UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in: \quad STK3505/4505 - Problems and methods in Actuarial science
Day of examination: Friday December 15th 2017
Examination hours: 14.30-18.30
This problem set consists of 5 pages.
Appendices: None
Permitted aids: Approved calculator

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Introduction

Problem 1 is on general insurance, Problem 2 on life insurance and Problem 3 on financial risk. All of them must be answered and all sub-problems count equally. Write program sketches either in pseudo code or as R commands. The mathematical definitions and expressions below (that you need not prove or justify) may help you solving some of the sub-problems.

Rules of double expectation and variance:

$$
\begin{aligned}
\mathrm{E}(Y) & =\mathrm{E}(\mathrm{E}(Y \mid \boldsymbol{X})) \\
\operatorname{Var}(Y) & =\operatorname{Var}(\mathrm{E}(Y \mid \boldsymbol{X}))+\mathrm{E}(\operatorname{Var}(Y \mid \boldsymbol{X})) .
\end{aligned}
$$

Mean and standard deviation of the log-normal distribution: If $Z \sim \log -N(\xi, \sigma)$, then

$$
\mathrm{E}(Z)=e^{\xi+\frac{1}{2} \sigma^{2}} \text { and } \operatorname{sd}(Z)=\mathrm{E}(Z) \sqrt{e^{\sigma^{2}}-1}
$$

Mean, standard deviation and cumulative distribution function of the Pareto distribution: If $Z \sim \operatorname{Pareto}(\alpha, \beta)$, then

$$
\mathrm{E}(Z)=\frac{\beta}{\alpha-1} \text { and } \operatorname{sd}(Z)=\mathrm{E}(Z) \sqrt{\frac{\alpha}{\alpha-2}},
$$

for $\alpha>1$ and $\alpha>2$, respectively, and

$$
F(z)=1-\frac{1}{\left(1+\frac{z}{\beta}\right)^{\alpha}}, z>0 .
$$

Estimation of a probability density function: A Monte Carlo estimate of the pdf $f(x)$ of a random variable X based on the independent simulations $x_{1}^{*}, \ldots, x_{m}^{*}$ is

$$
f^{*}(x)=\frac{1}{m h} \sum_{i=1}^{m} K\left(\frac{x-x_{i}^{*}}{h}\right),
$$

where $K(\cdot)$ is a kernel function with mean 0 that integrates to 1 , for instance a Gaussian kernel, and h is the bandwidth parameter.

Problem 1 General insurance

Let $\mathcal{X}=Z_{1}+\ldots+Z_{\mathcal{N}}$ be the total pay-out in a general insurance portfolio under standard assumptions, where $\mathcal{N} \sim \operatorname{Poisson}(\lambda)$ is independent of the individual losses Z_{i}, which are independent, identically $\operatorname{Pareto}(\alpha, \beta)$ distributed.
Assume that for a given set of historical losses z_{1}, \ldots, z_{n}, the sample mean and standard deviation are $\bar{z}=2.67$ and $s=3.77$, respectively.

a

Show that the moment estimates of α and β are $\hat{\alpha}=4.01$ and $\hat{\beta}=8.04$. What challenges may you run into when using the method of moments to estimate the parameters of the Pareto distribution?

b

Derive a sampler for the Pareto distribution using the inversion method.

c

Sketch a program for generating m samples of \mathcal{X}. Explain how to determine $E(\mathcal{X})$ and $s d(\mathcal{X})$, as well as the reserve from these simulations (remember to define what the reserve is).

The table below shows the expectation, standard deviation and a few percentiles of the distribution of \mathcal{X} when $\lambda=30$. The number of simulations was 100,000 :

$E(\mathcal{X})$	$s d(\mathcal{X})$	1%	5%	25%	50%	75%	95%	99%
80.1	25.4	33.8	44.2	62.2	77.1	94.7	125.5	153.0

d

Derive expressions for $E(\mathcal{X})$ and $s d(\mathcal{X})$ for the given parameters (Hint: use the rules of double expectation and variance). Compare the exact values you get for $E(\mathcal{X})$ and $\operatorname{sd}(\mathcal{X})$ with the ones from the table. Are there any signs of errors in the simulation program used for computing the values in the table?

e

What are the 95% and 99% reserves of the portfolio?

Suppose the portfolio is reinsured through a contract where the reinsurer responsibility is

$$
\mathcal{X}^{r e}= \begin{cases}0, & \mathcal{X} \leq a \\ \mathcal{X}-a, & a<\mathcal{X} \leq a+b, \\ b, & \mathcal{X}>a+b\end{cases}
$$

where $a, b>0$ are fixed by the contract.

f

How is the net responsibility of the cedent simulated?
The cedent net responsibility $\mathcal{X}^{c e}$ is summarized in the table below for $a=90, b=35$ and other parameters as before.

$E\left(\mathcal{X}^{c e}\right)$	$s d\left(\mathcal{X}^{c e}\right)$	1%	5%	25%	50%	75%	95%	99%
74.9	18.0	34.1	44.3	62.2	77.3	90.0	90.3	118.4

g

What are the 95% and 99% cedent net reserves? Comment on the differences from e. What is the reinsurance pure premium and what is the actual reinsurance premium when the loading is $\gamma=0.8$?

Problem 2 Life insurance

Suppose a pension starts to run at age l_{r}, lasting until the individual dies, with an amount s paid out at the beginning of each period. The probability of an individual of age l living at least k periods longer is ${ }_{k} p_{l}$, and the discount per period is d.

a

Write down an expression for the expected present value $\pi_{l_{0}}$ of such a pension for an individual at age l_{0} when $l_{0}<l_{r}$ and when $l_{0} \geq l_{r}$, where you explain the different factors of the expression.

Figure a shows $\pi_{l_{0}}$ as a function of l_{0} when $s=1$, the age of retirement is $l_{r}=67$,

$$
\log \left({ }_{k} p_{l}\right)=-\theta_{0} k-\frac{\theta_{1}}{\theta_{2}}\left(e^{\theta_{2} k}-1\right) e^{\theta_{2} l}
$$

with $\theta_{0}=0.009, \theta_{1}=0.000046$ and $\theta_{2}=0.0908$ and the discount is $d=1 /(1+r)$, with r varied between $0.02,0.03,0.04,0.05$ (each curve corresponds to one value of r).

b

Explain the shape of the curves and identify which curve corresponds to which value of r.

C

Assume that the pension is financed by fixed contributions ζ at the start of each year from age $l_{0}<l_{r}$ up to age $l_{r}-1$. What is the expected present value of all these payments? Explain the different factors of the expression.

Figure 1: Premium $\pi_{l_{0}}$ as a function of l_{0} for each of the values of r.

d

What does it mean that ζ is determined by equivalence (explain in words)? Write down a mathematical expression for it when the contributions are made at the start of each period up to one period before retirement.

Problem 3 Financial risk

The random walk on logarithmic scale is a common model for equity. This means that the stock price S_{k} at time k is given by

$$
\begin{aligned}
& S_{k}=e^{Y_{k}} \\
& Y_{k}=Y_{k-1}+X_{k}, k=1,2, \ldots,
\end{aligned}
$$

where $X_{k}=\xi+\sigma \varepsilon_{k}, S_{0}=v_{0}$ and the $\varepsilon_{k} \mathrm{~S}$ are independent and $\sim N(0,1)$.

a

What is the K-step return $R_{0: K}$ and what is its probability distribution? (Hint: show first that $R_{k}=e^{X_{k}}-1$).

b

Sketch a program for simulating $R_{0: K}$ and explain how you could use that to estimate its probability density function. Discuss the choice of bandwidth parameter h in general.

An alternative is to put v_{0} in a bank account with a floating interest rate r_{k} given by

$$
\begin{aligned}
r_{k} & =r e^{-\tau^{2} /\left(2\left(1-a^{2}\right)\right)+X_{k}} \\
X_{k} & =a X_{k-1}+\tau \varepsilon_{k}, k=1,2, \ldots
\end{aligned}
$$

where $|a|<1$ and $x_{0}=\log \left(\frac{r_{0}}{r}\right)+\frac{\tau^{2}}{2\left(1-a^{2}\right)}$. It may then be shown that (you do not have to prove this)

$$
X_{k}=a^{k} x_{0}+\tau \sum_{i=0}^{k-1} a^{i} \varepsilon_{k-i}
$$

such that

$$
\begin{aligned}
\mathrm{E}\left(X_{k} \mid x_{0}\right) & =a^{k} x_{0} \\
\operatorname{sd}\left(X_{k} \mid x_{0}\right) & =\sqrt{\frac{1-a^{2 k}}{1-a^{2}}} \tau
\end{aligned}
$$

C

Show that
$\mathrm{E}\left(r_{k} \mid r_{0}\right)=r e^{a^{k} x_{0}-\tau^{2} a^{2 k} /\left(2\left(1-a^{2}\right)\right)}$ and $\operatorname{sd}\left(r_{k} \mid r_{0}\right)=\mathrm{E}\left(r_{k} \mid r_{0}\right) \sqrt{e^{\tau^{2}\left(1-a^{2 k}\right) /\left(1-a^{2}\right)}-1}$
and use this to show that

$$
\mathrm{E}\left(r_{k} \mid r_{0}\right) \underset{k \rightarrow \infty}{\longrightarrow} r \text { and } \operatorname{sd}\left(r_{k} \mid r_{0}\right) \underset{k \rightarrow \infty}{\longrightarrow} r \sqrt{e^{\tau^{2} /\left(1-a^{2}\right)}-1}
$$

The table below shows the mean, standard deviation and lower and upper 5% quantiles of the value V of the investment v_{0} in the stock (first row) and in the floating interest rate (second row) after K years, i.e. $\left(1+R_{0: K}\right) v_{0}$ and $\left(1+r_{0: K}\right) v_{0}$, respectively. The values are obtained with $v_{0}=1, \xi=0.04$, $r=0.04, \sigma=0.25, a=0.7, \tau=0.25$ and $K=10$.

$E(V)$	$s d(V)$	5%	95%
2.04	1.90	0.40	5.50
1.49	0.13	1.32	1.72

d

Comment on the differences between the two investments. What are the advantages and disadvantages?

