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NOTE: Several of the questions in the test have no unique answer; there will always be a subjective
element, in particular in selecting the “best” model. Other alternatives than the ones | present here
may be seen as equally good, if the argumentation is solid.



Ex. 1

Data: KPI from SSB from Jan. =
1986 to March 2006, 243 monthly
observations. The data are shown

below. A clear, nearly linear trend o]
is the main feature of the data.
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There seems to be some peculiar %0
“humps” around observation no.
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This clear trend, combined with the very persistent ACF shown below shows a clear need for

differentiation.
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The series after a lag 1 differentiation
is shown to the right.

The most distinct feature is the rather =
erratic behaviour between

observations 203 and 209, i.e.

November 2002 to July 2003, and a »
slightly larger variability towards the

end of the series. Thus vaguely

suggest a log-transformation of the
data, although the need for a

il

transformation is by no means
obvious. A log-transformation
implies that the KPI varies on a
relative rather than an absolute
scale, which is consistent with
economic theory.

The 1. difference of the log- oo |

transformed data is shown to the
right, and show the same features.

0100

::::::




.80+

B0+

404

204

.20

a0

Sample ACF

aa

a0

Sample PACF

.80+

B0+

404

204

aa

-.20

The highly significant, slowly decaying peaks in the ACF at lags 12, 24 and 36 stand out in the
figure above, showing a need for differentiation at lag 12 as well. Below are shown the ACF and
PACEF after differentiation both at lag 1 and lag 12.
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There are a number of borderline significant values in the ACF and PACF, but the negative peak at
lag 12 stands out. Ignoring all lags but 12, 24 and 36, the patterns in the ACF and PACF are con-
sistent with a SARIMA(0,1,0)x(0,1,1)1, model with seasonal MA-parameter around —0.5. Thus, the
first model proposal is this SARIMA(0,1,0)x(0,1,1):, model. Preliminary estimation, using the

innovations method
in ITSM, gives
®.,=-0.53, and the
results from ML esti-
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standard deviations, and way outside the natural variation. This value alone can easily result in
some “spurious” residual autocorrelations.

The residual ACF has two (barely) significant values at lags 1 and 2, a cluster of significant or near
significant vales around lag 20, as well as some other scattered near significant values. The Ljung-
Box test for randomness rejects the white noise hypothesis at level 0.1%.

Refining the model to a SARIMA(0,1,2)x(0,1,1)1, model, where the non-seasonal MA-parameters
are expected to be
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For this model the residual ACF and PACF show no clear patterns. There are a few scattered near-
significant values, but the Ljung-Box statistic is not significant even at the 45% level. The only
statistic to shed some doubt on the white noise hypothesis is the rank test, which rejects the
hypothesis at the 1% level.

Conclusion: The SARIMA(0,1,2)x(0,1,1), with the parameters from above is an acceptable model
for the KPI.

b)
Forecasts for the period Jan. 2005-
March 2006 based on data throughout 95% pred. bounds
Dec. 2004: Prediction Lower Upper Actual
Jan. 2005 113.7 113.0 114.5 113.6
Using ITSM with the above model gives | Fep. 2005 114.1 1130 | 1152 | 1137
the forecasts in the table to the right: March 2005 114.2 112.7 115.6 114.2
After the first three months, the predic-  |-APril 2005 114.0 112.3 1158 | 1148
tions fall consistently below the actual May 2005 1139 1119 1159 | 1152
values. This is probably caused by the June 2005 113.8 111.6 116.1 115.3
fall in the KPI in the first half of 2002,  |-Suly 2005 1135 | 111 | 1159 | 1149
. . . Aug. 2005 113.2 110.6 115.8 115.1
This has resulted in a flattening of the Sep. 2005 113.7 111.0 1165 116.0
local trend, and the model has notyet "6 5505 113.8 1109 | 1168 | 1160
“recovered” and picked up the increase.  [yov 2005 1139 1108 1170 116.0
The above forecasting and comparison Dec. 2005 1141 110.9 117.4 115.9
is done “within Samp|e". This means Jan. 2006 1141 110.7 117.6 115.6
that the data that we forecast have also | _F€b. 2006 114.5 110.9 118.2 | 116.6
been used to identify the model and March 2006 1145 110.7 1185 116.9



estimate its parameters. Thus we will expect a better fit to the actual observations than we would
get from an “out of sample” prediction.

c)

The KPI values are given with only one decimal. Thus a published value of X will actually be X+e,
where ¢ is the rounding error, uniformly distributed over [-0.05,0.05>. Thus a lower limit for the 1-
step prediction error st.dev. (or any prediction error st.dev. for that matter) is the st.dev. of €. The
st.dev. of a uniformly distributed variable is given by its range/\12. In this case the range is 0.1, and
the st.dev. is 0.1/V12 ~ 0.029.

d)
Annual inflation (in %) defined as Y; = (X;-X,.;5)/ X..;2°100%, where X, is the KPI value for month t
and Y, is the % change over the last 12 months.

We have from the exercise text that ¥, ~ (1-B*?)In(X,) '100%, and assume the approximation to be
exact in the following.

In part a) we found that (1-B)(1-B*%) In(X;)=(1+6,B+6,B)(1+©,,B'?)Z.. where Z, is white noise
with variance o, with the parameters given in part a). But since (1-B'?)In(X,) = ¥,/100, we have (1-
B) ¥,=(1+6,B+6,B%)(1+®,B') U, , where now U, is white noise with variance 100°c~. Thus, ¥,
follows a SARIMA(0,1,2)x(0,0,1);, model with parameters as found in part a).

Using ITSM with this model, we find the following predictions, based on data up to March 2006.
From the predictions we can find the standard error, e.g. as (Upper — Prediction)/1.96. The
probability that the actual value will exceed 2.5% is then 1-®((2.5-Prediction)/St.err.), where @ is
the standard cumulative normal distribution.

95% pred. bounds
Pred. Lower Upper St.err. | Pr(>2.5%)
Dec. 2006 1.96 -0.51 4.42 1.26 33.3%
Dec. 2007 1.80 -1.18 4.78 1.52 32.2%

Note that in the analysis above we have assumed the mean of the differentiated series to be 0.
Subtracting the small and insignificant, but negative mean will introduce a deterministic negative
trend, which will have a significant impact on the long-term forecasts for the inflation rate.



Ex. 2

Industrial mixing process, ref. details in the exercise text
Notation:

I, = Total actual (correct) input weight to batch no. t (unobserved)
4, = Required total input weight according to the recipe, so that E/, = x, (known)

Z,, =Total input weight error,so that Z,, =1, — u, (unobserved)

o, =Standard deviation for Z,,. (Known, calculated as the square root of the sum of the variances

for the individual weighing processes)

R, =Residue in the blender after discharging batch no. t (unobserved)
R, isassumed to follow a stationary AR(1) process: (R, — pz) =@ (R4 — tig) + Zy,

where Z,, WN(0, 53 ) and the mean ,, is known.
O, = Actual output weight from batch no. t (unobserved)

Y,

t

= Measured output weight from batch no. t (Observed). The weighting equipment is unbiased,
sothat E(Y,|0,) =0,

Z,, =Measurement error on output, i.e. Z,, =Y, — O, (unobserved)

o, =Standard deviationforZ,, :o, =Stdv(Y,|O,). (known)

The dynamics of this industrial process can then be written:

It+l =H +th+1

Op=1a+R —Ry (1)
Rt+l —Hrp = ¢(Rl - :uR) + ZRt+l
Yt+1 = Ot+l + ZYt+1
This industrial process can be formulated as a state-space model
X =FXi + Vi )

Y, =GX, +W,
with state vector Xi=(1, I, O, R,)".
NB: Unfortunately there is typing error in the sign of the R, term in the second line of eq. (1) in

the exercise text; it should be -, not + ! Also, in the second line of eq. (2) the subscript of X; was
erroneously given as ¢+1 in the exercise text.



a)
Repeated use of eq. (1) gives:
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Thus we have the matrices F and G, and the vectors X, V, Y and ¥ as given in the text.

The form and shape of the matrices and vectors in (2), with F and G independent of time, are more
than sufficient for a state-space representation. In addition, (i): {V} must be white noise, (ii): {W}
must be white noise, and (iii): {V} and {¥;} independent of each other.

It is reasonable to assume that the measurement errors, both on the input and on the output, are in-
dependent over time. Then {Z;;} and {Zy,} will be white noise sequences. Furthermore, since {Zz}
is the noise in an AR(1) model, it will be white by definition.

Now, since V; only contain elements that are linear combinations of Z; and Z from time ¢ only, and
{Z;}and {Z}are white noise, (i) is fulfilled. Similarly, {W;}={Zy}, which is white noise by
definition, showing (ii). And assuming the measurement error in the output to be independent of
those in the input as well as the residue noise we obtain (iii).

Finally, we must assume that the initial state X; is independent of the noise processes {V} and

{m}.

b)

The state-space representation (2) is stable if all the eigenvalues are strictly within the unit circle.
Straightforward calculations give that |[F-Al| = A%(1-1)(¢—A), so the eigenvalues are 0,1 and

¢. Since one of the eigenvalues always = 1, the representation is never stable, according to the strict
definition. However, the eigenvalue = 1 is related to the constant 1 in the state vector. As long as
lp|<1, it can be shown that

1 000
. 4, 0 0 0 . . . L
limF” = 0 0 , S0 that the only information from the history that persists is the parameter
n—»0 /’ll

4, 0 0 0

values associated with the first, constant element (=1) in the state vector. If we define stable to
mean that the impact of previous observation vanishes with time, the state space representation is
stable if |p|<1.



c)

The ¢ parameter controls the degree of persistence in the residue process.

¢ near +1 implies a strong persistence, so that high, or low, amounts of residue will tend to cluster
in time. This could be the case if the amount of residue is to some extent controlled by temperature,
humidity or other persistent processes, or the technical condition of the blender. For ¢ =1, R; will be
a simple random walk.

¢ near —1 implies that a high amount of residue in one batch will tend to be followed by a low
amount in the next batch, and vice versa. This could be the case if the efficiency of the emptying
process depends on the volume in the batch, so that the process becomes more efficient (giving less
residue) if the amount in the blender is large, and similarly the other way around. If so, the
hypothesis of independence between the input process and the residue process becomes somewhat
dubious, though.

For ¢ =-1, Ry will be an oscillating random walk around the mean level z.

¢ near 0 means that the residue process is near white noise, where the residue after each batch is
nearly uncorrelated with previous and later values.

For ¢ = 0, Ri-uz is white noise.

d)
ARMA process for {O,}.

From (1) we have:
oy Hr)

pB 3
Q=0B)O, —u;)=Z,, —9Z;, 3 ~Zp, + Zp,4

Z
Ot =1, _(1_B)Rz =p; +Z, _(1_3)(1_

The left hand side shows an AR(1) structure. The right hand side is 1-correlated, and thus
equivalent to an MA(1)-structure. Thus we have that the {O,} process is an ARMA(1,1):

(1-9B)(O;-p) = (1+6B)Z,. (4)

The AR parameter ¢ is the same as in the residue process. & and the white noise variance o* must
be found by equating »(0) and »(1) for the right hand sides of the two representations.

From (3) we find : while (4) gives:
7(0)=(@+¢*)o] +20;  y(0)=(1+6%)0"
yQ) =-po} —of y() = 60

@and o can then be found by solving the equation :
_ 2 _ 2
0 = (pza’ > Ik - for 6, using the invertible root, and then finding o* = (o] + o)/ 6
1+60° (Q+¢°)o; +20;

As ¢ —1, the equation for @ will approach . 092 =—3,0iving & =-1. Then the AR and MA terms both
+

become (1-B). They can then be cancelled out, and {O; -4} becomes white noise with variance
ol +ol.
2
As ¢ — 0, the equation for 8 will approach 1_ zz = ! 5 where ¢ =0—§, givingf=-%(r+2- Vz? +47) and
+ T+ o;

o? =—c2 16 . The negative sign for the square root must be chosen so that |#| < 1, i.e.in the invertible

region. When 7 is small, so that the residue variance is much smaller than the input measurement
variance, 6 -1 and the process approaches a non-invertible MA(1) with variance o3. When 7 is



large, so that the residue variance is much larger than the input measurement variance, 8 — 0 and the
process approaches white noise with variance o 2.

€)

ARMA prosess for {Y;}.

We have from (1) that Y,=0,+Zy,. Using the results from d), we have that:
Yy, =0~ + 2y =——2,+7Zy, =

1-pB (5)
Q=@B)Y, —p;)=Z,+0Z 4y +Zy, —0Zy 4

The parameter dand the white noise series Z; are as found in d). Again the right hand side is 1-
correlated, and we have an ARMA(1,1) model for {Y;}:

(1-@B)(Y,-14) = (1+wB) U, where Uy is W.N. with variance v* (6)
We use the same technique as in d).

From (5) we find : while (6) gives:
7(0)=@1+06%)c’ + 1+ ¢*)oy (7) 7(0)=(@1+w®)v? (8)
y() =60 —po?} y() =ov?

o and vZcan then, as in d), be found by solving the equation :
©w 0c* — po?;
1+w* (@1+6%)c° +(1+9%)o;

provided @ # 0. If @ =0 we obtain directly v> = y(0)=(1+ 8%)c? + L+ ¢*)o}

for w, using the invertible root, and then finding v> = (6c* — po})/ o,

Alternatively, we have from (3) and (1) that
AQ-B)O, —u))=Z;, —@Z; 1~ Zp, + Zpoy =
A-eB)Y, ~Zy—u))=Z), —@Z; g —Zp, + Ly =

A-oB)Y, — ;) =2, —0Zy s —Zp + Zp s + 2y =@ Ly
Thus, as an alternative to (7), we have:

7(0) =+ 9¢*)o] +20% +(L+9*)oy
yQ)=~po} ~ o} —poy

(9)

o and v2can then, as before, be found by solving the equation :

2 2 2
o —po; —Or — POy

= for @, using the invertible root,
1+0° (A+¢0?02+20% +(1+¢%)c?

and then finding v? = (~po? — o2 — pol) | o, provided o # 0.

If @ =0 we obtain directly v = y(0) =1+ ¢*)o? + 205 + 1+ ¢*)o? (10)



f)

200 observations of Y,.
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The plot shows a rather erratic behavior around a fairly stable mean value at appr. 1000.
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The ACF and PACF are consistent with an AR(1) model ARMA Model
with parameter ca. —0.5. There is no sign of any need for Ated = - ,—3?142 B

any MA parameter. Estimation of an AR(1) model gives
the model to the right:

An analysis of the residuals shows no sign of model
inadequacy, and there does not seem to be any room for
further model improvement.

Enforcing an MA(1) term gives, as expected, & very close
to 0, and far from significant. Thus we continue with the
simple AR(1) model, which is consistent with the results
from e) with

¢=-0.51, =0 and v’=1097.

WH Variance = .109650E+04

AF Coefficients
—.514167

Standard Error of AR Coefficient=
.0gl228

(Residual S55)-H = .109650E+04

ATCC = 197192E+04
BIC = .197281E+04
FFE = .110752E+04

—2Llog(Likelihood) = . 196786E+04



Assuming =0, we get from (10):

2 =1+ (02)0_12 +20’12e + @+ ¢)2)0'$ 30',23 =%(V2 -1+ ¢2)(a,2 +0'§))

With ¢ =-0.51, v? =1097 from the model estimation, and with ¢> = 2 = 400 from the text, we
obtaino2 =42.5= o, = 6.5, as requested.

However, inserting these values into (9) we find y(1) = —po? — 65 — po? =365.5, which is far from
consistent with the lack of an MA term in the identified model for the data. This may indicate that
there is a printing error in the exercise text, so that o =400 or o> # 400. Again, using (9) and
requiring y(1)=0, we obtain:

1097 = 1+ (-51)%)o? + 205 + (1+ (—51)%)c2 - ol +of =481

0=5l02 — o2 - 5lo2 o2 =245 '

Thus the correct solution, consistent with the data, is likely to be ox=15.7 and o, =20/ oy=9 or
o1=9/ oy=20.



