Problem 3.5

Proposition 1 Consider the AR(2)-model $(1 - \phi_1 B - \phi_2 B^2)x_t = w_t$ where $w_t \sim wn(0, \sigma_w^2)$. Then the following two statements are equivalent.

- (i) $\phi(z) = (1 \phi_1 z \phi_2 z^2) = 0 \Rightarrow |z| > 1$
- (*ii*) $\phi_1 + \phi_2 < 1, \phi_2 \phi_1 < 1$ and $|\phi_2| < 1$.

Proof. $(i) \Rightarrow (ii)$: As in class $(ii) \Rightarrow (i)$: Note the following:

(1)

$$\phi(1) = 1 - \phi_1 - \phi_2 > 0,$$

$$\phi(-1) = 1 + \phi_1 - \phi_2 > 0,$$

$$\phi(0) = 1$$

and

(2)
$$\phi'(z) = -\phi_1 - 2\phi_2 z, \ \phi'(1) = -\phi_1 - 2\phi_2, \ \phi'(-1) = -\phi_1 + 2\phi_2$$

For $\phi_2 = 0$ the result is true so it suffices to consider the following cases:

- a) Two real roots of $\phi(z) = 0, \phi_2 > 0$. Since $\phi(z)$ is a parabola and $\phi(z) \to -\infty$ as $z \to \pm \infty$ and $\phi(-1), \phi(0), \phi(1) > 0$ by (1), the solutions of $\phi(z) = 0$ must be outside [-1, 1].
- b) Two real roots of $\phi(z) = 0, \phi_2 < 0, \phi_1 > 0$. By (1) $\phi(0), \phi(1) > 0$. Since the roots are real, $\phi_1^2 + 4\phi_2 > 0$. From (2) it follows that $\phi'(0) = -\phi_1 < 0$ and $\phi'(1) = -\phi_1 - 2\phi_2 < -\phi_1 + \phi_1^2/2 < 0$ if $0 < \phi_1 < 2$. Using that $\phi(z)$ is a parabola and $\phi(z) \to \infty \ z \to \pm \infty$ it follows that $\phi(z)$ must be decreasing in [0, 1] so the roots of $\phi(z) = 0$ are larger than 1.
- c) Two real roots of $\phi(z) = 0, \phi_2 < 0, \phi_1 < 0$. By (1) $\phi(-1), \phi(0) > 0$. Now $\phi'(-1) = -\phi_1 + 2\phi_2 > -\phi_1 - \phi_1^2/2 > 0$ if $-2 < \phi_1 < 0$. Hence arguing as in b) $\phi(z)$ must be increasing in [-1, 0] so the roots of $\phi(z) = 0$ are smaller than -1.
- d) Two complex roots of $\phi(z) = 0$. Since z_1 and z_2 are the roots, $z_2 = \overline{z}_1$ and $\phi(z) = (1 - \frac{1}{z_1}z)(1 - \frac{1}{\overline{z}_1}z) = 1 - \phi_1 z - \phi_2 z^2$. Hence $\frac{1}{|z_1|^2} = |\phi_2| < 1$ and $|z_1| = |z_2| > 1$.