UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in: $\quad \begin{aligned} & \text { STK3505/4505 - Problems and methods in } \\ & \text { Actuarial science }\end{aligned}$
Day of examination: Thursday December 8th 2016
Examination hours: 14.30-18.30
This problem set consists of 5 pages.
Appendices: None
Permitted aids: Approved calculator

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Introduction

Problem 1 is on general insurance, Problem 2 on life insurance and Problem 3 on financial risk. All of them must be answered and all sub-problems count equally. Write program sketches either in pseudo code or as R commands. The mathematical definitions and expressions below (that you need not prove or justify) may help you solving some of the sub-problems.

Rules of double expectation and variance:

$$
\begin{aligned}
\mathrm{E}(Y) & =\mathrm{E}(\mathrm{E}(Y \mid \boldsymbol{X})) \\
\operatorname{Var}(Y) & =\operatorname{Var}(\mathrm{E}(Y \mid \boldsymbol{X}))+\mathrm{E}(\operatorname{Var}(Y \mid \boldsymbol{X})) .
\end{aligned}
$$

Black-Scholes formula for a put option over $(0, T)$ with guarantee r_{g} and initial value of the stock $v_{0}=1$:

$$
\pi(1)=\left(1+r_{g}\right) e^{-r T} \Phi(a)-\Phi(a-\sigma \sqrt{T})
$$

where $a=\frac{\log \left(1+r_{g}\right)-r T+\sigma^{2} T / 2}{\sigma \sqrt{T}}$. Here the volatility and the discount over $(0, T)$ are $\sigma \sqrt{T}$ and $e^{-r T}$, respectively.

Problem 1 General insurance

Let $\mathcal{X}=Z_{1}+\ldots+Z_{\mathcal{N}}$ be the total pay-out in a general insurance portfolio under standard assumptions, where $\mathcal{N} \sim \operatorname{Poisson}(\lambda)$ is independent of the individual losses Z_{i}, which are independent, identically distributed with distribution function

$$
F(z)=1-\frac{1}{\left(1+\left(\frac{z}{\beta}\right)^{\theta}\right)^{\alpha}}, z>0
$$

Here α, θ and β are positive parameters.

a

The model for the losses is called the Burr distribution. Derive a sampler for this distribution using the inversion method.

b

Sketch a program for generating m samples of \mathcal{X}. Explain how to determine $E(\mathcal{X})$ and $s d(\mathcal{X})$, as well as the reserve from these simulations.

The table below shows the expectation, standard deviation and a few percentiles of the distribution of \mathcal{X} when $\lambda=30, \alpha=1, \theta=3$ and $\beta=2$. The number of simulations was 100,000 :

$E(\mathcal{X})$	$s d(\mathcal{X})$	1%	5%	25%	50%	75%	95%	99%
72.6	16.9	38.8	47.2	60.8	71.3	82.9	101.9	118.2

C

Derive expressions for $E(\mathcal{X})$ and $\operatorname{sd}(\mathcal{X})$ when $\mathrm{E}\left(Z_{i}\right)=\xi(\alpha, \theta, \beta)$ and $\operatorname{Var}\left(Z_{i}\right)=\sigma^{2}(\alpha, \theta, \beta)$, which are equal to 2.42 and 3.82 , respectively, for the given parameters (Hint: use the rules of double expectation and variance). Compare the exact values you get for $E(\mathcal{X})$ and $s d(\mathcal{X})$ with the ones from the table. Are there any signs of errors in the simulation program used for computing the values in the table?

d

What are the 95% and 99% reserves of the portfolio?

Suppose the portfolio is reinsured through a contract where the reinsurer responsibility per event is

$$
Z^{r e}= \begin{cases}0, & Z \leq a \\ Z-a, & Z>a\end{cases}
$$

where $a>0$ is fixed by the contract.

e

Modify the program in \mathbf{b} so that you can determine cedent net reserve with the reinsurance reimbursement taken into account.

The cedent net responsibility $\mathcal{X}^{c e}$ is summarized in the table below for $a=2.5$ and other parameters as before.

$E\left(\mathcal{X}^{c e}\right)$	$s d\left(\mathcal{X}^{c e}\right)$	1%	5%	25%	50%	75%	95%	99%
56.4	10.9	32.7	39.2	48.8	56.0	63.6	74.9	83.4

f

What do the 95% and 99% cedent net reserves become with reinsurance? Comment on the difference from \mathbf{d}.

Assume now that the reinsurance contract now specifies a reinsurer responsibility per event of

$$
Z^{r e}=b Z
$$

where $0 \leq b \leq 0$ is fixed by the contract.

g

Show that $\mathcal{X}^{r e}=b \mathcal{X}$ (and correspondingly $\left.\mathcal{X}^{c e}=(1-b) \mathcal{X}\right)$. Use that to derive the pure reinsurance premium and the 95% and 99% cedent net reserves from the table before \mathbf{c} when $b=0.223$.

The cedent net responsibility $\mathcal{X}^{c e}$ with this other reinsurance contract is summarized in the table below.

$E\left(\mathcal{X}^{c e}\right)$	$s d\left(\mathcal{X}^{c e}\right)$	1%	5%	25%	50%	75%	95%	99%
56.4	13.2	30.1	36.7	47.2	55.4	64.4	79.2	91.8

h

Comment on the differences between the cedent net reserves with the two different reinsurance contracts. Which contract would you prefer?

Problem 2 Life insurance

Suppose a pension starts to run at age l_{r}, lasting until the individual dies, with an amount s paid out at the beginning of each period. The probability of an individual of age l living at least k periods longer is ${ }_{k} p_{l}$, and the discount per period is d.

a

Write down an expression for the expected present value $\pi_{l_{0}}$ of such a pension for an individual at age l_{0} when $l_{0}<l_{r}$ and when $l_{0} \geq l_{r}$.

The three values of $\pi_{l_{0}}$ below apply when $s=1$, the age of retirement is $l_{r}=67$,

$$
\log \left({ }_{k} p_{l}\right)=-\theta_{0} k-\frac{\theta_{1}}{\theta_{2}}\left(e^{\theta_{2} k}-1\right) e^{\theta_{2} l}
$$

with $\theta_{0}=0.009, \theta_{1}=0.000046$ and $\theta_{2}=0.0908$, the discount is 0.975 and l_{0} is varied between $37,47,57$. The order of the corresponding $\pi_{l_{0}}$ has been changed.

l_{0}	$? ?$	$? ?$	$? ?$
$\pi_{l_{0}}$	4.98	7.40	3.46

b

Identify the values of l_{0} with those of $\pi_{l_{0}}$ and justify your argument.

C

Assume that the pension is financed by fixed contributions ζ at the start of each year from age $l_{0}<l_{r}$ up to age $l_{r}-1$. What is the expected present value of all these payments?

d

What does it mean that ζ is determined by equivalence? Write down a mathematical expression for it when the contributions are made at the start of each period up to one period before retirement.

Problem 3 Financial risk

The random walk on logarithmic scale is a common model for equity. This means that the stock price S_{k} at time k is given by

$$
\begin{aligned}
& S_{k}=e^{Y_{k}} \\
& Y_{k}=Y_{k-1}+X_{k}, k=1,2, \ldots
\end{aligned}
$$

where $X_{k}=\xi+\sigma \epsilon_{k}, S_{0}=v_{0}$ and the $\epsilon_{k} \mathrm{~S}$ are independent and $\sim N(0,1)$.

a

What is the K-step return $R_{0: K}$ and what is its probability distribution? (Hint: show first that $R_{k}=e^{X_{k}}-1$).

Assume that the investment is protected by a put option on $R_{0: K}$ with guaranteed return r_{g}.

b

Sketch a program for simulating the pay-off $X=\max \left(r_{g}-R_{0: K}, 0\right)$, and explain how you could use that to compute the risk-neutral price $\pi\left(v_{0}\right)$ when the discount is e^{-r} in each of the K periods (remember that in the riskneutral model, $\xi=r-\frac{1}{2} \sigma^{2}$)? Can you think of an alternative method for computing $\pi\left(v_{0}\right)$ in this case?

Suppose the original investment v_{0} instead is spread on J stocks, and that we are only considering one time period. The assumed model for the returns is now

$$
R_{j}=\xi_{j}+\sigma_{j} \epsilon_{j}, \epsilon_{j} \sim N(0,1)
$$

and the portfolio return is $\mathcal{R}=w_{1} R_{1}+\ldots+w_{J} R_{J}$, with $w_{1}+\ldots+w_{J}=1$.
c
Assume first, somewhat unrealistically, that $\xi_{j}=\xi, \sigma_{j}=\sigma, w_{j}=\frac{1}{J}$, $j=1, \ldots, J$, and that $\operatorname{Cor}\left(\epsilon_{i}, \epsilon_{j}\right)=0, i \neq j$. Show that

$$
\frac{\operatorname{sd}(\mathcal{R})}{\mathrm{E}(\mathcal{R})} \underset{J \rightarrow \infty}{\longrightarrow} 0
$$

d

Assume now that all stock returns depend on the same market return R_{M} via $\xi_{j}=r+\beta\left(R_{M}-r\right)$, where r is constant and $R_{M}=\xi_{M}+\sigma_{M} \epsilon_{M}$, with $\epsilon_{M} \sim N(0,1)$ independent of $\epsilon_{1}, \ldots, \epsilon_{J}$. Assume that the remaining conditions are as in \mathbf{c} and derive the limiting value of $\frac{\operatorname{sd}(\mathcal{R})}{\mathrm{E}(\mathcal{R})}$ as $J \rightarrow \infty$ (Hint: use the rules of double expectation and variance). Comment on the difference from \mathbf{c}.

