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1 Introduction

As described in section 7.2 in the textbook by Devore and Berk (2012), maximum likeli-
hood is an important estimation method for statistical analysis. The textbook also gives
several examples for which analytical expressions of the maximum likelihood estimators
are available. In this note we will be concerned with examples of models where numerical
methods are needed in order to obtain the estimates. Some of these models are “standard”
in the sense that statistical software is available for direct computation. In other cases,
user-made programs must be applied. In both cases the use of a computer is essential, and
knowledge on using and/or developing software becomes vital. Throughout the note we
will illustrate the different optimization methods through three examples. R code used in
connection with these examples are given either directly in the text or in the appendix.

Example 1 (Muon decay)
The angle 6 at which electrons are emitted in muon decay has a distribution with the
density

14+ ax

flala) = =5,

—1<zx<1 and —-1<a<l1

where z = cosf (Rice 1995, Example D, section 8.4). The following data are simulated
from the given distribution:

0.41040018 0.91061564 -0.61106896 0.39736684 0.37997637 0.34565436
0.01906680 -0.28765977 -0.33169289 0.99989810 -0.35203164 0.10360470
0.30573300 0.75283842 -0.33736278 -0.91455101 -0.76222116 0.27150040
-0.01257456 0.68492778 -0.72343908 0.45530570 0.86249107 0.52578673
0.14145264 0.76645754 -0.65536275 0.12497668 0.74971197 0.53839119

We want to estimate o based on these data. The likelihood function is given by

- 1+OCZEZ
L) =T[5

=1

while the log-likelihood is given by

l(a) = Z log(1 + ax;) — nlog(2)

=1

[ is a smooth function in «, so at the max-point, the derivative should be equal to zero (if
not, the max-point is at one of the end-points). Now

:L‘.
I = L.
() Z 1+ ax;

i=1
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Figure 1.1: Likelihood (left) and log-likelihood (right) for muon decay example.

Unfortunately, no closed expression is available for the solution of the equation I'(«) = 0.
Figure 1.1 shows lik(«) and [(«) as functions of « for the actual value of . A good guess on
the optimal value of o would be possible to obtain by a visual check. An automatic method
would however be preferable, both in order to save work and for avoiding subjectivity. [J

Example 2 (Rainfall of summer storms in Illinois)

Figure 1.2 shows a histogram of rainfall measurements of summer storms, measured by a
network of rain gauges in southern Illinois for the years 1960-1964. A possible model for
these data is a gamma distribution

_ 1 a oa—1_—Ax
f(zla, N) = F(a)/\ e

where I'(a) is the gamma function as defined in Devore and Berk (2012, page 195). As-
suming that all observations are independent, the likelihood is in this case

L |
lik(a, ) = ][ mvxg—le—m.
=1
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Figure 1.2: Histogram of rainfall measurements of summer storms in Illinois.

The log-likelihood now becomes

n

(o, A) =) [erlog(A) + (a — 1) log(x;) — Az; — log(T'(a))]

i=1

=nalog(\) + (a — 1) Zlog(xi) - /\in —nlog(I'(a)). (1.1)

Also in this case the log-likelihood is a smooth function of the parameters involved, and
the derivatives are

%l(a, A) =nlog(A) + ; log(x;) — nFF/((s)); (1.2)
0 L =
al(a, A) =nal™ — ;xz (1.3)



Figure 1.3: Perspective and contour plot of likelihood function (left) and log-likelihood
function (right) for rainfall measurements.

Putting the derivatives to zero and solving the equations is again difficult, making direct
analytical solutions intractable.

In Figure 1.3, lik(a, 8) and I(«, 3) are plotted for different values of o and A. These
plots are produced by the commands given in Programwindow A.1.

Also in this case a good guess of the mode is possible, but a numerical procedure would
be preferable. O

Example 3 (Survival times for leukemia)
In Cox and Oakes (1984) a dataset concerning the survival times for leukemia is discussed.
We will consider a subset of these data, given in Table 1.1.

A distribution commonly applied to survival data is the Weibull distribution which has
probability density

f(z;a,8) = Ba™" <£)B_1 o~/

«



56 65 17 7 16 22 3 4 2 3 8 4 3 30 4 43

Table 1.1: Survival times for leukemia. Subset of dataset from Cox and Oakes (1984)
corresponding to those individuals which responded “absent” to a given test.

Here « is a scale parameter while § describes the shape of the distribution. Assuming all
observations x1, ..., x, are independent, the likelihood function is

-1
lik(a Hﬁ () e~(@ifa)’

while the log-likelihood is

n

la, ) = Z[log(ﬁ) —log(a) + (8 — 1)(log(;) — log(a)) — (zi/a)”]

=nlog(B) — npBlog(a —1) Zlog x;) Z (z:/a)?. (1.4)

=1

In Figure 1.4 lik(a, 8) and I(«, ) are plotted for different values of « and (. Differentiating
with respect to a and 3, we get

9 RN
8al(0) :———|— g (z:i/)”, (1.5)
0 n -
1(0) == —nlog(a) + log( xzaﬁlo T /o 1.6
551(6) =5 —nlog(a }jg =3 (wsfa) ogtrifa), (1.6
As for the previous examples, maximizing the likelihood analytically is difficult. O

In this note we will discuss how numerical methods can be applied for solving statistical
optimization problems. We will not go deeply into the general theory behind numerical
methods. For this, we refer to other courses (i.e., MAT-INF 1100, INF-MAT 3370). Our
intention is to demonstrate how such numerical methods can be applied to statistical prob-
lems, in addition to present some optimization methods which are specialized for use in
statistics. We will start with some general remarks concerning optimization (section 2).
Our primary application will be maximum likelihood estimation. Therefore, some prop-
erties of the log-likelihood function and the maximum likelihood estimators (section 3)
will also be discussed. The remaining sections consider different optimization methods.
All methods are iterative. They start with some initial guess on the parameters. Next,
a new candidate to the optimum, presumable better than the initial guess is found. This
new guess is used to find an even better one, and so one. Section 4 consider the Newton-
Raphson method, which probably is the most used optimization method in statistics. A
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Figure 1.4: Perspective and contour plot of likelihood function (left) and log-likelihood
function (right) for leukemia data.

slight modification of this method, the scoring algorithm, is discussed in section 5. Some
refinements of these algorithms are discussed in Section 6. All procedures discussed are
illustrated by examples. The datasets and R code can be found on the course homepage.
R routines are also given in the text.

2 General comments on optimization

As mentioned in the introduction, optimization problems often occur in statistics. Analytic
expressions for maximum likelihood estimators in complex models are usually not easily
available, and numerical methods are needed. Other types of optimization problems may
also be of interest. For illustrative purpose, we will however concentrate on likelihood
maximization.



Optimization is a huge field in numerical analysis and we will only focus on a few meth-
ods that are widely used in statistics. Although many of the general purpose methods are
useful also for statistical problems, methods specifically designed for likelihood maximiza-
tion may be better to use in certain situations. In any application, we may choose if we
want to maximize or minimize, since maximization of a function [ is equivalent to mini-
mization of —[. Since our primary concern will be likelihood maximization, we will assume
that maximization is our aim.

For a general discussion of optimization methods, we refer to Van Loan (2000). Lange
(1999) is a very good reference for numerical analysis in general applied to statistics. We
will only give some general comments here:

e In some applications, the function we want to maximize is well-behaved, in the sense
that the function is concave and only one maximum point exists. In such cases
most methods will work (although with different efficiency). For more complicated
problems, the concavity property is generally lost, and local maximum points may
occur. In such cases, no guarantee is given that the numerical method will return
the global maximum point. Two standard methods are then widely used:

(a) Find local maxima starting from widely varying starting values and then pick
the maximum of these;

(b) Perturb a local optimum by a “small” amount, and use this as an starting point
for a new run of your routine. Then see if your routine converges to a better
point, or “always” to the same one.

e When searching for an appropriate method to use, you must choose between meth-
ods that need only evaluations of the function itself and methods that also require
evaluations of the derivative(s) of the function. Algorithms using the derivative are
somewhat more powerful, but the extra cost of calculating these may result in less
efficiency overall. Note however, that in order to obtain information values and stan-
dard errors for the estimators, derivatives may be needed anyway (see next section).

e In many situations, application-specific algorithms can be constructed. Such algo-
rithms can be far more efficient than the more general ones.

As already mentioned, our main concern will be on optimizing likelihood functions.
The likelihood function is a function both on the random variable X = (X3, ..., X},) and
the parameter vector 6. In general we should therefore write lik(0; X) = f(X;0) where
f(X;0) is the probability density for X given 8. When estimation of @ is to be performed,
the observed value X is given, and can be considered as fixed. In those cases, we will simply
write 1ik(8).



The optimum of the likelihood function lik(0) coincides with the optimum of the log-
likelihood function {(0). We will consider maximization of the log-likelihood function. In
numerical literature, the function to maximize is usually denoted the objective function.
We will follow this convention when discussing maximization algorithms in general.

3 Some properties of the likelihood function and max-
imum likelihood estimators

Devore and Berk (2012, sec. 7.4) discusses large sample properties of maximum likelihood
estimators. Some of these results will be repeated in addition to that some extra properties
important for numerical optimization of likelihood functions will be introduced. We will
start by assuming only one unknown parameter . Afterwards we will generalize to several
parameters.

3.1 The one-parameter situation

The derivative of the log-likelihood,
s(0; X) =1'(6; X) (3.1)

is usually named the score function. Note that the score function is a random variable
since it depends on the random observations X. It can be expressed by the likelihood
function itself through

1

5(0; X) = ————1liK'(6; X

which is obtained from (3.1) by ordinary rules on differentiation. If I(f; X) is a smooth
function in @, the likelihood should have derivative equal to zero at the max-point. A
common approach in order to find maximum points is therefore to solve the scoring equation

s(6: X) = 0.

Note however that this criterion is only a necessary one, also minimum points and saddle
points can be solutions to this equation. In order to evaluate if the solution actually is a
maximum point, the second derivative must be inspected.

As is apparent from (3.1), s(f; X) is a stochastic quantity. An important property of
the scoring function is that if X has probability density f(X;8), then E[s(6; X)] =0. A
solution of the scoring equation can therefore be seen as a value of 8 such that the scoring
function is equal to its expectation.



The variability of s(0; X)) reflects the uncertainty involved in estimating 6. The variance
of s is called the Fisher information (sometimes it is also called the ezpected information).

The Fisher information 1(0) of an experiment can be written as (we will in this note
use I both for the information based on one observation and for the information from a
random sample, the textbook distinuish between these situations by using 7, for the latter)

1(6) = Var[s(6; X)] = —E [I"(0)]. (3.2)

For proof of the properties given above for the discrete case with n = 1, see Devore
and Berk (2012, section 7.4). The general case is a trivial extension. A consequence of the
first equality in (3.2) is that 1(0) is always non-negative.

Given the maximum likelihood estimator § of f, an important task is to derive un-
certainty properties about this estimator. The theorem at page 374 in Devore and Berk
(2012) state that for a large number of observations, € is approximately normal distributed
with expectation # and variance equal to 1/1(f). In the textbook a proof is sketched for
the i.i.d case, but this result is also valid in more general situations.

3.2 The multi-parameter situation

Assume 0 = (04,...,0,)" is a vector of p, say, unknown parameters. The derivate of the
log-likelihood, still named the score function, now is a vector:

5(0: X) = 1'(0: X) = mhk’(e; X). (3.3)

The ith element of the vector s(0; X), s;(0; X), is the partial derivative of [(8; X) with re-
spect to 0;. A more mathematically correct way of expressing s(8; X ) would be %l (0; X),
but we will use the simpler form I'(8; X).

As for the one-parameter case, each s;(8; X ) has expectation zero. Finding the MLE
by solving the scoring equations

s(é\; X)=0 (3.4)
now result in a set of p equations with p unknowns.

The expected information is now generalized to be a matrix I(@) with the (4, j)th entry
given by

1,;(0) = Cov|s;(0; X),s,;(0; X)] = —E {80?8@1(0)] . (3.5)

9



Here the second equality can be proven by a simple generalization of the argument in the
one-parameter case. In the multi-parameter situation we usually name I(0) by the expected
information matriz or the Fisher information matriz. An important property of 1(8) is
that it is always positive (semi-)definite’. This will be of importance in the construction
of the scoring algorithm in section 5.

The large sample theory described in section 7.4 of Devore and Berk (2007) also gen-
eralizes to the multi-parameter case, so that the MLE is, under appropriate smoothness
conditions on f, consistent. Further, each element 9 of 6 will, for a sufficiently large num-
ber of observations, have a samphng distribution approximately normal with expectation
0; and variance equal to {I_ 1(0)}4i, the ith entry of the diagonal of I7'(8). Further, the
covariance between 9 and 9 is approximately given by the (i, 7)th entry of I (0)

Note that I(0) depends on the unknown quantity 8. Common practice is to insert the
estimated value 6 for @ giving an estimate I(0) of I(8).

A further complication is that the expectations in (3.5) are not always possible to
compute. Then an alternative is to use the observed information matrix J (@) with (¢, j)th
entry given by

J5(6) = — 89?89jzw>. (3.6)

As for the expected information matrix, an estimate 0 needs to be inserted for @ in order to
evaluate J(0). The ith diagonal element of J'(6) can then be used as an approximation
for the variance of ; instead of the ith diagonal element of I~'(8). Both these approxi-
mations will be equally valid in the sense that as the number of observations increases, the
approximation error will decrease to zero. If possible to calculate, the expected information
is preferable, since the observed information in some cases can be unstable. Note that in
many standard models used in statistics, I(0) = J(8).

4 The Newton-Raphson method

One of the most used methods for optimization in statistics is the Newton-Raphson method
(or Newton’s rule). It is based on approximating the function which we want to optimize
by a quadratic one. The optimum of the approximation (which is easy to calculate) gives
a guess of the optimum for the actual function. If this guess is not adequately close to the
optimum, a new approximation is computed and the process repeated.

LA matrix I is positive semi-definite if a’Ta > 0 for all vectors a.

10
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Figure 4.1: A function [(¢) (solid line) and its quadratic approximation 15(0) (dashed line).
The point (0,1(0)) is given by a .

Assume for simplicity that { only involves a one-dimensional parameter and that 6 is
our current best guess on the maximum of /(¢). By using a Taylor series expansion around
0, 1(0) can be approximated by

%w):um+rwxa—m+%ﬂwxe—m? (4.1)

When 6 is close to 0, the difference [(6) — I5(0) is small. Figure 4.1 shows [(f) and 15(0)
for a specific example. We see that the maximum value of [5(f) is closer to the maximum
value of [(6) than 6.

The gradient of I;(0) at 0 is
150) =1'(9) +1"(6)(0 — 0)
and the Hessian or second derivative is
Zg(G) =1"(0).

At the point 0, I(f) and I;(f) have equal first and second derivatives. Note that for
the particular case when [ is a log-likelihood function, the Hessian is equal to minus the
observed information evaluated at 6 = 6, I"(0) = —J(0).

In the optimum point of the approximation, lNg(H) has a gradient equal to zero, giving
the following equation:

1"(0)(6 —0) = =1'(0). (4.2)
Solving with respect to 0, we get
RAC)
0=0— —=. 4.3
(0) (4.3)
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Figure 4.2: A function 1(6) (solid line) and its quadratic approximations lgs(#) for s = 0
(solid plus star), s = 1 (dashed), s = 2 (dashed-dotted) and s = 3 (dotted). The points
(0°,1(6°)) for s =0,1,2,3,4 are given by their numbers.

This gives a procedure for optimizing I3(#). Our aim is however to optimize [(f). Since
l5(0) is an approximation of [(#), our hope is then that (4.3) will give us a new value closer
to the optimum of [(#). This suggests an iterative procedure for optimizing [(6):

(o)
o l”<9(8)

s+ — (o) : (4.4)

~—

which is the Newton-Raphson method. The procedure is run until there is no significant
difference between 6(*) and (1) 2

O+ = 9 is equivalent to I(§®®)) = 0. This demonstrates that when the algorithm
has converged, we have reached a stationary point of I(f). This point could be a maximum
point, a minimum point or even a saddle point. However, if I7(#**)) < 0, the point is a
maximum point. This should be checked in each case. Figure 4.2 shows the first four
iterations of a Newton-Raphson algorithm. The results from the last two iterations are
almost indistinguishable, indicating that convergence is reached.

When [(0) is a log-likelihood function, this algorithm can be written as

it — gls) 4

In such cases a convergence point is a maximum point if .J(6)) > 0.

The Newton-Raphson algorithm will only converge to the closest stationary point. If
several such points are present, the choice of starting value becomes critical. In many

20ther convergence criteria could also be used but will not be considered here

12



cases of statistics, reasonable starting values can be found by other means, i.e. moment
estimators.

Example 1 (Muon decay, cont.)
We want in this case to maximize the log-likelihood function

(o) = Z log(1 + ax;) — nlog(2)
i=1
In section 1 we found that

s(a) =1(a) =)

=1

e
1+ OéLL’i.

Differentiating once more with respect to a gives

(@)= —J(a)=~-Y_ (1+$T)2

=1

Note {"(a) is always negative (and therefore J(«) is always positive) for all possible a
values, showing that the log-likelihood function is concave and unimodal.

The iterative steps in the Newton-Raphson algorithm are given by

Din1 Tratoa;
=1 1—}—(1/(5)3:7;

O[(8+1) — O{(S) + m - .

Programwindow 4.1 describes a R function for running the Newton-Raphson algorithm
using a stopping criteria

|t — o] < 0.000000000001.

The small value on the right hand side is much smaller than necessary, but is used in order
to demonstrate properties of the Newton-Raphson algorithm. A run of this function gave
the following results:

[teration s al®) I(a®)
0 0.6000000 -19.65135
1 0.5040191 -19.58507
2 0.4944591 -19.58454
3 0.4943927 -19.58454
4 0.4943927 -19.58454

We see that after one iteration, one decimal is correct. This is increased to three decimals
after 2 iterations and to at least 7 decimals after 3 iterations, illustrating the rapid increase

13



nr.muon <- function(x,alpha0=0.6,eps=0.000001)
{
n = length(x)
diff = 1;
alpha = alphaO;
1 = sum(log(l+alpha*x))-n*log(2)
while(diff>eps)
{
alpha.old = alpha
s = sum(x/(1+alphax*x))
Jbar = sum((x/(1+alpha*x))~2)
alpha = alpha+s/Jbar
1 = sum(log(l+alpha*x))-n*log(2)
diff = abs(alpha-alpha.old)
}
list(alpha, Jbar)
}

Programwindow 4.1: R code for running Newton-Raphson on muon decay example.

in accuracy for the Newton-Raphson algorithm. Further, since the log-likelihood funcion
is concave and unimodal, the resulting point is a maximum point.

The Fisher information is in this case

n ! L |
= —1)d d
2a2[/_1(ax )x+/_11+ax 7]

—n n I+«
-4 4.
a? +20z3 Og(l—a) (45)

For a = 0.4943927, T = 11.78355 giving an approximative standard error equal to 0.291
for a. Using the observed information, the standard error would be estimated to 0.297. [

The argument for deriving the Newton-Raphson algorithm for optimization in one

14



dimension can be directly extended to multi-dimensional problems giving the multi-para-
meter Newton-Raphson method:

-1
g+t — gls) _ [l//(e(s))} l’(O(S)) (4.6)

where I'(6) now is a vector consisting of the partial derivatives while 1”(0) is a matrix
with (i,7) entry equal to the second derivative with respect to 6; and 6;. 1"(0) is usually
denoted as the Hessian matrix. The algorithm can be written as

0+ = 9 1 J71(99)s(0). (4.7)

for likelihood optimization, where s(8) is the score function while J(8) is the observed
information matrix. In order to check if the resulting point is a maximum point, we
need to see if the observed information matrix is positive definite, which is the case if all

~

eigenvalues of J (@) are positive.

Example 2 (Rainfall data, cont.)
In this case we want to maximize

l(a,\) =nalog(N) + (o — 1) Zlog(xi) - /\in —nlog(T'(a)).

The first derivatives (or score functions) are given by (1.2)-(1.3) while the second derivatives
are

0?2 B I'(a)(a) — T'()? 0? -1

gazt(@ ) == M(a)? aa! (@M = 4
o? i
_a/\zl(a, A) = — nal (4.9)

A problem with implementing the Newton-Raphson algorithm in this case is that the first
and second derivatives of the gamma function is not directly available. Numerically these
can however be approximated by

Do+ h) —T(«a)

IM(a) =

8

F//(a) ~

h
Ma+h)—T"(a) T(a+2h)—2I(a+h)+T(e)
h

for h small®.

3Better approximations are possible, but the simple choice will be sufficient here. Note that h shouldn’t
be chosen too small, because round-off errors in the calculation of I'(«) on a computer then can make the
approximation bad, see Van Loan (2000, sec. 1.5.2)

15



Programwindow 4.2 describes a R function for running the Newton-Raphson algorithm
using a stopping criteria

S [lal Y — ol + AP — AP < 0.0001.

%

i

A run of this function, using the moment estimates for o and A\ as starting values, gave
the following results:

Iteration s al®) M) 1(0©)
0 0.3762506 1.676755 183.3004
1 0.4306097 1.919006 185.3015
2 0.4404563 1.962887 185.3477
3 0.4407907 1.964378 185.3477
4 0.4407914 1.96438  185.3477
5 0.4407914 1.96438 185.3477
6 0.4407914 1.96438 185.3477

Also for this example, convergence is fast. The algorithm is however sensitive to starting
values. Using a® = A9 =1, both a® and A" becomes negative, resulting in that the
algorithm crashes. We will in Section 6 see how this can be avoided.

The observed information matrix J(0) = —1"(0) is directly available from the Newton-
Raphson algorithm. Note from (4.8)-(4.9) that J(0@) do not depend on the observations,
resulting in that the Fisher information matrix in this case is equal to the observed one.
Inserting the estimate of 8 we get

1(5): [1394.1 —115.6}’ 1_1(5):

0.00114 0.0051
—-115.6  25.9

0.0051 0.0613
giving approximative standard errors 0.0337 and 0.248 for & and /):, respectively.

Note that since J(0) = I(6), J(0) will be positive definite for all values of 8. The
log-likelihood function is then concave, resulting in that the values of (@, A) obtained by
the Newton-Raphson algorithm is equal to the global maximum. ]

Example 3 (Leukemia data, cont.)
The log-likelihood is given in (1.4) while the score functions are given in equations (1.5)

16



nr.gamma <- function(x,eps=0.000001)
{
n = length(x);sumx = sum(x);sumlogx = sum(log(x))
diff = 1;h = 0.0000001;

alpha = mean(x)"2/var(x);lambda=mean (x)/var (x)
theta = c(alpha,lambda)

while(diff>eps)

{

theta.old = theta
g = gamma(alpha)
dg = (gamma(alpha+h)-gamma(alpha))/h
d2g = (gamma(alpha+2+*h)-2*gamma(alpha+h)+
gamma (alpha))/h"2
s = c(n*log(lambda)+sumlogx-n*dg/gamma (alpha),
n*alpha/lambda-sumx)
Jbar = matrix(c(n*(d2g*g-dg~2)/g"2,-n/lambda,
-n/lambda,n*alpha/lambda”2) ,ncol=2)
theta = theta + solve(Jbar,s)
alpha = theta[l];lambda = thetal[2]
diff = sum(abs(theta-theta.old))
}
list(theta=theta, Jbar=Jbar)
}

Programwindow 4.2: R code for running Newton-Raphson on gamma distributed data.

and (1.6). Further

0? 8 B(B+1
Jl,l = — wl(e) = —2—2 -+ (T) ;(xZ/CK)B,
0? =

Tia == 5agl(6) = 2 é;(ggi/a)ﬂ _ g;(xi/a)ﬁlog(xi/a),
62

Joo = — 8_52

16) = 5+ D (/o) log(r/)]"

Programwindow 4.3 shows R code for a Newton-Raphson algorithm in this case.

starting values a(® =20 and () = 1 and a convergence criterion

2D — o] 486D — 3E)| < 0.00001,

17
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we get the following results:

Iteration s al®) B 1(0©)
0 10.00000 1.0000000 -138.00580
1 11.88883 0.8904244  -62.98770
2 15.09949 0.9287394  -62.22634
3 16.74320  0.9244928 -62.10186
4 17.17639 0.9220478  -62.09619
) 17.20186 0.9218854  -62.09617
6 17.20194 0.9218849 -62.09617
7 17.20194 0.9218849 -62.09617

Inserting 6 for 6 into J (0) gives

6) =

J@: 0.0460 —0.43241’ T

24.5071 0.2919
—0.4324  36.3039

0.2919 0.0310
giving approximate standard error 4.9505 for & and 0.1761.

Also this Newton-Raphson algorithm is sensitive to the starting values chosen. With
a® =20 and @ = 2, both a® and M) become negative, which are illegal values for
these parameters. O

An advantage in using the Newton-Raphson algorithm for statistical problems, is that
log-likelihoods in many cases are close to quadratic functions around their maximum points.
This is connected to that maximum likelihood estimators are approximately normally dis-
tributed (the logarithm of a Gaussian density is a quadratic function). In such cases, the
approximation Zg(&) becomes a very good approximation near the maximum point.

In more complex situations, the use of a Newton-Raphson algorithm may be more
problematic. In the next sections we will discuss modifications of the Newton-Raphson
algorithm, making it more robust.

5 Fisher’s scoring algorithm

Figure 5.1 illustrates one type of problem that can occur when using the Newton-Raphson
algorithm. 6 is given in a point where [() is convex (that is the second derivative is
positive). Using (4.3) will give a reduction in [, since (4.3) in this case finds a minimum

point of [5(0).

This problem with the Newton-Raphson method is directly translated to the multi-
parameter case. In the general case, if at least one of the eigenvalues of the Hessian matrix
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nr.weibull = function(x,thetal,eps=0.000001)
{
n = length(x);
sumlogx = sum(log(x));
diff = 1;theta = thetal;alpha = thetal[l];beta = thetal2]
while(diff>eps)
{

theta.old = theta

wl = sum((x/alpha) “beta)

w2 = sum((x/alpha) “beta*log(x/alpha))

w3 = sum((x/alpha) “beta*log(x/alpha)~2)

s = c(-n*beta/alphatbeta*wl/alpha,

n/beta-n*log(alpha)+sumlogx-w2)

Jbar = matrix(c(-n*beta/alpha”2+beta*(beta+l)*wl/alpha”2,
n/alpha-wl/alpha-beta*w2/alpha,
n/alpha-wl/alpha-beta*w2/alpha,n/beta”2+w3),

ncol=2)

theta = theta + solve(Jbar,s)

alpha = theta[l];beta = thetal[2]

diff = sum(abs(theta-theta.old))

}
list(alpha=alpha,beta=beta, Jbar=Jbar)

3

Programwindow 4.3: R code for running Newton-Raphson on Weibull distributed data.

1"(0) is positive, a smaller value of [(€) can be obtained from one iteration to the other.
A standard trick in numerical literature for such cases is to replace the Hessian matrix
with another matrix which is negative definite. For likelihood optimization, this means
replacing J (@) with a positive definite matrix. A possible candidate could be the identity
matrix, but a more efficient choice is available. The Fisher information I(0) is equal to
the expectation of J (@), indicating that these two matrices should be similar. But I(8)
will always be positive definite, making this matrix a possibility for replacing J (). This
is the Fisher’s method of scoring (or the scoring algorithm):

9t — 9 4 1-1(9))5(0). (5.1)

Note that for this algorithm, the Fisher information is directly available.

Example 1 (Muon decay, cont.)
The Fisher information is in this case given by (4.5). Based on this, a scoring algorithm
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Figure 5.1: Example of a one-dimensional function [(¢) which is to be maximized (solid
line). The quadratic approximation ls(¢) defined in (4.1) is shown as a dashed line with
the value of @ marked by the vertical line.

can be constructed as given in Programwindow 5.1. Note that the only change from the
Newton-Raphson algorithm given in Programwindow 4.1 is the use of I(6) instead of J ().
Running this algorithm with convergence criterion

|t — )] < 0.000001,

convergence was obtained after five iterations. The a value was exactly the same as that
obtained by the Newton-Raphson algorithm, and also the number of iterations needed for
convergence is comparable for the two algorithms. Il

In general it is not possible to say which algorithm that would be preferable if both
converges. The next example illustrates a situation where the Newton-Raphson algorithm
have problems in converging while the scoring algorithm is more robust.

Example 4 (Truncated Poisson)
We will consider an example which involves the estimation of the parameter of a truncated
Poisson distribution given by

6re=?
zl(1 — e ?)’

flx;0) = xr=12,...

Such a density might arise, for example, in studying the size of groups at parties. The data
in Table 5.1 is taken from Everitt (1987) and represents samples from this distribution.

Assume n is the number of observations and x; is the value of observation 7. The
likelihood function is given by

lik (8 ﬁ 9122_ —
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scoring.muon <- function(x,alpha0=0.6,eps=0.000001)
{
n = length(x)
diff = 1;
alpha = alphaO;
1 = sum(log(l+alpha*x))-n/2
while(diff>eps)
{
alpha.old = alpha
s = sum(x/(1+alphax*x))
Ibar = n*(log((1l+alpha)/(1-alpha))/(2*alpha~3)-1/(alpha~2))
alpha = alphats/Ibar
1 = sum(log(1l+alpha*x))-n/2
diff = abs(alpha-alpha.old)
}
list(alpha,Ibar)
}

Programwindow 5.1: R routine for estimation in the muon decay example using the scoring
algorithm.

x 1 2 3 4 5 6
fr 1486 694 195 37 10 1

Table 5.1: Grouped data from a truncated Poisson distribution, where f, represents the
frequency of x. Table 4.1 from Everitt (1987).

and the log-likelihood

n

1(0) = Z[:L‘l log(6) — 6 — log(z;!) — log(1 — e™%)]

i=1
=Const. + log () Z z; —nh —nlog(l —e?).
i=1
Differentiating with respect to 6, we get

n —0

l,<9) — Zi:l Ty -n €

0 nl—e—e'

If we put I'(0) to zero we find that the resulting equation has no explicit solution for §. We
will apply both the Newton-Raphson and the scoring algorithms for obtaining numerical
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nr.trpo = function(x,thetal,eps=0.000001)
{
n = sum(x);i = 1:6;sumx = sum(x*i)
theta = thetal;diff =1
while(diff> eps)
{
theta.old = theta
s = sumx/theta-n/(1l-exp(-theta))
Jbar = sumx/theta”2-n*exp(-theta)/(l-exp(-theta)) 2
theta = theta+s/Jbar
diff = abs(theta-theta.old)
+
list(theta, Jbar)
}

Programwindow 5.2: R routine for estimation in the truncated Poisson distribution using
the Newton Raphson algorithm.

solutions. The second derivative is given by

" Z?: Li 6_9
re)=-=g e

In Programwindow 5.2 R code for performing the Newton Raphson algorithm is given.
Using this code with starting value #(0) = 1.5 gave § = 0.8925 after 6 iterations. On the
other hand, starting at 6 = 2.0 or larger, the procedure diverged, demonstrating the
non-robustness of the Newton-Raphson algorithm.

Turn now to the scoring algorithm. The expectation in the truncated Poisson distribu-
tion is §/(1 — e~?), which gives the Fisher information

In Programwindow 5.3, R code for performing the scoring algorithm is given. Note that
the only change from the Newton-Raphson algorithm is the replacement of J(#) with 1(9).
Starting at 8 = 1.5, only 4 iterations were needed for convergence to 0 = 0.8925. For
60 = 2.0, convergence was also obtain, now after 6 iterations. Convergence was also
obtained for all other values tried out.

Inserting é\, we obtain [/ (5) = 1750.8 giving an approximate standard error for ) equal
to 0.0239. O

22



scoring.trpo = function(x,thetal,eps=0.000001)
{
n = sum(x);i = 1:6;sumx = sum(x*i)
theta = thetal;diff =1
while(diff> eps)
{
theta.old = theta
s = sumx/theta-n/(1l-exp(-theta))
Ibar = n*(1/theta-exp(-theta)/(1-exp(-theta)))/(1-exp(-theta))
theta = theta+s/Ibar
diff = abs(theta-theta.old)
+
list(theta,Ibar)
}

Programwindow 5.3: R routine for estimation in the truncated Poisson distribution using
the Fisher scoring algorithm.

6 Modifications of the Newton-Raphson and the scor-
ing algorithms

Direct use of the Newton-Raphson or the Fisher scoring algorithm can in many cases be
problematic. In this section we will discuss three possibilities for improving these algo-
rithms, reduction of the optimization problem to a smaller dimension, reparametrization
and smaller jumps.

6.1 Dimension reduction

For some maximum likelihood problems where full analytical solutions are impossible, some
of the parameters can be partly found as functions of others. We will illustrate this through
the leukemia data example.

Example 3 (Leukemia data, cont.)

As discussed before, the Newton-Raphson algorithm is very sensitive to starting values for
this problem. Further, using the scoring algorithm is problematic because of difficulties in
calculation of the expected information matrix. Inspecting the scoring function (1.5), we
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Figure 6.2: Profile log-likelihood () given in (6.2) for the leukemia data.

see however that solving the equation s1(0) = 0 with respect to a (keeping 3 fixed), we
obtain

1 n
_ _E p11/8
[n izle] )

Here we have used the notation a(/3) to make it explicit that the optimal value of a depends
on the valu of . Now insert this solution for « into the log-likelihood function (1.4) to
obtain:

3

ls(6) =l(a(p), B)
no B

1 Z;
=nlog(5) ~ n3log((1, 371" + —1Z»ma %y
=1 =1 z

1
=nlog(f3) — nlog(] - E a? - 1) E log(z;) — n. (6.2)
i=1 =

Note that the likelihood function has been reduced to a function in one variable, which is
much easier to maximize. The partially maximized log-likelihood function lg(3) is called
the profile log-likelihood function and is plotted in Figure 6.2.

Maximization of [z(/5) can now be performed by a Newton-Raphson algorithm. We
have

n Yoz log ;)
——n log(x;)
5 Zz 1 z Z

n D i T 10g($z)2 Zzn 1%6 - Qi 10g($z))2

B == SR
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nr.profile.weibull = function(x,betal,eps=0.00001)
{
n = length(x);sumlogx = sum(log(x));
diff = 1;beta = betal
while(diff>eps)
{
beta.old = beta
wl = sum(x"beta)
w2 = sum((x"beta)*log(x))
w3 = sum((x"beta)*log(x)*log(x))
w4 = sum(log(x))
11 = n/beta-n*w2/wl+wd
12 = -n/(beta”2)-n* (w3*wl-w2"2)/(w1~2)
beta = beta.old - 11/12;
diff = abs(beta-beta.old)
}
alpha = (w1/n)~(1/beta)
list(alpha=alpha,beta=beta)
}

Programwindow 6.1: R routine for optimization of the profile likelihood function l3(/3)
given in (6.2) with respect to [ using the Newton-Raphson algorithm.

Programwindow 6.1 shows R code for the Newton-Raphson. A run of this algorithm with
B = 1.0 and convergence criterion

18 — 1| < 0.000001,

gave the following results:

Iteration s al®) B 15(8®))
0 17.93750 1.0000000 -62.19030
1 23.32840 0.9165698 -66.60703
2 16.87444  0.9218605 -61.81284
3 17.20042  0.9218849 -62.09486
4 17.20194 0.9218849 -62.09617
) 17.20194 0.9218849 -62.09617

which is the same results obtained in Section 4, but convergence was obtained with fewer
iterations.

Although a more efficient algorithm can be constructed in this way, the algorithm is
still sensitive to starting values. Starting with 5(°) = 2.0, the following happened:

25



Iteration s al®) B 15(B)
0 26.6118 2.0000000 -73.6808
1 2.370984e-10 -0.2961171 NaN

It is possible to show that [5(3) < 0 for all values of 3. Nevertheless, the modified
Newton-Raphson algorithm (6.5) fail for some starting values. The reason in this case is
the constraint on the parameter 3 (it needs to be positive). Running the Newton-Raphson,
at the first iteration 5 becomes negative, and the algorithm just gives meaningless results.
How to handle constraints will be discussed in the next subsection. U

6.2 Reparametrization

Many of the parameters involved have restrictions on their values. For the gamma dis-
tributed data discussed in example 2, both parameters needs to be positive. The same is
true for the Weibull data considered in example 3. For both the Newton-Raphson algo-
rithm and the Fisher scoring algorithm, negative values can occur at some iterations, and
the procedures can break down. The basic idea in such cases is to use reparametrization.

Example 3 (Leukemia data, cont.)
Continuing on the profile likelihood discussed in the previous subsection, we will now see
how the constraint S > 0 can be taken into consideration.

Define b = log(f). Since § > 0, b can take values on the whole real line. Rewriting
l5(5) as a function of b, we get

L(b) = nb—n log([% S+ (e = 1) Y log() — . (6.3)

Such a transformation of 5 to b we call a reparametrization of f. We aim at maximizing
l(b) with respect to b. Note that since log(/) is a monotone and invertible transformation,
a maximum point for b directly gives a maximum value for 5. Since § = exp(b), we
automatically obtain § > 0.

To use Newton-Raphson, we need the derivatives:

15 ebob) . 1 <&
lg(b) -n [1 _n 21:1 z; e 0g<$z) + eb—210g($z)]

% Z?:l J’fb n i=1
n eb n n et
1(b) = — ne® w2 @5 log(wi) — 5 300 log(@i) 300 75
b ne l Zn xeb
n =1 "1

n eb n eb n eb
e o 2o @5 log(i)]5 200 o — [ 200, o log(wi)]?
[ 2 2
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Programwindow 6.2 shows R code for a Newton-Raphson algorithm for maximizing [, (b)
with respect to b.

Starting now with 3 = 2.0, the following happened:

[teration s al®) B 15(8™)
0 26.61179 2.000000 -73.68079
1 23.92023 1.662872 -68.31253
2 21.33190 1.366104 -64.63275
3 19.15131 1.129239 -62.71561
4 17.71581 0.976462 -62.14272
5 17.20004 0.921683 -62.09617
6 17.20225 0.921918 -62.09617
7 17.20189 0.921879 -62.09617
8 17.20195 0.921886 -62.09617
9 17.20194 0.921885 -62.09617
10 17.20194 0.921885 -62.09617
Also for more extreme starting values, convergence was obtained in this case. U

6.3 Smaller jumps

Formally, the Newton-Raphson algorithm only finds solutions to the equations
'(0)=0 (6.4)

which is equal to the scoring equations (3.4). From a pure numerical point of view, opti-
mization through searching for solutions of (6.4) is not recommended. By only using the
derivatives of the function, and not the function itself, the algorithm may converge to any
stationary point, not distinguishing between maxima and minima. However, if the function
[ is concave and unimodal, the Newton-Raphson algorithm can be slightly modified such
that convergence can be guaranteed. Consider the iterations

1

g+ — gl _ 50 |:l”(0(5)>i|_ 1(6) (6.5)

where 6() < 1. At each iterations, start with 6¢) = 1. If [(#CTD) < [(9®)), divide 5
by two, and use (6.5) again. Repeat this until /(§+1)) > (). Because [ is concave, it
is always possible to find an §(®) small enough such that this will be satisfied. In many
situations of statistics, the log-likelihood function satisfy this property, making such a
procedure operational.

A similar modification can be made for the scoring algorithm:

i) — g(s) + 5(5)1_1(0(3))(9(0(3)). (6.6)
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Since I(0®)) is positive definite, such an algorithm is guaranteed to converge to a (local)
maxima, even if [(6) is not concave.

Example 2 (Rainfall data, cont.)

For this example, J(0) = I(0), implying that J(0) is positive (semi-) definite while ["(0)
is negative (semi-) definite. An implementation of a Newton-Raphson algorithm (6.5)
allowing for smaller jumps is given in Programwindow 6.3. In order to make negative
values of the parameters illegal, we put the likelihood value in such cases very small (a
better implementation would be to reparametrize, as described in section 6.2).

Running this algorithm with a(®) = A(®) = 1, convergence now was reached after seven
iterations. Note that a smaller ¢ was only necessary in the first iteration. When (a(s), )\(S))
gets closer to the optimal value, no modification of the ordinary Newton-Raphson algorithm
is necessary.

[teration s al®) 3) 109y 5
0 1.0000000 1.000000 -50.9370
1 0.3841504 0.578052 146.8740 0.25
2 0.3518249 0.912280 171.4139 1.00
3 0.4019210 1.423652 182.4078 1.00
4 0.4319168 1.822000 185.1676 1.00
5 0.4402049 1.954300 185.3468 1.00
6 0.4407877 1.964326 185.3477 1.00
7 0.4407914 1.964380 185.3477 1.00
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nr.profile.weibull2 = function(x,beta0,eps=0.000001)

{
n = length(x);sumlogx = sum(log(x))
diff = 1;b = log(betal)
beta = exp(b)
wl = sum(x"beta)
1 = nxlog(beta)-n*log(wl/n)+(beta-1)*sumlogx-n
alpha = (wl/n)~(1/beta)
it =0
while(diff>eps)

{

it = it+1

b.old = b

wl = sum(x” (exp(b)))

w2 = sum((x~ (exp(b))*log(x)))

w3 = sum((x" (exp(b))*(log(x))"2))

11 = n-n*exp(b)*w2/wil+exp(b)*sumlogx

12 = -nxexp(2xb)* (w2+(w3*wl-w2*w2) /wl) /wl +

exp (b) *sumlogx
b=b-11/12

diff = sum(abs(b-b.old))
beta = exp(b)
diff = abs(beta-exp(b.old))

wl = sum(x"beta)
alpha = (wl/n)~(1/beta)
1 = n*log(beta)-n*log(wl/n)+(beta-1)*sumlogx—-n
}
alpha = (wl/n)~(1/beta)
list (alpha=alpha,beta=beta)
}

Programwindow 6.2: R routine for optimization of the profile likelihood function 1,(b)
given in (6.3) with respect to b using the Newton-Raphson algorithm.
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nr.gamma.mod = function(x,theta0=NULL,eps=0.000001)

{
n = length(x);sumx = sum(x);sumlogx = sum(log(x))
h = 0.0000001;diff 1
if (is.null(theta0l))

{alpha = mean(x) ~2/var(x) ;lambda=mean(x)/var(x)}
else

{alpha = thetaO[1];lambda=thetal[2]}
theta = c(alpha,lambda)
1 = n*alpha*log(lambda)+(alpha-1)*sumlogx-

lambda*sumx-n*log(gamma(alpha))

while(diff>eps)

{

theta.old = theta;l.o0ld =1

g = gamma(alpha)

dg = (gamma(alpha+h)-gamma(alpha))/h

d2g = (gamma(alpha+2*h)-2*gamma(alpha+h)+

gamma (alpha))/h"2
s = c(n*log(lambda)+sumlogx-n*dg/gamma(alpha),
n*alpha/lambda-sumx)
Jbar = -matrix(c(-n*(d2g*g-dg~2)/g"2,n/lambda,
n/lambda,-n*alpha/lambda”2) ,ncol=2)
1 = 1.0ld-1;delta =1
while(1l < 1.01d)

{
theta = theta.old + delta*solve(Jbar,s)
alpha = theta[1];lambda = theta[2]
if ((alpha < 0) || (lambda < 0))
1 = -9999999
else
{

1 = n*alpha*log(lambda)+(alpha-1)*sumlogx-
lambda*sumx-n*log(gamma(alpha))
by
delta = delta/2
}
diff = sum(abs(theta-theta.old))
}
list(alpha,lambda, Jbar)
}

Programwindow 6.3: R code for running Newton-Raphson on rainfall data.
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7 Non-linear regression

In this section we will consider maximum likelihood estimation in non-linear regression
models. The general formulation of the model will be

K:g(mmﬁ)—'_ezv izla"'an

where x; is a vector of explanatory variables, B is a p-dimensional vector of unknown
regression parameters and e; is a noise term. We will make the standard assumptions
about these noise terms:

Multiple linear regression is the special case where
9(xi,B) = Bo + Brxiy + -+ Bpo1Tipo1.
We will however in this section allow for nonlinear g functions.

Assume that {(y;, x;),i = 1,...,n} are observed (y; is the observed value of Y;). Under
the assumptions above, the likelihood function is given by

L(B,0%) = H f(ys; @, 8,0%)

i=1
_ H 1 o~ 207 Wi—9(xi,8))?
1 V2mo

while the log-likelihood is

1(8,0%) = Y|~ log(2m) - élogw?) oo~ gl )Y
=— = log(27r) - = log - ZL Z g(x;, B))% (7.1)

not possible to obtain, and numerical methods have to be applied. For notational simplicity,
define

9k (i, B) =7=-9(w:, B) (7.2)
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and
92
BGELE

The partial derivatives of I(3,0?) with respect to B and o2 are then given by the score
function s(3,0?) with elements

gg,l(miwa) g(wivﬂ)' (73)

3k(ﬁ702> :a_ﬁkl(ﬁv )
— LS - gl B B). (7.4)

02 4
i=1

n

5p01(8,0°) =il<ﬁ, 02>
- 204 Z g(z, B))?, (7.5)

(7.6)
and the observed information matrix J(3, 0?) with elements
2 0
(B, 0°) = ~ 95,97, 1(B,0%)
1 n
:; ' [gé(wzaﬁ)gf(wuﬁ) - (yi - g(wiJIB))gg,l(mi?B)]v (77)
1:182
Jrpt1(B,0°) = 85 992 1(B,0°)
04 Z mza gk(mh /6)7 (78)
2 32
‘]p+1,p+1(ﬁ70 ) = - 3028 5 (,3 o ) (7-9)

= 204 UGZ g(z;, B))?, (7.10)

where k,[ = 1,...,p. These quantities can be directly imputed into the general Newton-
Raphson algorithm (4.7).

A more efficient algorithm can be obtained by utilizing that for given 3, an analytical
expression for the maximum likelihood estimate 52 for 02 can be obtained. From (7.1),

9 2
@lQBaO- ) - 20_2 0_4 Z 33“
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and the solution 52 to the equation 5%1(3,0%) = 0 is given by

7(8) = 5 > — gl ) (7.11)

Inserting this into (7.1), we obtain the profile log-likelihood
Is(B) =1(8,5°(8B))

n n 1 n
= — —log(27) — —log(— i — HB))H — =.

5 log(2m) — 5 log(~ ;(y 9(@:, B))*) — 3

Maximizing [g(8) with respect to 8 is equivalent to minimizing
i=1

showing that similarly to ordinary linear regression, maximizing the likelihood is equivalent
to least squares estimation when we assume normal error terms. A Newton-Raphson
algorithm for minimizing S(3) can be directly constructed.

An alternative modification is to replace the observed information matrix J(3,0) by
its expectation, that is the Fisher information matrix I(3,0), similar to the approach in
section 5. Replacing y; by Y; in (7.7)-(7.10) and using that E[Y;] = g(=;, B), we get

[kl /6 U ng w’m gl 3327/6)7 (712)

Iy p1(B,0) =0, (7.13)
n

Lyt1p41(8,0) =51 (7.14)

for k,1 =1, ...,p. It can be shown that the I(3, o) is negative definite. By using this matrix
instead of J (3, o) in the Newton-Raphson algorithm we obtain the scoring algorithm. Both
the Newton-Raphson algorithm and the scoring algorithm are easy to implement. Note
however that the scoring version is somewhat simpler since it only involves first derivatives.
Further, defining 8 = (3, 0?), sg(3,0?) to be the first p elements of s(3,0), s,2(83,0?) to
be the last element ofs(3, o), I5(3,0?) to be the upper left p X p submatrix of I(3,0) and
I,2(8,0%) to be the (p+1,p+ 1) element of I(3,0), the scoring algorithm update can be
written as

ot = | Jo]

0_2)s+1

=" + {Iﬂ(%’ 2 B U } |:S 2 :|

{ﬁ +Iﬂ(ﬁ’ ) 'sa(B,0” ]
(0%)° 4+ 1,2(B,0%) 's52(B,07)
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Noticing now that sg(3, %) and Ig(3,0?) only depend on ¢ through the common factor
#, we see that the updating of B is independent of o2, a reasonable property since as
noted above the optimal value of 3 is unaffected of o2.

It can further be shown that at any iteration,

> - gl B

(02)s+1 —

corresponding to the optimal solution given in (7.11). In practice this means hat we only
need to update B through the scoring algorithm, and after convergence, the estimate of o2
can be obtaind directly through (7.11).

As usual, uncertainty estimates of our estimates are of interest, and can be obtained
through the information matrices. Either the observed or the expected (Fisher) information
matrices can be used.

__ Using the Fisher information matrix, for large sample sizes, the covariance matrix for
(B,5?) is given by

o’I5'(B) 0 } (7.15)

Iﬁl(ﬁvoj): |: 0 204

n

The 0 part on the off-diagonal of I"*(3, ) imply that B and o2 are independent for large
sample sizes.

Example 5 (Weight loss programme)

Venables and Ripley (1999) contain a dataset (originally from Dr. T Davies) describing
weights (y;) of obese patients after different number of days (z;) since start of a weight
reduction programme. The data, also available from the course home page, is plotted in
Figure 7.1. Venables and Ripley (1999) suggests the following model for this dataset:

y; = Bo + Bre 2" ey

So B = (Bo, 1, 52) contains 3 unknown regression parameters in this case. In order to
implement the Newton-Raphson or scoring algorithm, we need the derivatives of the g¢-
function. We have

@0 B)=(1 e bm —Greting,)
0 0 0

g”(xl-,ﬁ): 0 0 _eﬁﬂixi
0 _efﬁﬂixi 616*&%@?

In Programwindow 7.1 R code for maximum likelihood estimation based on Newton-
Raphson is given. Running this algorithm with start values given in the first row of
the table below, convergence was reached after 7 iterations.
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Figure 7.1: Weight loss from an obese patient

Tteration s f” By gy (02 1(BY, (a3)®)
0 90.00000 95.0000 0.005000000 209.38680 -143.25920
1 84.33882 100.5511 0.005199136 0.7286630 -69.66973
2 76.34951 107.1314 0.004415786 1.4737980 -78.82676
3 76.80056 106.8413 0.004541713 0.6565196 -68.31437
4 81.66417 102.3930 0.004880670 0.6063372 -67.28066
5 81.39949 102.6619 0.004886570 0.5695842 -66.46777
6 81.37380 102.6841 0.004884399 0.5695808 -66.46769
7 81.37382 102.6841 0.004884401 0.5695808 -66.46769

In Programwindow 7.2 R code for maximum likelihood estimation based on scoring
algorithm is given. Running this algorithm with start values given in the first row of the
table below, convergence was reached after 4 iterations.

Iteration s (=) B () (62)®  1(BY, (62)®)
0 90.00000  95.0000  0.005000000  209.3868 -143.25920
1 81.40014 102.6569 0.004875966 0.5758058 -66.60900
2 81.37434 102.6836 0.004884439 0.5695808 -66.46769
3 81.37381 102.6841 0.004884401 0.5695808 -66.46769
4 81.37382 102.6841 0.004884401 0.5695808 -66.46769

In Table 7.1 standard errors based on large sample approximations (first row) is given.
An alternative method for estimating the variability of the parameter estimates is boot-
strapping. We will consider bootstrapping in the conditional inference setting. This means
that we consider the explanatory variables to be fixed while the randomness appears from
the noise terms. Bootstrap samples of Y7, ..., Y, can be obtained by

Y =

7

~

g(ww/@> + 6:7

1=1,..,n
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Figure 7.2: Histogram of bootstrap simulations of E) (upper left), B\l (upper right), B\Q
(lower left) and o2 (lower right) for weight loss data.

Parameter Std[3] Std[8:] Std[B.] Std[o?]
Large sample approx 2.5354 2.3273 0.00018 0.1480
Fixed x, Parametric bootstrapping 2.1880 2.0118 0.00017 0.1473

Random =z, Nonparametric bootstrapping 2.1800 1.9927 0.00018 0.1502
Fixed x, Nonparametric bootstrapping 2.2760 2.0776 0.00018 0.1533

Table 7.1: Standard errors based on large sample approximation, parametric and non-
parametric bootstrapping for weight loss data.

*

where e* = (e, ..., €5) are bootstrap samples of the noise terms. Two main alternatives for
sampling e* is possible. In parametric bootstrapping, the model assumption e; ~ N (0, 0?)
is used and we simulate e} through ef ~ N(0,s*). For nonparametric bootstrapping, the
normal assumption is relaxed, and the e}’s are samples from an estimate of the distribution
for e;. This can be peformed by sampling e7, ..., e from (e, ..., e,) with replacement.

The second and third rows in Table 7.1 shows standard errors estimated by parametric
and non-parametric bootstrapping. Figure 7.2 shows histograms of the 1000 nonparametric
bootstrap simulations. They all are close to normal distributions, confirming the large sam-
ple theory and also explaining the similarities of the standard errors obtained from the two
methods. The parametric simulations (not shown) looks very similar. Programwindow 7.3
shows R code for performing parametric and nonparametric bootstrap simulations.
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nr.weight = function(x,y,beta.start,eps=0.000001)

{

#Note: betal[i+1] correspond to beta_i

n = length(x)

diff = 1;beta = beta.start

y.pred = beta[l]+betal[2]*exp(-beta[3]*x)

res = y-y.pred

while(diff>eps)

{
beta.old = beta
s = c(sum(y-y.pred),
sum((res) *exp (-beta[3]*x)),
-beta[2] *sum((res) *exp (-beta[3]*x)*x))
Jbar =
matrix(c(n,sum(exp(-beta[3]*x)),-beta[2] *sum(exp(-beta[3]*x)*x),
sum(exp (-beta[3] *x) ) ,sum(exp(-2*beta[3]*x)),
sum( (res-beta[2] *exp(-beta[3]*x))*exp(-beta[3]*x) *x),
-beta[2] *sum(exp (-beta[3]*x)*x),
sum((res-beta[2] xexp(-beta[3]*x))*exp(-beta[3]*x)*x),
-beta[2] *sum((res-beta[2] *exp(-beta[3]*x)) *
exp(-beta[3]*x)*x*x)) ,ncol=3)
beta = beta.old + solve(Jbar,s)
y.pred = betal[l]+betal[2]*exp(-betal[3]*x)
res = y-y.pred
diff = sum(abs(beta-beta.old))
}
sigma = mean((res)~2)
list(beta=beta,sigma=sigma, Jbar=Jbar)

3

Programwindow 7.1: R code for running Newton-Raphson on weight loss data.
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scoring.weight = function(x,y,beta.start,eps=0.000001)
{
#Note: betal[i+1] correspond to beta_i
n = length(x)
diff = 1;beta = beta.start
y.pred = betal[l]+beta[2]*exp(-beta[3]*x)
while(diff>eps)
{
beta.old = beta
s = c(sum(y-y.pred),
sum( (y-y.pred) *exp(-beta[3]*x)),
-beta[2] *sum((y-y.pred) *exp(-beta[3] *x) *x))
Ibar = matrix(c(n,sum(exp(-beta[3]*x)),
-beta[2] *sum(exp(-beta[3]*x)*x),
sum(exp(-betal[3]*x)) ,sum(exp(-2*betal[3]*x)),
-beta[2] *sum(exp (-2*beta[3] *x) *x) ,
-beta[2] *sum(exp (-beta[3]*x)*x),
-beta[2] *sum(exp (-2*beta[3] *x) *x) ,
betal[2] *beta[2] *sum(exp (-2*beta[3]*x)*x*x)) ,ncol=3)
beta = beta.old + solve(Ibar,s)
y.pred = betal[l]+betal[2]*exp(-beta[3]*x)
diff = sum(abs(beta-beta.old))
+
sigma = mean((y-y.pred)~2)
list (beta=beta,sigma=sigma,Ibar=Ibar)

}

Programwindow 7.2: R code for running the scoring algorithm on weight loss data.
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n = dim(wtloss) [1]
fit = scoring.weight(wtloss$days,wtloss$weight,c(90,95,0.005))
beta = fit$beta
sigma = fit$sigma
ypred=beta[1]+beta[2] *exp(-beta[3] *wtloss$days)
res=wtloss$weight-ypred
B = 1000
beta.star = matrix(NA,nrow=B,ncol=3)
sigma.star = rep(NA,B)
for(b in 1:B)
{
res.star = sqrt(sigma)*rnorm(n)
weight.star = ypred+res.star;
fit = scoring.weight (wtloss$days,weight.star,beta);
beta.star[b,] = fit$beta
sigma.star[b] = fit$sigma

n = dim(wtloss) [1]
fit = scoring.weight(wtloss$days,wtloss$weight,c(90,95,0.005))
beta = fit$beta
sigma = fit$sigma
ypred=betal[1l]+beta[2] *exp(-beta[3]*wtloss$days)
res=wtloss$weight-ypred
B = 1000
beta.star = matrix(NA,nrow=B,ncol=3)
sigma.star = rep(NA,B)
for(b in 1:B)
{
res.star <- sample(res,n,replace=T)
weight.star = ypred+res.star
fit = scoring.weight (wtloss$days,weight.star,beta);
beta.star[b,] fit$beta
sigma.star[b] = fit$sigma

Programwindow 7.3: R code for parametric (upper) and nonparametric (lower) bootstrap-
ping on weight loss data.
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8 Logistic regression

In linear regression the response is usually assumed to be on a continuous scale. Many
other types of responses do however exist, making the need for different regression methods.
In Table 8.2, a data set is given where the response is whether a beetle given a dose of
poison has died or not, i.e., a binary response. The explanatory variable is the amount of
poison. The data are grouped since many beetles are given the same dose.

Dose  Number of Numbers
insects killed
1.6907 59 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 53
1.8610 62 61
1.8839 60 60

Table 8.2: The mortality of beetles against dose of poison.

Assume Y] is a binary response while z; is a explanatory variable. In linear regression,
the expected response is modeled as a linear function of the exploratory variable:

EY;] = Bo + Brz;.

Note however that in the case of binary response, the expectation is equal to the probability
for a beetle to die, a number between zero and one. The linear regression model is surely
inappropriate since the expected value may vary from —oo to co.

In logistic regression, the response is modeled by
Y; ~ binom(1, p(z;, B)),
(s, B) = exp{fo + fizi} (8.16)
v 1+ exp{fo + fr:}’

By making the usual assumption that all observations are independent, the likelihood
function becomes

L(B) = Hp(xi,myi(l — p(zi, B)) V.

As usual, we consider the log-likelihood:

n

I(B) = Z[yz log(p(zi, 8)) + (1 — yi) log(1 — p(z;, B))].

i=1
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Elementary calculations show that the scoring function is equal to

e >imalyi — plai, B)]w;

9B

s(B) = [%Lﬁi)] — [ Yo lyi — p(xi, B)]

while the observed information matrix is given by

| mip(x, B)A = plxi, B)) Yoy plws, B) (1 — plxi, B));
J(B) = |:Z;L:1 plxi, B)(1 = plzi, Bz S, p(xs, B)(1 — play, B))a? (8.17)

Note that J(8) do not depend on the random observations y;, showing that the expected
information matrix I(8) is equal to J(B). This implies that J(8) is always positive
definite, making the log-likelihood function concave with only one (global) maxima.

In Programwindow 8.3, an R routine for optimizing the log-likelihood for the logistic
model is given. Although the log-likelihood is unimodal, a modification of the ordinary
Newton-Raphson algorithm allowing for smaller jumps (as described in section 6.3) is
needed in order to make the algorithm robust towards starting values.

Example 6 (Beetle data)

To illustrate logistic regression, we will analyze the data given in Table 8.2. Note that
these data are grouped. In order to use the expressions derived above, these data needs to
be converted to individual data. This can be performed by the following R commands:

beetle = read.table("beetle.dat",col.names=c("dose","n","y"))
m = dim(beetle) [1]

x = NULL
y = NULL
for(j in 1:m)
{
x = c(x,rep(beetle$dose[j],beetle$nljl))

y = c(y,rep(1,beetle$y[j]),rep(0,beetle$n[jl-beetle$y[jl))
}

beetle2 = data.frame(dose=x,resp=y)

Running the routine described in Programwindow 8.3, convergence was reached after 6
iterations to By = —60.72 and pB; = 34.27. The values at different iterations are shown
below.

42



Iteration s B¢) ) 1(BYy 6
0 2.00000 1.00000  -721.3648
-104.29550 57.96621 -248.0056 0.25
-45.92656  25.95912 -191.0286 0.50
-57.76158  32.60580 -186.4047 1.00
-60.58140  34.19359 -186.2358 1.00
-60.71715  34.27016 -186.2354 1.00
-60.71745  34.27033 -186.2354 1.00
-60.71745  34.27033 -186.2354 1.00

~N O T W N+~

Concerning the uncertainty involved in these estimates, the large sample approximation
to the covariance matrix is given directly from (8.17) with 3 = 3 inserted. This gave
estimated covariance matrix

- 26.8308  —15.0822
VarlB = | J15 0822 84806 |-

and standard errors 5.1807 and 2.9121 for 30 and B\l, respectively. Il

9 Discussion

In this note we have discussed several different numerical procedures for optimization.
Although our primary concern has been on maximum likelihood problems, the procedures
could just as well have been applied to other optimization problems.

In general it is difficult to give recommendations on which procedure to use. Some
comparative remarks (Titterington et al. 1985) can be made though:

(a) Direct procedures will in many cases work, but convergence could be extremely slow.

(b) The Newton-Raphson method and the Method of Scoring are usually more compli-
cated, and there is no guarantee of monotonicity.

(c) If the Newton-Raphson method converges, it converges fast (second order).

(d) For the Newton-Raphson method, the observed information matrix is directly given
as part of the algorithm, while for direct maximization some further calculations are
needed in order to obtain this.

(e) In general, no method is guaranteed to give the global optimum. The algorithms
should therefore be run with different starting values.
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nr.logist = function(data,beta.start,eps=0.000001)
{
x=datal,1];y=datal,2];n=length(x)
diff=1;beta=beta.start
p = exp(betall]l+betal[2]*x)/(1+exp(betall]+betal[2]*x))
1 = sum(y*log(p)+(1-y)*log(1l-p))
while(diff>eps)
{
beta.old = beta
l.o0ld =1
p = exp(betal[l]+beta[2]*x)/(1+exp(betal[l]+betal2]*x))
s = c(sum(y-p),sum((y-p)*x))
Jbar = matrix(c(sum(p*(1-p)),sum(p*(1-p)*x),
sum(p* (1-p) *x) , sum(p* (1-p) *x*x) ) ,ncol=2)
1=1.0l1d-1;delta=1
while(1<1.01d)
{
beta = beta.old + delta*solve(Jbar,s)
p = exp(betal[l]+beta[2]*x)/(1+exp(betal[l]+beta[2]*x))
1 = sum(y*log(p)+(1-y)*log(1-p))
delta=delta/2
}
diff = sum(abs(beta-beta.old))

}
list (beta=beta)
}

Figure 8.3: R code for running Newton-Raphson algorithm for logistic regression.

44




A R code

x = scan("ILLRAIN.DAT",na.strings="x")

x = x[!is.na(x)]

alpha = seq(0.35,0.55,0.005) ;lambda = seq(1,3,0.05)

loglik = matrix(nrow=length(alpha),ncol=length(lambda))

n = length(x);sumx=sum(x) ;sumlogx = sum(log(x));

for(i in 1:length(alpha))

for(j in 1:length(lambda))

loglik[i,j] = n*alphal[i]*log(lambdal[j])+(alpha[i]-1)*sumlogx—

lambda[j] *sumx-n*log(gamma (alpha[i]))

par (mfrow=c(1,2))

#image (alpha,lambda,exp(loglik),col=gray((0:32)/32))

#image (alpha,lambda,loglik, col=gray((0:32)/32))

persp(alpha,lambda,exp(loglik) ,theta=330,phi=45,shade=1,zlab="1ik")

persp(alpha,lambda,loglik,theta=330,phi=45,shade=1,zlab="1")

Programwindow A.1: R code for plotting likelihood function (figure 1.3) for rainfall data.
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