UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	STK3505/4505 — Problems and methods Actuarial science				
Day of examination:	Friday December 15th 2017				
Examination hours:	14.30-18.30				
This problem set consists of 5 pages.					
Appendices:	None				
Permitted aids:	Approved calculator				

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Introduction

Problem 1 is on general insurance, Problem 2 on life insurance and Problem 3 on financial risk. All of them must be answered and all sub-problems count equally. Write program sketches either in pseudo code or as R commands. The mathematical definitions and expressions below (that you need not prove or justify) may help you solving some of the sub-problems.

Rules of double expectation and variance:

 $E(Y) = E(E(Y|\boldsymbol{X}))$ Var(Y) = Var(E(Y|\boldsymbol{X})) + E(Var(Y|\boldsymbol{X})).

Mean and standard deviation of the log-normal distribution: If $Z \sim log - N(\xi, \sigma)$, then

$$E(Z) = e^{\xi + \frac{1}{2}\sigma^2}$$
 and $sd(Z) = E(Z)\sqrt{e^{\sigma^2} - 1}$.

Mean, standard deviation and cumulative distribution function of the Pareto distribution: If $Z \sim Pareto(\alpha, \beta)$, then

$$E(Z) = \frac{\beta}{\alpha - 1}$$
 and $sd(Z) = E(Z)\sqrt{\frac{\alpha}{\alpha - 2}}$

for $\alpha > 1$ and $\alpha > 2$, respectively, and

$$F(z) = 1 - \frac{1}{\left(1 + \frac{z}{\beta}\right)^{\alpha}}, \ z > 0.$$

Estimation of a probability density function: A Monte Carlo estimate of the pdf f(x) of a random variable X based on the independent simulations x_1^*, \ldots, x_m^* is

$$f^*(x) = \frac{1}{mh} \sum_{i=1}^m K\left(\frac{x - x_i^*}{h}\right),$$

(Continued on page 2.)

where $K(\cdot)$ is a kernel function with mean 0 that integrates to 1, for instance a Gaussian kernel, and h is the bandwidth parameter.

Problem 1 General insurance

Let $\mathcal{X} = Z_1 + \ldots + Z_N$ be the total pay-out in a general insurance portfolio under standard assumptions, where $\mathcal{N} \sim Poisson(\lambda)$ is independent of the individual losses Z_i , which are independent, identically $Pareto(\alpha, \beta)$ distributed.

Assume that for a given set of historical losses z_1, \ldots, z_n , the sample mean and standard deviation are $\bar{z} = 2.67$ and s = 3.77, respectively.

а

Show that the moment estimates of α and β are $\hat{\alpha} = 4.01$ and $\hat{\beta} = 8.04$. What challenges may you run into when using the method of moments to estimate the parameters of the Pareto distribution?

\mathbf{b}

Derive a sampler for the Pareto distribution using the inversion method.

С

Sketch a program for generating m samples of \mathcal{X} . Explain how to determine $E(\mathcal{X})$ and $sd(\mathcal{X})$, as well as the reserve from these simulations (remember to define what the reserve is).

The table below shows the expectation, standard deviation and a few percentiles of the distribution of \mathcal{X} when $\lambda = 30$. The number of simulations was 100,000:

$E(\mathcal{X})$	$sd(\mathcal{X})$	1%	5%	25%	50%	75%	95%	99%
80.1	25.4	33.8	44.2	62.2	77.1	94.7	125.5	153.0

\mathbf{d}

Derive expressions for $E(\mathcal{X})$ and $sd(\mathcal{X})$ for the given parameters (**Hint**: use the rules of double expectation and variance). Compare the exact values you get for $E(\mathcal{X})$ and $sd(\mathcal{X})$ with the ones from the table. Are there any signs of errors in the simulation program used for computing the values in the table?

\mathbf{e}

What are the 95% and 99% reserves of the portfolio?

Suppose the portfolio is reinsured through a contract where the reinsurer responsibility is

$$\mathcal{X}^{re} = \begin{cases} 0, & \mathcal{X} \leq a \\ \mathcal{X} - a, & a < \mathcal{X} \leq a + b \\ b, & \mathcal{X} > a + b \end{cases}$$

(Continued on page 3.)

where a, b > 0 are fixed by the contract.

f

How is the net responsibility of the cedent simulated?

The cedent net responsibility \mathcal{X}^{ce} is summarized in the table below for a = 90, b = 35 and other parameters as before.

$E(\mathcal{X}^{ce})$	$sd(\mathcal{X}^{ce})$	1%	5%	25%	50%	75%	95%	99%
74.9	18.0	34.1	44.3	62.2	77.3	90.0	90.3	118.4

 \mathbf{g}

What are the 95% and 99% **cedent** net reserves? Comment on the differences from **e**. What is the **reinsurance** pure premium and what is the actual reinsurance premium when the loading is $\gamma = 0.8$?

Problem 2 Life insurance

Suppose a pension starts to run at age l_r , lasting until the individual dies, with an amount s paid out at the beginning of each period. The probability of an individual of age l living at least k periods longer is $_kp_l$, and the discount per period is d.

а

Write down an expression for the expected present value π_{l_0} of such a pension for an individual at age l_0 when $l_0 < l_r$ and when $l_0 \ge l_r$, where you explain the different factors of the expression.

Figure a shows π_{l_0} as a function of l_0 when s = 1, the age of retirement is $l_r = 67$,

$$\log(kp_l) = -\theta_0 k - \frac{\theta_1}{\theta_2} \left(e^{\theta_2 k} - 1 \right) e^{\theta_2 l},$$

with $\theta_0 = 0.009$, $\theta_1 = 0.000046$ and $\theta_2 = 0.0908$ and the discount is d = 1/(1+r), with r varied between 0.02, 0.03, 0.04, 0.05 (each curve corresponds to one value of r).

 \mathbf{b}

Explain the shape of the curves and identify which curve corresponds to which value of r.

С

Assume that the pension is financed by fixed contributions ζ at the start of each year from age $l_0 < l_r$ up to age $l_r - 1$. What is the expected present value of all these payments? Explain the different factors of the expression.

(Continued on page 4.)

Figure 1: Premium π_{l_0} as a function of l_0 for each of the values of r.

d

What does it mean that ζ is determined by equivalence (explain in words)? Write down a mathematical expression for it when the contributions are made at the start of each period up to one period before retirement.

Problem 3 Financial risk

The random walk on logarithmic scale is a common model for equity. This means that the stock price S_k at time k is given by

$$S_k = e^{Y_k}$$

 $Y_k = Y_{k-1} + X_k, k = 1, 2, \dots,$

where $X_k = \xi + \sigma \varepsilon_k$, $S_0 = v_0$ and the ε_k s are independent and $\sim N(0, 1)$.

а

What is the K-step return $R_{0:K}$ and what is its probability distribution? (**Hint:** show first that $R_k = e^{X_k} - 1$).

\mathbf{b}

Sketch a program for simulating $R_{0:K}$ and explain how you could use that to estimate its probability density function. Discuss the choice of bandwidth parameter h in general.

An alternative is to put v_0 in a bank account with a floating interest rate r_k given by

$$r_k = r e^{-\tau^2/(2(1-a^2))+X_k}$$

 $X_k = a X_{k-1} + \tau \varepsilon_k, k = 1, 2, \dots,$

where |a| < 1 and $x_0 = \log\left(\frac{r_0}{r}\right) + \frac{\tau^2}{2(1-a^2)}$. It may then be shown that (you do not have to prove this)

$$X_k = a^k x_0 + \tau \sum_{i=0}^{k-1} a^i \varepsilon_{k-i},$$

such that

$$E(X_k|x_0) = a^k x_0$$

sd(X_k|x_0) = $\sqrt{\frac{1 - a^{2k}}{1 - a^2}} \tau$.

С

Show that

$$E(r_k|r_0) = re^{a^k x_0 - \tau^2 a^{2k}/(2(1-a^2))}$$
 and $sd(r_k|r_0) = E(r_k|r_0)\sqrt{e^{\tau^2(1-a^{2k})/(1-a^2)} - 1}$

and use this to show that

$$\mathbb{E}(r_k|r_0) \xrightarrow[k \to \infty]{} r \text{ and } \operatorname{sd}(r_k|r_0) \xrightarrow[k \to \infty]{} r\sqrt{e^{\tau^2/(1-a^2)}-1}.$$

The table below shows the mean, standard deviation and lower and upper 5% quantiles of the value V of the investment v_0 in the stock (first row) and in the floating interest rate (second row) after K years, i.e. $(1 + R_{0:K})v_0$ and $(1 + r_{0:K})v_0$, respectively. The values are obtained with $v_0 = 1$, $\xi = 0.04$, r = 0.04, $\sigma = 0.25$, a = 0.7, $\tau = 0.25$ and K = 10.

E(V)	sd(V)	5%	95%
2.04	1.90	0.40	5.50
1.49	0.13	1.32	1.72

\mathbf{d}

Comment on the differences between the two investments. What are the advantages and disadvantages?