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Course Notes and Exercises
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– This extended version: as of 24-Aug-2021 –

1. Prior to posterior updating with Poisson data

This exercise illustrates the basic prior to posterior updating mechanism for Poisson data.

(a) First make sure that you are reasonably acquainted with the Gamma distribution.

We say that Z ∼ Gamma(a, b) if its density is

g(z) =
ba

Γ(a)
za−1 exp(−bz) on (0,∞).

Here a and b are positive parameters. Show that

EZ =
a

b
and VarZ =

a

b2
=

EZ

b
.

In particular, low and high values of b signify high and low variability, respectively.
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Figure 1: Eleven curves are displayed, corresponding to theGamma(0.1, 0.1) intial
prior density for the Poisson parameter θ along with the ten updates following
each of the observations 6, 8, 7, 6, 7, 4, 11, 8, 6, 3.
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(b) Now suppose y | θ is a Poisson with parameter θ, and that θ has the prior distribution

Gamma(a, b). Show that θ | y ∼ Gamma(a+ y, b+ 1).

(c) Then suppose there are repeated Poisson observations y1, . . . , yn, being i.i.d. ∼ Pois(θ)

for given θ. Use the above result repeatedly, e.g. interpreting p(θ | y1) as the new prior

before observing y2, etc., to show that

θ | y1, . . . , yn ∼ Gamma(a+ y1 + · · ·+ yn, b+ n).

Also derive this result directly, i.e. without necessarily thinking about the data having

emerged sequentially.

(d) Suppose the prior used is a rather flat Gamma(0.1, 0.1) and that the Poisson data

are 6, 8, 7, 6, 7, 4, 11, 8, 6, 3. Reconstruct a version of Figure 1 in your computer,

plotting the ten curves p(θ | dataj), where dataj is y1, . . . , yj , along with the prior

density. Also compute the ten Bayes estimates θ̂j = E(θ | dataj) and the posterior

standard deviations, for j = 0, . . . , 10.

(e) The mathematics turned out to be rather uncomplicated in this situation, since the

Gamma continuous density matches the Poisson discrete density so nicely. Suppose

instead that the initial prior for θ is a uniform over [0.5, 50]. Try to compute posterior

distributions, Bayes estimates and posterior standard deviations also in this case, and

compare with what you found above.

2. The Master Recipe for finding the Bayes solution

Consider a general framework with data y, in a suitable sample space Y; having likelihood

p(y | θ) for given parameter θ (stemming from an appropriate parametric model), with θ

being inside a parameter space Ω; and with loss function L(θ, a) associate with decision

or action a if the true parameter value is θ, with a belonging to a suitable action space

A. This could be the real line, if a parameter space is called for; or a two-valued set

{reject, accept} if a hypothesis test is being carried out; or the set of all intervals, if the

statistician needs a confidence interval.

A statistical decision function, or procedure, is a function â:Y → A, getting from data y

the decision â(y). Its risk function is the expected loss, as a function of the parameter:

R(â, θ) = EθL(θ, â) =

∫
L(θ, â(y))p(y | θ) dy.

(In particular, in this expectation operation the random element is y, having its p(y | θ)
distribution for given parameter, and the integration range is that of the sample space Y.)

So far the framework does not include Bayesian components per se, and is indeed a useful

one for frequentist statistics, where risk functions for different decision functions (be they

estimators, or tests, or confidence intervals, depending on the action space and the loss

function) may be compared.
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We are now adding one more component to the framework, however, which is that of a

prior distribution p(θ) for the parameter. The overall risk, or Bayes risk, associated with

a decision function â, is then the overall expected loss, i.e.

BR(â, p) = ER(â, θ) =

∫
R(â, θ)p(θ) dθ.

(Here θ is the random quantity, having its prior distribution, making also the risk function

R(â, θ) random.) The minimum Bayes risk is the smallest possible Bayes risk, i.e.

MBR(p) = min{BR(â, p): all decision functions â}.

The Bayes solution for the problem is the strategy or decision function âB that succeeds

in minimising the Bayes risk, with the given prior, i.e.

MBR(p) = BR(âB , p).

The Master Theorem about Bayes procedures is that there is actually a recipe for finding

the optimal Bayes solution âB(y), for the given data y (even without taking into account

other values y′ that could have been observed).

(a) Show that the posterior density of θ, i.e. the distribution of the parameter given the

data, takes the form

p(θ | y) = k(y)−1p(θ)p(y | θ),

where k(y) is the required integration constant
∫
p(θ)p(y | θ) dθ. This is the Bayes

theorem.

(b) Show also that the marginal distribution of y becomes

p(y) =

∫
p(y | θ)p(θ) dθ.

(I follow the BDA book’s convention regarding using the ‘p’ multipurposedly.)

(c) Show that the overall risk may be expressed as

BR(â, p) = EL(θ, â(Y ))

= EE {L(θ, â(Y )) |Y }

=

∫ {∫
L(θ, â(y))p(θ | y) dθ

}
p(y) dy.

The inner integral, or ‘inner expectation’, is E{L(θ, â(y)) | y}, the expected loss given

data.
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(d) Show then that the optimal Bayes strategy, i.e. minimising the Bayes risk, is achieved

by using

âB(y) = argmin g = the value a0 minimising the function g,

where g = g(a) is the expected posterior loss,

g(a) = E{L(θ, a) | y}.

The g function is evaluated and mininised over all a, for the given data y. This is the

Bayes recipe. – For examples and illustrations, with different loss functions, see the Nils

2008 Exercises.

3. Minimax estimators

For a decision function â, bringing data y into a decision â(y), its max-risk is

Rmax(â) = max
θ

R(â, θ).

We say that a procedure a∗ is minimax if it minimises the max-risk, i.e.

Rmax(a
∗) ≤ Rmax(â) for all competitors â.

Here I give recipes (that often but not always work) for finding minimax strategies.

(a) For any prior p and strategy â, show that

MBR(p) ≤ Rmax(â).

(b) Assume a∗ is such that there is actually equality in (a), for a suitable prior p. Show

that a∗ is then minimax.

(c) Assume more generally that a∗ is such that MBR(pm) → Rmax(a
∗), for a suitable

sequence of priors pm. Show that a∗ is indeed minimax.

We note that minimax strategies often but not always have constant risk functions, and

that they need not be unique – different minimax strategies for the same problem need to

have identical max-risks, but the risk functions themselves need not be identical.

4. Minimax estimation of a normal mean [cf. Nils 2008 #3, 6, 9]

A prototype normal mean model is the simple one with a single observation y ∼ N(θ, 1).

We let the loss function be squared error, L(θ, a) = (a− θ)2.

(a) Show that the maximum likelihood (ML) solution is simply θ∗ = y. Show that its risk

function is R(θ∗, θ) = 1, i.e. constant.

(b) Let θ have the prior N(0, τ2). Show that (θ, y) is binormal, and that θ | y ∼ N(ρy, ρ),

with ρ = τ2/(τ2 + 1). In particular, θ̂B(y) = ρy is the Bayes estimator.
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(c) Find the risk function for the Bayes estimator, and identify where it is smaller than

that of the ML solution, and where it is larger. Comment on the situation where τ is

small (and hence ρ), as well as on the case of τ being big (and hence ρ close to 1).

(d) Show that MBR(N(0, τ2)) = ρ = τ2/(τ2 + 1). Use the technique surveyed above to

show that y is indeed minimax.

(e) This final point is to exhibit a technique for demonstrating, in this particular situation,

that y is not only minimax, but the only minimax solution – this was given as Exercise

#9(e) in the Nils 2008 collection, but without any hints. Assume that there is a

competitor θ̂ that is different from y and also a minimax estimator. Then, since risk

functions are continuous (show this), there must be a positive ε and a non-empty

interval [c, d] with

R(θ̂, θ) ≤
{
1− ε on [c, d],
1 everywhere.

Deduce from this that

MBR(N(0, pτ )) ≤ BR(θ̂, pτ ) ≤
∫

[c,d]

(1− ε)pτ (θ) dθ +

∫

elsewhere

1 · pτ (θ) dθ,

writing pτ for the N(0, τ2) prior. This leads to

ε(2π)−1/2 1

τ

∫

[c,d]

exp(− 1
2θ

2/τ2) dθ ≤ 1−MBR(pτ ) =
1

τ2 + 1
.

Show that this leads to a contradiction: hence y is the single minimax estimator in

this problem.

(f) Generalise the above to the situation with y1, . . . , yn ∼ N(θ, σ2).

5. Minimax estimation of a Poisson mean [cf. Nils 2008 #12]

Let y | θ be a Poisson with mean parameter θ, which is is to be estimated with weighted

squared error loss L(θ, t) = (t− θ)2/θ. This case was treated in Nils 2008 #12, but here I

add more, to take care of the more difficult admissibility point #12(g), where the task is

to show that y is the only minimax estimator.

(a) Show that the maximum likelihood (ML) estimator is y itself, and that its risk function

is the constant 1.

(b) Consider the prior distribution Gamma(a, b) for θ. Show that E θ = a/b and that

E θ−1 = b/(a− 1) if a > 1, and infinite if a ≤ 1.

(c) Show that θ | y is a Gamma(a+ y, b+ 1), from which follows

E(θ | y) = a+ y

b+ 1
and E(θ−1 | y) = b+ 1

a− 1 + y
.

The latter formula holds if a − 1 + y > 0, which means for all y if a ≥ 1, but care is

needed if a < 1 and y = 0. Show that the Bayes solution is

θ̂ =
a− 1 + y

b+ 1
for all y ≥ 0,
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provided a ≥ 1, but that we need the more careful formula

θ̂ =

{
(a− 1 + y)/(b+ 1) if y ≥ 1,
0 if y = 0,

in the case of a < 1.

(d) Taking care of the simplest case a > 1 first, show that

MBR(pa,b) =
1

b+ 1
,

writing pa,b for the Gamma prior (a, b). This is enough to demonstrate that y is indeed

minimax, cf. the Nils 2008 #12 Exercise.

(e) Attempt to show that y is the only minimax estimator via the technique of the previous

exercise, starting with a competitor θ̃ with risk function always bounded by 1 and

bounded by say 1 − ε on some non-empty parameter interval [c, d]. Show that this

leads to

ε

∫

[c,d]

pa,b(θ) dθ ≤ 1−MBR(p[a,b]).

For the easier case of a > 1, this gives a simple right hand side, but, perhaps irri-

tatingly, not a contradiction – one does not yet know, despite certain valid and bold

mathematical efforts, whether y is the unique minimax method or not.

(f) Since the previous attempt ended with ‘epic fail’, we need to try out the more difficult

case a < 1 too. Show that

E{L(θ, θ̂) | y} =

{
1/(b+ 1) if y ≥ 1,
a/(b+ 1) if y = 0.

Deduce from this a minimum Bayes risk formula also for the case of a < 1:

MBR(pa,b) =
1

b+ 1

{
1−

( b

b+ 1

)a}
+

a

b+ 1

( b

b+ 1

)a

.

(g) Find a sufficiently clever sequence of Gamma priors (am, bm), with am → 1 from the

left and bm → 0 from the right, that succeeds in squeezing a contradiction out of

equality in point(e). Conclude that y is not only minimax, but the only minimax

strategy.

(h) Generalise these results to the situation where y1, . . . , yn are independent and Poisson

with rates c1θ, . . . , cnθ, and known multipliers c1, . . . , cn. Identify a minimax solution

and show that it is the only one on board.

6. Computation of marginal distributions

Assume data y stem from a model density f(y | θ) and that there is a prior density π(θ)

for the model vector parameter. The marginal distribution of the data is then

f(y) =

∫
f(y | θ)π(θ) dθ.
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In many types of Bayesian analysis this marginal density is not really required, as analysis

is rather driven by the posterior distribution π(θ | y); cf. the recipes and illustrations above.

Calculation of f(y) is nevertheless of importance in some situations. It is inherently of

interest to understand the distribution of data under the assumptions of the model and the

prior (leading e.g. to positive correlations even when observations are independent given the

parameter); insights provided by such calculations may lead to new types of models; and

numerical values of f(y) are often needed when dealing with issues of different candidate

models (see the following exercise).

(a) Let y | θ be a binomial (n, θ), and assume θ ∼ Beta(kθ0, k(1− θ0)). Find the marginal

distribution of y, and, in particular, its mean and variance. Exhibit the ‘extra-binomial

variance’, i.e. the quantity with which the variance exceeds nθ0(1− θ0).

(b) Let y | θ be a N(θ, σ2), and let θ have the N(0, τ2) prior. Find the marginal distribution

of y.

(c) Now assume y1, . . . , yn given θ are i.i.d. from the N(θ, σ2) distribution, and let as

above θ ∼ N(0, τ2). Find the marginal distribution of the data vector. Show also that

corr(yi, yj) =
τ2

σ2 + τ2
,

so the data have positive correlations marginally even though they are independent

given the mean parameter. This is a typical phenomenon.

(d) Take y1, . . . , yn to be independent and Poisson θ for given mean parameter, and let

θ ∼ Gamma(a, b). Find an expression for the marginal density of a single yi, for a pair

(yi, yj), and for the full vector y1, . . . , yn. Find also the marginal means, variances

and covariances.

(e) We shall now develop a couple of numerical strategies for computing the actual value

of f(y); such will be useful in the model comparison settings below. We think of data

y as comprising n observations, and write ℓn(θ) = logLn(θ) for the log-likelihood

function. Letting θ̂ be the maximum likelihood estimate, with ℓn,max = ℓn(θ̂), verify

first that

f(y) = Ln(θ̂)

∫
exp{ℓn(θ)− ℓn(θ̂)}π(θ) dθ

.
= exp(ℓn,max)

∫
exp{− 1

2 (θ − θ̂)tĴ(θ − θ̂)}π(θ) dθ,

with Ĵ the Hessian matrix −∂2ℓn(θ̂)/∂θ∂θ
t, i.e. the observed information matrix.

Derive from this that

f(y) = Ln,maxRn, or log f(y) = ℓn,max + logRn,

where

Rn
.
= (2π)p/2|Ĵ |−1/2π(θ̂), or logRn

.
= − 1

2 log |Ĵ |+ 1
2p log(2π) + log π(θ̂).
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(f) Discuss conditions under which the above Laplace type approximation may expect

to provide a good approximation, and when it does not. Consider then the case

of n independent observations we may typically write Ĵ = nJ∗
n, say, with J∗

n =

−n−1∂2ℓn(θ̂)/∂θ∂θ
t converging to a suitable matrix as sample size increases. Show

that

log f(y)
.
= ℓn,max − 1

2p log n− 1
2 log |J

∗
n|+ 1

2p log(2π) + log π(θ̂)
.
= ℓn,max − 1

2p log n.

The latter is sometimes called ‘the BIC approximation’; see below. Note that it is

easy to compute and that it does not even involve the prior.

7. Model averaging and model probabilities

Assume that a data set y has been collected and that more than one parametric model

is being contemplated. The traditional statistical view may then be that one of these

is ‘correct’ (or ‘best’) and that the others are ‘wrong’ (or ‘worse’), with various model

selection strategies for finding the correct or best model (see e.g. Claeskens and Hjort,

Model Selection and Model Averaging, Cambridge University Press, 2008). Such problems

may also be tackled inside the Bayesian paradigm, if one is able to assign prior probabilities

for the models along with prior densities for the required parameter vector inside each

model.

Assume that the models under consideration are M1, . . . ,Mk, where model Mj holds

that y ∼ fj(y | θj), with θj belonging to parameter region Ωj ; note that y denotes the full

data set, e.g. of the type y1, . . . , yn, with or without regression covariates x1, . . . , xn, so

that fj denotes the full joint probability density of the data given the parameter vector.

Let furthermore πj(θj) be the prior for the parameter vector of model Mj , and, finally,

assume pj = Pr(Mj) is the probability assigned to model Mj before seeing any data.

(a) Show that the marginal distribution of y has density

f(y) = p1f1(y) + · · ·+ pkfk(y),

in terms of the marginal distributions inside each model,

fj(y) =

∫
fj(y | θj)πj(θj) dθj .

(b) Show also that the model probabilities p1, . . . , pk are changed to

p∗j = Pr(Mj | data) =
pjfj(y)

p1f1(y) + · · ·+ pkfk(y)
=

pjfj(y)

f(y)

when data have been observed.
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(c) Use the results above to deduce the following approximations to the posterior model

probabilities:

p∗j = Pr(Mj | data)
.
= pj exp{ℓn,j,max − 1

2pj log n− 1
2 log |J

∗
n,j |+ 1

2pj log(2π) + log π(θ̂j)}/f(y)
.
= pj exp{ℓn,j,max − 1

2pj log n}/f(y),

in terms of maximum likelihood estimates θ̂j for the pj-dimensional model parameter

of model Mj , with associated log-likelihood maximum value ℓn,j,max. This is the

argument behind the so-called BIC, the Bayesian Information Criterion

BICj = 2ℓn,j,max − pj log n,

where the model with highest BIC value is declared the winner, in that it has the

highest posterior probability (to the order of approximation used).

(d) Sometimes the primary interest may be in learning which model is the most appro-

priate one, in which case the analysis above is pertinent. In other situations the focus

lies with a certain parameter, say µ, assumed to have a precise physical interpretation

so that it can be relevantly expressed in terms of θj of model Mj , for each of the

models considered. In that case one needs the posterior distribution of µ. Show that

this may be written

π(µ | data) = p∗1π1(µ | data) + · · ·+ p∗kπk(µ | data),

in terms of the posterior model probabilities already worked with and of the model-

conditional posterior densities πj(µ | data).

8. Life lengths in Roman era Egypt

Consider the data set consisting of n = 141 life lengths from Roman era Egypt, from

Claeskens and Hjort (2008), analysed using in Nils Exam stk 4020 2008.

(a) As in the Exam 2008 exercise, provide a Bayesian analysis, using a Weibull (a, b)

model, focussing on the median parameter µ – which under Weibull conditions is equal

to µ = a(log 2)1/b. Using the prior on (a, b) which is uniform over [10, 50]× [0.1, 3.0],

compute the posterior density of µ, via sampling say 105 values of (a, b) from the

posterior distribution. I find a 90% credibility interval of [22.852, 28.844], and posterior

median equal to 25.829.

(b) Similarly carry out a Bayesian analysis of the same data set but now employing the

Gamma (c, d) model, again focussing on the median, i.e. µ = qgamma(0.50, c, d) in R

notation. Use the prior for (c, d) which is uniform on [0.5, 2.5]×[0.01, 0.10]. Here I find

a 90% credibility interval of [21.817, 27.691], and posterior median equal to 24.628.
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Figure 2: Posterior density for the median life-length in Roman era Egypt, based
on respectively the Weibull model (full line) and the Gamma model (dotted line).
The posterior model probabilities are respectively 0.825 and 0.175.

(c) Display both posterior distributions (for the same median parameter µ, but computed

under respectively the Weibull and the Gamma model) in a diagram, using e.g. his-

tograms or kernel density estimation based on e.g. 105 simulations. See Figure 2.

These are π∗
1(µ | data) and π∗

2(µ | data) in the notation and vocabulary of Exercise

7(d).

(d) Finally compute the posterior model probabilities p∗1 and p∗2, for the Weibull and the

Gamma, using the priors indicated for (a, b) and (c, d). Assume equal probabilities

for these two models a priori. Note that these priors do not matter much for the

model-based posterior distributions of the median parameter (see Figure 2), but that

they do matter quite a bit for the precise computation of p∗1 and p∗2, via the terms

log π1(θ̂w) and log π2(θ̂g) in the formulae of Exercise 7(c). I find 0.825 and 0.175 for

these, with the given priors.

(e) Finally use the methods of Exercise 7(d) to compute and display the overall posterior

density of the median life-length, mixing properly over the two parametric models

used.

9. The multinormal distribution

‘Multivariate statistics’ is broadly speaking the area of statistical modelling and analysis

where data exhibit dependencies. The most important multivariate distribution is the
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multinormal one. We say that X = (X1, . . . , Xk)
t is multinormal with mean vector ξ (a

k-vector) and variance matrix Σ (a positive definite k × k matrix) if its density has the

form

f(x) = (2π)−k/2|Σ|−1/2 exp{− 1
2 (x− ξ)tΣ−1(x− ξ)} for x ∈ IRk.

We write X ∼ Nk(ξ,Σ) to indicate this. For dimension k = 1 this corresponds to the

traditional Gaußian N(ξ, σ2).

(a) Show that if X ∼ Nk(ξ,Σ) and A is k × k of full rank, and b a k-vector, then

Y = AX + b ∼ Nk(Aξ + b, AΣAt).

Generalise to the situation where A is of dimension m× k (rather than merely k× k).

(b) Show that if X ∼ Nk(ξ,Σ), then indeed

EX = ξ and VarX = Σ,

justifying the semantic terms used above.

(c) Show that X is multinormal if and only if all linear combinations are normal. In

particular, if X ∼ Nk(ξ,Σ), then atX = a1X1 + · · · + akXk is N(atξ, atΣa). – We

will also allow saying ‘X ∼ Nk(ξ,Σ)’ in cases where Σ has less than full rank. in

particular, a constant may be seen as a normal distribution with zero variance.

(d) An important property of the multinormal is that a subset of components, conditional

on another subset of components, remains multinormal. Show in fact that if

X =

(
X(1)

X(2)

)
∼ Nk1+k2

(

(
ξ(1)

ξ(2)

)
,

(
Σ11 Σ12

Σ21 Σ22

)
),

then

X(1) | {X(2) = x(2)} ∼ Nk1
(ξ(1) +Σ12Σ

−1
22 (x

(2) − ξ(2)),Σ11 − Σ12Σ
−1
22 Σ21).

(e) How tall is Professor Hjort? Assume that the heights of Norwegian men above the

age of twenty follows the normal distribution N(ξ, σ2), with ξ = 180 cm and σ = 9

cm. Thus, if you have not yet seen or bothered to notice this particular aspect of

Professor Hjort and his lectures, your point estimate of his height ought to be ξ = 180

and a 95% prediction interval for his height would be ξ ± 1.96σ, or [162.4, 197.6]. –

Assume now that you learn that his four brothers are actually 195 cm, 207 cm, 196

cm, 200 cm tall, and furthermore that correlations between brothers’ heights in the

population of Norwegian men is equal to ρ = 0.80. Use this information about his four

brothers (still assuming that you have not noticed Professor Hjort’s height) to revise

your initial point estimate of Professor Hjort’s height. Is he a five-percent statistical

outlier in his family (i.e. outside the 95% prediction interval)?
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(f) Assume Professor Hjort has n brothers (rather than merely four) and that you’re

learning their heights X1, . . . , Xn. What is the conditional distribution of Professor

Hjort’s height X0, given this information? Represent this as a N(ξn, σ
2
n) distribution,

with proper formulae for its parameters. How small is σn for a large number of

brothers? (The point here is partly that even if you observe and measure my 99

brothers, there’s still a limit to how much you can infer about me.)

10. Simulating from the multinormal distribution

There are special routines that manage to simulate directly from the multinormal distri-

bution, as mvrnorm in R (preceded by library(MASS), if necessary). These sometimes do

not work well for high dimensions. At any rate it is useful to work out different simulation

strategies for the multinormal, also for use in Gaußian processes and Gaußian random

fields.

(a) Let Σ be a k × k positive definite symmetric matrix (which is equivalent to saying

that it is a covariance matrix, for a suitable k-dimensional probability distribution).

Let Σ1/2 be any matrix square root of Σ, i.e. a symmetric matrix with the property

that Σ1/2Σ1/2 = Σ (there may in general be several matrices with this property, see

the following point). Show that when U = (U1, . . . , Uk)
t is a vector of independent

standard normals, then

X = Σ1/2U ∼ Nk(0,Σ).

This is accordingly a general recipe for simulating from a multinormal vector, via

independent standard normals, provided one manages to compute the square root

matrix numerically.

(b) By a famous linear algebra theorem, there exist a unitary (or orthonormal) matrix P

(with the property that PP t = Ik = P tP , i.e. its transpose is its inverse) such that

PΣP t = Λ = diag(λ1, . . . , λk),

where the diagonal Λ matrix has the eigenvalues of Σ along its diagonal (in decreasing

order). The P matrix and the λ1, . . . , λk values are found numerically in R using the

eigen operation: use

lambda = eigen(Sigma, symmetric = T)$values,

P = t(eigen(Sigma, symmetric = T)$vectors),

and use these to define Λ. (The symmetric=T part is not really required, but helps

numerical stability for big matrices.) Then indeed the relations above hold, and these

imply Σ = P tΛP . Show that Σ1/2 = P tΛ1/2P is symmetric and does the job. Write

a few-lined R programme, say squareroot, which computes squareroot(Sigma) for

any given Sigma.
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11. The Ornstein–Uhlenbeck process

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

3

time

O
rn

st
ei

n−
U

hl
en

be
ck

 p
ro

ce
ss

es

Figure 3: Five simulated Ornstein–Uhlenbeck processes, with dependence param-
eter ρ = exp(−3.00) = 0.0498. The grid used for this figure has fineness 1/m with
m = 500.

Consider the so-called Ornstein–Uhlenbeck process Z = {Z(t): t ∈ [0, 1]} on the unit

interval. This is a zero-mean constant-variance Gaußian process with covariance function

cov{Z(s), Z(t)} = exp{−a|s− t|} = ρ|s−t|

for a suitable positive parameter a, dictating the degree of autocorrelation.

(a) Your task is now to simulate paths of such a process, say for a = 3.00 (which corre-

sponds to correlation ρ = exp(−a) = 0.0498 between pairs distance 1 apart); see Fig-

ure 3. Do this by (i) gridding the unit interval to 0/m, 1/m, . . . ,m/m; (ii) then build-

ing the appropriate Σ matrix of size (m+1)×(m+1) for Zgrid = {Z(i/m): 0 ≤ i ≤ m};
(iii) then simulating and plotting such Zgrid via the strategy outlined in Exercise 10.

(b) The simulation method used in (a) is ‘direct’ and ‘brute force’, involving the square-

rooting of a big matrix, and may be slow for a fine grid. Show now that the distribution

of Z(u) given Z(s) = x and Z(t) = y, where s < t < u are three time-points, in fact

does not depend on the Z(s) = x information, only on Z(t) = y. This indicates

that the Z process is Markovian. Explain how this gives rise to a different simulation

strategy, which is in effect much quicker and not hampered by eigen-operations of big

matrices.
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(c) Suppose one learns that Z(0) = 0.44, Z(1) = −0.11. Simulate realisations from the

Z process on the unit interval given this information. This may be accomplished

via ‘brute force’ application of the result about conditional multinormal distributions

given in Exercise 9(d). It is however instructive and useful to also characterise the

distribution of the tied-down Z process. Find in fact formulae for

ξ(t) = E{Z(t) |Z(0) = a, Z(1) = b}, K(s, t) = cov{Z(s), Z(t) |Z(0) = a, Z(1) = b}.

Check in particular ξ(t) and K(t, t) for t → 0 and t → 1.

(d) The Ornstein–Uhlenbeck process may be used as a ‘nonparametric prior’ for an un-

known function. Suppose for illustration that Z is such an unknown function on the

unit interval, that the prior used is a process of the above type, with a = 3.00, and

that Statoil with a few billion Euro has been able to observe that

Z(0) = 0.44, Z(0.20) = 0.88, Z(0.70) = −0.55, Z(1) = −0.11.

Simulate paths from the posterior distribution of the unknown curve. Use these to

compute the probability that the curve has a maximum exceeding 1.50 along with a

minimum below −1.50 (up to simulation accuracy). – It is again possible to carry

out these simulations ‘directly’, via the conditioning recipe of Exercise 9(d), but it is

more interesting and useful to work out proper characterisations of the conditional

Z process given its observed values in a finite number of points. In particular, show

that Z splits into independent parts over each of these intervals; it may accordingly

be simulated separately over intervals.

12. Alarm or not?

Suppose y is binomial (n, θ), that the action space is {alarm, no alarm}, and that the loss

function is as follows:

L(θ, no alarm) =

{
5000 if θ > 0.15,
0 if θ < 0.15,

L(θ, alarm) =
{
0 if θ > 0.15,
1000 if θ < 0.15.

Work out when the correct decision is ‘alarm’, in terms of the posterior distribution, having

started with a given prior p(θ). In particular, for n = 50, for which values of y should one

decide on ‘alarm’? Sort out this for each of the following priors for θ.

(a) θ is uniform on (0, 1).

(b) θ is a Beta (2, 8).

(c) θ is an even mixture of a Beta (2, 8) and a Beta (8, 2).

14



13. The Dirichlet-multinomial model

The Beta-binomial model, with a Beta distribution for the binomial probability parameter,

is on the ‘Nice List’ where the Bayesian machinery works particularly well: Prior elicitation

is easy, as is the updating mechanism. This exercise concerns the generalisation to the

Dirichlet-multinomial model, which is certainly also on the Nice List and indeed in broad

and frequent use for a number of statistical analyses.

(a) Let (y1, . . . , ym) be the count vector associated with n independent experiments having

m different outcomes A1, . . . , Am. In other words, yj is the number of events of type

Aj , for j = 1, . . . ,m. Show that if the vector of Pr(Aj) = pj is constant across the n

independent experiments, then the probability distribution governing the count data

is

f(y1, . . . , ym) =
n!

y1! · · · ym!
py1

1 · · · pym

m

for y1 ≥ 0, . . . , ym ≥ 0, y1 + · · · + ym = n. This is the multinomial model. Explain

how it generalises the binomial model.

(b) Show that

EYj = npj , VarYj = npj(1− pj), cov(Yj , Yk) = −npjpk for j 6= k.

(c) Now define the Dirichlet distribution over m cells with parameters (a1, . . . , am) as

having probability density

π(p1, . . . , pm−1) =
Γ(a1 + · · ·+ am)

Γ(a1) · · ·Γ(am)
pa1−1
1 · · · pam−1−1

m−1 (1− p1 − · · · − pm−1)
am−1,

over the simplex where each pj ≥ 0 and p1+ · · ·+pm−1 ≤ 1. Of course we may choose

to write this as

π(p1, . . . , pm−1) ∝ pa1−1
1 · · · pam−1−1

m−1 pam−1
m ,

with pm = 1−p1−· · ·−pm−1; the point is however that there are only m−1 unknown

parameters in the model as one knows the mth once one learns the values of the other

m− 1. Show that the marginals are Beta distributed,

pj ∼ Beta(aj , a− aj) where a = a1 + · · ·+ am.

(d) Infer from this that

E pj = p0,j and Var pj =
1

a+ 1
p0,j(1− p0,j),

in terms of aj = ap0,j . Show also that

cov(pj , pk) = − 1

a+ 1
p0,jp0,k for j 6= k.

For the ‘flat Dirichlet’, with parameters (1, . . . , 1) and prior density (m− 1)! over the

simplex, find the means, variances, covariances.
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(e) Now for the basic Bayesian updating result. When (p1, . . . , pm) has a Dir(a1, . . . , am)

prior, then, given the multinomial data, show that

(p1, . . . , pm) | data ∼ Dir(a1 + y1, . . . , am + ym).

Give formulae for the posterior means, variances, and covariances. In particular,

explain why

p̂j =
aj + yj
a+ n

is a natural Bayes estimate of the unknown pj . Also find an expression for the posterior

standard deviation of the pj .

(f) In order to carry out easy and flexible Bayesian inference for p1, . . . , pm given observed

counts y1, . . . , ym, one needs a recipe for simulating from the Dirichlet distribution.

One such is as follows: Let X1, . . . , Xm be independent with Xj ∼ Gamma(aj , 1) for

j = 1, . . . ,m. Then the ratios

Z1 =
X1

X1 + · · ·+Xm
, . . . , Zm =

Xm

X1 + · · ·+Xm

are in fact Dir(a1, . . . , am). Try to show this from the transformation law for probabil-

ity distributions: If X has density f(x), and Z = h(X) is a one-to-one transformation

with inverse X = h−1(Z), then the density of Z is

g(z) = f(h−1(z))
∣∣∣∂h

−1(z)

∂z

∣∣∣

(featuring the determinant of the Jacobian of the transformation). Use in fact this

theorem to find the joint distribution of (Z1, . . . , Zm−1, S), where S = X1 + · · ·+Xm

(one discovers that the Dirichlet vector of Zj is independent of their sum S).

(g) The Dirichlet distribution has a nice ‘collapsibility’ property: If say (p1, . . . , p8) is

Dir(a1, . . . , a8), show that then the collapsed vector (p1 + p2, p3 + p4 + p5, p6, p7 + p8)

is Dir(a1 + a2, a3 + a4 + a5, a6, a7 + a8).

14. Gott würfelt nicht

but I do so, on demand. I throw a certain moderately strange-looking die 30 times and

have counts (2, 5, 3, 7, 5, 8) of outcomes 1, 2, 3, 4, 5, 6.

(a) Use either of the priors

. ‘flat’, Dir(1, 1, 1, 1, 1, 1),

. ‘symmetric but more confident’, Dir(3, 3, 3, 3, 3, 3),

. ‘unwilling to guess’, Dir(0.1, 0.1, 0.1, 0.1, 0.1, 0.1)
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for the probabilities (p1, . . . , p6) to assess the posterior distribution of each of the

following quantities:
ρ = p6/p1,

α = (1/6)
6∑

j=1

(pj − 1/6)2,

β = (1/6)

6∑

j=1

|pj − 1/6|,

γ = (p4p5p6)
1/3/(p1p2p3)

1/3.

(b) The above priors are slightly artificial in this context, since they do not allow the

explicit possibility that the die in question is plain boring utterly simply a correct

one, i.e. that p = p0 = (1/6, . . . , 1/6). The priors used hence do not give us the

possibility to admit that ok, then, perhaps ρ = 1, α = 0, β = 0, γ = 1, after all. This

motivates using a mixture prior which allows a positive chance for p = p0. Please

therefore redo the Bayesian analysis above, with the same (2, 5, 3, 7, 5, 8) data, for

the prior 1
2 δ(p0) +

1
2 Dir(1, 1, 1, 1, 1, 1). Here δ(p0) is the ‘degenerate prior’ that puts

unit point mass at position p0. Compute in particular the posterior probability that

p = p0, and display the posterior distributions of ρ, α, β, γ.

15. Rejection-acceptance sampling

This exercise provides the basics of the so-called rejection-acceptance sampling strategy. It

it presented and exemplified here in the general framework of random variables on certain

sample spaces, but applies for this course particularly fruitfully in situations where the

target density is the posterior distribution (say π(θ | data), rather than the generic density

f(x) used in this particular exercise).

(a) Let Y come from some density g(y), and assume that we choose to keep the Y with

probability h(y); otherwise we throw it away and go on to the next round. Show that

an accepted Y then follows the density

f(x) = g(x)h(x)
/∫

g(x)h(x) dx.

(b) Suppose we wish to draw Xs from some density f(x) but that it appears difficult to

do so ‘directly’. Assume that f(x) ≤ Mg(x) for all x, where g is an easier job to

draw samples from. Show that the two-step algorithm that first draws Y from g, and

then keeps this value with probability f(y)/{Mg(y)}, succeeds in its aim, i.e. being a

sample from f . – What is the frequency of rejected Y values, i.e. of ‘wasted efforts’?

(c) Let

f(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 for 0 < x < 1,

i.e. the Beta distribution with parameters (a, b). Show that f is unlimited if a or b is

smaller than 1, and finds its maximum value M0 for the case a ≥ 1, b ≥ 1.

17



(d) Let a = 1.33 and b = 1.67. Draw n = 1000 samples from the Beta distribution with

these parameters, using the rejection algorithm that starts with uniforms. How many

Y s did you need to make, in order to produce 1000 Xs?

(e) Suppose in general terms that we wish to sample from a density of the form f(x) =

g(x)/I, where g is nonnegative over a certain region and I =
∫
g dx. Assume (i)

that we sample X from a (simpler) start-density h(x), where g(x) ≤ Mh(x) for all x,

for some K; and (ii) that we keep this candidate X with probability g(x)/{Mh(x)}.
Verify that the probability density of a surviving X is really f(x). – The importance

of this variation on the rejection sampling recipe of point (a) above lies in the fact that

we do not need to know the number I, i.e. it is sufficient to know the target density

up to an (unknown) factor.

(f) Set up a rejection sampling regime to get hold of say 100,000 samples (Xi, Yi) from

the density

f(x, y) = g(x, y)/I, where g(x, y) = exp{sin(
√
|xy|) exp(|y|3/2)},

and I is its integral over [0, 1] × [0, 1]. Make fine histograms of the two marginal

distributions, and find means, standard deviations, and the correlation, numerically.

(g) Consider the following idiosyncratic recipe for creating N(0, 1) variables: sample X

from the N(0, 2) (standard deviation
√
2), and keep with probability exp(− 1

4X
2).

Verify that the recipe works. Simulate 100,000 samples in this way, and set up a

Pearson test with 1000 cells to test statistically that the recipe works.

(h) The binormal density, for the case of means equal to zero and standard deviations

equal to one, is of the form

f(x, y) =
1

2π

1

(1− ρ2)1/2
exp

{
− 1

2

1

1− ρ2
(x2 + y2 − 2ρxy)

}
.

Use rejection sampling to generate 10,000 pairs (X,Y ) from this binormal distribution,

for a couple of values of the correlation parameter ρ. Plot the pairs and make some

empirical checks that your algorithm works properly.

16. The Metropolis and Metropolis–Hastings algorithm

Let (πi) be a probability distribution over some large sample space. The task is to simulate

realisations from this distribution.

(a) LetX1, X2, X3, . . . come from a Markov chain with transition probability matrix Pi,j =

Pr{Xn+1 = j |Xn = i}. Show that if these are constructed such that

πiPi,j = πjPj,i for all i, j,

and also that the chain is irreducible with period 1, then the stationary (or equilibrium)

distribution for the chain is actually (πi).
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(b) There ought to be quite some elbow room for many different Pi,j constructions that

obey the conditions of (a). The Metropolis method of 1953 uses

Pi,j = Qi,j min
(
1,

πj

πi

)
for j 6= i,

where Qi,j = Pr{X ′ = j |X = i} is the so-called proposal distribution, assumed here

to be symmetric (Qi,j = Qj,i). Show that the condition of (a) really is in force with

such Pi,j constructions.

(c) Sometimes it is however practical, or even necessary, to employ Qi,j that are not

symmetric in (i, j). Let Qi,j be a potentially non-symmetric proposal distribution

that from the present i proposes a j. Attempt using an accept probability of the type

min(1, Si,jπj/πi), i.e.

Pi,j = Qi,j min
(
1, Si,j

πj

πi

)
.

Show that this really works, provided Si,j = Qj,i/Qi,j ! This amounts to Hastings’s

1970 generalisation of the Metropolis algorithm: propose j from a symmetric or non-

symmetric Qi,j , and accept with probability

min
(
1,

Qj,i

Qi,j

πj

πi

)
.

(d) Comment specifically on the special cases where Qi,j is symmetric and where Qi,j = qj

is independent of i.

17. The continuous space Metropolis algorithm

Methods and results from the previous exercise have analogues in the continuous world.

The task and challenge is to simulate samples from a given continuous density f(x). The

methods we develop now are meant to be able to work even in high dimension. If judged

instructive you may prefer to think in terms of a given f(x) that is too difficult to attack

with more direct means. Let q(y |x) be a proposal distribution that for a given x proposes

a y.

(a) The Metropolis–Hastings method consists in generating X0, X1, X2, . . ., by giving X0

some start value and by letting

Xi+1 =

{
Yi with probability pri,
Xi with probability 1− pri,

where Yi is drawn from q(y |Xi), and where

pri = min
(
1,

q(Xi |Yi)

q(Yi |Xi)

f(Yi)

f(Xi)

)
.

Show, heuristically if needed, that the Markov process X1, X2, X3, . . . indeed has f(x)

as its equilibrium distribution.
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(b) Explain which conditions that ought to be met in order for the simulation strategy

just described being practically effective.

(c) Study and comment on the special cases where q(y |x) = q(x | y) and where q(y |x) =
q0(y) is independent of x.

(d) You are to simulate 10000 data points from the density

f(x) =
1

Γ( 32 )
x1/2 e−x,

i.e. the Gamma density with parameters ( 32 , 1). This is easily done in R, but the task

is to achieve this via the Metropolis–Hastings algorithm, with proposal distribution

q(y |x) equal to the uniform on [ 13x, 3x]. Compute the mean and standard deviation

for the 10000 points you generate, and compare with the theoretical values.

18. Using Metropolis for a steep distribution

One would like to simulate independent realisations X1, . . . , Xn from the probability dis-

tribution πj = j/cM over the set {1, . . . ,M}, where cM = j(j +1)/2. This is an easy task

for low and moderate M , and an R routine is at your disposal. If however M is large the

problem is more difficult, and Markov Chain Monte Carlo methods may become necessary.

In the following points, let first M = 20, for the sake of easy illustration; the MCMC

machinery is then not necessary, but it is a good exercise to solve the problem using these

tools.

(a) Run for free in R: use the command

x0 <- sample(list, sim, replace=T, prob)

to simulate say 1000 data points X0,i from the distribution πj . Check that the data

points really appear to come from the wished-for distribution over {1, . . . , 20}, by

checking the histogram, and by using the Pearson test statistic.

(b) Then try the Metropolis method. The challenge is to simulate a Markov chain

Y1, Y2, . . . over {1, . . . , 20} that has (π1, . . . , π20) as its equilibrium distribution, and

that only uses very simply transitions mechanisms. Implement the Metropolis algo-

rithm for this purpose, where you use as proposal that Yi moves up one step or down

one step, from its previous value Yi−1, with equal probability 1
2 . Then the proposal

is accepted with probability min(1, π(Yi)/π(Yi−1)) (where I write π(j) for πj). Here

‘up’ and ‘down’ is meant as with ‘clock addition modulo M ’; up one step from M

means 1, down one step from 1 means M .

(c) Who invented the so-called H bomb?

(d) Let the chain run for a long while, say Y1, . . . , Y5000. Check if the Yi can be seen as a

(correlated) sample from the πj-fordelingen.

(e) Take out each 100th Y from the chain, and check if the sub-chain Y100, Y200, Y300, . . .

can be seen as making up an independent sample from the πj distribution.
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(f) The method described above runs into certain problems when M is large, say M =

5000. What kind of problems, and Qto delatь (as Lenin said)? Discuss some

alternative proposal mechanisms (i.e. the choice of symmetric Qi,j matrix) inside the

MCMC chain above. Implement and try out.

19. Metropolis for a distribution for telephone numbers

Consider a probability distribution across all natural numbers from zero up to a million

million, defined by

π(x1, . . . , x12) =
1

Z(λ)
exp

{
−λ

12∑

j=1

(xj − x̄)2
}

for (x1, . . . , x12) ∈ {0, . . . , 9}12.

Here Z(λ) is the required summation constant, that perhaps not even HAL could manage

to compute accurately, and x̄ = (x1 + · · · + x12)/12. We may think of an outcome x =

(x1, . . . , x12) as a random telephone number, in a country employing 12-digit telephone

numbers.

(a) What kind of numbers will be preferred by this distribution, i.e. what type of x are

likely and what type less likely? Describe some aspects of outcomes, for situations

where λ is respectively negative, close to zero, moderate, and large.

(b) How can one manage to sample say 10,000 random telephone numbers from this

distribution, for a given λ? Set up and implement a Metropolis algorithm for achieving

this, and discuss how well it works.

(c) Let

ξ(λ) = EλU(X) = Eλ

12∑

j=1

(Xj − X̄)2,

the mean of the random variance, as a function of the underlying λ. Set up simulations

in a loop across λ values from −3 to 3, to find numerical approximations for ξ(λ), and

plot the resulting curve. Check directly that ξ(0) = 90.75.

(d) I have got hold of n = 200 telephone numbers from the country in question, and

computed U(x) =
∑12

j=1(xj − x̄)2 for each of these. Their average value turns out to

be Ū = 11.111. Estimate the λ parameter. (Answer: show that maximum likelihood

estimation is equivalent to solving ξ(λ) = 11.111, and use simulation to show that its

solution is λ̂
.
= 0.488.)

(e) How can you supplement the λ̂ parameter estimate you found in (d) with a confidence

interval, or a standard deviation estimate?

(f) Construct also a Gibbs Sampler to solve the simulation problem, implement it, and

test its efficiency vs. the direct Metropolis method above. Here you will need

π(xi | rest) = Pr{Xi = xi |x1, . . . , xi−1, xi+1, . . . , x12)

=
gi(xi | rest)∑9
y=0 gi(y | rest)

,

where gi ought to be made as simple (and easily interpretable) as possible.
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20. Autocorrelation in simulation output

Situations with independence tend to be much easier to analyse than for cases with de-

pendence. This comments also applies to simulation output; if such output stems from

MCMC then one must expect positive correlations between neighbouring realisations, with

consequences for precision of estimates etc. This exercise briefly considers the phenomenon

of autocorrelation and some of its implications.

(a) Suppose X1, . . . , Xn are independent with the same distribution, with mean µ = EXi.

Then, famously, X̄n = (1/n)
∑n

i=1 Xi has mean µ and variance σ2/n, where σ is the

standard deviation of Xi. Verify this, and show that

CIn = X̄ ± 1.96 σ̂/
√
n

is a confidence interval that captures the µ parameter with probability tending to 0.95.

The sole condition securing this statement is that the standard deviation is finite.

(b) Assume now that the Xis are again from the same distribution, with mean µ and

standard deviation σ, but that they are dependent, with

cov(Xi, Xj) = σ2ρ|j−i|, or corr(Xi, Xj) = ρ|j−i|,

for an appropriate autocorrelation parameter ρ. Typically, ρ is in (0, 1), but may in

certain special cases also be negative. Show that

Var X̄n =
σ2

n

{
1 +

2ρ

1− ρ

(
1− 1

n

1− ρn

1− ρ

)}
.
=

σ2

n

1 + ρ

1− ρ
.

Under various mild conditions on the exact nature of the dependence one may prove

that √
n(X̄n − µ) →d N(0, σ2 1 + ρ

1− ρ
).

(c) The consequence for estimation of means based on autocorrelated simulation output

is that the variances are inflated. In particular, the confidence interval of (a) is now

too naive, is too narrow, and undershoots its intended level of confidence. Show that

the real coverage probability of that confidence interval tends to

p = Pr
{
|N(0, 1)| ≤

√
1− ρ

1 + ρ
1.96

}
.

With ρ = 0.90, for example, which may be a typical value for various MCMC schemes,

one finds that the real confidence level is around 0.347 rather than the intended 0.95.

(d) A better confidence interval, under autocorrelation conditions, is

CI∗n = X̄n ± 1.96
σ̂√
n

√
1 + ρ̂

1− ρ̂
,
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for a suitable estimate of ρ. One such estimate is

ρ̂ =
1

n− 1

n∑

i=2

Xi − X̄

σ̂0

Xi−1 − X̄

σ̂0
,

where σ̂0 is an estimate of the standard deviation (not identical to the usual empirical

standard deviation). Discuss versions of such a σ̂0.

(e) For the random telephone numbers model of Exercise 19, use the described Metropolis

Markov chain X1, X2, . . . that converges in distribution to the target distribution, and

use acf in R to assess the degree of autocorrelation in the chain of U(X1), U(X2), . . ..

Concretely, acf(Usim) produces an autocorrelation plot of the simulated U(Xi) val-

ues, and acf(Usim)$acf gives the estimated correlation values for pairs of points 1

position apart, 2 positions apart, 3 positions apart, etc.

(f) For the telephone numbers model, construct a diagram that displays (i) the estimated

ξ̂(λ) curve, for values 0 ≤ λ ≤ 2 and (ii) pointwise 95% confidence intervals, qua upper

and lower curves:

Pr{a(λ) ≤ ξ(λ) ≤ b(λ)} .
= 0.95 for each λ.

(g) A simple trick for avoiding too high autocorrelation is to ‘skip data’, keeping e.g. only

simulated values corresponding to positions 1001, 1051, 1101, 1151, etc. for final anal-

ysis. Discuss aspects of such schemes.

21. Two Metropolis–Hastings exercises

This exercise provides two reasonably simple illustrations of uses of the Metropolis type

algorithm. It is useful to use these two and similar simpler situations as ‘playing grounds’,

both for investigating aspects of different tuning parameters, start values, etc., and to

get a sense for the type of computer programmes necessary in bigger and more complex

problems.

(a) Consider the distribution with probability function

f(x) = c exp(−λ|x|α) for x = 0,±1,±2, . . . ,

with c = c(λ, α) the summation constant. Show that this indeed defines a distribution

on the integers provided λ and α are positive.

(b) For given values of λ, α, set up a Metropolis algorithm for creating a Markov chain

X1, X2, . . . with proposal Xn+1 = Xn ± 1, using equal probabilities for Xn + 1 and

Xn − 1. Implement the procedure, run the chain for a coupl’ o’ values of (λ, α), and

demonstrate that it really converges in distribution to the target distribution f (even

if you start the chain far out of the main probability domain). For λ = 1, throw in

another programme loop to compute and draw the curve sd(α) = sdα(X), portraying

the standard deviation as a function of α.
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(c) A perhaps rather silly but nevertheless worthwhile method of simulating from the

standard normal density is by means of a Metropolis scheme with proposals created by

uniform perturbations. Specifically, set up a Markov chain X1, X2, . . . with proposals

Xi+1,prop = Xi + δUi, where the Ui are i.i.d. uniform on [−1, 1] and δ a parameter

signalling whether the proposed changes are big or small. Accept these proposals

in the Metropolis fashion, with the standard normal as target. Run the chain and

demonstrate that its equilibrium distribution is indeed the standard normal. Add

another loop to your programme to monitor the acceptance rate as a function of δ.

For which δ is the acceptance rate equal to the quasi-magical value 0.234 (which is

the optimal balancing value, according to some criteria)?

22. Gamma-normal conjugate inference for the normal model

Let data y1, . . . , yn for given parameters µ and σ be i.i.d. N(µ, σ2). We know that when σ

may be taken as a known quantity, then the canonical class of priors for µ is the normal

one. When both parameters are unknown, however, as in most practical encounters, a

more elaborate analysis is called for.

(a) Show that the likelihood function may be written as being proportional to

Ln(µ, σ) = exp
[
−n log σ − 1

2

1

σ2
{Q0 + n(µ− ȳ)2}

]
,

where ȳ = (1/n)
∑n

i=1 yi and Q0 =
∑n

i=1(yi − ȳ)2.

(b) With any given prior p(µ, σ), explain how you may set up a Metropolis type MCMC

to draw samples from the posterior distribution. Try this out in practice, using the

prior that takes µ and log σ independent and uniform on say [5, 5] and [10, 10], with

data that you simulate for the occasion from a N(2.345, 1.2342), with n = 25. Note

that this approach does not need more mathematical algebra as such, apart from the

likelihood function above.

(c) There is however a popular and convenient conjugate class of priors for which posterior

distributions become particularly clear, with the appropriate algebraic efforts. These

in particular involve placing a Gamma prior on the inverse variance λ = 1/σ2. Say

that (λ, µ) has the gamma-normal distribution with parameters (a, b, µ0, v), and write

this as

(λ, µ) ∼ GN(a, b, µ0, v),

provided

λ = 1/σ2 ∼ Gamma(a, b) and µ |σ ∼ N(µ0, σ
2/v).

Show that the prior can be expressed as

p(λ, µ) ∝ λa−1λ1/2 exp
[
−λ{b+ 1

2 (µ− µ0)
2v}

]
.

What is the unconditional prior variance of µ?
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(d) Prove first the convenient formula

v(µ− µ0)
2 + n(µ− ȳ)2 = (v + n)(µ− µ∗)2 + dn(ȳ − µ0)

2,

where

µ∗ =
vµ0 + nȳ

v + n
and dn =

vn

v + n
= (v−1 + n−1)−1.

Then show that if the prior is (λ, µ) ∼ GN(a, b, µ0, v), then

(λ, µ) | data ∼ GN(a+ 1
2n, b+

1
2Q0 +

1
2dn(ȳ − µ0)

2, µ∗, v + n).

(e) The special case of a ‘flat prior’ for µ, corresponding to letting v → 0 above, is

particularly easy to deal with. Show that then

(λ, µ) | data ∼ GN(a+ 1
2n, b+

1
2Q0, ȳ, n).

Find the posterior mean of σ2 under this prior.

(f) To illustrate, go to lib.stat.cmu.edu/DASL/Stories/cigcancer.html and create

the data vector y of 44 death rates per 100,000 inhabitants of lung cancer (for 43

American states plus the District of Colombia), assuming these data to represent an

i.i.d. normal sample. First carry out a Bayesian analysis of (µ, σ) using an informative

prior, namely one identified by (i) using a gamma prior for 1/σ2 such that the 0.10 and

0.90 prior quantiles of σ are respectively 2.2 and 7.7, and (ii) using a N(15.0, (3.3σ)2)

for µ given σ. Find 95% credibility intervals for µ, for σ, and for the probability that

y ≥ 25.0.

(g) Re-do the Bayesian analysis above, but now with the simpler and less informative

prior that takes a flat prior for µ. Also compare with 95% confidence intervals arrived

at via classical frequentist analysis.

23. Gamma-normal conjugate inference for the linear regression model

The aim of the present exercise is to generalise the Gamma-Normal conjugate prior class

above to the linear-normal regression model. The model is the very classical one where

yi = xi,1β1 + · · ·+ xi,kβk + εi = xt
iβ + εi for i = 1, . . . , n,

with the εi taken i.i.d. N(0, σ2). Write X for the n× k matrix of covariates (explanatory

variables), with xi = (xi,1, . . . , xi,k) as its ith row, and use y and ε to indicate the vectors

of yi and εi. Then

y = Xβ + ε ∼ Nn(Xβ, σ2In)

is a concise way to write the full model.
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(a) Show that the likelihood function may be written as being proportional to

Ln(β, σ) = σ−n exp
{
− 1

2

1

σ2

n∑

i=1

(yi − xt
iβ)

2
}

= σ−n exp
[
− 1

2

1

σ2
{Q0 + n(β − β̂)tMn(β − β̂)}

]
,

in which

Mn = (1/n)XtX = n−1
n∑

i=1

xix
t
i and β̂ = (XtX)−1Xty = M−1

n n−1
n∑

i=1

xiyi.

Also,

Q(β) = ‖y −Xβ‖2 = Q0 + n(β − β̂)tMn(β − β̂),

with Q0 =
∑n

i=1(yi − xt
iβ̂)

2 the minimum value of Q over all β. Note that β̂ is

the classical least squares estimator (and the ML estimator), which in the frequentist

framework is unbiased with variance matrix equal to σ2(XtX)−1 = (σ2/n)M−1
n . This

is the basis of all classical methods related to the widely popular linear regression

model.

(b) Let p(β, σ be any prior for the (k + 1)-dimensional parameter of the model. Set

up formulae for a Metropolis type MCMC algorithm for drawing samples from the

posterior distribution of (β, σ).

(c) In spite of the possibility of solving problems via MCMC (or perhaps acceptance-

rejection sampling), as with the previous exercise it is very much worthwhile setting

up explicit formulae for the case of a certain canonical prior class. Write

(λ, β) ∼ GNk(a, b, β0,M0)

to indicate the gamma-normal prior where

λ = 1/σ2 ∼ Gamma(a, b) and β |σ ∼ Nk(β0, σ
2M−1

0 ).

Show that this prior may be expressed as

p(λ, β) ∝ λa−1λk/2 exp
[
−λ{b+ 1

2 (β − β0)
tM0(β − β0)}

]
.

(d) When multiplying the prior with the likelihood it is convenient to use the following

linear algebra identity about quadratic forms, which you should prove first. For sym-

metric and invertible matrices A and B, and for any vectors a, b, x of the appropriate

dimension,

(x− a)tA(x− a) + (x− b)tB(x− b) = (x− ξ)t(A+B)(x− ξ) + (b− a)tD(b− a),
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where ξ = (A+B)−1(Aa+Bb) (a weighted average of a and b) and D is a matrix for

which several equivalent formulae may be used:

D = A(A+B)−1B = B(A+B)−1A

= A−A(A+B)−1A = B −B(A+B)−1B = (A−1 +B−1)−1.

(e) Prove that if (λ, β) has the GNk(a, b, β0,M0) prior, then

(λ, β) | data ∼ GNk(a+ 1
2n, b+

1
2Q0 +

1
2 (β̂ − β0)

tDn(β̂ − β0), β
∗,M0 + nMn),

where

β∗ = (M0 + nMn)
−1(M0β0 + nMnβ̂) and Dn = M0(M0 + nMn)

−1nMn.

This characterisation makes it easy to simulate a large number of (β, σ) from the

posterior distribution and hence to carry out Bayesian inference for any parameter of

quantity of interest.

(f) Note the algebraic simplifications that result when the M0 in the prior is chosen as

being proportional to the covariate sample variance matrix, i.e. M0 = c0Mn. Show

that then

β∗ =
c0β0 + nβ̂

c0 + n
and Dn =

c0n

c0 + n
.

In this connection c0 has a natural interpretation as ‘prior sample size’.

(g) A special case of the above, leading to simpler results, is that where β has a flat,

non-informative prior, corresponding to very large prior variances, i.e. to M0 → 0.

Show that with such a prior,

(λ, β) | data ∼ GNk(a+ 1
2n, b+

1
2Q0, β̂, nMn).

The prior is improper (infinite integral), but the posterior is proper as long as β̂

exists, which requires XtX to have full rank, which again means at least k linearly

independent covariate vectors, and, in particular, n ≥ k.

(h) Go again to lib.stat.cmu.edu/DASL/Datafiles/cigcancerdat.html, for illustra-

tion and for flexing your operational muscles. For y use the lung cancer column of

deaths per 100,000 inhabitants and for x use the number of cigarettes sold per capita.

Your task is to carry out Bayesian analysis within the linear regression model

yi = α+ βxi + εi for i = 1, . . . , 44,

with εi taken i.i.d. N(0, σ2). Specifically, we wish point estimates along with 95%

credibility intervals for (i) each of the three parameters α, β, σ; (ii) the probability

that y ≥ 25.0, for a country with cigarette consumption x = 35.0; (iii) the lung
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cancer death rates y45 and y46, per 100,000 inhabitants, for countries with cigarette

consumption rates x45 = 10.0 (low) and x46 = 50.0 (high). You are to carry out such

inference with two priors:

– First, the informative one which takes 1/σ2 a gamma with 0.10 and 0.90 quantiles

for σ equal to 1.0 and 5.0, and α and β as independent normals (15.0, (2.0σ)2)

and (0.0, (2.0σ)2), given σ.

– Then, the simpler and partly non-informative one that takes a flat prior for (α, β)

and the less informative one for σ that uses 0.10 and 0.90 prior quantiles 0.5 and

10.0.

– Finally, compare your results from those arrived at using classical frequentist

methods.

24. The Stein effect and empirical Bayes

Suppose there is an ensemble of parameters θ1, . . . , θk to estimate, where these are thought

to be not unreasonably dissimilar, and where it may make sense to think about them as

having arisen from a distribution of parameter values. In such cases various empirical

Bayes constructions will often be successful, in the sense that they lead to ‘joint estimation’

procedures that typically perform better than using ‘separate estimation’. What is and

remains surprising is that for certain situations of the above type, there are empirical Bayes

methods that always and uniformly improve upon the ‘separate estimation’ procedures,

i.e. even when the underlying parameters are widely dissimilar. This phenomenon is loosely

referred to as ‘the Stein effect’, or even ‘the Stein paradox’, from influential papers by

Charles Stein in 1956 and later. Even The Scientific American have had papers on this

for a wider audience. The paradox in question is that when needing to estimate apples,

oranges, bananas, then it is counterintuitively possible to do better by calling in information

about oranges and bananas to estimate apples, etc.

The present exercise looks into one of these models where reasonably clean proofs may

be given for the type of universal risk dominance of certain procedures over the standard

ones. Let Yi ∼ N(θi, 1) be independent for i = 1, . . . , k, where the aim is to estimate each

of the θi with a combined loss function

L(θ, θ̂) = k−1
k∑

i=1

(θ̂i − θi)
2.

The ensuing risk for the θ̂ procedure is

R(θ̂, θ) = EθL(θ, θ̂) = k−1
k∑

i=1

Eθ(θ̂i − θi)
2.

This may again be represented as the average variance plus the average squared bias (as

a function of the position in parameter space). Note that θ̂i for θi ought to be allowed to

depend on all the data, not merely Yi.
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(a) The standard estimator here is simply using Yi for θi, for i = 1, . . . , k; Yi is after

all the least squares estimator, the maximum likelihood estimator, the best unbiased

estimator, it is admissible, etc. Show that its risk function is simply 1, constant across

the parameter space. The challenge is to find an estimator which has risk function

smaller than 1 everywhere in the parameter space.

(b) For a single Y ∼ N(θ, 1), show that under very mild conditions on the function b(y),

one has

Eθ(Y − θ)b(Y ) = Eθb
′(Y ).

(Use ‘partial integration’.) Check with e.g. b(Y ) = Y and b(Y ) = Y 2 to get a feeling

for how the identity works.

(c) Using the same technique, generalise the above to

Eθ(Yi − θi)bi(Y ) = Eθb
′
i,i(Y ),

where b′i,i(y) = ∂bi(y)/∂yi.

(d) Consider a general competitor to Y of the form θ̂i = Yi − bi(Y ). Show that

Eθ{(Yi − bi(Y )− θi)
2 − (Yi − θi)

2} = Eθ{bi(Y )2 − 2bi,i(Y )}

and hence that

R(θ̂, θ) = R(Y, θ) + EθD(Y ) = 1 + EθD(Y ),

where

D(y) = k−1
k∑

i=1

{bi(y)2 − 2bi,i(y)}.

If in particular we manage to find bi(y) functions for which D(y) < 0 for all y, then θ̂ is

a uniform improvement over the standard estimator Y . It turns out to be impossible

to find such functions for k = 1 or k = 2, but indeed possible for k ≥ 3.

(e) Try bi(y) = cyi/‖y‖2, with ‖y‖2 being the squared Euclidean norm
∑k

i=1 y
2
i , corre-

sponding to

θ̂ = y − b(y) =
(
1− c

‖y‖2
)
y.

Show that

D(y) =
1

k

1

‖y‖2 {c
2 − 2c(k − 2)},

and that this is indeed negative for an interval of c values, provided the dimension is

k ≥ 3. Indeed demonstrate that the best value is c0 = k − 2 and that the consequent

risk function can be expressed as

R(θ̂, θ) = 1− (k − 2)2

k
Eθ

1

‖Y ‖2 = 1− k − 2

k
E

k − 2

χ2
k(‖θ‖2)

.

Here χ2
k(λ) is the excentric chi-squared distribution with k degrees of freedom and

excentre parameter λ.
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(f) The arguments above led to the estimator

θ̂i =
(
1− k − 2

‖y‖2
)
yi for i = 1, . . . , k,

which is a version of the Stein estimator. A useful modification is to truncate the

shrinking factor 1− (k− 2)/‖y‖2 to zero in the case of this being negative, i.e. ‖y‖2 ≤
k − 2. We write this as

θ̂Stein =
(
1− k − 2

‖y‖2
)
+
y, where x+ = max(0, x).

Prove that this modification actually improves the performance further. (It remains

easier to work directly with θ̂, though, e.g. regarding risk functions.)

(g) Show that the greatest risk reduction for θ̂ takes place at zero, with R(θ̂, 0) = 2/k.

For a few values of k, say k = 5, 10, 100, compute and display the risk functions for Y

and θ̂, as functions of ‖θ‖. Do the same with the θ̂Stein estimator (for which you may

use simulations to compute the risk).

(h) Now make the empirical Bayes connection, as follows. Start with the prior that takes

θ1, . . . , θk independent from the N(0, τ2), and show that the Bayes estimator takes the

form

θ∗i = θ∗i (ρ) = ρyi, with ρ =
τ2

τ2 + 1
.

Show that the marginal distribution of y1, . . . , yk is that of independent N(0, 1 +

τ2) components, with maximum likelihood estimate τ̂2 = (W − 1)+, where W =

k−1
∑k

i=1 y
2
i . This invites

ρ̂ =
(W − 1)+

W
=

(
1− k

‖y‖2
)
+
,

or versions close to this, for the empirical Bayes estimator

θ̂i,EB = θ∗i (ρ̂) = ρ̂yi.

The Stein type estimator above can accordingly be viewed as an empirical Bayes

construction. Note that θ̂i.EB can be motivated and constructed without any direct

concern or calculations for the risk functions per se.

25. Shrinking towards means and regression lines

The construction of Exercise #24 shrinks the standard estimator θ̃ = Y towards zero. In

the framework of the empirical Bayes setup this can be traced to our using the zero-mean

prior N(0, τ2) for the θi. It is a simple matter to shrink towards any given θ0 instead,

leading to

θ̂i =
(
1− k − 2

‖y − θ0‖2
)
yi +

k − 2

‖y − θ0‖2
θ0 for i = 1, . . . , k.

The present exercise looks into further useful generalisations of the Steinean leitmotif,

involving the shrinking of standard estimators towards estimated means and even estimated

regression curves. The perspectives pertain to both direct risk performance calculations

and empirical Bayes considerations.
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Figure 4: Shrinkage of raw estimates yi towards the regression line, with θ̂i =
ρ̂yi+(1− ρ̂)(β̂0+ β̂1xi). This estimation procedure does not demand that the true
θi points actually follow a regression line, but nevertheless uniformly dominates
that of using the raw data.

(a) In the spirit of empirical Bayes one would also like to insert a data based estimate for

θ0 in the formula above. Since ȳ is the natural candidate for such an estimate of a

common centre value, we are led to

θ̂i,EB =
(
1− c

‖y − ȳ‖2
)
yi +

c

‖y − ȳ‖2 ȳ for i = 1, . . . , k.

The reasons given are already sufficiently clear and natural in order for us to accept

this construction as a clever one, for a suitably fine-tuned c, but we have of course

not yet studied its performance. To do so, employ the risk difference representation

apparatus of the previous exercise for

bi(y) = c
yi − ȳ

‖y − ȳ‖2 = c
yi − ȳ

z
for i = 1, . . . , k,

where z =
∑k

i=1(yi − ȳ)2. Show that

D(y) =
1

k

1

z
{c2 − 2c(k − 3)}

and that there are c values making this D(y) entirely negative as long as the dimension

is k ≥ 4. Show that the best values if c0 = k − 3 and that this leads to

θ̂EB =
(
1− k − 3

‖y − ȳ‖2
)
y +

k − 3

‖y − ȳ‖2 ȳ
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with

R(θ̂EB, θ) = 1− k − 3

k
E

k − 3

χ2
k−1(‖θ − θ̄‖2) .

Show in particular that the risk reduction is largest when the θi are close to each other,

and that R(θ̂EB, θ) = 3/k when θ has all components equal to each other. Though

not entirely necessary, in practice we are again thresholding the weights here to lie

inside [0, 1], yielding

θ̂i,EB = ρ̂yi + (1− ρ̂)ȳ for i = 1, . . . , k,

with ρ̂ = {1− (k − 3)/z}+.
(b) Though the arguments and calculations for question (a) come from direct risk analysis,

so to speak, also provide clear empirical Bayes arguments leading to the estimator

exhibited there.

(c) Now attempt to generalise the above constructions in the direction of ‘shrinking to-

wards a general linear subspace’. For concreteness, suppose there are data pairs

(x1, y1), . . . , (xn, yn), with xi a covariate for yi, but where one is unwilling to go as far

as assuming the traditional linear regression structure, though without entirely aban-

doning the idea. Write therefore yi = θi + εi, with the εi being i.i.d. and zero-mean

normal, with a standard deviation we here take to be known, where the idea is to

shrink the raw data yi towards the regression line, and letting the data dictate the

degree of shrinking. Make an empirical Bayes construction of the form

θ̂i,EB =
(
1− c

z

)
yi +

c

z
(β̂0 + β̂1xi) = yi − (c/z)(yi − β̂0 − β̂1xi) for i = 1, . . . , n

with z =
∑n

i=1(yi−β̂0−β̂1xi)
2 the residual sum of squares. Again using the techniques

and formulae of Exercise #24, show that for this case,

D(y) =
1

n

1

z
{c2 − 2c(n− 4)}

with best value c0 = n− 4, and in particular that there is uniform risk improvement

by shrinking to the regression line provided k ≥ 5. Also, demonstrate that the risk

improvement over the raw data estimator is greatest near the regression line, i.e. where

the θi are close to β0 + β1xi, with maximal risk reduction, from 1 to 4/n, when the

θi actually follow the line.

(d) Your task now is to duplicate a version of Figure 4, with suitable variations. It provides

an illustration of the general ‘shrinking towards a regression line even if it does not

fit data particular well’ procedure. The raw data yi have been sampled from a model

that does not take their means θi to come from any regression line, but rather from

the setup where the xi are uniformly spread on (0, 1) and with

yi ∼ N(β0 + β1xi + γ sin(2πxi), σ
2
0) for i = 1, . . . , n,
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with n = 50. Do this, for a few values of γ, and monitor the amount of ‘smoothing’

that takes place with the

θ̂i = ρ̂yi + (1− ρ̂)(β̂0 + β̂1xi)

operation.

(e) Let us generalise further, to the case of shrinking raw data estimates yi in the direction

of a general regression structure xt
iβ̂, where

β̂ = M−1
n∑

i=1

xiyi =
( n∑

i=1

xix
t
i

)−1 n∑

i=1

xiyi

is the least squares estimate. We are assuming here that the M matrix is of full rank

p, the dimension of β. Work with

θ̂i = yi − bi(y) = yi −
c(yi − xt

iβ̂)

z
=

(
1− c

z

)
yi +

c

z
xt
iβ̂,

where z =
∑n

i=1(yi − xt
iβ̂)

2 =
∑n

i=1 r̂
2
i is the sum of squared residuals. In order

to work out an expression for D(y) of Exercise #24(d) you need first to show that

∂β̂/∂yi = M−1xi and ∂β̂tMβ̂/∂yi = 2xt
iβ̂, which conspire to lead you to

bi,i(y) = c{(1− xt
iM

−1xi)z − 2(yi − xt
iβ̂)

2}/z2

and then to

D(y) = (nz)−1{c2 − 2c(n− p− 2)}.
For n ≥ p+3 we have the Stein phenomenon at work, with uniform risk improvement

and risk (p+ 2)/n when the regression model being shrunk to is actually correct. As

before, make sure you can argue for this procedure from both risk function investiga-

tion and empirical Bayes perspectives.

(f) To extend our repertoire we need to modestly and patiently generalise some of the

above work to the case of the observations having standard deviation say σ instead of

merely σ = 1. Show that Exercise #24(c) generalises to

Eθ(Yi − θi)bi(Y ) = σ2 Eθbi,i(Y ),

and that the risk difference identity becomes

R(Y − b(Y ), θ) = σ2 − EθD(Y ), with D(y) = k−1
k∑

i=1

{bi(y)2 − 2σ2bi,i(y)}.

Show how earlier results of this and the previous exercise generalise, e.g. to the fol-

lowing general ‘shrinking to regression’ recipe, for the model with independent obser-

vations Yi ∼ N(θi, σ
2):

θ̂i,EB = ρ̂yi + (1− ρ̂)xt
iβ̂,

with

ρ̂ =
(
1− σ2

κ̂2

)
+

and κ̂2 =
1

n− p− 2

n∑

i=1

(yi − xt
iβ̂)

2.
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One needs a bit of care when interpreting and implementing these ideas and meth-

ods. Here we view κ̂2 as estimating the overall variability around the regression line,

whereas σ2 remains the variance of Yi around its expected value θi. In an empirical

Bayes setup of the above we would have κ2 = σ2 + τ2 with τ2 signalling the variance

of the θi around the regression line xt
iβ.

(g) In realistic cases the σ parameter above cannot be taken as known. Attempt to build

a suitable empirical Bayes framework involving a prior for σ, leading, under some

conditions, to a fully automatic ‘data smoother’, shrinking the raw data towards a

regression structure with a shrinkage factor dictated by the data.

28. One-dimensional image reconstruction

Suppose θ = (θ1, . . . , θn) is a certain sequence, e.g. of colours, but that the θi are not being

observed precisely, only indirectly, via measurements y = (y1, . . . , yn). The task is then

to estimate or ‘reconstruct’ θ from data, perhaps along with uncertainty assessment. This

is a common type of problem in various applied situations, involving imaging, geology,

paleontology, etc., perhaps particularly in the two-dimensional case studied in the follow-

ing exercise. It is convenient and fruitful to limit attention to the one-dimensional case

separately, however. We shall see that the Bayesian paradigm lends itself nicely to these

types of problems.

(a) Assume that y given θ has some distribution f(y |x), and that θ is given a prior π(θ).

Show that

π(θ | y) ∝ π(θ)f(y |x),

and briefly discuss any underlying assumptions that need to be in place for this to

hold.

(b) To simulate θ from its distribution given data, one may use the Metropolis or Metro-

polis–Hastings MCMC scheme, creating a chain of images

θ1 = (θ11, θ
1
2, . . . , θ

1
n),

θ2 = (θ21, θ
2
2, . . . , θ

1
n),

...

θB = (θB1 , θB2 , . . . , θBn ),

where the point is that the sequence of images can be set up such that it converges to

an equilibrium distribution, and this equilibrium distribution is precisely the correct

π(θ | y). Show in particular that the following strategy is guaranteed to work, under

some weak conditions: From image θ, create first a proposal θ′, drawn from some

conditional distribution q(θ′ | θ) which is symmetric in θ and θ′. Then accept this

proposal with probability

pr = min
{
1,

p(θ′)f(y | θ′)
p(θ)f(y | θ)

}
,

34



otherwise keep on to θ. Let the chain start somewhere, and let it run. – This may be

made operational in the manner of

θj = okjθ
′ + (1− okj)θ

j−1 for j = 2, 3, . . . .

Here θ′ is the proposal, drawn from q(θ′ | θj−1), and okj = I{uj ≤ prj}, with the uj

being i.i.d. uniform and

prj = min
{
1,

p(θ′)f(y | θ′)
p(θj−1)f(y | θj−1)

}
.

Note that this general level description is reasonably straightforward per the Metropo-

lis algorithm, the unusual aspect being however that this now happens in a high-

dimensional space of all images of length n. If the space of images is a large one,

e.g. with a high n, the chain may need to run for a long time until equilibrium

is reached. Its successful implementation needs a practical proposal distribution to

avoid too lengthy calculations for the ratio involved in prj .
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Figure 5: This dirty picture displays the true image θ0 along with noise y = θ+ε,
of level σ = 0.75.
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Figure 6: The same true image θ0 as for Figure 5, with values 0 and 1, along with
two reconstructions based on the observed y: the simple pointwise θ̃, displayed
here with values 0.05 and 0.95, and the Bayesian contextual θ̂, using β = 2.2,
displayed here with values 0.10 and 0.90. The error rates are respectively 0.300
and 0.085.

(c) Assume in particular that the yi given the θ image are independent, with a fully

specified distribution f0(yi | θi) for yi | θi, i.e. without unknown parameters. For the

proposal distribution, sample a random index i from {1, . . . , n}, replace the θi in

question with θ′i, drawn from a symmetric distribution q0(θ
′
i | θi), but keep the rest of

the image intact, so that in fact

θ′ = θjprop = (θj−1
1 , . . . , θ′i, . . . , θ

j−1
n ).

Show that the Metropolis scheme takes the form given above but with the simplifica-

tion

prj = min
{
1,

p(θ′)f0(yi | θ′i)
p(θj−1)f0(yi | θj−1

i )

}
.

One may then sample a long sequence of images and read off distributions for each θi
separately, etc., in particular yielding an image reconstruction θ̂ = (θ̂1, . . . , θ̂n).

(d) As an illustration of the above, of separate interest, assume (i) that the image θ consist

of two colours, say white and black, or 0 and 1, and (ii) that yi ∼ N(θi, σ
2), for an

appropriate σ associated with the measuring device. The task is to ‘reconstruct’ the
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underlying image from the data. For the above to applicable one needs a prior for

images. One simple such takes the form

π(θ) = exp{βH(θ)}/Z,

with H(θ) a perhaps simple function giving higher values to spatial connectedness and

smaller values for nonsmooth salt-and-pepper type images. Also, Z is the normalising

constant, which we in practice cannot compute, since it is a sum over 2n cells, which

is quickly enough a number bigger than that of the atoms of the universe (if n ≥ 375,

I believe). For the connectedness function, take

H(θ) =

n∑

i=2

I{θi−1 = θi}.

Discuss this choice of H, and briefly consider perhaps fruitful extensions. This is

(more or less) the famous Ising model from statistical physics.

(e) Show that the Metropolis scheme above, which samples a random index i and proposes

replacing the current θi with the other colour θ′i = 1− θi, accepts this proposal with

probability

pr = min{1, exp(β∆H)Ri},

where ∆H = H(θ′)−H(θ) and

Ri =
f0(yi | θ′i)
f0(yi | θi)

= exp{(θ′i − θi)(y − 1
2 )/σ

2}.

26. Maximum likelihood computations: i.i.d. data

The aim of this exercise is demonstrate and for the students to learn how log-likelihood

functions may be programmed and then maximised numerically in R. This operation,

along with the Hessian matrix of minus the second derivatives at the maximum likelihood

estimate, is the basis for classical frequentist inference in parametric models, and we shall

see that this is also very helpful for Bayesian operations (see also the following exercise).

We proceed by example, first handling a model for i.i.d. data and then in the following

exercise for a regression model for (xi, yi) type data.

(a) Go to the webpage www.econ.kuleuven.ac.be/public/ndbaf45/modelselection/

and get hold of the 141 life-lengths from Roman era ancient Egypt (first century B.C.)

for your computer; cf. also Exercise #8 and the stk4020 2008 exam project. Let yy be

the vector of these data points y1, . . . , yn. The object now is to fit the Weibull model,

which has cumulative distribution function

F (y, a, b) = 1− exp{−(y/a)b} for y > 0,
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to these data. Show that the log-density is −(y/a)b + log b+ (b− 1) log y− b log a and

hence that the log-likelihood function may be expressed as

ℓn(a, b) =

n∑

i=1

{−(yi/a)
b + log b+ (b− 1) log y − b log a}.

(b) It is now necessary to programme the log-likelihood as a function. This might e.g. be

done as follows (with various alternative routes leading to the same function):

logL <- function(para)

{
a <- para[1]

b <- para[2]

#

hei <- -(yy/a)∧b + log(b)+(b-1)*log(yy)-b*log(a)

sum(hei)

}
Do this, or something equivalent, in your computer, and check that you get sensible

values from writing logL(c(a,b)) with sensible values (a,b).
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Figure 5: Histogram of the 141 ancient Egyptian life-lengths, along with fitted
Weibull density (black, full), fitted Weibull for men alone (red, dashed), and fitted
Weibull for women alone (green, dotted).
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(b) When you have programmed the logL function, as above, make also

minuslogL <- function(para)

{-logL(para)}
followed by

oraetlabora <- nlm(minuslogL, starthere, hessian=T)

ML <- oraetlabora$estimate
logLmax <- logL(ML)

Jhat <- oraetlabora$hessian
se <- diag(sqrt(solve(Jhat)))

showme <- cbind(ML,se)

Here you need to provide starthere, a point of departure in the parameter space for

the nlm algorithm, sometimes requiring a bit of trial and error to make it work. You

should also monitor oraetlabora$code, with this code being equal to 1 means the

algorithm has converged properly and the result is to be trusted. For this case you

should find

ML se

33.5635 2.1133 # for parameter a

1.4042 0.0956 # for parameter b

The crucial theoretical result underlying the approximations here, for the standard

errors (estimates of the standard deviations for the individual parameter estimates)

is, in general terms, that

θ̂ML ≈d Np(θ0, Ĵ
−1).

Here θ̂ML is the maximum likelihood estimator, θ0 the underlying true but unknown

parameter value, and Ĵ = −∂2ℓn(θ̂ML)/∂θ∂θ
t the Hessian matrix.

(c) Carry out Weibull parametric analysis for the 82 men and 59 women separately, and

try to construct a figure similar to this one:

(d) One is often more interested in particular functions of the parameter vector than in

the parameter components themselves. For such an example, show for the Weibull

model that the p0 quantile may be written

µ = F−1(p0) = a{− log(1− p0)}1/b.

Here

µ̂ML ≈d N(µ0, ĉ
tĴ−1ĉ),

where

ĉ =
∂µ(θ̂)

∂θ
,

i.e. the vector of derivatives of µ(θ) w.r.t. its components, evaluated at the maximum

likelihood estimate.

27. Computing marginal likelihoods
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This is an addendum to certain earlier exercises, related to the computation of marginal

likelihoods, specifically for the linear normal type models worked with in Exercises 22 and

23. In general terms, suppose the data likelihood is Ln(θ), with a prior π(θ). The marginal

likelihood is then

f̄ =

∫
Ln(θ)π(θ) dθ.

For the usual Bayesian work we do not need these marginal likelihoods, but when it comes

to comparing different models, or different priors, they play a role.

(a) Assume two different models are entertained for the same data, say M1 and M2,

resulting in likelihoods Ln,j(θj), and involving priors πj(θj), for j = 1, 2. The usual

machinery then also leads to posterior densities πj(θj | data). A full Bayesian setup

requires also prior probabilities p1, p2 for the two models. As with Exercise 7, prove

that

p∗1 = Pr(M1 | data) =
p1f̄1

p1f̄1 + p2f̄2
,

p∗2 = Pr(M2 | data) =
p2f̄2

p1f̄1 + p2f̄2
,

in terms of the marginal likelihoods

f̄1 =

∫
Ln,1(θ1)π1(θ1) dθ1 and f̄2 =

∫
Ln,2(θ2)π2(θ2) dθ2.

The p∗1, p
∗
2 are then the updated posterior model probabilities.

(b) Show also, again essentially worked out already in Exercise 7, that the posterior of

some parameter µ, expressed as µ = µ1(θ1) in model M1 and as µ = µ2(θ2) in model

M2, can be written as

π(µ | data) = p∗1π1(µ | data) + p∗2π2(µ | data).

We learn that for such natural tasks as these, as long as there is more than one can-

didate model, we need the marginal likelihoods, via exact calculations, mathematical

approximations, or via simulations. Note that the proportionality constants, all the

1/(2π)n/2 type factors that we often simply ignore, are important here, and need to

be tracked carefully. If Statisticians A and B have priors uniform on [−100, 100] and

[−1000, 1000] for one of the models, their posteriors might look very much the same

for that model, but using 100 or 1000 might affect the ratios of marginals and hence

the p∗j .

(c) Often there is no exact formula for the marginal likelihood, so one needs to rely on

BIC-type approximations, cf. Exercise 7, or simulations, see below. For the class of

gamma-normal priors, for the linear normal models, see Exercises 22-23, formulae are

available, however. Consider the setup of Exercise 22, with a normal sample y1, . . . , yn

from the N(µ, σ2), and with the gamma-normal prior

(λ, µ) ∼ GN(a, b, µ0, ν0)
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for (λ, µ), in terms of λ = 1/σ2. Show that the prior times the likelihood may be

expressed as

ba

Γ(a)
λa exp(−bλ)λ1/2 exp{− 1

2ν0λ(µ− µ0)
2}ν1/20 (2π)−1/2

λn/2 exp[− 1
2λ{Q0 + n(µ− ȳ)2}](2π)−n/2.

Using the formula

ν0(µ− µ0)
2 + n(µ− ȳ)2 = (ν0 + n)(µ− µ∗)2 + dn(ȳ − µ0)

2

from Exercise 22, where you’ll also find definition of µ∗ and dn, show that integrating

over µ yields

ba

Γ(a)
λa exp(−bλ)

ν
1/2
0

(n+ ν0)1/2
λn/2 exp[− 1

2λ{Q0 + dn(ȳ − µ0)
2}](2π)−n/2.

Show from this that the marginal likelihood can be written

f̄ =
ba

Γ(a)

Γ(a+ n/2)

[b+ 1
2{Q0 + dn(ȳ − µ0)2}]a+n/2

ν
1/2
0

(n+ ν0)1/2
(2π)−n/2.

(d) Let us go back to the definition of f̄ above, and attempt to find its value via approx-

imations. We start from

f̄ = exp(ℓn,max)

∫
exp{ℓn(θ)− ℓn(θ̂)}π(θ) dθ,

where θ̂ is the ML estimate and ℓn,max = ℓn(θ̂) the maximised log-likelihood. Consider

ℓn(θ)− ℓn(θ̂) = − 1
2n(θ − θ̂)tĴn(θ − θ̂n) + δn,

with Ĵn = −(1/n)∂2ℓn(θ̂)/∂θ∂θ
t the normalised Hessian matrix, the natural estimator

of the Fisher information matrix, and with δn of smaller order. Show that this leads

to

f̄
.
= exp(ℓn,max)π(θ̂)

∫
exp(− 1

2nx
tĴnx) dx

= exp(ℓn,max)π(θ̂)(2π)
p/2n−p/2|Ĵn|−1/2.

Here p is the dimension of θ. This trick is related to the so-called Laplace approxima-

tion, and leads to the approximation

log f̄ = ℓn,max − 1
2p log n+ log π(θ̂)− 1

2 log |Ĵn|.

Omitting the two latter terms, only keep the maximised log-likelihood and the cor-

rection term − 1
2p log n, might be called the BIC approximation, since it is associated
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with the Bayesian Information Criterion, which is BIC = 2ℓn,max − p log n. So, with

these approxmations, formulae above may be used with

f̄j ≈ exp{ℓn,max,j − 1
2pj log n}.

(e) Another possibility is to attempt to find f̄ (or its logarithm) via simulations. Write

f̄ = exp(ℓn,max)Rn = exp(ℓn,max)

∫
exp{ℓn(θ)− ℓn(θ̂)}

π∗(θ)

π(θ)
π∗(θ) dθ,

with π∗(θ) any probability density of our choice. This invites importance sampling

for estimating the quantity Rn, via

R̂n =
1

B

B∑

j=1

exp{ℓn(θj)− ℓn,max}
π∗(θj)

π(θj)
.

Here the θj are sampled from π∗, i.e. not from the prior π, and B is a big number. We

know from the above that Rn is approximately n−p/2, since its logarithm should be

approximately − 1
2p log n, but importance sampling allows the possibility of reaching

a more accurate number. Using π∗ equal to π will typically not work well, since a very

high proportion of the θj sampled will be far off from where the action is, causing a

high variance for R̂n.
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