LIST OF FORMULAS STK2120

(Version from 21. November 2014)

1 One-way analysis of variance

Assume $X_{i j}=\mu+\alpha_{i}+\epsilon_{i j} ; j=1,2, \ldots, J_{i} ; i=1,2, \ldots, I ;$ where $\epsilon_{i j}$-s are independent and $N\left(0, \sigma^{2}\right)$ distributed. Then:
(a) The total sum of squares $S S T=\sum_{i=1}^{I} \sum_{j=1}^{J_{i}}\left(X_{i j}-\bar{X} . .\right)^{2}$ can be written as $S S T=$ $S S E+S S T r$ where
$S S E=\sum_{i=1}^{I} \sum_{j=1}^{J_{i}}\left(X_{i j}-\bar{X}_{i} .\right)^{2}$ is the sum of squares for error or the sum of squares within groups
$S S T r=\sum_{i=1}^{I} J_{i}\left(\bar{X}_{i} .-\bar{X}_{\text {.. }}\right)^{2}$ is the sum of squares for treatment or the sum of squares between groups
(b) SSE and SSTr are independent
(c) $M S E=S S E /\left[\sum_{i=1}^{I}\left(J_{i}-1\right)\right]$ is an unbiased estimator for σ^{2}. $S S E / \sigma^{2}$ is chi-squared distributed with $\sum_{i=1}^{I}\left(J_{i}-1\right)$ degrees of freedom
(d) If all α_{i}-s are equal to zero, $S S T r / \sigma^{2}$ is chi-squared distributed with $I-1$ degrees of freedom
(e) If $J_{i}=J$ for $i=1, \ldots, I$, then
$\max _{i_{1}, i_{2}}\left|\left(\bar{X}_{i_{1}} . \mu_{i_{1}}\right)-\left(\bar{X}_{i_{2}}-\mu_{i_{2}}\right)\right| / \sqrt{M S E / J}$
is distributed as the studentized range with parameters I and $I(J-1)$.

2 Two-way analysis of variance

Assume $X_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i j}+\epsilon_{i j k} ; k=1, \ldots, K ; j=1, \ldots, J ; i=1, \ldots, I$; where $\epsilon_{i j k}-\mathrm{s}$ are independent and $N\left(0, \sigma^{2}\right)$ distributed. Then:
(a) The total sum of squares $S S T=\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K}\left(X_{i j k}-\bar{X} \ldots\right)^{2}$ can be written as $S S T=S S A+S S B+S S A B+S S E$ where
$S S A=J K \sum_{i=1}^{I}\left(\bar{X}_{i . .}-\bar{X}_{\ldots} . .\right)^{2}$
$S S B=I K \sum_{j=1}^{J}\left(\bar{X}_{. j} .-\bar{X} \ldots\right)^{2}$
$S S A B=K \sum_{i=1}^{I} \sum_{j=1}^{J}\left(\bar{X}_{i j .}-\bar{X}_{i . .}-\bar{X}_{. j .}+\bar{X}_{\ldots . .}\right)^{2}$
$S S E=\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K}\left(X_{i j k}-\bar{X}_{i j}\right)^{2}$
(b) $S S A, S S B, S S A B$ and $S S E$ are independent
(c) $M S E=S S E / I J(K-1)$ is an unbiased estimator for σ^{2}. $S S E / \sigma^{2}$ is chi-squared distributed with $I J(K-1)$ degrees of freedom.
(d) If all α_{i}-s are equal to zero, $S S A / \sigma^{2}$ is chi-squared distributed with $I-1$ degrees of freedom
(e) If all β_{j}-s are equal to zero, $S S B / \sigma^{2}$ is chi-squared distributed with $J-1$ degrees of freedom
(f) If all $\gamma_{i j}$-s are equal to zero, $S S A B / \sigma^{2}$ is chi-squared distributed with $(I-1)(J-1)$ degrees of freedom

3 Block design (two-way anova without replications)

Assume $X_{i j}=\mu+\alpha_{i}+\beta_{j}+\epsilon_{i j} ; j=1, \ldots, J ; i=1, \ldots, I$; where $\epsilon_{i j}$-s are independent and $N\left(0, \sigma^{2}\right)$ distributed. Then:
(a) The total sum of squares $S S T=\sum_{i=1}^{I} \sum_{j=1}^{J}\left(X_{i j}-\bar{X} . .\right)^{2}$ can be written as $S S T=$ $S S A+S S B+S S E$ where
$S S A=J \sum_{i=1}^{I}\left(\bar{X}_{i} .-\bar{X} . .\right)^{2}$
$S S B=I \sum_{j=1}^{J}\left(\bar{X}_{\cdot j}-\bar{X}_{. .}\right)^{2}$
$S S E=\sum_{i=1}^{I} \sum_{j=1}^{J}\left(X_{i j}-\bar{X}_{i .}-\bar{X}_{. j}+\bar{X}_{. .}\right)^{2}$
(b) $S S A, S S B$ and $S S E$ are independent
(c) $M S E=S S E /[(I-1)(J-1)]$ is an unbiased estimator for σ^{2}. $S S E / \sigma^{2}$ is chi-squared distributed with $(I-1)(J-1)$ degrees of freedom.
(d) If all α_{i}-s are equal to zero, $S S A / \sigma^{2}$ is chi-squared distributed with $I-1$ degrees of freedom
(e) If all β_{j}-s are equal to zero, $S S B / \sigma^{2}$ is chi-squared distributed with $J-1$ degrees of freedom

4 Multiple linear regression

Assume $Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{k} x_{i k}+\epsilon_{i} ; i=1,2, \ldots, n$; where $x_{i j}$-s are given numbers and ϵ_{i}-s are independent and $N\left(0, \sigma^{2}\right)$ distributed. The model can be written in matrix form as $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}$, where $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{T}$ and $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{k}\right)^{T}$ are n - and $(k+1)$ dimentional vectors, and $\mathbf{X}=\left\{x_{i j}\right\}$ (with $x_{i 0}=1$) is a $n \times(k+1)$-dimentional matrix. Then:
(a) The least squares estimator for $\boldsymbol{\beta}$ is $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}$.
(b) Let $\hat{\boldsymbol{\beta}}=\left(\hat{\beta}_{0}, \ldots, \hat{\beta}_{k}\right)^{T}$. Then $\hat{\beta}_{j}$-s are normally distributed and unbiased, and

$$
\operatorname{Var}\left(\hat{\beta}_{j}\right)=\sigma^{2} c_{j j} \quad \text { and } \quad \operatorname{Cov}\left(\hat{\beta}_{j}, \hat{\beta}_{l}\right)=\sigma^{2} c_{j l}
$$

where $c_{j l}$ is element (j, l) in the $(k+1) \times(k+1)$ matrix $\mathbf{C}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$.
(c) Let $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i 1}+\cdots+\hat{\beta}_{k} x_{i k}$, and let $S S E=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}$. Then $S^{2}=$ $\operatorname{SSE} /[n-(k+1)]$ is an unbiased estimator for σ^{2}, and $[n-(k+1)] S^{2} / \sigma^{2} \sim \chi_{n-(k+1)}^{2}$. Also, S^{2} and $\hat{\boldsymbol{\beta}}$ are independent.
(d) Let $S_{\hat{\beta}_{j}}^{2}$ be the variance estimator for $\hat{\beta}_{j}$ we get by replacing σ^{2} with S^{2} in the formula for $\operatorname{Var}\left(\hat{\beta}_{j}\right)($ in b$)$. Then $\left(\hat{\beta}_{j}-\beta_{j}\right) / S_{\hat{\beta}_{j}} \sim t_{n-(k+1)}$.

5 Two-way tables and chi-square tests

(a) Assume $\left(N_{1}, \ldots, N_{k}\right)$ is multinomially distributed with probabilities p_{i}, where $\sum_{i=1}^{k} N_{i}=n$ and $\sum_{i=1}^{k} p_{i}=1$.
If $p_{i}=\pi_{i}(\boldsymbol{\theta})$, where $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{m}\right)$, and $\hat{\boldsymbol{\theta}}$ is the maximum likelihood estimator for $\boldsymbol{\theta}$, then

$$
\chi^{2}=\sum_{i=1}^{k} \frac{\left(N_{i}-E_{i}\right)^{2}}{E_{i}}
$$

is approximately chi-squared distributed with $k-1-m$ degrees of freedom when $E_{i}=n \pi_{i}(\hat{\boldsymbol{\theta}}) \geq 5$ for (almost) all i
(b) Test for homogeneity: Assume that for $i=1, \ldots, I,\left(N_{i 1}, \ldots, N_{i J}\right)$ are independent and multinomially distributed with probabilities $p_{i j}$, where $\sum_{j=1}^{J} p_{i j}=1$.
If $p_{1 j}=\cdots=p_{I j}$, then

$$
\chi^{2}=\sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(N_{i j}-E_{i j}\right)^{2}}{E_{i j}}
$$

is approximately chi-squared distributed with $(I-1)(J-1)$ degrees of freedom when
$E_{i j}=\left(N_{i} . N_{. j}\right) / N . . \geq 5$ for (almost) all i, j
(c) Test for independence: Assume $\left(N_{11}, \ldots, N_{1 J}, N_{21}, \ldots, N_{2 J}, \ldots, N_{I 1}, \ldots, N_{I J}\right)$ is multinomially distributed with probabilities $p_{i j}$, where $\sum_{i=1}^{I} \sum_{j=1}^{J} p_{i j}=1$.
If $p_{i j}=p_{i \cdot} \cdot p_{\cdot j}$ for all i, j, then

$$
\chi^{2}=\sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(N_{i j}-E_{i j}\right)^{2}}{E_{i j}}
$$

is approximately chi-squared distributed with $(I-1)(J-1)$ degrees of freedom when
$E_{i j}=\left(N_{i} . N_{. j}\right) / N_{. .} \geq 5$ for (almost) all i, j

6 The method of maximum likelihood

Assume $X_{1}, X_{2}, \ldots, X_{n}$ have a joint density function $f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \boldsymbol{\theta}\right)$, where $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{p}\right)$ is a parameter vector (scalar if $p=1$). We assume that $f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \boldsymbol{\theta}\right)$ satisfies certain differentiability conditions.
(a) Given observed values $X_{i}=x_{i} ; i=1, \ldots, n$; the likelihood function is $L(\boldsymbol{\theta})=f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \boldsymbol{\theta}\right)$ and the \log-likelihood function is $l(\boldsymbol{\theta})=\log L(\boldsymbol{\theta})$.
(b) The maximum likelihood estimate is the value of $\boldsymbol{\theta}$ maximizing $L(\boldsymbol{\theta})$ or equivalently maximising $l(\boldsymbol{\theta})$. If we replace the observed x_{i}-s by the random variables X_{i}, we get the maximum likelihood estimator.
(c) The maximum likelihood estimate $\hat{\boldsymbol{\theta}}=\left(\hat{\theta}_{1}, \ldots, \hat{\theta}_{p}\right)$ is a solution of the equations $s_{j}(\boldsymbol{\theta})=0 ; j=1, \ldots, p$; where $s_{j}(\boldsymbol{\theta})=\left(\partial / \partial \theta_{j}\right) l(\boldsymbol{\theta})$ are the score functions.
The vector of score functions is $\boldsymbol{s}(\boldsymbol{\theta})=\left(s_{1}(\boldsymbol{\theta}), \ldots, s_{p}(\boldsymbol{\theta})\right)^{T}$.
(d) The observed information matrix $\overline{\boldsymbol{J}}(\boldsymbol{\theta})$ is the $p \times p$ matrix with element (i, j) given by $\bar{J}_{i j}(\boldsymbol{\theta})=-\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} l(\boldsymbol{\theta})$.
The expected information matrix (or Fisher information matrix) $\overline{\boldsymbol{I}}(\boldsymbol{\theta})$ is the $p \times p$ matrix with element (i, j) given by $\bar{I}_{i j}(\boldsymbol{\theta})=\mathrm{E}\left[\bar{J}_{i j}(\boldsymbol{\theta})\right]$.
For independent and identically distributed observations we have that $\overline{\boldsymbol{I}}(\boldsymbol{\theta})=n \boldsymbol{I}(\boldsymbol{\theta})$, where $\boldsymbol{I}(\boldsymbol{\theta})$ is the expected information for one observation.
(e) When the equations in (c) do not have an explicit solution, we can find the maximum likelihood estimate by using the Newton-Raphson method:

$$
\boldsymbol{\theta}^{(s+1)}=\boldsymbol{\theta}^{(s)}+\overline{\boldsymbol{J}}^{-1}\left(\boldsymbol{\theta}^{(s)}\right) \boldsymbol{s}\left(\boldsymbol{\theta}^{(s)}\right)
$$

by using the Fisher scoring algorithm:

$$
\boldsymbol{\theta}^{(s+1)}=\boldsymbol{\theta}^{(s)}+\overline{\boldsymbol{I}}^{-1}\left(\boldsymbol{\theta}^{(s)}\right) \boldsymbol{s}\left(\boldsymbol{\theta}^{(s)}\right)
$$

or by suitable modifications of these.
(f) When we have "enough" data, $\hat{\theta}_{i}$ is approximately normally distributed with expectation θ_{i} and with variance equal to the i-th diagonal element in $\overline{\boldsymbol{I}}^{-1}(\boldsymbol{\theta})$. The covariance between $\hat{\theta}_{i}$ and $\hat{\theta}_{j}$ is approximately equal to element (i, j) in $\overline{\boldsymbol{I}}^{-1}(\boldsymbol{\theta})$. We can estimate variances/covariances by plugging in $\hat{\boldsymbol{\theta}}$ instead of $\boldsymbol{\theta}$ in $\overline{\boldsymbol{I}}^{-1}(\boldsymbol{\theta})$ or in $\overline{\boldsymbol{J}}^{-1}(\boldsymbol{\theta})$.

7 Bootstrapping

Assume that the distribution of the data \boldsymbol{X} is described by a distribution function F. Let $\theta=\theta(F)$ be a functional of F estimated by $\hat{\theta}=\hat{\theta}(\boldsymbol{X})$.
(a) The bootstrapping idea is to approximate the properties of $\hat{\theta}$ by assuming that an estimate \widehat{F} for F is the true distribution function.
(b) Bootstrap estimation of the skewness of $\hat{\theta}$:

$$
b_{\hat{\theta}}=\frac{1}{B} \sum_{b=1}^{B} \theta_{b}^{*}-\theta(\widehat{F})
$$

(c) Bootstrap estimation of the standard deviation of $\hat{\theta}$:

$$
\sqrt{\mathrm{E}^{\widehat{F}}\left\{\left(\hat{\theta}\left(\boldsymbol{X}^{*}\right)-\mathrm{E}^{\widehat{F}}\left[\hat{\theta}\left(\boldsymbol{X}^{*}\right)\right]\right)^{2}\right\}}
$$

(d) Standard bootstrap confidence interval:

$$
(\hat{\theta}-\bar{\delta}, \hat{\theta}-\underline{\delta})
$$

where $\underline{\delta}$ and $\bar{\delta}$ are lower and upper $\alpha / 2$ quantiles in the bootstrap distribution of $\Delta=\hat{\theta}-\theta$.

