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1

One-way analysis of variance

Assume X;; = p+o;+e;;;7=1,2,...,J;;1=1,2,...,1; where ¢;-s are independent
and N (0,0?) distributed. Then:

2

(a)

The total sum of squares SST = 1, Zj;l(Xij — X.)? can be written as SST =
SSE + SSTr where

SSE = Y1 Zj;l(Xij — X;.)? is the sum of squares for error or the sum of
squares within groups

SSTr = Y21 Ji(X;. — X.)? is the sum of squares for treatment or the sum of
squares between groups

SSFE and SSTr are independent

MSE = SSE/[>.I_,(J; — 1)] is an unbiased estimator for 2.
SSE/c? is chi-squared distributed with >, (J; — 1) degrees of freedom

If all o;-s are equal to zero, SSTr/o? is chi-squared distributed with I —1 degrees
of freedom

IfJ,=Jforie=1,...,1, then
maxi, iy |(Xll - ILL'LI) - (XZQ - ,uiz)|/\/ MSE/J

is distributed as the studentized range with parameters I and I(J — 1).

Two-way analysis of variance

Assume X, = p+o; + B +vij e k=1,...,K;5=1,...,J;i=1,...,1; where
€ijx-s are independent and N (0, 0?) distributed. Then:

(a)

(b)

The total sum of squares SST = 37 Z‘j]:l SF (Xik — X..)% can be written
as SST = SSA+ SSB + SSAB + SSE where

SSA=JK Y (X, — X.)?

SSB=IKY ! (X; —X.)

SSAB =K > (Xyj. — Xi — X+ X..)?
SSE =311 30 Y (Xije — Xi.)?

SSA, SSB, SSAB and SSE are independent



(¢c) MSE = SSE/IJ(K — 1) is an unbiased estimator for 2.
SSE/o? is chi-squared distributed with IJ(K — 1) degrees of freedom.

(d) If all a;-s are equal to zero, SSA/o? is chi-squared distributed with I —1 degrees
of freedom

(e) If all 8;-s are equal to zero, SSB/o? is chi-squared distributed with J — 1 degrees
of freedom

(f) If all 5;;-s are equal to zero, SSAB/c? is chi-squared distributed with (I—1)(J—1)
degrees of freedom

3 Block design (two-way anova without replications)

Assume X;; = p+o; +B;+¢€;;5=1,...,J;i=1,...,1; where ¢;-s are independent
and N(0,0?) distributed. Then:

(a) The total sum of squares SST = 37, Z;.Izl(Xij — X.)% can be written as SST =
SSA+ SSB + SSE where

SSA =73 (X — X.)?

SSB=I% (X;-X.)?

SSE =1 37 (X — X — X+ X.)?
(b) SSA, SSB and SSE are independent

(¢) MSE = SSE/[(I —1)(J — 1)] is an unbiased estimator for .
SSE/a? is chi-squared distributed with (I — 1)(J — 1) degrees of freedom.

(d) If all ay-s are equal to zero, SSA/o? is chi-squared distributed with I — 1 degrees
of freedom

(e) If all B;-s are equal to zero, SSB/o? is chi-squared distributed with J — 1 degrees
of freedom

4 Multiple linear regression

Assume Y; = Bo+ iz +- - -+ Brrip €5 1 = 1,2, ..., n; where z;;-s are given numbers
and €;-s are independent and N (0, 02) distributed. The model can be written in matrix
form as Y = X3, where Y = (Y1,...,Y,)T and B = (By, ..., 0" are n- and (k + 1)-
dimentional vectors, and X = {z;;} (with x;0 = 1) is a n x (k+ 1)-dimentional matrix.
Then:

a) The least squares estimator for 8 is 3 = (XTX)'XTY.
(a)



(b)

Let B = (BO, ce Bk)T Then Bj—s are normally distributed and unbiased, and
Var(ﬁj) = U2ij and COV(Bj,Bl) = O-Qle

where ¢j; is element (j,1) in the (k + 1) x (k + 1) matrix C = (X7X)~1.

Let YV; = BO + 31%‘1 + e+ kaik, and let SSE = i(YZ — 571)2 Then S? =

i=1
SSE/[n—(k+1)] is an unbiased estimator for 0, and [n—(k+1)]S%/0% ~ X7, 1)-

Also, S? and B are independent.

Let S??' be the variance estimator for 3; we get by replacing o® with S? in the
J

formula for Var(Bj) (in b). Then (@] — Bj)/SBj ~ b (k1)

Two-way tables and chi-square tests
Assume (Ny, ..., Ny) is multinomially distributed with probabilities p;,
where S°F N, =n and 35 pi=1.

If p; = m;(@), where @ = (61,...,0,,), and 0 is the maximum likelihood estimator
for @, then

k
9 (N; — E;)?
=2 E,

=1

is approximately chi-squared distributed with & —1—m degrees of freedom when
E; = nm;(0) > 5 for (almost) all

Test for homogeneity: Assume that for i = 1,..., 1, (N;1,..., N;;) are indepen-

dent and multinomially distributed with probabilities p;;, where Z;.Izl pij = 1.
If b1 = = DIy, then

LI (N, — E..)2
¢=33 (NUE..E”)
i=1 j=1 4

is approximately chi-squared distributed with (I — 1)(J — 1) degrees of freedom
when

E;; = (N;.N.;)/N.. > 5 for (almost) all ¢, j

Test for independence: Assume (Nyq,...,N1j, Not,..., Noy, ..., Ny, ..., Npj) is
multinomially distributed with probabilities p;;, where Zle ijl pij = L.

If pij = pi.p; for all 7, j, then

! EL)2
v=3y (Vi EUEZJ)

i=1 j=1



6

is approximately chi-squared distributed with (I — 1)(J — 1) degrees of freedom
when
E;; = (N;.N.;)/N.. > 5 for (almost) all 7, j

The method of maximum likelihood

Assume X7, Xs, ..., X, have a joint density function f(z1,xs,...,2,|80),
where @ = (0y,....,60,) is a parameter vector (scalar if p = 1). We assume that
f(xy, 29, ..., 2, |0) satisfies certain differentiability conditions.

(a)

(b)

Given observed values X; = z;; i = 1,...,n; the likelihood function is
L(0) = f(x1,29,...,2,|0) and the log-likelihood function is /(@) = log L(8).

The maximum likelihood estimate is the value of @ maximizing L(6@) or equiva-
lently maximising (). If we replace the observed z;-s by the random variables
X;, we get the maximum likelihood estimator.

~

The maximum likelihood estimate @ = (6y, ... .,6,) is a solution of the equations

» Up
5;(0)=0; j=1,...,p; where s;(8) = (0/00;)l(0) are the score functions.

The vector of score functions is s(8) = (s1(0),...,s,(0))T.

The observed information matrix J(8) is the p x p matrix with element (i, j)
. T 2

given by J;;(0) = —%&%5(9).

The expected information matrix (or Fisher information matrix)

I(0) is the p x p matrix with element (¢, j) given by 1;;(0) = E[J;;(0)].

For independent and identically distributed observations we have that
I(0) =nlI(0), where I(0) is the expected information for one observation.

When the equations in (¢) do not have an explicit solution, we can find the
maximum likelihood estimate by using the Newton-Raphson method:

9T — () 4 jfl(g(S))s(g(S))7
by using the Fisher scoring algorithm:

9T — () 4 I_*l(g(S))s(g(S))’
or by suitable modifications of these.

When we have “enough” data, 0; is approximately normally distributed with
expectation 6; and with variance equal to the i-th diagonal element in I _1(0).
The covariance between ¢; and 6; is approximately equal to element (7,7) in
I _1(0). We can estimate variances/covariances by plugging in @ instead of € in

I'(6)orinJ (6).



7 Bootstrapping

Assume that the distribution of the data X is described by a distribution function F'.
Let @ = 0(F) be a functional of F' estimated by 6 = 6(X).

(a) The bootstrapping idea is to approximate the properties of 0 by assuming that
an estimate F' for F' is the true distribution function.

(b) Bootstrap estimation of the skewness of 0:
1 & -
by = EZ@; —(F)
b=1

(¢) Bootstrap estimation of the standard deviation of 6:

\/Ef { (6(x) - Eﬁ[é(X*)])Q}

(d) Standard bootstrap confidence interval:

where ¢ and 0 are lower and upper /2 quantiles in the bootstrap distribution of
A=0-8.



