
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: STK3405/STK4405 –– Elementary intro-
duction to risk and reliability analysis.

Day of examination: Wednesday 19. December 2018.

Examination hours: 14.30 – 18.30.

This problem set consists of 4 pages.

Appendices: None.

Permitted aids: Accepted calculator.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

All subpoints will be equally weighted in the marking.

Problem 1

Consider the binary monotone system (C,φ) shown in Figure 1. The
component set of the system is C = {1, 2, . . . , 6}. Let X = (X1, X2, . . . , X6)
denote the vector of component state variables, and assume throughout
this problem that X1, X2, . . . , X6 are stochastically independent. Let
p = (p1, p2, . . . , p6) denote the vector of component reliabilities, where
pi = P (Xi = 1), i = 1, 2, . . . , 6. We assume that 0 < pi < 1 for
i = 1, 2, . . . , 6.
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Figure 1: A binary monotone system of 6 components.

a) Find the minimal path and cut sets of the system.

b) Use the result in a) to find an expression for the structure function of

(Continued on page 2.)
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the system, and explain briefly how this can be used to find the system
reliability. A detailed calculation is not required.

c) Use the factoring algorithm to derive the reliability of the system in a
different way from the one in b).

d) What is the definition of the Birnbaum measure for the reliability
importance of a component?

e) What is the reliability importance of component 3 according to the
Birnbaum measure? How can you use this result to find the structural
importance of component 3?

f) Assume that pi = p for i = 1, 2, . . . , 6, i.e., that all the components
have the same component reliability. What can you say about the
reliability importance of the other 5 components?

Problem 2

Consider a binary monotone system (C,φ), where C = {1, 2, 3} and where
the structure function φ is given by:

φ(X) = I(

3󰁛

i=1

Xi ≥ 2).

Here X = (X1, X2, X3) denotes the vector of component state variables and

I(·) denotes the indicator function.

a) Show that the structure function φ can be written as:

φ(X) = X1X2 +X1X3 +X2X3 − 2X1X2X3.

In the following we assume that:

Xi = Y0 · Yi, i = 1, 2, 3,

where Y0, Y1, Y2, Y3 are independent binary stochastic variables and:

P (Y0 = 1) = θ, P (Y1 = 1) = P (Y2 = 1) = P (Y3 = 1) = q,

where 0 < θ < 1 and 0 < q < 1.

b) Explain why this implies that X1, X2, X3 are associated stochastic
variables.

We then introduce h = E[φ(X)] = P (φ(X) = 1).

c) Show that:
h = h(θ, q) = θq2(3− 2q).

(Continued on page 3.)
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Assume that we ignore the dependence between the Xis, and instead
computes the system reliability as if X1, X2, X3 are independent and:

P (Xi = 1) = θq, i = 1, 2, 3.

Let h̃ denote the system reliability we then get.

d) Show that:
h̃ = h̃(θ, q) = θ2q2(3− 2θq).

e) Assume that θ = 1
2 . Show that we then have h̃ < h for all 0 < q < 1.

f) Assume instead that θ = 3
4 . What can you say about the relationship

between h̃ and h in this case?

Problem 3

Let (C,φ) be a binary monotone system, and let X denote the vector of
component state variables. In this problem we consider how the system
reliability h = P (φ(X) = 1) can be estimated using Monte Carlo simulation.
The simplest Monte Carlo estimate is:

ĥMC =
1

N

N󰁛

r=1

φ(Xr),

where X1, . . . ,XN are data generated from the distribution of X.

In order to improve this estimate we let S = S(X) be a stochastic
variable with values in the set {s1, . . . , sk}. We assume that the distribution
of S is known, and introduce:

θj = E[φ|S = sj ], j = 1, . . . , k.

We then use Monte Carlo simulation in order to estimate θ1, . . . , θk, and
generate data from the conditional distribution of X given S. We let
{Xr,j : r = 1, . . . , Nj} denote the vectors generated from the distribution of
X given that S = sj , j = 1, . . . , k, and get the following estimates:

θ̂j =
1

Nj

Nj󰁛

r=1

φ(Xr,j), j = 1, . . . , k.

These estimates are then combined into the following estimate of the system
reliability:

ĥCMC =

k󰁛

j=1

θ̂jP (S = sj).

(Continued on page 4.)
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a) Show that E[ĥCMC ] = h and that the variance of the estimate is given
by:

Var(ĥCMC) =

k󰁛

j=1

1

Nj
Var(φ|S = sj)[P (S = sj)]

2

b) Assume that Nj ≈ N · P (S = sj), j = 1, . . . , k. Show that we then
have:

Var(ĥCMC) ≈
1

N
(Var(φ)−Var[E(φ|S)]),

and explain briefly why this implies that Var(ĥCMC) ≤ Var(ĥMC).

c) What should one take into account when choosing S?

END


