market view that conveys the so-called implied rates.
Consider an asset of value v0 that will be traded at time tK for a price V0(K) agreed today. Such
contracts are called forwards and define inherent rates of interest r0(0:K) through

V0(K) = {1 + r0(0:K)}v0 or r0(0:K) =
V0(K)

v0
− 1. (1.13)

Note the difference from (1.12) where r0:K is uncertain whereas now V0(K) and hence r0(0 :K) is
fixed by the contract and known at t0 = 0. Forward rates can in practice be deduced from many
different sources, and the results are virtually identical. If not, there would have been a market
inconsistency which would have opened for money earning schemes with no risk attached (more on
this in Chapter 14).

We are often interested in breaking the rate r0(0:K) down on its average value r̄0(0:K) per period.
The natural definition is

1 + r0(0:K) = {1 + r̄0(0:k)}K which yields r̄0(0:K) = {1 + r0(0:K)}1/K − 1, (1.14)

and as K is varied, the sequence r̄0(0 :K) traces out the interest rate curve or yield curve,
published daily in the financial press.

Present and fair values

What is the value today of receiving B1 at time t1? Surely it must be B1/(1 + r) which grows
to precisely B1 when interest is added. More generally, Bk at tk is under constant rate of interest
worth Bk/(1+ r)k today. This motivates the present value (PV) as the value of a payment stream
B0, . . . , BK ; i.e.

PV =
K∑

k=0

dkBk where dk =
1

(1 + r)k
, (1.15)

which is a popular criterion in all spheres of economic life. It applies even when B0, . . . , BK are
stochastic (the present value is then stochastic as well). Individual payments may be both positive
and negative.

The quantities dk = 1/(1 + r)k (or dk = e−rk if continuous compounding of interest is used) are
known as discount factors; they devaluate or discount future income. In life insurance r is called
the technical rate. The value to use isn’t obvious, especially not with payment streams decades
ahead. It isn’t easy to know what interest rates will become over time spans like those! Market
discounting is an alternative. The coefficient dk in (1.15) is then replaced by

dk =
1

{1 + r̄0(0:k)}k
=

1

1 + r0(0:k)
or dk = P0(0:k), (1.16)

where P0(0 : k) comes from the bond market; see below. Instead of choosing the technical rate r
administratively, we use the market view. The resulting valuation is known as fair value and holds
obvious attraction. A disadvantage is that the discount sequence fluctuates up and down with the
market, and this brings considerable uncertainty (Section 15.4) even if there was none in the begin-
ning.
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Bonds and yields

Governments and private companies raise capital by issuing bonds. In return for money received
up-front the issuer makes fixed payments at pre-determined points in time tk, k = 0, 1, . . . K. The
end transfer (known as the face of the bond ) is a big one, and the earlier payments can be seen
as interest on a loan that size, but it is simplest to define a bond as a fixed cash flow. How long it
lasts varies enormously, from a year or less to up to half a century or even more! Bonds have a huge
second-hand market and are traded regularly.

Should bonds be valued through present or fair values? Actually it is the other way around. The
present value is given by what the market is willing to pay, and the rate of interest determined by
the resulting equation. We are dealing with a fixed payments stream B0, . . . , BK . Let v0 be its value
at t0 = 0. The yield y from buying the rights to the stream is then the solution of the equation

v0 =
K∑

k=0

Bk

(1 + y)k
. (1.17)

With more than one payment a numerical method is needed to determine y; see Section C.4.

A special case is the zero-coupon bond or T-bond for which B0 = . . . BK−1 = 0. It is unit-

faced if BK = 1. Now the only transaction occurs at maturity tK , and in a market operating
rationally its yield y is the same as the forward rate of interest r̄0(0 :K). The price of unit-faced
T-bonds will be denoted P0(0:K). This is what is charged today for the right to receive one money
unit at tK and relates to the forward rate of interest through

P0(0:K) =
1

1 + r0(0:K)
=

1

{1 + r̄0(0:K)}K
(1.18)

which is again obvious since anything else brings risk-less financial income. The prices P0(0:K) will
be used a lot in Chapters 14 and 15.

Duration

The timing of bonds and other fixed payment streams is often measured through their duration D.
There are several versions which vary in detail. The one used here is

D =
K∑

k=0

qktk where qk =
Bk(1 + r)−k

∑K
i=0

Bi(1 + r)−i
. (1.19)

Note that the sequence q0, . . . , qK is a probability distribution (it adds to one) with qk being propor-
tional to the present value of the k’th payment. This means that the duration D expresses how long
the cash flow B0, . . . , BK lasts ‘on average’.

For a zero-coupon bond maturing at tK = Kh, we have

qK = 1 and qk = 0, for k < K.

so that D = tK , a sensible result! A bond with fixed coupon payments and a final (much larger) face
has duration between tK/2 and tK .
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Investment strategies

Long term management of financial risk is usually concerned with different classes of assets which
fluctuate jointly. LetRk be the portfolio return in period k. The account {Vk} then evolves according
to

Vk = (1 +Rk)Vk−1, k = 1, 2, . . . , (1.20)

where the link of Rk to the individual assets is through (1.8) as before. If Rjk is the return of asset
j in period k, then

Rk =
J∑

j=1

wjRjk. (1.21)

The weights w1, . . . , wJ define different investment strategies. One way is to keep them fixed, as
in (1.21) where they are the same for all k. This is not achieved automatically since individual
investments develope unequally so that their relative values change. Weights can only be kept fixed
by buying assets that have gone badly and selling those that have been successful. Restructuring
financial weights in such a way is known as rebalancing.

An alternative line is to allow weights to float freely. Mathematically this is more conveniently
expressed through

Vk =
J∑

j=1

Vkj, where Vkj = (1 +Rkj)Vk−1,j, j = 1, . . . , J,

and the emphasis is on the assets rather than on their returns. There is more on investments
strategies in Chapter 15.

1.5 Method: A unified beginning

Introduction

How to make the preceding quantities and concepts flourish? Stochastic models and Monte Carlo
are needed! The following simple example introduces both. Consider the recursion

Yk = akYk−1 +Xk, k = 1, 2 . . . , starting at Y0 = y0 (1.22)

where X1,X2, . . . are independent random variables acting as drivers of the output Y1, Y2, . . ., in
shorthand notation {Xk} and {Yk}. Many important situations are covered, as will emerge below.
The second series {ak} may be fixed coefficients, but another possibility is ak = 1 + r where r is a
rate of interest. Now {Yk} are values of an account influenced by random input. A more advanced
version is

ak = 1 +Rk and Xk = −Xk,
financial risk insurance risk

(1.23)

and two different sources of risk that might themselves demand extensive modelling and simulation
are integrated; see Section 15.6. Here the target is a more modest one. A simple Monte Carlo algo-
rithm and notation for such schemes will first be presented and then four simple examples. The aim
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is to introduce a general line of attack and indicate the power of Monte Carlo for problem solving,
learning and communication.

Monte Carlo algorithms and notation

Let Y1, . . . , YK be the first K variables of the sequence (1.22). How they are simulated is indicated
by the following scheme (a skeleton!) which defines the first algorithm of the book:

Algorithm 1.1 Basic recursion

0 Input: y0, {ak}.
1 Y ∗

0
← y0 %Initialisation

%Draw K here if random

2 For k = 1, . . . ,K do
3 Sample X∗

k %Many possibilities

4 Y ∗
k ← akY

∗
k−1

+X∗
k %New value

5. Return Y ∗
0
, . . . Y ∗

K (or just Y ∗
K)

After initialisation (on Line 1), the random terms X∗
k are drawn (Line 3) and the the preceding

values Y ∗
k−1

revised. All simulated variables are ∗-marked, a convention that will be followed every-
where. The backward arrow ← signifies that the variable on the left is assigned the value on the
right. It is a more convenient notation than an ordinary equality sign. For example, when only
the last value Y ∗

K is wanted (as is frequent), statements like Y ∗ ← aY ∗ +X∗ simply overwrite Y ∗,
and values of the past are not stored in the computer. The % symbol will be used to insert comments.

A huge number of simulation experiments in insurance and finance fit this scheme or some sim-
ple variation of it which suggests a fairly stable pattern for Monte Carlo programming that can be
lifted from one problem to another. Is K in Algorithm 1.1 random (as in Example 2 below)? Draw
it prior to entering the loop on Line 2. Random ak as in (1.23)? Similar, remove it from the input
list and generate it before updating Y ∗

k on Line 4.

Example 1: Term insurance

Consider J contracts where the death of policy holders release one-time payments. The likelihood
of this depends on age and sex, and the probabilities would be available on file. This situation is so
simple that it is possible to examine the portifolio liability and its uncertainty through mathematics
(it is done in Section 3.4), but the point now is to use Monte Carlo. Let Xj be the pay-off for policy
j, either 0 when the policy holder survives or sj when he does not. The stochastic model is

Pr(Xj = 0) = pj and Pr(Xj = sj) = 1− pj,

where pj is the chance of survival. A simulation goes through the entire portfolio, reads policy
information from file, draws those who die (whom we have to pay for) and adds all the payments
together. In Algorithm 1.1 take K = J , ak = 1 and X∗

j is either 0 or sj; details in Section 3.4.

The example in Figure 1.2 shows annual expenses for J = 10000 policies for which sj = 1 for
all j (money unit: one million US$). All policy holders were between 30 and 60 years of age. Sur-
vival probabilities and the age distribution are as specified in Section 3.4. One hundred parallel runs
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Figure 1.2 Simulations of term insurance. Left: 100 parallel runs through insurance portfolio. Right:

Annual density function obtained from m = 10000 simulations.

through the portfolio are plotted jointly on the left showing how the simulations evolve. The curved
shape has no significance. It is due to the age of the policy holders having been ordered on the file
so that the young ones with low death rates are examined first. What counts is the variation at the
end which is between 65 and 105 million. Another picture is provided by the probability density
function on the right which has been estimated from the simulations by means of the kernel method
of Section 2.2 (larger experiment needed). The Gaussian shape follows from the Lindeberg extension
of the central limit theorem (Appendix A.4). In life insurance such risk is often ignored, but in this
example uncertainty isn’t negligible.

Example 2: Property insurance

A classic model in property insurance is identical risks. Claims are then (on average) equally frequent
for everybody, and losses exhibit no systematic variation between individuals. The portfolio payout
then becomes

X = Z1 + . . .+ ZN

where N is the number of insurance incidents and Z1, Z2, . . . their cost. In Algorithm 1.1 K = N
(and drawn prior to the loop), ak = 1 and Xk = Zk; for details see Algorithm 3.1 in Chapter 3.

The example in Figure 1.3 was run with annual claim frequency 1% per policy and Poisson dis-
tributons for N . Losses Z1, Z2, . . . were drawn from the empirical distribution function (Section
9.2) of the Danish fire data introduced in Section 9.6. The latter is a record of more than 2000
industrial fires, the largest going up to several hundred million Danish kroner (divide on seven/eight
for euros). Figure 1.3 shows the density function for the portfolio liabilities for a ‘small’ portfolio
(J = 1000) on the left and a ‘large’ one (J = 100000) on the right. The uncertainty is now greater
than in the preceding example. For the small portfolio on the left the density function is strongly
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Figure 1.3 Density functions of the total claim against portfolio of fire risks (seven/eight Danish

kroner (DKK) for one euro).

skewed towards the right, but as the portfolio grows, this asymmetry is straightened out, and the
distribution becomes more Gaussian. The central limit theorem tells us it must be so.

Example 3: Reversion to mean

Monte Carlo is useful to examine the behaviour of stochastic models. Consider interest rates, equity
volatilities, rates of inflation and exchange rates which all tend to fluctuate between certain, not
clearly defined limits. If they move too far out on either side, there are forces in the economy that
pull them back again. This is known as reversion to mean and applies to many (but not all)
financial variables.

Interest rates is an important example. One of the most popular models, proposed by Vasic̆ek
(1977), is the recursion

rk = Yk + ξ where Yk = aYk−1 + σεk, k = 1, 2, . . . , (1.24)

starting at Y0 = r0−ξ. Here ξ, a and σ are fixed parameters and {εk} independent and identically dis-
tributed variables with mean 0 and standard deviation 1. The model is known as an auto-regression
of order one and is examined in Section 5.6. Here the objective is simulation which is carried out by
taking ak = a in Algorithm 1.1 and adding ξ to the output Y ∗

1
, Y ∗

2
. . . so that Monte Carlo interest

rates r∗
1
, r∗

2
, . . . are produced.

Figure 1.4 shows Monte Carlo scenarios under the following two models:

r0 = 3%, ξ = 7%, a = 0.70, σ = 0.016 r0 = 3%, ξ = 7%, a = 0.95, σ = 0.007.
‘rapid’ change ‘slow’ change

The time scale is annual, and the series {εk} in (1.24) is Gaussian. Note that the simulations
start at r0 = 3%, much lower than the long-term average (ξ = 7%) around which the interest rate
eventually fluctuates. That level is quickly reached with the ‘rapid’ model scenario in Figure 1.4
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Figure 1.4 Simulations of the annual rate of interest from the Vasic̆ek model.

left, and after about five years there is no systematic change in patterns. Such phenomena are called
stationary, and they are discussed in Section 5.6. The same thing is observed with the other, ‘slow’
scenario on the right, but it now takes much longer (because the coefficient a is closer one), and after
25 years movements may still be slightly on the rise upwards (not realistic in practice). Stationarity
requires that −1 < a < 1, and the behaviour of the model changes completely outside this interval
as we shall see next.

Example 4: Equity over time

Stock prices {Sk} are not mean reverting. They are (unlike interest rates and inflation) traded
commodities, and had it been possible to identify systematic factors that drove them up and down,
we would be able to act upon them and earn money. But that opportunity would be available to
everybody, removing the forces we were utilizing and rendering the idea useless. Models for equity
are therefore very different from those for interest rates, and based on stochastically independent
returns. A common specification is

Rk = exp(ξ + σεk)− 1, k = 1, 2 . . . , (1.25)

where εk is a sequence of independent random variables with mean zero and standard deviation one.
By definition Sk = (1 +Rk)Sk−1 so that

Sk = exp(ξ + σεk)Sk−1, k = 1, 2 . . . , starting at S0 = s0. (1.26)

This is known as a geometric random walk, and log(Sk) follows an ordinary random walk; see
Section 5.5 where such models are discussed.

Their behaviour can be studied through Monte Carlo using Algorithm 1.1. Apply it to Yk = log(Sk)
(using ak = 1 and Xk = ξ + σεk) and convert the simulations by taking S∗

k = eY
∗

k . The simulated
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Figure 1.5 Simulations of accumulated equity return from geometric random walk (monthly time

scale).

scenarios in Figure 1.5 are monthly and apply to the k-step returns R∗
0:k = S∗

k/S0 − 1 rather than
the share price directly (the intial value S0 = s0 is then immaterial). Values for the parameters were

ξ = 0.4%, σ = 4% ξ = 0.8%, σ = 8%,
low yield and risk high yield and risk

both possible in real life. The potential for huge gain and huge loss is enormous. After five years up
to 50% of the orginal capital is lost in some of the scenarios on the right! Be aware that scales on
the vertical axes differ so that the uncertainty of the first model scenario is around one third of the
other. The performance of equity is wild and unstable and very different from money market assets.

1.6 Bibliographical notes

General references For ideas on the practical side of the actuarial profession, try Szabo (2004).
A general introduction to assets and liabilities is Booth, Chadburn, Cooper, Haberman and James
(1999) with management issues covered in Williams, Smith and Young (1998). Neither of those make
much use of mathematics, but it is more of that in Panjer (1998) which is a collection of articles by
different authors. The encyclopedia edited by Teugels and Sundt (2004) is a broad review of actu-
arial science and its history with more weight on mathematical than computational ideas. Entirely
devoted to history, the ancient one included, is the ten volumes edited by Haberman and Sibbet
(1995) and the landmark papers on pension insurance in Bodie and Davis (2000). Useful, elementary
reviews of traditional life and property insurance mathematics are Gerber (1997), Promislow (2006)
and Boland (2007). There are countless introductions to financial risk that take the material in
Sections 1.3 and 1.4 much further. Mathematics is kept on a fairly elementary level in Copeland,
Weston and Shastri (2005) and Hull (2006), the latest edtitions of two classics. An exception-
ally clear outline of investment risk is Luenberger (1998), see also Danthine and Donaldson (2005).
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Maddala and Rao (1996) and Ruppert (2004) are reviews of the statistical side of financial modelling.

Monte Carlo Simulation was established as a central method of science during the last decades of
the twentieth century. The term means two different things and is in applied physisics and certain
parts of engineering often associated with numerical solutions of partial differential equations; see
Langtangen (2003). Apart from powerful computers being needed this has little to do with the
stochastic version employed here. Stochastic simulation (or Monte Carlo) is an enormously versatile
technique. It was used to reconstruct global processes in Casti (1998) and networks of economic
agents in Levy, Levy and Solomon (2000); see Bølviken (2004) for other references. Applications in
the present book are less exotic, although there will be many extensions of the proceesses simulated
in Section 1.5. Algorithms will be presented as in Algorithm 1.1 which is written in a pseudo-code
taken from Devroye (1986). Although the Monte Carlo metod is well established in actuarial science,
few textbooks apart from a Daykin, Pentikäinen and Pesonen (1994) integrate the technique deeply.
This is different in financial economy where a number of such books have been written. Elementary
introductions are Vose (2000) and Chan and Wong (2006) with Lyuu (2002) being more advanced.
In statistics Gentle (2002). Robert and Casella (2004) and Ripley (2006) are reviews of Monte Carlo-
based methodology with Gentle, Härdle and Mori (2004) being a collection of articles over a broad
spectrum of themes. Ross (1997) and Fishman (2001) and (2006) are introductions to stochastic
simulation in operations research.
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