UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Constituent exam in: STK3505/4505 - Problems and methods in Actuarial science
Day of examination: 27th November 2019
Examination hours: 09:00-13:00
This problem set consists of 4 pages.
Appendices: None
Permitted aids: Approved calculator

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 is on general insurance, Problem 2 on life insurance and Problem 3 on financial risk. All of them must be answered and all subproblems count equally. Write program sketches either in pseudo code or as R commands.

Problem 1 General insurance

Let $\mathcal{X}=Z_{1}+\cdots+Z_{\mathcal{N}}$ be the pay-out in a general insurance portfolio under standard assumption, where $\mathcal{N} \sim \operatorname{Poisson}(\lambda)$ is independent of the individual losses Z_{i}, which are independent, identically $\operatorname{Pareto}(\alpha, \beta)$ distributed.

If $Z \sim \operatorname{Pareto}(\alpha, \beta)$, then

$$
E(Z)=\frac{\beta}{\alpha-1} \text { and } s d(Z)=E(Z) \sqrt{\frac{\alpha}{\alpha-2}}
$$

for $\alpha>1$ and $\alpha>2$, respectively, and

$$
F(z)=1-\frac{1}{\left(1+\frac{z}{\beta}\right)^{\alpha}} \text { for } z>0 .
$$

Assume that for a given set of historical losses z_{1}, \ldots, z_{n}, the sample mean and standard deviation are 4.21 and 5.94 , respectively.

1a

Find the moment estimates of α and β. What difficulties may occur when using this method of estimation for the Pareto distribution?

1b

Derive a sampler for the Pareto distribution using the inversion method.
(Continued on page 2.)

1c

Sketch a program for generating m samples of \mathcal{X}. Explain how to determine $E(\mathcal{X})$ and $\operatorname{Var}(\mathcal{X})$, as well as the reserve from these simulations. Define what the reserve is.

The table below shows the expectation, standard deviation and a few percentiles of the distribution of \mathcal{X} when $\lambda=20$. The number of simulations was 100000:

$E(\mathcal{X})$	$\operatorname{sd}(\mathcal{X})$	1%	5%	25%	50%	75%	95%	99%
84.13	32.73	27.36	39.55	61.10	79.92	102.08	142.71	180.01

1d

Derive expressions for $E(\mathcal{X})$ and $\operatorname{sd}(\mathcal{X})$ using the rules of double expectation and variance. Compare the exact values of $E(\mathcal{X})$ and $\operatorname{sd}(\mathcal{X})$ with the ones from the table. Are there any signs of errors in the simulation program?

1e

What are the 95% and 99% reserves of the portfolio?

Suppose the portfolio is reinsured through a contract where the reinsurer responsibility is

$$
\mathcal{X}^{r e}= \begin{cases}0 & \text { if } \mathcal{X} \leq a \\ \mathcal{X}-a & \text { if } a<\mathcal{X} \leq a+b \\ b & \text { if } \mathcal{X}>a+b\end{cases}
$$

where $a, b>0$ are fixed by the contract.

1f

How is the net responsibility of the cedent simulated?

The cedent net responsibility $\mathcal{X}^{c e}$ is summarized in the table below for $a=110, b=50$ and other parameters as before.

$E(\mathcal{X})$	$\operatorname{sd}(\mathcal{X})$	1%	5%	25%	50%	75%	95%	99%
80.23	25.37	28.05	39.51	61.47	79.99	102.10	110.00	131.80

1 g

What are the 95% and 99% cedent net reserves? Comment on the differences from e. What is the reinsurance pure premium and what is the actual reinsurance when the loading is $\gamma=0.7$.

Problem 2 Life insurance

Suppose a pension starts to run at age l_{r}, lasting until the individual dies, with an amount s paid out at the beginning of each period. The probability of an individual of age l living at least k periods longer is ${ }_{k} p_{l}$, and the discount per period is d.

2a

Write down an expression for the expected present value $\pi_{l_{0}}$ of such a pension for an individual at age l_{0} when $l_{0}<l_{r}$ and when $l_{0} \geq l_{r}$.

The three values of $\pi_{l_{0}}$ below apply when $s=1$, the age of retirement is $l_{r}=67$,

$$
\log \left({ }_{k} p_{l}\right)=-\theta_{0} k-\frac{\theta_{1}}{\theta_{2}}\left(e^{\theta_{2} k}-1\right) e^{\theta_{2} l}
$$

with $\theta_{0}=0.009, \theta_{1}=0.000046$ and $\theta_{2}=0.0908$, the discount is 0.975 and l_{0} is varied between $37,47,57$. The order of the corresponding $\pi_{l_{0}}$ has been changed.

l_{0}	$? ?$	$? ?$	$? ?$
$\pi_{l_{0}}$	7.40	3.46	4.98

2b

Identify the values of l_{0} with those of $\pi_{l_{0}}$ and justify your argument.

2c

Assume that the pension is financed by fixed contributions ζ at the start of each year from age $l_{0}<l_{r}$ up to age $l_{r}-1$. What is the expected present value of all these payments?

2d

What does it mean that ζ is determined by equivalence? Write down a mathematical expression for it when the contributions are made at the start of each period up to one period before retirement.

Problem 3 Financial risk

Consider a put option with pay-off $X_{P}=\max \left(r_{g}-R, 0\right)$, and a call option with pay-off $X_{C}=\max \left(R-r_{g}, 0\right)$, where $R=e^{\xi_{q} T+\sigma \sqrt{T} \epsilon}-1$, $\epsilon \sim N(0,1), r_{g}$ is the minimum return, r is a risk-free interest rate, T is the time period and ξ_{q}, σ are parameters. The put option has premium $\pi\left(v_{0}\right)=e^{-r T} E_{Q}\left\{\left(X_{P}\right)\right\} v_{0}$, where Q is the risk-neutral measure, and v_{0} is the initial capital.

3a

Derive the Black-Scholes formula for the put option premium.

3b

Sketch a program for simulating premium of the put option.

3c

Argue that $X_{C}-X_{P}=\left(R-r_{g}\right) v_{0}$ and use this to deduce that option premia $\pi_{P}\left(v_{0}\right)$ and $\pi_{C}\left(v_{0}\right)$ are related through

$$
\pi_{C}\left(v_{0}\right)=\pi_{P}\left(v_{0}\right)+\left\{1-e^{-r T}\left(1+r_{g}\right)\right\} v_{0}
$$

Consider now a cliquet option with pay-off

$$
\begin{cases}r_{g}-R & \text { if } R \leq r, \\ 0 & \text { if } r_{g}<R \leq r_{c} \\ -\left(R-r_{c}\right) & \text { if } R>r_{c}\end{cases}
$$

where r_{c} is the ceiling.

3d

Options can be treated also as a function of the guaranteed return rate r_{g} so that $X_{P}:=X_{P}\left(r_{g}\right)$. Argue that the payoff for cliquet options can be written as $X=X_{P}\left(r_{g}\right)-X_{C}\left(r_{c}\right)$. What is the benefit of cliquet options?

$3 \mathbf{e}$

Deduce from previous exercises that the premium for a cliquet option becomes $\pi=\pi_{P}\left(r_{g}\right)-\pi_{P}\left(r_{c}\right)-\left\{1-e^{-r T}\left(1+r_{c}\right)\right\} v_{0}$.

