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NOTE: Several of the questions in the test have no unique answer; there will always be a subjective 
element, in particular in selecting the “best” model. Other alternatives than the ones I present here 
may be seen as equally good, if the argumentation is solid. 



Ex. 1 
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Data: KPI from SSB from Jan. 
1986 to March 2006, 243 monthly 
observations. The data are shown 
below. A clear, nearly linear trend 
is the main feature of the data. 
There seems to be some peculiar 
“humps” around observation no. 
200. 
 
 
 
 
a) 
This clear trend, combined with the very persistent ACF shown below shows a clear need for 
differentiation.  

 
The series after a lag 1 d
is shown to the right. 

ifferentiation 

The most distinct feature is the rather 
erratic behaviour between 
observations 203 and 209, i.e. 
November 2002 to July 2003, and a 
slightly larger variability towards the 
end of the series. Thus vaguely 
suggest a log-transformation of the 
data, although the need for a 
transformation is by no means 
obvious. A log-transformation 
implies that the KPI varies on a 
relative rather than an absolute 
scale, which is consistent with 
economic theory.  

The 1. difference of the log-
transformed data is shown to the 
right, and show the same features. 



 
 
The highly significant, slowly decaying peaks in the ACF at lags 12, 24 and 36 stand out in the 
figure above, showing a need for differentiation at lag 12 as well. Below are shown the ACF and 
PACF after differentiation both at lag 1 and lag 12. 

There are a number of borderline significant values in the ACF and PACF, but the negative peak at 
lag 12 stands out. Ignoring all lags but 12, 24 and 36, the patterns in the ACF and PACF are con-
sistent with a SARIMA(0,1,0)x(0,1,1)12 model with seasonal MA-parameter around –0.5. Thus, the 
first model proposal is this SARIMA(0,1,0)x(0,1,1)12 model. Preliminary estimation, using the 
innovations method 
in ITSM, gives  
Θ12 = -0.53, and the 
results from ML esti-
mation are shown to 
the right: 

The Θ12 value of –
0.77 is significant. 
A plot of the resi-
duals (not shown) 
shows some rather 
extreme values in 
early 2003, as 
expected from the 
visual inspection of 
the series. The most 
extreme is almost 6 



standard deviations, and way outside the natural variation. This value alone can easily result in 
some “spurious” residual autocorrelations. 

The residual ACF has two (barely) significant values at lags 1 and 2, a cluster of significant or near 
significant vales around lag 20, as well as some other scattered near significant values. The Ljung-
Box test for randomness rejects the white noise hypothesis at level 0.1%.  
 
Refining the model to a SARIMA(0,1,2)x(0,1,1)12 model, where the non-seasonal MA-parameters 
are expected to be 
fairly small, gives 
the model to the 
right. Note that the 
non-seasonal para-
meters are signi-
ficant, and that the 
estimates for the 
seasonal parameter 
has a much smaller 
standard deviation 
compared to the 
previous model. The 
AICC criterion has 
improved as well, 
while the BIC has 
become slightly 
worse. 

For this model the residual ACF and PACF show no clear patterns. There are a few scattered near-
significant values, but the Ljung-Box statistic is not significant even at the 45% level. The only 
statistic to shed some doubt on the white noise hypothesis is the rank test, which rejects the 
hypothesis at the 1% level. 
 
Conclusion: The SARIMA(0,1,2)x(0,1,1)12 with the parameters from above is an acceptable model 
for the KPI. 
 
b) 
Forecasts for the period Jan. 2005- 

  95% pred. bounds  
 Prediction Lower Upper Actual 
Jan. 2005 113.7 113.0 114.5 113.6 
Feb. 2005 114.1 113.0 115.2 113.7 
March 2005 114.2 112.7 115.6 114.2 
April 2005 114.0 112.3 115.8 114.8 
May 2005 113.9 111.9 115.9 115.2 
June 2005 113.8 111.6 116.1 115.3 
July 2005 113.5 111.1 115.9 114.9 
Aug. 2005 113.2 110.6 115.8 115.1 
Sep. 2005 113.7 111.0 116.5 116.0 
Oct. 2005 113.8 110.9 116.8 116.0 
Nov. 2005 113.9 110.8 117.0 116.0 
Dec. 2005 114.1 110.9 117.4 115.9 
Jan. 2006 114.1 110.7 117.6 115.6 
Feb. 2006 114.5 110.9 118.2 116.6 
March 2006 114.5 110.7 118.5 116.9 

March 2006 based on data throughout 
Dec. 2004: 

Using ITSM with the above model gives 
the forecasts in the table to the right: 

After the first three months, the predic-
tions fall consistently below the actual 
values. This is probably caused by the 
fall in the KPI in the first half of 2002. 
This has resulted in a flattening of the 
local trend, and the model has not yet 
“recovered” and picked up the increase. 

The above forecasting and comparison 
is done “within sample”. This means 
that the data that we forecast have also 
been used to identify the model and 



estimate its parameters.  Thus we will expect a better fit to the actual observations than we would 
get from an “out of sample” prediction. 
 
c) 
The KPI values are given with only one decimal. Thus a published value of X will actually be X+ε, 
where ε is the rounding error, uniformly distributed over [-0.05,0.05>. Thus a lower limit for the 1-
step prediction error st.dev. (or any prediction error st.dev. for that matter) is the st.dev. of ε. The 
st.dev. of a uniformly distributed variable is given by its range/√12. In this case the range is 0.1, and 
the st.dev. is 0.1/√12 ≈ 0.029. 
 
d) 
Annual inflation (in %) defined as Yt = (Xt -Xt-12)/ Xt-12

.100%, where Xt is the KPI value for month t 
and Yt is the % change over the last 12 months. 
We have from the exercise text that Yt ≈ (1-B12)ln(Xt ) 

.100%, and assume the approximation to be 
exact in the following. 
 
In part a) we found that (1-B)(1-B12) ln(Xt )=(1+θ 1B+θ 2B2)(1+Θ 12B12)Zt. where Zt is white noise 
with variance σ 2, with the parameters given in part a). But since (1-B12)ln(Xt ) = Yt /100, we have (1-
B) Yt =(1+θ 1B+θ 2B2)(1+Θ 12B12)Ut , where now Ut is white noise with variance 1002σ 2. Thus, Yt 
follows a SARIMA(0,1,2)x(0,0,1)12 model with parameters as found in part a). 
 
Using ITSM with this model, we find the following predictions, based on data up to March 2006. 
From the predictions we can find the standard error, e.g. as (Upper – Prediction)/1.96. The 
probability that the actual value will exceed 2.5% is then 1-Φ((2.5-Prediction)/St.err.), where Φ is 
the standard cumulative normal distribution. 
 
  95% pred. bounds   
 Pred. Lower Upper St. err. Pr(>2.5%) 
Dec. 2006 1.96 -0.51 4.42 1.26 33.3 %
Dec. 2007 1.80 -1.18 4.78 1.52 32.2 %

 
Note that in the analysis above we have assumed the mean of the differentiated series to be 0. 
Subtracting the small and insignificant, but negative mean will introduce a deterministic negative 
trend, which will have a significant impact on the long-term forecasts for the inflation rate. 



Ex. 2 
 

Industrial mixing process, ref. details in the exercise text 

Notation: 
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The dynamics of this industrial process can then be written: 
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This industrial process can be formulated as a state-space model 
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 with state vector Xt=( 1, It, Ot, Rt)’.  
 
NB: Unfortunately there is typing error in the sign of the Rt+1 term in the second line of eq. (1) in 
the exercise text; it should be -, not + ! Also, in the second line of eq. (2) the subscript of Xt was 
erroneously given as t +1 in the exercise text. 
 



a) 
Repeated use of eq. (1) gives: 
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Thus we have the matrices F and G, and the vectors X, V, Y and W as given in the text. 
 
The form and shape of the matrices and vectors in (2), with F and G independent of time, are more 
than sufficient for a state-space representation. In addition, (i): {Vt} must be white noise, (ii): {Wt} 
must be white noise, and (iii): {Vt} and {Wt} independent of each other.  
It is reasonable to assume that the measurement errors, both on the input and on the output, are in-
dependent over time. Then {ZI t} and {ZY t} will be white noise sequences. Furthermore, since {ZR t} 
is the noise in an AR(1) model, it will be white by definition.  
Now, since Vt only contain elements that are linear combinations of ZI and ZR from time t only, and 
{ZI t}and {ZR t}are white noise, (i) is fulfilled. Similarly, {Wt}≡{ZY t}, which is white noise by 
definition, showing (ii). And assuming the measurement error in the output to be independent of 
those in the input as well as the residue noise we obtain (iii).  
Finally, we must assume that the initial state X1 is independent of the noise processes {Vt} and 
{Wt}. 
 
b) 
The state-space representation (2) is stable if all the eigenvalues are strictly within the unit circle. 
Straightforward calculations give that |F-λI| = λ2(1−λ)(ϕ−λ), so the eigenvalues are 0,1 and 
ϕ. Since one of the eigenvalues always = 1, the representation is never stable, according to the strict 
definition. However, the eigenvalue = 1 is related to the constant 1 in the state vector. As long as 
|ϕ|<1, it can be shown that  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
∞→

000
000
000
0001

lim

R

I

In

n

μ
μ
μ

F , so that the only information from the history that persists is the parameter 

values associated with the first, constant element (=1) in the state vector. If we define stable to 
mean that the impact of previous observation vanishes with time, the state space representation is 
stable if |ϕ|<1. 
 



c) 
The ϕ parameter controls the degree of persistence in the residue process.  
ϕ near +1 implies a strong persistence, so that high, or low, amounts of residue will tend to cluster 
in time. This could be the case if the amount of residue is to some extent controlled by temperature, 
humidity or other persistent processes, or the technical condition of the blender. For ϕ =1, Rt will be 
a simple random walk.  
ϕ near –1 implies that a high amount of residue in one batch will tend to be followed by a low 
amount in the next batch, and vice versa. This could be the case if the efficiency of the emptying 
process depends on the volume in the batch, so that the process becomes more efficient (giving less 
residue) if the amount in the blender is large, and similarly the other way around. If so, the 
hypothesis of independence between the input process and the residue process becomes somewhat 
dubious, though. 
For ϕ =-1, Rt will be an oscillating random walk around the mean level μR. 
ϕ near 0 means that the residue process is near white noise, where the residue after each batch is 
nearly uncorrelated with previous and later values. 
For ϕ = 0, Rt-μR is white noise. 
 
d) 
ARMA process for {Ot}.  
 
From (1) we have: 
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The left hand side shows an AR(1) structure. The right hand side is 1-correlated, and thus 
equivalent to an MA(1)-structure. Thus we have that the {Ot} process is an ARMA(1,1): 

 (1-ϕB)(Ot -μI) = (1+θB)Zt.                                                                                     (4) 

The AR parameter ϕ  is the same as in the residue process. θ  and the white noise variance σ2 must 
be found by equating γ  (0) and γ  (1) for the right hand sides of the two representations. 
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. The negative sign for the square root must be chosen so that |θ | < 1, i.e.in the invertible 
region. When τ  is small, so that the residue variance is much smaller than the input measurement 
variance, θ → -1 and the process approaches a non-invertible MA(1) with variance . When τ  is 
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large, so that the residue variance is much larger than the input measurement variance, θ → 0 and the 
process approaches white noise with variance . 2

Iσ
 
e) 
ARMA prosess for {Yt}. 
 
We have from (1) that Yt=Ot+ZYt . Using the results from d), we have that: 
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The parameter θ and the white noise series Zt are as found in d). Again the right hand side is 1-
correlated, and we have an ARMA(1,1) model for {Yt}: 

(1-ϕB)(Yt -μI) = (1+ωB)Ut, where Ut is W.N. with variance ν 
2                        (6) 

We use the same technique as in d). 
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Alternatively, we have from (3) and (1) that  
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Thus, as an alternative to (7), we have: 
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f) 
200 observations of Yt. 

erratic behavior around a fairly stable mean value at appr. 1000. 

 

The ACF and PACF are consistent with an AR(1) model 
with parameter ca. –0.5. There is no sign of any need for 
any MA parameter. Estimation of an AR(1) model gives 
the model to the right: 

An analysis of the residuals shows no sign of model 
inadequacy, and there does not seem to be any room for 
further model improvement. 

Enforcing an MA(1) term gives, as expected, θ very close 
to 0, and far from significant. Thus we continue with the 
simple AR(1) model, which is consistent with the results 
from e) with  
ϕ=-0.51, ω = 0 and ν 

2=1097. 

The plot shows a rather 



Assuming ω = 0, we get from (10): 
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ith fro 1097-0.51, 2 == νϕW m 22 == YI σσ from the text, we 
obtain , as requested. 
 
However, inserting these values into (9) we find , which is far from 
consistent with the lack of an MA term in the ide ay indicate that 
there is a printing error in the exercise text, so that Again, using (9) and 
requiring γ (1)=0, we obtain: 

⇒

Thus the correct solution, consistent with the data, is likely to be σ R =15.7 and σ Ι    =20 / σ Y =9 or 
σ Ι    =9 / σ Y =20. 
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