UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in: $\quad \begin{aligned} & \text { STK3505/4505 - Problems and methods in } \\ & \\ & \text { Actuarial science }\end{aligned}$
Day of examination: Monday December 10th 2018
Examination hours: $09.00-13.00$
This problem set consists of 5 pages.
Appendices: None
Permitted aids: Approved calculator

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Introduction

Problem 1 is on general insurance, Problem 2 on life insurance and Problem 3 on financial risk. All of them must be answered and all sub-problems count equally. Write program sketches either in pseudo code or as R commands. The mathematical definitions and expressions below (that you need not prove or justify) may help you solving some of the sub-problems.

Rules of double expectation and variance:

$$
\begin{aligned}
\mathrm{E}(Y) & =\mathrm{E}(\mathrm{E}(Y \mid \boldsymbol{X})) \\
\operatorname{Var}(Y) & =\operatorname{Var}(\mathrm{E}(Y \mid \boldsymbol{X}))+\mathrm{E}(\operatorname{Var}(Y \mid \boldsymbol{X})) .
\end{aligned}
$$

Mean, standard deviation and cumulative distribution function of the log-logistic distribution: If $Z \sim \log -\operatorname{logistic}(\alpha, \beta)$, then

$$
\mathrm{E}(Z)=\beta \frac{\pi}{\alpha \sin (\pi / \alpha)} \text { and } \operatorname{sd}(Z)=\beta \sqrt{\frac{2 \pi}{\alpha \sin (2 \pi / \alpha)}-\left(\frac{\pi}{\alpha \sin (\pi / \alpha)}\right)^{2}}
$$

and

$$
F(z)=\frac{1}{1+\left(\frac{z}{\beta}\right)^{-\alpha}}
$$

Black-Scholes formula for a put option over $(0, T)$ with guarantee r_{g} and initial value of the stock $v_{0}=1$:

$$
\pi(1)=\left(1+r_{g}\right) e^{-r T} \Phi(a)-\Phi(a-\sigma \sqrt{T})
$$

where $a=\frac{\log \left(1+r_{g}\right)-r T+\sigma^{2} T / 2}{\sigma \sqrt{T}}$. Here the volatility and the discount over $(0, T)$ are $\sigma \sqrt{T}$ and $e^{-r T}$, respectively.

Problem 1 General insurance

Let $\mathcal{X}=Z_{1}+\ldots+Z_{\mathcal{N}}$ be the total pay-out in a general insurance portfolio under standard assumptions, where $\mathcal{N} \sim \operatorname{Poisson}(\lambda)$ is independent of the individual losses Z_{i}, which are independent, identically $\log -\operatorname{logistic}(\alpha, \beta)$ distributed.

a

Derive a sampler for the log-logistic distribution using the inversion method.

b

Sketch a program for generating m samples of \mathcal{X}. Explain how to determine $E(\mathcal{X})$ and $s d(\mathcal{X})$, as well as the reserve from these simulations (remember to define what the reserve is).

The table below shows the expectation, standard deviation and a few percentiles of the distribution of \mathcal{X} when $\lambda=10, \alpha=3, \beta=0.83$. The number of simulations was 100,000 :

$E(\mathcal{X})$	$s d(\mathcal{X})$	1%	5%	25%	50%	75%	95%	99%
10.0	4.0	2.7	4.4	7.2	9.6	12.3	17.2	21.6

c

Derive expressions for $E(\mathcal{X})$ and $s d(\mathcal{X})$ for the given parameters (Hint: use the rules of double expectation and variance). Compare the exact values you get for $E(\mathcal{X})$ and $\operatorname{sd}(\mathcal{X})$ with the ones from the table. Are there any signs of errors in the simulation program used for computing the values in the table?

d

What are the 95% and 99% reserves of the portfolio?
Suppose the portfolio is reinsured through a contract where the reinsurer responsibility per event is

$$
Z^{r e}= \begin{cases}0, & Z \leq a \\ \theta(Z-a), & Z>a\end{cases}
$$

where $a, \theta>0$ are fixed by the contract.

e

Modify the program in \mathbf{b} so that you can determine cedent net reserve with the reinsurance reimbursement taken into account.

The cedent net responsibility $\mathcal{X}^{c e}$ is summarized in the table below for $a=1$, $\theta=0.6$ and other parameters as before.

$E\left(\mathcal{X}^{c e}\right)$	$s d\left(\mathcal{X}^{c e}\right)$	1%	5%	25%	50%	75%	95%	99%
7.7	2.6	2.4	3.7	5.9	7.5	9.3	12.1	14.3

f

What do the 95% and 99% cedent net reserves become with reinsurance? Comment on the difference from \mathbf{d}. What is the reinsurance pure premium and what is the actual reinsurance premium when the loading is $\gamma=1$?

g

Assume that the claim numbers N_{1}, \ldots, N_{J} from the J policies constituting the portfolio are independent and follow a Poisson distribution with parameter μT, with μ fixed and T the time period, such that the parameter λ of the distribution of $\mathcal{N}=N_{1}+\ldots+N_{J}$ is $J \mu T$. Use the results from c to show that $\frac{\operatorname{sd}(\mathcal{X})}{\mathrm{E}(\mathcal{X})} \underset{J \rightarrow \infty}{\longrightarrow} 0$.

h

What if μ instead is random with $0<\mathrm{E}(\mu), \operatorname{sd}(\mu)<\infty$, and $N_{1}, \ldots, N_{J} \mid \mu \sim$ Poisson (μT); what is $\lim _{J \rightarrow \infty} \frac{\operatorname{sd}(\mathcal{X})}{\mathrm{E}(\mathcal{X})}$ now? Comment on the difference from \mathbf{g}.

Problem 2 Life insurance

Suppose a pension starts to run at age l_{r}, lasting until the individual dies, with an amount s paid out at the beginning of each period. The probability of an individual of age l living at least k periods longer is ${ }_{k} p_{l}$, and the discount per period is d.

a

Write down an expression for the expected present value $\pi_{l_{0}}$ of such a pension for an individual at age l_{0} when $l_{0}<l_{r}$ and when $l_{0} \geq l_{r}$, where you explain the different factors of the expression and how the expression is obtained.

The table below shows $\pi_{l_{0}}$ when $s=1, l_{0}=30$ and the age of retirement is varied between $l_{r}=62,67,72$,

$$
\log \left({ }_{k} p_{l}\right)=-\theta_{0} k-\frac{\theta_{1}}{\theta_{2}}\left(e^{\theta_{2} k}-1\right) e^{\theta_{2} l}
$$

with $\theta_{0}=0.009, \theta_{1}=0.000046$ and $\theta_{2}=0.0908$ and the discount is $d=1 /(1+r)$, with $r=0.03$. The order of the corresponding $\pi_{l_{0}}$ has been changed.

```
lr ?? ?? ??
\mp@subsup{\pi}{\mp@subsup{l}{0}{}}{}
```


b

Identify which values of l_{r} correspond to those of $\pi_{l_{0}}$ and justify your argument.

C

Assume that the pension is financed by fixed contributions ζ at the start of each year from age $l_{0}<l_{r}$ up to age $l_{r}-1$. What is the expected present value of all these payments? Explain the different factors of the expression.

d

What does it mean that ζ is determined by equivalence (explain in words)? Write down a mathematical expression for it when the contributions are made at the start of each period up to one period before retirement.

Problem 3 Financial risk

Assume that one has invested in an equity portfolio consisting of 4 stocks with corresponding returns

$$
R_{j}=e^{\xi_{j}+\sigma_{j} \varepsilon_{j}}-1, \quad \varepsilon_{j} \sim N(0,1)
$$

where $\operatorname{Cor}\left(\varepsilon_{i}, \varepsilon_{j}\right)=\rho_{i j}, i, j=1, \ldots, 4$, and weights w_{1}, \ldots, w_{4}.
The table below shows the mean, standard deviation and some quantiles of the portfolio return \mathcal{R}

Scenario	$E(\mathcal{R})$	$s d(\mathcal{R})$	1%	5%	25%	50%	75%	95%	99%
$? ?$	0.15	0.18	-0.21	-0.12	0.02	0.14	0.27	0.48	0.64
1	0.15	0.29	-0.37	-0.26	-0.06	0.12	0.32	0.69	1.00
$? ?$	0.15	0.27	-0.34	-0.23	-0.04	0.12	0.31	0.64	0.93
$? ?$	0.15	0.15	-0.15	-0.07	0.05	0.14	0.25	0.41	0.53

for the following 4 scenarios:

Scenario	Correlations	Weights
1	$\rho_{i j}=0, i \neq j$	$1,0,0,0$
2	$\rho_{i j}=0, i \neq j$	$0.25,0.25,0.25,0.25$
3	$\rho_{i j}=0.2, i \neq j$	$0.25,0.25,0.25,0.25$
4	$\rho_{i j}=0.8, i \neq j$	$0.25,0.25,0.25,0.25$

when the remaining parameters are $\xi_{j}=0.11$ and $\sigma_{j}=0.25, j=1, \ldots, 4$.

a

Identify which scenario corresponds to which row in the figure and justify your answers. Comment on the difference between the 4 investments.

b

Assume that the actual investment is Scenario 3, and that one wishes to protect this investment with a put option on the portfolio return with guaranteed return r_{g}. Sketch a program for simulating the pay-off $X=$ $\max \left(r_{g}-\mathcal{R}, 0\right)$, where you do not need to go into details on how to simulate from a multivariate normal distribution. Explain how you could use that to compute the risk-neutral price $\pi\left(v_{0}\right)$ when the discount is e^{-r} during the $\operatorname{period} T=1$ (remember that in the risk-neutral model, $\left.\xi_{j}=r-\frac{1}{2} \sigma_{j}^{2}\right)$.

c

Can you think of an alternative method for computing $\pi\left(v_{0}\right)$ if the actual investment is Scenario 1?

END

