# UNIVERSITY OF OSLO <br> Faculty of Mathematics and Natural Sciences 

Examination in: STK3405/4405 - Introduction to risk and reliability analysis
Day of examination: Friday December 8, 2017
Examination hours: 09.00-13.00
This problem set consists of 4 pages.
Appendices:
None
Permitted aids: Calculator

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

## Problem 1

In this problem we consider measures of reliability importance. Let $(C, \phi)$ be a binary monotone system with component set $C=\{1, \ldots, n\}$ and structure function $\phi$. The Birnbaum measure of the reliability importance of component $i \in C$ at time $t \geq 0$ is defined as:

$$
\begin{aligned}
I_{B}^{(i)}(t) & =\mathrm{P}(\text { Component } i \text { is critical for the system at time } t) \\
& =\mathrm{P}\left(\phi\left(1_{i} \boldsymbol{X}(t)\right)-\phi\left(0_{i} \boldsymbol{X}(t)\right)=1\right) \\
& =\mathrm{E}\left[\phi\left(1_{i} \boldsymbol{X}(t)\right)-\phi\left(0_{i} \boldsymbol{X}(t)\right)\right],
\end{aligned}
$$

where $\boldsymbol{X}(t)=\left(X_{1}(t), \ldots, X_{n}(t)\right)$ denotes the vector of component state variables at time $t \geq 0$. We assume that $\mathrm{P}\left(X_{i}(t)=1\right)=p_{i}(t), i=1, \ldots, n$, and let $\boldsymbol{p}(t)=\left(p_{1}(t), \ldots, p_{n}(t)\right)$ denote the vector of component reliabilities at time $t \geq 0$. We let $h(t)=\mathrm{P}(\phi(\boldsymbol{X}(t))=1)=\mathrm{E}[\phi(\boldsymbol{X}(t)]$ denote the reliability of the system at time $t \geq 0$. If $X_{1}(t), \ldots, X_{n}(t)$ are stochastically independent, we may write $h(t)=h(\boldsymbol{p}(t))$.
(a) Let $T_{S}$ denote the lifetime of the system, and let $T_{i}$ denote the lifetime of component $i$, $i=1, \ldots n$. Explain briefly that for $t \geq 0$ we have $T_{S}>t$ if and only if $\phi(\boldsymbol{X}(t))=1$, and use this to show that:

$$
I_{B}^{(i)}(t)=\mathrm{P}\left(T_{S}>t \mid T_{i}>t\right)-\mathrm{P}\left(T_{S}>t \mid T_{i} \leq t\right), \quad t \geq 0, \quad i=1, \ldots, n .
$$

(b) Assume that $X_{1}(t), \ldots, X_{n}(t)$ are stochastically independent. Show that we then have:

$$
I_{B}^{(i)}(t)=\frac{\partial h(\boldsymbol{p}(t))}{\partial p_{i}(t)}, \quad t \geq 0, \quad i=1, \ldots, n .
$$

We now introduce the Birnbaum measure of the joint reliability importance of the components $i, j \in C$ at time $t \geq 0$ defined by:

$$
\begin{aligned}
I_{B}^{(i, j)}(t) & =\mathrm{E}\left[\phi\left(1_{i}, 1_{j}, \boldsymbol{X}(t)\right)-\phi\left(1_{i}, 0_{j} \boldsymbol{X}(t)\right)\right. \\
& \left.-\phi\left(0_{i}, 1_{j} \boldsymbol{X}(t)\right)+\phi\left(0_{i}, 0_{j} \boldsymbol{X}(t)\right)\right] .
\end{aligned}
$$

(c) Explain briefly if $I_{B}^{(i, j)}(t)>0$, this implies that:

$$
\begin{aligned}
& \mathrm{E}\left[\phi\left(1_{i}, 1_{j}, \boldsymbol{X}(t)\right)-\phi\left(0_{i}, 1_{j} \boldsymbol{X}(t)\right)\right]>\mathrm{E}\left[\phi\left(1_{i}, 0_{j} \boldsymbol{X}(t)\right)-\phi\left(0_{i}, 0_{j} \boldsymbol{X}(t)\right)\right], \\
& \mathrm{E}\left[\phi\left(1_{i}, 1_{j}, \boldsymbol{X}(t)\right)-\phi\left(1_{i}, 0_{j} \boldsymbol{X}(t)\right)\right]>\mathrm{E}\left[\phi\left(0_{i}, 1_{j} \boldsymbol{X}(t)\right)-\phi\left(0_{i}, 0_{j} \boldsymbol{X}(t)\right)\right],
\end{aligned}
$$

while the opposite inequalities hold if $I_{B}^{(i, j)}(t)<0$. Use this to give a practical interpretation of the sign of $I_{B}^{(i, j)}(t)$.
(d) Show that for $i, j \in C$ and $t \geq 0$ we have:

$$
\begin{aligned}
I_{B}^{(i, j)}(t) & =\mathrm{P}\left(T_{S}>t \mid T_{i}>t, T_{j}>t\right)-\mathrm{P}\left(T_{S}>t \mid T_{i}>t, T_{j} \leq t\right) \\
& -\mathrm{P}\left(T_{S}>t \mid T_{i} \leq t, T_{j}>t\right)+\mathrm{P}\left(T_{S}>t \mid T_{i} \leq t, T_{j} \leq t\right) .
\end{aligned}
$$

(e) Assume that $X_{1}(t), \ldots, X_{n}(t)$ are stochastically independent. Show that we then have:

$$
I_{B}^{(i, j)}(t)=\frac{\partial^{2} h(\boldsymbol{p}(t))}{\partial p_{i}(t) \partial p_{j}(t)}, \quad t \geq 0, \quad i, j=1, \ldots, n
$$

(f) We still assume that $X_{1}(t), \ldots, X_{n}(t)$ are stochastically independent, and let $i, j \in C$ and $t \geq 0$. Moreover, assume that $0<p_{i}(t)<1$ for all $i \in C$ and that $n \geq 3$. Show that $I_{B}^{(i, j)}(t)>0$ if $(C, \phi)$ is a series system, while $I_{B}^{(i, j)}(t)<0$ if $(C, \phi)$ is a parallel system. Give a brief comment to this result.

## Problem 2



In this problem we consider a binary monotone system $(C, \phi)$. The system is shown in the block diagram in the figure above. The component set of the system is $C=\{1,2,3,4\}$.

We let $\boldsymbol{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ denote the vector of component state variables and assume throughout this problem that $X_{1}, X_{2}, X_{3}, X_{4}$ are stochastically independent. Moreover, we let $\boldsymbol{p}=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ denote the vector of component reliabilities where $p_{i}=P\left(X_{i}=1\right)$, $i=1,2,3,4$. We assume that $0<p_{i}<1, i=1,2,3,4$.
(a) Find the minimal path and cut sets of $(C, \phi)$.
(b) Show that the structure function of the system can be expressed as:

$$
\begin{aligned}
\phi(\boldsymbol{X}) & =X_{4}\left[X_{1} X_{2}+X_{1} X_{3}+X_{2} X_{3}-2 X_{1} X_{2} X_{3}\right] \\
& +\left(1-X_{4}\right)\left[X_{1} X_{2}+X_{1} X_{3}-X_{1} X_{2} X_{3}\right],
\end{aligned}
$$

and use this to find the reliability of the system, $h(\boldsymbol{p})=\mathrm{E}[\phi(\boldsymbol{X})]$.
You may use that the Birnbaum measure of the reliability importance of component $i \in C$ is given by:

$$
I_{B}^{(i)}=\frac{\partial h(\boldsymbol{p})}{\partial p_{i}}, \quad i=1,2,3,4,
$$

and that the Birnbaum measure of the joint reliability importance of the components $i, j \in C$ is given by:

$$
I_{B}^{(i, j)}=\frac{\partial^{2} h(\boldsymbol{p})}{\partial p_{i} \partial p_{j}}, \quad i, j=1,2,3,4 .
$$

(c) Show that:

$$
I_{B}^{(4)}=p_{2} p_{3}-p_{1} p_{2} p_{3} .
$$

(d) Show that:

$$
I_{B}^{(1,4)}<0, \text { og } I_{B}^{(i, 4)}>0, \quad i=2,3 .
$$

Give a brief comment to these results.

## Problem 3

If $X_{1}, X_{2}, \ldots$ is an infinite sequence of independent identically distributed stochastic variables where $\mathrm{E}\left[X_{i}\right]=\mu<\infty$, it can be shown that:

$$
P\left(\bar{X}_{n} \rightarrow \mu\right)=1,
$$

$\operatorname{der} \bar{X}_{n}=\left(X_{1}+\cdots X_{n}\right) / n, n=1,2, \ldots$.
Let $\{S(t)\}$ be a stochastic process where $S(t)$ denotes the state of the process at time $t \geq 0$. We say that $\{S(t)\}$ is a pure jump process if $S(t)$ can be expressed as:

$$
S(t)=S(0)+\sum_{j=1}^{\infty} \mathrm{I}\left(T_{j} \leq t\right) J_{j}, \quad t \geq 0,
$$

where $0=T_{0}<T_{1}<T_{2}<\cdots$ is a sequence of stochastic points of time, and $J_{1}, J_{2}, \ldots$ is a sequence of stochastic jumps.
(Continued on page 4.)

We introduce:

$$
N(t)=\sum_{j=1}^{\infty} I\left(T_{j} \leq t\right)=\text { The number of jumps in }[0, \mathrm{t}]
$$

The process $\{S(t)\}$ is said to be regular if $P(N(t)<\infty)=1$ for all $t>0$.
We then let $\Delta_{j}=T_{j}-T_{j-1}, j=1,2, \ldots$
(a) Show that if the sequence $\left\{\Delta_{j}\right\}$ contains an infinite subsequence, $\left\{\Delta_{k_{j}}\right\}$, of independent, identically distributed stochastic variables such that $E\left[\Delta_{k_{j}}\right]=d>0$, then $\{S(t)\}$ us regular.
(b) Explain why regularity is important for simulations of pure jump processes.

