LIST OF FORMULAS STK2120

(Version from 21. November 2014)

1 One-way analysis of variance

Assume $X_{ij} = \mu + \alpha_i + \epsilon_{ij}$; $j = 1, 2, ..., J_i$; i = 1, 2, ..., I; where ϵ_{ij} -s are independent and $N(0, \sigma^2)$ distributed. Then:

(a) The total sum of squares $SST = \sum_{i=1}^{I} \sum_{j=1}^{J_i} (X_{ij} - \bar{X}_{..})^2$ can be written as SST = SSE + SSTr where

 $SSE = \sum_{i=1}^{I} \sum_{j=1}^{J_i} (X_{ij} - \bar{X}_{i\cdot})^2$ is the sum of squares for error or the sum of squares within groups

 $SSTr = \sum_{i=1}^{I} J_i (\bar{X}_{i\cdot} - \bar{X}_{\cdot\cdot})^2$ is the sum of squares for treatment or the sum of squares between groups

- (b) SSE and SSTr are independent
- (c) $MSE = SSE / [\sum_{i=1}^{I} (J_i 1)]$ is an unbiased estimator for σ^2 . SSE / σ^2 is chi-squared distributed with $\sum_{i=1}^{I} (J_i - 1)$ degrees of freedom
- (d) If all α_i -s are equal to zero, $SSTr/\sigma^2$ is chi-squared distributed with I-1 degrees of freedom
- (e) If $J_i = J$ for i = 1, ..., I, then $\max_{i_1, i_2} |(\bar{X}_{i_1} - \mu_{i_1}) - (\bar{X}_{i_2} - \mu_{i_2})| / \sqrt{MSE/J}$

is distributed as the studentized range with parameters I and I(J-1).

2 Two-way analysis of variance

Assume $X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$; k = 1, ..., K; j = 1, ..., J; i = 1, ..., I; where ϵ_{ijk} -s are independent and $N(0, \sigma^2)$ distributed. Then:

(a) The total sum of squares $SST = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (X_{ijk} - \bar{X}_{...})^2$ can be written as SST = SSA + SSB + SSAB + SSE where

 $SSA = JK \sum_{i=1}^{I} (\bar{X}_{i..} - \bar{X}_{...})^2$ $SSB = IK \sum_{j=1}^{J} (\bar{X}_{.j.} - \bar{X}_{...})^2$ $SSAB = K \sum_{i=1}^{I} \sum_{j=1}^{J} (\bar{X}_{ij.} - \bar{X}_{i..} - \bar{X}_{.j.} + \bar{X}_{...})^2$ $SSE = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (X_{ijk} - \bar{X}_{ij.})^2$

(b) SSA, SSB, SSAB and SSE are independent

- (c) MSE = SSE/IJ(K-1) is an unbiased estimator for σ^2 . SSE/σ^2 is chi-squared distributed with IJ(K-1) degrees of freedom.
- (d) If all α_i -s are equal to zero, SSA/σ^2 is chi-squared distributed with I-1 degrees of freedom
- (e) If all β_j -s are equal to zero, SSB/σ^2 is chi-squared distributed with J-1 degrees of freedom
- (f) If all γ_{ij} -s are equal to zero, $SSAB/\sigma^2$ is chi-squared distributed with (I-1)(J-1) degrees of freedom

3 Block design (two-way anova without replications)

Assume $X_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}$; j = 1, ..., J; i = 1, ..., I; where ϵ_{ij} -s are independent and $N(0, \sigma^2)$ distributed. Then:

(a) The total sum of squares $SST = \sum_{i=1}^{I} \sum_{j=1}^{J} (X_{ij} - \bar{X}_{..})^2$ can be written as SST = SSA + SSB + SSE where

 $SSA = J \sum_{i=1}^{I} (\bar{X}_{i.} - \bar{X}_{..})^2$ $SSB = I \sum_{j=1}^{J} (\bar{X}_{.j} - \bar{X}_{..})^2$ $SSE = \sum_{i=1}^{I} \sum_{j=1}^{J} (X_{ij} - \bar{X}_{i.} - \bar{X}_{.j} + \bar{X}_{..})^2$

- (b) SSA, SSB and SSE are independent
- (c) MSE = SSE/[(I-1)(J-1)] is an unbiased estimator for σ^2 . SSE/σ^2 is chi-squared distributed with (I-1)(J-1) degrees of freedom.
- (d) If all α_i -s are equal to zero, SSA/σ^2 is chi-squared distributed with I-1 degrees of freedom
- (e) If all β_j -s are equal to zero, SSB/σ^2 is chi-squared distributed with J-1 degrees of freedom

4 Multiple linear regression

Assume $Y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \epsilon_i$; $i = 1, 2, \dots, n$; where x_{ij} -s are given numbers and ϵ_i -s are independent and $N(0, \sigma^2)$ distributed. The model can be written in matrix form as $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta}$, where $\mathbf{Y} = (Y_1, \dots, Y_n)^T$ and $\boldsymbol{\beta} = (\beta_0, \dots, \beta_k)^T$ are *n*- and (k + 1)dimensional vectors, and $\mathbf{X} = \{x_{ij}\}$ (with $x_{i0} = 1$) is a $n \times (k + 1)$ -dimensional matrix. Then:

(a) The least squares estimator for $\boldsymbol{\beta}$ is $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$.

(b) Let $\hat{\boldsymbol{\beta}} = (\hat{\beta}_0, \dots, \hat{\beta}_k)^T$. Then $\hat{\beta}_j$ -s are normally distributed and unbiased, and $\operatorname{Var}(\hat{\beta}_j) = \sigma^2 c_{jj}$ and $\operatorname{Cov}(\hat{\beta}_j, \hat{\beta}_l) = \sigma^2 c_{jl}$

where c_{jl} is element (j, l) in the $(k + 1) \times (k + 1)$ matrix $\mathbf{C} = (\mathbf{X}^T \mathbf{X})^{-1}$.

- (c) Let $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_k x_{ik}$, and let $SSE = \sum_{i=1}^n (Y_i \hat{Y}_i)^2$. Then $S^2 = SSE/[n-(k+1)]$ is an unbiased estimator for σ^2 , and $[n-(k+1)]S^2/\sigma^2 \sim \chi^2_{n-(k+1)}$. Also, S^2 and $\hat{\beta}$ are independent.
- (d) Let $S_{\hat{\beta}_j}^2$ be the variance estimator for $\hat{\beta}_j$ we get by replacing σ^2 with S^2 in the formula for $\operatorname{Var}(\hat{\beta}_j)$ (in b). Then $(\hat{\beta}_j \beta_j)/S_{\hat{\beta}_j} \sim t_{n-(k+1)}$.

5 Two-way tables and chi-square tests

(a) Assume (N_1, \ldots, N_k) is multinomially distributed with probabilities p_i , where $\sum_{i=1}^k N_i = n$ and $\sum_{i=1}^k p_i = 1$.

If $p_i = \pi_i(\boldsymbol{\theta})$, where $\boldsymbol{\theta} = (\theta_1, \dots, \theta_m)$, and $\hat{\boldsymbol{\theta}}$ is the maximum likelihood estimator for $\boldsymbol{\theta}$, then

$$\chi^{2} = \sum_{i=1}^{k} \frac{(N_{i} - E_{i})^{2}}{E_{i}}$$

is approximately chi-squared distributed with k-1-m degrees of freedom when $E_i = n\pi_i(\hat{\theta}) \ge 5$ for (almost) all i

(b) Test for homogeneity: Assume that for i = 1, ..., I, $(N_{i1}, ..., N_{iJ})$ are independent and multinomially distributed with probabilities p_{ij} , where $\sum_{j=1}^{J} p_{ij} = 1$.

If $p_{1j} = \cdots = p_{Ij}$, then

$$\chi^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(N_{ij} - E_{ij})^2}{E_{ij}}$$

is approximately chi-squared distributed with (I-1)(J-1) degrees of freedom when

$$E_{ij} = (N_i \cdot N_j) / N_{\cdot \cdot} \ge 5$$
 for (almost) all i, j

- (c) <u>Test for independence</u>: Assume $(N_{11}, \ldots, N_{1J}, N_{21}, \ldots, N_{2J}, \ldots, N_{I1}, \ldots, N_{IJ})$ is multinomially distributed with probabilities p_{ij} , where $\sum_{i=1}^{I} \sum_{j=1}^{J} p_{ij} = 1$.
 - If $p_{ij} = p_{i} p_{j}$ for all i, j, then

$$\chi^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(N_{ij} - E_{ij})^2}{E_{ij}}$$

is approximately chi-squared distributed with (I-1)(J-1) degrees of freedom when

 $E_{ij} = (N_i \cdot N_j) / N_{\cdot \cdot} \ge 5$ for (almost) all i, j

6 The method of maximum likelihood

Assume X_1, X_2, \ldots, X_n have a joint density function $f(x_1, x_2, \ldots, x_n | \boldsymbol{\theta})$, where $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_p)$ is a parameter vector (scalar if p = 1). We assume that $f(x_1, x_2, \ldots, x_n | \boldsymbol{\theta})$ satisfies certain differentiability conditions.

- (a) Given observed values $X_i = x_i$; i = 1, ..., n; the likelihood function is $L(\boldsymbol{\theta}) = f(x_1, x_2, ..., x_n | \boldsymbol{\theta})$ and the log-likelihood function is $l(\boldsymbol{\theta}) = \log L(\boldsymbol{\theta})$.
- (b) The maximum likelihood estimate is the value of $\boldsymbol{\theta}$ maximizing $L(\boldsymbol{\theta})$ or equivalently maximising $l(\boldsymbol{\theta})$. If we replace the observed x_i -s by the random variables X_i , we get the maximum likelihood estimator.
- (c) The maximum likelihood estimate $\hat{\boldsymbol{\theta}} = (\hat{\theta}_1, \dots, \hat{\theta}_p)$ is a solution of the equations $s_j(\boldsymbol{\theta}) = 0; \ j = 1, \dots, p$; where $s_j(\boldsymbol{\theta}) = (\partial/\partial \theta_j)l(\boldsymbol{\theta})$ are the score functions. The vector of score functions is $\boldsymbol{s}(\boldsymbol{\theta}) = (s_1(\boldsymbol{\theta}), \dots, s_p(\boldsymbol{\theta}))^T$.
- (d) The observed information matrix $\bar{J}(\theta)$ is the $p \times p$ matrix with element (i, j) given by $\bar{J}_{ij}(\theta) = -\frac{\partial^2}{\partial \theta_i \partial \theta_j} l(\theta)$.

The expected information matrix (or Fisher information matrix) $\bar{I}(\theta)$ is the $p \times p$ matrix with element (i, j) given by $\bar{I}_{ij}(\theta) = \mathbb{E}[\bar{J}_{ij}(\theta)]$.

For independent and identically distributed observations we have that $\bar{I}(\theta) = nI(\theta)$, where $I(\theta)$ is the expected information for one observation.

(e) When the equations in (c) do not have an explicit solution, we can find the maximum likelihood estimate by using the Newton-Raphson method:

$$\boldsymbol{\theta}^{(s+1)} = \boldsymbol{\theta}^{(s)} + \bar{\boldsymbol{J}}^{-1}(\boldsymbol{\theta}^{(s)})\boldsymbol{s}(\boldsymbol{\theta}^{(s)}),$$

by using the Fisher scoring algorithm:

$$oldsymbol{ heta}^{(s+1)} = oldsymbol{ heta}^{(s)} + ar{oldsymbol{I}}^{-1}(oldsymbol{ heta}^{(s)}) oldsymbol{s}(oldsymbol{ heta}^{(s)}),$$

or by suitable modifications of these.

(f) When we have "enough" data, $\hat{\theta}_i$ is approximately normally distributed with expectation θ_i and with variance equal to the *i*-th diagonal element in $\bar{\boldsymbol{I}}^{-1}(\boldsymbol{\theta})$. The covariance between $\hat{\theta}_i$ and $\hat{\theta}_j$ is approximately equal to element (i, j) in $\bar{\boldsymbol{I}}^{-1}(\boldsymbol{\theta})$. We can estimate variances/covariances by plugging in $\hat{\boldsymbol{\theta}}$ instead of $\boldsymbol{\theta}$ in $\bar{\boldsymbol{I}}^{-1}(\boldsymbol{\theta})$ or in $\bar{\boldsymbol{J}}^{-1}(\boldsymbol{\theta})$.

7 Bootstrapping

Assume that the distribution of the data X is described by a distribution function F. Let $\theta = \theta(F)$ be a functional of F estimated by $\hat{\theta} = \hat{\theta}(X)$.

- (a) The bootstrapping idea is to approximate the properties of $\hat{\theta}$ by assuming that an estimate \hat{F} for F is the true distribution function.
- (b) Bootstrap estimation of the skewness of $\hat{\theta}$:

$$b_{\hat{\theta}} = \frac{1}{B} \sum_{b=1}^{B} \theta_b^* - \theta(\widehat{F})$$

(c) Bootstrap estimation of the standard deviation of $\hat{\theta}$:

$$\sqrt{\mathsf{E}^{\widehat{F}}\left\{\left(\hat{\theta}(\boldsymbol{X}^{*})-\mathsf{E}^{\widehat{F}}[\hat{\theta}(\boldsymbol{X}^{*})]\right)^{2}\right\}}$$

(d) Standard bootstrap confidence interval:

$$(\hat{\theta} - \overline{\delta}, \hat{\theta} - \underline{\delta})$$

where $\underline{\delta}$ and $\overline{\delta}$ are lower and upper $\alpha/2$ quantiles in the bootstrap distribution of $\Delta = \hat{\theta} - \theta$.