UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in:	STK3405/4405 — Introduction to risk and reliability analysis
Day of examination:	Friday December 8, 2017
Examination hours:	09.00-13.00
This problem set consists of 4 pages.	
Appendices:	None
Permitted aids:	Calculator

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

In this problem we consider measures of reliability importance. Let (C, ϕ) be a binary monotone system with component set $C = \{1, \ldots, n\}$ and structure function ϕ . The Birnbaum measure of the reliability importance of component $i \in C$ at time $t \ge 0$ is defined as:

$$\begin{split} I_B^{(i)}(t) &= \mathbf{P}(\text{Component } i \text{ is critical for the system at time } t) \\ &= \mathbf{P}(\phi(1_i \boldsymbol{X}(t)) - \phi(0_i \boldsymbol{X}(t)) = 1) \\ &= \mathbf{E}[\phi(1_i \boldsymbol{X}(t)) - \phi(0_i \boldsymbol{X}(t))], \end{split}$$

where $\mathbf{X}(t) = (X_1(t), \ldots, X_n(t))$ denotes the vector of component state variables at time $t \ge 0$. We assume that $P(X_i(t) = 1) = p_i(t), i = 1, \ldots, n$, and let $\mathbf{p}(t) = (p_1(t), \ldots, p_n(t))$ denote the vector of component reliabilities at time $t \ge 0$. We let $h(t) = P(\phi(\mathbf{X}(t)) = 1) = E[\phi(\mathbf{X}(t)]$ denote the reliability of the system at time $t \ge 0$. If $X_1(t), \ldots, X_n(t)$ are stochastically independent, we may write $h(t) = h(\mathbf{p}(t))$.

(a) Let T_S denote the lifetime of the system, and let T_i denote the lifetime of component i, i = 1, ..., n. Explain briefly that for $t \ge 0$ we have $T_S > t$ if and only if $\phi(\mathbf{X}(t)) = 1$, and use this to show that:

$$I_B^{(i)}(t) = P(T_S > t | T_i > t) - P(T_S > t | T_i \le t), \quad t \ge 0, \quad i = 1, \dots, n.$$

(b) Assume that $X_1(t), \ldots, X_n(t)$ are stochastically independent. Show that we then have:

$$I_B^{(i)}(t) = \frac{\partial h(\boldsymbol{p}(t))}{\partial p_i(t)}, \quad t \ge 0, \quad i = 1, \dots, n$$

(Continued on page 2.)

We now introduce the Birnbaum measure of the *joint* reliability importance of the components $i, j \in C$ at time $t \ge 0$ defined by:

$$I_B^{(i,j)}(t) = \mathbb{E}[\phi(1_i, 1_j, \mathbf{X}(t)) - \phi(1_i, 0_j \mathbf{X}(t)) - \phi(0_i, 1_j \mathbf{X}(t)) + \phi(0_i, 0_j \mathbf{X}(t))].$$

(c) Explain briefly if $I_B^{(i,j)}(t) > 0$, this implies that:

$$E[\phi(1_i, 1_j, \mathbf{X}(t)) - \phi(0_i, 1_j \mathbf{X}(t))] > E[\phi(1_i, 0_j \mathbf{X}(t)) - \phi(0_i, 0_j \mathbf{X}(t))],$$

$$E[\phi(1_i, 1_j, \mathbf{X}(t)) - \phi(1_i, 0_j \mathbf{X}(t))] > E[\phi(0_i, 1_j \mathbf{X}(t)) - \phi(0_i, 0_j \mathbf{X}(t))],$$

while the opposite inequalities hold if $I_B^{(i,j)}(t) < 0$. Use this to give a practical interpretation of the sign of $I_B^{(i,j)}(t)$.

(d) Show that for $i, j \in C$ and $t \ge 0$ we have:

$$I_B^{(i,j)}(t) = P(T_S > t | T_i > t, T_j > t) - P(T_S > t | T_i > t, T_j \le t) - P(T_S > t | T_i \le t, T_j > t) + P(T_S > t | T_i \le t, T_j \le t).$$

(e) Assume that $X_1(t), \ldots, X_n(t)$ are stochastically independent. Show that we then have:

$$I_B^{(i,j)}(t) = \frac{\partial^2 h(\boldsymbol{p}(t))}{\partial p_i(t)\partial p_j(t)}, \quad t \ge 0, \quad i, j = 1, \dots, n.$$

(f) We still assume that $X_1(t), \ldots, X_n(t)$ are stochastically independent, and let $i, j \in C$ and $t \geq 0$. Moreover, assume that $0 < p_i(t) < 1$ for all $i \in C$ and that $n \geq 3$. Show that $I_B^{(i,j)}(t) > 0$ if (C, ϕ) is a series system, while $I_B^{(i,j)}(t) < 0$ if (C, ϕ) is a parallel system. Give a brief comment to this result.

Problem 2

In this problem we consider a binary monotone system (C, ϕ) . The system is shown in the block diagram in the figure above. The component set of the system is $C = \{1, 2, 3, 4\}$.

We let $\mathbf{X} = (X_1, X_2, X_3, X_4)$ denote the vector of component state variables and assume throughout this problem that X_1, X_2, X_3, X_4 are stochastically independent. Moreover, we let $\mathbf{p} = (p_1, p_2, p_3, p_4)$ denote the vector of component reliabilities where $p_i = P(X_i = 1)$, i = 1, 2, 3, 4. We assume that $0 < p_i < 1$, i = 1, 2, 3, 4.

(a) Find the minimal path and cut sets of (C, ϕ) .

(b) Show that the structure function of the system can be expressed as:

$$\phi(\mathbf{X}) = X_4 [X_1 X_2 + X_1 X_3 + X_2 X_3 - 2X_1 X_2 X_3] + (1 - X_4) [X_1 X_2 + X_1 X_3 - X_1 X_2 X_3],$$

and use this to find the reliability of the system, $h(\mathbf{p}) = \mathbb{E}[\phi(\mathbf{X})]$.

You may use that the Birnbaum measure of the reliability importance of component $i \in C$ is given by:

$$I_B^{(i)} = \frac{\partial h(\boldsymbol{p})}{\partial p_i}, \quad i = 1, 2, 3, 4,$$

and that the Birnbaum measure of the joint reliability importance of the components $i, j \in C$ is given by:

$$I_B^{(i,j)} = \frac{\partial^2 h(\boldsymbol{p})}{\partial p_i \partial p_j}, \quad i, j = 1, 2, 3, 4.$$

(c) Show that:

$$I_B^{(4)} = p_2 p_3 - p_1 p_2 p_3.$$

(d) Show that:

$$I_B^{(1,4)} < 0, \text{ og } I_B^{(i,4)} > 0, \quad i = 2, 3.$$

Give a brief comment to these results.

Problem 3

If X_1, X_2, \ldots is an infinite sequence of independent identically distributed stochastic variables where $E[X_i] = \mu < \infty$, it can be shown that:

$$P(X_n \to \mu) = 1,$$

der $\bar{X}_n = (X_1 + \cdots + X_n)/n, n = 1, 2, \dots$

Let $\{S(t)\}$ be a stochastic process where S(t) denotes the state of the process at time $t \ge 0$. We say that $\{S(t)\}$ is a *pure jump process* if S(t) can be expressed as:

$$S(t) = S(0) + \sum_{j=1}^{\infty} I(T_j \le t) J_j, \qquad t \ge 0,$$

where $0 = T_0 < T_1 < T_2 < \cdots$ is a sequence of stochastic points of time, and J_1, J_2, \ldots is a sequence of stochastic jumps.

(Continued on page 4.)

We introduce:

$$N(t) = \sum_{j=1}^{\infty} I(T_j \le t)$$
 = The number of jumps in [0, t].

The process $\{S(t)\}$ is said to be *regular* if $P(N(t) < \infty) = 1$ for all t > 0.

We then let $\Delta_j = T_j - T_{j-1}, \, j = 1, 2, ...$

(a) Show that if the sequence $\{\Delta_j\}$ contains an infinite subsequence, $\{\Delta_{k_j}\}$, of independent, identically distributed stochastic variables such that $E[\Delta_{k_j}] = d > 0$, then $\{S(t)\}$ us regular.

(b) Explain why regularity is important for simulations of pure jump processes.