
LIST OF FORMULAS STK2120

(Version from 21. November 2014)

1 One-way analysis of variance

Assume Xij = µ+αi+εij ; j = 1, 2, . . . , Ji ; i = 1, 2, . . . , I ; where εij-s are independent
and N(0, σ2) distributed. Then:

(a) The total sum of squares SST =
∑I

i=1

∑Ji
j=1(Xij−X̄··)

2 can be written as SST =
SSE + SSTr where

SSE =
∑I

i=1

∑Ji
j=1(Xij − X̄i·)

2 is the sum of squares for error or the sum of
squares within groups

SSTr =
∑I

i=1 Ji(X̄i· − X̄··)
2 is the sum of squares for treatment or the sum of

squares between groups

(b) SSE and SSTr are independent

(c) MSE = SSE/[
∑I

i=1(Ji − 1)] is an unbiased estimator for σ2.

SSE/σ2 is chi-squared distributed with
∑I

i=1(Ji − 1) degrees of freedom

(d) If all αi-s are equal to zero, SSTr/σ2 is chi-squared distributed with I−1 degrees
of freedom

(e) If Ji = J for i = 1, . . . , I, then

maxi1,i2 |(X̄i1· − µi1)− (X̄i2· − µi2)|/
√
MSE/J

is distributed as the studentized range with parameters I and I(J − 1).

2 Two-way analysis of variance

Assume Xijk = µ+αi +βj +γij + εijk ; k = 1, . . . , K ; j = 1, . . . , J ; i = 1, . . . , I ; where
εijk-s are independent and N(0, σ2) distributed. Then:

(a) The total sum of squares SST =
∑I

i=1

∑J
j=1

∑K
k=1(Xijk − X̄···)

2 can be written
as SST = SSA+ SSB + SSAB + SSE where

SSA = JK
∑I

i=1(X̄i·· − X̄···)
2

SSB = IK
∑J

j=1(X̄·j· − X̄···)
2

SSAB = K
∑I

i=1

∑J
j=1(X̄ij· − X̄i·· − X̄·j· + X̄···)

2

SSE =
∑I

i=1

∑J
j=1

∑K
k=1(Xijk − X̄ij·)

2

(b) SSA, SSB, SSAB and SSE are independent
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(c) MSE = SSE/IJ(K − 1) is an unbiased estimator for σ2.
SSE/σ2 is chi-squared distributed with IJ(K − 1) degrees of freedom.

(d) If all αi-s are equal to zero, SSA/σ2 is chi-squared distributed with I−1 degrees
of freedom

(e) If all βj-s are equal to zero, SSB/σ2 is chi-squared distributed with J−1 degrees
of freedom

(f) If all γij-s are equal to zero, SSAB/σ2 is chi-squared distributed with (I−1)(J−1)
degrees of freedom

3 Block design (two-way anova without replications)

Assume Xij = µ+αi+βj + εij ; j = 1, . . . , J ; i = 1, . . . , I ; where εij-s are independent
and N(0, σ2) distributed. Then:

(a) The total sum of squares SST =
∑I

i=1

∑J
j=1(Xij−X̄··)

2 can be written as SST =
SSA+ SSB + SSE where

SSA = J
∑I

i=1(X̄i· − X̄··)
2

SSB = I
∑J

j=1(X̄·j − X̄··)
2

SSE =
∑I

i=1

∑J
j=1(Xij − X̄i· − X̄·j + X̄··)

2

(b) SSA, SSB and SSE are independent

(c) MSE = SSE/[(I − 1)(J − 1)] is an unbiased estimator for σ2.
SSE/σ2 is chi-squared distributed with (I − 1)(J − 1) degrees of freedom.

(d) If all αi-s are equal to zero, SSA/σ2 is chi-squared distributed with I−1 degrees
of freedom

(e) If all βj-s are equal to zero, SSB/σ2 is chi-squared distributed with J−1 degrees
of freedom

4 Multiple linear regression

Assume Yi = β0+β1xi1+ · · ·+βkxik+εi ; i = 1, 2, . . . , n ; where xij-s are given numbers
and εi-s are independent and N(0, σ2) distributed. The model can be written in matrix
form as Y = Xβ, where Y = (Y1, . . . , Yn)T and β = (β0, . . . , βk)

T are n- and (k + 1)-
dimentional vectors, and X = {xij} (with xi0 = 1) is a n× (k+ 1)-dimentional matrix.
Then:

(a) The least squares estimator for β is β̂ = (XTX)−1XTY.
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(b) Let β̂ = (β̂0, . . . , β̂k)
T . Then β̂j-s are normally distributed and unbiased, and

Var(β̂j) = σ2cjj and Cov(β̂j, β̂l) = σ2cjl

where cjl is element (j, l) in the (k + 1)× (k + 1) matrix C = (XTX)−1.

(c) Let Ŷi = β̂0 + β̂1xi1 + · · · + β̂kxik, and let SSE =
n∑
i=1

(Yi − Ŷi)
2. Then S2 =

SSE/[n−(k+1)] is an unbiased estimator for σ2, and [n−(k+1)]S2/σ2 ∼ χ2
n−(k+1).

Also, S2 and β̂ are independent.

(d) Let S2
β̂j

be the variance estimator for β̂j we get by replacing σ2 with S2 in the

formula for Var(β̂j) (in b). Then (β̂j − βj)/Sβ̂j ∼ tn−(k+1).

5 Two-way tables and chi-square tests

(a) Assume (N1, . . . , Nk) is multinomially distributed with probabilities pi,
where

∑k
i=1Ni = n and

∑k
i=1 pi = 1.

If pi = πi(θ), where θ = (θ1, . . . , θm), and θ̂ is the maximum likelihood estimator
for θ, then

χ2 =
k∑
i=1

(Ni − Ei)2

Ei

is approximately chi-squared distributed with k−1−m degrees of freedom when
Ei = nπi(θ̂) ≥ 5 for (almost) all i

(b) Test for homogeneity: Assume that for i = 1, . . . , I, (Ni1, . . . , NiJ) are indepen-

dent and multinomially distributed with probabilities pij, where
∑J

j=1 pij = 1.

If p1j = · · · = pIj, then

χ2 =
I∑
i=1

J∑
j=1

(Nij − Eij)2

Eij

is approximately chi-squared distributed with (I − 1)(J − 1) degrees of freedom
when
Eij = (Ni·N·j)/N·· ≥ 5 for (almost) all i, j

(c) Test for independence: Assume (N11, . . . , N1J , N21, . . . , N2J , . . . , NI1, . . . , NIJ) is

multinomially distributed with probabilities pij, where
∑I

i=1

∑J
j=1 pij = 1.

If pij = pi·p·j for all i, j, then

χ2 =
I∑
i=1

J∑
j=1

(Nij − Eij)2

Eij
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is approximately chi-squared distributed with (I − 1)(J − 1) degrees of freedom
when
Eij = (Ni·N·j)/N·· ≥ 5 for (almost) all i, j

6 The method of maximum likelihood

Assume X1, X2, . . . , Xn have a joint density function f(x1, x2, . . . , xn |θ),
where θ = (θ1, . . . . , θp) is a parameter vector (scalar if p = 1). We assume that
f(x1, x2, . . . , xn |θ) satisfies certain differentiability conditions.

(a) Given observed values Xi = xi; i = 1, . . . , n; the likelihood function is
L(θ) = f(x1, x2, . . . , xn |θ) and the log-likelihood function is l(θ) = logL(θ).

(b) The maximum likelihood estimate is the value of θ maximizing L(θ) or equiva-
lently maximising l(θ). If we replace the observed xi-s by the random variables
Xi, we get the maximum likelihood estimator.

(c) The maximum likelihood estimate θ̂ = (θ̂1, . . . . , θ̂p) is a solution of the equations
sj(θ) = 0; j = 1, . . . , p; where sj(θ) = (∂/∂θj)l(θ) are the score functions.
The vector of score functions is s(θ) = (s1(θ), . . . , sp(θ))T .

(d) The observed information matrix J̄(θ) is the p × p matrix with element (i, j)
given by J̄ij(θ) = − ∂2

∂θi∂θj
l(θ).

The expected information matrix (or Fisher information matrix)
Ī(θ) is the p× p matrix with element (i, j) given by Īij(θ) = E[J̄ij(θ)].

For independent and identically distributed observations we have that
Ī(θ) = nI(θ), where I(θ) is the expected information for one observation.

(e) When the equations in (c) do not have an explicit solution, we can find the
maximum likelihood estimate by using the Newton-Raphson method:

θ(s+1) = θ(s) + J̄
−1

(θ(s))s(θ(s)),

by using the Fisher scoring algorithm:

θ(s+1) = θ(s) + Ī
−1

(θ(s))s(θ(s)),

or by suitable modifications of these.

(f) When we have “enough” data, θ̂i is approximately normally distributed with

expectation θi and with variance equal to the i-th diagonal element in Ī
−1

(θ).
The covariance between θ̂i and θ̂j is approximately equal to element (i, j) in

Ī
−1

(θ). We can estimate variances/covariances by plugging in θ̂ instead of θ in

Ī
−1

(θ) or in J̄
−1

(θ).
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7 Bootstrapping

Assume that the distribution of the data X is described by a distribution function F .
Let θ = θ(F ) be a functional of F estimated by θ̂ = θ̂(X).

(a) The bootstrapping idea is to approximate the properties of θ̂ by assuming that

an estimate F̂ for F is the true distribution function.

(b) Bootstrap estimation of the skewness of θ̂:

bθ̂ =
1

B

B∑
b=1

θ∗b − θ(F̂ )

(c) Bootstrap estimation of the standard deviation of θ̂:√
EF̂
{(

θ̂(X∗)− EF̂ [θ̂(X∗)]
)2}

(d) Standard bootstrap confidence interval:

(θ̂ − δ, θ̂ − δ)

where δ and δ are lower and upper α/2 quantiles in the bootstrap distribution of
∆ = θ̂ − θ.
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