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Problem 1
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(b) Nelder-Mead: With θ p-dimensional, we start with p + 1 values of θ.
These p+1 values are dynamically altered by changing the worst value
with a better one, defined through a search line going through the worst
value and defined by the average of the other values. This method does
not need the derivatives

The Quasi-Newton method is a Newton-type method which avoids the
calculation of the second derivative (the Hessian) by replacing it with
another quantity M that is sequentially updated.

Neither of thee methods are guaranteed to converge to the global
optimum, so running it with different starting values is always a good
idea. Clearly both methods have problems with local optima in this
case.

The Nelder-Mead method seems to be more stable in this case, but on
the other hand, the Quasi-Newton method gives to overall best value
(although not very different). The Nelder-Mead method is probably
preferable in this case.

(Continued on page 2.)



Exam in STK4051, Thursday November 30 2017. Page 2

(c) The main idea behind the EM algorithm is that while the marginal
likelihood based on the observed values only may be difficult to
optimise, the complete likelihood including some hidden variables may
be easier to handle. The E-step corresponds to estimating the complete
log-likelihood by

Q(θ|θ(t)) = E[l(θ|y,C)|yθ(t)]

where l(θ|y,C) is the complete log-likelihood based on both y and C.
The M-step corresponds to optimising Q(θ|θ(t)) with respect to θ.

For this problem, the Ci’s are the missing variables, and if these were
known the problem would be considerably easier. Therefore the EM-
algorithm is well-suited in this case.

(d) The complete log-likelihood corresponds to defining P (Ci, Yi) for each
observation, giving

L(θ) =
n∏
i=1

πci
λyici exp(−λci)

yi!

l(θ) =
n∑
i=1

[log πci + yi log(λci)− λci − log(yi!)]

=Const +
n∑
i=1

K∑
k=1

I(ci = k)[log(πk) + yi log(λk)− λk]

Q(θ|θ(t)) =E[Const +
n∑
i=1

K∑
k=1

I(Ci = k)[log(πk) + yi log(λk)− λk|y,θ(t)]

=Const +
n∑
i=1

K∑
k=1

Pr(Ci = k|y,θ(t))[log(πk) + yi log(λk)− λk]

(e) Optimisation of Q(θ|θ(t)) can be obtained by looking at the derivatives.
Note however that we have a constraint

∑
k πk = 1, so we need to

introduce a lagrange term:

∂

∂πk
Qlarg(θ|θ(t)) =

n∑
i=1

Pr(Ci = k|y,θ(t)) 1

πk
− φ

giving

π
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Pr(Ci = k|y,θ(t))

(Continued on page 3.)
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after proper normalisation. Similarly,

∂

∂λk
Q(θ|θ(t)) =

n∑
i=1

Pr(Ci = k|y,θ(t))[ yi
λk
− 1]

giving

λ
(t+1)
k =

∑n
i=1 Pr(Ci = k|y,θ(t))yi∑n
i=1 Pr(Ci = k|y,θ(t))

(f) The EM-algorithm is guaranteed to increase the (log)-likelihood value
at each iteration, which we see happens from the plot.

In order to obtain uncertainty measures, different possibilities are
available:

• Bootstrapping

• Deriving the Hessian, perhaps by one of the direct optimisation
routines using that Hessians can directly be evaluated (but then
starting the optimisation at the optimum obtained).

• Use some of the methods attached to the EM algorithm for
deriving the variance.

Problem 2

(a) ∫
x

π(x)P (y|x)dx =

∫
x

π(y)P (x|y)dx

=π(y)

∫
x

P (x|y)dx = π(y)

(b) We have

π(x)P (y|x) =π(x)g(y|x)min

{
1,
π(y)g(x|y)

f(x)g(y|x)

}
= min{π(x)g(y|x), π(y)g(x|y)}

=π(y)g(x|y) min

{
π(x)g(y|x)

π(y)g(x|y)
, 1

}
= π(y)P (x|y)

Also need irreducibility, that is it is possible to move from any state x
to any other state y in a finite number of steps. You also need the chain
to be aperiodic, but this will be fulfilled as long as there is a positive
probability for not accepting a new proposal (which will always be the
case except for some degerate situations)

(Continued on page 4.)



Exam in STK4051, Thursday November 30 2017. Page 4

(c) For g1:

R =
sin2(x∗) sin2(2x∗)φ(x∗; 0, 1)φ(x; 0, σ1)

sin2(x) sin2(2x)φ(x; 0, 1)φ(x∗; 0, σ1)

For g2 we obtain

R =
sin2(x∗) sin2(2x∗)φ(x∗; 0, 1)φ(x;x∗, σ1)

sin2(x) sin2(2x)φ(x; 0, 1)φ(x∗;x, σ1)
=

sin2(x∗) sin2(2x∗)φ(x∗; 0, 1)

sin2(x) sin2(2x)φ(x; 0, 1)

due to the symmetry in the proposal distribution.

The g1 proposal corresponds to an independent sampler while g2
corresponds to random walk. For the first one we would like the
acceptance rate to be as large as possible, indicating that it is too
small in this case. One can try to change σ1 to see when the acceptance
probability is largest. Given that the standard gaussian distribution is
involved in the target distribution, something closer to this distribution
should be expected to give higher acceptance rate.

For g2, we want the acceptance rate to be somewhere between 0.25 and
0.50, which is ok in this case (perhaps we could increase the acceptance
rate somewhat by decreasing the variance).

(d) A Markov chain typically needs some time before the simulated values
are close to the target distribution. In order to reduce the bias, the
first iterations should therefore be discarded.

Two possible methods for specifying the burnin:

• Looking at the trace plots and see if they have stabilized

• Calculate the Gelman-Rubin criterion, which, when running
multiple chains, mainly compare within variability with between
variability. This is a more formal criterion.

(e) If one wants to estimate E[x2], then the variance of the Monte Carlo
estimate converges towards σ2[1 +

∑∞
k=1 ρ(k)] where σ2 corresponds to

the variance for independent samples. The two proposal distributions
give almost similar estimates on the second part, with a small
preference to g1.

One can also look at the effective sample size which is defined as

L

1 +
∑∞

k=1 ρ(k)

where L is the number of samples used.

(Continued on page 5.)
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(f) We have that

π(x)

g1(x)
=c

sin2(x) sin2(2x) 1√
2π
e−

1
2
x2

1√
2πσ1

e
− 1
2σ2

1
x2

=cσ1 sin2(x) sin2(2x)e
− 1

2
[1− 1

σ21
]x2

≤ cσ1

showing that the ratio has a finite maximum. The requirements needed
are then fulfilled.

(g) For the M-H with g1, the effective number of samples is estimated to be
10 000/4.25 ≈ 2930, approximately similar to the number of samples
generated by the rejection method. This indicates that the variance
will be quite similar.

However, while M-H needed 10000 + 1000 = 11000 samples to be
generated, the rejection sampling required 3000∗16.9 = 50700 samples,
indicating that the computational effort with rejection sampling was
much larger.

An argument towards rejection sampling compared to MCMC is
however that the former is exact!


