Cox regression

STK4080 H16

1. Proportional hazards model
2. Partial likelihood
3. Counting process-martingale representation
4. Large sample properties
5. Estimation of cumulative baseline (Breslow-estimator)
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Need for regression models

In K-sample situationsd,(t) hazard in groug" we may plot
Kaplan-Meler or Nelson-Aalen estimators in different grstio
describe the differences.

With continuous covariats or many categorical covariass th
becomes impossible, due to few or no individuals with each
covariat value.

Need to use suitable assumptions on how hazards differ for
different covariat values, i.e.

Regression models

Important (afterward) to check if the models are adequate fo
presnt data.
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Tests for Hy : a1 (t) = as(t) = -+ = ak(t) corresponds

to oneway ANOVA which again is a special case of multiple
regression.

May code ANOVA as linear expression

Brxy + Bowg + -+ + Br_1TK—1
where ther, are indicator variables for belonging to categéry

In regression analysis we correspondingly use linear espras

B'x = Brxy + Poxa + -+ + By,

wherez; IS a covariat (explanatory variable) npandgj; the
regression parameter corresponding o

On vectorial form the linear expressigfic where
ﬁ/ — (61, 627 c e 7ﬁp) andﬁlf/ — (Il, Loy ,CCp).
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Common regression models for survival data

Regression models for survival data are often specified by
hazardsy(t|x) = hazard with covariat.

Common models:
Proportional hazards modelgt|z) = exp(6'z)ag(t)

Accelerated lifetime models
a(t|r) = exp(S'z)ao(exp(8'x)t)
Additive hazard models(t|x) = ag(t) + 'z

All these models includey(t) = baseline (underlying) hazard
and a linear expressigsiz.

Note that we get(¢|0) = «ay(t) = hazard with covariat = 0.
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General risk functions

ABG (and other texts) present the proportional hazards monde
the more general form hazard for individualiven by

aftlr;) = (B, zi(t))ao(t)

wherer (5, x;(t)) is some non-negative function. An example is

r(B,x:(t) = (14 Biza(t))(1 + Baxia(t))
used for an uranium miner data set.

Most of the theory goes through as easy as with the expohentia
risk functionr (3, x;(t)) = exp(5'z;(t)), but some expressions
gets a little more messy.

There iIs some software that allow for other risk functions,lb
have not seen this IR.
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The proportional hazards model: 1. One covariat

Hazard rate for subject with one covanat

ax(t) = ao(t) exp(fz)

where baseline hazard(t) is the hazard for subject with = 0.

Interpretation: Hazard rate ratio (or loosely Relative Risk),

gy (1)

HR = exp(8(xy — xp)) = o (1)

In particular witha binary

HR = exp(8) =
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Example: Mortality rates among men and women,

Statistics Norway, 2000, smoothed.

Binary covariater indicator of men.

Prop. hazard modealot valid in age interval 0-100 years
Prop. hazard model roughly valid in interval 40-85 yearfwit
HR ~ 1.8.

log(hazard)
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Example 1: Melanoma data

T = time to death from melanoma
hazardo,(t) = ay(t) exp(6x)

x = Indicator of ulceration,

HR = 24 = exp(f) = hazard ratio between those with and

oot

without ulceration.
x1 = tumor thickness (mm) subject 1,
x5 = thickness (mm) subject 2 + 1 mm,

HR = exp(B) = rate ratio w. 1 mm difference.
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Proportional hazards model: 2. Several covariates

Hazard rate for individual with covariat vector

T = (21,22, ..., Tp)
o, (1) = ap(t) exp{S1z1 + Poxs + ... + Bpxp}

where baseline hazard(t) is hazard function for individual
with all L1 = T2 = ... = Tp = 0.

Interpretation: Hazard rate ratio (HR)

Another subject withy’ = (2, 75, ..., 7)) wherer; = 1, z; = 0
andz’; = x; otherwise:

vy (t)

(1)

HR; = eXp{ﬁl} —
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Example 1: Melanoma data
az(t) = ao(t) exp(Bie1 + Bawa + B3x3 + Bary)

r; = sex (M=1, F=0)

o = Indicator of ulceration,
r3 = age,

x4 = thickness (mm)

r = (x1,0,13,24)

r = (3317 17 L3, ZE4)

HR = 22 — exp(f,) = hazard ratio between those with and

without ulceratioradjusted for sex, age and thickness.
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Estimation in the proportional hazards model

e With baseline hazard,(t) = ay(t, #) parametrically specified
— by likelihood for censored data (ABG Ch. 5).

Gompertz:ag(t,0 = (v, A)) = \y!
Weibull: o (2,0 = (v, A)) = X771

e With baselinen(t) = ay; piecewise constant aft;_;, ¢,]
— by Poisson regression (ABG, 5.2.1).

e With baseline hazard,(¢) arbitrary function
— by Cox-regression (ABG, 4.1).
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Comparison of different types of baseline hazards
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Cox (1972), Regression models and life-tables, JRSSB:

We may estimat@ without assuming anything aboai(t)!
Malin interest lies in effect; from covariatz;.

Baselinen(t) represent "nuisance parameters"”
(plageparametre).

References in ISI-database
Per 12. Oct 2004: 19246 citations
Per 12. Oct 2010: 24606
Per 12. Oct 2016 (yesterday): 30343
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Cox’ Regression:

Death at;. Let

L;(8) = P(Subjecti died att;|: € R(t;), death at;)
_ ai(ti)
2 keRr(ty) Y (ti)
_ exp(Bx;)ao(t;)
ZkzeR(ti) exp(Bxk ) (ti)

_ exp(Bz;)
ZkeR(ti) exp(Bzy)

where

o o;(t) = ap(t) exp(Pz;) = hazard subjectat t
e R(t) = subjects under observationtat = risk set at.

Note L;(/5) depend org only,
not on the baseline hazard(t).
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Cox’ Partial likelihood:

Assume that individual dies att;,: = 1,..., D = no. deaths.

Estimatess by maximizing (Cox, 1972)

D D exp(f'x;)

i—1 N P ZkER(ti) exp(f'xy,)

Note: We my estimated and H R; = exp(5,) without specifying
the baseliney,(?).

In addition: The partial likelihood.(5) behaves as a standard
likelihood (will show this).

In particular: standard errors fgras for standard likelihoods.
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Example: Melanoma data
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Example: Melanoma data

Variable B  se(d) Z-value p-value
tumorsize (mm) 0.11 0.04 2.89 0.004
ulceration 1.16 0.31 3.76 0.0002

sex (F=0,M=1) 0.43 0.27 1.62 0.11
age (years/10) 0.12 0.08 1.47 0.14

Variable HR = exp(3) HR, HRy

tumorsize (mm) 1.12 1.04 1.20
ulceration 3.20 1.75 5.88
sex (F=0,M=1) 1.54 0.91 2.60

age (years/10) 1.13 0.96 1.33
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R-code and output:

> coxph(Surv(lifetime,dead) sex+ulcer+age+thickn,dat
Call:
coxph(formula = Surv(lifetime, dead) ~ sex + ulcer + age + thi

coef exp(coef) se(coef) z P

sex 0.4328 1.542 0.2674 1.62 0.11000
ulcer -1.1645 0.312 0.3098 -3.76 0.00017

age 0.0122 1.012 0.0083 1.47 0.14000
thickn  0.1089 1.115 0.0377 2.89 0.00390

Likelihood ratio test=41.6 on 4 df, p=2e-08 n= 205

a=mel)

ckn, data
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More R-code and output:

> summary(coxph(Surv(lifetime,dead) sex+ulcer+age+th
coxph(formula = Surv(lifetime, dead) = sex + ulcer + age + thi

n= 205
coef exp(coef) se(coef) z P
sex 0.4328 1.542 0.2674 1.62 0.11000
ulcer -1.1645 0.312 0.3098 -3.76 0.00017
age 0.0122 1.012 0.0083 1.47 0.14000
thickn  0.1089 1.115 0.0377 2.89 0.00390

exp(coef) exp(-coef) lower .95 upper .95

sex 1.542 0.649 0.913 2.604
ulcer 0.312 3.204 0.170 0.573

age 1.012 0.988 0.996 1.029
thickn 1.115 0.897 1.036 1.201

Rsquare= 0.184  (max possible= 0.937 )

Likelihood ratio test= 41.6 on 4 df, p=2e-08

Wald test = 39.4 on 4 df, p=5.72e-08
Score (logrank) test = 46.7 on 4 df, p=1.79e-09

ickn,data=mel))
ckn, data
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What kind of "animal"is L(3)? really

Cox(1972): Conditional likelihood.
Problematic with time dependent covariats.

Cox(1975): Partial likelihood.
But what exactly Is that?

Johansen (1983): Profile-likelihood ovey(t).
Nice, but helpful?

Andersen & Gill (1982)(8) = “&2%) is a martingale.

Leads to likelihood propertie$! (3) approx. normal with

E[U(6)] =0

0 1Og(L(/3))]
0p?

VarlU(f)] = —E|
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Why - again - is the MLE approx. normal?

Assumef maximizes likelihood(#) and has score function

U(0) = 228l and information/ (9) = — 2L sych that

A

U(6) = 0

E(U(0)] =0and VarU(6)| = E[1(0)]
LU(8) ~N(O, %)
whereX is the limit for 2 7(6) whenn — oo.

Then, by 1.order Taylor expansion

A

0=U)=U(6) — (§ —6)I(9) + remainder term

which give X n=1207(6)
vl =0) ~ ==

» N(0,X71).
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Martingale representation for U (). Define

Y, (t) = I( ind. k under risk at (right before))

N (t) = counting process for ind. na.
SO(B,t) = 3oy Ya(t) exp(B'zy)
SW(B,t) = Yh_, Ya(t) exp(Bay,) = 25120
SO(B,t) = Sor_, wra] Ya(t) exp(Bay,) = L5
Then L) - D exp(8';)
-+ 503, 1;)

which leads to the log-partial likelihood

log(L(8)) =i 1[5' ; —log(S©(8,t:))]
=" J18'%; — log(SV(B,1))|dN;(¢)

Cox re

aress

ion —n. 22/47



U(B) martingale, contd.

ince2los(sB) _ S (B
Since 35 = Soy(g.y We getscore

Z / S(o) ]sz(t)

But
dN;(s) = Y;(t) exp(8'x;)ag(t)dt + dM;(t)

where\;(t) = Y;(t) exp(5'x;)ap(t) is the intensity process and
M;(t) the martingale related ty;(¢). Inserting gives

U(ﬁ) — z 1 f gioi(ﬁ t) Y(t) eXp(ﬁ/xi)O‘O(t)dt
+zi Sl = Sz 1AM

S 515
z 1f S(O)Eﬁt§ dM( )
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U () martingal IlI

since

Z/ S(o) ]YZ(t) eXp(ﬁ,%)&o(t)dt = 0.

This follows from>_" [ gi;igﬁ t%]Y(t) exp(B'z;)

(57 t) (0
50"

(1)
D(B,1) ~ 2y a8V (5,6) =0

and so

Z/ ]dM()

IS a sum of integrals wrt. martlngals, thus itself a martlagaith

ElU(B)] = 0.
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Will show Var [U(5)] = E[I(8)] = E [_aw)}

(but only for one covariafy = 1)
The M;(t) are uncorrelated martingales with

Var|M;(t)] = E[/O Y;(s) exp(Bx;)ap(s)ds].
Thus

Var(U(8)) = ESS1, [las — Sropal?Yi(t) exp(Bri)ao(t)dt
( after some calculations )
=E[ [S®(5,1) - S ag(t)at
= E[1(B)

where the last equality will be derived
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Contd. Var[U(8)] = E[I(B)]

oS0,

But furthermore S(a)ﬁ(ﬁ = % — [%}2 which give
o . 5(1)
1(5):__ :_Z“f S“” dN;(t)

(2) (1)

= i 1f{g<0) - §<0)]2}dNi(t)
(2) (1)

= f{gm) - §<o> J2}dN (1)

whereN,(t) = Y7 N;(t) = [ SO(B, t)ag(t)dt + M, ().
And this leads to

(2) (1)
/ (2o~ 1S3, Dao(t)dt] = Var(U (5))
ged.
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Large sample properties Cox-estimator

Furthermore, by the martingale CL%U(&) — N(0, 0?%)

where!?) — 52, and so

B~ N(B,I(B))
for 5 scalar. We may thus testyH 3 = 0 by statistic

7= N,
se
where sé = (5)~*.
But sincel (/) have the usual likelihood properties we may

alternatively teste K: 3 = 0 by (under the null)

A

Likelihood-ratio test2[log(L(3)) — log(L(0))] ~ x7
Score-testi/(0) ~ N(0,1(0)) and (?((%))2 )
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Cox Score test and Log-rank test

Assume that; Is a binary variable and the only covariate.

Then the score test for Cox-regression is the same as thaihbg-
If there are no ties (Exercise 4.2).

This result generalises directly to dummy variables inincpa
levels of a categorical covariate

For this reason the score test for Cox-regression is reféoras
a generalized log-rank test.
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Comparison Cox-regression and Log-rank

> summary(coxph(Surv(lifetime,dead) ulcer,data=mel))

coef exp(coef) se(coef) z P
ulcer -1.47 0.23 0.295 -4.98 6.3e-07

exp(coef) exp(-coef) lower .95 upper .95
ulcer 0.23 4.36 0.129 0.41

Rsquare= 0.13 (max possible= 0.937 )

Likelihood ratio test= 28.4 on 1 df, p=9.68e-08
Wald test = 24.8 on 1 df, p=6.3e-07
Score (logrank) test = 29.6 on 1 df, p=5.41e-08

> survdiff(Surv(lifetime,dead) ulcer,data=mel)

N Observed Expected (O-E)"2/E (O-E)2/V
ulcer=1 90 41 21.2 18.5 29.6
ulcer=2 115 16 35.8 10.9 29.6

Chisg= 29.6 on 1 degrees of freedom, p= 5.41e-08
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Generalized log-rank test

For general; (not necessarily binary) we have

Z/ - 2 iy
which has variance undergH 5 = 0 given by

- (B [ e

The generalized log-rank test is the given by that under H

U©)?* >
7(0) ~ X1
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Large sample properties Cox-estimator, Il

We showed

Var(U(B)) = E[I(5)]

for p = 1 covariat. The result holds true also for general 1.
Thus

B~ N(B,I(B))
wheng is ap-dim. vector and (3) apxp-matrix.
We may teste the "complete" null hypothesis of no effect gf an

of the covariates H: 5, = 82 = --- = 5, = 0 by the 3
(asymptotically equivalent) tests:

Wald-test:5371(5)5 ~ x2
Likelihood ratio test2[log(L(3)) — log(L(0))] ~ x2
Score-test/(0) ' 1(0)~'U(0) ~ x>
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R-output (repeated):

> summary(coxph(Surv(lifetime,dead) sex+ulcer+age+th
coxph(formula = Surv(lifetime, dead) = sex + ulcer + age + thi

n= 205
coef exp(coef) se(coef) z P
sex 0.4328 1.542 0.2674 1.62 0.11000
ulcer -1.1645 0.312 0.3098 -3.76 0.00017
age 0.0122 1.012 0.0083 1.47 0.14000
thickn  0.1089 1.115 0.0377 2.89 0.00390

exp(coef) exp(-coef) lower .95 upper .95

sex 1.542 0.649 0.913 2.604
ulcer 0.312 3.204 0.170 0.573

age 1.012 0.988 0.996 1.029
thickn 1.115 0.897 1.036 1.201

Rsquare= 0.184  (max possible= 0.937 )

Likelihood ratio test= 41.6 on 4 df, p=2e-08

Wald test = 39.4 on 4 df, p=5.72e-08
Score (logrank) test = 46.7 on 4 df, p=1.79e-09

ickn,data=mel))
ckn, data
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HR with ClI

Naturally we estimate hazard-rate-ratios HRexp(3,) by

A

HRj = eXp(Bj)

The diagonal oﬂ(B)—1 gives the variance estimates for the
different3;. So withse; = square-root of —th diagonal element
we get a 95% ClI fors; by

Bj + 1.96S€j.
This interval is transformed to a 95% ClI for HRy

exp(f3; + 1.96se,) = HR; exp(41.96se;)
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Composite hypothese

Ex: Melanoma data. We may be more concerned with some
variables, for.ex.

Ulceration and thickness primary variables

Sex and age confounds the association (are "lurking
variables") and should only be adjusted for.

We may thus want to test, with; = ulceration and;;= tumor
thickness,

Hoiﬁlzﬁgzo,

while 55 and 5, may take arbitrary values.
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Composite hypothesis, in general

Let 5 bep-dimensional. We will forg < p test

H03ﬁ1:52:°“:5q:07

while 5,41, ..., 5, may be aribtrary. Let the Cox-estimator for
be

Apriori: B = (81, Ba, -, Bp)
Under H, : 5* = (0,0,...,0,85,1,...,5;)

and the blocked covariance matbix= 1(3)! for f:

Z11 Z12

=
Z21 Z22

where. ; is theqzq covariance matrix fof3,, ..., 3,) etc.
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More composite hypothesis

Let alsof,) = (B, ..., B,)". Then we may test the null
hypotesis by

Wald-test:B(Tq)il‘f By ~ X2
Likelihood ratio: 2[log(L(3)) — log(L(5*))] ~ X
approximately under }

A related score-test for composite hypotheses may be dez@lo
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Composite hypothesis example

Tests H : No effect of ulceration or tumor thickness
1. Likelihood Ratio:

> coxfitO<-coxph(Surv(lifetime,dead) age+sex,data=me )]
> coxfitl<-coxph(Surv(lifetime,dead) ulcer+thickn+ag e+sex,data=mel)
> coxfit0$loglik

[1] -283.1992 -278.2284

> coxfitl$loglik

[1] -283.1992 -262.3895

> LR<-2 * (coxfitl$loglik[2]-coxfitO$loglik[2])

> LR

[1] 31.67779

> 1-pchisq(LR,2)

[1] 1.322071e-07

It turns out that there Is a clear effect of these two varsblso
when we adjust for age and sex.
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Composite hypothesis example, Il

The Wald-test is also simple:
> pmat<-matrix(coxfitl$coef[1:2],ncol=1)

> kjikv<-t(bmat)% * %%solve(coxfitl$var[l:2,1:2])% * %obmat
> Kjikv

[1]
[1,] 30.87181

> 1-pchisq(kjikv,2)
[1] 1.978209e-07

Comparable result - but small sample properties of Waltstes
are often poorer than LR and Score-tests.
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Estimation of cumulative hazard Ay (t) = | ao(s)ds

So we manage to estimatewithout saying anything about the
baseline. However, often we still want to estimatgt) after
having estimated. The most common estimator fdl(¢) is the
Breslow-estimator

A ) D, B " dN,(s)
Ap(t) = Z (B’ka) _/0 S(O)(B,S)

T;<t ZkER(Ti) CXp

Note that this estimator is similar to the Nelson-Aalenmaator.

Given Ay (t) it is simple to estimate cumulative hazard for an
individual with hazardx(t|z;) = exp(8'x;)ap(t) as

A(t|a;) = exp(B'z;) Ao (t)
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Estimation of survival

With covariater = 0 the survival function equals
So(t) = exp(—Ap(t)). Thus it may be estimated by

So(t) = exp(—Ao(t)).
With covariater; the survival function
S(tlz:) = exp(—A(t|z;)) = exp(— exp(B'x;) Ao (1))

which may be estimated

S(t]s) = exp(—A(t])) = So(t)=2@).
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Breslow-estimator inR
Generate a Cox-regression object:

cox.mel<- coxph(Surv(lifetime,status==1) ~factor(sex),

data=melanoma)

The Breslow estimator for survival is calculated by

survfit(cox.mel,type="aalen")

and may be plotted by

plot(survfit(cox.mel,type="aalen"),fun="cumhaz")

The corresponding survival function is obtained by

plot(survfit(cox.mel,type="aalen"))

Cox rearession —n. 41/47



Breslow-estimator inR, Figure

Cum.haz Survival
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Breslow-est. INR, contd.

Note. This estimator is calculated for theerage covariate in
the examplesex =1.385.

To calculateS(t|z) for a specified: we need to make a new

"data frame" with the same covariate names as the Cox object
and the specified covariate values

nydata<-as.data.frame(matrix(rep(1,8),nrow=1))
names(nydata)<-names(melanoma)

nydata

plot(survfit(cox.mel,newdata=nydata,type="aalen"),f un="cumhaz")
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R & Breslow, last

This gives the plot
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0.00
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Why is Ay(t) a sensible estimator?

(when the proportional hazards model is correct)?

Martingale decomposition gives

]m@%:A:WW&QmM@%+ﬂL@)

With true value ofs (and number at risks 0) this leads to

" t
/ Scf(f;f(.ﬁ(s)s) :/ ao(s)ds + Martingale
0 ’ 0

which has expectatior,(¢). Because ~ 3 we then get

<o [T ANJ(s) [T dNJ(s)
%®_Asw@@NASW&@N%®
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Variance of Ay(t)

may also be derived by martingale arguments. Here is ameultli
By Taylor-expansion we get

! — ! 3 SN (B, 5) + remainder term
0(3,s) SO(B,s) 2 |

This leads to

1 t dNe(s
Ao(s) = fy 5ol + Jy | 5oy — s | AN (5)

t dMe(s) t S (8,s
+f S(Jg( 6 6) 05(0)(6 dN()
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Variance of Ay(t) contd.

Furthermore (luckily)3 — 3 and fot SC%‘;)) are asymptotically

uncorrelated (arguments omitted).
Thus we may estimate Vad,(t)) by

=2 t S (B.s t sM)(4.g
Var[AO(t)] — [ 0 S(O)((;S))QdN } f S(O)((;S dN( )

t o(S
+ f SEZO])VB 3))2
and becaussy(t) — Sy(t) ~ —Sy(t)[Ag(t) — Ay(t)] an estimator
of the variance ob,(t) equals

Var[Sy(t)] = So(t)*Var[Ay(t))
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