UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	STK3505/4505 — Problems and methods in Actuarial science				
Day of examination:	Monday December 10th 2018				
Examination hours:	09.00-13.00				
This problem set consists of 5 pages.					
Appendices:	None				
Permitted aids:	Approved calculator				

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Introduction

Problem 1 is on general insurance, Problem 2 on life insurance and Problem 3 on financial risk. All of them must be answered and all sub-problems count equally. Write program sketches either in pseudo code or as R commands. The mathematical definitions and expressions below (that you need not prove or justify) may help you solving some of the sub-problems.

Rules of double expectation and variance:

 $E(Y) = E(E(Y|\boldsymbol{X}))$ Var(Y) = Var(E(Y|\boldsymbol{X})) + E(Var(Y|\boldsymbol{X})).

Mean, standard deviation and cumulative distribution function of the log-logistic distribution: If $Z \sim log - logistic(\alpha, \beta)$, then

$$E(Z) = \beta \frac{\pi}{\alpha \sin(\pi/\alpha)}$$
 and $sd(Z) = \beta \sqrt{\frac{2\pi}{\alpha \sin(2\pi/\alpha)} - \left(\frac{\pi}{\alpha \sin(\pi/\alpha)}\right)^2}$

and

$$F(z) = \frac{1}{1 + \left(\frac{z}{\beta}\right)^{-\alpha}}.$$

Black-Scholes formula for a put option over (0, T) with guarantee r_g and initial value of the stock $v_0 = 1$:

$$\pi(1) = (1+r_g)e^{-rT}\Phi(a) - \Phi(a - \sigma\sqrt{T})$$

where $a = \frac{\log(1+r_g)-rT+\sigma^2 T/2}{\sigma\sqrt{T}}$. Here the volatility and the discount over (0,T) are $\sigma\sqrt{T}$ and e^{-rT} , respectively.

(Continued on page 2.)

Page 2

Problem 1 General insurance

Let $\mathcal{X} = Z_1 + \ldots + Z_N$ be the total pay-out in a general insurance portfolio under standard assumptions, where $\mathcal{N} \sim Poisson(\lambda)$ is independent of the individual losses Z_i , which are independent, identically $log - logistic(\alpha, \beta)$ distributed.

а

Derive a sampler for the log-logistic distribution using the inversion method.

\mathbf{b}

Sketch a program for generating m samples of \mathcal{X} . Explain how to determine $E(\mathcal{X})$ and $sd(\mathcal{X})$, as well as the reserve from these simulations (remember to define what the reserve is).

The table below shows the expectation, standard deviation and a few percentiles of the distribution of \mathcal{X} when $\lambda = 10$, $\alpha = 3$, $\beta = 0.83$. The number of simulations was 100,000:

 $E(\mathcal{X})$ $sd(\mathcal{X})$ 1%5%25%50%75%95%99%10.02.77.29.6 12.317.221.64.04.4

с

Derive expressions for $E(\mathcal{X})$ and $sd(\mathcal{X})$ for the given parameters (**Hint**: use the rules of double expectation and variance). Compare the exact values you get for $E(\mathcal{X})$ and $sd(\mathcal{X})$ with the ones from the table. Are there any signs of errors in the simulation program used for computing the values in the table?

\mathbf{d}

What are the 95% and 99% reserves of the portfolio?

Suppose the portfolio is reinsured through a contract where the reinsurer responsibility per event is

$$Z^{re} = \begin{cases} 0, & Z \le a \\ \theta(Z-a), & Z > a \end{cases},$$

where $a, \theta > 0$ are fixed by the contract.

\mathbf{e}

Modify the program in \mathbf{b} so that you can determine cedent net reserve with the reinsurance reimbursement taken into account.

The cedent net responsibility \mathcal{X}^{ce} is summarized in the table below for a = 1, $\theta = 0.6$ and other parameters as before.

(Continued on page 3.)

$E(\mathcal{X}^{ce})$	$sd(\mathcal{X}^{ce})$	1%	5%	25%	50%	75%	95%	99%
7.7	2.6	2.4	3.7	5.9	7.5	9.3	12.1	14.3

f

What do the 95% and 99% cedent net reserves become with reinsurance? Comment on the difference from **d**. What is the **reinsurance** pure premium and what is the actual reinsurance premium when the loading is $\gamma = 1$?

\mathbf{g}

Assume that the claim numbers N_1, \ldots, N_J from the J policies constituting the portfolio are independent and follow a Poisson distribution with parameter μT , with μ fixed and T the time period, such that the parameter λ of the distribution of $\mathcal{N} = N_1 + \ldots + N_J$ is $J\mu T$. Use the results from \mathbf{c} to show that $\frac{\operatorname{sd}(\mathcal{X})}{\operatorname{E}(\mathcal{X})} \xrightarrow{} 0$.

\mathbf{h}

What if μ instead is random with $0 < E(\mu), sd(\mu) < \infty$, and $N_1, \ldots, N_J | \mu \sim Poisson(\mu T)$; what is $\lim_{J\to\infty} \frac{sd(\chi)}{E(\chi)}$ now? Comment on the difference from **g**.

Problem 2 Life insurance

Suppose a pension starts to run at age l_r , lasting until the individual dies, with an amount *s* paid out at the beginning of each period. The probability of an individual of age *l* living at least *k* periods longer is $_kp_l$, and the discount per period is *d*.

a

Write down an expression for the expected present value π_{l_0} of such a pension for an individual at age l_0 when $l_0 < l_r$ and when $l_0 \ge l_r$, where you explain the different factors of the expression and how the expression is obtained.

The table below shows π_{l_0} when s = 1, $l_0 = 30$ and the age of retirement is varied between $l_r = 62, 67, 72$,

$$\log_{k} p_{l} = -\theta_{0}k - \frac{\theta_{1}}{\theta_{2}} \left(e^{\theta_{2}k} - 1\right)e^{\theta_{2}l},$$

with $\theta_0 = 0.009$, $\theta_1 = 0.000046$ and $\theta_2 = 0.0908$ and the discount is d = 1/(1+r), with r = 0.03. The order of the corresponding π_{l_0} has been changed.

(Continued on page 4.)

\mathbf{b}

Identify which values of l_r correspond to those of π_{l_0} and justify your argument.

С

Assume that the pension is financed by fixed contributions ζ at the start of each year from age $l_0 < l_r$ up to age $l_r - 1$. What is the expected present value of all these payments? Explain the different factors of the expression.

	ъ	
ſ	1	
L	J	

What does it mean that ζ is determined by equivalence (explain in words)? Write down a mathematical expression for it when the contributions are made at the start of each period up to one period before retirement.

Problem 3 Financial risk

Assume that one has invested in an equity portfolio consisting of 4 stocks with corresponding returns

$$R_j = e^{\xi_j + \sigma_j \varepsilon_j} - 1, \quad \varepsilon_j \sim N(0, 1),$$

where $\operatorname{Cor}(\varepsilon_i, \varepsilon_j) = \rho_{ij}, i, j = 1, \dots, 4$, and weights w_1, \dots, w_4 .

The table below shows the mean, standard deviation and some quantiles of the portfolio return $\mathcal R$

Scenario	$E(\mathcal{R})$	$sd(\mathcal{R})$	1%	5%	25%	50%	75%	95%	99%
??	0.15	0.18	-0.21	-0.12	0.02	0.14	0.27	0.48	0.64
1	0.15	0.29	-0.37	-0.26	-0.06	0.12	0.32	0.69	1.00
??	0.15	0.27	-0.34	-0.23	-0.04	0.12	0.31	0.64	0.93
??	0.15	0.15	-0.15	-0.07	0.05	0.14	0.25	0.41	0.53

for the following 4 scenarios:

Scenario	Correlations	Weights
1	$\rho_{ij} = 0, i \neq j$	1, 0, 0, 0
2	$\rho_{ij} = 0, i \neq j$	0.25, 0.25, 0.25, 0.25, 0.25
3	$\rho_{ij} = 0.2, i \neq j$	0.25, 0.25, 0.25, 0.25, 0.25
4	$\rho_{ij} = 0.8, i \neq j$	0.25, 0.25, 0.25, 0.25, 0.25

when the remaining parameters are $\xi_j = 0.11$ and $\sigma_j = 0.25$, $j = 1, \ldots, 4$.

a

Identify which scenario corresponds to which row in the figure and justify your answers. Comment on the difference between the 4 investments.

\mathbf{b}

Assume that the actual investment is Scenario 3, and that one wishes to protect this investment with a put option on the portfolio return with guaranteed return r_g . Sketch a program for simulating the pay-off $X = \max(r_g - \mathcal{R}, 0)$, where you do not need to go into details on how to simulate from a multivariate normal distribution. Explain how you could use that to compute the risk-neutral price $\pi(v_0)$ when the discount is e^{-r} during the period T = 1 (remember that in the risk-neutral model, $\xi_j = r - \frac{1}{2}\sigma_i^2$).

С

Can you think of an alternative method for computing $\pi(v_0)$ if the actual investment is Scenario 1?

END